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Abstract

Clinical notes contain rich patient information, such as diagnoses or medications,
making them valuable for patient representation learning. Recent advances in
large language models have further improved the ability to extract meaningful
representations from clinical texts. However, clinical notes are often missing. For
example, in our analysis of the MIMIC-IV dataset, 24.5% of patients have no
available discharge summaries. In such cases, representations can be learned from
other modalities such as structured data, chest X-rays, or radiology reports. Yet the
availability of these modalities is influenced by clinical decision-making and varies
across patients, resulting in modality missing-not-at-random (MMNAR) patterns.
We propose a causal representation learning framework that leverages observed
data and informative missingness in multimodal clinical records. It consists of:
(1) an MMNAR-aware modality fusion component that integrates structured data,
imaging, and text while conditioning on missingness patterns to capture patient
health and clinician-driven assignment; (2) a modality reconstruction component
with contrastive learning to ensure semantic sufficiency in representation learning;
and (3) a multitask outcome prediction model with a rectifier that corrects for
residual bias from specific modality observation patterns. Comprehensive evalua-
tions on MIMIC-IV show consistent gains over the strongest baselines, achieving
up to 13.8% AUC improvement for hospital readmission and 13.1% for ICU
admission.

1 Introduction

Language plays a central role in clinical communication. Learning patient representations from
clinical notes has become an important focus in clinical NLP. These unstructured texts—written by
clinicians to document observations, diagnoses, and decisions—encode rich contextual information
that complements structured patient data. Since the introduction of contextualized language models
like BERT [Devlin et al., 2019], the field has advanced rapidly with medical-domain adaptations,
such as ClinicalBERT [Alsentzer et al., 2019, Huang et al., 2019]. More recently, large language
models (LLMs) fine-tuned or adapted to clinical tasks have shown promise in medical reasoning,
outcome prediction, and clinical decision support [Yang et al., 2022, Singhal et al., 2023].

Yet clinical text is often missing in real-world settings. In our analysis of the MIMIC-IV dataset, a
large publicly available collection of de-identified electronic health records (EHR) [Johnson et al.,
20241, 24.5% of patients lack discharge summaries. In such cases, other EHR modalities such as
structured data, chest X-rays (CXR), and radiology reports may still be available and can be leveraged
to learn patient representations.

Crucially, the availability of these modalities is not random. It is often determined by physician
decision-making and patient conditions. For example, clinical notes and radiology reports are more
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likely to be recorded for patients with more severe conditions or complex diagnostic needs. As shown
in Figure 1, patients with more complete modality combinations (i.e., structured data, CXR, clinical
notes and radiology reports) have significantly higher post-discharge ICU admission and 30-day
readmission rates. This reflects modality missing-not-at-random (MMNAR) patterns, where the
absence of data itself encodes latent clinical state and correlates with outcomes.

In this paper, we propose CRL-MMNAR (Causal Representation Learning under MMNAR), a novel
framework that explicitly uses both observed data and informative missingness in multimodal clinical
records. CRL-MMNAR is structured in two stages. Together, they improve patient representation
when clinical notes are available, and enable learning patient representation when text is missing.

The first stage consists of two complementary components for patient representation learning. The
first component is MMNAR-aware modality fusion, which integrates structured data, imaging, and
text using large language models and modality-specific encoders, while explicitly conditioning on
modality missingness patterns. It serves three objectives: (i) increasing the estimation precision of
latent patient representation by combining signals shared across modalities; (ii) preserving modality-
specific information; and (iii) uncovering latent factors that influence clinical decision-making, such
as a physician’s judgment in ordering labs or imaging. By combining multimodal content with the
clinician-assigned observation pattern, the fused representation reflects both the underlying health
state and the reasons why specific modalities are observed or missing.

The second component is a modality reconstruction with contrastive learning. Its purpose is to
ensure that the fused representation captures the essential content of each modality and can recover
missing inputs. We achieve this using two complementary loss functions: a reconstruction loss that
encourages recovery of masked modalities and a contrastive loss that aligns reconstructions with
their originals while distinguishing them from other patients. Together, these objectives improve
generalization across missingness patterns and yield robust, clinically meaningful representations.

The second stage is multitask outcome prediction, where the learned patient representations are
applied to downstream tasks such as 30-day readmission, post-discharge ICU admission, and in-
hospital mortality. The patient representation from Stage 1 serves as a shared backbone across all
tasks, improving statistical efficiency by pooling information from common features of patient health.
On top of this backbone, task-specific heads capture heterogeneity unique to each clinical outcome.

Crucially, modality observation patterns may themselves act as treatment variables, influencing
outcomes through clinician decisions such as ordering additional tests or prescribing medications. To
capture these observation-pattern-specific effects, we introduce a rectifier mechanism that applies
post-training corrections inspired by semiparametric debiasing methods [Robins et al., 1994, Robins
and Rotnitzky, 1995]. This adjustment ensures that predictions remain robust, even when modality
assignment patterns encode systematic biases not captured by the base model.

We validate our approach with extensive experiments on MIMIC-IV. Our method consistently outper-
forms 13 state-of-the-art baselines. On MIMIC-IV, it achieves AUC gains of +8.4% for readmission
(from 0.7989 to 0.8657), +13.1% for ICU admission (from 0.8687 to 0.9824), and +4.7% for
in-hospital mortality (from 0.9045 to 0.9472). Subgroup analyses underscore the robustness of
MMNAR modeling, with pronounced benefits in underrepresented modality configurations. Ablation
studies confirm that each component contributes meaningfully, with MMNAR-aware fusion and the
rectifier mechanism driving the largest improvements.

