
Breaking the Curse of Multiagents in a Large State Space: RL in Markov Games
with Independent Linear Function Approximation

Qiwen Cui 1 Kaiqing Zhang 2 Simon S. Du 1

Abstract
We propose a new model, independent linear
Markov game, for multi-agent reinforcement
learning with a large state space and a large num-
ber of agents. This is a class of Markov games
with independent linear function approximation,
where each agent has its own function approxi-
mation for the state-action value functions that
are marginalized by other players’ policies. We
design new algorithms for learning the Markov
coarse correlated equilibria (CCE) and Markov
correlated equilibria (CE) with sample complex-
ity bounds that only scale polynomially with each
agent’s own function class complexity, thus break-
ing the curse of multiagents. In contrast, existing
works for Markov games with function approxi-
mation have sample complexity bounds scale with
the size of the joint action space when special-
ized to the canonical tabular Markov game setting,
which is exponentially large in the number of
agents. Our algorithms rely on two key technical
innovations: (1) utilizing policy replay to tackle
non-stationarity incurred by multiple agents and
the use of function approximation; (2) separat-
ing learning Markov equilibria and exploration
in the Markov games, which allows us to use
the full-information no-regret learning oracle in-
stead of the stronger bandit-feedback no-regret
learning oracle used in the tabular setting. Fur-
thermore, we propose an iterative-best-response
type algorithm that can learn pure Markov Nash
equilibria in independent linear Markov potential
games, with applications in learning in conges-
tion games. In the tabular case, by adapting the
policy replay mechanism for independent linear
Markov games, we propose an algorithm with

1University of Washington, Seattle, USA 2University of
Maryland, College Park, USA. Correspondence to: Qiwen Cui
<qwcui@uw.edu>.

Workshop on New Frontiers in Learning, Control, and Dynamical
Systems at the International Conference on Machine Learning
(ICML), Honolulu, Hawaii, USA, 2023. Copyright 2023 by the
author(s).

Õ(ϵ−2) sample complexity to learn Markov CCE,
which improves the state-of-the-art result Õ(ϵ−3)
in (Daskalakis et al., 2022), where ϵ is the desired
accuracy, and also significantly improves other
problem parameters. Furthermore, we design
the first provably efficient algorithm for learning
Markov CE that breaks the curse of multiagents.

1. Introduction
Decision-making under uncertainty in a multi-agent system
has shown its potential to approach artificial intelligence,
with superhuman performance in Go games (Silver et al.,
2017), Poker (Brown and Sandholm, 2019), and real-time
strategy games (Vinyals et al., 2019), etc. All these suc-
cesses can be generally viewed as examples of multi-agent
reinforcement learning (MARL), a generalization of single-
agent reinforcement learning (RL) (Sutton and Barto, 2018)
where multiple RL agents interact and make sequential de-
cisions in a common environment (Zhang et al., 2021a).
Despite the impressive empirical achievements of MARL,
the theoretical understanding of MARL is still far from
complete due to the complex interactions among agents.

One of the most prominent challenges in RL is the curse
of large state-action spaces. In real-world applications, the
number of states and actions is exponentially large so that
the tabular RL algorithms are not applicable. For example,
there are 3361 potential states in Go games, and it is impos-
sible to enumerate all of them. In single-agent RL, plenty
of works attempt to tackle this issue via function approxi-
mation so that the sample complexity only depends on the
complexity of the function class, thus successfully breaking
the curse of large state-action spaces (Wen and Van Roy,
2017; Jiang et al., 2017; Yang and Wang, 2020; Du et al.,
2019; Jin et al., 2020; Weisz et al., 2021; Wang et al., 2020;
Zanette et al., 2020; Jin et al., 2021a; Du et al., 2021; Foster
et al., 2021).

However, it is still unclear what is the proper function ap-
proximation model for multi-agent RL. The existing the-
oretical analyses in MARL exclusively focus on a global
function approximation paradigm, i.e., a function class cap-
turing the state-joint-action value Qi(s, a1, · · · , am) where

RL in Markov Games with Independent Linear Function Approximation

s is the state and ai is the action of player i ∈ [m] (Xie
et al., 2020; Huang et al., 2021; Chen et al., 2021; Jin et al.,
2022; Chen et al., 2022; Ni et al., 2022). Unfortunately,
these algorithms would suffer from the curse of multiagents
when specialized to tabular Markov games, one of the most
canonical models in MARL. Specifically, the sample com-
plexity depends on the number of joint actions

∏
i∈[m]Ai,

where Ai is the number of actions for player i, which is
exponentially worse than the best algorithms specified to
the tabular Markov game whose sample complexity only de-
pends on maxi∈[m]Ai (Jin et al., 2021b; Song et al., 2021;
Mao et al., 2022; Daskalakis et al., 2022).

On the other hand, empirical algorithms with independent
function approximation such as Independent PPO have sur-
prisingly good performance, where only the independent
state-individual-action value function Qi(s, ai) is modeled
(de Witt et al., 2020; Yu et al., 2021). This can be sur-
prising because the independent state-action value function
Qi(s, ai) does not reflect the change of other players’ poli-
cies, a.k.a. the non-stationarity from multiple agents, which
should fail to allow learning at first glance. In addition,
single-agent RL with function approximation already suf-
fers from the nonstationarity of applying function approx-
imation (Baird, 1995), making it even harder for MARL.
This gap between theoretical and empirical research leads
to the following question:

Can we design provably efficient MARL algorithms for
Markov games with independent function approximation

that can break the curse of multiagents?

In this paper, we provide an affirmative answer to this ques-
tion. We highlight our contributions and technical novelties
below. Due to space limitation, tables and related works are
deferred to Appendix A and Appendix B.

1.1. Main Contributions and Technical Novelties

1. Multi-player general-sum Markov games with inde-
pendent linear function approximation. We propose in-
dependent linear Markov games, which is the first provably
efficient model in MARL that allows each agent to have its
own independent function approximation. We show that
independent linear Markov games capture several important
instances, namely tabular Markov games (Shapley, 1953),
linear Markov decision processes (MDP) (Jin et al., 2020),
and congestion games (Rosenthal, 1973). Then we provide
the first provably efficient algorithm in MARL that breaks
the curse of multiagents and the curse of large state and
action spaces at the same time, i.e., the sample complex-
ity only has polynomial dependence on the complexity of
the independent function class complexity. See Table 1 for
comparisons between our work and prior works.

Our algorithm design relies on two high-level technical ideas
which we detail here:

• Policy replay to tackle non-stationarity. Different
from experience replay that incrementally adds new
on-policy data to a dataset, policy replay maintains a
policy set and completely renews the dataset at each
episode by collecting fresh data using the policy set.
We propose a new policy replay mechanism for learn-
ing equilibria in independent linear Markov games,
which allows efficient exploration while adapting to
the non-stationarity induced by both multiple agents
and function approximation at the same time.

• Separating exploration and learning Markov equi-
libria. States and actions in independent linear Markov
games are correlated through the feature map, so we
can no longer resort to adversarial bandit oracles as in
algorithms for tabular Markov games (Jin et al., 2021b;
Song et al., 2021; Mao et al., 2022; Daskalakis et al.,
2022). In particular, the adversarial contextual linear
bandit oracles would be a potential substitute, while the
existence of such oracles remains largely an open prob-
lem (see Section 29.4 in (Lattimore and Szepesvári,
2020)). To tackle this issue, we exploit the fact that
under the self-play setting, other players are not ad-
versarial but under control, so we can sample multiple
i.i.d. feedback to derive an accurate estimate instead
of just a single bandit feedback. We separate the ex-
ploration in Markov games from learning equilibria
so that any no-regret algorithms with full-information
feedback are sufficient for our MARL algorithm, which
is significantly weaker than the adversarial bandit ora-
cle used in all the previous works that break the curse
of multiagents in the tabular setting.

2. Learning Nash equilibria in Linear Markov potential
games. We provide an algorithm to learn Markov Nash equi-
libria (NE) when the underlying independent linear Markov
game is also a Markov potential game. The algorithm is
based on the reduction from learning NE in independent
linear Markov potential games to learning the optimal policy
in linear MDPs. In addition, the result directly implies a
provable efficient decentralized algorithm for learning NE
in congestion games, which improves the previous state-of-
the-art sample complexity result in (Cui et al., 2022).

3. Improved sample complexity for tabular multi-player
general-sum Markov games. Aside from our contributions
to Markov games with function approximation, we design
an algorithm for tabular Markov games with improved sam-
ple complexity for learning Markov CCE by adapting the
policy replay mechanism we proposed for the independent
linear Markov games. Our sample complexity for learning

RL in Markov Games with Independent Linear Function Approximation

Markov CCE is Õ(H6S2Amaxϵ
−2), which significantly im-

proves the prior state-of-the-art result Õ(H11S3Amaxϵ
−3)

in (Daskalakis et al., 2022), where H is the time horizon,
S is the number of the states, Amax = maxi∈[m]Ai is the
maximum action space and ϵ is the desired accuracy.* Fur-
thermore, our analysis is simpler. In addition, we provide
the first provably efficient algorithm for learning Markov
CE with sample complexity Õ(H6S2A2

maxϵ
−2).

Notation. For a finite set X , we use ∆(X) to denote the
space of distributions over X . For n ∈ N+, we use [n] to
denote {1, 2, · · · , n}. We use ∥·∥ to denote the Euclidean
norm ∥·∥2 and ⟨·, ·⟩ to denote the Euclidean inner product.
We define proj[a,b](x) := min{max{x, a}, b} and x∨y :=
max{x, y}. An arbitrary tie-breaking rule can be used for
determining argmaxx f(x).

2. Preliminaries
Multi-player general-sum Markov games are defined by
the tuple (S, {Ai}mi=1, H,P, {ri}mi=1), where S is the state
space with |S| = S, m is the number of the players, Ai
is the action space for player i with |Ai| = Ai, H is
the length of the horizon, P = {Ph}h∈[H] is the collec-
tion of the transition kernels such that Ph(· | s,a) gives
the distribution of the next state given the current state
s and joint action a = (a1, a2, · · · , am) at step h, and
ri = {rh,i}h∈[H] is the collection of random reward func-
tions for each player such that rh,i(s,a) ∈ [0, 1] is the
random reward with mean Rh,i(s,a) for player i given the
current state s and the joint action a at step h. We use
A = A1 ×A2 × · · · × Am to denote the joint action space,
rh = (rh,1, rh,2, · · · , rh,m) to denote the joint reward pro-
file at step h, and Amax = maxi∈[m]Ai. In the rest of the
paper, we will simplify “multi-player general-sum Markov
games” to “Markov games” when it is clear from the con-
text.

Markov games will start at a fixed initial state s1 for each
episode.† At each step h ∈ [H], each player i will observe
the current state sh and choose some action ah,i simulta-
neously, and receive their own reward realization r̃h,i ∼
rh,i(sh,ah) where ah = (ah,1, ah,2, · · · , ah,m). Then the
state will transition according to sh+1 ∼ Ph(· | sh,ah).
The game will terminate when state sH+1 is reached and
the goal of each player is to maximize their own expected to-
tal reward E

[∑H
h=1 r̃h,i

]
. We consider the bandit-feedback

setting where only the reward for the chosen action is re-
vealed, and there is no simulator and thus exploration is

*We use Õ(·) to omit logarithmic dependence on all the pa-
rameters.

†It is straightforward to generalize to stochastic initial state
s1 ∼ p1(·) by adding a dummy state s0 instead, which will transi-
tion to s1 ∼ p1(·) no matter what action is chosen.

necessary.

Policy. A Markov joint policy is denoted by π = {πh}Hh=1

where each πh : S → ∆(A) is the joint policy at step
h. We say that a Markov joint policy is a Markov product
policy if there are policies {πi}mi=1 such that πh(a | s) =∏m
i=1 πh,i(ai | s) for each h ∈ [H], where πi = {πh,i}Hh=1

is the collection of Markov policies πh,i : S → ∆(Ai) for
player i. In other words, a Markov product policy means that
the policies of each player are not correlated. For a Markov
joint policy π, we use π−i to denote the Markov joint policy
for all the players except player i. We will simplify the
terminology by using “policy” instead of “Markov joint
policy” when it is clear from the context as we will only
focus on Markov policies.

Value function. For a policy π, it can induce a random
trajectory (s1,a1, r1, s2, · · · , sH ,aH , rH , sH+1) such that
ah ∼ πh(· | sh), rh ∼ rh(sh,ah), and sh+1 ∼ Ph(· |
sh,ah) for all h ∈ [H]. For simplicity, we will denote
Eπ[·] = E(s1,a1,r1,s2,··· ,sH ,aH ,rH ,sH+1)∼π[·]. We define the
state value function under policy π for each player i ∈ [m]

to be V πh,i(sh) := Eπ
[∑H

t=h rt,i(st,at)
∣∣∣ sh] ,∀sh ∈ S,

which is the expected total reward for player i if all the
players are following policy π starting from state sh at step
h.

Best response and strategy modification. Suppose all
the players except player i are playing according to a
fixed policy π−i, then the best response of player i is
the policy that can achieve the highest total reward for
player i. Concretely, πi is the best response to π−i if
πi = argmaxπ′

i∈Πi
V
π′
i,π−i

1,i (s1), where Πi consists of all

the possible policies for player i. We will use V †,π−i

h,i (s) to

denote the best-response value maxπ′
i∈Πi

V
π′
i,π−i

h,i (s) for all
h ∈ [H], i ∈ [m] and s ∈ S and E†,π−i [·] to be the expec-
tation over the corresponding best-response policy. Note
that if all the other players are playing a fixed policy, then
player i is in an MDP and the best response is the corre-
sponding optimal policy, which can always be deterministic
and achieve the optimal value maxπ′

i∈Πi
V
π′
i,π−i

h,i (s) for all
h ∈ [H] and s ∈ S simultaneously.

A strategy modification ψi = {ψh,i}Hh=1 for player i is a
collection of maps ψh,i : S × Ai → Ai, which will map
the action chosen at any state to another action.‡ For a
Markov joint policy π, we use ψi ⋄ π to denote the mod-
ified Markov joint policy such that (ψi ⋄ π)h(a | s) =∑

a′:ψh,i(a′i|s)=ai,a′
−i=a−i

πh(a
′ | s). In words, if the policy

‡We only consider deterministic strategy modification as it
is known that the optimal strategy modification can always be
deterministic (Jin et al., 2021b).

RL in Markov Games with Independent Linear Function Approximation

πh assigns action ai to player i at state s, it will be modified
to action ψh,i(ai | s). We use Ψi to denote all the possible
strategy modifications for player i. As Ψi contains all the
constant modifications, we have maxψi∈Ψi

V ψi⋄π
1,i (s1) ≥

maxπ′
i
V
π′
i,π−i

1,i (s1) = V
†,π−i

1,i (s1), which means strategy
modification is stronger than best response.

Notions of equilibria. A Markov Nash equilibrium is a
Markov product policy where no player can increase their
total reward by changing their own policy.

Definition 2.1. (Markov Nash equilibrium) A Markov
product policy π is an ϵ-approximate Nash equilibrium if
NashGap(π) := maxi∈[m]

(
V

†,π−i

1,i (s1)− V π1,i(s1)
)
≤ ϵ.

In general, it is intractable to compute Nash equilibrium
even in normal-form general-sum games, which are Markov
games with H = 1 and S = 1 (Daskalakis et al., 2009;
Chen et al., 2009). In this paper, we will focus on the
following two relaxed equilibrium notions, which allow
computationally efficient learning.

Definition 2.2. (Markov Coarse Correlated Equi-
librium) A Markov joint policy π is a Markov
coarse correlated equilibrium if CCEGap(π) :=

maxi∈[m]

(
V

†,π−i

1,i (s1)− V π1,i(s1)
)
≤ ϵ.

Definition 2.3. (Markov Correlated Equilib-
rium) A Markov joint policy π is a Markov
correlated equilibrium if CEGap(π) :=

maxi∈[m]

(
maxψi∈Ψi

V ψi⋄π
1,i (s1)− V π1,i(s1)

)
≤ ϵ.

It is known that every Markov NE is a Markov CE and every
Markov CE is a Markov CCE, and in two-player zero-sum
Markov games, these three notions are equivalent. In this
work, we will focus on Markov equilibria, which are more
refined compared with non-Markov equilibria considered in
(Jin et al., 2021b; Song et al., 2021; Mao et al., 2022). For
a detailed discussion regarding the difference, we refer the
readers to (Daskalakis et al., 2022).

Two important special cases of Markov games are two-
player zero-sum Markov games and Markov potential
games, which have computationally efficient algorithms for
learning Markov NE. Two-player zero-sum Markov games
are Markov games with the number of players m = 2 and
reward function satisfying rh,1(s,a)+rh,2(s,a) = 0 for all
(s,a) ∈ S × A and h ∈ [H]. Markov potential games are
Markov games with a potential function Φ : Π→ [0,Φmax],
where Π is the set of all possible Markov product policies
π1 × π2 · · · × πm, such that for any player i ∈ [m], two
policies πi, π′

i of player i and policy π−i for the other play-
ers, we have V πi,π−i

1,i (s1) − V
π′
i,π−i

1,i (s1) = Φ(πi, π−i) −
Φ(π′

i, π−i). Immediately, we have Φmax ≤ mH by vary-
ing πi for each player i for one time. One special case

of Markov potential games is Markov cooperative games,
where all the players share the same reward function.

3. MARL with Independent Linear Function
Approximation

In this section, we will introduce the independent linear
Markov game model and demonstrate the advantage of this
model over existing Markov games with function approx-
imation. Intuitively, independent linear Markov games as-
sume that if other players are following some fixed Markov
product policies, then player i is approximately in a linear
MDP (Jin et al., 2020). This is fundamentally different from
previous global function approximation formulations, which
basically assume that the Markov game is a big linear MDP
where the action is the joint action a = (a1, a2, · · · , am).

Feature and independent linear function class. For
each player i, they have access to their own feature
map ϕi : S × Ai → Rdi and we assume that
sup(s,ai)∈S×Ai

∥ϕi(s, ai)∥2 ≤ 1. For player i, given pa-
rameters θi = (θ1,i, · · · , θH,i), the corresponding lin-
ear state-action value function for player i would be
fθi = (f

θ1,i
1,i , f

θ2,i
2,i , · · · , f

θH,i

H,i) where f
θh,i

h,i (s, ai) =
⟨ϕi(s, ai), θh,i⟩ for all (s, ai) ∈ S × Ai. We consider
the following linear state-action value function class for
player i: Qlin

i =
{
fθii | ∥θh,i∥2 ≤ H

√
d, ∀h ∈ [H]

}
.

We also define the state value function class V =
{(V1, · · · , VH+1) | Vh(s) ∈ [0, H + 1− h],∀h, s} .

Given the state value function V ∈ V and other
players’ policies π−i, we can define the indepen-
dent state-action value function for all h ∈ [H]

and (sh, ah,i) ∈ S × Ai as: Q
π−i,V
h,i (sh, ah,i) =

Eah,−i∼πh,−i(·|sh) [rh,i(sh, ah,i, ah,−i) + Vh+1(sh+1)] .
Now we define Markov games with independent linear
function approximation, which generalizes the misspecified
MDPs with linear function approximation model proposed
in (Zanette and Wainwright, 2022) to the Markov games
setting.

Definition 3.1. For any player i, feature map ϕi is ν-
misspecified with policy set Πestimate if for any rollout
policy π, target policy π̃, we have for any V ∈ V ,

max
π∈Πestimate

∣∣∣∣∣
H∑
h=1

Eπ̃
[
proj[0,H+1−h]

(〈
ϕi(sh, ah,i), θ

π,π−i,V
h

〉)
−Qπ−i,V

h,i (sh, ah,i)
]∣∣∣ ≤ ν,

where Πestimate is the collection of Markov product policies
that need to be evaluated and

θ
π,π−i,V
h = (1)

RL in Markov Games with Independent Linear Function Approximation

argmin
∥θ∥≤H

√
d

Eπ
(
⟨ϕi(sh, ah,i), θ⟩ −Qπ−i,V

h,i (sh, ah,i)
)2

is the parameter for the best linear function fit to Qπ−i,V
h,i

under rollout policy π. We say a multi-player general-sum
Markov game with features {ϕi}i∈[m] is a ν-misspecified
linear Markov game with Πestimate if for any player i, the
feature map ϕi is ν-misspecified with Πestimate. In addition,
we define dmax := maxi∈[m] di as the complexity measure
of the linear Markov game.

The policy estimation set Πestimate consists of policies that
need to be estimated in the algorithm, which reflects the in-
ductive bias of the algorithm. We emphasize that all of our
algorithms do not require any knowledge of the policy esti-
mation set Πestimate or the misspecification error ν, which
is known as the agnostic setting (Agarwal et al., 2020c;a).
We give some concrete examples to serve as the special
cases of the independent linear Markov game in Appendix
C. Note that the complexity of tabular Markov games would
be d = S

∏
i∈[m]Ai if we apply the global function approx-

imation models in (Chen et al., 2022; Ni et al., 2022), which
is exponentially larger than dmax = Smaxi∈[m]Ai, as in
the tabular setting when model-based approaches are used
(Bai and Jin, 2020; Zhang et al., 2020; Liu et al., 2021). See
Table 1 for a detailed comparison.

4. Algorithms and Analyses for Linear
Markov Games

4.1. Experience Replay and Policy Replay

Before getting into the details of our algorithm, we will first
review two popular exploration paradigms in single-agent
RL, namely experience replay and policy replay. Experi-
ence replay is utilized in most empirical and theoretical
algorithms, which adds new on-policy data to a dataset and
then uses the dataset to retrain a new policy (Mnih et al.,
2013; Azar et al., 2017; Jin et al., 2020). By carefully de-
signing how to train the new policy to explore the underlying
MDP, the dataset will contain more and more information
about the MDP and thus we can learn the optimal policy
without any simulator.

Another popular approach is called policy replay, which
is also known as policy cover. Instead of incrementally
maintaining a dataset, the algorithm will maintain a policy
set, and at each episode renew the dataset by drawing fresh
samples using the policies in this policy set. As the dataset
is completely refreshed at each episode, policy replay is
able to tackle non-stationarity and enjoy better robustness
in many different settings. In (Agarwal et al., 2020a), it
is used to address the “catastrophic forgetting” problem in
policy gradient methods while being robust to the so-called
transfer error. In (Zanette and Wainwright, 2022; Daskalakis

et al., 2022), it is used to tackle the non-stationarity in Q-
learning with function approximation and non-stationarity
of multiple agents in tabular Markov games, respectively.

In independent linear Markov games, non-stationarity
comes from both multiple agents and function approxima-
tion. In particular, the change in other players’ policies will
lead to a different independent state-action value function
to estimate, and the change in the next-step value function
estimate will lead to changing targets for regression. In
our algorithm, we will show that policy replay can tackle
both types of non-stationarity at the same time as we use
it to create a stationary environment with fixed regression
targets, which leads to provably efficient algorithms for
independent linear Markov games. Policy replay also guar-
antees that if each player has a misspecified feature, the final
guarantee will only have a linear dependence on the mis-
specification error. In addition, we will provide a carefully
designed policy-replay-type algorithm for tabular Markov
games which has significant improvement over (Daskalakis
et al., 2022) in Section 6.

