
Under review as a conference paper at ICLR 2023

META-EVOLVE: CONTINUOUS ROBOT EVOLUTION
FOR ONE-TO-MANY POLICY TRANSFER

Anonymous authors
Paper under double-blind review

Source Robot Target Robot 1

Target Robot 2

Target Robot 𝑁

Source Robot
Target Robot 1

Target Robot 2

Target Robot 𝑁

Meta Robot

(a) (b)
Figure 1: (a) REvolveR and HERD (Liu et al., 2022a;b) are methods for transferring policy be-
tween a pair of robots using continuous robot evolution. Therefore, to transfer a policy on the source
robot to multiple target robots, they must launch multiple independent runs for each target robot. (b)
Our Meta-Evolve first uses continuous robot evolution to transfer an expert policy from the source
robot to a “meta robot” that is closer to all target robots and then to each target robot.

ABSTRACT

We investigate the problem of transferring an expert policy from a source robot
to multiple different robots. To solve this problem, we propose a method name
Meta-Evolve that uses continuous robot evolution to efficiently transfer the policy
to a newly defined meta robot and then to each target robot. Since the meta robot is
closer to the target robots, our approach can significantly naive one-to-one policy
transfer. We also present three heuristic approaches with theoretical results to
determine the meta robot. Experiments have shown that with three target robots,
our method is able to improve over the baseline of launching multiple independent
one-to-one robot-to-robot policy transfers by up to 2.4× in terms of training and
exploration needed.

1 INTRODUCTION

The robotics industry has designed and developed a large number of commercial robots deployed in
various applications. How to efficiently learn robotic skills on diverse robots in a scalable fashion?
A popular solution is to train a policy for every new robot on every new task from scratch. This is
not only inefficient in terms of sample efficiency but also impractical for complex robots due to a
large exploration space. Statistic matching Imitation learning (IL) methods that optimize to match
the distribution of actions (Ross et al., 2011), transitioned states (Liu et al., 2019; Radosavovic
et al., 2020), or reward function (Ng et al., 2000; Ho & Ermon, 2016) could be possible solutions.
However, they can only be applied to robots with similar dynamics to yield optimal performance.

Recent advances in evolution-based imitation learning (Liu et al., 2022a;b) inspires us to view this
problem from the perspective of policy transferring from one robot to another. The core idea is to
interpolate two different robots by producing a large number of intermediate robots between them
which gradually evolve from the source robot toward the target robot. These continuously evolving

1

Under review as a conference paper at ICLR 2023

robots act as the bridge for transferring the policy from the source robot to the target robot. The
source robot is usually selected as a robot such that it is easy to collect sufficient demonstrations to
train a high-performance expert policy, e.g. a Shadow Hand robot (ShadowRobot, 2005) that can be
trained from large-scale human hand demonstration data such as Grauman et al. (2022) and Damen
et al. (2018). While the continuous robot evolution has shown success in learning challenging robot
manipulation tasks (Liu et al., 2022a), the policy transfer is limited to being between a pair of robots.
As illustrated in Figure 1(a), for N different target robots, it requires launching N independent runs
of robot-to-robot policy transfer and is not scalable. How can one efficiently transfer a well-trained
policy from one source robot to multiple different target robots?

Our intuition is that when robots are designed to complete certain tasks, they often share similar
forms of morphology and dynamics to interact with other objects in similar ways. Examples include
robot grippers that are all designed to close their fingers to grasp objects and multi-legged robots
that are all designed to stretch their legs for agile motion. To transfer the policy to N different target
robots to complete similar tasks, it may be possible to find a meta robot that is close to all N target
robots during continuous robot evolution. Then the robot evolution and policy transfer can first reach
the meta robot and then launch N independent robot-to-robot policy transfers toward each of the N
target robots. In this way, the initial part of the robot evolution path between the source and the meta
robot can be shared among N target robots, and can significantly reduce the amount of exploration
and training cost needed if the meta robot is much closer to the target robots. The idea is illustrated
in Figure 1(b).

We propose a method named Meta-Evolve to instantiate the above idea that uses robot micro-
evolution for efficiently transferring a policy from one source robot to multiple target robots. Given
the source and an arbitrary number of target robots, our method first matches their morphology. This
allows the source and target robots to be represented in the same high-dimensional continuous space
of physical parameters and also allows the sampling of new intermediate robots. We propose three
different ways to determine the meta robot within the continuous space by heuristics for minimizing
the total cost of policy transfer training and exploration.

We showcase our Meta-Evolve on three Hand Manipulation Suite (Rajeswaran et al., 2018) manip-
ulation tasks where the source robot is a five-finger dexterous hand and the target robots are three
robot grippers with two, three, and four fingers respectively. Our Meta-Evolve is able to reduce
the total amount of simulation epochs and training iterations by up to 2.4× compared to pairwise
robot policy transfer methods (Liu et al., 2022a;b) to reach the same performance on the three target
robots. To summarize, our contributions are as follows:

• We introduce a new research problem of one-to-many policy transfer where the goal is to trans-
fer an expert policy from a source robot to multiple target robots. Different from traditional
multi-task learning, we propose to use continuous robot evolution as the formulation which
allows studying this problem from a robot or task evolutionary perspective.

• We develop a method named Meta-Evolve as a viable solution to the new problem. We propose
to employ a meta robot for efficient evolution path sharing among target robots and proposed
three different ways of determining the meta robots heuristically.