2 Problem Formulation

Let M be the set of all available modalities. For each patient 4, let M; C M denote the subset of
modalities actually observed. For any modality m € M, let J:Em) denote the corresponding raw input
for patient :. We define x; = {J:Z(.m) }mem as the collection of all modality inputs (whether observed
or not), and 9™ = {xgm)}me M, as the subset of observed modalities for patient :.

i )]me M. This pattern
is typically determined by clinician decisions, such as whether to order imaging or write detailed
notes. For each modality m € M, we set 6§m) = 1 if it is observed for patient 7, and 0 otherwise.
For example, in MIMIC-1V, we have M = {S,I, T, R}, where “S” represents structured EHR data,
“I” chest X-ray images, “T” discharge summaries, and “R” radiology reports.

To encode the modality observation pattern, we define a binary vector §; = [4 (m



For each patient ¢, we consider multiple clinical outcomes of interest. Let 7 denote the set of all
outcome tasks. For each ¢t € T, let y; ; denote the outcome for patient ¢ corresponding to task ¢ and
let y; = [ys,¢]teT collect all outcomes.

Our goal is to build a predictive model that uses both the observed modalities and the clinician-
assigned observation pattern to estimate outcomes as accurately as possible. Formally, we define the
outcome model as

vio = o (2.0.) + i M

where fg, is the prediction function parameterized by 6;, and ¢; ; denotes random noise.

3 Method

Our CRL-MMNAR method learns the outcome model (1) under the causal diagram in Figure 2.
The diagram posits a latent patient health state h; that drives both the observed modalities x; =

{asgm) }menm and clinician-assigned observation pattern d;. Both h; and §; in turn influence outcomes
y;. CRL-MMNAR proceeds in two stages.

In the first stage, we learn a patient representation h; that captures both observed modalities and the
observation pattern:

hi =1y (asg'“, 6,») , )

where 7, is parameterized by shared weights 77 across all prediction tasks. This stage corresponds
to Section 3.1 covering two core components: modality fusion and modality reconstruction, with
preprocessing of raw data detailed in Appendix B.1.

In the second stage, we adopt a multitask outcome prediction framework. For each outcome task
t € T, we model

Yit = g, (R, 0i) + €t 3)
where gy, is a task-specific predictor with parameters 1. Here, §; is explicitly included to account
for the observation pattern, which may itself act as a treatment variable. For example, certain patterns
may reflect patients’ health awareness (e.g., adherence to follow-up visits) or clinical decision-
making (e.g., physicians ordering additional tests or prescribing medications). To account for these
observation-pattern-specific effects, we introduce a rectifier mechanism (detailed in Section 3.2) that
corrects residual biases from such patterns, thereby improving robustness in outcome prediction.

Finally, the overall end-to-end training integrates modality fusion, modality reconstruction, and
outcome prediction, as summarized in Appendix B.2. For each outcome task ¢, the parameter set is
0; = (1, ;). The outcome model (1) can thus be expressed as fg, = gup, © -

3.1 Patient Representation Learning
3.1.1 MMNAR-Aware Modality Fusion

The MMNAR-aware modality fusion component integrates modality embeddings {egm)}me M, into
a unified representation h; (Equation (2)). Unlike standard fusion strategies, this module explicitly
treats missingness patterns ; as structured contextual signals rather than random noise. The design

ensures that the low-dimensional information in §; is preserved and not overwhelmed by the high-
(

dimensional embeddings eim). The component proceeds in two main steps.

Step 1: Missingness-aware transformation. We first compute a missingness embedding z; =
MLP(§;), which transforms the binary observation pattern into a dense vector. To ensure that z;
retains structural information about clinician-assigned modality assignment, it is trained in a self-
supervised encoder—decoder fashion: Liss = AmissCrossEntropy (Si, 6i), where &- is decoded from
z; and Apg 1S the hyperparameter controlling the loss weight.

(m)

Each modality-specific embedding e;
(m)

7,gate

is then reweighted according to the missingness embed-
ding z;: e =" .o (W z; + p(m)) . '™ where o(-) is a sigmoid gating function and

(W) p(m)) are modality-specific parameters. Missing modalities (5£m) = 0) are imputed with
zero, while observed ones are adaptively emphasized or attenuated based on z;.



(m)

1,gate

Step 2: Attention-based fusion. The gated embeddings {e; ..} mer are then aggregated with a

multi-head self-attention mechanism: h; = 7y ({egf;)[e}me M). This produces the final patient

representation h;. The attention mechanism contextualizes each modality relative to others and
adapts dynamically to incomplete inputs—for example, placing greater weight on imaging data when
clinical text is unavailable. The loss functions for learning h; are described in the next subsection.

3.1.2 Modality Reconstruction with Contrastive Learning

The modality reconstruction with contrastive learning component defines the loss for representation
learning. Its goal is to ensure that the fused patient representation h; retains sufficient semantic
information to recover missing inputs and generalize across observation patterns. It consists of two
complementary objectives.

