
SPAFIT: Stratified Progressive Adaptation Fine-tuning for Pre-trained
Large Language Models

Anonymous ACL submission

Abstract

Full fine-tuning is a popular approach to adapt001
Transformer-based pre-trained large language002
models to a specific downstream task. How-003
ever, the substantial requirements for compu-004
tational power and storage have discouraged005
its widespread use. Moreover, increasing ev-006
idence of catastrophic forgetting and overpa-007
rameterization in the Transformer architecture008
has motivated researchers to seek more effi-009
cient fine-tuning (PEFT) methods. Commonly010
known parameter-efficient fine-tuning meth-011
ods like LoRA and BitFit are typically applied012
across all layers of the model. We propose013
a PEFT method, called Stratified Progressive014
Adaptation Fine-tuning (SPAFIT), based on015
the localization of different types of linguis-016
tic knowledge to specific layers of the model.017
Our experiments, conducted on nine tasks from018
the GLUE benchmark, show that our proposed019
SPAFIT method outperforms other PEFT meth-020
ods while fine-tuning only a fraction of the021
parameters adjusted by other methods.022

1 Introduction023

Vaswani et al. (2017) introduced a new neural024

network architecture called Transformers, which025

used concepts of positional encoding and self-026

attention, and helped many pre-trained language027

models (PLMs) reach a state of the art quality in028

various downstream tasks. To use these PLMs for029

a specific language related application in a specific030

domain, one needs to perform supervised learning031

on these models with data specific to that use case.032

This adaptation of PLMs to one’s specific use case033

is called fine-tuning. If all the parameters in all034

the layers are allowed to change while adapting the035

model to this use case, then it is commonly known036

as full fine-tuning.037

Despite showing promising results, the use of038

Transformer-based PLMs coupled with full fine-039

tuning is constrained by the computational power040

and memory requirements. This limitation arises041

from the complex architecture of Transformers, 042

where each layer has millions of parameters ac- 043

cessed during the forward pass. Consequently, the 044

volume of parameters makes the process compu- 045

tationally demanding and imposes challenges in 046

terms of memory and latency during both training 047

and inference phases (Fan et al., 2020). Empirically, 048

this overparameterization of PLMs is exhibited by 049

Gordon et al. (2020), where they found that pruning 050

30-40% of parameters from the BERT-base model 051

has no effect on training loss. 052

In addition to huge computational power, mem- 053

ory, and training data requirements, using full fine- 054

tuning is further discouraged due to its potential of 055

causing catastrophic forgetting. Catastrophic for- 056

getting happens when a neural network undergoes 057

sequential training on multiple tasks. In this case, 058

the weights essential for the successful execution of 059

task A can be modified to align with the objectives 060

of task B, leading to a significant loss of knowledge 061

related to the initial task (Kirkpatrick et al., 2017). 062

This potential of catastrophic forgetting is fur- 063

ther explored by Kumar et al. (2022). Their find- 064

ings show that when a pre-trained model performs 065

well on dataset A without fine-tuning, and there is a 066

significant difference between dataset A and dataset 067

B, then performing full fine-tuning on dataset A re- 068

sults in poorer accuracy on dataset B compared to 069

the alternative approach of employing linear prob- 070

ing on dataset A. Linear probing, in this context, 071

means tuning the head on dataset A while freez- 072

ing all lower layers. These challenges associated 073

with full fine-tuning motivates researchers to de- 074

velop more parameter efficient fine-tuning (PEFT) 075

methods. 076

2 Literature Review 077

In the paradigm of pre-training coupled with 078

fine-tuning, the mechanism behind fine-tuning is 079

not clearly understood, particularly in terms of 080

how features learned during pre-training are trans- 081

1



ferred to perform well on downstream tasks. (Hu082

et al., 2022) underscores the lack of interpretabil-083

ity of these models and emphasizes the current084

dependence on hypothesis-driven and empirical085

approaches employed by researchers in the de-086

velopment of the methods. Some of the popular087

PEFT methods and their possible hypothesis are088

described below:089

2.1 Adapter based methods090

An adapter itself is a small neural network mod-091

ule which is integrated at multiple locations in092

PLMs. During fine-tuning, pre-trained parame-093

ters of PLMs are frozen and only parameters of094

these adapters are allowed to change to adapt the095

model. The number of parameters in these adapter096

layers are generally very small, often less than one097

percent of number of parameters in PLMs, thus098

allowing for parameter efficient fine-tuning. In us-099

ing this approach, the implied hypothesis is that100

these small set of parameters residing in adapters,101

integrated in each layer of the network, can capture102

the task-specific changes needed in each layer.103

Two popular Adapter-based methods include the104

Series Adapter proposed by Houlsby et al. (2019)105

and the Parallel Adapter introduced by Pfeiffer et al.106

(2020). In the Series Adapter, an adapter is added107

twice within a transformer layer(Vaswani et al.,108

2017). Since a transformer layer comprises two109

sublayers – multi-head attention and a feed-forward110

network, a serial adapter is inserted after each of111

these sublayers. This placement occurs right after112

the output of the sublayer is projected back to input113

