⁰⁰⁰ UNMASKING TRANSFORMERS: ⁰⁰² A THEORETICAL APPROACH TO DATA RECOVERY VIA ⁰⁰³ ATTENTION WEIGHTS

Anonymous authors

Paper under double-blind review

Abstract

In the realm of deep learning, transformers have emerged as a dominant architecture, particularly in both natural language processing and computer vision tasks. However, with their widespread adoption, concerns regarding the security and privacy of the data processed by these models have arisen. In this paper, we address a pivotal question: Can the data fed into transformers be recovered using their attention weights and outputs? We introduce a theoretical framework to tackle this problem. Specifically, we present an algorithm that aims to recover the input data $X \in \mathbb{R}^{d \times n}$ from given attention weights $W = QK^{\top} \in \mathbb{R}^{d \times d}$ and output $B \in \mathbb{R}^{n \times n}$ by minimizing the loss function L(X). This loss function captures the discrepancy between the expected output and the actual output of the transformer. Our findings have significant implications for preventing privacy leakage from attacking open-sourced model weights, suggesting potential vulnerabilities in the model's design from a security and privacy perspective - you may need only a few steps of training to force LLMs to tell their secrets.

025 026 027

043

044

045 046

006

008 009 010

011

013

014

015

016

017

018

019

021

027 1 INTRODUCTION 028

029 In the intricate and constantly evolving domain of deep learning, the transformer architecture has emerged as a game-changing innovation Vaswani et al. (2017). This novel architecture has propelled 031 the state-of-the-art performance in a myriad of tasks, and its potency lies in the underlying mechanism known as the "attention mechanism". The essence of this mechanism can be distilled into its unique 032 interaction between three distinct matrices: the Query (Q), the Key (K), and the Value (V), where 033 the Query matrix (Q) represents the questions or the aspects we're interested in, the Key matrix (K)034 denotes the elements against which these questions are compared or matched, and the Value matrix 035 (V) encapsulates the information we want to retrieve based on the comparisons. These matrices are not just mere multidimensional arrays; they play vital roles in encoding, comparing, and extracting 037 pertinent information from the data.

Given this context, the attention mechanism can be mathematically captured as follows:

Definition 1.1 (Attention matrix computation). Let $Q, K \in \mathbb{R}^{n \times d}$ be two matrices that respectively represent the query and key. Similarly, for a matrix $V \in \mathbb{R}^{n \times d}$ denoting the value, the attention matrix is defined as

$$\operatorname{Att}(Q, K, V) := D^{-1}AV,$$

In this equation, two matrices are introduced: $A \in \mathbb{R}^{n \times n}$ and $D \in \mathbb{R}^{n \times n}$, defined as:

$$A := \exp(QK^{+})$$
 and $D := \operatorname{diag}(A\mathbf{1}_{n}).$

Here, the matrix A represents the relationship scores between the query and key, and D ensures normalization. The computation hence, deftly combines these relationships with the value matrix to output the final attended representation.

In practical large-scale language models ChatGPT (2022); OpenAI (2023), there might be multi-levels of the attention computation. For those multi-level architecture, the feed-forward training can be represented as

$$X_{\ell+1}^{\top} \leftarrow D(X_{\ell})^{-1} \exp(X_{\ell}^{\top} Q_{\ell} K_{\ell} X_{\ell}) X_{\ell}^{\top} V_{\ell}$$

54	Algorithm 1 Sketch of inverse attack to transformer-based models
55 56	Input: Ideal model prediction $B \in \mathbb{R}^{n \times d}$
57	Parameters: Model function f , pretrained weights W , training steps T
0	Output: Leaked input $X \in \mathbb{R}^{n \times d}$ for output B
>	procedure INVERSEATTACK (B, f, W, T)
	Initialize each entry of $X_0 \in \mathbb{R}^{n \times d}$ from Gaussian distribution $\mathcal{N}(0, 1)$.
	$t \leftarrow 1$
	for $t < T$ do
	Compute loss by some specific metric $\ell(\cdot, \cdot)$, such that $L_t := \ell(f(W, X_{t-1}), B)$
	Compute gradient $g_t := \nabla_{X_{t-1}} L_t$
	Compute update for X via first-order or second order algorithm using g_t , denote ΔX
	Update $X_t \leftarrow X_{t-1} - \Delta X$
	$t \leftarrow t + 1$
	end for
	return X_T with guaranteed $L_t \leq \epsilon$ (Theorem 4.3 and Theorem 4.4)
	end procedure

where X_{ℓ} is the input of ℓ -th layer, and $X_{\ell+1}$ is the output of ℓ -th layer, and $Q_{\ell}, K_{\ell}, V_{\ell}$ are the attention weights in ℓ -th layer.

This architecture has particularly played a pivotal role in driving progress across various subdisciplines of natural language processing (NLP) Firat et al. (2016); Choi et al. (2018); Usama et al. (2020); Naseem et al. (2020); Martin et al. (2019); ChatGPT (2022); OpenAI (2023). This trajectory of influence is most prominently embodied by the creation and widespread adoption of Large Language Models (LLMs) like GPT-4 and Claude-3. These models are hallmarks due to their staggering number of parameters and complex architectural designs.

Yet, the very complexity and architectural sophistication that propel the success of transformers come with a host of consequential challenges, making their effective and responsible usage nontrivial.
Prominent among these challenges is the overarching imperative of ensuring data security and privacy Pan et al. (2020); Brown et al. (2022); Kandpal et al. (2022). Within the corridors of the research community, an increasingly pertinent question is emerging regarding the inherent vulnerabilities of these architectures. Specifically,

086

is it possible to know the input data by analyzing the attention weights and model outputs?

To put it in mathematical terms, given a language model represented as B = f(W; X), if one has access to the output B and the attention weights W, is it possible to mathematically invert the model to obtain the original input data X?

Addressing this line of inquiry extends far beyond the realm of academic speculation; it has direct and significant implications for practical, real-world applications. This is especially true when these transformer models interact with data that is either sensitive in nature, like personal health records Cascella et al. (2023), or proprietary, as in the financial sector Wu et al. (2023). With the broader deployment of Large Language Models into environments that adhere to stringent data confidentiality regulations, the mandate for achieving data security becomes essential. In this work, we aim to delve deeply into this issue, striving to offer a nuanced understanding of these potential vulnerabilities while suggesting pathways for ensuring safety in the development, training, and utilization of transformer technologies.

This paper addresses a distinct *attention-based regression model* that differs from the conventional task of finding optimal weights for a given input and output. Specifically, we assume that the weights are already known, and our objective is to invert the output to recover the original data. The key focus of our investigation lies in *identifying the conditions* under which successful inversion of the original input is feasible. This problem holds significant relevance in the context of addressing security concerns associated with attention networks.

- 106
- **Our contribution** In this paper, we formulate the formal regression model for the inverse attack on the soft-max attention layer. Utilizing simplified notations of the loss function, we are able to

calculate a close-form representation of its Hessian. By assuming bounded parameters and adding a
 moderate regularizer, we prove the smoothness (Lipschitz continuity) and strongly-convexity (Positive
 Semi-definiteness) of our regression problem, which leads to the convergence of gradient-based and
 Hessian-based methods that approach the approximate optimal. Therefore, we apply these algorithms
 to invert the attention weights to the input data. We provided numerical experiments to verify the
 reliability of our methods.

114

Roadmap. We arrange the rest of our paper as follows. In Section 2 we present some works related our topic. In Section 3, we state an overview of our techniques, summarizing the method we use to recover data via attention weights. We state our main theories in Section 4. We provide our experiment results in Section 5. We conclude our work in Section 6.

119 120

121

2 RELATED WORKS

This section discusses related works in the LLM community. We summarize the current research on
 LLM security and inversion attack in Section 2.1. We concern about attention computation theory
 and LLM-based regression theory in Section 2.2.

