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Abstract

Currently, it is hard to reap the benefits of deep learning for Bayesian methods.
We present Prior-Data Fitted Networks (PFNs), a method that allows to employ
large-scale machine learning techniques to approximate a large set of posteriors.
The only requirement for PFNs is the ability to sample from a prior distribution
over supervised learning tasks (or functions). The method repeatedly draws a task
(or function) from this prior, draws a set of data points and their labels from it,
masks one of the labels and learns to make probabilistic predictions for it based on
the set-valued input of the rest of the data points. Presented with samples from a
new supervised learning task as input, it can then make probabilistic predictions
for arbitrary other data points in a single forward propagation, effectively having
learned to perform Bayesian inference. We demonstrate that PFNs can near-
perfectly mimic Gaussian processes and also enable efficient Bayesian inference
for intractable problems, with over 200-fold speedups in multiple setups compared
to current methods. We obtain strong results in such diverse areas as Gaussian
process regression and Bayesian neural networks, demonstrating the generality of
PFNs.

1 Introduction

In the last decade, supervised machine learning (ML) methods using deep learning architectures
have made substantial progress on machine learning tasks where a large amount of training data is
available (Vaswani et al., 2017; He et al., 2016; Krizhevsky et al., 2012). A very important problem
in ML is thus to transfer these successes to smaller-scale setups with less data available. In this paper,
we propose a way to build models that approximate posteriors with flexible and replaceable priors
using deep learning models.

While the success of deep learning on large datasets can be attributed to the capacity of neural
networks to approximate any function, there is still a need for encoding prior knowledge through
model architecture (e.g. Convolutional Neural Networks (LeCun et al., 1989)) or regularizers (e.g.
data augmentations (Hendrycks et al., 2019; Cubuk et al., 2020)). Otherwise, the no free lunch
theorems show that there are no good methods to solve the class of prediction problems (Wolpert
& Macready, 1997). In particular, this is true for ML applications to small datasets; thus, a large
number of specialized algorithms have been developed for different tasks (LeCun et al., 1989; Kadra
et al., 2021). Encoding prior information into such a model can, however, be challenging.
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Figure 1: A visualization of Prior-Data Fitted Networks (PFNs). We sample (meta-train) datasets
from a prior and fit a PFN on hold-out examples of these datasets. Given an actual (meta-test) dataset,
we feed it and a test point to the PFN and obtain an approximation to Bayesian inference in a single
forward propagation.

A well-defined way to bias a model is to use Bayesian inference. The foundation of Bayesian
inference is an assumption on the distribution of the data to appear in a real world application. This
assumption gives rise to a prior belief over the probability for the data to follow a particular model.
One might, e.g., implement a prior, encoding the data as created by a neural network (Bayesian Neural
Networks, (MacKay, 1992)), by a polynomial or the likelihood of a Gaussian mixture. In practice,
however, it is often very difficult or intractable to retrieve the Posterior Predictive Distribution (PPD)
for a given prior exactly.

In this paper, we use large-scale neural networks to approximate Bayesian models. We outline our
method of Prior-data Fitted Networks (PFNs) in Figure 1. We assume a given representative prior
distribution over supervised learning tasks (or functions), which provides our inductive bias. To train
a PFN, we repeatedly sample a meta-train task (or function) from this given prior, draw a set of data
points and their labels from it, mask one of the labels and learn to make probabilistic predictions for
it based on the set-valued input of the rest of the data points. Given an actual (meta-test) dataset, we
feed it and a test point as inputs to the PFN and the network outputs its prediction for the test point,
conditioned on the dataset. As we will demonstrate, this probabilistic prediction approximates exact
Bayesian posterior prediction.

Our PFNs thus allow us to approximate the posterior predictive distribution for any prior from which
we are able to sample data. This is a very weak requirement compared to the standard assumption
that unnormalized posterior probabilities can be computed, which is made by currently common
methods, such as Markov Chain Monte Carlo (MCMC) Neal (1996); Andrieu et al. (2003); Welling
& Teh (2011); Hoffman et al. (2014) and Variational Inference (VI) (Jordan et al., 1999; Wainwright
& Jordan, 2008; Hoffman et al., 2013). This weak requirement of being able to sample allows a
simple approximation of a large set of priors, including priors that are very hard to approximate with
currently available tools. We make the following contributions:

• We introduce the technique of Prior-data Fitted Networks (PFNs);

• We show that via meta learning on data sets sampled from a dataset prior, PFNs yield an
approximation technique for the posterior predictive distribution (PPD);

• We present architectural changes to successfully use Transformers for PPD approximation,
including a novel predictive distribution for regression tasks;

• We demonstrate the successful application of PFNs of in approximating the PPD for Gaussian
processes and Bayesian neural networks.