Objective 1: Cross-modality reconstruction. For each observed modality m € M;, we randomly
mask it to simulate a missing-at-random scenario, ensuring the masking itself does not encode clinical
decisions. Using only the remaining modalities, we compute a partial representation h}m via the
fusion process in Section 3.1.1. A modality-specific decoder (" then attempts to reconstruct the
excluded embedding: €\ = ¢(™) (R\™). 1f &™) is close to the true embedding ™, this indicates

i,rec i,rec . . 7 .
that the fusion mechanism has captured the necessary information from the other modalities. The

2
e _ o(m) (m)

reconstruction loss for modality m is LEET ) = Do 51(7”) . ‘ inrec |, computed only when e;

is available (5£m) =1).

Objective 2: Contrastive alignment. To prevent trivial reconstructions, we introduce a contrastive
term that aligns each embedding with its own reconstruction while distinguishing it from recon-

egm), ef’r';)c) forms a positive pair, while

) for other patients j # 4 are negative pairs. The contrastive loss is then defined as

structions of other patients. For patient ¢ and modality m, (
( elm) (m)

7 » ¥ j,rec
. (m) _(m)
exp(sim(e; "’ ,e; )/ T . . . .
ﬁfomm) = —log ( ‘( e (,,)L)/ om) , where sim(-, -) cosine similarity and 7.y, is the InfoNCE
Zj exp(mm(ei ,ejvrec)/'rmm)
temperature.

3.2 Multitask Outcome Prediction with Rectifier

The final part of CRL-MMNAR is multitask outcome prediction with rectifier. We consider a
simplified form of Equation (3), where for each outcome ¢, the predictor decomposes into two parts:

Yit = Gap, (h'z> + T8t T Eit - 4

The first term, gy, captures variation explained by the representation h; and is invariant across all
modality observation patterns, enabling parameter sharing across outcome tasks. The second term,
Ts, +- 18 a scalar parameter specific to each modality observation pattern §;, representing the treatment
effect of the observation pattern d; on the outcome ¢. This model is estimated in two steps.

Step 1: Multitask prediction loss. We jointly train outcome-specific predictors using the shared
representation h;.

Step 2: Observation pattern specific rectifier. After training the base model (yielding h; and §; ;),
we estimate 75 ; separately for each task ¢ and modality pattern 4. To mitigate overfitting, we adopt

cross-fitting. Specifically, for a fixed & € {0, 1}/, we define the index setas Vs = {i:8; = d },
which contains all patients with modality configuration §. We partition this set into two disjoint folds,

Vél) and V§2), satisfying Vs = Vél) U V§2) and Vél) N V§2) =d.

On each fold k € {1,2} and for each task ¢, we estimate the average residual using predictions
obtained without using that fold: ﬁ;f? = |V§k) =1y, eV (it — 9i,t) - This provides a fold-specific
estimate of the systematic bias associated with observation pattern é for outcome .

We then apply the correction estimated from one fold to the other to obtain rectified predictions:
ng‘ft =g+ 1 {|?§f)t| > I{} . %éf)t fori € Véf) and k # k, where x > 0 is a threshold that
enables selective correction—that is, the rectifier is applied only when the estimated effect is non-



negligible. The threshold & is chosen via cross-validation to balance correction effectiveness and
stability, typically ranging from 0.01 to 0.05 depending on the scale of prediction errors.

4 Experiments

We use the MIMIC-IV v3.1 database [Johnson et al., 2024], a large-scale, de-identified clinical
dataset containing structured EHRs, clinical notes, and chest radiographs. We construct a cohort of
20,000 adult patients (>18 years) with a single ICU stay, excluding those with multiple admissions
or missing key records.

Among all patients, 15,098 (75.5%) have discharge summaries, 17,010 (85.0%) have radiology
reports, and all patients (100%) have structured data. Overall, 17,903 (89.5%) have at least one
text modality and 5,228 patients (26.1%) have CXRs. For downstream modeling, we encode each
patient’s modality availability as a binary vector.

We evaluate on three prediction tasks: (1) 30-day Hospital Readmission: Predicting readmission
within 30 days post-discharge; (2) Post-discharge ICU Admission: Predicting ICU admission within
90 days post-discharge; (3) In-hospital Mortality: Predicting death during hospital stay.

Table 1: Performance comparison across datasets and clinical tasks. Best results in bold. Results
reported as mean = standard deviation, computed over five independent runs with different random

seeds for initialization.
‘ MIMIC-IV Dataset

Model 30-day Readmission Post-discharge ICU In-hospital Mortality
AUC AUPRC Brier AUC AUPRC Brier AUC AUPRC Brier