125

126 2.1 LLM SECURITY

127 Security concerns about LLM. Amid LLM advancements, concerns about misuse have arisen 128 Pan et al. (2020); Brown et al. (2022); Kandpal et al. (2022); Kirchenbauer et al. (2023); Vyas et al. 129 (2023); Chu et al. (2023a); Xu et al. (2023); Gao et al. (2023d); Kirchenbauer et al. (2023); He et al. 130 (2022a;b); Gao et al. (2023f); Shen et al. (2023a). Pan et al. (2020) assesses the privacy risks of 131 capturing sensitive data with eight models and introduces defensive strategies, balancing performance 132 and privacy. Brown et al. (2022) asserts that current methods fall short in guaranteeing comprehensive 133 privacy for language models, recommending training on publicly intended text. Kandpal et al. (2022) reveals that the vulnerability of large language models to privacy attacks is significantly tied to data 134 duplication in training sets, emphasizing that deduplicating this data greatly boosts their resistance 135 to such breaches. Kirchenbauer et al. (2023) devised a way to watermark LLM output without 136 compromising quality or accessing LLM internals. Meanwhile, Vyas et al. (2023) introduced near 137 access-freeness (NAF), ensuring generative models, like transformers and image diffusion models, 138 don't closely mimic copyrighted content by over k-bits. 139

140 Inverting the neural network. Originating from the explosion of deep learning, there have been 141 a series of works focused on inverting the neural network Jensen et al. (1999); Lu et al. (1999); 142 Mahendran & Vedaldi (2015); Dosovitskiy & Brox (2016); Zhang et al. (2020d). Jensen et al. (1999) 143 surveys various techniques for neural network inversion, which involves finding input values that 144 produce desired outputs, and highlights its applications in query-based learning, sonar performance 145 analysis, power system security assessment, control, and codebook vector generation. Lu et al. (1999) 146 presents a method for inverting trained neural networks by formulating the problem as a mathematical programming task, enabling various network inversions and enhancing generalization performance.. 147 Mahendran & Vedaldi (2015) explores the reconstruction of image representations, including CNNs, 148 to assess the extent to which it's possible to recreate the original image, revealing that certain layers 149 in CNNs retain accurate visual information with varying degrees of geometric and photometric 150 invariance. Zhang et al. (2020d) presents a novel generative model-inversion attack method that can 151 effectively reverse deep neural networks, particularly in the context of face image reconstruction, and 152 explores the connection between a model's predictive ability and vulnerability to such attacks while 153 noting limitations in using differential privacy for defense.

154

Attacking the Neural Networks. During the development of artificial intelligence, there have been many works on attaching the neural networks Zhu et al. (2019); Wei et al. (2020); Rigaki & Garcia (2020); Huang et al. (2020); Yin et al. (2021); Huang et al. (2021b); Gao et al. (2023c). Several studies Zhu et al. (2019); Wei et al. (2020); Rigaki & Garcia (2020); Yin et al. (2021) have warned that local training data can be compromised using only exchanged gradient information. These methods start with dummy data and gradients, and through gradient descent, they empirically show that the original data can be fully reconstructed. A follow-up study Zhao et al. (2020) specifically focuses on classification tasks and finds that the real labels can also be accurately recovered. Other

types of attacks include membership and property inference Shokri et al. (2017); Melis et al. (2019),
the use of Generative Adversarial Networks (GANs) Hitaj et al. (2017); Goodfellow et al. (2014),
and additional machine-learning techniques McPherson et al. (2016); Papernot et al. (2016). A recent
paper Wang et al. (2023) uses tensor decomposition for gradient leakage attacks but is limited by its
inefficiency and focus on over-parametrized networks.

167 168 169

170

2.2 ATTENTION COMPUTATION AND REGRESSION

171 Attention Computation Theory. Following the rise of LLM, numerous studies have emerged on 172 attention computation Kitaev et al. (2020); Tay et al. (2020); Chen et al. (2021); Zandieh et al. (2023); 173 Tarzanagh et al. (2023); Sanford et al. (2023); Panigrahi et al. (2023a); Zhang et al. (2020a); Arora & 174 Goyal (2023); Tay et al. (2021); Deng et al. (2023b); Xia et al. (2023); Kacham et al. (2023). LSH techniques approximate attention, and based on them, the KDEformer offers a notable dot-product 175 attention approximation Zandieh et al. (2023). Recent works Alman & Song (2023); Brand et al. 176 (2023); Deng et al. (2023c) explored diverse attention computation methods and strategies to enhance 177 model efficiency. On the optimization front, Zhang et al. (2020b) highlighted that adaptive methods 178 excel over SGD due to heavy-tailed noise distributions. Other insights include the emergence of the 179 KTIW property Snell et al. (2021) and various regression problems inspired by attention computation 180 Gao et al. (2023a); Li et al. (2023c;b), revealing deeper nuances of attention models. 181

182

183 Theoretical Approaches to Understanding LLMs. Recent strides have been made in under-184 standing and optimizing regression models using various activation functions. Research on over-185 parameterized neural networks has examined exponential and hyperbolic activation functions for their convergence properties and computational efficiency Gao et al. (2023a); Li et al. (2023c); Deng 187 et al. (2023b); Gao et al. (2023d); Li et al. (2023a); Gao et al. (2023e); Song et al. (2023); Sinha et al. (2023); Chu et al. (2023a;b); Shen et al. (2023b). Modifications such as regularization terms 188 and algorithmic innovations, like a convergent approximation Newton method, have been introduced 189 to enhance their performance Li et al. (2023c); Deng et al. (2022). Studies have also leveraged 190 tensor tricks to vectorize regression models, allowing for advanced Lipschitz and time-complexity 191 analyses Gao et al. (2023b); Deng et al. (2023a). Simultaneously, the field is seeing innovations in 192 optimization algorithms tailored for LLMs. Techniques like block gradient estimators have been 193 employed for huge-scale optimization problems, significantly reducing computational complexity 194 Cai et al. (2021). Unique approaches like Direct Preference Optimization bypass the need for reward 195 models, fine-tuning LLMs based on human preference data Rafailov et al. (2023). Additionally, 196 advancements in second-order optimizers have relaxed the conventional Lipschitz Hessian assump-197 tions, providing more flexibility in convergence proofs Liu et al. (2023). Also, there is a series of 198 work on understanding fine-tuning Malladi et al. (2023a;b); Panigrahi et al. (2023b). Collectively, 199 these theoretical contributions are refining our understanding and optimization of LLMs, even as they 200 introduce new techniques to address challenges such as non-guaranteed Hessian Lipschitz conditions.

201 202

Optimization and Convergence of Deep Neural Networks. Prior research Li & Liang (2018); 203 Du et al. (2018); Allen-Zhu et al. (2019a;b); Arora et al. (2019a;b); Song & Yang (2019); Cai et al. 204 (2019); Zhang et al. (2019); Cao & Gu (2019); Zou & Gu (2019); Oymak & Soltanolkotabi (2020); Ji 205 & Telgarsky (2019); Lee et al. (2020); Huang et al. (2021a); Zhang et al. (2020c); Brand et al. (2020); 206 Zhang et al. (2020a); Song et al. (2021); Alman et al. (2023); Munteanu et al. (2022); Zhang (2022); 207 Gao et al. (2023a); Li et al. (2023c); Qin et al. (2023) on the optimization and convergence of deep 208 neural networks has been crucial in understanding their exceptional performance across various tasks. 209 These studies have also contributed to enhancing the safety and efficiency of AI systems. In Gao 210 et al. (2023a) they define a neural function using an exponential activation function and apply the 211 gradient descent algorithm to find optimal weights. In Li et al. (2023c), they focus on the exponential 212 regression problem inspired by the attention mechanism in large language models. They address the 213 non-convex nature of standard exponential regression by considering a regularization version that is convex. They propose an algorithm that leverages input sparsity to achieve efficient computation. 214 The algorithm has a logarithmic number of iterations and requires nearly linear time per iteration, 215 making use of the sparsity of the input matrix.

219

220

221

222

224

225

226 227 228

229

235

241

249

250 251

253 254

255

256

265

216 3 RECOVERING DATA VIA ATTENTION WEIGHTS

In this section, we propose our theoretical method to recover the training data from trained transformer weights and outputs. In Section 3.1, we provide a detailed description of our approach. In Section 3.2, we introduce our simplified notations to calculate the Hessian of the loss function. In Section 3.3, we state the decomposed expression of the Hessian.

3.1 TRAINING OBJECTIVE OF ATTENTION INVERSION ATTACK

In this study, we propose a novel technique for inverting the attention weights of a transformer model using Hessian-based algorithms. We consider the single-layer soft-max attention function

$$f(W;X) := D(X)^{-1} \exp(X^{\top} W X) V$$

, where $W = KQ^{\top} \in \mathbb{R}^{d \times d}$ represents the attention weights and $D(X) = \text{diag}(\exp(X^{\top}WX)) \in \mathbb{R}^{n \times n}$ is the diagonal matrix for normalization.

Our aim is to find the input $X \in \mathbb{R}^{d \times n}$ that minimizes the Frobenius norm of the difference between f(W; X) and the output *B*. Here, dimension *d* denotes the length of a token, dimension *n* denotes the total number of the tokens in *X*. To achieve this, we introduce an algorithm that minimizes the loss function L(X), defined as follows:

Definition 3.1 (Regression model). Given the attention weights $W = KQ^{\top} \in \mathbb{R}^{d \times d}$, $V \in \mathbb{R}^{d \times d}$ and output $B \in \mathbb{R}^{n \times d}$, the goal is find $X \in \mathbb{R}^{d \times n}$ such that

$$L(X) := \|D(X)^{-1} \exp(X^{\top} W X) X^{\top} V - B\|_F^2 + L_{\text{reg}},$$
(1)

Figure 1: Visualization of our loss function.

 $L_{\rm reg}$ captures the additional regularization terms which we introduce later. This loss function quantifies the discrepancy between the expected output and the actual output of the transformer.

In our approach, we leverage Hessian decomposition to efficiently compute the Hessian matrix and apply a second-order method to approximate the optimal input X. Utilizing the Hessian, we can gain insights into the curvature of the loss function, which improves the efficiency of finding the approximate optimal solution.