4.2. Algorithm

One technical difficulty in designing algorithms for linear
Markov games is that we can no longer resort to adversarial
bandits oracles, which is utilized in all algorithms that can
break the curse of multiagents (Jin et al., 2021b; Song et al.,
2021; Mao et al., 2022; Daskalakis et al., 2020). This is
because adversarial contextual linear bandits oracle is nec-
essary to avoid dependence on S and Ai. However, to the
best of our knowledge, the only relevant result considers
i.i.d. context with known covariance (Neu and Olkhovskaya,
2020), which can not fit into Markov games. Indeed, adver-
sarial linear bandits with changing action set is still an open
problem (See Section 29.4 in (Lattimore and Szepesvári,
2020)).

Perhaps surprisingly, our algorithms only require no-regret
learning with full-information feedback oracle (Protocol 1
in Appendix D). This oracle is considerably easier than the
previous (weighted) high-probability adversarial bandit with
noisy bandit feedback oracles (Jin et al., 2021b; Daskalakis
et al., 2022). The intuition is that as all the players are
using the same algorithm, the environment is not completely
adversarial and we can take multiple i.i.d. samples so that
the full-information feedback can be constructed with the
batched data.

For learning CCE and CE, the no-regret learning oracle
needs to satisfy the following no-external-regret and no-
swap-regret properties, respectively. We will use the min-
imax optimal no-external-regret and no-swap-regret algo-
rithms while any other no-regret algorithms are eligible.
Assumption 4.1 and Assumption 4.2 can be achieved by
EXP3 (Freund and Schapire, 1997) and BM-EXP3 (Blum

RL in Markov Games with Independent Linear Function Approximation

and Mansour, 2007), respectively.

Assumption 4.1. (No-external-regret with full-information
feedback) For any loss sequence l1, . . . , lT ∈ RB
bounded between [0, 1], the no-regret learning oracle
(Protocol 1) enjoys external-regret (Freund and Schapire,
1997): maxb∈B

∑T
t=1 (⟨pt, lt⟩ − lt(b)) ≤ Reg(T) :=

O(
√
log(B)T).

Assumption 4.2. (No-swap-regret with full-information
feedback) For any loss sequence l1, . . . , lT ∈ RB
bounded between [0, 1], the no-regret learning oracle
(Protocol 1) enjoys swap-regret (Blum and Mansour,
2007; Ito, 2020): maxψ∈Ψ

∑T
t=1 (⟨pt, lt⟩ − ⟨ψ ⋄ pt, lt⟩) ≤

SwapReg(T) := O(
√
B log(B)T), where Ψ denote the

set {ψ : B → B} which consists of all possible strategy
modifications.

Due to space limitation, our algorithm PReFI (Algorithm
1) is deferred to Appendix D and the decentralized imple-
mentation details to Appendix D.2. We will explain the
algorithm for learning Markov CCE and the only difference
in learning Markov CE is to use the no-swap-regret oracle
to replace the no-external-regret one. For simplicity, here
we assume the model misspecification error ν = 0. The
algorithm has two main components: learning Markov CCE
with policy cover and policy cover update. For the first
part, given a policy cover Π, we will compute an approxi-
mate optimistic CCE under the distribution induced by the
policy cover. Specifically, we use a value-iteration-type
algorithm that computes the CCE and the corresponding
value function from step H to 1 (Line 5). At each step
h, each player will run a no-regret algorithm for T steps
(Line 8). In this inner loop, we will generate a dataset
Dk,th,i by using policies in the policy cover concatenated
with the current policies from the no-regret oracle (Line
11). Then we compute an optimistic independent Q function
Q
k,t

h,i via constrained least squares, which has the follow-

ing guarantee: 0 ≤ Q
k,t

h,i(s, ai) − Q
πk,t
h,−i,V

k
h+1

h,i (s, ai) ≤
O(β ∥ϕi(s, ai)∥[Σk

h,i]
−1),∀ (s, ai) ∈ S × Ai, where Σkh,i

is the population covariance matrix of the underlying ran-
dom design least squares. Then we feed Q

k,t

h,i to the no-
regret oracle as the full-information feedback (Line 19 and
Line 23). At the end of the no-regret loop, we will com-
pute the optimistic value function, which will be an upper
bound of the best response value (Line 26): V

k

h,i(s) ≥

maxai∈Ai

1
T

∑T
t=1Q

k,t

h,i(s, ai) ≥ V
†,πk

−i

h,i (s),∀ s ∈ S.

For the policy cover update part, we utilize a lazy update
to ensure that the algorithm will end within K ≤ Kmax :=
Õ(mHdmax) episodes with high probability, which can
significantly improve the final sample complexity bound,
similar to the single-agent MDP case studied in (Zanette and
Wainwright, 2022). We will show that for any player i ∈ [m]

and step h ∈ [H], the number of the triggering events (Line
42) is bounded by Õ(dmax). We maintain a counter Th,i for
each player i at each step h, which estimates the information
gained by adding the current policy πk and its weight nk

to the existing policy cover (Line 38). Note that Th,i is the
sum of ∥ϕi(s, ai)∥2[Σk,1

h,i]
−1 , where (s, ai) is drawn from the

trajectory induced by policy πk and Σk,1h,i is the empirical
covariance matrix of the policy cover. Whenever an update
is triggered, Th,i ≥ TTrig, it means that we will collect
a good amount of new information by playing policy πk

for nk times, which can be measured by the growth of
the determinant of the covariance matrix: det(Σk+1

h,i) ≥(
1 +

TTrig

4

)
det(Σkh,i). We will show that such update can

only happen Õ(dmax) times. In addition, the algorithm will
terminate when the dataset size reachesN (Line 42 and Line
29) so that the sample complexity is always upper bounded
by O(mHTKmaxN).

We also have a policy certification part, where similar ideas
have been utilized in (Dann et al., 2019; Liu et al., 2021;
Ni et al., 2022) to convert regret-based analysis to sample
complexity. Specifically, we maintain a pessimistic value
estimate V k1,i(s1), which satisfies V k1,i(s1) ≤ V π

k

1,i (s1) with
high probability (Line 22). Thus the output policy is the best
approximation of Markov CCE in the policy cover. This
technique can be applied to most no-regret algorithms in RL
to transform regret bounds to sample complexity bounds
with a better dependence on the failure probability δ.§

4.3. Guarantees

Our algorithm, PReFI, has the following guarantees for
learning Markov CCE and Markov CE in linear Markov
games. The sample complexity only has polynomial de-
pendence on dmax, which exponentially improves all the
previous results for Markov games with function approxi-
mation. Note that the Õ(·) notation here only hide polylog
dependence on m,H, dmax, ϵ, δ, and the log(Amax) factor
in the bound can be replaced by dmax as in adversarial linear
bandits (Bubeck et al., 2012).

Theorem 4.3. Suppose Algorithm 1 is instantiated with
no-regret learning oracles satisfying Assumption 4.1. Then
for ν-misspecified independent linear Markov games with
Πestimate = {πk,t}K,Tk,t=1,1, with probability at least 1 −
δ, Algorithm 1 will output an (ϵ + 4ν)-approximate
Markov CCE with sample complexity O(mHTKmaxN) =

Õ(m4H10d4max log(Amax)ϵ
−4).

Theorem 4.4. Suppose Algorithm 1 is instantiated
with no-regret learning oracles satisfying Assumption

§In (Jin et al., 2018), they show how to transform regret bounds
to sample complexity bounds while the dependence on failure prob-
ability becomes 1/δ. This technique can improve it to log(1/δ).

RL in Markov Games with Independent Linear Function Approximation

4.2. Then for ν-misspecified independent linear Markov
games with Πestimate = {πk,t}K,Tk,t=1,1, with probabil-
ity at least 1 − δ, Algorithm 1 will output an (ϵ +
4ν)-approximate Markov CE with sample complexity
Õ(m4H10d4maxAmax log(Amax)ϵ

−4).

The choice of input parameters and the proofs are deferred
to Appendix D. As Markov CCE is equivalent to Markov
NE in two-player zero-sum Markov games, we have the
following Corollary.

Corollary 4.5. Suppose Algorithm 1 is instantiated with no-
regret learning oracles satisfying Assumption 4.1. Then
for ν-misspecified independent linear two-player zero-
sum Markov games with Πestimate = {πk,t}K,Tk,t=1,1, with
probability at least 1 − δ, Algorithm 1 will output an
(ϵ+ 4ν)-approximate Markov NE with sample complexity
Õ(m4H10d4max log(Amax)ϵ

−4).

5. Learning Markov NE in Independent
Linear Markov Potential Games

In this section, we will focus on a special class of inde-
pendent linear Markov games, namely independent linear
Markov potential games. The existence of the potential func-
tion guarantees that the stationary points of the potential
function are NE (Leonardos et al., 2021), which means the
iterative best-response dynamic can converge to NE as it is
similar to coordinate descent (Durand, 2018). Specifically,
our algorithm Lin-Nash-CA (Algorithm 4) can learn pure
Markov NE in independent linear Markov potential games,
which generalizes the algorithm for tabular Markov poten-
tial games in (Song et al., 2021). See Table 2 for a detailed
comparison with previous results.

As when the other players are fixed, player i ∈ [m]
will be in a misspecified linear MDP, existing algorithms
for misspecified linear MDP can all serve as the best-
response oracle. The algorithm will use the following oracle
LINEARMDP_SOLVER that can solve misspecified linear
MDPs. Here misspecified linear MDPs are the degenerated
cases of misspecified independent linear Markov games with
only one player and thus no Πestimate is included, which is
similar to the model in (Zanette and Wainwright, 2022).

Definition 5.1. A Markov decision process with feature ϕ is
a ν-misspecified linear MDP if ϕ : S×A → Rd satisfies for
any rollout policy π, target policy π̃, value function V ∈ V ,
we have,∣∣∣∣∣
H∑
h=1

Eπ̃
[
proj[0,H+1−h]

(〈
ϕ(sh, ah), θ

π,V
h

〉)
−QVh (sh, ah)

]∣∣∣∣∣ ≤ ν,
where

θπ,Vh = argmin
∥θ∥≤H

√
d

Eπ
(
⟨ϕ(sh, ah), θ⟩ −QVh (sh, ah)

)2
,

QVh (sh, ah) = E [rh(sh, ah) + Vh+1(sh+1)] .

Assumption 5.2. For any ν-misspecified linear MDP
with feature ϕ(s, a) ∈ Rd for all (s, a) ∈ S × A,
LINEARMDP_SOLVER takes features ϕ(·, ·) as input and
can interact with the underlying linear MDP. Then it can
output an (ϵ+O(ν))-approximate optimal policy with sam-
ple complexity LinearMDP_SC(ϵ, δ, d) with probability
at least 1 − δ. Without loss of generality, we assume that
LinearMDP_SC(ϵ, δ, d) is non-decreasing w.r.t. d.

In Appendix F, we will adapt Algorithm 1 to the
single-agent case to serve as LINEARMDP_SOLVER with
LinearMDP_SC(ϵ, δ, d) = Õ(H6d4ϵ−2) and output an
(ϵ+ 4ν)-optimal policy (See Algorithm 3). With the best-
response oracle, we provide our MARL algorithm Lin-
Nash-CA for linear Markov potential games (Algorithm
4 in Appendix G). It is easy to see that Algorithm 4 can be
implemented in the same decentralized way as Algorithm 1.
Below we provide the sample complexity guarantees.

Theorem 5.3. For ν-misspecified independent linear
Markov potential games with Πestimate = {πk}Kk=1,
with probability at least 1 − δ, Algorithm 4 will
output an (ϵ + O(ν))-approximate pure Markov
NE. The sample complexity is O(m2Hϵ−1 ·
LinearMDP_SC(ϵ/8, δ/(10m2Hϵ−1), dmax)).

As the congestion game is a special case of linear Markov
potential game (Proposition C.2), we have the following
corollary if we replace the linear MDP solver with a lin-
ear bandit solver with LinearBandit_SC(ϵ, δ, d)) sample
complexity.

Corollary 5.4. For congestion games, with probabil-
ity at least 1 − δ, Algorithm 4 will output an ϵ-
approximate pure NE. The sample complexity is O(m2ϵ−1 ·
LinearBandit_SC(ϵ/8, δ/(10m2Hϵ−1), F)).

If we use Algorithm 3 as the oracle, the sample com-
plexity for linear Markov potential games would be
Õ(m2H7d4maxϵ

−3). For linear bandits, it is easy to adapt
the Õ(d

√
K) regret algorithm in (Abbasi-Yadkori et al.,

2011) to sample complexity Õ(d2ϵ−2), which leads to
Õ(m2F 2ϵ−3) sample complexity for congestion games.¶

Our algorithm significantly improves the previous result for
the decentralized algorithm, which has sample complexity
Õ(m12F 6ϵ−6) (Cui et al., 2022).

¶E.g., we can use policy certification as in Algorithm 1 to find
the best policy among all the policies played with no additional
sample complexity.

RL in Markov Games with Independent Linear Function Approximation

6. Improved Sample Complexity in Tabular
Case

In this section, we will present an algorithm specialized
to tabular Markov games based on the policy cover tech-
nique in Algorithm 1. The sample complexity for learn-
ing an ϵ-approximate Markov CCE is Õ(H6S2Amaxϵ

−2),
which significantly improves the previous state-of-the-art
result Õ(H11S3Amaxϵ

−3) (Daskalakis et al., 2022), and
is only worse than learning an ϵ-approximate non-Markov
CCE by a factor of HS (Jin et al., 2021b). In addition,
our algorithm can learn an ϵ-approximate Markov CE with
Õ(H6S2A2

maxϵ
−2) sample complexity, which is the first

provably efficient result for learning Markov CE in tabular
Markov games.

For learning CCE and CE, the adversarial bandit algorithm
(Protocol 2 in Appendix H) needs to satisfy the following no-
external-regret and no-swap-regret properties, respectively.
The following two assumptions can be achieved by lever-
aging the results in (Neu, 2015) and (Blum and Mansour,
2007), which is shown in (Jin et al., 2021b).||

Assumption 6.1. (No-external-regret with bandit-feedback)
For any loss sequence l1, . . . , lT ∈ RB bounded
between [0, 1], the adversarial bandit oracle satisfies
that with probability at least 1 − δ, for all t ≤
T , maxb∈B

∑t
i=1 (⟨pi, li⟩ − li(b)) ≤ BReg(t) :=

O
(√

Bt log(Bt/δ)
)
.

Assumption 6.2. (No-swap-regret with bandit-feedback)
For any loss sequence l1, . . . , lT ∈ RB bounded
between [0, 1], the adversarial bandit oracle satis-
fies that with probability at least 1 − δ, for all
t ≤ T , maxψ∈Ψ

∑t
i=1 (⟨pi, li⟩ − ⟨ψ ⋄ pi, li⟩) ≤

BSwapReg(t) := O
(
B
√
t log(Bt/δ)

)
. where Ψ denotes

the set {ψ : B → B} which consist of all possible strategy
modifications.

Due to space limitation, our algorithm PReBO (Algorithm
5) and the proofs are deferred to Appendix H. Here we
emphasize several major differences between Algorithm 5
and Algorithm 1. First, the states and actions are no longer
entangled through the feature map as in independent linear
Markov games. As a result, we can use the adversarial ban-
dit oracle to explore individual action space while using
policy cover to explore the shared state space. Then there
will be no inner loop for estimating the full-information
feedback and saving Õ(ϵ−2) factors. Second, for indepen-
dent linear Markov games, each player has its own feature
space so that the exploration progress is different and com-
munication is required to synchronize. However, in tabular
Markov games, all the players explore in the shared state
space, so the exploration progress is inherently synchronous

||They proved a stronger version for weighted regret while we
only require the unweighted version.

and no communication is required. The triggering event is
that whenever a state visitation is approximately doubled,
the policy cover will update, which guarantees that with high
probability, the number of episodes is bounded by Õ(HS).

Theorem 6.3. Suppose Algorithm 5 is instantiated with
adversarial multi-armed bandit oracles satisfying Assump-
tion 6.1. Then for tabular Markov games, with probability
at least 1 − δ, Algorithm 5 will output an ϵ-approximate
Markov CCE with sample complexity Õ(H6S2Amaxϵ

−2).

Theorem 6.4. Suppose Algorithm 5 is instantiated with
adversarial multi-armed bandit oracles satisfying Assump-
tion 6.2. Then for tabular Markov games, with probability
at least 1 − δ, Algorithm 5 will output an ϵ-approximate
Markov CE with sample complexity is Õ(H6S2A2

maxϵ
−2).

7. Conclusion
In this paper, we propose the independent function approxi-
mation model for Markov games and provide algorithms for
different types of Markov games that can break the curse of
multiagents in a large state space. We hope this work can
serve as the first step towards understanding the empirical
success of MARL with independent function approxima-
tion.

References
Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Im-

proved algorithms for linear stochastic bandits. Advances
in neural information processing systems, 24, 2011.

Alekh Agarwal, Mikael Henaff, Sham Kakade, and Wen
Sun. Pc-pg: Policy cover directed exploration for prov-
able policy gradient learning. Advances in neural infor-
mation processing systems, 33:13399–13412, 2020a.

Alekh Agarwal, Sham Kakade, Akshay Krishnamurthy,
and Wen Sun. Flambe: Structural complexity and repre-
sentation learning of low rank mdps. In H. Larochelle,
M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors,
Advances in Neural Information Processing Systems,
volume 33, pages 20095–20107. Curran Associates,
Inc., 2020b. URL https://proceedings.
neurips.cc/paper/2020/file/
e894d787e2fd6c133af47140aa156f00-Paper.
pdf.

Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gau-
rav Mahajan. Optimality and approximation with policy
gradient methods in markov decision processes. In Con-
ference on Learning Theory, pages 64–66. PMLR, 2020c.

Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos.
Minimax regret bounds for reinforcement learning. In

https://proceedings.neurips.cc/paper/2020/file/e894d787e2fd6c133af47140aa156f00-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/e894d787e2fd6c133af47140aa156f00-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/e894d787e2fd6c133af47140aa156f00-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/e894d787e2fd6c133af47140aa156f00-Paper.pdf

RL in Markov Games with Independent Linear Function Approximation

International Conference on Machine Learning, pages
263–272. PMLR, 2017.

Yu Bai and Chi Jin. Provable self-play algorithms for com-
petitive reinforcement learning. In International confer-
ence on machine learning, pages 551–560. PMLR, 2020.

Yu Bai, Chi Jin, and Tiancheng Yu. Near-optimal rein-
forcement learning with self-play. Advances in neural
information processing systems, 33:2159–2170, 2020.

Leemon Baird. Residual algorithms: Reinforcement learn-
ing with function approximation. In Machine Learning
Proceedings 1995, pages 30–37. Elsevier, 1995.

Avrim Blum and Yishay Mansour. From external to internal
regret. Journal of Machine Learning Research, 8(6),
2007.

Noam Brown and Tuomas Sandholm. Superhuman ai for
multiplayer poker. Science, 365(6456):885–890, 2019.

Sébastien Bubeck, Nicolo Cesa-Bianchi, and Sham M
Kakade. Towards minimax policies for online linear
optimization with bandit feedback. In Conference on
Learning Theory, pages 41–1. JMLR Workshop and Con-
ference Proceedings, 2012.

Shicong Cen, Yuejie Chi, Simon S Du, and Lin Xiao. Faster
last-iterate convergence of policy optimization in zero-
sum markov games. arXiv preprint arXiv:2210.01050,
2022.

Fan Chen, Song Mei, and Yu Bai. Unified algorithms for rl
with decision-estimation coefficients: No-regret, pac, and
reward-free learning. arXiv preprint arXiv:2209.11745,
2022.

Xi Chen, Xiaotie Deng, and Shang-Hua Teng. Settling
the complexity of computing two-player nash equilibria.
Journal of the ACM (JACM), 56(3):1–57, 2009.

Zixiang Chen, Dongruo Zhou, and Quanquan Gu. Al-
most optimal algorithms for two-player markov games
with linear function approximation. arXiv preprint
arXiv:2102.07404, 2021.

Qiwen Cui and Simon S Du. When is offline two-player
zero-sum markov game solvable? arXiv preprint
arXiv:2201.03522, 2022a.

Qiwen Cui and Simon S Du. Provably efficient offline multi-
agent reinforcement learning via strategy-wise bonus.
arXiv preprint arXiv:2206.00159, 2022b.

Qiwen Cui, Zhihan Xiong, Maryam Fazel, and Simon S
Du. Learning in congestion games with bandit feedback.
arXiv preprint arXiv:2206.01880, 2022.

Christoph Dann, Lihong Li, Wei Wei, and Emma Brunskill.
Policy certificates: Towards accountable reinforcement
learning. In International Conference on Machine Learn-
ing, pages 1507–1516. PMLR, 2019.

Constantinos Daskalakis, Paul W Goldberg, and Christos H
Papadimitriou. The complexity of computing a Nash
equilibrium. Communications of the ACM, 52(2):89–97,
2009.

Constantinos Daskalakis, Dylan J Foster, and Noah
Golowich. Independent policy gradient methods for com-
petitive reinforcement learning. Advances in neural infor-
mation processing systems, 33:5527–5540, 2020.

Constantinos Daskalakis, Noah Golowich, and Kaiqing
Zhang. The complexity of markov equilibrium in stochas-
tic games. arXiv preprint arXiv:2204.03991, 2022.

Christian Schroeder de Witt, Tarun Gupta, Denys Makovi-
ichuk, Viktor Makoviychuk, Philip HS Torr, Mingfei
Sun, and Shimon Whiteson. Is independent learning all
you need in the starcraft multi-agent challenge? arXiv
preprint arXiv:2011.09533, 2020.

Dongsheng Ding, Chen-Yu Wei, Kaiqing Zhang, and Mi-
hailo Jovanovic. Independent policy gradient for large-
scale markov potential games: Sharper rates, function
approximation, and game-agnostic convergence. In Inter-
national Conference on Machine Learning, pages 5166–
5220. PMLR, 2022.

Simon Du, Sham Kakade, Jason Lee, Shachar Lovett, Gau-
rav Mahajan, Wen Sun, and Ruosong Wang. Bilinear
classes: A structural framework for provable general-
ization in rl. In International Conference on Machine
Learning, pages 2826–2836. PMLR, 2021.

Simon S Du, Sham M Kakade, Ruosong Wang, and Lin F
Yang. Is a good representation sufficient for sam-
ple efficient reinforcement learning? arXiv preprint
arXiv:1910.03016, 2019.

Stéphane Durand. Analysis of Best Response Dynamics in
Potential Games. PhD thesis, Université Grenoble Alpes,
2018.

Liad Erez, Tal Lancewicki, Uri Sherman, Tomer Koren, and
Yishay Mansour. Regret minimization and convergence to
equilibria in general-sum markov games. arXiv preprint
arXiv:2207.14211, 2022.