size and before the skip connection. Therefore, the114

output of one adapter serves as an input for the115

next adapter in series. In contrast, in the Parallel116

Adapter method, each adapter is a separate module117

that processes the same input independently. The118

output of these adapters are then combined before119

being passed to the next layer.120

2.2 LoRA: Low Rank Adaptation121

In this increasingly popular research area of PEFT122

methods, Hu et al. (2022) have made a significant123

contribution by introducing a novel method called124

LoRA. The authors propose to represent the nec-125

essary adjustments in pre-trained weights to adapt126

to a specific task through low-rank decomposition127

matrices, permitting only these matrices to be train-128

able while keeping pre-trained parameters frozen.129

By reducing the rank of the matrices containing130

trainable parameters, LoRA effectively decreases131

the total number of parameters to be trained. The 132

underlying hypothesis made by the authors is that 133

the adaptation required to fine-tune a PLM for a 134

new task can be effectively represented using a 135

lower-dimensional subspace. 136

If the language model is parameterized over Φ, 137

where Φ0 represents pre-trained values, Φfine-tune 138

represents values for parameters after fine-tuning, 139

and ∆Φ represents the change in weights required 140

to adapt the model to a new task, then Φfine-tune = 141

Φ0 + ∆Φ = Φ0 + BA, where Φ0, ∆Φ ∈ Rd×k, 142

B ∈ Rd×r, and A ∈ Rr×k. Here, r is a hyper- 143

parameter. Hu et al. (2022) noted that very small 144

values of r will suffice even for weight matrices 145

from (very) high dimensional space (i.e. high val- 146

ues of d and k). Commonly used values for r are in 147

{2, 4, 8, 16, 64}. Another hyperparameter in this 148

method is α. As noted by the authors, ∆Φ is scaled 149

by α/r, where α is a constant in r. The author 150

recommended to set α to the first r and do not tune 151

it. The additive structure of model also allows for 152

parallelization, which is not possible in Adapter- 153

based methods. Moreover, this approach works 154

against catastrophic forgetting by preserving pre- 155

trained weights and allows to switch between tasks 156

by swapping the LoRA weights. Hu et al. (2022) 157

limited their experiments to adapting only attention 158

weights in the transformer architecture (Vaswani 159

et al., 2017), specifically, Wq (Query weight ma- 160

trix), Wk (Key weight matrix), Wv (Value weight 161

matrix, and Wo (Output weight matrix). 162

2.3 BitFit: Bias-terms Fine-tuning 163

Ben Zaken et al. (2022) proposed a simple yet 164

competitive parameter efficient fine-tuning method. 165

Their approach involves freezing a majority of the 166

network and exclusively fine-tuning the bias terms. 167

The empirical evidence presented by Ben Zaken 168

et al. (2022)) shows the important role and im- 169

pact of bias parameters in significantly altering 170

the networks’s behavior. The authors advocate 171

further analysis and attention on the bias terms 172

and hypothesise that the changes required to adapt 173

a pre-trained model to a specific task can be ac- 174

complished by just allowing bias terms to change 175

while keeping the remainder of the model frozen. 176

According to Ben Zaken et al. (2022), for small 177

to medium sized training data, BitFit exhibits the 178

same or sometimes better accuracy than full fine- 179

tuning. Note, however, that these experiments were 180

conducted only on BERT models. 181

2



3 SPAFIT: Stratified Progressive182

Adaptation Fine-tuning183

3.1 Hypothesis and Reasoning184

Among the PEFT methods discussed above and the185

other ones available in the literature, one particular186

fine-tuning method is applied across all the layers.187

One hypothesis which does not get enough spot-188

light is that earlier layers of the network captures189

basic linguistic knowledge while the later layers190

captures more complex task specific knowledge.191

Therefore, the complexity of fine-tuning should192

also progress as we go deeper into the network.193

According to this hypothesis, since basic linguistic194

knowledge is required in all tasks, some initial lay-195

ers must remain frozen and need not be fine-tuned,196

layers in the middle should be trained with some-197

what complex fine-tuning methods allowing some198

number of parameters to change, and layers near199

the end should be trained with some of the best200

performing reasonably complex fine-tuning meth-201

ods allowing reasonable number of parameters to202

change.203

Unlike computer vision, where Zeiler and Fer-204

gus (2014) used novel visualization techniques to205

show that deep CNNs trained on image classifica-206

tion dataset learn hierarchy of image features, there207

is not much work done on associating different208

layers of PLMs with different types of linguistic209

knowledge. Peters et al. (2018) found evidence in210

support of this hypothesis in bidirectional language211

models (biLMs) and concluded that the lower lay-212

ers of biLMs focus on capturing local syntactic213

relationships. This enables the higher layers to han-214

dle longer-range relationships, such as coreference,215

and to specialize further for the language modeling216

task at the topmost layers. Another evidence is pro-217

vided by the empirical study done by Tenney et al.218

(2019a) on the BERT model and consistently found219

that basic syntactic information appears earlier in220

the network, while high-level semantic information221

appears at higher layers.222

3.2 Our Model223

Consider a large language model containing L lay-224

ers of Transformer-based encoders or decoders. We225

propose to stratify the encoder/decoder layers into226

three distinct groups. Two hyperparameters are re-227