• We conduct experiments on Hand Manipulation Suite tasks and our Meta-Evolve shows signif-
icant gains compared to pairwise policy transfer baselines. This shows that our Meta-Evolve
can allow more scalable imitation learning and learning from demonstration for diverse robots.

2 PRELIMINARY

Notation We use bold letters to denote the vector variables. Specially, 0 and 1 are the all-zero and
all-one vectors with proper dimensions respectively. ⊙ is the element-wise product. For a vector
θ, we use θ(j) to denote its j-th element. We use MAX(·) and MIN(·) to denote element-wise
maximum and minimum of a set of vectors respectively.

MDP Preliminary We consider a continuous control problem formulated as Markov Decision
Process (MDP). It is defined by a tuple (S,A, T , R, γ), where S ⊆ RS is the state space, A ⊆ RA

is the action space, T : S × A → S is the transition function, R : S × A → R is the reward
function, and γ ∈ [0, 1] is the discount factor. A policy π : S → A maps a state to an action where
π(a|s) is the probability of choosing action a at state s. Suppose M is the set of all MDPs and

2

Under review as a conference paper at ICLR 2023

ρπ,M =
∑∞

t=0 γ
tR(st, at) is the episode discounted reward with policy π on MDP M ∈ M. The

optimal policy π∗
M on MDP M is the one that maximizes the expected value of ρπ,M .

REvolveR and HERD Preliminary Liu et al. (2022b) proposed a technique named REvolveR for
transferring policies from one robot to a different robot. Given a well-trained expert policy π∗

MS
on a

source robot MS ∈ M, its goal is to find the optimal policies π∗
MT

on another target robot MT ∈ M.
The core idea is to define an evolutionary sequence of intermediate robots that connects the two
robots through linear interpolation of physical parameters and sequentially fine-tune the policy on
each intermediate robot in the sequence. Liu et al. (2022a) proposed HERD, which extends the
idea to robots represented in high-dimensional parameter space, and proposes to optimize the robot
evolution path together with the policy. Concretely, given source and target robots MS,MT ∈ M
that are parameterized in D-dimensional space respectively, HERD defines a continuous function
F : [0, 1]D → M where F (0) = MS, F (1) = MT. Suppose the physical parameters of the source
and target robots are θS,θT ∈ RD respectively. For any evolution parameter α ∈ [0, 1]D, F (α)
defines an intermediate robot whose physical parameters are θ = (1 − α) ⊙ θS + α ⊙ θT. Then
an expert policy π∗

F (0) on the source robot F (0) is optimized by sequentially interacting with each
intermediate robot in the sequence F (α1), F (α2), . . . , F (αK) where αK = 1, until the policy is
able to act (near) optimally on each intermediate robot. At robot F (αk), the optimization objective
for finding the next best intermediate robot F (αk+1) = F (αk + lk) is formulated as

max
lk,||lk||2=ξ

max
π

L = E[ρπ,F (αk+lk)]− λ

2
||1− (αk + lk)||22 (1)

which optimizes both the expected policy reward E[ρπ,F (αk+lk)] and the L2 distance to the target
robot ||1 − (αk + lk)||2. For all k, the evolution step size ξ = ||lk||2 is small enough so that each
policy fine-tuning step is a much easier task. After K steps, the policy will eventually be transferred
to the target robot F (1). The idea is illustrated in Figure 1(a).

3 ONE-TO-MANY ROBOT-TO-ROBOT POLICY TRANSFER

3.1 PROBLEM STATEMENT

We investigate the problem of transferring a policy from one source robot to multiple target robots.
Formally, we consider a source robot MS ∈ M and N target robots MT,1,MT,2, . . . ,MT,N ∈ M
respectively. We assume the state space S, and action space A, reward function R and discount
factor γ of MS and all MT,i are shared and the difference is their transition dynamics T . Given a
well-trained expert policy π∗

MS
on a source robot MS, the goal is to find the optimal policies π∗

MT,i
on

each of the target robot MT,i. We would like to investigate using the information in πMS to improve
the sample efficiency as well as the final performance of πMT,i and also study how the learning of
each individual πMT,i can help each other during the process.

We approach this problem by defining a meta robot MMeta ∈ M that shares the same state space,
action space, reward and discount factor. The robot MMeta is designed such that MMeta sits in the
middle of MS and all MT,i, i.e. in terms of transition dynamics, MMeta is closer to all MT,i than MS
while also being closer to MS than all MT,i. Therefore, instead of repeating the process of directly
transferring a source robot policy πS from MS to MT,i for N times, we first transfer πS to MMeta and
then from MMeta to each individual MT,i.

3.2 MULTI-ROBOT MORPHOLOGY MATCHING AND ROBOT REPRESENTATIONS

Our problem setting and our proposed solution are based on an assumption that the source robot MS
and target robots MT,i share the same state and action space based on which the intermediate robots
can be defined. The assumption is true for a pair of robots as shown in Liu et al. (2022a;b) where
the intermediate robots are produced by robot morphology matching and kinematic interpolation. In
this subsection, we show that this assumption can be extended to more than two robots.