By integrating Hessian decomposition and second-order optimization techniques (Anstreicher (2000);
Lee et al. (2019); Cohen et al. (2019); Jiang et al. (2021); Huang et al. (2022); Gu & Song (2022); Gu et al. (2023)), our proposed algorithm provides a promising approach for addressing the challenging task of inverting attention weights in transformer models.

266 3.2 MODEL SIMPLIFICATION

Due to the complexity of the loss function (Eq. (1)), it is challenging to give the explicit formula of its Hessian. To simplify the computation, we introduce several notations (See Figure 2 for visualization):

Exponential Function: $u(X)_i := \exp(X^\top W X_{*,i})$

Definition 3.2 (Hessian split). We use $H_k^{(i_1,i_2)} \in \mathbb{R}^{d \times d}$ to represent the square matrix corresponding to the k-th case in Hessian computation. Notice that the j_1, j_2 -th entry of $H_k^{(i_1,i_2)}$ is $\frac{dc(X)_{i_0,j_0}}{dx_{i_1,j_2}x_{i_2,j_2}}$. Then, the Hessian of the loss is a matrix partition consists of matrices of the above five cases. The formal representation can be found in Appendix D.1.

The reason we introduce the Hessian split is that the square matrices of the same type share the similar formula. Therefore, we can compute the expression of each type (see detailed calculation in Section D) to derive $\frac{dc(X)_{i_0,j_0}}{dx_{i_1,j_2}x_{i_2,j_2}}$. This gives us the information of the Hessian of the loss function.

4 MAIN RESULTS

Now, we state the analysis of the correctness of our inversion attack strategy. Assuming the parameters are bounded, we verify the Hession of our loss function is Lipschitz continuous and PSD lowerbounded. Therefore, gradient-based and Hessian-based methods are used to solve the regularized regression model. We defer the proofs to the Appendix.

Properties of the Hessian We assume an unified upper bound for all parameters in our model, including the weight W, the value V, the output B, and the decision variable X.

Assumption 4.1 (Bounded Parameters, Informal version of Assumption F.1). We assume $||W|| \le R$, $||V|| \le R$, $||X|| \le R$, $b_{i,j} \le R^2$, where $||\cdot||$ is the matrix 2-norm and R > 1 is some constant.

Next, we state the bounds for the Hessian of the loss function in terms of poly(n, d, R).

Theorem 4.2 (Properties of the Hessian, Informal version of Theorem G.12 and Theorem H.2). We assume that Assumption 4.1 holds. Then, the Hessian of L(X) is Lipschitz continuous with Lipschitz constant being $O(n^{3.5}d^{3.5}R^{10})$. Also, it has PSD lower bound: $L(X) \succeq -O(ndR^8) \cdot \mathbf{I}_{nd}$.

Therefore, we define the regularization term to be $L_{\text{reg}} := O(ndR^8) \cdot \|\operatorname{vec}(X)\|_2^2$ to have the PSD guarantee for our regression problem.

355

330

331

332 333 334

335 336

341

344

345

346

Convergence analysis With above properties of the loss function, we have the convergence results
 stated as follows. Theorem 4.3 shows the correctness of the gradient-based method. Theorem 4.3
 shows the correctness of the Hessian-based method. The algorithm for approximating PSD matrices
 in Deng et al. (2022) can be applied to approximate the Hessian efficiently.

Theorem 4.3 (First-Order Main Result, Informal version of Theorem I.2). We assume that Assumption 4.1 holds. Let X^* denote the optimal point of the regularized regression model defined in Definition 3.1. Then, for any accuracy parameter $\epsilon \in (0, 0.1)$, an algorithm based on the gradientdescent method can be employed to recover the initial data. It outputs a matrix $\widetilde{X} \in \mathbb{R}^{d \times n}$ satisfying $\|\widetilde{X} - X^*\|_F \le \epsilon$. The algorithm runs $T = O(\text{poly}(n, d, R) \cdot \log(\|X_0 - X^*\|_F/\epsilon))$ iterations, with execution time for each iteration being poly(n, d), where the degree of d depends on the current matrix computation time.

367 Theorem 4.4 (Second-Order Main Result, Informal version of Theorem I.3). We assume that 368 Assumption 4.1 holds. Let X^* denote the optimal point of the regularized regression model defined 369 in Definition 3.1. Suppose we choose an initial point X_0 such that $M \cdot ||X_0 - X^*||_F \leq O(ndR^8)$ 370 where $M = O(n^3 d^3 R^{10})$. Then, for any accuracy parameter $\epsilon \in (0, 0.1)$ and any failure probability $\delta \in (0, 0.1)$, an algorithm based on the approximation-Newton method can be employed to recover 371 372 the initial data. It outputs a matrix $\widetilde{X} \in \mathbb{R}^{d \times n}$ satisfying $\|\widetilde{X} - X^*\|_F \leq \epsilon$ with a probability at least $1 - \delta$. The algorithm runs $T = O(\log(|X_0 - X^*|_F/\epsilon))$ iterations, with execution time 373 374 for each iteration being $poly(n, d, log(1/\delta))$, where the degree of d depends on the current matrix computation time. 375

These theorems show that we can utilize first-order method and second-order method to search an ϵ -optimal approximation to the real input data X within a preferable running time.

378		4-m	
379	step	recovering text	loss
380	0	GrapeJUST once received cancer treatment at this hospital.	4.74
381	2500	precious quoted once received cancer treatment at this hospital.	4.61
382	5000	grass Tradable once received cancer treatment at this hospital.	4.50
383	6500	acrylic Bob once received cancer treatment at this hospital.	4.29
384	7500	Alan Bob once received cancer treatment at this hospital.	2.27

Table 1: Visualization of the results. Here, the original target text is **Alan Bob once received cancer** treatment at this hospital. We mask the sensitive data Alan Bob and run the gradient-descent inverse attack to recover. The blue-colored texts are the outputs in each iteration. The column on the right shows the value of the cross-entropy loss. It can be seen that the original data is leaked after 7500 steps, which echoes our convergence analysis.

EXPERIMENT

In this section, to verify the accuracy of our theory, we conducted a simple experiment to evaluate how our approach recovers data from the pre-trained weights in the LLM. In Section 5.1, we provide the setup and the design of our data-attack experiment. Next, we discuss our results in Section 5.2. Supplementary experimental details are provided in Appendix J.

5.1 EXPERIMENT DESIGN AND SETUP

We use the pre-trained language model GPT-2-small Radford et al. (2019). For the dataset, we utilize GPT-4 Achiam et al. (2023); Bubeck et al. (2023) to help us create hundreds of text data containing virtual information. This can be viewed as the toy or the synthetic dataset. Then, we use the synthetic dataset to fine-tune the pre-trained GPT-2-small with Adam optimizer Kingma & Ba (2014).

For the recovery part, we first choose one text from the dataset and convert it into one-hot vectors through the model's vocabulary, denoted by $S^* \in \mathbb{R}^{n \times N}$ where N is the vocabulary size. Notice that GPT-2-small is trained to conduct next-token prediction by causal mask, namely, it uses the information of the first k words to predict the (k + 1)-th word. Therefore, we split S^* to the masked part $S_1 \in \mathbb{R}^{m \times N}$ and the unmasked part $S_2 \in \mathbb{R}^{(n-m) \times N}$. Then, we use S_2 as part of the initial input and we introduce our inversion attack approach to recover S_1 .

We initialize our recovery by a random matrix $X^0 \in \mathbb{R}^{m \times N}$ where each entry is sampled from $\mathcal{N}(0,1)$. We compute $S_1^0 \in \mathbb{R}^{m \times N} := \operatorname{softmax}(X^0)$, and concatenate it with S_2 to form $S^0 \in \mathbb{R}^{m \times N}$ $\mathbb{R}^{n \times N} = \begin{bmatrix} S_1^0 \\ S_2^0 \end{bmatrix}$, then input it into the model. We denote the GPT-2-small model by a mapping $F : \mathbb{R}^{n \times N} \to \mathbb{R}^{n \times N}$. For any input matrix $A \in \mathbb{R}^{n \times N}$, the output of GPT-2-small $F(A) \in \mathbb{R}^{n \times N}$ will consist of row-wise soft-max vectors since we add a soft-max operation to the output of the last 432 layer to compute the probability distribution. We use $S^t \in \mathbb{R}^{n \times N}$ to represent the matrix of soft-max 433 vectors we recover at the t-th timestamp for integer $t \ge 0$ by minimizing the loss. 434

We define our problem as minimizing the cross-entropy loss which is calculated as $L(F(S^t), S^t) :=$ 435 $\sum_{i=1}^{n-1} \sum_{j=1}^{N} -S_{i+1,j}^{t} \cdot \log(F(S^{t})_{i,j}).$ 436

Remark 5.1. We use the cross-entropy loss here instead since it is commonly used in the training 438 of current LLMs. Note that our approach to analyze the canonical softmax loss regression can be 439 modified to show the correctness of the cross-entropy loss regression. Similar topics have been 440 discussed in other LLM-related literature, e.g. Gao et al. (2023c).