CM-AE 0.689240.041 0.401240.052 0.179840.026 | 0.6978+0.043 0.2687 +0.048 0.128710.021|0.8423+0.020 0.4187 10.030 0.104310.018
MT 0.7134 10,036 0.429810.047 0.174540.024(0.738210.035 0.2998.10.042 0.124340.015|0.861210.027 0.434210.037 0.0998.10.016
SMIL 0.7087 +0.034 0.445610.046 0.173210.022|0.6845:0.044 0.262310.051 0.1312.40.023|0.8489+0.031 0.427610.041 0.1018+0.018
GRAPE 0.7045+0.038 0.4267+0.050 0.1756-10.025|0.7234£0.010 0.2934+10.044 0.1267£0.020 |0.8698.10.025 0.44280.035 0.09780.016
HGMF 0.7289+0.032 0.482310.043 0.1698+0.023|0.7123 19,042 0.2798£0.048 0.128910.020 |0.8567 +0.027 0.4234 10,030 0.101210.018
M3Care 0.7256.+0.034 0.461240.046 0.1712+0.023|0.7267 +0.038 0.2956.10.044 0.1276.10.018|0.8776+0.025 0.4456.10.037 0.0967 +0.016
COM 0.7634 10,029 0.4178410.050 0.1678.40.020(0.829810.032 0.36780.039 0.1198.40.016|0.878910.025 0.382310.042 0.097810.016
DrFuse 0.7687 +0.027 0.409810.052 0.1656-10.020 | 0.8687+0.020 0.3634+0.037 0.1134.£0.0140.892310.020 0.381210.030 0.0934.0.014
MissModal 0.7478£0.032 0.403410.054 0.1689+0.023|0.814510.034 0.33120.042 0.121240.015|0.8667£0.025 0.394510.04a 0.0998 10016
FLEXGEN-EHR | 0.7845+0.025 0.4323.10.048 0.1634+0.018|0.8476-0.027 0.3798+0.035 0.112310.014|0.8956+0.018 0.407810.037 0.09120.014
MUSE+ 0.7989.+0.030 0.4812.40.042 0.1543+0.020|0.8678.£0.036 0.4067+0.046 0.1078.10.018|0.9045+0.016 0.4678+0.033 0.0889+0.012
GRU-D 0.721240.042 0.413410.057 0.1723.10.027|0.764540.040 0.283410.053 0.1278.40.023|0.82671+0.034 0.418910.046 0.1034.40.020
Raindrop 0.7434+0.034 0.429810.050 0.1678.10.023|0.7889+0.036 0.311210.044 0.1234.10.015|0.862310.027 0.442310.030 0.0967+0.016

CRL-MMNAR [0.8657+0.018 0.562710.028 0.116710.012|0.98240.016 0.58210.024 0.058910.007 |0.9472-20.014 0.4767+0.026 0.0759-0.009

We compare CRL-MMNAR with 13 state-of-the-art methods, spanning three major paradigms
in multimodal learning. The details about the benchmark methods are provided in Appendix D.2.
Table 1 reports results across both datasets and all clinical tasks, using Area Under the ROC Curve
(AUC), Area Under the Precision-Recall Curve (AUPRC), and Brier score as evaluation metrics.

CRL-MMNAR achieves substantial improvements across all tasks and metrics. On MIMIC-1V, the
largest gains occur in ICU admission prediction, where AUC rises from 0.8687 with DrFuse to
0.9824 (+13.1%), and in 30-day readmission, from 0.7989 with MUSE+ to 0.8657 (+8.4%). For
in-hospital mortality, our model improves from 0.9045 with MUSE+ to 0.9472 (+4.7%). On eICU,
improvements are similarly consistent: readmission AUC increases from 0.8167 with MUSE+ to
0.9294 (+13.8%), while mortality prediction rises from 0.9334 with MUSE+ to 0.9380 (+0.5%).

Importantly, these gains are accompanied by consistent reductions in Brier scores, confirming that
improvements in discrimination are matched by better-calibrated predictions. We further provide
component ablation studies in Appendix D.3.

5 Conclusion

We introduce CRL-MMNAR, a causal multimodal framework that explicitly models MMNAR in
clinical data. The framework combines missingness-aware fusion, cross-modal reconstruction, and
multitask prediction with rectification to learn robust patient representations. Evaluations on MIMIC-
IV show consistent improvements over 13 state-of-the-art baselines, with notable gains of 8.4%
AUC for readmission and 13.1% for ICU admission. This work highlights the importance of treating
missingness as structured signal and offers a principled approach for robust patient representation
learning under realistic data constraints.



References

Emily Alsentzer, John Murphy, William Boag, Wei-Hung Weng, Di Jindi, Tristan Naumann, and
Matthew McDermott. Publicly available clinical bert embeddings. In Proceedings of the 2nd
Clinical Natural Language Processing Workshop, pages 72-78, 2019. URL https://arxiv.
org/abs/1904.03323.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new
perspectives. IEEE transactions on pattern analysis and machine intelligence, 35(8):1798—1828,
2013. URL https://ieeexplore.ieee.org/abstract/document/6472238.

Zhengping Che, Sanjay Purushotham, Kyunghyun Cho, David A. Sontag, and Yan Liu. Recurrent
neural networks for multivariate time series with missing values. CoRR, abs/1606.01865, 2016.
URL http://arxiv.org/abs/1606.01865.

Jiayi Chen and Aidong Zhang. Hgmf: Heterogeneous graph-based fusion for multimodal data with
incompleteness. In Proceedings of the 26th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining (KDD °20), pages 1295-1304, 2020. doi: 10.1145/3394486.3403182.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and
Thamar Solorio, editors, Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 4171-4186, June 2019. doi: 10.18653/v1/N19-1423. URL
https://aclanthology.org/N19-1423/.

Junting Duan, Markus Pelger, and Ruoxuan Xiong. Factor analysis for causal inference on large
non-stationary panels with endogenous treatment. Available at SSRN 4823360, 2024a. URL
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4823360.

Junting Duan, Markus Pelger, and Ruoxuan Xiong. Target pca: Transfer learning large dimen-
sional panel data. Journal of Econometrics, 244(2):105521, 2024b. URL https://www.
sciencedirect.com/science/article/pii/S0304407623002373.

Huan He, William hao, Yuanzhe Xi, Yong Chen, Bradley Malin, and Joyce Ho. A flexible generative
model for heterogeneous tabular EHR with missing modality. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?id=
W2tCmRr j7H.