2 Background on Bayesian Inference

Bayesian inference relies on priors for real world applications. By combining the knowledge from a
general prior distribution with the data from a particular task, one obtains a posterior distribution,
which can be used to predict outputs for new data points from the task at hand.
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In this work, we are interested in supervised learning problems, i.e., we model the relationship
between inputs x and outputs y. Generally, we consider predictions based on datasets of arbitrary
size n, D = {(xi, yi)|i = 1, . . . , n}, where yi is the output for xi.

There are two kinds of Bayesian models commonly used:

i) In parametric models, e.g. Bayesian Neural Networks (BNNs), we model a distribution p(t) over
functions or tasks explicitly, where t is the random variable representing the task. In parametric
models, t can be represented explicitly, e.g., as a vector, and either represents a conditional distribution
p(y|x, t) or a joint distribution p(x, y|t) over the data. Thus, we can generate a prior over datasets
p(D) = p(t)

∏n
i=1 p(xi, yi|t), where in the case of the conditional definition p(xi, yi|t) factors into

p(yi|xi, t) and a a simple task-independent distribution p(xi).

ii) Non-parametric models, e.g., Gaussian Processes (GPs), can be viewed similarly to the above, but
here we cannot explicitly instantiate t. Thus, we directly model, that means without the indirection
over the task t, both the prior on data sets p(D), as well as the PPD p(y|x,D).

For both models, the prior distribution (PD) p(D) is easily accessible. For all cases we consider, it is
simple and cheap to sample from p(D), fulfilling the only requirement our method has. In practice,
using Bayesian inference has the advantages that (i) it has a theoretical foundation that makes it valid
in setups which the prior p(t) fits, (ii) it can thus better account for the actual likelihood of different
events; (iii) it is well calibrated and (iv) it is very interpretable as the prior describes the expectation
of the model.

3 PPD Approximation with Prior-Data Fitting

Let us consider a parameterized model qθ that can accept a set D = {(xi, yi)|i = 1, . . . , n}, as well
as a query x as input, and which predicts a distribution over possible values of y for the query x.
Many current neural network models can be used as such a model; in this paper, we use a variant of
Transformers (Vaswani et al., 2017) as they are a reliable and powerful architecture.

We train this model by cross-entropy over samples drawn from the prior. Our proposed loss, the Data
Prior Negative Log-Likelihood (Prior-Data NLL) ` is defined as

`θ = −ED∪{x,y}∼p(D)[log qθ(y|x,D)], (1)

where D ∪ {x, y} is simply a dataset of size |D|+ 1 sampled from p(D).

We minimize the Prior-Data NLL using a stochastic approximation of `θ, as we show in Algorithm 1.
That means, we draw many samples of datasets from our prior and fit our model to predict a hold-out
example correctly for these.

Algorithm 1: Training the model by Fitting Prior-Data
Result: A model qθ that will approximate the PPD
Define data prior p(D); initialize neural network qθ;
while not converged do

Sample D ∪ {(xi, yi)}mi=1 ∼ p(D);
Compute stochastic loss approximation ¯̀

θ =
∑m
i=1(− log qθ(yi|xi, D));

Update model θ with gradient∇θ ¯̀
θ;

end

We can show that minimizing ` yields an approximation to the true PPD in a similar way as in Gordon
et al. (2019).

Theorem 1. The proposed objective `θ is equal to the expectation of the cross-entropy
Ex,D[H(p(·|x,D), qθ(·|x,D))] between the PPD and its approximation.
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Proof. The above can be shown with a simple derivation. We mark transformations for easy reading.

`θ = −
∫
D,x,y

p(x, y,D) log qθ(y|x,D) (2)

= −
∫
D,x

p(x,D)

∫
y

p(y|x,D) log qθ(y|x,D) (3)

=

∫
D,x

p(x,D)H(p(·|x,D), qθ(·|x,D)) (4)

= Ex,D[H(p(·|x,D), qθ(·|x,D))] (5)

We see that by optimizing `θ, we optimize for similarity in terms of cross-entropy between the model
and the PPD across the support of p(x,D).