quired: N1, indicating the encoder/decoder number228

that marks the end of the Group 1 and N2, indicat-229

ing the encoder/decoder number that marks the end230

of the Group 2.231

Our proposed method, called Stratified Progres- 232

sive Adaptation Fine-tuning (SPAFIT), is based 233

on the idea that fine-tuning mechanism should be- 234

come more complex by allowing more parameters 235

to be tuned in group n + 1 than group n. All the 236

parameters in Group 1 are frozen, following the 237

hypothesis that some initial layers captures basic 238

linguistic knowledge and need not be updated. In 239

Group 2, we allow only the bias terms to change in 240

attention and some other sub-layers as found nec- 241

essary according to the complexity of the task, thus 242

applying BitFit, a simple approach to fine-tuning. 243

In Group 3, we apply LoRA with parameters r and 244

α on some weight matrices of the sub-layers and 245

apply BitFit to other sub-layers of each encoder. 246

The experiments detailed in this paper utilize the 247

BERT-large-cased model with 24 layers. To com- 248

prehend the application of SPAFIT on the BERT- 249

large-cased model, it is crucial to list all the sub- 250

layers within an encoder layer, according to the 251

specific implementation of the BERT-large-cased 252

model employed in this paper. A comprehensive 253

breakdown of the encoder into its constituent sub- 254

layers is illustrated in Figure 1. 255

The attention sub-layer contains attention.self 256

sub-layer which applies linear transformations us- 257

ing weight matrices Wq, Wk, and Wv and bias 258

vectors bq, bk, and bv to the input to compute query, 259

key, and value matrices Q(x), K(x), and V (x), 260

respectively. These three matrices are used as an 261

input in the multi-head attention computation ex- 262

plained in Vaswani et al. (2017). This gives H1(x) 263

as shown in Equations (1) to (4). 264

Q(x) = Wq(x) + bq (1) 265

K(x) = Wk(x) + bk (2) 266

V (x) = Wv(x) + bv (3) 267

H1 =Multihead_attention(Q(x),K(x), V (x))
(4)

268

Then, the dropout method is employed on H1(x) 269

for regularization, which gives H2: 270

H2 = Dropout(H1(x)) (5) 271

The attention.output sub-layer performs another 272

linear transformation to the output of attention.self, 273

H2, followed by layer normalization and dropout 274

for regularization as shown in equation (6) and (7). 275

H3 = LayerNorm(W3(H2) + b3) (6) 276

H4 = Dropout(H3) (7) 277

3



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Encoder 

Attention 

Intermediate 

Output 

Self 

 

 

Output 

Query 

 
Key 

 
Value 

 
Dropout 

 

Dense 

 
Layer Normalization 

 
Dropout 

 

Dense with GELU 

Dense 

 

Layer Normalization 

 

Dropout 

 

Figure 1: Layer-wise breakdown of an encoder layer of a particular implementation of BERT used for experiments.

The intermediate sub-layer applies a feed-forward278

neural network as explained by Vaswani et al.279

(2017) along with the GELU activation function on280

the output of the attention sub-layer, H4 as shown281

in equation 8.282

H5 = GELU(W5(H4) + b5) (8)283

Lastly, the output sub-layer performs another linear284

transformation, along with layer normalization and285

dropout to transform the output of the intermediate286

sub-layer back to the original dimension as shown287

in equation (9) and (10).288

H6 = LayerNorm(W6(H5) + b6) (9)289

H7 = Dropout(H6) (10)290

One specific implementation of SPAFIT on the291

Bert-large-cased model is shown in Figure 2 . All292

the parameters in Group 1 remain frozen. In Group293

2, adaptation is restricted solely to the modifica-294

tion of the bias terms within all sub-layers of an295

encoder. For Group 3, weight matrices within the296

attention sub-layer – specifically, query, key, value,297

and attention.output.dense weight matrices – are298

allowed to be adapted using LoRA with parame-299

ters set to r = 64 and α = 128. Intermediate and300

output sub-layers are adapted exclusively through301

the adjustment of bias terms. Decisions regarding 302

the application of BitFit and LoRA to specific lay- 303

ers should be made empirically, dependent on the 304

complexity of the task. 305

4 Experiments and Results 306

The base model used for all the experiments is 307

‘BERT-large-cased’. Details about the specific im- 308

plementation of ‘BERT-large-cased’ used for all 309

the experiments is provided in Figure 1, presenting 310

a layer-wise breakdown of an encoder layer. Addi- 311

tionally, the implementation of SPAFIT and other 312

fine-tuning methods used in this paper is available 313

in the GitHub repository 1. Please note that this 314

work is licensed under CC BY 4.0 . 315

In the Full Fine-tuning approach, all parameters 316

are allowed to adjust during adaptation to a new 317

dataset. While this is a conventional method, it is 318

computationally expensive. The objective of this 319

study is to investigate more cost-effective alterna- 320

tives that can achieve comparable results. We will 321

assess our proposed SPAFIT models by comparing 322

them with Full Fine-tuning, Full BitFit, and Full 323

LoRA models. 324

1https://anonymous.4open.science/r/
SPAFIT-D326/README.md

4

https://anonymous.4open.science/r/SPAFIT-D326/README.md
https://anonymous.4open.science/r/SPAFIT-D326/README.md


 

 

 

 

 

Encoder 

0 

Encoder 

N1 

Encoder 

N1 + 1 

Encoder 

N2 

Encoder 

N2 + 1 

Encoder 

L 

Group 1 Group 2 Group 3 

All parameters are frozen. 
Adaptation is allowed only 

by changing all bias values 

for all sub-layers. 

Adaptation is allowed only by 

changing: 

• Query, Value, Key, and 

Attention.output.dense 

weight matrix using 

LoRA with r = 64 and α = 

128. 

• Intermediate and Output 

sub-layers using BitFit. 

Figure 2: An example implementation of SPAFIT on BERT.