Kexin Huang, Jaan Altosaar, and Rajesh Ranganath. Clinicalbert: Modeling clinical notes and
predicting hospital readmission. arXiv preprint arXiv:1904.05342,2019. URL https://arxiv.
org/abs/1904.05342.

Alistair Johnson, Luigi Bulgarelli, Tom Pollard, Benjamin Gow, Benjamin Moody, Steven Horng,
Leo Anthony Celi, and Roger Mark. MIMIC-IV (version 3.1). https://doi.org/10.13026/
kpb9-mt58, 2024. PhysioNet.

Kun Kuang, Peng Cui, Susan Athey, Ruoxuan Xiong, and Bo Li. Stable prediction across unknown
environments. In proceedings of the 24th ACM SIGKDD international conference on knowledge
discovery & data mining, pages 1617-1626, 2018. URL http://arxiv.org/abs/1806.06270.

Kun Kuang, Ruoxuan Xiong, Peng Cui, Susan Athey, and Bo Li. Stable prediction with model
misspecification and agnostic distribution shift. In Proceedings of the AAAI Conference on Artificial
Intelligence, number 04, pages 44854492, 2020. URL https://ojs.aaai.org/index.php/
AAAT/article/view/5876.

Dongyue Li, Haotian Ju, Aneesh Sharma, and Hongyang R Zhang. Boosting multitask learning on
graphs through higher-order task affinities. In Proceedings of the 29th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, pages 1213-1222,2023a. URL https://dl.acm.
org/doi/abs/10.1145/3580305.3599265.

Dongyue Li, Huy L Nguyen, and Hongyang R Zhang. Identification of negative transfers in multitask
learning using surrogate models. Transactions on Machine Learning Research, 2023b. URL
https://arxiv.org/abs/2303.14582.


https://arxiv.org/abs/1904.03323
https://arxiv.org/abs/1904.03323
https://ieeexplore.ieee.org/abstract/document/6472238
http://arxiv.org/abs/1606.01865
https://aclanthology.org/N19-1423/
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4823360
https://www.sciencedirect.com/science/article/pii/S0304407623002373
https://www.sciencedirect.com/science/article/pii/S0304407623002373
https://openreview.net/forum?id=W2tCmRrj7H
https://openreview.net/forum?id=W2tCmRrj7H
https://arxiv.org/abs/1904.05342
https://arxiv.org/abs/1904.05342
https://doi.org/10.13026/kpb9-mt58
https://doi.org/10.13026/kpb9-mt58
http://arxiv.org/abs/1806.06270
https://ojs.aaai.org/index.php/AAAI/article/view/5876
https://ojs.aaai.org/index.php/AAAI/article/view/5876
https://dl.acm.org/doi/abs/10.1145/3580305.3599265
https://dl.acm.org/doi/abs/10.1145/3580305.3599265
https://arxiv.org/abs/2303.14582

Dongyue Li, Aneesh Sharma, and Hongyang R Zhang. Scalable multitask learning using gradient-
based estimation of task affinity. In Proceedings of the 30th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pages 1542-1553, 2024a. URL https://dl.acm.org/
doi/abs/10.1145/3637528.3671835.

Dongyue Li, Ziniu Zhang, Lu Wang, and Hongyang R Zhang. Scalable fine-tuning from multiple
data sources: A first-order approximation approach. Findings of the Association for Computational
Linguistics: EMNLP 2024,2024b. URL https://arxiv.org/abs/2409.19458.

Dongyue Li, Ziniu Zhang, Lu Wang, and Hongyang R Zhang. Efficient ensemble for fine-tuning lan-
guage models on multiple datasets. The 63rd Annual Meeting of the Association for Computational
Linguistics, 2025. URL https://arxiv.org/abs/2505.21930.

Ronghao Lin and Haifeng Hu. Missmodal: Increasing robustness to missing modality in multimodal
sentiment analysis. Transactions of the Association for Computational Linguistics, 11:1686—1702,
2023. doi: 10.1162/tacl_a_00628.

Mengmeng Ma, Jian Ren, Long Zhao, Sergey Tulyakov, Cathy Wu, and Xi Peng. Smil: Multimodal
learning with severely missing modality. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pages 3069-3077, 2021. URL https://arxiv.org/abs/2103.05677.

Mengmeng Ma, Jian Ren, Long Zhao, Davide Testuggine, and Xi Peng. Are multimodal transformers
robust to missing modality? In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 18177-18186, 2022. URL https://arxiv.org/abs/2204.05454.

Jiquan Ngiam, Aditya Khosla, Mingyu Kim, Juhan Nam, Honglak Lee, and Andrew Y. Ng. Mul-
timodal deep learning. In Proceedings of the 28th International Conference on International
Conference on Machine Learning, pages 689—696, 2011. URL http://www.icml-2011.0rg/
papers/399_icmlpaper.pdf.

Shuwei Qian and Chongjun Wang. COM: Contrastive Masked-attention model for incomplete
multimodal learning. Neural Networks, 162:443-455, May 2023. ISSN 08936080. doi:
10.1016/j.neunet.2023.03.003. URL https://linkinghub.elsevier.com/retrieve/pii/
S5089360802300120X.

James M Robins and Andrea Rotnitzky. Semiparametric efficiency in multivariate regression models
with missing data. Journal of the American Statistical Association, 90(429):122-129, 1995. URL
https://www.tandfonline.com/doi/abs/10.1080/01621459.1995.10476494.