Dylan J Foster, Sham M Kakade, Jian Qian, and Alexander
Rakhlin. The statistical complexity of interactive decision
making. arXiv preprint arXiv:2112.13487, 2021.

Yoav Freund and Robert E Schapire. A decision-theoretic
generalization of on-line learning and an application to

RL in Markov Games with Independent Linear Function Approximation

boosting. Journal of computer and system sciences, 55
(1):119–139, 1997.

Elad Hazan and Edgar Minasyan. Faster projection-free
online learning. In Conference on Learning Theory, pages
1877–1893. PMLR, 2020.

Baihe Huang, Jason D Lee, Zhaoran Wang, and Zhuoran
Yang. Towards general function approximation in zero-
sum markov games. arXiv preprint arXiv:2107.14702,
2021.

Shinji Ito. A tight lower bound and efficient reduction for
swap regret. Advances in Neural Information Processing
Systems, 33:18550–18559, 2020.

Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, John
Langford, and Robert E Schapire. Contextual decision
processes with low bellman rank are pac-learnable. In
International Conference on Machine Learning, pages
1704–1713. PMLR, 2017.

Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and
Michael I Jordan. Is q-learning provably efficient? Ad-
vances in neural information processing systems, 31,
2018.

Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I Jor-
dan. Provably efficient reinforcement learning with linear
function approximation. In Conference on Learning The-
ory, pages 2137–2143. PMLR, 2020.

Chi Jin, Qinghua Liu, and Sobhan Miryoosefi. Bellman
eluder dimension: New rich classes of rl problems, and
sample-efficient algorithms. Advances in neural informa-
tion processing systems, 34:13406–13418, 2021a.

Chi Jin, Qinghua Liu, Yuanhao Wang, and Tiancheng Yu. V-
learning–a simple, efficient, decentralized algorithm for
multiagent rl. arXiv preprint arXiv:2110.14555, 2021b.

Chi Jin, Qinghua Liu, and Tiancheng Yu. The power of
exploiter: Provable multi-agent rl in large state spaces.
In International Conference on Machine Learning, pages
10251–10279. PMLR, 2022.

Tor Lattimore and Csaba Szepesvári. Bandit algorithms.
Cambridge University Press, 2020.

Stefanos Leonardos, Will Overman, Ioannis Panageas, and
Georgios Piliouras. Global convergence of multi-agent
policy gradient in markov potential games. arXiv preprint
arXiv:2106.01969, 2021.

Qinghua Liu, Tiancheng Yu, Yu Bai, and Chi Jin. A sharp
analysis of model-based reinforcement learning with self-
play. In International Conference on Machine Learning,
pages 7001–7010. PMLR, 2021.

Weichao Mao, Lin Yang, Kaiqing Zhang, and Tamer Basar.
On improving model-free algorithms for decentralized
multi-agent reinforcement learning. In International
Conference on Machine Learning, pages 15007–15049.
PMLR, 2022.

Andreas Maurer and Massimiliano Pontil. Empirical bern-
stein bounds and sample variance penalization. arXiv
preprint arXiv:0907.3740, 2009.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex
Graves, Ioannis Antonoglou, Daan Wierstra, and Mar-
tin Riedmiller. Playing atari with deep reinforcement
learning. arXiv preprint arXiv:1312.5602, 2013.

Dov Monderer and Lloyd S Shapley. Potential games.
Games and economic behavior, 14(1):124–143, 1996.

Gergely Neu. Explore no more: Improved high-probability
regret bounds for non-stochastic bandits. Advances in
Neural Information Processing Systems, 28, 2015.

Gergely Neu and Julia Olkhovskaya. Efficient and robust al-
gorithms for adversarial linear contextual bandits. In Con-
ference on Learning Theory, pages 3049–3068. PMLR,
2020.

Chengzhuo Ni, Yuda Song, Xuezhou Zhang, Chi Jin,
and Mengdi Wang. Representation learning for
general-sum low-rank markov games. arXiv preprint
arXiv:2210.16976, 2022.

Robert W Rosenthal. A class of games possessing pure-
strategy nash equilibria. International Journal of Game
Theory, 2(1):65–67, 1973.

Muhammed Sayin, Kaiqing Zhang, David Leslie, Tamer
Basar, and Asuman Ozdaglar. Decentralized Q-learning
in zero-sum markov games. Advances in Neural Informa-
tion Processing Systems, 34:18320–18334, 2021.

Lloyd S Shapley. Stochastic games. Proceedings of the
national academy of sciences, 39(10):1095–1100, 1953.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis
Antonoglou, Aja Huang, Arthur Guez, Thomas Hubert,
Lucas Baker, Matthew Lai, Adrian Bolton, et al. Master-
ing the game of go without human knowledge. nature,
550(7676):354–359, 2017.

Ziang Song, Song Mei, and Yu Bai. When can we learn
general-sum markov games with a large number of play-
ers sample-efficiently? arXiv preprint arXiv:2110.04184,
2021.

Richard S Sutton and Andrew G Barto. Reinforcement
learning: An introduction. MIT press, 2018.

RL in Markov Games with Independent Linear Function Approximation

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki,
Michaël Mathieu, Andrew Dudzik, Junyoung Chung,
David H Choi, Richard Powell, Timo Ewalds, Petko
Georgiev, et al. Grandmaster level in starcraft ii using
multi-agent reinforcement learning. Nature, 575(7782):
350–354, 2019.

Ruosong Wang, Russ R Salakhutdinov, and Lin Yang. Rein-
forcement learning with general value function approxi-
mation: Provably efficient approach via bounded eluder
dimension. Advances in Neural Information Processing
Systems, 33:6123–6135, 2020.

Yuanhao Wang, Qinghua Liu, Yu Bai, and Chi Jin. Breaking
the curse of multiagency: Provably efficient decentral-
ized multi-agent rl with function approximation. arXiv
preprint arXiv:2302.06606, 2023.

Gellért Weisz, Philip Amortila, and Csaba Szepesvári. Expo-
nential lower bounds for planning in mdps with linearly-
realizable optimal action-value functions. In Algorithmic
Learning Theory, pages 1237–1264. PMLR, 2021.

Zheng Wen and Benjamin Van Roy. Efficient reinforcement
learning in deterministic systems with value function
generalization. Mathematics of Operations Research, 42
(3):762–782, 2017.

Qiaomin Xie, Yudong Chen, Zhaoran Wang, and Zhuoran
Yang. Learning zero-sum simultaneous-move markov
games using function approximation and correlated equi-
librium. In Conference on learning theory, pages 3674–
3682. PMLR, 2020.

Wei Xiong, Han Zhong, Chengshuai Shi, Cong Shen, Liwei
Wang, and Tong Zhang. Nearly minimax optimal offline
reinforcement learning with linear function approxima-
tion: Single-agent mdp and markov game. arXiv preprint
arXiv:2205.15512, 2022.

Yuling Yan, Gen Li, Yuxin Chen, and Jianqing Fan.
Model-based reinforcement learning is minimax-optimal
for offline zero-sum markov games. arXiv preprint
arXiv:2206.04044, 2022.

Lin Yang and Mengdi Wang. Reinforcement learning in
feature space: Matrix bandit, kernels, and regret bound.
In International Conference on Machine Learning, pages
10746–10756. PMLR, 2020.

Yuepeng Yang and Cong Ma. O(T−1) conver-
gence of optimistic-follow-the-regularized-leader in
two-player zero-sum markov games. arXiv preprint
arXiv:2209.12430, 2022.

Chao Yu, Akash Velu, Eugene Vinitsky, Yu Wang, Alexan-
dre Bayen, and Yi Wu. The surprising effectiveness of
ppo in cooperative, multi-agent games. arXiv preprint
arXiv:2103.01955, 2021.

Andrea Zanette and Martin J Wainwright. Stabilizing q-
learning with linear architectures for provably efficient
learning. arXiv preprint arXiv:2206.00796, 2022.

Andrea Zanette, Alessandro Lazaric, Mykel Kochenderfer,
and Emma Brunskill. Learning near optimal policies with
low inherent bellman error. In International Conference
on Machine Learning, pages 10978–10989. PMLR, 2020.

Kaiqing Zhang, Sham Kakade, Tamer Basar, and Lin Yang.
Model-based multi-agent RL in zero-sum Markov games
with near-optimal sample complexity. Advances in Neural
Information Processing Systems, 33:1166–1178, 2020.

Kaiqing Zhang, Zhuoran Yang, and Tamer Basar. Multi-
agent reinforcement learning: A selective overview of
theories and algorithms. Handbook of Reinforcement
Learning and Control, pages 321–384, 2021a.

Runyu Zhang, Zhaolin Ren, and Na Li. Gradient play in
stochastic games: stationary points, convergence, and
sample complexity. arXiv preprint arXiv:2106.00198,
2021b.

Runyu Zhang, Qinghua Liu, Huan Wang, Caiming Xiong,
Na Li, and Yu Bai. Policy optimization for markov games:
Unified framework and faster convergence. arXiv preprint
arXiv:2206.02640, 2022.

Han Zhong, Wei Xiong, Jiyuan Tan, Liwei Wang, Tong
Zhang, Zhaoran Wang, and Zhuoran Yang. Pessimistic
minimax value iteration: Provably efficient equilib-
rium learning from offline datasets. arXiv preprint
arXiv:2202.07511, 2022.

RL in Markov Games with Independent Linear Function Approximation

A. Tables

Algorithms Game Equilibrium Sample complexity
Sample complexity

(tabular) BCM

(Liu et al., 2021) MG NE/CE/CCE H4S2
∏m
i=1Aiϵ

−2 - ×
(Jin et al., 2021b) ZSMG NE H5SAmaxϵ

−2 - -
(Jin et al., 2021b) MG NM-CCE H5SAmaxϵ

−2 - ✓
(Jin et al., 2021b) MG NM-CE H5SA2

maxϵ
−2 - ✓

(Daskalakis et al., 2022) MG CCE H11S3Amaxϵ
−3 - ✓

(Xie et al., 2020) ZSMG NE H4d3ϵ−2 d = SA1A2 -
(Chen et al., 2021) ZSMG NE H3d2ϵ−2 d = SA1A2 -

(Huang et al., 2021) ZSMG NE H3W 2Amaxϵ
−2 W = SA1A2 -

(Jin et al., 2022) ZSMG NE H2d2ϵ−2 d = SA1A2 -
(Chen et al., 2022) MG NE/CE/CCE S3(

∏
i∈[m]Ai)

2H3ϵ−2 - ×
(Ni et al., 2022) MG NE/CE/CCE H6d4(

∏m
i=1Ai)

2 log(|Φ||Ψ|)ϵ−2 d = S
∏
i∈[m]Ai ×

(Ni et al., 2022) MG NE/CE/CCE m4H6d2(L+1)2A
2(L+1)
max ϵ−2 d = S

∏
i∈[m]Ai ×

Algorithm 1 (PReFI) MG CCE m4H10d4maxϵ
−4 dmax = SAmax ✓

Algorithm 1 (PReFI) MG CE m4H10d4maxAmaxϵ
−4 dmax = SAmax ✓

Algorithm 5 (PReBO) MG CCE H6S2Amaxϵ
−2 - ✓

Algorithm 5 (PReBO) MG CE H6S2A2
maxϵ

−2 - ✓

Table 1: Comparison of the models and the most related sample complexity results for MARL in Markov games. S is the
number of states, m is the number of players, Ai is the number of actions for player i with Amax = maxi∈[m]Ai, ϵ is the
target accuracy, and d or W is the complexity of the corresponding function class. We use MG to denote multi-player
general-sum Markov games, ZSMG to denote two-player zero-sum Markov games, NE/CE/CCE to denote Markov Nash
equilibria, Markov correlated equilibria, and Markov coarse correlated equilibria, respectively. We use the prefix (NM-) to
denote non-Markov equilibria. For algorithms with function approximation, we show the parameters when applied to the
tabular setting and whether breaking the curse of multiagents (BCM) or not in the last two columns. Polylog dependence on
relevant parameters is omitted in the sample complexity results.

Algorithms Game type Sample complexity
(Leonardos et al., 2021) Markov potential game poly(κ,m,Amax, S,H, ϵ)

(Ding et al., 2022) Markov potential game poly(κ,m,Amax, d,H, ϵ)
(Song et al., 2021) Markov potential game m2H4SAmaxϵ

−3

(Cui et al., 2022) (Centralized) Congestion game m2Fϵ−2

(Cui et al., 2022) (Decentralized) Congestion game m12F 6ϵ−6

Algorithm 4 (Lin-Nash-CA) Linear Markov potential game m2H7d4maxϵ
−3

Algorithm 4 (Lin-Nash-CA) Congestion game m2F 2ϵ−3

Table 2: Comparison of algorithms for learning NE in Markov potential games. κ is the distribution mismatch coefficient, S
is the number of states, m is the number of players, Ai is the number of actions for player i, Amax = maxi∈[m]Ai, F is the
number of facilities in congestion games, ϵ is accuracy, and dmax is the complexity of the function class. For (Leonardos
et al., 2021; Ding et al., 2022), κ can be arbitrarily large as no exploration is considered.

B. Related Work
Tabular Markov games. Markov games, also known as stochastic games, are introduced in the seminal work (Shapley,
1953). We first discuss works that consider bandit feedback as in our paper. (Bai and Jin, 2020) provide the first provably
sample-efficient MARL algorithm for two-player zero-sum Markov games, which is later improved in (Bai et al., 2020).
For multi-player general-sum Markov games, (Liu et al., 2021) provide the first provably efficient algorithm with sample
complexity depending on the size of joint action space

∏
i∈[m]Ai. Jin et al. (2021b); Song et al. (2021); Mao et al. (2022)

utilize a decentralized algorithm to break the curse of multiagents. However, the output policy therein is non-Markov.
Recently, Daskalakis et al. (2022) provide the first algorithm that can learn Markov CCE and break the curse of multiagents

RL in Markov Games with Independent Linear Function Approximation

at the same time. Several other lines of research consider full-information feedback setting in Markov games and have
attempted to prove convergence to NE/CE/CCE and/or sublinear individual regret (Sayin et al., 2021; Zhang et al., 2022;
Cen et al., 2022; Yang and Ma, 2022; Erez et al., 2022; Ding et al., 2022), and offline learning setting where a dataset is
given and no further interaction with the environment is permitted (Cui and Du, 2022a; Zhong et al., 2022; Yan et al., 2022;
Xiong et al., 2022; Cui and Du, 2022b).

Markov games with function approximation. To tackle the curse of large state and action spaces, it is natural to incorporate
existing function approximation frameworks for single-agent RL into MARL algorithms. Xie et al. (2020); Chen et al.
(2021) consider linear function approximation in two-player zero-sum Markov games, which originate from linear MDP and
linear mixture MDP in single-agent RL, respectively (Jin et al., 2020; Yang and Wang, 2020). Huang et al. (2021); Jin et al.
(2022); Chen et al. (2022); Ni et al. (2022) consider different kinds of general function approximation, which also originate
from single-agent RL literature (Jiang et al., 2017; Du et al., 2019; Agarwal et al., 2020b; Wang et al., 2020; Zanette et al.,
2020; Jin et al., 2021a; Foster et al., 2021; Du et al., 2021). It is notable that all of these frameworks are based on global
function approximation, which is centralized and suffers from the curse of multiagents when applied to tabular Markov
games.

Markov potential games. Markov potential games incorporate Markovian state transition to potential games (Monderer and
Shapley, 1996). Most existing results consider full-information feedback or well-explored setting and prove fast convergence
of policy gradient methods to NE (Leonardos et al., 2021; Zhang et al., 2021b; Ding et al., 2022). Song et al. (2021) provide
a best-response type algorithm that can explore in tabular Markov potential games. One important class of potential games
is congestion games (Rosenthal, 1973). Cui et al. (2022) give the first non-asymptotic analysis for general congestion
games with bandit feedback. We refer the readers to (Cui et al., 2022) for a more detailed background about learning in
potential/congestion games. It is worth noting that for congestion games, each player is in a combinatorial bandit if other
players’ policies are fixed, which can be directly handled by our independent linear Markov games model, while applying
potential game results lead to polynomial dependence on Amax, which could be exponentially large in the number of the
facilities in the congestion game.

Comparison with (Wang et al., 2023). There is a concurrent and independent work (Wang et al., 2023). The two works
share quite a bit of results, e.g., the use of a similar function approximation model, similar algorithm design and sample
complexity results for learning Markov CCE in tabular Markov games, similar discussions on the improved result by using
additional communication among agents, etc. Here we highlight several differences in learning Markov CCE with linear
function approximation. First, they utilize a novel second-order regret oracle and Bernstein-type concentration bounds, so
that they can leverage the single-sample estimate instead of the batched estimate in our algorithm, which results in better
dependence on dmax, ϵ and H compared with our sample complexity. On the other hand, our result has no dependence on
the number of actions, which is aligned with the single-agent linear MDP sample complexity, while theirs has a polynomial
dependence on Amax.** This difference is because they use a uniform policy to sample at the last step while we always
use the on-policy samples. In fact, neither of the sample complexity bounds is strictly better than the other one and is
not directly comparable as the assumptions are not the same. Second, our algorithm can use arbitrary full-information
no-regret learning oracles while their results are specialized to the Expected Follow-the-Perturbed-Leader (E-FTPL) oracle
(Hazan and Minasyan, 2020), which makes the policy class Πestimate therein the linear argmax policy class. Our Πestimate

is induced by the full-information oracle being used, and the result is in this sense more agnostic. On the other hand, if
we use E-FTPL, the induced Πestimate has a more complicated form than the linear argmax policy class. This is because
we use the optimistic estimation of the Q function in our algorithm. Third, our algorithm can work with agnostic model
misspecification which is not considered in (Wang et al., 2023). Besides the differences in linear function approximation
results mentioned above and the similar algorithms and sample complexity for the tabular case, we also have results for
learning NE in Markov potential games, as well as learning Markov CE in general-sum Markov games, while they provide
a policy mirror-descent-type algorithm for other function approximation settings, such as linear quadratic games and the
settings with low Eluder dimension, with a weaker version of CCE called policy-class-restricted CCE.

C. Examples of Independent Linear Markov Games
Example 1. (Tabular Markov games) Let di = SAi and set ϕi(s, ai) = e(s,ai) be the canonical basis in Rdi for all i ∈ [m].
Then we recover tabular Markov game with misspecification error ν = 0.

**In Theorem 4.3, there is a log(Amax) factor, which can be replaced by dmax by using a covering argument as in adversarial linear
bandits (Bubeck et al., 2012).

RL in Markov Games with Independent Linear Function Approximation

Example 2. (State abstraction Markov games) Suppose we have an abstraction function ψ : S → Z for all h ∈ [H], where
Z is a finite set as the “state abstractions” such that states with the same images have similar properties. For any z ∈ Z ,
the model misspecification is defined as

ϵh(z) := max
s,s′:ψ(s)=ψ(s′)=z;i∈[m],h∈[H],a∈A

{|rh,i(s,a)− rh,i(s′,a)| , ∥Ph(· | s,a)− Ph(· | s′,a)∥1} .

We define ν-misspecified state abstraction Markov games to satisfy that for any policy π, we have∣∣∣∣∣
H∑
h=1

Eπ [ϵh(ψ(sh))]

∣∣∣∣∣ ≤ ν,
which means the misspecification error is bounded under any policy π.

Proposition C.1. ν-misspecified state abstraction Markov games (Example 2) are Hν-misspecified independent linear
Markov games with Πabstraction = {π | πh(· | s) = πh(· | s′), ψ(s) = ψ(s′)}, di = |Z|Ai for all i ∈ [m] and feature
ϕi(s, ai) = eψ(s),ai to be the canonical basis in Rdi .

Proof. For all player i, we will let di = |Z|Ai and ϕi(s, ai) = e(ψ(s),ai) be the canonical basis in Rdi . For any policy
π ∈ Πestimate, by the definition of θπ,π−i,V

h (See Equation (1)), we have

θ
π,π−i,V
h (z, ai) =

∑
s:ψ(s)=z d

π
h(s)Q

π−i,V
h,i (s, ai)∑

s:ψ(s)=z d
π
h(s)

∈ [0, H + 1− h],

where dπh(·) is the distribution over S induced by following policy π till step h. Thus we have

proj[0,H+1−h]

(〈
ϕi(sh, ah,i), θ

π,π−i,V
h

〉)
−Qπ−i,V

h,i (sh, ah,i)

=proj[0,H+1−h]

(
θ
π,π−i,V
h (ψ(sh), ah,i)

)
−Qπ−i,V

h,i (sh, ah,i)

=θ
π,π−i,V
h (ψ(sh), ah,i)−Qπ−i,V

h,i (sh, ah,i)

=

∑
s:ψ(s)=ψ(sh)

dπh(s)
(
Q
π−i,V
h,i (s, ah,i)−Qπ−i,V

h,i (sh, ah,i)
)

∑
s:ψ(s)=ψ(sh)

dπh(s)
.

On the other hand, for any z = ψ(sh) = ψ(s′h), i ∈ [m], h ∈ [H], V ∈ V and π ∈ Πestimate, we have∣∣∣Qπ−i,V
h,i (sh, ah,i)−Qπ−i,V

h,i (s′h, ah,i)
∣∣∣

=
∣∣Eah,−i∼πh,−i(·|sh) [rh,i(sh, ah,i, ah,−i) + Vh+1(sh+1)]

− Eah,−i∼πh,−i(·|s′h) [rh,i(s
′
h, ah,i, ah,−i) + Vh+1(sh+1)]

∣∣∣
≤Eah,−i∼πh,−i(·|sh) [|rh,i(sh,ah,i)− rh,i(s

′
h,ah,i)|

+
∣∣∣Esh+1∼Ph(·|sh,ah,i) [Vh+1(sh+1)]− Esh+1∼Ph(·|s′h,ah,i) [Vh+1(sh+1)]

∣∣∣]
(For π ∈ Πestimate, we have πh,−i(· | sh) = πh,−i(· | s′h))

≤Eah,−i∼πh,−i(·|sh)

ϵh(z) +
∣∣∣∣∣∣
∑

sh+1∈S
(Ph(sh+1 | sh,ah,i)− Ph(sh+1 | s′h,ah,i))Vh+1(sh+1)

∣∣∣∣∣∣

≤Eah,−i∼πh,−i(·|sh) [ϵh(z) + (H − h)ϵh(z)]
=(H − h+ 1)ϵh(z).

Thus we have ∣∣∣∣∣
H∑
h=1

Eπ̃
[
proj[0,H+1−h]

(〈
ϕi(sh, ah,i), θ

π,π−i,V
h

〉)
−Qπ−i,V

h,i (sh, ah,i)
]∣∣∣∣∣

RL in Markov Games with Independent Linear Function Approximation

≤
H∑
h=1

Eπ̃
[∣∣∣proj[0,H+1−h]

(〈
ϕi(sh, ah,i), θ

π,π−i,V
h

〉)
−Qπ−i,V

h,i (sh, ah,i)
∣∣∣]

=

H∑
h=1

Eπ̃

∣∣∣∣∣∣
∑
s:ψ(s)=ψ(sh)

dπh(s)
(
Q
π−i,V
h,i (s, ah,i)−Qπ−i,V

h,i (sh, ah,i)
)

∑
s:ψ(s)=z d

π
h(s)

∣∣∣∣∣∣

≤
H∑
h=1

Eπ̃ [(H − h+ 1)ϵh(ψ(sh))]

≤Hν,

where the last inequality is by the definition of ν-misspecified state abstraction Markov games.