Morphology Matching The kinematic tree of a robot describes the connection of the bodies and
joints. The morphology of the robot, i.e. the topology of its kinematic tree, represents the kinematic
behavior of the robot. Given two different robots with different morphology, it has been shown in Liu
et al. (2022b) that their kinematic trees can be matched by adding extra nodes and edges. This step

3

Under review as a conference paper at ICLR 2023

Robot 1 Robot 3

Morphology Matched Robot
Robot 2 Robot 𝑁

(a) (b)

Figure 2: (a) Morphology matching of multiple robots. Colored circles denote corresponding robot
bodies and straight lines denote robot joints. (b) An example of robot evolution parameter space
after morphology matching of multiple robots. The four highlighted robots are the source and three
target robots used in experiments in Section 5.2 respectively. Other semi-transparent robots are the
interpolated robots sampled from the evolution parameter space.

can be easily extended to N robots where N > 2. As illustrated in Figure 2(a), by matching proper
root nodes and key leaf nodes, the kinematic tree of the morphology-matched robot is essentially a
graph union of the kinematic trees of all robots. This means each robot needs to create additional
bodies, joints and motors, though they may be all zero in their numbers.

The above kinematic matching process can be automated by an algorithm that achieves the best
matching of nodes and edges across N robots. However, in practice, we would like the matching
process to include reasonable human intervention with enough robotics knowledge, e.g. matching
human hand fingers to robot gripper fingers where the knuckle joints are matched correctly.

Kinematic Interpolation After morphology matching, the state and action space of the robots
are matched. The difference in the robot transition dynamics is now only due to the differences in
physical parameters, such as shapes and mass of robot bodies, gain and armature of joint motors,
etc. Suppose there are D physical parameters. Then each θ ∈ RD uniquely represents a new robot.

Suppose the physical parameters of the source robot and the N target robots are represented in D-
dimensional space as θS ∈ RD and θT,1,θT,2, . . . ,θT,N ∈ RD respectively. In each dimension, we
compute the upper and lower bounds of the physical parameters

θu = MAX({θS,θT,1,θT,2, . . . ,θT,N})
θl = MIN({θS,θT,1,θT,2, . . . ,θT,N}) (2)

where θu and θl essentially defines the convex hull of the set of robot physical parameters in D-
dimensional space H = [θl(1),θu(1)]×[θl(2),θu(2)]×· · · [θl(N),θu(N)] ∈ RD that encompasses
the source and all target robots.

We can now use continuous function F : [0, 1]D → M to define an intermediate robot by interpo-
lation between all pairs of kinematic parameters

θ = (1−α)⊙ θl +α⊙ θu (3)
where α ∈ [0, 1]D is the evolution parameter that describes the normalized position of a robot in the
convex hull H. Note that by limiting α to be between 0 and 1, we assume the convex hull H is the set
of all possible intermediate robots. This is a reasonable assumption since an out-of-range parameter
can be physically dangerous and also unlikely to be useful in robot continuous interpolation. The
convex hull H also serves as the metric space that measures the distance between any two robots.

In HERD (Liu et al., 2022a), the source and target robots are always represented as 0 and 1 respec-
tively because when there are only two robots, one of them must be either lower or upper bound.
Different from HERD, the source and target robots in our problem are not necessarily 0 and 1. An
example of the resulting robot evolution space and the positions of the source and target robots in
the evolution space is illustrated in Figure 2(b). More details can be found in Section B.

4

Under review as a conference paper at ICLR 2023

3.3 ONE-TO-MANY ROBOT EVOLUTION FOR POLICY TRANSFER

Suppose the source robot and the N target robots are represented by F (β0) := MS and
F (β1) := MT,1, . . . , F (βN) := MT,N respectively where βi ∈ [0, 1]D. Similar to
HERD (Liu et al., 2022a), we employ N robot evolution paths of intermediate robots τi =
(F (αi,1)), F (αi,2)), . . . , F (αi,Ki

))), i = 1, 2, . . . , N where Ki ∈ Z+, F (αi,1) = F (β0) is the
source robot and F (αi,Ki

) = F (βi) is the target robot i. Following HERD (Liu et al., 2022a), we
use intermediate robots F (αi,k) as the bridge to transfer the policy to target robot i.

We use Ki training phases of policy optimizations. At training phase k, the policy is trained on
policy rollouts from robots sampled on the line αkαk+1. The sampling window gradually converges
to αk+1 during training until the policy is able to achieve enough success rate on F (αk+1) before
moving on to the next training phase k + 1. For all k, we set the evolution step size ||αi,k −
αi,k+1||2 = ξ to be small enough so that each training phase is an easy sub-task with little policy
fine-tuning. Naively following HERD would require training through all the τi for N time in total.

However, if the target robots βi are mutually similar but are very different from the source robot,
during the start of the training phases, the robot would evolve roughly in similar directions. There-
fore, the N robot evolution paths would be close to each other near the start of the paths and the
policy optimization might be redundant, as illustrated in Figure 1(a).

We propose to design the N evolution paths by forcing the first m ∈ Z+ intermediate robots to be
shared among the N paths to address the redundancy issue at the start of the training. Formally,

∀k ≤ m,α1,k = α2,k = · · ·αN,k (4)
This means that all path will first reach a shared robot F (αi,m) before splitting their ways towards
each target robot. We name the last shared robot “meta robot”, denoted by F (βMeta) := F (αi,m).
To summarize, given a defined meta robot, the policy transfer to N target robots consists of the
following two steps:

1. Transfer source expert policy π∗
F (β0)

using HERD from the source robot F (β0) to the meta
robot F (βMeta) to obtain a well-trained meta robot policy πF (βMeta);

2. For i = 1, 2, . . . , N , transfer the meta robot policy πF (βMeta) using HERD from the meta robot
F (βMeta) to the target robot F (βi) to obtain target robot policy πF (βi);

In this way, both simulation for exploration and training during policy transfer can be saved signifi-
cantly. Theoretically, if the target robots are close enough to the target robots, or the policy transfer
from the meta robot to the target robots is easy enough, we could expect our Meta-Evolve a speedup
up to O(N) compared to one-to-one policy transfer baselines.