James M Robins, Andrea Rotnitzky, and Lue Ping Zhao. Estimation of regression coefficients when
some regressors are not always observed. Journal of the American statistical Association, 89(427):
846-866, 1994. URL https://www.tandfonline.com/doi/abs/10.1080/01621459.1994.
10476818.

Karan Singhal, Shekoofeh Azizi, Tao Tu, S Sara Mahdavi, Jason Wei, Hyung Won Chung, Nathan
Scales, Ajay Tanwani, Heather Cole-Lewis, and Stephen Pfohl. Large language models encode
clinical knowledge. Nature, 620(7972):172—-180, 2023. URL https://www.nature.com/
articles/s41586-023-06291-2.

Sen Wu, Hongyang R Zhang, and Christopher Ré. Understanding and improving information
transfer in multi-task learning. International Conference on Learning Representations, 2020. URL
https://arxiv.org/abs/2005.00944.

Zhenbang Wu, Anant Dadu, Nicholas Tustison, Brian Avants, Mike Nalls, Jimeng Sun, and
Faraz Faghri. Multimodal patient representation learning with missing modalities and la-
bels. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=Je5SHCKpPa.

Ruoxuan Xiong and Markus Pelger. Large dimensional latent factor modeling with missing ob-
servations and applications to causal inference. Journal of Econometrics, 233(1):271-301,
2023. ISSN 0304-4076. doi: https://doi.org/10.1016/j.jeconom.2022.04.005. URL https:
//www.sciencedirect.com/science/article/pii/S0304407622000914.


https://dl.acm.org/doi/abs/10.1145/3637528.3671835
https://dl.acm.org/doi/abs/10.1145/3637528.3671835
https://arxiv.org/abs/2409.19458
https://arxiv.org/abs/2505.21930
https://arxiv.org/abs/2103.05677
https://arxiv.org/abs/2204.05454
http://www.icml-2011.org/papers/399_icmlpaper.pdf
http://www.icml-2011.org/papers/399_icmlpaper.pdf
https://linkinghub.elsevier.com/retrieve/pii/S089360802300120X
https://linkinghub.elsevier.com/retrieve/pii/S089360802300120X
https://www.tandfonline.com/doi/abs/10.1080/01621459.1995.10476494
https://www.tandfonline.com/doi/abs/10.1080/01621459.1994.10476818
https://www.tandfonline.com/doi/abs/10.1080/01621459.1994.10476818
https://www.nature.com/articles/s41586-023-06291-2
https://www.nature.com/articles/s41586-023-06291-2
https://arxiv.org/abs/2005.00944
https://openreview.net/forum?id=Je5SHCKpPa
https://www.sciencedirect.com/science/article/pii/S0304407622000914
https://www.sciencedirect.com/science/article/pii/S0304407622000914

Fan Yang, Hongyang R Zhang, Sen Wu, Christopher Re, and Weijie J Su. Precise high-dimensional
asymptotics for quantifying heterogeneous transfers. Journal of Machine Learning Research, 26
(113):1-88, 2025. URL https://www. jmlr.org/papers/v26/24-0454 . html.

Xi Yang, Aokun Chen, Nima PourNejatian, Hoo Chang Shin, Kaleb E. Smith, Christopher Parisien,
Colin Compas, Cheryl Martin, Anthony B. Costa, Mona G. Flores, Ying Zhang, Tanja Magoc,
Christopher A. Harle, Gloria Lipori, Duane A. Mitchell, William R. Hogan, Elizabeth A. Shenkman,
Jiang Bian, and Yonghui Wu. A large language model for electronic health records. NPJ Digital
Medicine, 5(1):194, 2022. doi: 10.1038/s41746-022-00742-2. URL https://www.nature.com/
articles/s41746-022-00742-2.

Wenfang Yao, Kejing Yin, William K Cheung, Jia Liu, and Jing Qin. Drfuse: Learning disentangled
representation for clinical multi-modal fusion with missing modality and modal inconsistency. In
Proceedings of the AAAI conference on artificial intelligence, number 15, pages 16416-16424,
2024. URL http://arxiv.org/abs/2403.06197.

Jiaxuan You, Xiaobai Ma, Daisy Yi Ding, Mykel Kochenderfer, and Jure Leskovec. Handling missing
data with graph representation learning. In NeurIPS 2020: Advances in Neural Information
Processing Systems 33,2020. URL https://arxiv.org/abs/2010.16418.

Chaohe Zhang, Xu Chu, Liantao Ma, Yinghao Zhu, Yasha Wang, Jiangtao Wang, and Junfeng Zhao.
M3care: Learning with missing modalities in multimodal healthcare data. In Proceedings of the
28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD °22), pages
2545-2554, 2022a. doi: 10.1145/3534678.3539388.

Xiang Zhang, Marko Zeman, Theodoros Tsiligkaridis, and Marinka Zitnik. Graph-guided net-
work for irregularly sampled multivariate time series. In International Conference on Learning
Representations, 2022b. URL https://arxiv.org/abs/2110.05357.


https://www.jmlr.org/papers/v26/24-0454.html
https://www.nature.com/articles/s41746-022-00742-2
https://www.nature.com/articles/s41746-022-00742-2
http://arxiv.org/abs/2403.06197
https://arxiv.org/abs/2010.16418
https://arxiv.org/abs/2110.05357

A Figures

Outcome
I ICU Admission
[ Readmission

S+R S+HI+R S+T+R S+T+I+R
Combination

Figure 1: Modality availability patterns are predictive of clinical outcomes (ICU admission and
30-day readmission). S = structured EHR data; I = chest X-ray images; T = discharge summaries; R
= radiology report.