Example 3. (Congestion games) Congestion games are normal-form general-sum games defined by the tuple
(F , {Ai}mi=1, {rf}f∈F), where F is the facility set with F = |F|, Ai ⊆ 2F is the action set for player i ∈ [m], and
rf (n) ∈ [0, 1/F] is a random reward function with mean Rf (n) for all n ∈ [m]. For a joint action a = (a1, · · · , am),
nf (a) =

∑m
i=1 1{f ∈ ai} is the number of players choosing facility f and the reward collected for player i is

ri(a) =
∑
f∈ai r

f (nf (a)), which is sum of the reward from the facilities they choose.

Proposition C.2. Congestion games (Example 3) are independent linear Markov games with S = 1, H = 1 and di = F
for all i ∈ [m] and misspecification error ν = 0.

Proof. As S = 1 and H = 1, we will ignore s and h in the notation. For all player i and action ai ∈ Ai, we set
ϕi(ai) ∈ {0, 1}F such that

[ϕi(ai)]f =

{
1, ∀f ∈ ai
0, ∀f /∈ ai.

We only need to construct θπ−i

i such that
∥∥θπ−i

i

∥∥ ≤ √F and
〈
ϕi(ai), θ

π−i

i

〉
= Ea−i∼π−i

[Ri(a)] ∈ [0, 1] for all policy π
and then we will have

Eai∼π̃i

[
proj[0,1]

〈
ϕi(ai), θ

π−i

i

〉
− Ea−i∼π−i

[Ri(a)]
]
= 0

for all π̃.

For any player i and product policy π−i, we can set[
θ
π−i

i

]
f
= Ea−i∼π−i

[
Rf (nf (a−i) + 1)

]
,∀f ∈ F ,

where we use nf (a−i) to denote the number of players except i using facility f . As each element in θπ−i

i is bounded
between [0, 1], we have

∥∥θπ−i

i

∥∥ ≤ √F . In addition, we have

〈
ϕi(ai), θ

π−i

i

〉
= Ea−i∼π−i

∑
f∈ai

(Rf (nf (a−i) + 1))

 = Ea−i∼π−i

∑
f∈ai

Rf (nf (a))

= Ea−i∼π−i

[Ri(a)] ,

which concludes the proof.

These examples demonstrate the generality of the linear Markov games we defined.

D. Missing Parts in Section 4
D.1. No-regret Learning with Full-information Feedback Oracle

NO_REGRET_UPDATE subroutine. Consider the expert problem with B experts (Freund and Schapire, 1997). We use
B to denote the action set with |B| = B, and the policy p ∈ ∆(B). At round t, the adversary chooses some loss lt (also
known as the “expert advice”). Then the learner observes the loss lt and updates the policy to pt+1, which is denoted as
pt+1 ← NO_REGRET_UPDATE(lt).

RL in Markov Games with Independent Linear Function Approximation

Protocol 1 No-regret Learning Algorithm

Initialize: Action set B, and p1 to be the uniform distribution over B.
for t = 1, 2, . . . , T do

Adversary chooses loss lt.
Observe loss lt.
Update pt+1 ← NO_REGRET_UPDATE(lt).

end for

D.2. Decentralized Implementation

Now we discuss the implementation details of the algorithm. Our algorithm can be implemented in a decentralized manner
as specified below:

1. All players know the input parameters of the algorithm.

2. Each player only knows their own features ϕi(·, ·) and observes the states, individual actions, and individual rewards in
each sample trajectory.

3. All players have shared random seeds to sample from the output Markov joint policy πoutput.

4. All players have shared random seeds to sample from the Markov joint policy πk, which is the policy learned at episode
k.

5. All players can communicate O(1) bit at each episode k ∈ [K].

V-learning (Jin et al., 2021b; Song et al., 2021; Mao et al., 2022) can be implemented with (1), (2) and (3), and SPoCMAR
(Daskalakis et al., 2022) can be implemented with (1), (2), (3) and (4). Similar to the algorithm proposed in (Daskalakis
et al., 2022), our algorithm can be implemented in a decentralized way with shared random seeds to enable sampling from
the Markov joint policy πk. In details, when the players want to sample a ∼ πkh(a | s) = 1

T

∑T
t=1

∏
i∈[m] π

k,t
h,i(ai | s),

each player samples t ∼ Unif(T) with the shared random seed and then independently samples ai ∼ πk,th,i(ai | s). Our
algorithm also requires O(1) communication for broadcasting the policy cover update (Line 42) and the output policy (Line
30) at each episode.†† The total communication complexity is bounded by O(Kmax) = Õ(mHdmax) with only polylog
dependence on the accuracy ϵ.

In Appendix E, we present another algorithm for MARL in independent linear Markov games without communication,
which can be implemented with (1), (2), (3) and (4). To remove communication, we utilize agile policy cover update
and the number of episodes becomes K = Õ(m2H4d2maxϵ

−2). As a result, the final sample complexity will be worse
than Algorithm 1. It would be an interesting future direction to study this tradeoff between communication and sample
complexity.

D.3. Proofs for Algorithm 1

We will set the parameters for Algorithm 1 to be

• λ = 2 log(16dmaxmNHT/δ)
log(36/35)

• W = H
√
dmax

• β = 16(W +H)
√
λ+ dmax log(32WN(W +H)) + 4 log(8mKmaxHT/δ)

• TTrig = 64 log(8mHN2/δ)

• Kmax = min{ 2Hmdmax log(N+λ)
log(1+TTrig/4)

, N}

††Line 30 can be implemented with O(1) communication at each episode by maintaining the best index and corresponding value up to
the current episode k.

RL in Markov Games with Independent Linear Function Approximation

Algorithm 1 Policy Reply with Full Information Oracle in Independent Linear Markov Games (PReFI)

1: Input: ϵ, δ, dmax, λ, β, TTrig, Kmax, T , N
2: Initialization: Policy Cover Π = ∅. ntot = 0.
3: for episode k = 1, 2, . . . ,Kmax do
4: Set V

k

H+1,i(·) = V kH+1,i(·) = 0, nk = 0.
5: for h = H,H − 1, . . . , 1 do ▷ Retrain policy with the current policy cover
6: Initialize πk,1h,i to be uniform policy for all player i. Initialize V

k

h,i(·) = V kh,i(·) = 0.
7: Each player i initializes a no-regret learning instance (Protocol 1) at each state s ∈ S and step h ∈ [H], for

which we will use NO_REGRET_UPDATEh,i,s(·) to denote the update.
8: for t = 1, 2, . . . , T do
9: for i ∈ [m] do

10: Set Dataset Dk,th,i = ∅.
11: for l = 1, 2, . . . ,

∑k−1
j=1 n

j do
12: Sample πl ∈ Π = {πj}k−1

j=1 with probability nl/
∑k−1
j=1 n

j .

13: Draw a joint trajectory (sl1,a
l
1, r

l
1,i, . . . , s

l
h,a

l
h, r

l
h,i, s

l
h+1) from πl1:h−1 ◦

(
πlh,i, π

k,t
h,−i

)
, which is

the policy that follows πl for the first h− 1 steps and follows πlh,i, π
k,t
h,−i for step h.

14: Add (slh, a
l
h,i, r

l
h,i, s

l
h+1) to Dk,th,i.

15: end for
16: Set Σk,th,i = λI +

∑
(s,a,r,s′)∈Dk,t

h,i
ϕi(s, a)ϕi(s, a)

⊤.

17: Set θ
k,t

h,i = argmin∥θ∥≤H
√
dmax

∑
(s,a,r,s′)∈Dk,t

h,i

(
⟨ϕi(s, a), θ⟩ − r − V

k

h+1,i(s
′)
)2

.

18: Set θk,th,i = argmin∥θ∥≤H
√
dmax

∑
(s,a,r,s′)∈Dk,t

h,i

(
⟨ϕi(s, a), θ⟩ − r − V kh+1,i(s

′)
)2

.

19: Set Q
k,t

h,i(·, ·) = proj[0,H+1−h]

(〈
ϕi(·, ·), θ

k,t

h,i

〉
+ β ∥ϕi(·, ·)∥[Σk,t

h,i]
−1

)
.

20: Set Qk,t
h,i

(·, ·) = proj[0,H+1−h]

(〈
ϕi(·, ·), θk,th,i

〉
− β ∥ϕi(·, ·)∥[Σk,t

h,i]
−1

)
.

21: Update V
k

h,i(s)← t−1
t V

k

h,i(s) +
1
t

∑
ai∈Ai

πk,th,i(ai|s)Q
k,t

h,i(s, a) for all s ∈ S.
22: Update V kh,i(s)← t−1

t V
k
h,i(s) +

1
t

∑
ai∈Ai

πk,th,i(ai|s)Q
k,t

h,i
(s, a) for all s ∈ S.

23: Update the no-regret learning instance for all state s at step h: πk,t+1
h,i (· | s) ←

NO_REGRET_UPDATEh,i,s(1−Q
k,t

h,i(s, ·)/H).
24: end for
25: end for
26: Set V

k

h,i(s)← proj[0,H+1−h]

(
V
k

h,i(s) +
H
T · (Swap)Reg(T)

)
for all (i, s) ∈ [m]× S .

27: end for
28: Set πk to be the Markov joint policy such that πkh(a|s) = 1

T

∑T
t=1

∏
i∈[m] π

k,t
h,i(ai|s).

29: if ntot = N then
30: Output πoutput = πk

output

, where koutput = argmink′∈[k] maxi∈[m] V
k′

1,i(s1)− V
k′

1,i(s1).
31: end if
32: Set Th,i = 0, for all h ∈ [H], i ∈ [m].
33: repeat ▷ Update policy cover
34: Reset to s = s1, nk = nk + 1, ntot = ntot + 1.
35: for h = 1, 2, . . . ,H do
36: Play a = πkh(·|s).
37: for i ∈ [m] do
38: Th,i → Th,i + ∥ϕi(s, ai)∥2[Σk,1

h,i]
−1 .

39: end for
40: Get next state s′, s→ s′.
41: end for
42: until ∃h ∈ [H], i ∈ [m] such that Th,i ≥ TTrig or ntot = N .
43: Update Π← Π

⋃
{(πk, nk)}.

44: end for

RL in Markov Games with Independent Linear Function Approximation

• T = Õ(H4 log(Amax)ϵ
−2) for Markov CCE and T = Õ(H4Amax log(Amax)ϵ

−2) for Markov CE

• N = Õ(m2H4d2maxϵ
−2).

We will use subscript k, t to denote the variables in episode k and inner loop t, and subscript h, i to denote the variables
at step h and for player i. We will use K to denote the episode that the Algorithm 1 ends (ntot = N or K = Kmax) .
Immediately we have K ≤ Kmax ≤ N .

By the definition of the no-regret learning oracle (Assumption 4.1 and Assumption 4.2), we have the following two lemmas.

Lemma D.1. Suppose Algorithm 1 is instantiated with no-regret learning oracles satisfying Assumption 4.1. For all k ∈ [K],
t ∈ [T], h ∈ [H], i ∈ [m] and s ∈ S we have

1

T

T∑
t=1

∑
ai∈Ai

πk,th,i(ai | s)Q
k,t

h,i(s, ai) ≥ max
ai∈Ai

1

T

T∑
t=1

Q
k,t

h,i(s, ai)−
H

T
· Reg(T).

Lemma D.2. Suppose Algorithm 1 is instantiated with no-regret learning oracles satisfying Assumption 4.2. For all k ∈ [K],
t ∈ [T], h ∈ [H], i ∈ [m] and s ∈ S we have

1

T

T∑
t=1

∑
ai∈Ai

πk,th,i(ai | s)Q
k,t

h,i(s, ai) ≥ max
ψi∈Ψi

1

T

T∑
t=1

∑
ai∈Ai

πk,th,i(ai | s)Q
k,t

h,i(s, ψh(ai | s))

− H

T
· SwapReg(T).

D.3.1. CONCENTRATION

The population covariance matrix for episode k, inner loop t, step h and player i is defined as

Σkh,i := E
[
Σk,th,i

]
= λI +

k−1∑
l=1

nlΣπ
l

h,i,

where Σπ
k

h,i = Eπk

[
ϕi(sh, ah,i)ϕi(sh, ah,i)

⊤]. Note that slh, a
l
h,i is sampled following the same policy for each inner loop

t, so the expected covariance is the same for different t.

We define πk,cov to be the mixture policy of the policy cover Πk, where policy πl is given weight/probability nl∑k−1
j=1 n

j
. Then

we define the on-policy population fit to be

θ̃k,th,i := argmin
∥θ∥≤W

E(sh,ah,i)∼πk,cov

{
⟨ϕi(sh, ah,i), θ⟩ − Eah,−i∼πk,t

h,−i(·|s)

[
rh,i(sh,ah) + V

k

h+1,i(s
′)
]}2

,

θ̂k,th,i := argmin
∥θ∥≤W

E(sh,ah,i)∼πk,cov

{
⟨ϕi(sh, ah,i), θ⟩ − Eah,−i∼πk,t

h,−i(·|s)

[
rh,i(sh,ah) + V kh+1,i(s

′)
]}2

.

Lemma D.3. (Concentration) With probability at least 1− δ/2, for all k ∈ [K], h ∈ [H], t ∈ [T], i ∈ [m], we have∥∥∥θk,th,i − θ̃k,th,i∥∥∥
Σk

h,i

≤ 8(W +H)
√
λ+ di log(32WN(W +H)) + 4 log(8mKmaxHT/δ) ≤ β/2, (2)

∥∥∥θk,th,i − θ̂k,th,i∥∥∥
Σk

h,i

≤ 8(W +H)
√
λ+ di log(32WN(W +H)) + 4 log(8mKmaxHT/δ) ≤ β/2, (3)

1

2
Σk,th,i ⪯ Σkh,i ⪯

3

2
Σk,th,i. (4)

Proof. By applying Lemma I.8 with Ymax = H and union bound, (2) and (3) holds with probability at least 1− δ/4. For
(4), we can prove it holds with probability at least 1 − δ/4 by applying Lemma I.9 with λ > 2 log(16dimKmaxHT/δ)

log(36/35) and
union bound.

RL in Markov Games with Independent Linear Function Approximation

Lemma D.4. With probability at least 1− δ/2, the following two events hold:

• Suppose at episode k, Line 42: Th,i ≥ TTrig is triggered, then we have

Eπk ∥ϕi(sh, ah,i)∥2[Σk,1
h,i]

−1 ≥ 1

2nk

nk∑
j=1

∥∥∥ϕi(sk,jh , ak,jh,i)
∥∥∥2
[Σk,1

h,i]
−1
≥ TTrig

2nk
,

where j denotes the j-th trajectory collected in the policy cover update (Line 33).

• For any k ∈ [Kmax], h ∈ [H], i ∈ [m], we have

Eπk ∥ϕi(sh, ah,i)∥2[Σk,1
h,i]

−1 ≤ 2TTrig
nk

.

Proof. Note that if at episode k, Th,i ≥ TTrig is triggered, we will have nk ≤ N as otherwise ntot = N will be triggered.

By Lemma I.2 with Xj =
∥∥∥ϕi(sk,jh , ak,jh,i)

∥∥∥
[Σ1,k

h,i]
−1

, nmax = N and TTrig ≥ 64 log(8mHKmaxN/δ), we have that the

argument holds with probability at least 1− δ/(2mKmaxH) for any fixed k ∈ [Kmax], h ∈ [H] and i ∈ [m]. Then we can
prove the lemma by applying union bound.

We denote G to be the good event where the arguments in Lemma D.3 and Lemma D.4 hold, which is with probability at
least 1− δ by Lemma D.3 and Lemma D.4.

We define the misspecification error to be

∆
k,t

h,i(s, ai) := Ea−i∼πk,t
h,−i(·|s)

[
rh,i(s,a) + V

k

h+1,i(s
′)
]
− proj[0,H+1−h]

(〈
ϕi(s, ai), θ̃

k,t
h,i

〉)
,

∆k,t
h,i(s, ai) := Ea−i∼πk,t

h,−i(·|s)

[
rh,i(s,a) + V kh+1,i(s

′)
]
− proj[0,H+1−h]

(〈
ϕi(s, ai), θ̂

k,t
h,i

〉)
.

Then by the definition of ν-misspecified linear Markov games, we have the following lemma.

Lemma D.5. For any policy π, we have∣∣∣∣∣
H∑
h=1

Eπ
[
∆
k,t

h,i(s, ai)
]∣∣∣∣∣ ≤ ν,

∣∣∣∣∣
H∑
h=1

Eπ
[
∆k,t
h,i(s, ai)

]∣∣∣∣∣ ≤ ν.
D.3.2. PROOFS FOR MARKOV CCE

Lemma D.6. Under the good event G, for all k ∈ [K], t ∈ [T], h ∈ [H], i ∈ [m], s ∈ S and ai ∈ Ai we have

−∆k,t

h,i(s, ai) ≤ Q
k,t

h,i(s, ai)−
[
Ea−i∼πk,t

h,−i(·|s)

[
rh,i(s,a) + V

k

h+1,i(s
′)
]]

≤ 3β ∥ϕi(s, ai)∥[Σk
h,i]

−1 −∆
k,t

h,i(s, ai),

−3β ∥ϕi(s, ai)∥[Σk
h,i]

−1 −∆k,t
h,i(s, ai) ≤ Q

k,t

h,i
(s, ai)−

[
Ea−i∼πk,t

h,−i(·|s)

[
rh,i(s,a) + V kh+1,i(s

′)
]]

≤ −∆k,t
h,i(s, ai).

Proof. We only prove the first argument and the second one holds similarly.

By Lemma D.3, for any s ∈ S, ai ∈ Ai, h ∈ [H], i ∈ [m], k ∈ [K], we have∣∣∣〈ϕi(s, ai), θk,th,i − θ̃k,th,i〉∣∣∣ ≤ ∥ϕi(s, ai)∥[Σk
h,i]

−1

∥∥∥θk,th,i − θ̃k,th,i∥∥∥
Σk

h,i

≤ β/2 ∥ϕi(s, ai)∥[Σk
h,i]

−1 ,

RL in Markov Games with Independent Linear Function Approximation

where the first inequality is from Cauchy-Schwarz inequality. As a result, we have

Q
k,t

h,i(s, ai) =proj[0,H+1−h]

(〈
ϕi(s, ai), θ

k,t

h,i

〉
+ β ∥ϕi(s, ai)∥[Σk,t

h,i]
−1

)
≥proj[0,H+1−h]

(〈
ϕi(s, ai), θ

k,t

h,i

〉
+

1

2
β ∥ϕi(s, ai)∥[Σk

h,i]
−1

)
(Lemma D.3)

≥proj[0,H+1−h]

(〈
ϕi(s, ai), θ̃

k,t
h,i

〉)
=Ea−i∼πk,t

h,−i(·|s)

[
rh,i(s,a) + V

k

h+1,i(s
′)
]
−∆

k,t

h,i(s, ai)

and

Q
k,t

h,i(s, ai) =proj[0,H+1−h]

(〈
ϕi(s, ai), θ

k,t

h,i

〉
+ β ∥ϕi(s, ai)∥[Σk,t

h,i]
−1

)
≤proj[0,H+1−h]

(〈
ϕi(s, ai), θ

k,t

h,i

〉
+ 2β ∥ϕi(s, ai)∥[Σk

h,i]
−1

)
(Lemma D.3)

≤proj[0,H+1−h]

(〈
ϕi(s, ai), θ̃

k,t
h,i

〉
+ 3β ∥ϕi(s, ai)∥[Σk

h,i]
−1

)
≤proj[0,H+1−h]

(〈
ϕi(s, ai), θ̃

k,t
h,i

〉)
+ 3β ∥ϕi(s, ai)∥[Σk

h,i]
−1

=Ea−i∼πk,t
h,−i(·|s)

[
rh,i(s,a) + V

k

h+1,i(s
′)
]
−∆

k,t

h,i(s, ai) + 3β ∥ϕi(s, ai)∥[Σk
h,i]

−1 ,

which concludes the proof.

Lemma D.7. (Optimism) Under the good event G, for all k ∈ [K], i ∈ [m], we have

V
k

1,i(s1) ≥ V
†,πk

−i

1,i (s1)−
H∑
h=1

E†,πk
−i

[
1

T

T∑
t=1

∆
k,t

h,i(sh, ah,i)

]
≥ V †,πk

−i

1,i (s1)− ν.

Proof. For any k ∈ [K], i ∈ [m], under the good event G, we have

V
k

1,i(s1)− V
†,πk

−i

1,i (s1)

=proj[0,H]

(
1

T

T∑
t=1

∑
ai∈Ai

πk,t1,i (a1,i | s1)Q
k,t

1,i(s1, a1,i) +
H

T
· Reg(T)

)
− V †,πk

−i

1,i (s1)

≥proj[0,H]

(
max
a1,i∈Ai

1

T

T∑
t=1

Q
k,t

1,i(s1, a1,i)

)
− V †,πk

−i

1,i (s1) (Lemma D.1)

≥ max
a1,i∈Ai

1

T

T∑
t=1

{
Ea−i∼πk,t

1,−i(·|s1)

[
r1,i(s,a) + V

k

2,i(s
′)
]
−∆

k,t

1,i(s1, a1,i)
}
− V †,πk

−i

1,i (s1) (Lemma D.6)

≥E†,πk
−i

[
r1,i(s1,a1) + V

k

2,i(s
′)− 1

T

T∑
t=1

∆
k,t

1,i(s1, a1,i)

]
− V †,πk

−i

1,i (s1)

=E†,πk
−i

[
V
k

2,i(s2)− V
†,πk

−i

2,i (s2)−
1

T

T∑
t=1

∆
k,t

1,i(s1, a1,i)

]

≥− E†,πk
−i

[
H∑
h=1

1

T

T∑
t=1

∆
k,t

h,i(sh, ah,i)

]
≥− ν, (Lemma D.5)

where we use E†,πk
−i

to denote Eπ′
i,π

k
−i

such that π′
i is a best response of πk−i.

RL in Markov Games with Independent Linear Function Approximation

Lemma D.8. (Pessimism) Under the good event G, for all k ∈ [K], i ∈ [m], we have

V k1,i(s1) ≤ V π
k

1,i (s1)−
H∑
h=1

Eπk

1

T

[
T∑
t=1

∆k,t
h,i(sh, ah,i)

]
≤ V π

k

1,i (s1) + ν.