3.4 META ROBOT DETERMINATION

Given the source and target robots, the meta robot significantly impacts the overall performance of
the policy transfer. However, due to the complexity of the robots’ physical parameter space and
its relation to the actual MDP transition dynamics, it is extremely difficult to develop a universal
solution. We hereby provide the following three heuristics for determining the meta robot.

1. Geometric Median of Source and Target Robots (denoted as “Geom-Med All”) We aim to
minimize the total L2 travel distance in robot evolution parameter space from the source robot F (β0)
to the meta robot F (βMeta) and then to all target robots βi. Mathematically, a point that minimizes
the sum of distances to a set of points is called the geometric median of the point set. Then the meta
robot will be the geometric median of evolution parameter set {β0,β1, . . . ,βN}:

βMeta, All = argmin
β∈[0,1]D

N∑
i=0

||β − βi||2 (5)

Note that by using geometric median, we assume that the training cost for transferring the policy
from robot F (αi,k) to robot F (αi,k+1) is proportional to ||αi,k − αi,k+1||2. We believe this is
a reasonable assumption since the training cost should be proportional to the distribution differ-
ence DKL(F (αi,k), F (αi,k+1)) of the MDPs of the two robots F (αi,k), F (αi,k+1) and should be
proportional to the robot hardware difference ||αi,k −αi,k+1||2 when ||αi,k −αi,k+1||2 → 0,∀k.

5

Under review as a conference paper at ICLR 2023

2. Geometric Median of Target Robots Only (denoted as “Geom-Med Target only”) At each
training phase of the policy transfer, the algorithm should aim to reduce the expected future cost
of training instead of the past. Therefore, at training phase k, the algorithm should act greedily to
minimize the total L2 travel distance from the current robot F (αi,k) to the meta robot F (βMeta) and
then to all target robots F (βi), i.e. the temporary meta robot at phase k should be determined as the
geometric median of evolution parameter set {αi,k,β1, . . . ,βN}:

βMeta,k = argmin
β

(||β −αi,k||2 +
N∑
i=1

||β − βi||2) (6)

As long as αi,k moves towards the goal of βMeta,k and reduces its distance to αi,k, in training phase
k, the βMeta,k will converge to the geometric median of evolution parameter set {β1, . . . ,βN} as
shown by Theorem 3.1. For simplicity and to avoid introducing additional noise due to the change
of meta robot goal, we directly use the following βMeta, Target as the meta robot in our algorithm.

βMeta, Target = argmin
β

N∑
i=1

||β − βi||2 (7)

Theorem 3.1. Suppose β1,β2, . . . ,βN are not collinear. Suppose βMeta,k is defined by Equation
(6), and for all k, ||αi,k+1 − βMeta,k||2 < ||αi,k − βMeta,k||2, then limk→∞ βMeta,k = βMeta, Target.

The proof of Theorem 3.1 is in Section A.

3. Minimum Distance to Target Robots’ Convex Hull (denoted as “Min Dist to Cvx Hull”) In
general, we cannot have complete knowledge about how the change of a certain parameter affects
the MDP transition dynamics of a robot. Therefore, it may be wise to set the meta robot to be
outside the ranges of target robot parameters and let the subsequent independently launched HERD
runs figure out the optimized evolution path themselves. At the same time, we would prefer the meta
robot to be as close to the target robots as possible. Thus, we can choose the point on the surface of
the convex hull spanned by the target robots that has the minimum distance to the source robot:

∀d,βMeta, Min(d) =


max{β1(d),β2(d) . . . ,βN (d)} if β0(d) > max{β1(d),β2(d) . . . ,βN (d)}
min{β1(d),β2(d) . . . ,βN (d)} if β0(d) < min{β1(d),β2(d) . . . ,βN (d)}
β0(d) otherwise

(8)

4 RELATED WORK

Imitation Learning across Different Robots Traditional imitation learning is designed for learning
on the same robots such as Ross et al. (2011); Ng et al. (2000); Ho & Ermon (2016); Duan et al.
(2017); Ke et al. (2020). However, due to a huge mismatch in transition dynamics, these works often
struggle in learning across different robots. Our work can be viewed as imitation learning across
different robots. Compared to previous imitation learning methods that aim to learn across different
robots directly (Radosavovic et al., 2020; Liu et al., 2019), we aim to employ robot evolution to
gradually adapt the policy. Furthermore, our Meta-Evolve focuses on one-to-many imitation where
the policy must work on multiple target robots.

Learning Controllers for Diverse Robot Morphology Recent work has studied the problem of
learning a policy/controller for diverse robots. For instance, Pathak et al. (2019) uses dynamic
graph neural networks to control and develop robots with different morphology simultaneously to
build agents that can generalize to new scenarios. Besides, GNNs have been used to control diverse
robot morphology in NerveNet (Wang et al., 2018) to control different robots. Huang et al. (2020)
leverages modularity using graph neural networks across limbs of robots to train agent-agnostic
policies. Hierarchical controllers have also been shown to be effective while transferring across
morphology (Hejna et al., 2020). In contrast to these works, we do not co-develop the controller
with morphology but transfer the policy from a source robot to multiple target robots by simulating
an evolutionary process.