The proof above implies a minimization in terms of KL-Divergence, too.

Corollary 1.1. The loss `θ is up to a constant, equal to the expected KL-Divergence of p(·|x,D)
with qθ(·|x,D) over prior data x,D.

For the proof, please refer to Appendix A.

In the following, we consider the optimum of the given optimization problem θ∗ = arg minθ `θ. We
consider the optimal result of our process for the case where qθ describes a distribution family that
can exactly approximate the posterior, that means there is a θ such that qθ = p.

Corollary 1.2. If qθ is a distribution family that can exactly approximate the posterior, we have
qθ∗(·|x,D) = p(·|x,D) for all x,D with p(x,D) > 0.

Proof. We assume a θ with qθ = p exists and we know that the cross-entropy is minimized for equal
distributions; thus the optimum θ∗ fulfills qθ∗(·|x,D) = p(·|x,D) for all x,D with p(x,D) > 0.

4 Adapting the Transformer for Bayesian Inference

We use a standard transformer (Vaswani et al., 2017) with only a few changes to its architecture to fit
our problem better. Transformers were developed with sequence modelling and prediction in mind,
but in our application we want to map a set D = {(xi, yi)}Ki=1 of data points (xi, yi) and a query
x to a distribution qθ(y|x,D) over y, which in many cases should be continuous. We propose an
efficient architecture that allows batch-wise training and prediction, as well as a novel regression
head for continuous y.

4.1 An Efficient Architecture

The first step in the architecture is to encode x and y; in all our experiments, we use simple linear
layers for this, to project from the given dimension to the dimension of the transformer, but one could
also use other application-specific encoding layers.Our setup should be equivariant to the ordering of
the input dataset’s examples. To achieve this, we remove positional encodings and feed (x, y) pairs
together to the transformer as a sum of their encodings; see Appendix D for an ablation of the impact
of the equivariance to the ordering.

In practice, we feed multiple query points to the transformer for efficiency reasons; these are the only
inputs for which position matters, and we thus use the output at their positions as prediction for their
corresponding PPD over y. Since different query points should not depend on each other, we use
an attention mask that allows attention from every (x, y) pair to every other (x, y) pair and allows
attention from all query points to the (x, y) pairs. The mask M we use can be characterized by the
number of input examples m and the number of query points n, we write Mm,n. An example for
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Figure 2: A visualisation of the Riemann probability distribution.

such a matrix is

M3,2 =


1 1 1 0 0
1 1 1 0 0
1 1 1 0 0
1 1 1 1 0
1 1 1 0 1

 . (6)

We predict the distribution of y from the output of the last time step. During training, we fix the total
size M = m + n and sample m from a distribution, in order to allow the Transformer to learn to
work with different dataset sizes. Since for smaller m we have more query points, we over-sample
larger m, s.t. the number of query points seen during training for each m is equal during training.
That is, we sample each m ∈ {0, . . . ,M − 1} with a weight 1/n = 1/(M −m).

4.2 Riemann Distribution

The modelling of continuous distributions is hard with neural networks. To yield strong perfor-
mance in modelling PPDs, we developed a distribution that works particularly well with neural
networks. Based on the knowledge that neural networks work well for classification and inspired
by discretizations in distributional reinforcement learning (Bellemare et al., 2017), we created a
discretized continuous distribution that we call Riemann Distribution, as it is based on a similar idea
to approximation as Riemann integrals. PDFs of our distribution are bar plots, see Figure 2a.

The problem remaining is how to select the boundaries of the buckets. To make the problem balanced
for the Transformer, we simply select buckets such that the likelihood of each bucket b has the same
prior predictive probability p(y ∈ b) = 1/|B|,∀b ∈ B. We approximate this by taking a large sample
of y values from our prior and adjusting the buckets such that an equal number of these values fall in
each bucket. The distributions described above are very powerful; e.g., in contrast to most parametric
distributions they can also represent multimodal distributions. Their downside, however, is that they
have finite support: the probability for y to be greater than the highest border is 0. This is a problem
whenever one tries to model distributions that have unbounded support. A simple trick that worked
well for us is to replace the last bar on each side with an appropriately scaled half-normal distribution.
We visualize a resulting PDF in Figure 2b. For an exact mathematical definition of the distributions,
we refer the reader to Appendix C. For an ablation of the Riemann distribution, see Appendix D.