Proof. For any k ∈ [K], i ∈ [m], under the good event G, we have

V k1,i(s1)− V π
k

1,i (s1)

=
1

T

T∑
t=1

∑
a∈Ai

πk,t1,i (a1,i | s1)Q
k,t

1,i
(s1, a1,i)− V π

k

1,i (s1)

≤ 1

T

T∑
t=1

∑
a1,i∈Ai

πk,t1,i (a1,i | s1)
[
Ea1,−i∼πk,t

1,−i(·|s1)

[
r1,i(s1,a1) + V k2,i(s2)

]
−∆k,t

1,i(s1, ai)
]
− V π

k

1,i (s1) (Lemma D.6)

=Ea1∼πk
1 (·|s1)

[
r1,i(s1,a1) + V k2,i(s2)−

1

T

T∑
t=1

∆k,t
1,i(s1, ai)

]
− V π

k

1,i (s1)

=Ea1∼πk
1 (·|s1)

[
V k2,i(s2)− V π

k

2,i (s2)−
1

T

T∑
t=1

∆k,t
1,i(s1, ai)

]

≤−
H∑
h=1

Eπk

[
1

T

T∑
t=1

∆k,t
h,i(sh, ah,i)

]
≤ν, (Lemma D.5)

which concludes the proof.

Lemma D.9. Under the good event G, for all k ∈ [K] and i ∈ [m], we have

V
†,πk

−i

1,i (s1)− V π
k

1,i (s1)− 2ν ≤ V k1,i(s1)− V
k
1,i(s1) ≤ 6βEπk

H∑
h=1

∥ϕi(sh, ah,i)∥[Σk
h,i]

−1 +
H2

T
· Reg(T) + 2ν.

Proof. The first inequality is from Lemma D.7 and Lemma D.8. Now we prove the second argument. Under the good event
G, for all k ∈ [K] and i ∈ [m], we have

V
k

1,i(s1)− V
k
1,i(s1)

≤ 1

T

T∑
t=1

∑
ai∈Ai

πk,t1,i (a1,i | s1)Q
k,t

1,i(s1, a1,i) +
H

T
· Reg(T)− 1

T

T∑
t=1

∑
a1,i∈Ai

πk,t1,i (a1,i | s1)Q
k,t

1,i
(s1, a1,i)

≤ 1

T

T∑
t=1

∑
a1,i∈Ai

πk,t1,i (a1,i | s1)
([

Ea1,−i∼πk,t
1,−i(·|s)

[
rh,i(s1,a1) + V

k

2,i(s2)
]]

+ 3β ∥ϕi(s1, a1,i)∥[Σk
1,i]

−1

−∆k,t

1,i(s, a1,i)
)
− 1

T

T∑
t=1

∑
a1,i∈Ai

πk,t1,i (a1,i | s1)
([

Ea1,−i∼πk,t
1,−i(·|s1)

[
rh,i(s1,a1) + V k2,i(s2)

]]
−3β ∥ϕi(s1, a1,i)∥[Σk

1,i]
−1 −∆k,t

1,i(s, a1,i)
)
+
H

T
· Reg(T) (Lemma D.6)

≤ 1

T

T∑
t=1

[
Ea1∼πk,t

1 (·|s1)

[
V
k

2,i(s2)− V
k
2,i(s2)

]]
+
H

T
· Reg(T)

+ Ea1,i∼πk,t
1,i (·|s1)

[
6β ∥ϕi(s1, a1,i)∥[Σk

1,i]
−1 −

1

T

T∑
t=1

∆
k,t

1,i(s1, a1,i)−
1

T

T∑
t=1

∆k,t
1,i(s1, a1,i)

]

RL in Markov Games with Independent Linear Function Approximation

=Eπk
1

[
V
k

2,i(s2)− V
k
2,i(s2)

]
+
H

T
· Reg(T)

+ Ea1,i∼πk,t
1,i (·|s1)

[
6β ∥ϕi(s1, a1,i)∥[Σk

1,i]
−1 −

1

T

T∑
t=1

∆
k,t

1,i(s1, a1,i)−
1

T

T∑
t=1

∆k,t
1,i(s1, a1,i)

]

≤6βEπk

H∑
h=1

∥ϕi(sh, ah,i)∥[Σk
h,i]

−1 − Eπk

H∑
h=1

1

T

T∑
t=1

(
∆
k,t

h,i(sh, ah,i) + ∆k,t
h,i(sh, ah,i)

)
+
H2

T
· Reg(T)

≤6βEπk

H∑
h=1

∥ϕi(sh, ah,i)∥[Σk
h,i]

−1 + 2ν +
H2

T
· Reg(T),

which completes the proof.

Lemma D.10. Under the good event G, for all i ∈ [m], we have

K∑
k=1

nkEπk ∥ϕi(sh, ah,i)∥2[Σk
h,i]

−1 ≤ 4TTrigdi log

(
1 +

N

diλ

)
.

Proof. First, by the triggering condition, we have

nk∑
j=1

∥∥∥ϕi(sjh, ajh,i)∥∥∥2[Σk,1
h,i]

−1
=

nk−1∑
j=1

∥∥∥ϕi(sjh, ajh,i)∥∥∥2[Σk,1
h,i]

−1
+
∥∥∥ϕi(snk

h , an
k

h,i)
∥∥∥2
[Σk,1

h,i]
−1
≤ TTrig + 1,

where j denotes the j-th trajectory collected in the policy cover update (Line 33). By Lemma D.4, we have

nkEπk ∥ϕi(sh, ah,i)∥2[Σk
h,i]

−1 ≤2nkEπk ∥ϕi(sh, ah,i)∥2[Σk,1
h,i]

−1 ≤ 4TTrig.

Then by Lemma I.6, we have

nkEπk ∥ϕi(sh, ah,i)∥2[Σk
h,i]

−1 ≤ 4TTrig log
det(Σk+1

h,i)

det(Σkh,i)
.

Thus we have
K∑
k=1

nkEπk ∥ϕi(sh, ah,i)∥2[Σk
h,i]

−1 ≤
K∑
k=1

4TTrig log
det(Σk+1

h,i)

det(Σkh,i)

=4TTrig log
det(ΣK+1

h,i)

det(Σ1
h,i)

≤4TTrig
[
di log

(
diλ+N

di

)
− di log(λ)

]
=4TTrigdi log

(
1 +

N

diλ

)
,

where we utilized the fact that

log det(ΣK+1
h,i) ≤ di log

(
trace(ΣK+1

h,i)

di

)
≤ di log

(
diλ+N

di

)
,

and complete the proof.

Lemma D.11. Under the good event G, we have

K∑
k=1

nk max
i∈[m]

(
V
k

1,i(s1)− V
k
1,i(s1)

)

≤6mHβ

√
4N(TTrig + 1)dmax log

(
1 +

N

λ

)
+
H2N

T
· Reg(T) + 2νN.

RL in Markov Games with Independent Linear Function Approximation

Proof. By Lemma D.12, under the good event G, we have
∑K
k=1 n

k = ntot = N . Thus we have

K∑
k=1

nk max
i∈[m]

(
V
k

1,i(s1)− V
k
1,i(s1)

)
≤

K∑
k=1

nk max
i∈[m]

[
6βEπk

H∑
h=1

∥ϕi(sh, ah,i)∥[Σk
h,i]

−1

]
+
H2

T

K∑
k=1

nkReg(T) + 2νN (Lemma D.9)

≤6β
∑
i∈[m]

H∑
h=1

K∑
k=1

nkEπk

√
∥ϕi(sh, ah,i)∥2[Σk

h,i]
−1 +

H2N

T
· Reg(T) + 2νN

≤6β
∑
i∈[m]

H∑
h=1

K∑
k=1

nk
√
Eπk ∥ϕi(sh, ah,i)∥2[Σk

h,i]
−1 +

H2N

T
· Reg(T) + 2νN (Concavity of f(x) =

√
x)

≤6β
∑
i∈[m]

H∑
h=1

√√√√ K∑
k=1

nk

√√√√ K∑
k=1

nkEπk ∥ϕi(sh, ah,i)∥2[Σk
h,i]

−1 +
H2N

T
· Reg(T) + 2νN (Cauchy–Schwarz inequality)

≤6β
∑
i∈[m]

H∑
h=1

√
N4(TTrig + 1)di log

(
1 +

N

diλ

)
+
H2N

T
· Reg(T) + 2νN (Lemma D.10)

≤6βmH

√
N4(TTrig + 1)dmax log

(
1 +

N

λ

)
+
H2N

T
· Reg(T) + 2νN.

Lemma D.12. Under the good event G, we have

K ≤ 2Hmdmax log(N + λ)

log(1 + TTrig/4)
,

which means K < Kmax and Algorithm 1 ends due to Line 42 (ntot = Nmax).

Proof. By Lemma D.4, for any player i and h ∈ [H], whenever T kh,i ≥ TTrig is triggered, with probability at least 1− δ we
have

nkEπk ∥ϕi(sh, ah,i)∥2[Σk
h,i]

−1 ≥1

2
nkEπk ∥ϕi(sh, ah,i)∥2[Σk,1

h,i]
−1 (Lemma D.3)

≥1

4

nk∑
j=1

∥∥∥ϕi(sjh, ajh,i)∥∥∥2[Σk,1
h,i]

−1
(Lemma D.4)

≥TTrig
4

.

Then by Lemma I.6, we have

det(Σk+1
h,i)

det(Σkh,i)
≥ 1 + nkEπk ∥ϕi(sh, ah,i)∥2[Σk

h,i]
−1 ≥ 1 +

TTrig
4

.

Suppose sh,i is the number of triggering T kh,i ≥ TTrig at level h and player i, then we have

det(ΣK+1
h,i)

det(Σ1
h,i)

≥
(
1 +

TTrig
4

)sh,i

.

In addition, we have

log(det(Σ1
h,i)) = di log(λ), log det((Σ

K+1
h,i)) ≤ di log

(
trace(ΣK+1

h,i)

di

)
≤ di log

(
diλ+N

di

)
,

RL in Markov Games with Independent Linear Function Approximation

which gives

sh,i ≤
di log(N/di + λ)

log(1 + TTrig/4)
.

Thus, the total number of triggering is bounded by∑
i∈[m]

∑
h∈[H]

sh,i + 1 ≤ 2mHdmax log(N + λ)

log(1 + TTrig/4)
,

where the additional 1 is from the event ntot = N .

Theorem 4.3. Suppose Algorithm 1 is instantiated with no-regret learning oracles satisfying Assumption 4.1. Then
for ν-misspecified independent linear Markov games with Πestimate = {πk,t}K,Tk,t=1,1, with probability at least
1 − δ, Algorithm 1 will output an (ϵ + 4ν)-approximate Markov CCE with sample complexity O(mHTKmaxN) =

Õ(m4H10d4max log(Amax)ϵ
−4).

Proof. Under the good event G, by Lemma D.12, the algorithm ends by ntot = N . By Lemma D.11, under the good event
G, which happens with probability at least 1− δ (Lemma D.3 and Lemma D.4), we have

min
k∈[K]

max
i∈[m]

(
V
k

1,i(s1)− V
k
1,i(s1)

)
≤ 1

N

K∑
k=1

nk max
i∈[m]

(
V
k

1,i(s1)− V
k
1,i(s1)

)

≤6mHβ

√
4(TTrig + 1)dmax log

(
1 +

N

λ

)
/N +

H2

T
· Reg(T) + 2ν.

By setting N = Õ(m2H4d3maxϵ
−2) and T = Õ(H4 log(Amax)ϵ

−2), we can have

min
k∈[K]

max
i∈[m]

(
V
k

1,i(s1)− V
k
1,i(s1)

)
≤ ϵ+ 2ν.

Then by Lemma D.9 we have

max
i∈[m]

(
V

†,πoutput
−i

1,i (s1)− V π
output

1,i (s1)

)
≤max
i∈[m]

(
V
koutput

1,i (s1)− V k
output

1,i (s1)
)
+ 2ν

= min
k∈[K]

max
i∈[m]

(
V
k

1,i(s1)− V
k
1,i(s1)

)
+ 2ν

≤ϵ+ 4ν,

which completes the proof.

By Proposition C.1, we have the following corollary for state abstraction Markov games, which is defined in Appendix C.
Note that the feature is the same ϕi(s, ai) = ϕi(s

′, ai) if ψ(s) = ψ(s′), so πk,t ∈ Πabstraction for all (k, t) ∈ [K]× [T] as
the full-information feedback would be the same for s and s′ mapped to the same abstraction and then the policy would be
same as well.
Corollary D.13. Suppose Algorithm 1 is instantiated with no-regret learning oracles satisfying Assumption 4.1. Then for
ν-misspecified state abstraction Markov games, with probability at least 1 − δ, Algorithm 1 will output an (ϵ + 4Hν)-
approximate Markov NE. The sample complexity is O(mHTKmaxN) = Õ(m4H10|Z|4A4

max log(Amax)ϵ
−4).

D.3.3. PROOFS FOR MARKOV CE

Lemma D.14. (Optimism) Let ψki = argmaxψi
V ψ⋄π

k

1,i (s1) for all k ∈ [K] and i ∈ [m]. Under the good event G, for all
k ∈ [K] and i ∈ [m], we have

V
k

1,i(s1) ≥ max
ψi

V ψi⋄πk

1,i (s1)−
H∑
h=1

Eψk
i ⋄πk

[
1

T

T∑
t=1

∆
k,t

h,i(sh, ah,i)

]
≥ max

ψi

V ψi⋄πk

1,i (s1)− ν.

RL in Markov Games with Independent Linear Function Approximation

Proof. Under the good event G, for all k ∈ [K], h ∈ [H], i ∈ [m], s1 ∈ S, we have

V
k

1,i(s1)−max
ψi

V ψi⋄πk

1,i (s1)

=proj[0,H]

(
1

T

T∑
t=1

∑
ai∈Ai

πk,t1,i (a1,i | s1)Q
k,t

1,i(s1, a1,i) +
H

T
· SwapReg(T)

)
− V †,πk

−i

1,i (s1)

≥ proj[0,H]

(
max
ψ1,i

1

T

T∑
t=1

∑
ai∈Ai

πk,t1,i (a1,i | s1)Q
k,t

1,i(s1, ψ1(a1,i | s1))

)
− V †,πk

−i

1,i (s1) (Lemma D.1)

≥max
ψ1,i

1

T

T∑
t=1

Ea1∼ψ1,i⋄πk,t
1 (·|s1)

[
r1,i(s1,a1) + V k2,i(s2)−∆

k,t

1,i(s1, a1,i)
]
− V †,πk

−i

1,i (s1) (Lemma D.6)

≥Eψk
1,i⋄πk

1

[
r1,i(s1,a1) + V

k

2,i(s
′)− 1

T

T∑
t=1

∆
k,t

1,i(s1, a1,i)

]
− V †,πk

−i

1,i (s1)

=Eψk
1,i⋄πk

1

[
V
k

2,i(s2)− V
†,πk

−i

2,i (s2)−
1

T

T∑
t=1

∆
k,t

1,i(s1, a1,i)

]

≥− Eψk
i ⋄πk

[
H∑
h=1

1

T

T∑
t=1

∆
k,t

h,i(sh, ah,i)

]
≥− ν, (Lemma D.5)

which concludes the proof.

Lemma D.15. Under the good event G, for all k ∈ [K] and i ∈ [m], we have

max
ψi

V ψi⋄πk

1,i (s1)− V π
k

1,i (s1)− 2ν ≤ V k1,i(s1)− V
k
1,i(s1)

≤ 6βEπk

H∑
h=1

∥ϕi(sh, ah,i)∥[Σk
h,i]

−1 +
H2

T
· SwapReg(T) + 2ν.

Proof. The first inequality is from Lemma D.14 and Lemma D.8. Now we prove the second inequality. Under the good
event G, for all k ∈ [K] and i ∈ [m], we have

V
k

1,i(s1)− V
k
1,i(s1)

≤ 1

T

T∑
t=1

∑
a1,i∈Ai

πk,t1,i (a1,i | s)Q
k,t

1,i(s1, a1,i) +
H

T
· SwapReg(T)

− 1

T

T∑
t=1

∑
a1,i∈Ai

πk,t1,i (a1,i | s1)Q
k,t

1,i
(s1, a1,i)

≤ 1

T

T∑
t=1

∑
a1,i∈Ai

πk,t1,i (a1,i | s1)
([

Ea1,−i∼πk,t
1,−i(·|s)

[
r1,i(s1,a1) + V

k

2,i(s2)
]]

+ 3β ∥ϕi(s1, a1,i)∥[Σk
1,i]

−1

−∆k,t

1,i(s1, a1,i)
)
− 1

T

T∑
t=1

∑
a1,i∈Ai

πk,t1,i (a1,i | s1)
([

Ea1,−i∼πk,t
1,−i(·|s1)

[
r1,i(s1,a1) + V k2,i(s2)

]]
−3β ∥ϕi(s1, a1,i)∥[Σk

1,i]
−1 −∆k,t

1,i(s1, a1,i)
)
+
H

T
· SwapReg(T) (Lemma D.6)

=
1

T

T∑
t=1

(
Ea1∼πk,t

1 (·|s1)

[
V
k

2,i(s2)− V
k
2,i(s2)

]
+ Ea1,i∼πk,t

1,i (·|s1)

[
6β ∥ϕi(s1, a1,i)∥[Σk

1,i]
−1

RL in Markov Games with Independent Linear Function Approximation

−∆k,t

1,i(s1, a1,i)−∆k,t
1,i(s1, a1,i)

])
+
H

T
· SwapReg(T)

=Eπk
1

[
V
k

2,i(s2)− V
k
2,i(s2)

]
+ Ea1,i∼πk

1,i

[
6β ∥ϕi(s1, a1,i)∥[Σk

1,i]
−1 −∆

k,t

1,i(s1, a1,i)−∆k,t
1,i(s1, a1,i)

]
+
H

T
· SwapReg(T)

≤6βEπk

H∑
h=1

∥ϕi(sh, ah,i)∥[Σk
h,i]

−1 − Eπk

H∑
h=1

(
∆
k,t

h,i(sh, ah,i) + ∆k,t
h,i(sh, ah,i)

)
+
H2

T
· SwapReg(T)

≤6βEπk

H∑
h=1

∥ϕi(sh, ah,i)∥[Σk
h,i]

−1 +
H2

T
· SwapReg(T) + 2ν.

Lemma D.16. Under the good event G, we have

K∑
k=1

nk max
i∈[m]

(
V
k

1,i(s1)− V
k
1,i(s1)

)

≤6mHβ

√
4N(TTrig + 1)dmax log

(
1 +

N

λ

)
+
H2N

T
· SwapReg(T) + 2ν.

Proof. The proof is similar to the proof for Lemma D.11, where the only difference is that we replace Lemma D.11 with
Lemma D.15 in the proof.

Theorem 4.4. Suppose Algorithm 1 is instantiated with no-regret learning oracles satisfying Assumption 4.2. Then for
ν-misspecified independent linear Markov games with Πestimate = {πk,t}K,Tk,t=1,1, with probability at least 1− δ, Algorithm

1 will output an (ϵ+ 4ν)-approximate Markov CE with sample complexity Õ(m4H10d4maxAmax log(Amax)ϵ
−4).

Proof. Under the good event G, by Lemma D.12, the algorithm ends by ntot = N . By Lemma D.16, under the good event
G, which happens with probability at least 1− δ (Lemma D.3 and Lemma D.4), we have

min
k∈[K]

max
i∈[m]

(
V
k

1,i(s1)− V
k
1,i(s1)

)
≤ 1

N

K∑
k=1

nk
∑
i∈[m]

(
V
k

1,i(s1)− V
k
1,i(s1)

)

≤6mHβ

√
4(TTrig + 1)dmax log

(
1 +

N

λ

)
/N +

H2

T
· SwapReg(T) + 2ν.

By setting N = Õ(m2H4d3maxϵ
−2) and T = Õ(H4Amax log(Amax)ϵ

−2), we can have

min
k∈[K]

max
i∈[m]

(
V
k

1,i(s1)− V
k
1,i(s1)

)
≤ ϵ+ 2ν.

Then by Lemma D.15, we have

max
i∈[m]

(
max
ψi

V ψi⋄πoutput

1,i (s1)− V π
output

1,i (s1)

)
≤max
i∈[m]

(
V
koutput

1,i (s1)− V k
output

1,i (s1)
)
+ 2ν

= min
k∈[K]

max
i∈[m]

(
V
k

1,i(s1)− V
k
1,i(s1)

)
+ 2ν

≤ϵ+ 4ν,

which thus completes the proof.

RL in Markov Games with Independent Linear Function Approximation

E. Algorithms for Learning Markov CCE/CE without Communication
In this section, we present a communication-free algorithm for independent linear Markov games. The key difference is that
we leverage an agile policy cover update scheme, i.e., the policy cover is updated whenever a new πk is learned (Line 25),
and the policy certification is replaced by a uniform sampling procedure (Line 27).

Algorithm 2 Communication-free Policy Reply with Full Information Oracle in Independent Linear Markov Games
(Communication-free PReFI)

1: Input: λ, β, K, T
2: Initialization: Policy Cover Π = ∅.
3: for episode k = 1, 2, . . . ,K do
4: Set V

k

H+1,i(·) = V kH+1,i(·) = 0.
5: for h = H,H − 1, . . . , 1 do ▷ Retrain policy with the current policy cover
6: Initialize π1,k

h,i to be uniform policy for all player i. Initialize V
k

h,i(·) = V kh,i(·) = 0.
7: Each player i initializes a no-regret learning instance (Protocol 1) at each state s ∈ S and step h ∈ [H], for

which we will use NO_REGRET_UPDATEh,i,s(·) to denote the update.
8: for t = 1, 2, . . . , T do
9: for i ∈ [m] do

10: Set Dataset Dk,th,i = ∅
11: for l = 1, 2, . . . , k − 1 do
12: Draw a joint trajectory (sl1,a

l
1, r

l
1,i, . . . , s

l
h,a

l
h, r

l
h,i, s

l
h+1) from πl1:h−1 ◦

(
πlh,i, π

k,t
h,−i

)
, where πl

is the policy learned at episode l stored in policy cover Π.
13: Add (slh, a

l
h,i, r

l
h,i, s

l
h+1) to Dk,th,i.

14: end for
15: Set Σk,th,i = λI +

∑
(s,a,r,s′)∈Dk,t

h,i
ϕi(s, a)ϕi(s, a)

⊤.

16: Set θ
k,t

h,i = argmin∥θ∥≤H
√
d

∑
(s,a,r,s′)∈Dk,t

h,i

(
⟨ϕi(s, a), θ⟩ − r − V

k

h+1,i(s
′)
)2

.

17: Set Q
k,t

h,i(·, ·) = proj[0,H+1−h]

(〈
ϕi(·, ·), θ

k,t

h,i

〉
+ β ∥ϕi(·, ·)∥[Σk,t

h,i]
−1

)
.

18: Update V
k

h,i(s)← t−1
t V h,i(s) +

1
t

∑
ai∈Ai

πk,th,i(ai|s)Q
k,t

h,i(s, a) for all s ∈ S.
19: Update the no-regret learning instance at step h and state s: πk,t+1

h,i (· | s) ←
NO_REGRET_UPDATEh,i,s(1−Q

k,t

h,i(s, ·)/H) for all s ∈ S.
20: end for
21: end for
22: Set V

k

h,i(s)← proj[0,H+1−h]

(
V
k

h,i(s) +
H
T · (Swap)Reg(T)

)
for all i ∈ [m] and s ∈ S.