Meta Learning Our Meta-Evolve is closely related to the formulation of meta-learning (Finn et al.,
2017; 2018; Rajeswaran et al., 2019). Different from meta reinforcement learning where only the
policies π are meta learned, our formulation can be viewed as the continuous update of both the
policy π as well as the transition dynamics T instantiated by different robot parameters θ. Moreover,

6

Under review as a conference paper at ICLR 2023

(a) (b) (c) (d) (e)

Figure 3: Visualization of Hammer task results. From left to right: (a) source robot; (b) meta robot;
(c) 2-finger target robot; (d) 3-finger target robot; and (e) 4-finger target robot.

HERD
2-finger robot 3-finger robot 4-finger robot total speedup

of train 10323 ± 1612 6301 ± 1418 6513 ± 1725 23138 ± 4366 1×
of sim 393916 ± 44999 322192 ± 42403 382336 ± 112139 1098444 ± 198839 1×

Ours
(Geom-Med
All)

source robot to
meta robot

meta robot to
2-finger robot

meta robot to
3-finger robot

meta robot to
4-finger robot total speedup

of train 4785 ± 317 11080 ± 4935 1120 ± 488 1091 ± 487 18076 ± 4921 1.28×
of sim 242874 ± 20982 230217 ± 55268 53106 ± 13043 73224 ± 12145 599421 ± 60332 1.83×

Ours
(Geom-Med
Target only)

source robot to
meta robot

meta robot to
2-finger robot

meta robot to
3-finger robot

meta robot to
4-finger robot total speedup

of train 5581 ± 647 6007 ± 642 208 ± 223 321 ± 275 12116 ± 594 1.91×
of sim 294196 ± 17396 109472 ± 15100 14184 ± 6503 33276 ± 13859 451128 ± 12363 2.43×

Ours
(Min Dist to
Cvx Hull)

source robot to
meta robot

meta robot to
2-finger robot

meta robot to
3-finger robot

meta robot to
4-finger robot total speedup

of train 4859 ± 657 3999 ± 897 597 ± 328 235 ± 117 9691 ± 719 2.39×
of sim 304752 ± 15955 165824 ± 30551 58856 ± 11620 32792 ± 7814 562224 ± 64671 1.95

Table 1: Hammer policy transfer experiment results. We use “mean ± standard deviation” from
runs of five different random seeds. “Geom-Med All”, “Geom-Med Target only” and “Min Dist to
Cvx Hull” denotes the three approaches presented in Section 3.4 respectively.

while meta-learning aims to learn a meta policy from scratch, in our problem, the source expert
policy is provided and used in policy transfer. Closely related to our approach is task interpolation
for meta-learning (Yao et al., 2021). Different from task interpolation, our policy transfer does not
require working on multiple robots at the same time but only needs each transferred policy to work
on one target robot.

5 EXPERIMENTS

The design of our Meta-Evolve method is motivated by the hypothesis that by sharing the evolution
paths among multiple robots through the design of the meta robot, the overall cost of one-to-many
policy transfer can be reduced. To show this, we apply our Meta-Evolve on Hand Manipulation
Suite (HMS) (Rajeswaran et al., 2018).

5.1 EXPERIMENT SETTINGS

Source and Target Robots We utilize the five-finger dexterous hand provided in the ADROIT
platform (Kumar et al., 2013) as the source robot and follow Rajeswaran et al. (2018) for the initial
environment settings. The target robots are three robot grippers with two, three, and four fingers
respectively. The target robots can be produced by gradually shrinking the fingers of the five-finger
dexterous hand. The robot evolution is illustrated in Figures 1 and 2(b).

Task, Reward and RL Algorithm We use the three tasks from the the task suite in (Rajeswaran
et al., 2018): Hammer, Relocate and Door. In Hammer, the task is to pick up the hammer and
smash the nail into the board; in Relocate, the task is to pick up the ball and take it to the target
position; in Door, the task is to turn the door handle and fully open the door. We use a challenging
sparse reward function where only the task completion is rewarded. We use NPG (Rajeswaran et al.,
2017) as the RL algorithm in all compared methods.

Evaluation Metrics For each compared method, the goal is to reach 80% success rate on all three
target robots. Due to the nature of one-to-many policy transfer, the total number of RL iterations
or simulation epochs it takes to reach this goal cannot be set beforehand. So we instead report the
number of policy training iterations and simulation epochs needed to reach the goal.

7

Under review as a conference paper at ICLR 2023

(a) (b) (c) (d) (e)

Figure 4: Visualization of Door task results. From left to right: (a) source robot; (b) meta robot; (c)
2-finger target robot; (d) 3-finger target robot; and (e) 4-finger target robot.

HERD
2-finger robot 3-finger robot 4-finger robot total speedup

of train 2015 ± 478 1016 ± 75 1325 ± 170 4357 ± 394 1×
of sim 201184 ± 18338 188236 ± 6953 240284 ± 7980 629704 ± 5942 1×

Ours
(Geom-Med
All)

source robot to
meta robot

meta robot to
2-finger robot

meta robot to
3-finger robot

meta robot to
4-finger robot total speedup

of train 1461 ± 336 833 ± 206 44 ± 31 127 ± 92 2464 ± 339 1.77
of sim 180219 ± 19489 104505 ± 22234 19635 ± 6288 31839 ± 10761 336198 ± 35192 1.87

Ours
(Geom-Med
Target only)

source robot to
meta robot

meta robot to
2-finger robot

meta robot to
3-finger robot

meta robot to
4-finger robot total speedup

of train 1393 ± 250 540 ± 227 2 ± 3 28 ± 9 1963 ± 490 2.22×
of sim 185604 ± 15076 94684 ± 4543 10100 ± 5002 31284 ± 7972 321672 ± 32593 1.96×

Ours
(Min Dist to
Cvx Hull)

source robot to
meta robot

meta robot to
2-finger robot

meta robot to
3-finger robot

meta robot to
4-finger robot total speedup

of train 1527 ± 238 782 ± 226 3 ± 4 8 ± 9 2319 ± 250 1.88
of sim 214875 ± 9954 114705 ± 27323 28524 ± 1946 14109 ± 905 372213 ± 22544 1.69

Table 2: Door policy transfer experiment results. We use “mean ± standard deviation” from runs
of five different random seeds. “Geom-Med All”, “Geom-Med Target only” and “Min Dist to Cvx
Hull” denotes the three approaches presented in Section 3.4 respectively.