We use the gradient-descent method to conduct the attack. The update rule is defined as:

$$X_{t+1} \leftarrow X_t - \eta \nabla_{X_t} L(F(S^t), S^t),$$

446 where we use X_t to denote the recovering input at t-th timestamp for integer $t \ge 0$. Note that η 447 denotes the learning rate. S^t is computed by X_t as we mentioned above.

448 The training involves Adam optimizer, and all the hyper-parameters are set to be defaults. Totally, we 449 trained 10000 steps for the input recovery. All the experiments are repeated 1000 times to ensure 450 reliability. 451

452 453

454

437

441 442

443 444

445

5.2 Results

455 We state our results of recovery in Figure 3. We recorded the mean, maximum, and minimum loss during the training. We also recorded the success rate at each stage in the 10000 updates. Notice 456 that the success rate at the k-th update is computed by the count of successful experiments (i.e., the 457 masked input data is recovered) at the k-th update divided by 1000, which is the repeated time. It's 458 noteworthy that after 5000 steps, the success rate greatly increases, eventually, it demonstrates a high 459 value of 0.92. This result verifies our attacking method has a high probability of recovery training, 460 especially for private and sensitive data from open-source weights of language models. 461

Furthermore, we showcase one example of the recovery attacks in Table 1, where we create fake 462 data "Alan Bob once received cancer treatment at this hospital.". Accordingly, the name "Alan Bob" 463 in the context is private and masked. We cut these two words and converted the sentence " once 464 received cancer treatment at this hospital." into one-hot vectors as S_2 in Section 5.1. Next, we run the 465 inverse attack and record the output and loss value at each step. We use blue text to represent the 466 text that is predicted by our algorithm. As we can see from Table 1, the recovering text is initially 467 GrapeJUST with the cross-entropy loss 4.74 at the beginning. Then, at the 6500-th step of recovering, 468 our algorithm outputs acrylic Bob, where the word "Bob" is successfully recovered. Finally, at the 469 7500-th step, our algorithm successfully recovers the target text Alan Bob. 470

471

6 CONCLUSION

472 473 474

In this study, we have presented a theoretical approach for conducting the inverse recovery on the 475 input data using weights and outputs. 476

We propose the mathematical framework of the attention-inspired mechanism regression model. Our 477 theoretical analysis part consists of the efficient calculation of the Hessian and the verification of its 478 smoothness and strongly-convexity. With the aim of these properties, we introduce gradient-based 479 and Hessian-based to do the inverse recovery. Then, we show the reliability of our proposed method 480 by experiments on text reconstruction using GPT-2-small. 481

482 The insights gained from this research are intended to deepen our understanding and facilitate the development of more secure and robust transformer models. By doing so, we strive to foster 483 responsible and ethical advancements in the field of deep learning. This work lays the groundwork 484 for future research and development aimed at fortifying transformer technologies against potential 485 threats and vulnerabilities.

486 REFERENCES

493

532

- Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
 Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
 arXiv preprint arXiv:2303.08774, 2023.
- Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over parameterization. In *International conference on machine learning*, pp. 242–252. PMLR, 2019a.
- Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. On the convergence rate of training recurrent neural
 networks. *Advances in neural information processing systems*, 32, 2019b.
- Josh Alman and Zhao Song. Fast attention requires bounded entries. In *NeurIPS*. arXiv preprint arXiv:2302.13214, 2023.
- Josh Alman, Jiehao Liang, Zhao Song, Ruizhe Zhang, and Danyang Zhuo. Bypass exponential time
 preprocessing: Fast neural network training via weight-data correlation preprocessing. In *NeurIPS*.
 arXiv preprint arXiv:2211.14227, 2023.
- Kurt M Anstreicher. The volumetric barrier for semidefinite programming. *Mathematics of Operations Research*, 2000.
- Sanjeev Arora and Anirudh Goyal. A theory for emergence of complex skills in language models.
 arXiv preprint arXiv:2307.15936, 2023.
- Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis of optimization and generalization for overparameterized two-layer neural networks. In *International Conference on Machine Learning*, pp. 322–332. PMLR, 2019a.
- Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Russ R Salakhutdinov, and Ruosong Wang. On
 exact computation with an infinitely wide neural net. *Advances in neural information processing systems*, 32, 2019b.
- Jan van den Brand, Binghui Peng, Zhao Song, and Omri Weinstein. Training (overparametrized)
 neural networks in near-linear time. *arXiv preprint arXiv:2006.11648*, 2020.
- Jan van den Brand, Zhao Song, and Tianyi Zhou. Algorithm and hardness for dynamic attention
 maintenance in large language models. *arXiv preprint arXiv:2304.02207*, 2023.
- Hannah Brown, Katherine Lee, Fatemehsadat Mireshghallah, Reza Shokri, and Florian Tramèr.
 What does it mean for a language model to preserve privacy? In *Proceedings of the 2022 ACM Conference on Fairness, Accountability, and Transparency*, pp. 2280–2292, 2022.
- Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
 Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general intelligence:
 Early experiments with gpt-4. *arXiv preprint arXiv:2303.12712*, 2023.
- HanQin Cai, Yuchen Lou, Daniel Mckenzie, and Wotao Yin. A zeroth-order block coordinate descent algorithm for huge-scale black-box optimization. *arXiv preprint arXiv:2102.10707*, 2021.
- Tianle Cai, Ruiqi Gao, Jikai Hou, Siyu Chen, Dong Wang, Di He, Zhihua Zhang, and Liwei Wang.
 Gram-gauss-newton method: Learning overparameterized neural networks for regression problems.
 arXiv preprint arXiv:1905.11675, 2019.
- Yuan Cao and Quanquan Gu. Generalization bounds of stochastic gradient descent for wide and deep
 neural networks. *Advances in neural information processing systems*, 32, 2019.
- Marco Cascella, Jonathan Montomoli, Valentina Bellini, and Elena Bignami. Evaluating the feasibility of chatgpt in healthcare: an analysis of multiple clinical and research scenarios. *Journal of Medical Systems*, 47(1):33, 2023.
- 539 ChatGPT. Optimizing language models for dialogue. *OpenAI Blog*, November 2022. URL https://openai.com/blog/chatgpt/.

540 541 542	Beidi Chen, Zichang Liu, Binghui Peng, Zhaozhuo Xu, Jonathan Lingjie Li, Tri Dao, Zhao Song, Anshumali Shrivastava, and Christopher Re. Mongoose: A learnable lsh framework for efficient neural network training. In <i>International Conference on Learning Representations</i> , 2021.
543 544 545	Heeyoul Choi, Kyunghyun Cho, and Yoshua Bengio. Fine-grained attention mechanism for neural machine translation. <i>Neurocomputing</i> , 284:171–176, 2018.
546 547	Timothy Chu, Zhao Song, and Chiwun Yang. How to protect copyright data in optimization of large language models? <i>arXiv preprint arXiv:2308.12247</i> , 2023a.
548 549 550	Timothy Chu, Zhao Song, and Chiwun Yang. Fine-tune language models to approximate unbiased in-context learning. <i>arXiv preprint arXiv:2310.03331</i> , 2023b.
551 552	Michael B Cohen, Yin Tat Lee, and Zhao Song. Solving linear programs in the current matrix multiplication time. In <i>STOC</i> , 2019.
553 554 555	Yichuan Deng, Zhao Song, and Omri Weinstein. Discrepancy minimization in input sparsity time. <i>arXiv preprint arXiv:2210.12468</i> , 2022.
556 557	Yichuan Deng, Zhihang Li, Sridhar Mahadevan, and Zhao Song. Zero-th order algorithm for softmax attention optimization. <i>arXiv preprint arXiv:2307.08352</i> , 2023a.
558 559	Yichuan Deng, Zhihang Li, and Zhao Song. Attention scheme inspired softmax regression. <i>arXiv</i> preprint arXiv:2304.10411, 2023b.
561 562 563	Yichuan Deng, Sridhar Mahadevan, and Zhao Song. Randomized and deterministic attention sparsifi- cation algorithms for over-parameterized feature dimension. <i>arxiv preprint: arxiv 2304.03426</i> , 2023c.
564 565 566	Yichuan Deng, Zhao Song, and Shenghao Xie. Convergence of two-layer regression with nonlinear units. <i>arXiv preprint arXiv:2308.08358</i> , 2023d.
567 568 569	Alexey Dosovitskiy and Thomas Brox. Inverting visual representations with convolutional networks. In <i>Proceedings of the IEEE conference on computer vision and pattern recognition</i> , pp. 4829–4837, 2016.
570 571	Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes over-parameterized neural networks. <i>arXiv preprint arXiv:1810.02054</i> , 2018.
572 573 574	Orhan Firat, Kyunghyun Cho, and Yoshua Bengio. Multi-way, multilingual neural machine translation with a shared attention mechanism. <i>arXiv preprint arXiv:1601.01073</i> , 2016.
575 576	Yeqi Gao, Sridhar Mahadevan, and Zhao Song. An over-parameterized exponential regression. <i>arXiv</i> preprint arXiv:2303.16504, 2023a.
577 578 579 580	Yeqi Gao, Zhao Song, and Shenghao Xie. In-context learning for attention scheme: from single soft- max regression to multiple softmax regression via a tensor trick. <i>arXiv preprint arXiv:2307.02419</i> , 2023b.
581 582 583	Yeqi Gao, Zhao Song, and Shenghao Xie. In-context learning for attention scheme: from single soft- max regression to multiple softmax regression via a tensor trick. <i>arXiv preprint arXiv:2307.02419</i> , 2023c.
584 585 586	Yeqi Gao, Zhao Song, and Xin Yang. Differentially private attention computation. <i>arXiv preprint arXiv:2305.04701</i> , 2023d.
587 588	Yeqi Gao, Zhao Song, Xin Yang, and Ruizhe Zhang. Fast quantum algorithm for attention computa- tion. <i>arXiv preprint arXiv:2307.08045</i> , 2023e.
589 590 591	Yeqi Gao, Zhao Song, and Junze Yin. Gradientcoin: A peer-to-peer decentralized large language models. <i>arXiv preprint arXiv:2308.10502</i> , 2023f.
592 593	Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. <i>Advances in neural information processing systems</i> , 27, 2014.