@k@

Figure 2: Causal diagram: The latent patient health state h; influences the modality contents

x; = {;z:l(.m) }mem and drives the clinician-assigned observation pattern §; = [5£m)]me M- Outcomes
Y; = [yit]ieT are caused by h; and may also be directly affected by 4, (e.g., ordering additional
tests or prescribing medications).

B Additional Method Details

B.1 Preprocessing Multimodal Data

For each observed modality mgm), we obtain a semantic embedding egm) € R? using a modality-

specific encoder, by applying distinct preprocessing and encoding procedures to text, imaging, and
structured data.

For text data such as discharge summaries and radiology reports, we apply standard preprocessing
steps, including artifact removal, abbreviation normalization, and segmentation of long sequences.
We then obtain embeddings using large language models pre-trained on biomedical corpora (e.g.,
domain-adapted BERT variants), which can be further fine-tuned for downstream prediction tasks.

For imaging data, such as chest X-rays, we first apply standard preprocessing (e.g., normalization
and resizing) and then extract embeddings using models pre-trained on large-scale image datasets.

For structured data such as demographics, laboratory results, and vital signs, we apply standard
preprocessing to normalize continuous features and embed categorical variables. For temporal signals
like labs and vitals, we align measurements across time and then encode them with lightweight
feed-forward or recurrent models designed for tabular and longitudinal data.



B.2 End-to-End Training Procedure

We now describe the complete training procedure for the outcome model y; ; = fo, (™, ;) + & 4.
The total training objective combines three losses:

ﬁtotal = »Cmiss + /Crep + Epred 3
‘}\/{" ~— ——
Section 3.1.1  Section 3.1.2  Section 3.2

where L;ss learns missingness context, L., ensures semantic sufficiency in representation learning,
and Lpreq optimizes outcome prediction. Here Ly, is defined as

Lomiss = AmissCrossEntropy (5“ 51-) .
Lyep is defined as

L:rep == Z ()\recﬁgg?) + A(:onvcg)rrln)) 5
meM
where A and A.on are hyperparameters controlling the relative importance of reconstruction and
contrastive objectives. Lpyreq is defined as

Epred = Z )\pred,t . CrossEntropy (gi,ta yi,t) b
t

where §; ; = Gop) (h;) is the predicted outcome ¢ using h; and Apred,t balances prevalence and clinical
importance across tasks.

The first two terms, Lyiss + Lrep, define the loss used to train representation encoder parameters 1) in
Equation (2). The final term, Lyeq defines the loss for the outcome-specific parameters p; for all
tasks ¢ in Equation (4). The end-to-end training jointly learns both the patient representation h; and
the outcome predictors 1p; for all ¢.

After training, we estimate modality-pattern-specific corrections {75 }s¢ {0,1}Im Via cross-fitting.
These parameters account for the direct effect of modality assignment patterns §; on outcomes, which
may not be fully explained by h;.

Putting everything together, the parameter set is 6; = (1, ¥y, {7s,¢}5c{0,1}1mI) for each outcome
task ¢.

C Related Work

Our work is most closely related to the growing literature on multimodal representation learning, and
in particular to methods that address missing modalities. Early approaches, such as CM-AE [Ngiam
et al., 2011], introduced autoencoder-based frameworks for cross-modal imputation. Subsequent
methods developed more sophisticated modality-specific encoders with fusion mechanisms, including
multimodal Transformers [Ma et al., 2022], graph-based aggregation (GRAPE [You et al., 2020]), and
heterogeneous graph-based factorization (HGMF [Chen and Zhang, 2020]). While these models can
operate under partial inputs, they treat missingness as a nuisance to be mitigated, rather than a source
of signal. A complementary line of work treats missing modalities as a primary modeling objective
rather than a nuisance. Examples include SMIL [Ma et al., 2021], COM [Qian and Wang, 2023], and
MissModal [Lin and Hu, 2023], which design Bayesian, contrastive, or dropout-based strategies to
directly handle sparsity. These approaches directly relate to our setting by treating missingness as a
key modeling consideration.

Within this stream, several methods have been developed specifically for healthcare applications,
including M3Care [Zhang et al., 2022a], MUSE+ [Wu et al., 2024], FLEXGEN-EHR [He et al.,
2024], and DrFuse [Yao et al., 2024], which achieve strong performance under real-world modality
sparsity. In parallel, temporal models such as GRU-D [Che et al., 2016] and Raindrop [Zhang et al.,
2022b] are developed to capture implicit temporal missingness patterns. However, these approaches
do not explicitly account for the causes of missingness. In contrast, our CRL-MMNAR explicitly
models observation patterns as informative signals to recover clinically meaningful structure and
improve predictive accuracy.

Our work also connects to the growing literature at the intersection of causal inference and machine
learning. In spirit, we share the idea of leveraging causal principles (e.g., balancing and weighting)
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to improve predictive accuracy in observational settings [Kuang et al., 2018, 2020]. More closely,
our work relates to research on uncovering latent structures when data are missing not at random,
where missingness is endogenously driven by unobserved factors [Xiong and Pelger, 2023, Duan
et al., 2024a,b]. Finally, our rectifier mechanism parallels semiparametric approaches for handling
MNAR data [Robins et al., 1994, Robins and Rotnitzky, 1995], as it corrects for the effect arises from
the observation patterns to reduce bias.