5.2 ONE-TO-THREE ROBOT-TO-ROBOT POLICY TRANSFER

We compare our Meta-Evolve against one-to-one policy transfer baseline HERD (Liu et al., 2022a).
The results on Hammer, Door, Relocate are illustrated in Tables 1, 2 and 3 respectively. In
terms of the total number of simulation epochs and training iterations needed, our method is able to
achieve up to 2.4× improvement on these three tasks.

Breaking down each part of the evolution path, we noticed that in our method, the source robot to
meta robot part of the path is usually the most costly and constitutes the largest portion of simulation
epochs as well as training, e.g. on Relocate and Door tasks. However, the cost after splitting the
path at the meta robot is much smaller which yields a smaller total cost.

A more interesting observation is that, for some target robots and tasks, e.g. two- and four-finger tar-
get robots on Hammer task, the total cost of path “source to meta robot” plus the cost of path “ meta
robot to target robot” is even smaller than the cost of directly transferring the policy to that target
robot using HERD. It shows that, transferring the policies to multiple related target through a meta
robot can possibly help each robot improve their learning efficiency. We believe this phenomena
deserve more future research attention.

5.3 ABLATION STUDIES

We provide ablation studies on the design choice of meta robot. The results are illustrated in Tables
1, 2 and 3. Choosing the meta robot as the minimum distance point to the target robot convex hull
(i.e. “Min Dist to Cvx Hull”) and geometric median of only the target robots (i.e. “Geom-Med
Target only”) yield similar performance and are much better than choosing the geometric median
of both source and target robots (i.e. “Geom-Med All”). After further analysis, a possible reason
is that the first two approaches produce meta robots that are much closer to the targets than the last
approach. It shows that the meta robot should be selected to be closer to the target robot if possible.

5.4 VISUALIZATIONS

We provide visualizations of the transferred policies on each of the three target robots as well as
the meta robot, on all three HMS tasks. The policy is able to be transferred to all target robots
and successfully complete the task. Moreover, we observe that the meta robot obtained from the
heuristics we introduced in Section 3.4 looks like a deformed three-finger gripper which is indeed

8

Under review as a conference paper at ICLR 2023

(a) (b) (c) (d) (e)

Figure 5: Visualization of Relocate task results. From left to right: (a) source robot; (b) meta
robot; (c) 2-finger target robot; (d) 3-finger target robot; and (e) 4-finger target robot.

HERD
2-finger robot 3-finger robot 4-finger robot total speedup

of train 7602 ± 1158 9656 ± 2228 9849 ± 932 27109 ± 4208 1×
of sim 316600 ± 31284 363332 ± 23999 369868 ± 1836 1049800 ± 56510 1×

Ours
(Geom-Med
All)

source robot to
meta robot

meta robot to
2-finger robot

meta robot to
3-finger robot

meta robot to
4-finger robot total speedup

of train 6245 ± 1138 3458 ± 1106 4194 ± 1202 3404 ± 918 17301 ± 1702 1.57×
of sim 268818 ± 25115 117447 ± 14632 109356 ± 20365 107223 ± 24330 602844 ± 53470 1.74×

Ours
(Geom-Med
Target only)

source robot to
meta robot

meta robot to
2-finger robot

meta robot to
3-finger robot

meta robot to
4-finger robot total speedup

of train 10744 ± 2402 1286 ± 1065 438 ± 327 316 ± 355 12784 ± 2399 2.12×
of sim 364254 ± 36482 66891 ± 22691 20280 ± 8499 30594 ± 9877 482019 ± 52554 2.18×

Ours
(Min Dist to
Cvx Hull)

source robot to
meta robot

meta robot to
2-finger robot

meta robot to
3-finger robot

meta robot to
4-finger robot total speedup

of train 10031 ± 1857 1493 ± 462 494 ± 368 298 ± 502 12316 ± 2569 2.20×
of sim 357951 ± 30773 77382 ± 29341 46101 ± 12497 23454 ± 11721 504888 ± 27059 2.08×

Table 3: Relocate policy transfer experiment results. We use “mean ± standard deviation” from
runs of five different random seeds. “Geom-Med All”, “Geom-Med Target only” and “Min Dist to
Cvx Hull” denotes the three approaches presented in Section 3.4 respectively.

close to all three target robots, considering the target robots include two-, three- and four-finger
grippers respectively. For more details on the visualization, please refer to the supplementary video.

6 DISCUSSIONS

When does Meta-Evolve Fail? One core assumption behind our Meta-Evolve method is that
the target robots are mutually similar while very different from the source robot. If the evolution
goal is in opposite directions, our Meta-Evolve will not work. For example, given the source robot
of a five-finger hand, if one target robot is a ten-finger hand while another target robot is a two-
finger gripper, the optimal meta robot might simply be the source robot itself, because the evolution
directions toward the target robots are opposite (growing multiple fingers vs. shrinking multiple
fingers). However, in practice, most industrial robots are indeed mutually similar in morphology
and kinematics while very different from the human hand, so our assumption still stands and Meta-
Evolve can still be useful in such cases.