In the Full BitFit model, all the bias parameters325

in all the layers are allowed to change. In the LoRA326

models, we set the two hyperparameters r and α327

to 64 and 128, respectively. We consider two set-328

tings of LoRA. In LoRA-I, we only adapt Wq, Wk,329

and Wv matrices in the attention sub-layer of an330

encoder; in LoRA-II, besides adapting Wq, Wk,331

and Wv matrices in the attention sub-layer, we also332

adapt the dense network in the output sub-layer of333

the attention sub-layer of the encoder.334

In our proposed SPAFIT models, N1 and N2335

determine how the L layers of encoders are strat-336

ified. None of the parameters in Group 1 will be337

adapted; in Group 2, only the bias parameters in338

all sub-layers of each encoder will be adapted. We339

implement two types of fine-tuning methods for340

Group 3. FT-I involves applying LoRA-I to the341

attention sub-layer and BitFit to the intermediate342

and output sub-layers. In FT-II, we apply LoRA-II343

to the attention sub-layer and BitFit to the interme-344

diate and output sub-layers.345

We use the following format to denote a specific346

SPAFIT model: SPAFIT-[N1]-[N2]-[PEFT Type347

in Group 3]. For example, SPAFIT-8-12-II denotes348

a SPAFIT model where N1 = 8, N2 = 12, and349

we adapt Wq, Wk, and Wv matrices and the dense350

network in the output sub-layer of the attention sub-351

layer along with the bias parameters in intermediate352

and output sub-layers of each encoder in Group 3.353

Table 1 provides a summary of all the fine-tuning354

models used in our experiments. We use the GLUE 355

dataset (Wang et al., 2018) and evaluate the per- 356

formance of each model on each of the nine tasks 357

in the GLUE dataset. The dataset is detailed in 358

Appendix A.1. Training details are provided in 359

Appendix A.2. 360

Table 2 shows the results of a comparison among 361

various fine-tuning methods. The first column re- 362

ports the number of parameters that are fine-tuned 363

for each model and the score from the best PEFT 364

method for each task is highlighted in bold. 365

5 Discussion 366

From Table 2, we can observe that, for most tasks, 367

there are PEFT methods capable of achieving per- 368

formance equal or better than that of full fine- 369

tuning. Even in tasks where full fine-tuning outper- 370

forms, the difference between full fine-tuning and 371

the best-performing PEFT method is very small. 372

This indicates that fine-tuning all parameters in the 373

model may not be necessary to adapt it to a spe- 374

cific downstream task. The finding aligns with the 375

results of Kumar et al. (2022), which demonstrate 376

the advantage of avoiding full fine-tuning due to its 377

potential to distort pre-trained features. They show 378

that in cases where two datasets, A and B, signifi- 379

cantly differ, a fully fine-tuned pre-trained model 380

on dataset A performs worse on dataset B than lin- 381

ear probing. Between the two extremes of linear 382

probing and full fine-tuning, we have chosen a mid- 383

5



Model N1 N2 Group 1 Group 2 Group 3

Full Fine-tuning All parameters All parameters All parameters

Full BitFit Bias parameters Bias parameters Bias parameters
in all layers in all layers in all layers

Full LoRA-I LoRA for Wq , Wk, Wv LoRA for Wq , Wk, Wv LoRA for Wq , Wk, Wv

in Attention in Attention in Attention

Full LoRA-II LoRA for Wq , Wk, Wv LoRA for Wq , Wk, Wv LoRA for Wq , Wk, Wv

in Attention and in Attention and in Attention and
Attention.Output.Dense Attention.Output.Dense Attention.Output.Dense

SPAFIT-8-12-I 8 12 None Bias parameters FT-I
in all sub-layers

SPAFIT-8-12-II 8 12 None Bias parameters FT-II
in all sub-layers

SPAFIT-8-16-II 8 16 None Bias parameters FT-II
in all sub-layers

SPAFIT-4-9-I 4 9 None Bias parameters FT-I
in all sub-layers

SPAFIT-4-9-II 4 9 None Bias parameters FT-II
in all sub-layers

SPAFIT-4-14-II 4 14 None Bias parameters FT-II
in all sub-layers

Table 1: Summary of the models and the parameters that are fine-tuned. In FT-I, LoRA is applied to Wq , Wk, Wv in
Attention, and bias parameters are adapted in the Intermediate and Output sub-layers; In FT-II, LoRA is applied to
Wq, Wk, Wv in Attention and Attention.Output.Dense, and bias parameters are adapted in the Intermediate and
Output sub-layers.

Model Params (M) CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B WNLI

Full Fine-tuning 333.58 0.67 0.87 0.91 0.93 0.89 0.76 0.95 0.9 0.56

Full BitFit 31.52 0.57 0.82 0.83 0.88 0.89 0.61 0.92 0.87 0.56

Full LoRA-I 9.44 0.64 0.86 0.91 0.92 0.9 0.72 0.93 0.88 0.56
Full LoRA-II 12.59 0.61 0.86 0.92 0.92 0.9 0.71 0.93 0.9 0.56

SPAFIT-8-12-I 4.44 0.62 0.86 0.92 0.92 0.9 0.73 0.93 0.9 0.56
SPAFIT-8-12-II 5.88 0.63 0.86 0.92 0.93 0.9 0.74 0.93 0.9 0.56
SPAFIT-8-16-II 3.81 0.62 0.86 0.91 0.93 0.9 0.73 0.93 0.9 0.56

SPAFIT-4-9-I 5.65 0.64 0.86 0.92 0.92 0.91 0.74 0.93 0.91 0.56
SPAFIT-4-9-II 7.49 0.64 0.87 0.92 0.92 0.91 0.76 0.93 0.9 0.56
SPAFIT-4-14-II 4.89 0.63 0.86 0.92 0.92 0.9 0.73 0.93 0.9 0.56

Table 2: Comparison of different fine-tuning methods. Measures reported for CoLA, MRPC, and STS-B are
Matthews correlation, F1 score, and Pearson Correlation, respectively. Accuracy score is used as a metric for other
tasks. The best performing PEFT method, therefore, not including full fine-tuning is written in bold. Out of all the
experiments, the best performance achieved by each fine-tuning method, i.e., max is reported here in this table.