23: end for
24: Set πk to be the Markov joint policy such that πkh(a|s) = 1

T

∑T
t=1

∏
i∈[m] π

k,t
h,i(ai|s).

25: Update Π← Π
⋃
{πk}. ▷ Policy cover update

26: end for
27: Sample k ∼ Unif(K) and output πoutput = πk.

We will set the parameters for Algorithm 2 to be

• λ = 2 log(16dmaxmKHT/δ)
log(36/35)

• W = H
√
dmax

• β = 16(W +H)
√
λ+ dmax log(32WN(W +H)) + 4 log(8mKmaxHT/δ)

• T = Õ(H4 log(Amax)ϵ
−2) for Markov CCE and T = Õ(H4Amax log(Amax)ϵ

−2) for Markov CE

• K = Õ(m2H4d2maxϵ
−2).

RL in Markov Games with Independent Linear Function Approximation

E.1. Concentration

The population covariance matrix for episode k, inner loop t, step h and player i is defined as

Σkh,i := E
[
Σ̂k,th,i

]
= λI +

k−1∑
l=1

Σπ
l

h,i,

where Σπ
k

h,i = Eπk

[
ϕi(sh, ah,i)ϕi(sh, ah,i)

⊤]. Note that slh, a
l
h,i is sampled following the same policy for each inner loop

t, so the expected covariance is the same for different t.

We define πk,cov to be the mixture policy in Πk = {πl}k−1
l=1 , where policy πl is given weight/probability 1

k−1 , and also
define

θ̃k,th,i := argmin
∥θ∥≤W

E(sh,ah,i)∼πk,cov

{
⟨ϕi(sh, ah,i), θ⟩ − Eah,−i∼πk,t

h,−i(·|s)

[
rh,i(sh,ah) + V

k

h+1,i(s
′)
]}2

,

θ̂k,th,i := argmin
∥θ∥≤W

E(sh,ah,i)∼πk,cov

{
⟨ϕi(sh, ah,i), θ⟩ − Eah,−i∼πk,t

h,−i(·|s)

[
rh,i(sh,ah) + V kh+1,i(s

′)
]}2

.

Lemma E.1. (Concentration) With probability at least 1− δ/2, for all k ∈ [K], h ∈ [H], t ∈ [T], i ∈ [m], we have∥∥∥θk,th,i − θ̃k,th,i∥∥∥
Σk

h,i

≤ 8(W +H)
√
λ+ di log(32WK(W +H)) + 4 log(8mKHT/δ) ≤ β/2, (5)

∥∥∥θk,th,i − θ̂k,th,i∥∥∥
Σk

h,i

≤ 8(W +H)
√
λ+ di log(32WK(W +H)) + 4 log(8mKHT/δ) ≤ β/2, (6)

1

2
Σk,th,i ⪯ Σkh,i ⪯

3

2
Σk,th,i. (7)

Proof. The proof is the same as the proof for Lemma D.3.

With a slight abuse of the notation, we will still denote the high probability event in Lemma E.1 as G Now we define

∆
k,t

h,i(s, ai) = Ea−i∼πk,t
h,−i(·|s)

[
rh,i(s,a) + V

k

h+1,i(s
′)
]
− proj[0,H+1−h]

(〈
ϕi(s, ai), θ̃

k,t
h,i

〉)
,

∆k,t
h,i(s, ai) = Ea−i∼πk,t

h,−i(·|s)

[
rh,i(s,a) + V kh+1,i(s

′)
]
− proj[0,H+1−h]

(〈
ϕi(s, ai), θ̂

k,t
h,i

〉)
.

Lemma E.2. Under good event G, for all k ∈ [K], t ∈ [T], h ∈ [H], i ∈ [m], s ∈ S and ai ∈ Ai we have

−∆k,t

h,i(s, ai) ≤ Q
k,t

h,i(s, ai)−
[
Ea−i∼πk,t

h,−i(·|s)

[
rh,i(s,a) + V

k

h+1,i(s
′)
]]

≤ 3β ∥ϕi(s, ai)∥[Σk
h,i]

−1 −∆
k,t

h,i(s, ai),

−3β ∥ϕi(s, ai)∥[Σk
h,i]

−1 −∆k,t
h,i(s, ai) ≤ Q

k,t

h,i
(s, ai)−

[
Ea−i∼πk,t

h,−i(·|s)

[
rh,i(s,a) + V kh+1,i(s

′)
]]

≤ −∆k,t
h,i(s, ai).

Proof. The proof is the same as the proof for Lemma D.6.

RL in Markov Games with Independent Linear Function Approximation

E.2. Proofs for Learning Markov CCE with Algorithm 2

Lemma E.3. Under the good event G, for all k ∈ [K] and i ∈ [m], we have

V
†,πk

−i

1,i (s1)− V π
k

1,i (s1)− ν ≤ V
k

1,i(s1)− V π
k

1,i (s1) ≤ 3βEπk

H∑
h=1

∥ϕi(sh, ah,i)∥[Σk
h,i]

−1 +
H

T
· Reg(T) + ν.

Proof. The first inequality is from Lemma D.7. Now we prove the second argument:

V
k

1,i(s1)− V π
k

1,i (s1)

≤ 1

T

T∑
t=1

∑
a1,i∈Ai

πk,t1,i (a1,i | s1)Q
k,t

1,i(s1, a1,i) +
H

T
· Reg(T)− V π

k

1,i (s1)

≤ 1

T

T∑
t=1

∑
a1,i∈Ai

πk,t1,i (a1,i | s1)
([

Ea1,−i∼πk,t
1,−i(·|s1)

[
rh,i(s1,a1) + V

k

2,i(s2)
]]

+3β ∥ϕi(s1, a1,i)∥[Σk
1,i]

−1 −∆
k,t

1,i(s1, a1,i)
)
+
H

T
· Reg(T)− V π

k

1,i (s1) (Lemma E.2)

≤ 1

T

T∑
t=1

([
Ea1∼πk,t

1 (·|s1)

[
V
k

2,i(s2)− V π
k

2,i (s2)
]]

+Ea1,i∼πk,t
1,i (·|s1)

[
3β ∥ϕi(s1, a1,i)∥[Σk

1,i]
−1 −∆

k,t

1,i(s1, a1,i)
])

+
H

T
· Reg(T)

≤Eπk
1

[
V
k

2,i(s2)− V π
k

2,i (s2)
]
+ Ea1,i∼πk

1,i(·|s1)

[
3β ∥ϕi(s1, a1,i)∥[Σk

1,i]
−1 −

1

T

T∑
t=1

∆
k,t

1,i(s1, a1,i)

]

+
H

T
· Reg(T)

≤3βEπk

H∑
h=1

∥ϕi(sh, ah,i)∥[Σk
h,i]

−1 − Eπk

H∑
h=1

1

T

T∑
t=1

∆
k,t

h,i(sh, ah,i) +
H2

T
· Reg(T)

≤3βEπk

H∑
h=1

∥ϕi(sh, ah,i)∥[Σk
h,i]

−1 +
H2

T
· Reg(T) + ν. (Lemma D.5)

Lemma E.4. Under the good event G, we have

K∑
k=1

Eπk ∥ϕi(sh, ah,i)∥2[Σk
h,i]

−1 ≤ di log(1 +
K

diλ
).

Proof. As ∥ϕi(sh, ah,i)∥2[Σk
h,i]

−1 ≤ 1, by Lemma I.6 we have

Eπk ∥ϕi(sh, ah,i)∥2[Σk
h,i]

−2 ≤ log
det(Σk+1

h,i)

det(Σkh,i)
.

Thus we have

K∑
k=1

Eπk ∥ϕi(sh, ah,i)∥2[Σk
h,i]

−1 ≤
K∑
k=1

log
det(Σk+1

h,i)

det(Σkh,i)

= log
det(ΣK+1

h,i)

det(Σ1
h,i)

RL in Markov Games with Independent Linear Function Approximation

≤di log(1 +
K

diλ
),

where we utilized the fact that

log det(ΣK+1
h,i) ≤ di log

(
trace(ΣK+1

h,i)

di

)
≤ di log

(
diλ+K

di

)
.

Lemma E.5. Under the good event G, we have

K∑
k=1

max
i∈[m]

(
V
k

1,i(s1)− V π
k

1,i (s1)
)
≤ 3mHβ

√
Kdmax log

(
1 +

K

λ

)
+
H2K

T
· Reg(T) + νK.

Proof.

K∑
k=1

max
i∈[m]

(
V
k

1,i(s1)− V π
k

1,i (s1)
)

≤3β
K∑
k=1

max
i∈[m]

Eπk

H∑
h=1

∥ϕi(sh, ah,i)∥[Σk
h,i]

−1 +
H2

T

K∑
k=1

Reg(T) + νK (Lemma E.3)

=3β
∑
i∈[m]

H∑
h=1

K∑
k=1

Eπk

√
∥ϕi(sh, ah,i)∥2[Σk

h,i]
−1 +

H2K

T
· Reg(T) + νK

≤3β
∑
i∈[m]

H∑
h=1

K∑
k=1

√
Eπk ∥ϕi(sh, ah,i)∥2[Σk

h,i]
−1 +

H2K

T
· Reg(T) + νK (Concavity of f(x) =

√
x)

≤3β
∑
i∈[m]

H∑
h=1

√√√√K

K∑
k=1

Eπk ∥ϕi(sh, ah,i)∥2[Σk
h,i]

−1 +
H2K

T
· Reg(T) + νK (Cauchy–Schwarz inequality)

≤3β
∑
i∈[m]

H∑
h=1

√
Kdi log

(
1 +

K

diλ

)
+
H2K

T
· Reg(T) + νK (Lemma D.10)

≤3mHβ

√
Kdmax log

(
1 +

K

λ

)
+
H2K

T
· Reg(T) + νK.

Theorem E.6. Suppose Algorithm 2 is instantiated with no-regret learning oracles satisfying Assumption 4.1. Then
for ν-misspecified linear Markov games, with probability 0.9, Algorithm 2 will output an (ϵ+ 2ν)-approximate Markov
CCE. The sample complexity is O(mHTK2) = Õ(m5H13d6max log(Amax)ϵ

−6), where dmax = maxi∈[m] di and Amax =
maxi∈[m]Ai.

Proof. By Lemma E.5, under the good event G, which happens with probability at least 1− δ (Lemma D.3), we have

1

K

K∑
k=1

max
i∈[m]

(
V

†,πk
−i

1,i (s1)− V π
k

1,i (s1)

)
≤ 1

K

K∑
k=1

max
i∈[m]

(
V
k

1,i(s1)− V π
k

1,i (s1)
)
+ ν (Lemma D.7)

≤3mHβ

√
dmax log

(
1 +

K

λ

)
/K +

H2

T
· Reg(T) + 2ν. (Lemma E.5)

RL in Markov Games with Independent Linear Function Approximation

By Markov’s inequality, we set K = Õ(m2H4d3maxϵ
−2) and T = Õ(H4 log(Amax)ϵ

−2), with probability 0.9 we have

max
i∈[m]

(
V

†,πoutput
−i

1,i (s1)− V π
output

1,i (s1)

)
≤ ϵ+ 2ν.

E.3. Proofs for Learning Markov CE with Algorithm 2

Lemma E.7. Under the good event G, for all k ∈ [K] and i ∈ [m], we have

max
ψi

V ψi⋄πk

1,i (s1)− V π
k

1,i (s1)− ν ≤ V
k

1,i(s1)− V π
k

1,i (s1)

≤ 3βEπk

H∑
h=1

∥ϕi(sh, ah,i)∥[Σk
h,i]

−1 +
H

T
· SwapReg(T) + ν.

Proof. The first inequality is from Lemma D.14. Now we prove the second argument.

V
k

1,i(s1)− V π
k

1,i (s1)

≤ 1

T

T∑
t=1

∑
a1,i∈Ai

πk,t1,i (a1,i | s)Q
k,t

1,i(s, a1,i) +
H

T
· SwapReg(T)− V π

k

1,i (s1)

≤ 1

T

T∑
t=1

∑
a1,i∈Ai

πk,t1,i (a1,i | s1)
([

Ea1,−i∼πk,t
1,−i(·|s1)

[
r1,i(s1,a1) + V

k

2,i(s2)
]]

+3β ∥ϕi(s1, a1,i)∥[Σk
1,i]

−1 −∆
k,t

1,i(s1, a1,i)
)
+
H

T
· SwapReg(T)− V π

k

1,i (s1) (Lemma E.2)

≤ 1

T

T∑
t=1

([
Ea1∼πk,t

1 (·|s1)

[
V
k

2,i(s2)− V π
k

2,i (s2)
]]

+ 3βEa1,i∼πk,t
1,i (·|s1)

∥ϕi(s, a1,i)∥[Σk
1,i]

−1

−∆k,t

1,i(s1, a1,i)
)
+
H

T
· SwapReg(T)

≤Eπk
1

[
V
k

2,i(s2)− V π
k

2,i (s2)
]
+ Ea1,i∼πk

1,i(·|s1)

[
3β ∥ϕi(s1, a1,i)∥[Σk

1,i]
−1 −

1

T

T∑
t=1

∆
k,t

1,i(s1, a1,i)

]

+
H

T
· SwapReg(T)

≤3βEπk

H∑
h=1

∥ϕi(sh, ah,i)∥[Σk
h,i]

−1 − Eπk

H∑
h=1

1

T

T∑
t=1

∆
k,t

h,i(sh, ah,i) +
H2

T
· SwapReg(T)

≤3βEπk

H∑
h=1

∥ϕi(sh, ah,i)∥[Σk
h,i]

−1 +
H2

T
· SwapReg(T) + ν, (Lemma D.5)

which completes the proof.

Lemma E.8. Under the good event G, we have

K∑
k=1

max
i∈[m]

(
V
k

1,i(s1)− V π
k

1,i (s1)
)
≤ 3mHβ

√
Kdmax log

(
1 +

K

λ

)
+
H2K

T
· SwapReg(T) + ν.

Proof. The proof is the same as the proof for Lemma E.5 where we replace Lemma E.3 with Lemma E.7 in the proof.

Theorem E.9. Suppose Algorithm 2 is instantiated with no-regret learning oracles satisfying Assumption 4.2. Then
for ν-misspecified linear Markov games, with probability 0.9, Algorithm 2 will output an (ϵ+ 2ν)-approximate Markov
CCE. The sample complexity is O(mHTK2) = Õ(m5H13d6maxAmax log(Amax)ϵ

−6), where dmax = maxi∈[m] di and
Amax = maxi∈[m]Ai.

RL in Markov Games with Independent Linear Function Approximation

Proof. By Lemma E.8, under the good event G, which happens with probability at least 1− δ (Lemma E.1), we have

1

K

K∑
k=1

max
i∈[m]

(
max
ψi

V ψi⋄πk

1,i (s1)− V π
k

1,i (s1)

)

≤ 1

K

K∑
k=1

max
i∈[m]

(
V
k

1,i(s1)− V π
k

1,i (s1)
)
+ ν (Lemma D.14)

≤3mHβ

√
dmax log

(
1 +

K

λ

)
/K +

mH2

T
· SwapReg(T) + 2ν. (Lemma E.8)

By Markov’s inequality, we set K = Õ(m2H4d3maxϵ
−2) and T = Õ(H4Amax log(Amax)ϵ

−2), with probability 0.9, we
have

max
i∈[m]

max
ψi

(
V ψi⋄πoutput

1,i (s1)− V π
output

1,i (s1)
)
≤ ϵ,

which completes the proof.

F. Algorithms for Learning Optimal Policies in Misspecified Linear MDP
In this section, we adapt Algorithm 1 to the linear MDP setting. As the single-agent degeneration of independent linear
Markov games, we can remove the no-regret learning loop in Algorithm 1 and achieve better sample complexity. The
analysis is almost the same as the analysis for Algorithm 1 in Appendix D with T = 1 and m = 1.

We will set the parameters for Algorithm 3 to be

• λ = 2 log(16dNH/δ)
log(36/35)

• W = H
√
d

• β = 16(W +H)
√
λ+ d log(32W (W +H)) + 4 log(8KmaxH/δ)

• TTrig = 64 log(8HN2/δ)

• Kmax = min{ 2Hd log(N+λ)
log(1+TTrig/4)

, N}

• N = Õ(H4d2ϵ−2).

We will use K to denote the episode that Algorithm 3 ends (ntot = N or K = Kmax). Immediately we have K ≤ Kmax ≤
N .

The population covariance matrix for episode k, step h is defined as

Σkh := E
[
Σ̂kh

]
= λI +

k−1∑
l=1

nlΣπ
l

h ,

where Σπ
k

h = Eπk

[
ϕ(sh, ah)ϕ(sh, ah)

⊤].
We define πk,cov to be the mixture policy in Πk = {(πl, nl)}k−1

l=1 , where policy πl is given weight/probability nl∑k−1
j=1 n

j
.

Then we define the on-policy population fit to be

θ̃kh := argmin
∥θ∥≤W

E(sh,ah)∼πk,cov

{
⟨ϕ(sh, ah), θ⟩ − E

[
rh(sh, ah) + V

k

h+1(s
′)
]}2

,

θ̂kh := argmin
∥θ∥≤W

E(sh,ah)∼πk,cov

{
⟨ϕ(sh, ah), θ⟩ − E

[
rh(sh, ah) + V kh+1(s

′)
]}2

.

RL in Markov Games with Independent Linear Function Approximation

Algorithm 3 Policy Replay for Misspecified MDP with linear function approximation

1: Input: ϵ, δ, λ, β, TTrig, Kmax, N
2: Initialization: Policy Cover Π = ∅. ntot = 0.
3: for episode k = 1, 2, . . . ,Kmax do
4: Set V

k

H+1(·) = V kH+1(·) = 0, nk = 0.
5: for h = H,H − 1, . . . , 1 do ▷ Retrain policy with the current policy cover
6: Initialize V

k

h(·) = V kh(·) = 0.
7: Set Dataset Dkh = ∅.
8: for l = 1, 2, . . . ,

∑k−1
j=1 n

j do
9: Sample πl with probability nl/

∑k−1
j=1 n

j .
10: Draw a joint trajectory (sl1, a

l
1, r

l
1, . . . , s

l
H , a

l
H , r

l
H , s

l
H+1) from πl.

11: Add (slh, a
l
h,i, r

l
h,i, s

l
h+1) to Dkh.

12: end for
13: Set Σ̂kh = λI +

∑
(s,a,r,s′)∈Dk

h
ϕ(s, a)ϕ(s, a)⊤.

14: Set θ
k

h = argmin∥θ∥≤H
√
d

∑
(s,a,r,s′)∈Dk

h

(
⟨ϕ(s, a), θ⟩ − r − V kh+1(s

′)
)2

.

15: Set θkh = argmin∥θ∥≤H
√
d

∑
(s,a,r,s′)∈Dk

h

(
⟨ϕ(s, a), θ⟩ − r − V kh+1(s

′)
)2

.

16: Set Q
k

h(·, ·) = proj[0,H+1−h]

(〈
ϕ(·, ·), θkh

〉
+ β ∥ϕ(·, ·)∥[Σ̂k

h]
−1

)
.

17: Set Qk
h
(·, ·) = proj[0,H+1−h]

(〈
ϕ(·, ·), θkh

〉
− β ∥ϕ(·, ·)∥[Σ̂k

h]
−1

)
.

18: Set V
k

h(·) = maxa∈AQ
k

h(·, a).
19: Set V

k

h(·) = Qk
h
(·, argmaxa∈AQ

k

h(·, a))
20: end for
21: Set πk to be the policy such that πkh(s) = argmaxa∈AQ

k

h(s, a) for all (h, s) ∈ [H]× S .
22: if ntot = N then
23: Set koutput = argmink

(
V
k

1(s1)− V
k
1(s1)

)
.

24: Output πoutput = πk
output

.
25: end if
26: Set Th,i = 0, for all h ∈ [H], i ∈ [m].
27: repeat ▷ Update policy cover
28: Reset to s = s1, nk = nk + 1, ntot = ntot + 1.
29: for h = 1, 2, . . . ,H do
30: Play a = πkh(·|s).
31: Th → Th + ∥ϕ(s, a)∥2[Σ̂k

h]
−1 .

32: Get next state s′, s→ s′.
33: end for
34: until ∃h ∈ [H] such that Th ≥ TTrig or ntot = N .
35: Update Π← Π

⋃
{(πk, nk)}.

36: end for

RL in Markov Games with Independent Linear Function Approximation

We define the misspecification error to be

∆
k

h(s, a) := E
[
rh(s, a) + V

k

h+1(s
′)
]
− proj[0,H+1−h]

(〈
ϕ(s, a), θ̃kh

〉)
,

∆k
h(s, a) := E

[
rh(s, a) + V kh+1(s

′)
]
− proj[0,H+1−h]

(〈
ϕ(s, a), θ̂kh

〉)
.

Lemma F.1. (Concentration) With probability at least 1− δ/2, for all k ∈ [K], h ∈ [H], we have∥∥∥θkh − θ̃kh∥∥∥
Σk

h

≤ 8(W +H)
√
λ+ d log(32WN(W +H)) + 4 log(8KmaxH/δ) ≤ β/2, (8)

∥∥∥θk,th − θ̂kh∥∥∥
Σk

h

≤ 8(W +H)
√
λ+ d log(32WN(W +H)) + 4 log(8KmaxH/δ) ≤ β/2, (9)

1

2
Σ̂kh ⪯ Σkh ⪯

3

2
Σ̂kh. (10)

Proof. The proof is the same as the proof for Lemma D.3.

Lemma F.2. With probability at least 1− δ/2, the following two events hold:

• Suppose at episode k, Line 34: Th ≥ TTrig is triggered, then we have

Eπk ∥ϕ(sh, ah)∥2[Σ̂k
h]

−1 ≥ 1

2nk

nk∑
j=1

∥∥∥ϕ(sk,jh , ak,jh)
∥∥∥2
[Σ̂k

h]
−1
≥ TTrig

2nk
,

where j denotes the j-th trajectory collected in the policy cover update (Line 27).

• For any k ∈ [Kmax], h ∈ [H], we have

Eπk ∥ϕ(sh, ah)∥2[Σ̂k
h]

−1 ≤ 2TTrig
nk

.

Proof. The proof is the same as the proof for Lemma D.4.

We denote G to be the good event where the arguments in Lemma F.1 and Lemma F.2 hold, which holds with probability at
least 1− δ by Lemma F.1 and Lemma F.2.

Lemma F.3. Under good event G, for all k ∈ [K], h ∈ [H], s ∈ S and a ∈ A, we have

−∆k

h(s, a) ≤ Q
k

h(s, a)−
[
E
[
rh(s, a) + V

k

h+1(s
′)
]]
≤ 3β ∥ϕ(s, a)∥[Σk

h]
−1 −∆

k

h(s, a),

−3β ∥ϕ(s, a)∥[Σk
h]

−1 −∆k
h(s, a) ≤ Q

k

h
(s, a)−

[
E
[
rh(s, a) + V kh+1(s

′)
]]
≤ −∆k

h(s, a).