594 595 596	Yuzhou Gu and Zhao Song. A faster small treewidth sdp solver. <i>arXiv preprint arXiv:2211.06033</i> , 2022.
597 598	Yuzhou Gu, Zhao Song, and Lichen Zhang. A nearly-linear time algorithm for structured support vector machines. <i>arXiv preprint arXiv:2307.07735</i> , 2023.
599 600 601	Xuanli He, Qiongkai Xu, Lingjuan Lyu, Fangzhao Wu, and Chenguang Wang. Protecting intellec- tual property of language generation apis with lexical watermark. In <i>Proceedings of the AAAI</i> <i>Conference on Artificial Intelligence</i> , volume 36, pp. 10758–10766, 2022a.
602 603 604 605	Xuanli He, Qiongkai Xu, Yi Zeng, Lingjuan Lyu, Fangzhao Wu, Jiwei Li, and Ruoxi Jia. Cater: Intellectual property protection on text generation apis via conditional watermarks. <i>Advances in</i> <i>Neural Information Processing Systems</i> , 35:5431–5445, 2022b.
606 607 608	Briland Hitaj, Giuseppe Ateniese, and Fernando Perez-Cruz. Deep models under the gan: information leakage from collaborative deep learning. In <i>Proceedings of the 2017 ACM SIGSAC conference on computer and communications security</i> , pp. 603–618, 2017.
609 610 611	Baihe Huang, Xiaoxiao Li, Zhao Song, and Xin Yang. Fl-ntk: A neural tangent kernel-based framework for federated learning analysis. In <i>International Conference on Machine Learning</i> , pp. 4423–4434. PMLR, 2021a.
613 614 615	Baihe Huang, Shunhua Jiang, Zhao Song, Runzhou Tao, and Ruizhe Zhang. Solving sdp faster: A robust ipm framework and efficient implementation. In 2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS), pp. 233–244. IEEE, 2022.
616 617 618	Yangsibo Huang, Zhao Song, Kai Li, and Sanjeev Arora. Instahide: Instance-hiding schemes for private distributed learning. In <i>International conference on machine learning</i> , pp. 4507–4518. PMLR, 2020.
619 620 621	Yangsibo Huang, Samyak Gupta, Zhao Song, Kai Li, and Sanjeev Arora. Evaluating gradient inversion attacks and defenses in federated learning. <i>Advances in Neural Information Processing Systems</i> , 34:7232–7241, 2021b.
623 624 625	Craig A Jensen, Russell D Reed, Robert Jackson Marks, Mohamed A El-Sharkawi, Jae-Byung Jung, Robert T Miyamoto, Gregory M Anderson, and Christian J Eggen. Inversion of feedforward neural networks: algorithms and applications. <i>Proceedings of the IEEE</i> , 87(9):1536–1549, 1999.
626 627	Ziwei Ji and Matus Telgarsky. Polylogarithmic width suffices for gradient descent to achieve arbitrarily small test error with shallow relu networks. <i>arXiv preprint arXiv:1909.12292</i> , 2019.
628 629 630	Shunhua Jiang, Zhao Song, Omri Weinstein, and Hengjie Zhang. Faster dynamic matrix inverse for faster lps. In <i>STOC</i> , 2021.
631 632	Praneeth Kacham, Vahab Mirrokni, and Peilin Zhong. Polysketchformer: Fast transformers via sketches for polynomial kernels. <i>arXiv preprint arXiv:2310.01655</i> , 2023.
633 634 635 636	Nikhil Kandpal, Eric Wallace, and Colin Raffel. Deduplicating training data mitigates privacy risks in language models. In <i>International Conference on Machine Learning</i> , pp. 10697–10707. PMLR, 2022.
637 638	Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. <i>arXiv preprint arXiv:1412.6980</i> , 2014.
639 640 641	John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, Ian Miers, and Tom Goldstein. A watermark for large language models. <i>arXiv preprint arXiv:2301.10226</i> , 2023.
642 643	Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. <i>arXiv</i> preprint arXiv:2001.04451, 2020.
644 645 646	Jason D Lee, Ruoqi Shen, Zhao Song, Mengdi Wang, et al. Generalized leverage score sampling for neural networks. <i>Advances in Neural Information Processing Systems</i> , 33:10775–10787, 2020.
647	Yin Tat Lee, Zhao Song, and Qiuyi Zhang. Solving empirical risk minimization in the current matrix multiplication time. In <i>Conference on Learning Theory (COLT)</i> , pp. 2140–2157. PMLR, 2019.

648 649 650	Shuai Li, Zhao Song, Yu Xia, Tong Yu, and Tianyi Zhou. The closeness of in-context learning and weight shifting for softmax regression. <i>arXiv preprint arXiv:2304.13276</i> , 2023a.
651 652	Yuanzhi Li and Yingyu Liang. Learning overparameterized neural networks via stochastic gradient descent on structured data. <i>Advances in neural information processing systems</i> , 31, 2018.
653 654	Yuchen Li, Yuanzhi Li, and Andrej Risteski. How do transformers learn topic structure: Towards a mechanistic understanding. <i>arXiv preprint arXiv:2303.04245</i> , 2023b.
655 656 657	Zhihang Li, Zhao Song, and Tianyi Zhou. Solving regularized exp, cosh and sinh regression problems. <i>arXiv preprint</i> , 2303.15725, 2023c.
658 659 660	Hong Liu, Zhiyuan Li, David Hall, Percy Liang, and Tengyu Ma. Sophia: A scalable stochastic second-order optimizer for language model pre-training. <i>arXiv preprint arXiv:2305.14342</i> , 2023.
661 662 663	Bao-Liang Lu, Hajime Kita, and Yoshikazu Nishikawa. Inverting feedforward neural networks using linear and nonlinear programming. <i>IEEE Transactions on Neural networks</i> , 10(6):1271–1290, 1999.
664 665 666	Aravindh Mahendran and Andrea Vedaldi. Understanding deep image representations by inverting them. In <i>Proceedings of the IEEE conference on computer vision and pattern recognition</i> , pp. 5188–5196, 2015.
668 669 670	Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex Damian, Jason D Lee, Danqi Chen, and Sanjeev Arora. Fine-tuning language models with just forward passes. <i>arXiv preprint arXiv:2305.17333</i> , 2023a.
671 672 673	Sadhika Malladi, Alexander Wettig, Dingli Yu, Danqi Chen, and Sanjeev Arora. A kernel-based view of language model fine-tuning. In <i>International Conference on Machine Learning</i> , pp. 23610–23641. PMLR, 2023b.
674 675 676 677	Louis Martin, Benjamin Muller, Pedro Javier Ortiz Suarez, Yoann Dupont, Laurent Romary, Eric Ville- monte de La Clergerie, Djame Seddah, and Benoit Sagot. Camembert: a tasty french language model. <i>arXiv preprint arXiv:1911.03894</i> , 2019.
678 679	Richard McPherson, Reza Shokri, and Vitaly Shmatikov. Defeating image obfuscation with deep learning. <i>arXiv preprint arXiv:1609.00408</i> , 2016.
680 681 682 683	Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vitaly Shmatikov. Exploiting unintended feature leakage in collaborative learning. In <i>2019 IEEE symposium on security and privacy (SP)</i> , pp. 691–706. IEEE, 2019.
684 685 686	Alexander Munteanu, Simon Omlor, Zhao Song, and David Woodruff. Bounding the width of neural networks via coupled initialization a worst case analysis. In <i>International Conference on Machine Learning</i> , pp. 16083–16122. PMLR, 2022.
687 688 689	Usman Naseem, Imran Razzak, Katarzyna Musial, and Muhammad Imran. Transformer based deep intelligent contextual embedding for twitter sentiment analysis. <i>Future Generation Computer Systems</i> , 113:58–69, 2020.
690 691	OpenAI. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.
692 693 694 695	Samet Oymak and Mahdi Soltanolkotabi. Toward moderate overparameterization: Global convergence guarantees for training shallow neural networks. <i>IEEE Journal on Selected Areas in Information Theory</i> , 1(1):84–105, 2020.
696 697	Xudong Pan, Mi Zhang, Shouling Ji, and Min Yang. Privacy risks of general-purpose language models. In 2020 IEEE Symposium on Security and Privacy (SP), pp. 1314–1331. IEEE, 2020.
698 699 700	Abhishek Panigrahi, Sadhika Malladi, Mengzhou Xia, and Sanjeev Arora. Trainable transformer in transformer. <i>arXiv preprint arXiv:2307.01189</i> , 2023a.
701	Abhishek Panigrahi, Nikunj Saunshi, Haoyu Zhao, and Sanjeev Arora. Task-specific skill localization in fine-tuned language models. <i>arXiv preprint arXiv:2302.06600</i> , 2023b.