6



dle ground based on evidence presented by Tenney384

et al. (2019b). In our approach, we permit later385

layers to adapt using increasingly complex PEFT386

methods while keeping the initial layers frozen.387

From Table 2, it is evident that BitFit, despite388

tuning the highest number of parameters (by allow-389

ing all bias terms across all layers to adapt to the390

new dataset while keeping the rest of the layers391

frozen), is the worst-performing model. This sug-392

gests that some parameters hold more significance393

than others during fine-tuning. A higher number of394

tuned parameters does not necessarily translate to395

better performance. Additional evidence support-396

ing this observation is the performance comparison397

between SPAFIT-8-12-II and SPAFIT-4-9-I. The398

former fine-tunes 5.88 million parameters, while399

the latter fine-tunes 5.65 million parameters. It400

is notable that the latter achieves the best perfor-401

mance in six out of the nine tasks, whereas the402

former excels in four of the nine tasks.403

An interesting finding emerges regarding two404

tasks where none of the PEFT methods could match405

or outperform the full fine-tuning performance:406

CoLA and SST-2. Intriguingly, both CoLA and407

SST-2 involve tasks with a single sentence as in-408

put. In CoLA, the objective is to classify the input409

sentence into two categories based on its grammat-410

ical correctness. In SST-2, the task is to detect the411

sentiment of the sentence and classify it into two412

categories: positive or negative.413

From Table 2, we can see that, overall, all414

SPAFIT models fine-tune significantly fewer pa-415

rameters than LoRA models and almost all of them416

perform as well as, or in most cases, better than417

LoRA models. Therefore, we can conclude that418

SPAFIT fine-tuning can achieve similar or even419

better performance than LoRA models while fine-420

tuning significantly fewer parameters. Two con-421

figurations of SPAFIT that perform really well422

are: SPAFIT-4-9-I and SPAFIT-4-9-II. The second423

model achieves the best performance in seven out424

of nine tasks, while the first model excels in six of425

nine tasks. The only difference between the two426

models is the application of LoRA on the atten-427

tion.output.dense layer, which increases the num-428

ber of fine-tuned parameters by almost two million.429

The smaller model outperforms the larger model430

only in one task, STS-B. This difference could431

be attributed to the smaller training size (approx-432

imately 7000 units) of STS-B, which may cause433

overfitting in the case of the larger model. The434

smaller model, fine-tuned only 5.65 million pa- 435

rameters (nearly 1.65% of the total parameters), 436

appears to be a highly efficient model compared to 437

the larger SPAFIT model and certainly in compari- 438

son to LoRA and BitFit models. 439

Three tasks where SPAFIT models can outper- 440

form full fine-tuning are MRPC, STS-B, and QQP. 441

Interestingly, all these tasks involve sentence sim- 442

ilarity. MRPC and QQP are classification tasks, 443

where the goal is to categorize two input sentences 444

into two groups based on whether they are para- 445

phrase of each other. STS-B is slightly different; 446

in this task, the objective is to assign a continuous 447

similarity score. 448

6 Future Work 449

Based on the performance that SPAFIT has shown 450

on the GLUE benchmark, exploring the perfor- 451

mance of SPAFIT on complex downstream tasks 452

like summarization could be an intriguing exten- 453

sion to this study. Furthermore, exploring a similar 454

stratified approach for models containing both an 455

encoder and a decoder stack would be of interest. 456

As a long-term goal, we aim to investigate the hy- 457

pothesis that different types of linguistic knowledge 458

are localized at various layers of a large language 459

model and ascertain its validity. 460

7 Limitations 461

Despite SPAFIT’s commendable performance, it 462

is important to note that all the experiments in this 463

study predominantly involve classification tasks. 464

It is possible that a method limiting the number 465

of parameters to this extent may not perform well 466

on more complex tasks, such as summarization. 467

Another limitation stems from the numerous hyper- 468

parameters, including the number of groups, the 469

number of layers in each group, and the complexity 470

variation in fine-tuning changes from group n to 471

n + 1. This is particularly pertinent as PLMs in- 472

herently have many hyperparameters. Furthermore, 473

the implementation of SPAFIT in this paper still 474

encounters ‘minor’ issues of catastrophic forget- 475

ting, given that bias terms are updated during fine- 476

tuning. However, this challenge can be mitigated 477

by representing changes in the bias vector using 478

a separate vector added to the bias vector. Lastly, 479

the experiments presented exclusively feature one 480

encoder-based model, Bert-large-cased. Decoder- 481

based models were not explored and there is no 482

discussion on extending this fine-tuning method- 483

7



ology to models containing both an encoder and a484

decoder stack.485

8 Ethics Statement486

As advocates for Ethical AI, we would like to em-487

phasize that this research carries the risk of readers488

assuming it as evidence in favor of the idea that489

different types of linguistic knowledge are local-490

ized in different layers of a large language model.491

We want to clarify that this is merely a hypothesis492

behind our efficient fine-tuning method, inspired by493

CNNs. This work, in no way, confirms the idea of494

the localization of knowledge in a neural network.495

References496

Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel.497
2022. BitFit: Simple parameter-efficient fine-tuning498
for transformer-based masked language-models. In499
Proceedings of the 60th Annual Meeting of the As-500
sociation for Computational Linguistics (Volume 2:501
Short Papers), pages 1–9, Dublin, Ireland. Associa-502
tion for Computational Linguistics.503

Samuel R. Bowman, Gabor Angeli, Christopher Potts,504
and Christopher D. Manning. 2015. A large anno-505
tated corpus for learning natural language inference.506
In Proceedings of the 2015 Conference on Empiri-507
cal Methods in Natural Language Processing, pages508
632–642, Lisbon, Portugal. Association for Compu-509
tational Linguistics.510