Can the Meta Robot be Learned or Optimized? We envision the learning or optimization of the
meta robot being very challenging. Policy transfer through robot evolution relies on local optimiza-
tion in the robot evolution space. On the other hand, the optimization of the meta robot requires
optimizing the robot evolution path globally and needs an accurate “guess” of the results of future
policy transfer. We leave the problem of finding an optimized meta robot as the future work.

7 CONCLUSION

In this paper, we introduce a new research problem of transferring an expert policy from a source
robot to multiple target robots. To solve this new problem, we introduce a new method name Meta-
Evolve that utilizes continuous robot evolution to efficiently transfer the policy to a meta robot
and then to each target robot. We also present three different heuristic approaches with theoretical
results to determine the meta robot. We conduct experiments on Hand Manipulation Suite tasks
and show that our one-to-many policy transfer method can significantly outperform the one-to-one
policy transfer baseline.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Dima Damen, Hazel Doughty, Giovanni Maria Farinella, Sanja Fidler, Antonino Furnari, Evangelos
Kazakos, Davide Moltisanti, Jonathan Munro, Toby Perrett, Will Price, et al. Scaling egocentric
vision: The epic-kitchens dataset. In Proceedings of the European Conference on Computer
Vision (ECCV), pp. 720–736, 2018.

Yan Duan, Marcin Andrychowicz, Bradly Stadie, OpenAI Jonathan Ho, Jonas Schneider, Ilya
Sutskever, Pieter Abbeel, and Wojciech Zaremba. One-shot imitation learning. Advances in
neural information processing systems, 30, 2017.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In International conference on machine learning, pp. 1126–1135. PMLR, 2017.

Chelsea Finn, Kelvin Xu, and Sergey Levine. Probabilistic model-agnostic meta-learning. Advances
in neural information processing systems, 31, 2018.

Kristen Grauman, Andrew Westbury, Eugene Byrne, Zachary Chavis, Antonino Furnari, Rohit Gird-
har, Jackson Hamburger, Hao Jiang, Miao Liu, Xingyu Liu, et al. Ego4d: Around the world in
3,000 hours of egocentric video. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 18995–19012, 2022.

Donald Hejna, Lerrel Pinto, and Pieter Abbeel. Hierarchically decoupled imitation for morphologi-
cal transfer. In International Conference on Machine Learning, pp. 4159–4171. PMLR, 2020.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. Advances in neural
information processing systems, 29:4565–4573, 2016.

Wenlong Huang, Igor Mordatch, and Deepak Pathak. One policy to control them all: Shared modular
policies for agent-agnostic control. In International Conference on Machine Learning, pp. 4455–
4464. PMLR, 2020.

Liyiming Ke, Sanjiban Choudhury, Matt Barnes, Wen Sun, Gilwoo Lee, and Siddhartha Srinivasa.
Imitation learning as f-divergence minimization. In International Workshop on the Algorithmic
Foundations of Robotics, pp. 313–329. Springer, 2020.

Vikash Kumar, Zhe Xu, and Emanuel Todorov. Fast, strong and compliant pneumatic actuation for
dexterous tendon-driven hands. In 2013 IEEE international conference on robotics and automa-
tion, pp. 1512–1519. IEEE, 2013.

Fangchen Liu, Zhan Ling, Tongzhou Mu, and Hao Su. State alignment-based imitation learning.
arXiv preprint arXiv:1911.10947, 2019.

Xingyu Liu, Deepak Pathak, and Kris M. Kitani. HERD: Continuous Human-to-Robot Evolution
for Learning from Human Demonstration. In The Conference on Robot Learning (CoRL), 2022a.

Xingyu Liu, Deepak Pathak, and Kris M. Kitani. REvolveR: Continuous Evolutionary Models for
Robot-to-robot Policy Transfer. In The International Conference on Machine Learning (ICML),
2022b.

Andrew Y Ng, Stuart J Russell, et al. Algorithms for inverse reinforcement learning. In Icml,
volume 1, pp. 2, 2000.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

Deepak Pathak, Chris Lu, Trevor Darrell, Phillip Isola, and Alexei A Efros. Learning to control
self-assembling morphologies: a study of generalization via modularity. NeurIPS, 2019.

Ilija Radosavovic, Xiaolong Wang, Lerrel Pinto, and Jitendra Malik. State-only imitation learning
for dexterous manipulation. arXiv preprint arXiv:2004.04650, 2020.

Aravind Rajeswaran, Kendall Lowrey, Emanuel Todorov, and Sham Kakade. Towards generalization
and simplicity in continuous control. arXiv preprint arXiv:1703.02660, 2017.

10

Under review as a conference paper at ICLR 2023

Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel
Todorov, and Sergey Levine. Learning complex dexterous manipulation with deep reinforcement
learning and demonstrations. In Proceedings of Robotics: Science and Systems (RSS), Pittsburgh,
Pennsylvania, June 2018. doi: 10.15607/RSS.2018.XIV.049.

Aravind Rajeswaran, Chelsea Finn, Sham M Kakade, and Sergey Levine. Meta-learning with im-
plicit gradients. Advances in neural information processing systems, 32, 2019.

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and struc-
tured prediction to no-regret online learning. In Proceedings of the fourteenth international con-
ference on artificial intelligence and statistics, pp. 627–635. JMLR Workshop and Conference
Proceedings, 2011.