5 Posterior Approximation Studies

In our first set of experiments, we study the capability of PFNs to perform Bayesian inference for
the tractable case of Gaussian Processes (GPs) with fixed hyperparameters (where we can compare
to ground truth data; Section 5.1) and the intractable cases of GPs with unknown hyperparameters
(Section 5.2) and Bayesian Neural Networks (BNNs; Section 5.3).

Based on Theorem 1, we present a novel way to evaluate methods approximating PPDs and Posteriors,
the Prior-Data NLL itself. We simply take the negative log-likelihood of a method on data generated
from the prior over datasets. We can do this, of course, for our models, but we can do this as easily
with other well-known methods. We simply treat samples from the prior as training and test sets
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Figure 3: Left: the PFN’s probability for query points x given two evaluations of the function,
highlighting the binning it its predictions. Right: The PFN’s mean (solid blue line) and 95%
confidence interval (blue shaded region), alongside the exact GP mean posterior (solid green line)
and 95% confidence interval (green shaded region). The two are near identical, with tiny differences.
For additional comparisons, see Figure 6 in the appendix.

for these methods and evaluate the negative log-likelihood of the approximated distributions on the
predicted outputs for the test sets. As we show in Corollary 1.1, the metric we evaluate is directly
representative of the KL divergence between the true PPD and the approximation. There only is
a constant difference. If a method only approximates the posterior and not the PPD directly, we
approximate PPD with a large MC integration.

5.1 Gaussian Process approximation

We begin by approximating GPs as a study as to what the transformers are capable of; GPs with fixed
hyperparameters are convenient for this purpose since the tractability of their PPD allows us to assess
how close our approximation is. In this case, our meta-train datasets are functions f sampled from
a GP with the given fixed hyperparameters. Since GPs describe conditional distributions given an
input x, we sample n+ 1 inputs xi uniformly at random from the unit-cube and evaluate yi = f(xi).
As usual, we then train our PFNs to predict yn+1 from the dataset {(x1, y1), . . . , (xn, yn)} and the
query point xn+1. The trained PFN can then be used to compute the PPD for new datasets and
arbitrary query points. Figure 3 visualizes the predictions of such a PFN for a small dataset with
two data points and query points x ranging from 0 to 1. In Figure 3 (left), one can still see the very
tiny boxes in which the Riemann distribution is discretized. In Figure 3 (right), we compare these
predictions to those of a ground-truth GP with the given hyperparameters; both the mean function
and the plotted 95% confidence interval are virtually indistinguishable from this ground truth. The
model also learns on its own, completely automatically, to generate smooth distributions without
any explicit knowledge of the positions of the bars in R. In Figure 6 in the appendix we show more
qualitative examples of the behavior of our approximation together with the exact posterior. Figure
4a shows that the qualitative results above generalize to much large datasets with multiple inputs. The
GP Posterior achieves optimal performance by definition, and we can approximate it very closely,
and better so with longer training. Additionally, there does not seem to be a trend towards worse
approximation with larger datasets.

5.2 Approximating A GP with Hyper-Priors

A common practice in fields applying GPs in the real world is to define hyper-priors over the
hyperparameters of GPs Rasmussen & Williams (2006); Snoek et al. (2012). Thus, the prior of
these models considers a more diverse set of functions. The correlation between data points, the
smoothness of the function and the scale of outputs can be variable. This allows the user to apply
GPs to a larger set of tasks. The downside is that it is not possible to compute the PPD of the GP with
hyper-priors exactly. There are two common practices to approximate it anyways and we evaluate
against both. (i) Firstly, MLE-II is the most common, which is a simple special case of variational
inference. Here, suitable hyperparameters are found by maximum a posteriori (MAP) estimation
(e.g., Rasmussen & Williams (2006)). We use the fitting setup of BoTorch (Balandat et al., 2020) from
which our Hyper-Priors for all models are inspired as well. (ii) Secondly, Markov Chain Monte Carlo
(MCMC), a method to sample from any distribution for which one can calculate non-normalized
probabilities, is also frequently applied to sample hyperparameters (e.g., Snoek et al. (2012)). Here
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we compare against doing so by the NUTS method (Hoffman et al., 2014), a state-of-the-art method
that uses gradients to facilitate the Hamiltonian Monte Carlo algorithm. We plot the performance of
the different methods in Figure 4b. Our model can approximate the PPD on the prior much closer
than both of these methods, and its inference is more than 200× faster than MLE-II and 1000× to
8 000× faster than NUTS.