Proof. The proof is the same as the proof for Lemma D.6.

Lemma F.4. (Optimism) Under the good event G, for all k ∈ [K], we have

V
k

1(s1) ≥ V ∗
1 (s1)−

H∑
h=1

Eπ∗

[
∆
k

h(sh, ah)
]
≥ V ∗

1 (s1)− ν.

Proof. Under the good event G, for all k ∈ [K], we have

V
k

1(s1)− V ∗
1 (s1)

= max
a1∈A

Q
k

1(s1, a1)− V ∗
1 (s1)

RL in Markov Games with Independent Linear Function Approximation

≥Qk1(s1, π∗
1(s1))−Q∗

1(s1, π
∗
1(s1))

≥E
[
r1(s1, π

∗
1(s1)) + V

k

2(s2)
]
−∆

k

1(s1, π
∗
1(s1))−Q∗

1(s1, π
∗
1(s1)) (Lemma F.3)

=Eπ∗

[
V
k

2(s2)− V ∗
2 (s2)

]
−∆

k

1(s1, π
∗
1(s1))

≥− Eπ∗

[
H∑
h=1

∆
k

h(sh, ah)

]
≥− ν. (Lemma D.5)

Lemma F.5. (Pessimism) Under the good event G, for all k ∈ [K], we have

V k1(s1) ≤ V π
k

1 (s1)−
H∑
h=1

Eπk

[
∆k
h(sh, ah)

]
≤ V π

k

1 (s1) + ν.

Proof. Under the good event G, for all k ∈ [K], we have

V k1(s1)− V π
k

1 (s1)

=Qk
1
(s1, π

k
1 (s1))− V π

k

1 (s1)

≤Ea1=πk
1 (s1)

[
r1(s1, a1) + V k2(s2)−∆k

1(s1, a1)
]
− V π

k

1 (s1) (Lemma F.3)

=Ea1=πk
1 (s1)

[
V k2(s2)− V π

k

2 (s2)−∆k
1(s1, a1)

]
≤− Eπk

[
H∑
h=1

∆k
h(sh, ah)

]
≤ν. (Lemma D.5)

Lemma F.6. Under the good event G, for all k ∈ [K], we have

V ∗
1 (s1)− V π

k

1 (s1)− 2ν ≤ V k1(s1)− V
k
1(s1) ≤ 6βEπk

H∑
h=1

∥ϕ(sh, ah)∥[Σk
h]

−1 + 2ν.

Proof. The proof is the same as the proof for Lemma D.9.

Lemma F.7. Under the good event G, we have

K∑
k=1

nkEπk ∥ϕ(sh, ah)∥2[Σk
h]

−1 ≤ 4TTrigd log

(
1 +

N

dλ

)
.

Proof. The proof is the same as the proof for Lemma D.10.

Lemma F.8. Under the good event G, we have

K∑
k=1

nk
(
V
k

1(s1)− V
k
1(s1)

)
≤ 6Hβ

√
4N(TTrig + 1)d log

(
1 +

N

λ

)
+ 2νN.

Proof. The proof is the same as the proof for Lemma D.11.

RL in Markov Games with Independent Linear Function Approximation

Lemma F.9. Under the good event G, we have

K ≤ 2Hd log(N + λ)

log(1 + TTrig/4)
,

which means K < Kmax and Algorithm 3 ends due to ntot = Nmax.

Proof. The proof is the same as the proof for Lemma D.12.

Theorem F.10. For ν-misspecified linear MDP, with probability at least 1 − δ, Algorithm 3 will output an (ϵ + 4ν)-
approximate optimal policy. The sample complexity is O(HKmaxN) = Õ(H6d4ϵ−2).

Proof. Under the good event G, by Lemma F.9, the algorithm ends by ntot = N . By Lemma F.8, we have

min
k∈[K]

(
V
k

1(s1)− V
k
1(s1)

)
≤ 1

N

K∑
k=1

nk
(
V
k

1(s1)− V
k
1(s1)

)

≤6Hβ

√
4(TTrig + 1)d log

(
1 +

N

λ

)
/N + 2ν.

By setting N = Õ(H4d3ϵ−2), we have

min
k∈[K]

V
k

1(s1)− V
k
1(s1) ≤ ϵ+ 2ν.

Then by Lemma F.6, we have

V ∗
1 (s1)− V π

output

1 (s1) ≤V
koutput

1 (s1)− V k
output

1 (s1) + 2ν = min
k∈[K]

(
V
k

1(s1)− V
k
1(s1)

)
+ 2ν

≤ϵ+ 4ν.

G. Proofs for Learning in Markov Potential Games
G.1. Proofs for Learning Markov NE with Algorithm 4

We will set the parameter for Algorithm 4 to be

• K = 5mHϵ−1

Lemma G.1. With probability at least 1− δ/2, for all k ∈ [K] and i ∈ [m], π̂k+1
i is an (ϵ/8 +O(ν))-approximate optimal

policy in the ν-misspecified linear MDP induced by all the players except player i following policy πk−i.

Proof. The argument follows from the property of LINEARMDP_SOLVER (Assumption 5.2) and a union bound.

Lemma G.2. Suppose for all k ∈ [K] and i ∈ [m], we execute policy πk and (π̂k+1
i , πk−i) for Õ(H2ϵ−2) episodes, With

probability at least 1− δ/2, for all k ∈ [K] and i ∈ [m], we have∣∣∣V̂ πk

1,i (s1)− V π
k

1,i (s1)
∣∣∣ ≤ ϵ

8
,

∣∣∣∣V̂ π̂k+1
i ,πt

−i

1,i (s1)− V
π̂k+1
i ,πk

−i

1,i (s1)

∣∣∣∣ ≤ ϵ

8
.

Proof. The argument follows directly by Hoeffding’s inequality and a union bound.

We will denote the event in Lemma G.1 and Lemma G.2 to be the good event G.

RL in Markov Games with Independent Linear Function Approximation

Algorithm 4 Nash Coordinate Ascent for Independent Linear Markov Potential Games (Lin-Nash-CA)

1: Input: ϵ, δ, K = 5mHϵ−1

2: Initialization: π1 to be an arbitrary deterministic policy.
3: for episode k = 1, 2, . . . ,K do
4: Execute policy πk for Õ(H2ϵ−2) episodes and obtain V̂ π

k

1,i (s1) as the empirical average of the total reward for all
player i ∈ [m].

5: for i ∈ [m] do
6: Fix all the players except player i to follow policy πk−i and player i runs LINEARMDP_SOLVER with feature
ϕi(·, ·), accuracy ϵ/8 and failure probability δ/(2mK). Set π̂k+1

i to be the output of LINEARMDP_SOLVER.

7: Execute policy (π̂k+1
i , πk−i) for Õ(H2ϵ−2) episodes and obtain V̂

π̂k+1
i ,πk

−i

1,i (s1) as the empirical average of the
total reward.

8: Set ∆i ← V̂
π̂k+1
i ,πk

−i

1,i (s1)− V̂ π
k

1,i (s1).
9: end for

10: if maxi∈[m] ∆i > ϵ/2 then
11: Set πk+1 : πk+1

i = πki , π
k+1
j = π̂kj for i ̸= j and j = argmaxi∈[m] ∆i.

12: else
13: Output πoutput = πk.
14: end if
15: end for

Lemma G.3. Under the good event G, for any k ∈ [K], if maxi∈[m] ∆
k
i > ϵ/2 and j = argmaxi∈[m] ∆

k
i , we have

V π
k+1

1,j (s1)− V π
k

1,j (s1) ≥ ϵ/4.

And if maxi∈[m] ∆
k
i ≤ ϵ/2, we have

max
i∈[m]

(
V

†,πk
−i

1,i (s1)− V π
k

1,i (s1)

)
≤ ϵ.

Proof. Under the good event G, if maxi∈[m] ∆
k
i > ϵ/2 and j = argmaxi∈[m] ∆

k
i , we have

V π
k+1

1,j (s1)− V π
k

1,j (s1) ≥V̂
π̂k+1
j ,πk

−i

1,j (s1)− ϵ/8− V̂ π
k

1,j (s1)− ϵ/8 (Lemma G.2)

≥ϵ/4.

On the other hand, if maxi∈[m] ∆
k
i = maxi∈[m]

(
V̂
π̂k+1
i ,πk

−i

1,i (s1)− V̂ π
k

1,i (s1)

)
≤ ϵ/2, for all i ∈ [m] we have

V
†,πk

−i

1,i (s1)− V π
k

1,i (s1) ≤V
π̂k+1
i ,πt

−i

1,i (s1) +
ϵ

8
+O(ν)− V π

k

1,i (s1)

≤V̂ π̂
k+1
i ,πk

−i

1,i (s1) +
ϵ

8
+O(ν) + ϵ/8− V̂ π

k

1,i (s1) + ϵ/8 (Lemma G.1 and Lemma G.2)

≤ϵ+O(ν),

completing the proof.

Theorem 5.3. For ν-misspecified independent linear Markov potential games with Πestimate = {πk}Kk=1, with probability
at least 1− δ, Algorithm 4 will output an (ϵ+O(ν))-approximate pure Markov NE. The sample complexity is O(m2Hϵ−1 ·
LinearMDP_SC(ϵ/8, δ/(10m2Hϵ−1), dmax)).

Proof. Suppose Algorithm 4 does not output a policy, then it ends due to k = K. Then under the good event G, by the first
argument of Lemma G.3, for all k ∈ [K], and jk = argmaxi∈[m] ∆

k
i , we have

Φ(πk+1)− Φ(πk) = V π
k+1

1,jt (s1)− V π
k

1,jk(s1) ≥ ϵ/4.

RL in Markov Games with Independent Linear Function Approximation

Protocol 2 Adversarial Bandit Algorithm

Initialize: Action set B, and p1 to be the uniform distribution over B.
for t = 1, 2, . . . , T do

Adversary chooses loss lt.
Player take action bt ∼ pt and observe noisy bandit-feedback l̃t(bt).
Update pt+1 ← ADV_BANDIT_UPDATE(bt, l̃t(bt)).

end for

As we set K = 5mH/ϵ, we have Φ(πK+1) > mH ≥ Φmax, which is a contradiction. So Algorithm 4 will output a policy
πoutput. As the LINEARMDP_SOLVER always outputs a deterministic policy, πoutput is a deterministic policy. Then by
the second argument of Lemma G.3, when Algorithm 4 terminates, it will output an ϵ-approximate pure NE πoutput.

H. Missing Parts in Section 6
H.1. Adversarial Multi-armed Bandit Oracle

ADV_BANDIT_UPDATE subroutine. Consider the adversarial multi-armed bandit problem with B arms. At round t, the
adversary chooses some loss lt and the learner chooses some action bt ∼ pt, where pt ∈ ∆(B) is the policy at round t. Then
the learner observes a noisy bandit-feedback l̃t(bt) ∈ [0, 1] such that E[l̃t(bt) | lt, bt] = lt(bt). The player will update the
policy to pt+1 for round t+ 1, which is denoted as pt+1 ← ADV_BANDIT_UPDATE(bt, l̃t(bt)).

H.2. Proofs for Algorithm 5

We will set the parameters for Algorithm 5 to be

• TTrig = 12 log(8KmaxHS/δ)

• Kmax = 9HS log(Nmax)

• Nmax = Õ(H4SAmaxϵ
−2) for Markov CCE and Nmax = Õ(H4SA2

maxϵ
−2) for Markov CE

• βn =
√

8H2TTrig log(2mKmaxHS/δ)
n∨TTrig

.

We will use subscript k, t to denote the variables in episode k and inner loop t, and subscript h, i to denote the variables at
step h and for player i. We will use K to denote the episode that the Algorithm 5 ends (Line 30 is triggered or ntot = Nmax

or K = Kmax) and N to denote ntot when Algorithm 5 ends. Immediately we have K ≤ Kmax ≤ Nmax.

By the definition of the adversarial multi-armed bandit oracles (Assumption 6.1 and Assumption 6.2), we have the following
two lemmas.
Lemma H.1. For all k ∈ [K], h ∈ [H], i ∈ [m] and s ∈ S we have

1

nkh(s)

nk
h(s)∑
j=1

E
a∼π

k,tk
h
(j;s)

h (·|s)
(rh,i(s,a) + V

k

h+1,i(s
′))

≥ max
ai∈Ai

1

nkh(s)

nk
h(s)∑
j=1

E
a−i∼π

k,tk
h
(j;s)

h,−i (·|s)
(rh,i(s,a) + V

k

h+1,i(s
′))− nkh(s)

H
· BReg(nkh(s)).

Lemma H.2. For all k ∈ [K], h ∈ [H], i ∈ [m] and s ∈ S we have

1

nkh(s)

nk
h(s)∑
j=1

E
a∼π

k,tk
h
(j;s)

h (·|s)
(rh,i(s,a) + V

k

h+1,i(s
′))

≥max
ψh,i

1

nkh(s)

nk
h(s)∑
j=1

E
a∼ψh,i⋄π

k,tk
h
(j;s)

h (·|s)
(rh,i(s,a) + V

k

h+1,i(s
′))− nkh(s)

H
· BSwapReg(nkh(s)).

RL in Markov Games with Independent Linear Function Approximation

Algorithm 5 Policy Reply with Bandit Oracle in Tabular Markov Games (PReBO)

1: Input: ϵ, δ, β, TTrig, Kmax, Nmax

2: Initialization: Policy Cover Π = ∅. ntot = 0.
3: for episode k = 1, 2, . . . ,Kmax do
4: Set V

k

H+1,i(·) = V kH+1,i(·) = 0, nk = 0, nkh(s) = 0 for all h ∈ [H] and s ∈ S.
5: for h = H,H − 1, . . . , 1 do ▷ Retrain policy with the current policy cover
6: Initialize πk,1h,i to be uniform policy for all player i. Initialize V

k

h,i(·) = V kh,i(·) = 0.
7: Each player i initializes an adversarial bandit instance (Protocol 2) at each state s ∈ S and step h ∈ [H], for

which we will use NO_REGRET_UPDATEh,i,s(·) to denote the update.
8: for t = 1, 2, . . . ,

∑k−1
j=1 n

j do
9: Sample πl ∈ Π with probability nl/

∑k−1
j=1 n

j .
10: Draw a joint trajectory (s1,a1, r1, . . . , sh,ah, rh, sh+1) from πl1:h−1 ◦ π

k,t
h ,which is the policy that follows

πl for the first h− 1 steps and follows πk,th for step h.
11: Update nkh(sh)← nkh(sh) + 1.
12: Update the adversarial bandit instance for player i at step h and state sh: πk,t+1

h,i (·|sh) ←
ADV_BANDIT_UPDATEh,i,sh(ah,i, 1−

(
rh,i + V

k

h+1,i(sh+1)
)
/H).

13: Update policy πk,t+1
h,i (·|s)← πk,t+1

h,i (·|s) for s ̸= sh.

14: Update V
k

h,i(sh)←
nk
h(sh)−1

nk
h(sh)

V
k

h,i(sh) +
1

nk
h(sh)

(rh,i + V
k

h+1,i(sh+1)).

15: Update V kh,i(sh)←
nk
h(sh)−1

nk
h(sh)

V kh,i(sh) +
1

nk
h(sh)

(rh,i + V kh+1,i(sh+1)).
16: end for
17: Set V

k

h,i(s)← proj[0,H+1−h]

(
V
k

h,i(s) +
H
T · B(Swap)Reg(n

k
h(sh)) + βnk

h(s)

)
for all i ∈ [m] and s ∈ S.

18: Set V kh,i(s)← proj[0,H+1−h]

(
V kh,i(s)− βnk

h(s)

)
for all i ∈ [m] and s ∈ S.

19: end for
20: Set πk to be the Markov joint policy such that πkh(a|s) = 1

nk
h(s)

∑nk
h(s)
j=1

∏
i∈[m] π

k,tkh(j;s)
h,i (ai|s), where tkh(j; s) is

the time t such that state s is visited for the j-th time in episode k at step h.
21: if maxi∈[m] V

k

1,i(s1)− V
k
1,i(s1) ≤ ϵ then ▷ Policy certification

22: Output: πoutput = πt.
23: end if
24: Set T kh (s) = 0 for all h ∈ [H], s ∈ S.
25: repeat ▷ Update policy cover
26: Reset s = s1, nk = nk + 1, ntot = ntot + 1.
27: for i ∈ [m] do
28: for h = 1, 2, . . . ,H do
29: Play ah = πkh(·|s).
30: T kh (sh)← T kh (sh) + 1.
31: Get next state s′, s→ s′.
32: end for
33: end for
34: until ∃h ∈ [H] such that T kh (sh) = nkh(sh) ∨ TTrig or ntot = Nmax.
35: Update Π← Π

⋃
{(πk, nk)}.

36: end for

RL in Markov Games with Independent Linear Function Approximation

H.2.1. CONCENTRATION

Lemma H.3. With probability at least 1− δ/2, for all k ∈ [K], h ∈ [H], i ∈ [m], s ∈ S, we have∣∣∣∣∣∣ 1

nkh(s)

nk
h(s)∑
j=1

(r
k,tkh(j;s)
h,i + V

k

h+1,i(s
k,tkh(j;s)
h+1))− 1

nkh(s)

nk
h(s)∑
j=1

E
a∼π

k,tk
h
(j;s)

h (·|s)
(rh,i(s,a) + V

k

h+1,i(s
′))

∣∣∣∣∣∣
≤ βnk

h(s)
,

∣∣∣∣∣∣ 1

nkh(s)

nk
h(s)∑
j=1

(r
k,tkh(j;s)
h,i + V kh+1,i(s

k,tkh(j;s)
h+1))− 1

nkh(s)

nk
h(s)∑
j=1

E
a∼π

k,tk
h
(j;s)

h (·|s)
(rh,i(s,a) + V kh+1,i(s

′))

∣∣∣∣∣∣
≤ βnk

h(s)
,

where

βnk
h(s)

=

√
8H2TTrig log(2mKmaxHS/δ)

nkh(s) ∨ TTrig
.

Proof. If nkh(s) ≤ TTrig, we have βnk
h(s)
≥ H and the arguments hold directly. If nkh(s) ≥ TTrig, we have

βnk
h(s)

=

√
8H2TTrig log(2mKmaxHS/δ)

nkh(s) ∨ TTrig
≥

√
8H2 log(2mKmaxHS/δ)

nkh(s)
,

and by Hoeffding’s inequality and union bound, we can prove that the arguments hold with probability at least 1− δ/2.

Lemma H.4. With probability at least 1− δ/2, for all k ∈ [Kmax], h ∈ [H], i ∈ [m], s ∈ S, we have

nkh(s) ∨ TTrig ≥
1

2

(
k−1∑
l=1

nldπ
l

h (s)

)
∨ TTrig, nkdπ

k

h (s) ≤ 2
(
nkh(s) ∨ TTrig

)
.

In addition, if T kh (s) = nkh(s) ∨ TTrig is triggered, we have

nkdπ
k

h (s) ≥ 1

2

(
nkh(s) ∨ TTrig

)
.

Proof. nkh(s) is the sum of
∑k−1
l=1 n

l independent Bernoulli random variables such that there are nl random variables with
mean dπ

l

h (s) for l ∈ [k− 1]. By Lemma I.3 and union bound, with probability at least 1− δ/4, for all k ∈ [Kmax], h ∈ [H],
s ∈ S, we have

nkh(s) ∨ TTrig ≥
1

2

(
k−1∑
l=1

nldπ
l

h (s)

)
∨ TTrig,

where TTrig ≥ 12 log(8KmaxHS/δ).

T kh (s) is the sum of nk i.i.d. Bernoulli random variables with mean nkh. For the second argument, by Lemma I.2 and union
bound, with probability at least 1− δ/4, for all k ∈ [Kmax], h ∈ [H], s ∈ S, we have

nkdπ
k

h (s) ≤ 2(nkh(s) ∨ TTrig),

and if T kh (s) = nkh(s) ∨ TTrig is triggered, we have

nkdπ
k

h (s) ≥ 1

2
T kh (s) =

1

2

(
nkh(s) ∨ TTrig

)
.

We denote G to be the good event where the arguments in Lemma H.3 and Lemma H.4 hold, which holds with probability at
least 1− δ.

RL in Markov Games with Independent Linear Function Approximation

H.2.2. PROOFS FOR LEARNING MARKOV CCE WITH ALGORITHM 5

Lemma H.5. Under the good event G, for all k ∈ [K], h ∈ [H], i ∈ [m], s ∈ S, we have

V
k

h,i(s) ≥ V
†,πk

−i

h,i (s).

Proof. Under the good event G, for all k ∈ [K], h ∈ [H], i ∈ [m], s ∈ S, we have

V
k

h,i(s)

=proj[0,H+1−h]

 1

nkh(s)

nk
h(s)∑
j=1

(r
k,tkh(j;s)
h,i + V

k

h+1,i(s
k,tkh(j;s)
h+1)) +

H

nkh(s)
· BReg(nkh(s)) + βnk

h(s)

≥proj[0,H+1−h]

 1

nkh(s)

nk
h(s)∑
j=1

E
a∼π

k,tk
h
(j;s)

h (·|s)
(rh,i(s,a) + V

k

h+1,i(s
′)) +

H

nkh(s)
· BReg(nkh(s))

 (Lemma H.3)

≥proj[0,H+1−h]

max
ai∈Ai

1

nkh(s)

nk
h(s)∑
j=1

E
a−i∼π

k,tk
h
(j;s)

h,−i (·|s)
(rh,i(s,a) + V

k

h+1,i(s
′))

 (Lemma H.1)

≥proj[0,H+1−h]

max
ai∈Ai

1

nkh(s)

nk
h(s)∑
j=1

E
a−i∼π

k,tk
h
(j;s)

h,−i (·|s)
(rh,i(s,a) + V

†,πk
−i

h+1,i (s
′))

 (Induction basis)

=proj[0,H+1−h]

(
max
ai∈Ai

Ea−i∼πk
h,−i(·|s)

(rh,i(s,a) + V
†,πk

−i

h+1,i (s
′))

)
≥V †,πk

−i

h,i (s).

Lemma H.6. Under the good event G, for all k ∈ [K], h ∈ [H], i ∈ [m], s ∈ S, we have

V kh,i(s) ≤ V π
k

h,i (s).

Proof. Under the good event G, for all k ∈ [K], h ∈ [H], i ∈ [m], s ∈ S, we have

V kh,i(s) =proj[0,H+1−h]

 1

nkh(s)

nk
h(s)∑
j=1

(r
k,tkh(j;s)
h,i + V kh+1,i(s

k,tkh(j;s)
h+1))− βnk

h(s)

≤proj[0,H+1−h]

 1

nkh(s)

nk
h(s)∑
j=1

E
a∼π

k,tk
h
(j;s)

h (·|s)
(rh,i(s,a) + V kh+1,i(s

′))

 (Lemma H.3)

≤proj[0,H+1−h]

 1

nkh(s)

nk
h(s)∑
j=1

E
a∼π

k,tk
h
(j;s)

h (·|s)
(rh,i(s,a) + V π

k

h+1,i(s
′))

 (Induction basis)

=proj[0,H+1−h]

(
Ea∼πk

h,−i(·|s)
(rh,i(s,a) + V

†,πk
−i

h+1,i (s
′))

)
≤V π

k

h,i (s).