Ido Dagan, Oren Glickman, and Bernardo Magnini.511
2006. The pascal recognising textual entailment chal-512
lenge. In Machine Learning Challenges. Evaluating513
Predictive Uncertainty, Visual Object Classification,514
and Recognising Tectual Entailment, pages 177–190,515
Berlin, Heidelberg. Springer Berlin Heidelberg.516

William B. Dolan and Chris Brockett. 2005. Automati-517
cally constructing a corpus of sentential paraphrases.518
In Proceedings of the Third International Workshop519
on Paraphrasing (IWP2005).520

Angela Fan, Edouard Grave, and Armand Joulin. 2020.521
Reducing transformer depth on demand with struc-522
tured dropout. In International Conference on Learn-523
ing Representations.524

Mitchell Gordon, Kevin Duh, and Nicholas Andrews.525
2020. Compressing BERT: Studying the effects of526
weight pruning on transfer learning. In Proceedings527
of the 5th Workshop on Representation Learning for528
NLP, pages 143–155, Online. Association for Com-529
putational Linguistics.530

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,531
Bruna Morrone, Quentin De Laroussilhe, Andrea532
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.533
Parameter-efficient transfer learning for NLP. In534
Proceedings of the 36th International Conference535

on Machine Learning, volume 97 of Proceedings 536
of Machine Learning Research, pages 2790–2799. 537
PMLR. 538

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen- 539
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu 540
Chen. 2022. LoRA: Low-rank adaptation of large 541
language models. In International Conference on 542
Learning Representations. 543

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, 544
Joel Veness, Guillaume Desjardins, Andrei A. Rusu, 545
Kieran Milan, John Quan, Tiago Ramalho, Ag- 546
nieszka Grabska-Barwinska, Demis Hassabis, Clau- 547
dia Clopath, Dharshan Kumaran, and Raia Hadsell. 548
2017. Overcoming catastrophic forgetting in neural 549
networks. Proceedings of the National Academy of 550
Sciences, 114(13):3521–3526. 551

Ananya Kumar, Aditi Raghunathan, Robbie Matthew 552
Jones, Tengyu Ma, and Percy Liang. 2022. Fine- 553
tuning can distort pretrained features and underper- 554
form out-of-distribution. In International Conference 555
on Learning Representations. 556

Hector J. Levesque, Ernest Davis, and Leora Morgen- 557
stern. 2012. The winograd schema challenge. In 558
Proceedings of the Thirteenth International Confer- 559
ence on Principles of Knowledge Representation and 560
Reasoning, KR’12, page 552–561. AAAI Press. 561

Matthew E. Peters, Mark Neumann, Luke Zettlemoyer, 562
and Wen-tau Yih. 2018. Dissecting contextual word 563
embeddings: Architecture and representation. In Pro- 564
ceedings of the 2018 Conference on Empirical Meth- 565
ods in Natural Language Processing, pages 1499– 566
1509, Brussels, Belgium. Association for Computa- 567
tional Linguistics. 568

Jonas Pfeiffer, Ivan Vulić, Iryna Gurevych, and Se- 569
bastian Ruder. 2020. MAD-X: An Adapter-Based 570
Framework for Multi-Task Cross-Lingual Transfer. 571
In Proceedings of the 2020 Conference on Empirical 572
Methods in Natural Language Processing (EMNLP), 573
pages 7654–7673, Online. Association for Computa- 574
tional Linguistics. 575

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and 576
Percy Liang. 2016. SQuAD: 100,000+ questions for 577
machine comprehension of text. In Proceedings of 578
the 2016 Conference on Empirical Methods in Natu- 579
ral Language Processing, pages 2383–2392, Austin, 580
Texas. Association for Computational Linguistics. 581

Nikhil Dandekar Shankar Iyer and Kornel Csernai. First 582
quora dataset release: Question pairs. 583

Richard Socher, Alex Perelygin, Jean Wu, Jason 584
Chuang, Christopher D. Manning, Andrew Ng, and 585
Christopher Potts. 2013. Recursive deep models for 586
semantic compositionality over a sentiment treebank. 587
In Proceedings of the 2013 Conference on Empiri- 588
cal Methods in Natural Language Processing, pages 589
1631–1642, Seattle, Washington, USA. Association 590
for Computational Linguistics. 591

8

https://doi.org/10.18653/v1/2022.acl-short.1
https://doi.org/10.18653/v1/2022.acl-short.1
https://doi.org/10.18653/v1/2022.acl-short.1
https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.18653/v1/D15-1075
https://aclanthology.org/I05-5002
https://aclanthology.org/I05-5002
https://aclanthology.org/I05-5002
https://openreview.net/forum?id=SylO2yStDr
https://openreview.net/forum?id=SylO2yStDr
https://openreview.net/forum?id=SylO2yStDr
https://doi.org/10.18653/v1/2020.repl4nlp-1.18
https://doi.org/10.18653/v1/2020.repl4nlp-1.18
https://doi.org/10.18653/v1/2020.repl4nlp-1.18
https://proceedings.mlr.press/v97/houlsby19a.html
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.1073/pnas.1611835114
https://doi.org/10.1073/pnas.1611835114
https://doi.org/10.1073/pnas.1611835114
https://openreview.net/forum?id=UYneFzXSJWh
https://openreview.net/forum?id=UYneFzXSJWh
https://openreview.net/forum?id=UYneFzXSJWh
https://openreview.net/forum?id=UYneFzXSJWh
https://openreview.net/forum?id=UYneFzXSJWh
https://doi.org/10.18653/v1/D18-1179
https://doi.org/10.18653/v1/D18-1179
https://doi.org/10.18653/v1/D18-1179
https://doi.org/10.18653/v1/2020.emnlp-main.617
https://doi.org/10.18653/v1/2020.emnlp-main.617
https://doi.org/10.18653/v1/2020.emnlp-main.617
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170


Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019a.592
BERT rediscovers the classical NLP pipeline. In593
Proceedings of the 57th Annual Meeting of the Asso-594
ciation for Computational Linguistics, pages 4593–595
4601, Florence, Italy. Association for Computational596
Linguistics.597

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019b.598
BERT rediscovers the classical NLP pipeline. In599
Proceedings of the 57th Annual Meeting of the Asso-600
ciation for Computational Linguistics, pages 4593–601
4601, Florence, Italy. Association for Computational602
Linguistics.603

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob604
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz605
Kaiser, and Illia Polosukhin. 2017. Attention is all606
you need. In Advances in Neural Information Pro-607
cessing Systems, volume 30. Curran Associates, Inc.608

Alex Wang, Amanpreet Singh, Julian Michael, Felix609
Hill, Omer Levy, and Samuel Bowman. 2018. GLUE:610
A multi-task benchmark and analysis platform for nat-611
ural language understanding. In Proceedings of the612
2018 EMNLP Workshop BlackboxNLP: Analyzing613
and Interpreting Neural Networks for NLP, pages614
353–355, Brussels, Belgium. Association for Com-615
putational Linguistics.616

Alex Warstadt, Amanpreet Singh, and Samuel R. Bow-617
man. 2018. Neural network acceptability judgments.618
CoRR, abs/1805.12471.619

Matthew D. Zeiler and Rob Fergus. 2014. Visualizing620
and understanding convolutional networks. In Com-621
puter Vision – ECCV 2014, pages 818–833, Cham.622
Springer International Publishing.623

A Appendix624

A.1 GLUE Benchmark625

We have used GLUE tasks to evaluate different626

fine-tuning methods, which are accessed from hug-627

gingface website. GLUE is a composite dataset628

that include the following tasks: The Corpus of629

Linguistic Acceptability (CoLA: (Warstadt et al.,630

2018)) - CC0 1.0 DEED (public domain dedi-631

cation), The Stanford Sentiment Treebank (SST-632

2: (Socher et al., 2013) - MIT License (permis-633

sive software license), The Microsoft Research634

Paraphrase Corpus (MRPC: (Dolan and Brock-635

ett, 2005) - Microsoft Shared Source License (li-636

cense providing source code for reference and de-637

bugging purposes)), The Quora Question Pairs638

(QQP: (Shankar Iyer and Csernai)) - custom (non-639

commercial) (non-commercial purposes only)),640

The Semantic Textual Similarity Benchmark (STS-641

B: (?) - no license information available), The642

Multi-Genre Natural Language Inference Corpus643

(MNLI: (Bowman et al., 2015) - Creative Com- 644

mons Share-Alike 3.0 Unported License (allows 645

all content to be freely used, modified, and shared 646

under permissive terms)), The Stanford Question 647

Answering Dataset (QNLI: (Rajpurkar et al., 2016) 648

- CC BY-SA 4.0 (allowing use, remix, and distribute 649

with proper attribution to creators)), The Recogniz- 650

ing Textual Entailment (RTE: (Dagan et al., 2006) - 651

CC BY 4.0 DEED (permits commercial use, modi- 652

fication, and distribution)), and The Winograd Nat- 653

ural Language Inference (WNLI: (Levesque et al., 654

2012) - CC BY 4.0 (allows commercial use, modi- 655

fication and distribution)). Out of all the licenses 656

associated with each of the datasets, the most re- 657

strictive is custom (non-commercial). Since we 658

are using this data to train and experiment to find 659

better fine-tuning methods, our use of this artifact 660

is consistent with its terms of use. 661

Basic information on each of these nine tasks 662

is provided below. Please note that the follow- 663

ing information comes from the GLUE benchmark 664

website and the dataset page on the Hugging Face 665

website: 666

1. Corpus of Linguistic Acceptability (CoLA): 667

The CoLA dataset contains 10,657 English 668

language sentences from 23 linguistic publi- 669

cations, annotated by their original authors 670

for grammatical acceptability. The training 671

split includes 8.55k examples, the validation 672

set includes 1.04k examples, and the test set 673

includes 1.06k examples. The metric used for 674

this task is Matthew’s correlation. 675

2. Stanford Sentiment Treebank (SST-2): This 676

dataset is related to a classification task fo- 677

cused on sentiment analysis. The language of 678

this dataset is English too. As per the original 679

paper, the dataset consists of 215,154 unique 680

phrases parsed from 11,855 single sentences 681

extracted from movie reviews, each annotated 682

by three human judges. The training set in- 683

cludes 67.3k rows, the validation set has 872 684

rows, and the test set has 1.82k rows. The 685

metric used for this task is Accuracy score. 686

3. Microsoft Research Paraphrase Corpus 687

(MRPC): The MRPC dataset contains 5,800 688

pairs of English sentences drawn from news 689

sources on the web. These pairs have been an- 690

notated by human judges indicating whether 691

each pair captures a paraphrase/semantic 692

equivalence relationship. One important 693

9

https://doi.org/10.18653/v1/P19-1452
https://doi.org/10.18653/v1/P19-1452
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
http://arxiv.org/abs/1805.12471
https://link.springer.com/chapter/10.1007/978-3-319-10590-1_53
https://link.springer.com/chapter/10.1007/978-3-319-10590-1_53
https://link.springer.com/chapter/10.1007/978-3-319-10590-1_53
https://huggingface.co/datasets/glue
https://huggingface.co/datasets/glue
https://huggingface.co/datasets/glue
https://huggingface.co/datasets/glue