5.3 Approximating the BNN PPD

Bayesian Neural Networks (BNNs) provide an inherent ability to model uncertainty and strong
regularization by inherent ensembling. Recently, approximation methods such as stochastic varia-
tional inference or stochastic gradient Markov Chain Monte Carlo methods allow for much faster
convergence, which has sparked a great deal of interest in the area (Izmailov et al., 2021; Fortuin
et al., 2021). However, these methods still converge too slowly for many practical applications.

In Figure 5, we show that our method can outperform today's default methods using a much smaller
compute budget. The figure shows the approximation accuracy on synthetic datasets generated using
the BNN prior that is used during inference by all solvers. To generate these synthetic datasets, we
sampled random weights for a BNN BNN and used normally-distributed i.i.d. features X to obtain
y := BNN(X) with D := (X1:n, y1:n).

6 Conclusion & Future Work

We present a novel way to approximate the posterior predictive distribution very efficiently using
deep neural networks. We show it’s capability on a set of diverse tasks and priors. This opens the
possibility for a multitude of ground breaking future work. We expect especially the following to be
fruitful: (i) Work on finding novel priors that are cheap to sample for particular application areas. (ii)
Work on architectures that are well-fit for this task, as we simply used a slight adaption of a current
model.
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A Proof of Corollary 1.1

Proof. This can easily be seen by considering the result of Theorem 1

Ex,D[KL(p(·|x,D, qθ(·|x,D)] (7)

= −Ex,D
[∫

y

p(y|x,D log
qθ(y|x,D
p(y|x,D

]
(8)

= −Ex,D
[∫

y

p(y|x,D log qθ(y|x,D
]

+ Ex,D
[∫

y

p(y|x,D log p(y|x,D
]

(9)

= Ex,D[H(p(·|x,D, qθ(·|x,D]− Ex,D[H(p(·|x,D)]] (10)
= `θ + C, (11)

where C = −Ex,D[H(·|x,D]].
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B Qualitative Analysis
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Figure 6: Green are the 95% intervals of the original GP posterior and blue are the corresponding
transformer approximations. Lengthscale .1, Outscale 1., noise: 1e-4

C Riemann Distribution Definition

Given a set of of buckets B, where each bucket b ∈ B describes an interval such that
⋃
b∈B

b = [a, b]

and for any b, b′ ∈ B we have b ∩ b′ = ∅. Additionally, we define the upper-bound (lower-bound) of
the lowest (highest) bucket to be l (f ). Additionally, we use a mapping B(·) that maps a y ∈ R to the
unique bucket bwith y ∈ b and the width of each bucket to be defined asw(b) = maxy∈b y−miny∈b y.
The model gives us a probability for each bucket pb.

In the finite case the distribution is defined as

p(y) = pb(y)/w(b(y)). (12)

We normalize with the width of the bucket since pb describes the probability p(y′ ∈ b), but we are
interested in the probability p(y′ = y).

For the case of infinite support given probabilities pb for each bucket b, we have

f(yq) =


2 · fN (yq − l), if yq ≥ l
2 · fN (f − yq), if yq ≥ f
pb(yq)/b(yq), otherwise.

(13)

Here, the Half-Normal distributions are scaled such that half the probability weight is in the first (last)
bucket.

D Ablation

Above, we introduce a novel way of doing regression with neural networks that departs from the
tradition of using normal distributions. Additionally, we remove the default positional embeddings

12



from the Transformer. We shot the impact of both on the Transformer in Figure 7. We can see that,
while the effect of the Riemann Distribution is very pronounced, the effect of making our architecture
permutation invariant only slowly increases with sequence length.
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Figure 7: In this figure we show the impact of different architectural decisions on the performance of
our method in fitting a Gaussian Process. We use the same Gaussian Process as in Section 5.1.
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