Lemma H.7. Under the good event G, for all k ∈ [K], i ∈ [m], we have

V
k

1,i(s1)− V
k
1,i(s1) ≤ Õ

(
Eπk

[
H∑
h=1

√
H2AiTTrig

nkh(sh) ∨ TTrig

])
.

RL in Markov Games with Independent Linear Function Approximation

Proof. We bound V
k

1,i(s1)− V π
k

1,i (s1) and V π
k

1,i (s1)− V
k
1,i(s1) separately.

V
k

1,i(s1)− V π
k

1,i (s1)

=proj[0,H+1−h]

 1

nk1(s1)

nk
1 (s1)∑
j=1

(r
k,tkh(j;s1)
1,i + V

k

2,i(s
k,tkh(j;s1)
2)) +

H

nk1(s1)
· BReg(nk1(s1)) + βnk

1 (s1)

− V π

k

1,i (s1)

≤ 1

nk1(s1)

nk
1 (s)∑
t=1

(r
k,tkh(j;s1)
1,i + V

k

2,i(s
k,tkh(j;s1)
2)) +

H

nk1(s1)
· BReg(nk1(s1)) + βnk

1 (s1)
− V π

k

1,i (s1)

≤ 1

nk1(s1)

nk
1 (s1)∑
t=1

E
a1∼π

k,tk
h
(j;s1)

1 (·|s)
(r1,i(s1,a1) + V

k

2,i(s2)) +
H

nk1(s1)
· BReg(nk1(s1)) + 2βnk

1 (s1)

− V π
k

1,i (s1) (Lemma H.3)

=Ea1∼πk
1 (·|s)(r1,i(s1,a1) + V

k

2,i(s2)) +
H

nk1(s1)
· BReg(nk1(s1)) + 2βnk

1 (s1)
− V π

k

1,i (s1)

=Eπk
1

[
V
k

2,i(s2)− V π
k

2,i (s2)
]
+

H

nk1(s1)
· BReg(nk1(s1)) + 2βnk

1 (s1)

=Eπk

[
H∑
h=1

H

nkh(sh)
· BReg(nkh(sh)) + 2βnk

h(sh)

]
,

where the first inequality is from

1

nk1(s1)

nk
1 (s)∑
t=1

(r
k,tkh(j;s1)
1,i + V

k

2,i(s
k,tkh(j;s1)
2)) +

H

T
· BReg(nk1(s1)) + βnk

1 (s1)
≥ 0.

In addition, we have

V π
k

1,i (s1)− V
k
1,i(s1)

=V π
k

1,i (s1)− proj[0,H+1−h]

 1

nk1(s)

nk
1 (s1)∑
j=1

(r
k,tk1 (j;s)
1,i + V k2,i(s

k,tk1 (j;s)
2))− βnk

1 (s1)

≤V π

k

1,i (s1)−
1

nk1(s1)

nk
1 (s1)∑
j=1

(r
k,tk1 (j;s)
1,i + V k2,i(s

k,tk1 (j;s)
2)) + βnk

1 (s1)

≤V π
k

1,i (s1)−
1

nk1(s1)

nk
1 (s1)∑
j=1

(
E
a1∼π

k,tk
h
(j;s1)(·|s1)

1

(r1,i(s1,a1) + V k2,i(s2))

)
+ 2βnk

1 (s1)
(Lemma H.3)

=V π
k

1,i (s1)− Ea1∼πk
1 (·|s1)(r1,i(s1,a1) + V k2,i(s2)) + 2βnk

1 (s1)

=Ea1∼πk
1
(V π

k

2,i (s2)− V
k
2,i(s2)) + 2βnk

1 (s1)

≤Eπk

[
H∑
h=1

2βnk
h(sh)

]
,

where the first inequality is from

1

nk1(s)

nk
1 (s1)∑
j=1

(r
k,tk1 (j;s)
1,i + V k2,i(s

k,tk1 (j;s)
2))− βnk

1 (s1)
≤ H + 1− h.

RL in Markov Games with Independent Linear Function Approximation

Then we have

V
πk

1,i(s1)− V
k
1,i(s1) ≤Eπk

[
H∑
h=1

H

nkh(sh)
· BReg(nkh(sh)) + 4βnk

h(sh)

]

≤Õ

(
Eπk

[
H∑
h=1

√
H2Ai

nkh(sh) ∨ 1
+

√
H2TTrig

nkh(sh) ∨ TTrig

])

≤Õ

(
Eπk

[
H∑
h=1

√
H2AiTTrig

nkh(sh) ∨ TTrig

])
.

Lemma H.8. Under the good event G, for all i ∈ [m], we have

K∑
k=1

nk max
i∈[m]

(
V
k

1,i(s1)− V
πk

1,i(s1)
)
≤ Õ

(
H2
√
SAmaxTTrigN

)
.

Proof. Under the good event G, for all i ∈ [m], we have

K∑
k=1

nkEπk

√
1

nkh(sh) ∨ TTrig

=

K∑
k=1

nk
∑
s∈S

dπ
k

h (s)

√
1

nkh(s) ∨ TTrig

≤
∑
s∈S

K∑
k=1

nkdπ
k

h (s)

√
2

(
∑k−1
l=1 n

ldπ
l

h (s)) ∨ TTrig
(Lemma H.4)

≤
∑
s∈S

√√√√32

K∑
k=1

nkdπ
k

h (s) (Lemma H.4 and Lemma I.7)

≤

√√√√32S

K∑
k=1

nk. (
∑
s∈S

∑K
k=1 n

kdπ
k

h (s) = S
∑K
k=1 n

k)

Plugging it into Lemma H.7, we can prove the lemma.

Lemma H.9. Under the good event G, we have

K ≤ 9HS log(Nmax),

which means K < Kmax and Algorithm 5 ends due to either Line 21 (maxi∈[m] V
k

1,i(s1) − V
k
1,i(s1) ≤ ϵ) or Line 34

(ntot = Nmax).

Proof. By Lemma H.4, for any h ∈ [H] and s ∈ S, whenever T kh (s) = nkh(s) ∨ TTrig is triggered, we have

nkdπ
k

h (s) ≥ 1

2
(nkh(s) ∨ TTrig) ≥

1

4

(
k−1∑
l=1

nldπ
l

h (s)

)
.

Thus for any h ∈ [H] and s ∈ S, whenever T kh (s) = nkh(s) ∨ TTrig is triggered, we have

k∑
l=1

nldπ
l

h (s) ≥ 5

4

(
k−1∑
l=1

nldπ
l

h (s)

)
.

RL in Markov Games with Independent Linear Function Approximation

In addition, for any h ∈ [H] and s ∈ S, for the first time T kh (s) = nkh(s) ∨ TTrig is triggered, we have

k∑
l=1

nldπ
l

h (s) ≥ nkdπ
k

h (s) ≥ 1

2
(nkh(s) ∨ TTrig) ≥ TTrig.

As
∑k
l=1 n

ldπ
l

h (s) is non-decreasing and upper bounded by Nmax, the number of triggering for any h ∈ [H] and
s ∈ S is bounded by log(Nmax/TTrig)/ log(5/4) ≤ 8 log(Nmax), and the total number of triggering is bounded by
8HS log(Nmax) + 1, where 1 is from the last triggering ntot = Nmax.

Theorem 6.3. Suppose Algorithm 5 is instantiated with adversarial multi-armed bandit oracles satisfying Assumption 6.1.
Then for tabular Markov games, with probability at least 1− δ, Algorithm 5 will output an ϵ-approximate Markov CCE with
sample complexity Õ(H6S2Amaxϵ

−2).

Proof. Suppose under the good event G, the algorithm does not end with Line 21 (maxi∈[m] V
k

1,i(s1) − V
k
1,i(s1) ≤ ϵ).

Then by Lemma H.9, the algorithm ends by N = Nmax. By Lemma H.8, under the good event G, we have

min
k∈[K]

max
i∈[m]

(
V
k

1,i(s1)− V
k
1,i(s1)

)
≤ 1

N

K∑
k=1

nk max
i∈[m]

(
V
k

1,i(s1)− V
k
1,i(s1)

)
≤Õ

(
H2
√
SAmaxTTrig/Nmax

)
.

Let Nmax = Õ(H4SAmaxϵ
−2) we can have

min
k∈[K]

max
i∈[m]

(
V
k

1,i(s1)− V
k
1,i(s1)

)
≤ ϵ,

which contradicts with Line 21. Thus Algorithm 5 will end at episode k such that

max
i∈[m]

(
V
k

1,i(s1)− V
k
1,i(s1)

)
≤ ϵ.

By Lemma H.5 and Lemma H.6, we have

max
i∈[m]

(
V

†,πk
−i

1,i (s1)− V π
k

1,i (s1)

)
≤ max
i∈[m]

(
V
k

1,i(s1)− V
k
1,i(s1)

)
≤ ϵ,

completing the proof.

H.2.3. PROOFS FOR LEARNING MARKOV CE WITH ALGORITHM 5

Lemma H.10. Under the good event G, for all k ∈ [K], h ∈ [H], i ∈ [m], s ∈ S, we have

V
k

h,i(s) ≥ max
ψi

V ψi⋄πk

h,i (s).

Proof. We prove the lemma by mathematical induction on h. The argument holds for h = H + 1 as both sides are 0.
Suppose the argument holds for h+ 1. By the update rule of V

k

h,i(s), we have

V
k

h,i(s)

=proj[0,H+1−h]

 1

nkh(s)

nk
h(s)∑
j=1

(r
k,tkh(j;s)
h,i + V

k

h+1,i(s
k,tkh(j;s)
h+1)) +

H

nkh(s)
BSwapReg(nkh(s)) + βnk

h(s)

≥proj[0,H+1−h]

 1

nkh(s)

nk
h(s)∑
j=1

E
a∼π

k,tk
h
(j;s)

h (·|s)
(rh,i(s,a) + V

k

h+1,i(s
′)) +

H

nkh(s)
BSwapReg(nkh(s))

 (Lemma H.3)

RL in Markov Games with Independent Linear Function Approximation

≥proj[0,H+1−h]

max
ψh,i

1

nkh(s)

nk
h(s)∑
j=1

E
a∼ψh,i⋄π

k,tk
h
(j;s)

h (·|s)
(rh,i(s,a) + V

k

h+1,i(s
′))

 (Lemma H.2)

=proj[0,H+1−h]

(
max
ψh,i

Ea∼ψh,i⋄πk
h(·|s)

(rh,i(s,a) + V
k

h+1,i(s
′))

)
≥proj[0,H+1−h]

(
max
ψh,i

Ea∼ψh,i⋄πk
h(·|s)

(rh,i(s,a) + max
ψi

V ψi⋄πk

h+1,i (s
′))

)
(Induction basis)

≥max
ψi

V ψi⋄πk

h,i (s).

Lemma H.11. Under the good event G, for all k ∈ [K], i ∈ [m], we have

V
k

1,i(s1)− V π
k

1,i (s1) ≤ Õ

(
Eπk

[
H∑
h=1

√
H2A2

iTTrig
nkh(sh) ∨ TTrig

])
.

Proof. The proof is the same as the proof of Lemma H.7 and we replace BReg with BSwapReg.

Lemma H.12. Under the good event G, for all k ∈ [K], h ∈ [H], i ∈ [m], s ∈ S, we have

K∑
k=1

nk max
i∈[m]

(
V
k

1,i(s1)− V
πk

1,i(s1)
)
≤ Õ

(
H2
√
SA2

maxTTrigN

)
.

Proof. The proof is the same as the proof of Lemma H.8 and we replace Lemma H.7 with Lemma H.11 in the proof.

Theorem 6.4. Suppose Algorithm 5 is instantiated with adversarial multi-armed bandit oracles satisfying Assumption 6.2.
Then for tabular Markov games, with probability at least 1− δ, Algorithm 5 will output an ϵ-approximate Markov CE with
sample complexity is Õ(H6S2A2

maxϵ
−2).

Proof. Suppose under the good event G, the algorithm does not end with Line 21 (maxi∈[m] V
k

1,i(s1) − V
k
1,i(s1) ≤ ϵ).

Then by Lemma H.9, the algorithm ends by N = Nmax. By Lemma H.12, under the good event G, we have

min
k∈[K]

max
i∈[m]

(
V
k

1,i(s1)− V
k
1,i(s1)

)
≤ 1

N

K∑
k=1

nk max
i∈[m]

(
V
k

1,i(s1)− V
k
1,i(s1)

)
≤Õ

(
H2
√
SA2

maxTTrig/Nmax

)
.

Let Nmax = Õ(H4SA2
maxϵ

−2) we can have

min
k∈[K]

max
i∈[m]

(
V
k

1,i(s1)− V
k
1,i(s1)

)
≤ ϵ,

which contradicts with Line 21. Thus Algorithm 5 will end at episode k such that

max
i∈[m]

(
V
k

1,i(s1)− V
k
1,i(s1)

)
≤ ϵ.

By Lemma H.10 and Lemma H.6, we have

max
i∈[m]

(
max
ψi

V ψi⋄πk

1,i (s1)− V π
k

1,i (s1)

)
≤ max
i∈[m]

(
V
k

1,i(s1)− V
k
1,i(s1)

)
≤ ϵ.

RL in Markov Games with Independent Linear Function Approximation

I. Technical Tools
Lemma I.1. (Theorem 4 in (Maurer and Pontil, 2009)) For n ≥ 2, let X1, · · · , Xn be i.i.d. random variables with values
in [0, 1] and let δ > 0. Define X̂ = 1

n

∑n
i=1Xi and σ̂ = 1

n−1

∑n
i=1(Xi − X̂). Then we have

P

[∣∣∣X̂ − E[X]
∣∣∣ >√2σ̂ log(4/δ)

n
+

7 log(4/δ)

3(n− 1)

]
≤ δ.

Lemma I.2. Consider i.i.d. random variables X1, X2, . . . with support in [0, 1] and Ŝn = 1
n

∑n
i=1Xi. Suppose n =

minn{n :
∑n
i=1Xi ≥ TTrig} with TTrig ≥ 64 log(4nmax/δ). Then if n ≤ nmax, with probability at least 1− δ, we have

1

2
Ŝn ≤ E[X] ≤ 3

2
Ŝn,

and in addition, for n ≤ min{n, nmax}, we have

E[X] ≤ 2TTrig
n

.

Proof. Define the empirical variance to be

σ̂n =
1

n− 1

n∑
i=1

(Xi − Ŝn)2.

By Lemma I.1, we have that for any fixed n ≥ 2,

P

[∣∣∣Ŝn − E[X]
∣∣∣ ≤√2 log(4nmax/δ)σ̂n

n
+

7 log(4nmax/δ)

3(n− 1)

]
≥ 1− δ

nmax
.

Thus we have

P

[∣∣∣Ŝn − E[X]
∣∣∣ ≤√2 log(4nmax/δ)σ̂n

n
+

7 log(4nmax/δ)

3(n− 1)
,∀2 ≤ n ≤ nmax

]
≥ 1− δ. (11)

The empirical variance can be bounded by

σ̂n =
1

n− 1

n∑
i=1

(Xi − Ŝn)2 =
1

n− 1

(
n∑
i=1

X2
i − nX̂2

)
≤ 1

n− 1

n∑
i=1

Xi ≤ 2Ŝn.

Thus for TTrig ≥ 64 log(4nmax/δ), we have nŜn ≥ TTrig ≥ 64 log(4nmax/δ) and√
2 log(4n/δ)σ̂n

n
+

7 log(4n/δ)

3(n− 1)
≤

√
4 log(4n/δ)Ŝn

n
+

7 log(4n/δ)

3(n− 1)
≤ Ŝn

2
.

Plugging it into (11), we can prove the first argument.

For n ≤ min{n,N}, we have
∑n
i=1Xi ≤ TTrig + 1 ≤ 2TTrig, which means

σ̂n ≤ 2Ŝn ≤
4TTrig
n

.

Plugging it into (11), and with TTrig ≥ 64 log(4nmax/δ), we can prove the second argument.

Lemma I.3. Suppose X1, X2, · · · , Xn are i.i.d. Bernoulli random variables with E[X] = p and N =
∑n
i=1Xi. For any

a ≥ 12 log(2/δ) with probability at least 1− δ, we have

1

2
(N ∨ a) ≤ np ∨ a ≤ 2 (N ∨ a) .

RL in Markov Games with Independent Linear Function Approximation

Proof. By the multiplicative Chernoff bound, we have

P
[
|N − np| ≥ 1

2
np

]
≤ 2 exp

(
−np
12

)
.

Thus if np ≥ 12 log(2/δ), we have

P
[
1

2
np ≤ N ≤ 2np

]
≤ δ.

If np < 12 log(2/δ), by Bernstein inequality, with probability 1− δ we have

P [N − np > t] ≤ exp

(
− t2/2

np+ t/3

)
.

Let t = a ≥ np and we have

P [N > 2a] ≤ exp

(
− a2/2

np+ a/3

)
≤ exp(−3a/8) ≤ δ.

Note that if N ≤ 2a, we directly have
1

2
(N ∨ a) ≤ np ∨ a ≤ 2 (N ∨ a) .

Lemma I.4. (Lemma 20.1 in (Lattimore and Szepesvári, 2020)) The Euclidean sphere Sd−1 = {x ∈ Rd : ∥x∥2 = 1}.
There exists a set Cϵ ⊂ Rd with |Cϵ| ≤ (3/ϵ)d such that for all x ∈ Sd−1 there exists y ∈ Cϵ with ∥x− y∥2 ≤ ϵ.
Lemma I.5. Let Σ ⪰ λI be a positive definite matrix andM be a positive semidefinite matrix with eigenvalue upper-bounded
by 1. Let Σ′ = Σ+M . Then we have

log det(Σ′) ≥ log det(Σ) + Tr(Σ−1M).

Proof.

det(Σ′) =det(Σ +M)

=det(Σ) det(I +Σ−1/2MΣ−1/2).

Denote λ1, . . . , λd as the eigenvalues of Σ−1/2MΣ−1/2. Then we have

x⊤Σ−1/2MΣ−1/2x ≤
∥∥∥Σ−1/2x

∥∥∥2
2
= x⊤Σ−1x ≤ λ−1,

which means λi ∈ [0, λ−1] for all i ∈ [d]. Thus, we have

log det(Σ′) = log det(Σ) +

d∑
i=1

log(1 + λi) ≥ log det(Σ) +

d∑
i=1

λ

λ+ 1
λi

= log det(Σ) +
λ

λ+ 1
Tr(Σ−1M),

completing the proof.

Lemma I.6. (Lemma 11 in (Zanette and Wainwright, 2022)) For any random vector ϕ ∈ Rd, scalar α > 0 and positive
definite matrix Σ, we have

α

L
E ∥ϕ∥2Σ−1 ≤ log

det(Σ + αE[ϕϕ⊤])
det(Σ)

≤ αE ∥ϕ∥2Σ−1 ,

whenever αE ∥ϕ∥2Σ−1 ≤ L for some L ≥ e− 1.

RL in Markov Games with Independent Linear Function Approximation

Lemma I.7. Let b > 0 and a1, a2, · · · , an > 0 such that an+1 ≤ c ·
(∑n−1

l=1 al ∨ b
)

for all n ≥ 1 and some constant c.
Then we have

∞∑
i=1

ai

√
1

(
∑i−1
l=1 al) ∨ b

≤ 2

√√√√(c+ 1)

n∑
l=1

al.

Proof. Note that for any i ≥ 1 we have √
1

(
∑i−1
l=1 al) ∨ b

≤
√

c+ 1

(
∑i
l=1 al) ∨ b

.

Let f(x) =
√

c+1
x∨b for x ≥ 0 and immediately we have f(x) is non-increasing. Then we have

n∑
i=1

ai

√
1

(
∑i−1
l=1 al) ∨ b

≤
∞∑
i=1

ai

√
c+ 1

(
∑i
l=1 al) ∨ b

=

n∑
i=1

aif(

i∑
l=1

al)

≤
∫ ∑n

l=1 al

0

f(x)

≤2

√√√√(c+ 1)

n∑
l=1

al.

Lemma I.8. (Lemma 4 in (Zanette and Wainwright, 2022)) Let X ∈ Rd be a random vector and Y be a random variable
such that ∥X∥2 ≤ 1, |Y | ≤ Ymax, (X,Y) ∼ P for some distribution P. Let {(xi, yi)}ni=1 be n i.i.d. samples from P. Then
we define

β∗ := argmin
∥β∥2≤W

E(X,Y)∼P(Y − ⟨X,β⟩)2,

β̂ := argmin
∥β∥2≤W

1

n

n∑
i=1

(yi − ⟨xi, β⟩)2.

Then with probability at least 1− δ, we have∥∥∥β∗ − β̂
∥∥∥
nE[XX⊤]+λI

≤ 8(W + Ymax)
√
d log(32Wn(W + Ymax)) + log(1/δ) + λ.

Lemma I.9. (Covariance Concentration) (Proposition 1 in (Zanette and Wainwright, 2022)) Suppose {Zk}k=1K is a
sequence of independent, symmetric and positive definite random matrices of dimension d such that

0 ≤ λmin(Zk) ≤ λmax(Zk) ≤ 1,∀k ∈ [K].

Let Σ̂ = λI +
∑K
k=1 Zk and Σ = E[Σ̂] for some λ ≥ 0. For any δ ∈ (0, 1) and λ > 2 log(2d/δ)

log(36/35) , with probability at least
1− δ we have

1

2
Σ̂ ⪯ Σ ⪯ 3

2
Σ̂.

	Introduction
	Main Contributions and Technical Novelties

	Preliminaries
	MARL with Independent Linear Function Approximation
	Algorithms and Analyses for Linear Markov Games
	Experience Replay and Policy Replay
	Algorithm
	Guarantees

	Learning Markov NE in Independent Linear Markov Potential Games
	Improved Sample Complexity in Tabular Case
	Conclusion
	Tables
	Related Work
	Examples of Independent Linear Markov Games
	Missing Parts in Section 4
	No-regret Learning with Full-information Feedback Oracle
	Decentralized Implementation
	Proofs for Algorithm 1
	Concentration
	Proofs for Markov CCE
	Proofs for Markov CE

	Algorithms for Learning Markov CCE/CE without Communication
	Concentration
	Proofs for Learning Markov CCE with Algorithm 2
	Proofs for Learning Markov CE with Algorithm 2

	Algorithms for Learning Optimal Policies in Misspecified Linear MDP
	Proofs for Learning in Markov Potential Games
	Proofs for Learning Markov NE with Algorithm 4

	Missing Parts in Section 6
	Adversarial Multi-armed Bandit Oracle
	Proofs for Algorithm 5
	Concentration
	Proofs for Learning Markov CCE with Algorithm 5
	Proofs for Learning Markov CE with Algorithm 5

	Technical Tools