feature of this dataset is that each training694

example comes from a unique news article.695

The training dataset contains 3.67k examples,696

the validation dataset contains 408 rows, and697

the test dataset contains 1.73k rows. The698

metric used for this task is the F1 score.699

4. Semantic Textual Similarity Benchmark (STS-700

B): This benchmark dataset consists of 8,628701

English sentence pairs from three sources:702

news, caption, and forum. Out of the total703

8,628 sentence pairs: 5,749 pairs are in the704

training set, 1,500 are in the validation set,705

and 1,379 are in the test set. These pairs are706

human-labeled with scores ranging from 0.00707

to 5.00. Therefore, the metric used for this708

dataset is Pearson Correlation.709

5. Quora Question Pairs (QQP): This dataset710

contains over 400,000 question pairs in the711

English language, extracted from the commu-712

nity question-answering website Quora. Each713

question pair is annotated with a binary value714

indicating whether the two questions are para-715

phrases of each other or not. The training716

dataset contains 364k examples, the valida-717

tion data contains 40.4k examples, and the718

test dataset contains 391k rows. The metric719

used for QQP is accuracy score.720

6. Multi-Genre Natural Language Inference721

(MNLI): This corpus is a crowd-sourced col-722

lection of nearly 433k sentence pairs an-723

notated with textual entailment information.724

Three labels for each pair are 0 (entailment),725

1 (neutral), and 2 (contradiction). Examples726

that don’t have any gold label are marked with727

a -1 label. Since it is crowd-sourced, it cov-728

ers a range of genres of spoken and written729

text and supports a cross-genre generalization730

evaluation. This corpus also supports only the731

English language. The dataset is divided into732

three splits: training (393k examples), vali-733

dation_matched (9.82k examples), and vali-734

dation_mismatched (9.83k examples). In this735

work, we are performing fine-tuning only over736

MNLI Matched. The metric used for this task737

is the accuracy score.738

7. Stanford Question Answering Dataset (QNLI739

in GLUE): In this work, we are using SQuAD740

v1.1. The dataset consists of more than741

100,000 question-answer pairs on more than742

500 articles in the English language. The au- 743

thors of the GLUE benchmark convert the task 744

into sentence pair classification by forming a 745

pair between each question and each sentence 746

in the corresponding context and filtering out 747

pairs with low lexical overlap between the 748

question and the context sentence. The task is 749

to determine whether the context sentence con- 750

tains the answer to the question. The training 751

dataset contains 105k examples, the validation 752

dataset contains 5.46k examples, and the test 753

dataset contains 5.46k examples. The metric 754

used for this task is the accuracy score. 755

8. Recognizing Textual Entailment (RTE): This 756

dataset is drawn from a series of annual tex- 757

tual entailment challenges. Examples are 758

constructed based on news and Wikipedia 759

text in the English language. The authors of 760

the GLUE benchmark convert all datasets to 761

a two-class split, whereas for a three-class 762

dataset, they collapse neutral and contradic- 763

tion into not entailment for consistency. The 764

training split contains 2.49k examples, the val- 765

idation set contains 277 examples, and the test 766

set contains 3000 observations. The metric 767

used for this task is the accuracy score. 768

9. Winograd Natural Language Inference 769

(WNLI): The Winograd Schema Challenge 770

(Levesque et al., 2012) is a reading compre- 771

hension task in which a system must read 772

a sentence with a pronoun and select the 773

referent of the pronoun from a list of choices. 774

The authors of the GLUE benchmark convert 775

this into a sentence pair classification problem 776

by replacing the ambiguous pronoun with 777

each possible referent. The task is to predict 778

if the sentence with the pronoun substituted 779

is entailed by the original sentence. Here, 780

the training set is balanced between the two 781

classes, but the test set is imbalanced with 782

65% ’not entailment’ examples. The dataset 783

is very small compared to the other eight 784

tasks with 635 observations in the training set, 785

71 examples in the validation set, and 146 786

examples in the test set. 787

A.2 Training details 788

Python packages used in this work include: 789

numpy (version 1.23.5), datasets (version 790

2.16.1), torch (2.1.2), transformers (version 791

10



4.37.0.dev0), accelerate (version 0.25.0),792

bitsandbytes (version 0.41.3.post2), loralib793

(0.1.2). In addition to that, for implementing794

LoRA as part of our experiments, we needed795

git+https://github.com/huggingface/peft.git and796

git+https://github.com/huggingface/transformers.git.797

As mentioned earlier, we have only fine-tuned798

the Bert-large-cased model. We experimented with799

learning rates in {2e-3, 6e-3, 2e-5, 6e-5}. We800

have found that full fine-tuning and PEFT meth-801

ods achieved their best performance with learning802

rates of 2e-5 and 6e-5, respectively. These best803

performances are the ones reported in Table 2. The804

batch size used for all tasks except MNLI, QNLI,805

and QQP tasks in the GLUE benchmark is 16. For806

MNLI, QNLI, and QQP tasks, the batch size used807

is 8, as a workaround against the Out Of Memory808

(OOM) error. The optimization algorithm used for809

fine-tuning is AdamW with a weight decay of 0.01810

across all tasks and all fine-tuning methods. The811

number of epochs used is 10 and remains the same812

across all tasks and all fine-tuning methods.813

The experiments are performed using the Tesla814

V100 GPU available in the Google Collab note-815

book. As part of the computational budget, please816

note that we have used around 1500-1800 com-817

pute units in Google Collab notebooks during these818

experiments.819

11