702 703 704	Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik, and Ananthram Swami. The limitations of deep learning in adversarial settings. In 2016 IEEE European symposium on security and privacy (EuroS&P), pp. 372–387. IEEE, 2016.		
705 706 707 708 709	Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep learning library. <i>Advances in neural information processing systems</i> , 32, 2019.		
710 711	Lianke Qin, Zhao Song, and Yuanyuan Yang. Efficient sgd neural network training via sublinear activated neuron identification. <i>arXiv preprint arXiv:2307.06565</i> , 2023.		
712 713 714	Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language models are unsupervised multitask learners. <i>OpenAI blog</i> , 1(8):9, 2019.		
715 716 717	Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D.Manning, and Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model. <i>arXiv</i> preprint arXiv:2305.18290, 2023.		
718 719 720	Maria Rigaki and Sebastian Garcia. A survey of privacy attacks in machine learning. ACM Computing Surveys, 2020.		
721 722	Clayton Sanford, Daniel Hsu, and Matus Telgarsky. Representational strengths and limitations of transformers. <i>arXiv preprint arXiv:2306.02896</i> , 2023.		
723 724 725	Hanpu Shen, Cheng-Long Wang, Zihang Xiang, Yiming Ying, and Di Wang. Differentially private non-convex learning for multi-layer neural networks. <i>arXiv preprint arXiv:2310.08425</i> , 2023a.		
726 727	Lingfeng Shen, Aayush Mishra, and Daniel Khashabi. Do pretrained transformers really learn in-context by gradient descent? <i>arXiv preprint arXiv:2310.08540</i> , 2023b.		
728 729 730 721	Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference attacks against machine learning models. In 2017 IEEE symposium on security and privacy (SP), pp. 3–18. IEEE, 2017.		
732 733	Ritwik Sinha, Zhao Song, and Tianyi Zhou. A mathematical abstraction for balancing the trade-off between creativity and reality in large language models. <i>arXiv preprint arXiv:2306.02295</i> , 2023.		
734 735 736	Charlie Snell, Ruiqi Zhong, Dan Klein, and Jacob Steinhardt. Approximating how single head attention learns. <i>arXiv preprint arXiv:2103.07601</i> , 2021.		
737 738	Zhao Song and Xin Yang. Quadratic suffices for over-parametrization via matrix chernoff bound. <i>arXiv preprint arXiv:1906.03593</i> , 2019.		
739 740 741	Zhao Song, Lichen Zhang, and Ruizhe Zhang. Training multi-layer over-parametrized neural network in subquadratic time. <i>arXiv preprint arXiv:2112.07628</i> , 2021.		
742 743	Zhao Song, Junze Yin, and Lichen Zhang. Solving attention kernel regression problem via pre- conditioner. <i>arXiv preprint arXiv:2308.14304</i> , 2023.		
744 745 746	Davoud Ataee Tarzanagh, Yingcong Li, Christos Thrampoulidis, and Samet Oymak. gsxs as support vector machines. <i>arXiv preprint arXiv:2308.16898</i> , 2023.		
747 748 749	Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao, Liu Yang, Sebastian Ruder, and Donald Metzler. Long range arena: A benchmark for efficient transformers. <i>arXiv preprint arXiv:2011.04006</i> , 2020.		
750 751 752 752	Yi Tay, Dara Bahri, Donald Metzler, Da-Cheng Juan, Zhe Zhao, and Che Zheng. Synthesizer: Rethinking self-attention for transformer models. In <i>International conference on machine learning</i> , pp. 10183–10192. PMLR, 2021.		
754 755	Mohd Usama, Belal Ahmad, Enmin Song, M Shamim Hossain, Mubarak Alrashoud, and Ghulam Muhammad. Attention-based sentiment analysis using convolutional and recurrent neural network. <i>Future Generation Computer Systems</i> , 113:571–578, 2020.		

756 757 758	Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. <i>Advances in neural information processing systems</i> , 30, 2017.
759 760 761	Nikhil Vyas, Sham Kakade, and Boaz Barak. Provable copyright protection for generative models. <i>arXiv preprint arXiv:2302.10870</i> , 2023.
762 763	Zihan Wang, Jason Lee, and Qi Lei. Reconstructing training data from model gradient, provably. In <i>International Conference on Artificial Intelligence and Statistics</i> , pp. 6595–6612. PMLR, 2023.
764 765 766	Wenqi Wei, Ling Liu, Margaret Loper, Ka-Ho Chow, Mehmet Emre Gursoy, Stacey Truex, and Yanzhao Wu. A framework for evaluating gradient leakage attacks in federated learning. <i>arXiv</i> preprint arXiv:2004.10397, 2020.
767 768 769 770	Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface's transformers: State-of-the-art natural language processing. <i>arXiv preprint arXiv:1910.03771</i> , 2019.
771 772 773	Shijie Wu, Ozan Irsoy, Steven Lu, Vadim Dabravolski, Mark Dredze, Sebastian Gehrmann, Prabhan- jan Kambadur, David Rosenberg, and Gideon Mann. Bloomberggpt: A large language model for finance. <i>arXiv preprint arXiv:2303.17564</i> , 2023.
774 775	Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi Chen. Sheared llama: Accelerating language model pre-training via structured pruning. <i>arXiv preprint arXiv:2310.06694</i> , 2023.
776 777 778 770	Zheng Xu, Yanxiang Zhang, Galen Andrew, Christopher A Choquette-Choo, Peter Kairouz, H Bren- dan McMahan, Jesse Rosenstock, and Yuanbo Zhang. Federated learning of gboard language models with differential privacy. <i>arXiv preprint arXiv:2305.18465</i> , 2023.
779 780 781 782	Hongxu Yin, Arun Mallya, Arash Vahdat, Jose M Alvarez, Jan Kautz, and Pavlo Molchanov. See through gradients: Image batch recovery via gradinversion. In <i>Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition</i> , pp. 16337–16346, 2021.
783 784	Amir Zandieh, Insu Han, Majid Daliri, and Amin Karbasi. Kdeformer: Accelerating transformers via kernel density estimation. <i>arXiv preprint arXiv:2302.02451</i> , 2023.
785 786 787 789	Guodong Zhang, James Martens, and Roger B Grosse. Fast convergence of natural gradient descent for over-parameterized neural networks. <i>Advances in Neural Information Processing Systems</i> , 32, 2019.
789 790 791	Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit, Seungyeon Kim, Sashank Reddi, Sanjiv Kumar, and Suvrit Sra. Why are adaptive methods good for attention models? <i>Advances in Neural Information Processing Systems</i> , 33:15383–15393, 2020a.
792 793 794	Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit, Seungyeon Kim, Sashank Reddi, Sanjiv Kumar, and Suvrit Sra. Why are adaptive methods good for attention models? <i>Advances in Neural Information Processing Systems</i> , 33:15383–15393, 2020b.
795 796	Lichen Zhang. Speeding up optimizations via data structures: Faster search, sample and maintenance. PhD thesis, Master's thesis, Carnegie Mellon University, 2022.
797 798 799 800	Yi Zhang, Orestis Plevrakis, Simon S Du, Xingguo Li, Zhao Song, and Sanjeev Arora. Over- parameterized adversarial training: An analysis overcoming the curse of dimensionality. <i>Advances</i> <i>in Neural Information Processing Systems</i> , 33:679–688, 2020c.
801 802 803	Yuheng Zhang, Ruoxi Jia, Hengzhi Pei, Wenxiao Wang, Bo Li, and Dawn Song. The secret revealer: Generative model-inversion attacks against deep neural networks. In <i>Proceedings of the IEEE/CVF</i> <i>conference on computer vision and pattern recognition</i> , pp. 253–261, 2020d.
804 805	Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. idlg: Improved deep leakage from gradients. <i>arXiv preprint arXiv:2001.02610</i> , 2020.
806 807 808	Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from gradients. Advances in neural information processing systems, 32, 2019.
809	Difan Zou and Quanquan Gu. An improved analysis of training over-parameterized deep neural networks. <i>Advances in neural information processing systems</i> , 32, 2019.