Finally, our work also relates to the literature on multitask learning, which leverages commonalities
across related prediction tasks to share statistical strength [Bengio et al., 2013]. In our setting,
multitask outcome prediction illustrates positive transfer, but as the number of outcomes grows,
negative transfer may occur, where shared representations harm accuracy for certain tasks [Wu et al.,
2020, Yang et al., 2025], making its mitigation an important future direction. Recent advances in task
modeling [Li et al., 2023a,b], adaptive and scalable fine-tuning for individual tasks [Li et al., 2024a,b,
2025] offer promising approaches to mitigate negative transfer by dynamically controlling when and
how knowledge is shared across tasks.

D Additional Experiments on MIMIC Dataset

D.1 Dataset Preprocessing

For the MIMIC-IV data, we construct a cohort of 20,000 adult patients (>18 years) with a single
ICU stay, excluding those with multiple admissions or missing key records. we retrieve structured
data tables (admissions, patients, chartevents, labevents, etc.) via BigQuery, filtered to a
fixed subject list. Extracted data are cached for consistency across experiments. For each patient,
we aggregate diagnostic, laboratory, and medication events into summary features over predefined
windows before ICU admission. Missing values are retained and augmented with indicator flags to
preserve potential MMNAR signals.

D.2 Baselines and Implementation Details

We compare CRL-MMNAR with 13 state-of-the-art methods, spanning three major paradigms in
multimodal learning. The second paradigm is explicitly designed to handle missing data.

Traditional Multimodal Methods.
1. CM-AE [Ngiam et al., 2011]: Cross-modality autoencoder for imputation and prediction.

2. MT [Ma et al., 2022]: Multimodal Transformer with late fusion.
3. GRAPE [You et al., 2020]: Bipartite graph neural network capturing patient-modality relations.
4. HGMF [Chen and Zhang, 2020]: Heterogeneous graph-based matrix factorization.

Missing Modality Specialists.
5. SMIL [Ma et al., 2021]: Bayesian meta-learning with modality-wise priors.

6. M3Care [Zhang et al., 2022a]: Modality-wise similarity graph with Transformer aggregation.
7. COM [Qian and Wang, 2023]: Contrastive multimodal framework.

8. DrFuse [Yao et al., 2024]: Disentangled clinical fusion network.

9. MissModal [Lin and Hu, 2023]: Robust modality dropout framework.

10. FLEXGEN-EHR [He et al., 2024]: Generative framework for heterogeneous EHR data.

11. MUSE+ [Wu et al., 2024]: Bipartite patient-modality graph with contrastive objectives.

Irregular Time Series Methods.
12. GRU-D [Che et al., 2016]: Gated recurrent unit with decay mechanisms.

13. Raindrop [Zhang et al., 2022b]: Graph-guided network for irregularly sampled time series.
Implementation Details All models are trained with AdamW (learning rate 2 x 10~%, weight

decay 1 x 1079, batch size 32) using early stopping (patience 30) and automatic mixed precision. To
address class imbalance, we adopt focal loss with task-specific parameters tuned on validation sets.
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We use standardized 5-fold stratified cross-validation with grid search for hyperparameter tuning. For
each model, results are reported as mean =+ standard deviation, computed over five independent runs
with different random seeds for initialization.

Training uses NVIDIA RTX A6000 GPUs (48GB VRAM) with 256GB RAM. The architecture
is optimized for this hardware while remaining compatible with clinical environments, and adopts
end-to-end training (Appendix B.2).

D.3 Component Ablation Studies

Table 2 presents systematic ablation results demonstrating each component’s contribution. Starting
from a multimodal baseline with standard feature concatenation, we progressively add: (1) MMNAR-
aware fusion with L,is; (2) modality reconstruction with Ly.p; and (3) the rectifier mechanism.

MMNAR-aware fusion provides the largest improvements across both datasets, confirming that
explicitly modeling clinician-driven missingness patterns captures meaningful clinical signals beyond
standard fusion approaches. Modality reconstruction delivers consistent but modest gains, validating
that cross-modal semantic sufficiency enhances representation quality. The rectifier shows task-
dependent benefits, particularly for ICU admission prediction, suggesting bias correction is most
valuable for outcomes closely tied to clinical decision-making patterns.

The complete framework achieves substantial cumulative improvements, with each component
contributing meaningfully to the final performance across all clinical tasks and datasets.

Table 2: Component ablation analysis showing incremental performance gains on the MIMIC-IV
dataset. MMNAR-Aware Fusion is abbreviated as MMNAR; Modality Reconstruction as MR;

Multitask with Rectifier as Rectifier.
‘ MIMIC-IV Dataset

Component ‘ 30-day Readmission ‘ Post-discharge ICU In-hosp. Mortality

| AUC APR AAUC | AUC APR AAUC | AUC APR AAUC
Basic Baseline | .717  .347 - 801 .307 - 814 369 -
+ MMNAR 793 470 +.076 853 372 +.052 | .894 381 +.080
+ MR 811 519 +.018 .889 404  +.036 | 929 456  +.035
+ Rectifier 866 563 +.055 | 982 582  +.093 | 947 477 +.018
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Table 3: Performance Across Modality Combinations on MIMIC-IV

Modality Configuration Readmission AUC ICU AUC
All modalities 0.8657 0.9824
Discharge summaries + Radiology reports 0.7808 0.8843
Structured-Only 0.7234 0.8156
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