ShadowRobot. Shadowrobot dexterous hand, 2005. URL https://www.shadowrobot.com/
dexterous-hand-series/.

Yehuda Vardi and Cun-Hui Zhang. The multivariate l 1-median and associated data depth. Proceed-
ings of the National Academy of Sciences, 97(4):1423–1426, 2000.

Tingwu Wang, Renjie Liao, Jimmy Ba, and Sanja Fidler. Nervenet: Learning structured policy with
graph neural networks. ICLR, 2018.

Huaxiu Yao, Linjun Zhang, and Chelsea Finn. Meta-learning with fewer tasks through task interpo-
lation. In International Conference on Learning Representations, 2021.

11

https://www.shadowrobot.com/dexterous-hand-series/
https://www.shadowrobot.com/dexterous-hand-series/

Under review as a conference paper at ICLR 2023

A PROOF OF THEOREM 3.1

Proof. For all k, the definition of βMeta,k is

βMeta,k = argmin
β

(||β −αi,k||2 +
N∑
i=1

||β − βi||2) (9)

Thus we have

||βMeta,k+1 −αi,k+1||2 +
N∑
i=1

||βMeta,k+1 − βi||2

≤ ||βMeta,k −αi,k+1||2 +
N∑
i=1

||βMeta,k − βi||2

(10)

Since for all k, ||αi,k+1 − βMeta,k||2 < ||αi,k − βMeta,k||2, therefore

||βMeta,k+1 −αi,k+1||2 +
N∑
i=1

||βMeta,k+1 − βi||2

< ||βMeta,k −αi,k||2 +
N∑
i=1

||βMeta,k − βi||2

(11)

Let dk = ||βMeta,k −αi,k||2 +
∑N

i=1 ||βMeta,k − βi||2, Equation (11) can be re-written as

dk+1 < dk (12)

which means the sequence {dk} is a decreasing sequence. By definition, dk is a summation of
distance, so ∀k, dk > 0. Therefore, according to the Monotone Convergence Theorem, the sequence
{dk} must converge to its lower bound inf{dk}.

Since ∀β,

||β −αi,k||2 +
N∑
i=1

||β − βi||2

≥
N∑
i=1

||β − βi||2

≥
N∑
i=1

||βMeta, Target − βi||2

(13)

The last inequality is due to the definition of βMeta, Target.

Since there exists a solution of αi,k = βMeta, Target = argminβ
∑N

i=1 ||β−βi||2 that can turn all two
inequalities in Equation (13) into equality. Also considering that β1,β2, . . . ,βN are not collinear,
according to Vardi & Zhang (2000), the solution to the geometric median βMeta, Target is unique given
β1,β2, . . . ,βN .

This means the lower bound inf{dk} is achieved if and only at βMeta, Target = argminβ
∑N

i=1 ||β −
βi||2 which also means

lim
k→∞

βMeta,k = βMeta, Target (14)

B ROBOT EVOLUTION SPECIFICS

We illustrate the kinematic tree of the source robot in Figure 6. During evolution, all revolute joints
gradually freeze to have a range of 0. On the other hand, the prismatic joints are initially frozen with
a range of 0, and some of their ranges gradually increase until the same full range. During robot

12

Under review as a conference paper at ICLR 2023

P

R

F

R
R

R

R
P

R

R

R

R
P
R

R

R

R

R

R

R

R
R

R

R

R

R

R

F

R
R

Free Joint

Prismatic Joint

Revolute Joint

Joints Frozen in Source
Robot, Evolve to be Active in
Target Robot

Joints Active in Source Robot
Hand, Evolve to be Frozen in
Target Robot

Body

P
P

Figure 6: Kinematic tree of dexterous hand robot. All revolute and free joints will gradually freeze
during evolution. The two prismatic joints are initially frozen and evolve to be active.

Hyperparameter Value
RL Discount Factor γ 0.995
GAE 0.97
NPG Step Size 0.0001
Policy Network Hidden Layer Sizes (32,32)
Value Network Hidden Layer Sizes (32,32)
Simulation Epoch Trajectory Length 200
RL Traning Batch Size 12
Evolution Progression Step Size ξ 0.06
Number of Sampled δi for Jacobian Estimation n 72
Evolution Direction Weight Factor λ 1.0
Sample Range Shrink Ratio λ1 0.995
Success Rate Threshold q 0.667

Table 4: The value of hyperparametrs used in our experiments.

evolution, the body of the ring finger gradually shrinks to be zero-size and disappears. Our evolution
solution includes the changing of D = 65 independent robot parameters.

C HYPERPARAMETER AND TRAINING DETAILS

We present the hyperparameters and training procedures of our robot evolution and policy optimiza-
tion. We use PyTorch (Paszke et al., 2019) as our deep learning framework and NPG (Rajeswaran
et al., 2017) as the RL algorithm in all experiments. To fairly compare against HERD (Liu et al.,
2022a), we use the same evolution progression step size ξ as HERD in the experiments. The hyper-
parameters are illustrated in Table 4.

13

	Introduction
	Preliminary
	One-to-Many Robot-to-Robot Policy Transfer
	Problem Statement
	Multi-robot Morphology Matching and Robot Representations
	One-to-many Robot Evolution for Policy Transfer
	Meta Robot Determination

	Related Work
	Experiments
	Experiment Settings
	One-to-three Robot-to-robot Policy Transfer
	Ablation Studies
	Visualizations

	Discussions
	Conclusion
	Proof of Theorem 3.1
	Robot Evolution Specifics
	Hyperparameter and Training Details