810 **Roadmap.** We arrange the appendix as follows. In Section A we provide details of computing the 811 gradients. In Section B and Section C we provide detail of computing Hessian for two cases. In 812 Section D we show how to split the Hessian matrix. In Section E we combine the results before and 813 compute the Hessian for the loss function. In Section F we bound the basic functions to be used 814 later. In Section G we provide proof for the Lipschitz property of the Hessian of the loss function. In Section H, we provide the proof for the PSD bound of the Hessian. In Section I, we provide the 815 convergence analysis for our proposed methods. In Section J, we provide additional details for our 816 experiment. 817

818 819

820

825

826

GRADIENTS А

821 Here in this section, we provide analysis for the gradient computation. In Section A.1 we state some 822 facts to be used. In Section A.2 we provide some definitions. In Sections A.3, A.4, A.5, A.6, A.7, 823 A.8 and A.9 we compute the gradient for the terms defined respectively. Finally in Section A.10 we compute the gradient for L(X). 824

- A.1 FACTS
- 827 Fact A.1 (Basic algebra). We have 828
 - $\langle u, v \rangle = \langle v, u \rangle = u^{\top} v = v^{\top} u.$
- 829 830 831

832

833

835

836 837 838

839 840

841 842

843

848 849 850

851

852 853

854

855 856

858 859

861 862

863

• $\langle u \circ v, w \rangle = \langle u \circ v \circ w, \mathbf{1}_n \rangle$

• $u^{\top}(v \circ w) = u^{\top} \operatorname{diag}(v)w$

Fact A.2 (Basic calculus rule). We have

• $\frac{d\langle f(x), g(x) \rangle}{dt} = \langle \frac{df(x)}{dt}, g(x) \rangle + \langle f(x), \frac{dg(x)}{dt} \rangle$ (here t can be any variable) • $\frac{dy^z}{dz} = z \cdot y^{z-1} \frac{dy}{dz}$

•
$$\frac{\mathrm{d}y^z}{\mathrm{d}x} = z \cdot y^{z-1} \frac{\mathrm{d}y}{\mathrm{d}x}$$

- $u \cdot v = v \cdot u$
 - $\frac{dx}{dx_i} = e_j$ where e_j is a vector that only *j*-th entry is 1 and zero everywhere else.
 - Let $x \in \mathbb{R}^d$, let $y \in \mathbb{R}$ be independent of x, we have $\frac{dx}{dy} = \mathbf{0}_d$.
 - Let $f(x), g(x) \in \mathbb{R}$, we have $\frac{d(f(x)g(x))}{dt} = \frac{df(x)}{dt}g(x) + f(x)\frac{dg(x)}{dt}$

• Let
$$x \in \mathbb{R}$$
, $\frac{\mathrm{d}}{\mathrm{d}x} \exp(x) = \exp(x)$

• Let $f(x) \in \mathbb{R}^n$, we have $\frac{d \exp(f(x))}{dt} = \exp(f(x)) \circ \frac{df(x)}{dt}$

A.2 DEFINITIONS

Definition A.3 (Simplified notations). We have following definitions

- We use $u(X)_{i_0,i_1}$ to denote the i_1 -th entry of $u(X)_{i_0}$.
- We use $f(X)_{i_0,i_1}$ to denote the i_1 -th entry of $f(X)_{i_0}$.
- We define $W_{j_1,*}$ to denote the j_1 -th row of W. (In the proof, we treat $W_{j_1,*}$ as a column vector).
- We define W_{*,j_1} to denote the j_1 -th column of W.
- We define w_{j_1,j_0} to denote the scalar equals to the entry in j_1 -th row, j_0 -th column of W.
- We define V_{*,j_1} to denote the j_1 -th column of V.
 - We define v_{j_1,j_0} to denote the scalar equals to the entry in j_1 -th row, j_0 -th column of V.

864	• We define X_{*,i_0} to denote the i_0 -th column of X.
866	• We define x_{i_1,i_2} to denote the scalar equals to the entry in i_1 -th column, i_1 -th row of X.
867	Definition A 4 (Exponential function y). If the following conditions hold
868	Definition 11.4 (Exponential function a). If the following containons nota
869	• Let $X \in \mathbb{R}^{d imes n}$
870 871	• Let $W \in \mathbb{R}^{d \times d}$
872	For each $i_0 \in [n]$, we define $u(X)_{i_0} \in \mathbb{R}^n$ as follows
873 874	$u(X)_{i_0} = \exp(X^\top W X_{\star,i_0})$
875	Definition A.5 (Sum function of softmax α). If the following conditions hold
877	• Let $Y \subset \mathbb{R}^{d \times n}$
878 879	• Let $u(X)$, be defined as Definition A A
880	• Let $u(X)_{i_0}$ be defined as Definition A.4
881	We define $\alpha(X)_{i_0} \in \mathbb{R}$ for all $i_0 \in [n]$ as follows
882	$\alpha(X)_{i_0} = \langle u(X)_{i_0}, 1_n \rangle$
884	Definition A.6 (Softmax probability function f). If the following conditions hold
885	
886	• Let $X \in \mathbb{R}^{d \times n}$
887	• Let $u(X)_{i_0}$ be defined as Definition A.4
889	• Let $\alpha(X)_{i_0}$ be defined as Definition A.5
890	
891	we define $f(X)_{i_0} \in \mathbb{R}^n$ for each $i_0 \in [n]$ as follows
893	$f(X)_{i_0} := \alpha(X)_{i_0}^{-1} u(X)_{i_0}$
894	Definition A.7 (Value function <i>h</i>). If the following conditions hold
895 896	• Let $X \in \mathbb{R}^{d \times n}$
897 808	• Let $V \in \mathbb{R}^{d imes d}$
899	We define $h(X)_{j_0} \in \mathbb{R}^n$ for each $j_0 \in [n]$ as follows
900	$L(\mathbf{V})$, $\mathbf{V}^{\top}\mathbf{V}$
901	$n(\Lambda)_{j_0} := \Lambda^+ V_{*,j_0}$
903	Definition A.8 (One-unit loss function c). If the following conditions hold
904	• Let $f(X)_{i_0}$ be defined as Definition A.6
905	• Let $h(\mathbf{Y})$, be defined as Definition A 7
906	• Let $h(X)_{j_0}$ be defined as Definition A.1
908	We define $c(X) \in \mathbb{R}^{n \times d}$ as follows
909	$c(X)_{i_0,j_0} := \langle f(X)_{i_0}, h(X)_{j_0} \rangle - b_{i_0,j_0}, \forall i_0 \in [n], j_0 \in [d]$
910 911	Definition A.9 (Overall function <i>L</i>). If the following conditions hold
912 013	• Let $c(X)_{i_0,i_0}$ be defined as Definition A.8
914	
915	<i>We define</i> $L(X) \in \mathbb{R}$ <i>as follows</i>
916	n d
917	$L(X) := \sum_{i_0=1} \sum_{j_0=1} (c(X)_{i_0,j_0})^2$

A.3 GRADIENT FOR EACH COLUMN OF $X^{\top}WX_{*,i_0}$

Lemma A.10. We have

• **Part 1.** Let $i_0 = i_1 \in [n], j_1 \in [d]$

$$\underbrace{\frac{\mathrm{d}X^{\top}WX_{*,i_0}}{\mathrm{d}x_{i_1,j_1}}}_{n\times 1} = \underbrace{e_{i_0}}_{n\times 1} \cdot \underbrace{\langle W_{j_1,*}, X_{*,i_0} \rangle}_{\mathrm{scalar}} + \underbrace{X^{\top}}_{n\times d} \underbrace{W_{*,j_1}}_{d\times 1}$$

• **Part 2** Let $i_0 \neq i_1 \in [n], j_1 \in [d]$

$$\underbrace{\frac{\mathrm{d}X^{\top}WX_{*,i_0}}{\mathrm{d}x_{i_1,j_1}}}_{n\times 1} = \underbrace{e_{i_1}}_{n\times 1} \cdot \underbrace{\langle W_{j_1,*}, X_{*,i_0} \rangle}_{\mathrm{scalar}}$$

Proof. Proof of Part 1.

$$\begin{array}{ccc}
\underbrace{\mathrm{d}X^{\top}WX_{*,i_0}}_{n\times 1} = \underbrace{\mathrm{d}X^{\top}}_{n\times d}\underbrace{W}_{d\times i_1,j_1}, \underbrace{W}_{d\times d}\underbrace{X_{*,i_0}}_{d\times 1} + \underbrace{X^{\top}}_{n\times d}\underbrace{W}_{d\times d}\underbrace{\mathrm{d}X_{*,i_0}}_{d\times 1}, \underbrace{\mathrm{d}X_{i_1,j_1}}_{d\times 1}, \underbrace{\mathrm{d}X_{i_1,j_1}}_{$$

where the 1st step follows from Fact A.2, the 2nd step follows from simple derivative rule, the 3rd is simple algebra, the 4th step ie because $i_0 = i_1$.

Proof of Part 2

$$\underbrace{\frac{\mathrm{d}X^{\top}WX_{*,i_0}}{\mathrm{d}x_{i_1,j_1}}}_{n\times 1} = \underbrace{\frac{\mathrm{d}X^{\top}}{\mathrm{d}x_{i_1,j_1}}}_{n\times d} \underbrace{W}_{d\times d} \underbrace{X_{*,i_0}}_{d\times 1} + \underbrace{X^{\top}}_{n\times d} \underbrace{W}_{d\times d} \underbrace{\frac{\mathrm{d}X_{*,i_0}}{\mathrm{d}x_{i_1,j_1}}}_{d\times 1}$$
$$= \underbrace{e_{i_1}}_{n\times 1} \underbrace{e_{j_1}^{\top}}_{1\times d} \underbrace{W}_{d\times d} \underbrace{X_{*,i_0}}_{d\times 1} + \underbrace{X^{\top}}_{n\times d} \underbrace{W}_{d\times d} \underbrace{\frac{\mathrm{d}X_{*,i_0}}{\mathrm{d}x_1}}_{d\times 1}$$
$$= \underbrace{e_{i_1}}_{n\times 1} \underbrace{\langle W_{j_1,*}, X_{*,i_0} \rangle}_{\mathrm{scalar}}$$

where the 1st step follows from Fact A.2, the 2nd step follows from simple derivative rule, the 3rd is simple algebra.

A.4 GRADIENT FOR $u(X)_{i_0}$

Lemma A.11. Under following conditions

• Let $u(X)_{i_0}$ be defined as Definition A.4

We have

• Part 1. For each
$$i_0 = i_1 \in [n], j_1 \in [d]$$

$$\underbrace{\frac{\mathrm{d}u(X)_{i_0}}{\mathrm{d}x_{i_1,j_1}}}_{n \times 1} = u(X)_{i_0} \circ (e_{i_0} \cdot \langle W_{j_1,*}, X_{*,i_0} \rangle + X^\top W_{*,j_1})$$

• Part 2 For each
$$i_0 \neq i_1 \in [n], j_1 \in [d]$$

$$\underbrace{\frac{\mathrm{d}u(X)_{i_0}}{\mathrm{d}x_{i_1,j_1}}}_{n \times 1} = \underbrace{u(X)_{i_0}}_{n \times 1} \circ (e_{i_1} \cdot \langle W_{j_1,*}, X_{*,i_0} \rangle)$$

 $\underbrace{\frac{\mathrm{d}u(X)_{i_0}}{\mathrm{d}x_{i_1,j_1}}}_{n\times 1} = \underbrace{\frac{\mathrm{d}\exp(X^\top W X_{*,i_0})}{\mathrm{d}x_{i_1,j_1}}}_{n\times 1}$

Proof.

Proof of Part 1

 $=\underbrace{u(X)_{i_0}}_{n\times 1}\circ(\underbrace{e_{i_0}}_{n\times 1}\cdot\underbrace{\langle W_{j_1,*},X_{*,i_0}\rangle}_{\text{scalar}}+\underbrace{X^{\top}}_{n\times d}\underbrace{W_{*,j_1}}_{d\times 1})$ where the 1st step and the 3rd step follow from Definition of $u(X)_{i_0}$ (see Definition A.4), the 2nd step follows from Fact A.2, the 4th step follows by Lemma A.10.

 $=\underbrace{u(X)_{i_0}}_{n\times 1}\circ\underbrace{\frac{\mathrm{d}X^\top WX_{*,i_0}}{\mathrm{d}x_{i_1,j_1}}}_{n\times 1}$

 $= \exp(\underbrace{X^{\top}}_{n \times d} \underbrace{W}_{d \times d} \underbrace{X_{*,i_0}}_{d \times 1}) \circ \underbrace{\frac{\mathrm{d}X^{\top} W X_{*,i_0}}{\mathrm{d}x_{i_1,j_1}}}_{\mathrm{out}}$

Proof of Part 2

997	$du(X)$; $dexp(X^{\top}WX)$;
998	$\frac{du(1)_{i_0}}{dx} = \frac{dxp(1-r)_{i_{*},i_{0}}}{dx}$
999	$\underbrace{\mathbf{d}x_{i_1,j_1}}_{\mathbf{d}x_{i_1,j_1}} \underbrace{\mathbf{d}x_{i_1,j_1}}_{\mathbf{d}x_{i_1,j_1}}$
1000	$n \times 1$ $n \times 1$
1001	$\operatorname{d} X^{\top} W X_{*,i_0}$
1002	$= \exp(\underline{A}, \underline{W}, \underline{A}_{*,i_0}) \circ \underline{dx_{i_1, i_1}}$
1003	$n \times d \ d \times d$ $d \times 1$ (11)
1004	$n \times 1$
1005	$= u(X)_{i_0} \circ \frac{\mathrm{d}X + WX_{*,i_0}}{2}$
1006	dx_{i_1,j_1}
1007	$n \times 1$ $\xrightarrow{n \times 1}$ $n \times 1$
1008	$= u(X)_{i_0} \circ (e_{i_1} \cdot \langle W_{i_1,*}, X_{*,i_0} \rangle)$
1009	(1) (1) (1) (1) (1) (1) (1) (1)
1010	$n \times 1$ $n \times 1$ scalar

where the 1st step and the 3rd step follow from Definition of $u(X)_{i_0}$ (see Definition A.4), the 2nd step follows from Fact A.2, the 4th step follows by Lemma A.10.

A.5 GRADIENT COMPUTATION FOR $\alpha(X)_{i_0}$

Lemma A.12 (A generalization of Lemma 5.6 in Deng et al. (2023b)). If the following conditions hold

• Let $\alpha(X)_{i_0}$ be defined as Definition A.5

Then, we have

• Part 1. For each
$$i_0 = i_1 \in [n], j_1 \in [d]$$

$$\underbrace{\frac{\mathrm{d}\alpha(X)_{i_0}}{\mathrm{d}x_{i_1,j_1}}}_{\text{scalar}} = u(X)_{i_0,i_0} \cdot \langle W_{j_1,*}, X_{*,i_0} \rangle + \langle u(X)_{i_0}, X^\top W_{*,j_1} \rangle$$

1026
 • Part 2. For each
$$i_0 \neq i_1 \in [n], j_1 \in [d]$$

 1027
 $\frac{\mathrm{d}\alpha(X)_{i_0}}{\mathrm{d}x_{i_1,j_1}} = u(X)_{i_0,i_1} \cdot \langle W_{j_1,*}, X_{*,i_0} \rangle$

 1028
 $\frac{\mathrm{d}\alpha(X)_{i_0}}{\mathrm{d}x_{i_1,j_1}} = u(X)_{i_0,i_1} \cdot \langle W_{j_1,*}, X_{*,i_0} \rangle$

1032

1033

Proof. Proof of Part 1.

1	034
1	035
1	036

$$\underbrace{\frac{\mathrm{d}\alpha(X)_{i_0}}{\mathrm{d}x_{i_1,j_1}}}_{\mathrm{scalar}} = \underbrace{\frac{\mathrm{d}\langle u(X)_{i_0}, \mathbf{1}_n \rangle}{\mathrm{d}x_{i_1,j_1}}}_{\mathrm{scalar}}$$

1040 1041

 $= \langle \underbrace{u(X)_{i_0}}_{n \times 1} \circ (e_{i_0} \cdot \langle W_{j_1,*}, X_{*,i_0} \rangle + X^\top W_{*,j_1}), \underbrace{\mathbf{1}_n}_{n \times 1} \rangle$

 $=\langle\underbrace{\frac{\mathrm{d}u(X)_{i_0}}{\mathrm{d}x_{i_1,j_1}}}_{\text{ virt}},\underbrace{\mathbf{1}_n}_{n\times 1}\rangle$

$$= \langle \underbrace{u(X)_{i_0}}_{n \times 1} \circ e_{i_0}, \mathbf{1}_n \rangle \cdot \langle W_{j_1,*}, X_{*,i_0} \rangle + \langle u(X)_{i_0} \circ (X^\top W_{*,j_1}), \underbrace{\mathbf{1}_n}_{n \times 1} \rangle$$

scalar

1042 1043

1046

where the 1st step follows from the definition of $\alpha(X)_{i_0}$ (see Definition A.5), the 2nd step follows from Fact A.2, the 3rd step follows from Lemma A.11, the 4th step is rearrangement, the 5th step is derived by Fact A.1, the last step is by the definition of $U(X)_{i_0,i_0}$.

 $= u(X)_{i_0, i_0} \cdot \langle W_{j_1, *}, X_{*, i_0} \rangle + \langle u(X)_{i_0}, X^\top W_{*, j_1} \rangle$

 $= \langle \underbrace{u(X)_{i_0}}_{n \times 1}, e_{i_0} \rangle \cdot \langle W_{j_1,*}, X_{*,i_0} \rangle + \langle u(X)_{i_0}, X^\top W_{*,j_1} \rangle$

1053 Proof of Part 2.

$$\underbrace{\frac{\mathrm{d}\alpha(X)_{i_0}}{\mathrm{d}x_{i_1,j_1}}}_{\mathrm{scalar}} = \underbrace{\frac{\mathrm{d}\langle u(X)_{i_0}, \mathbf{1}_n \rangle}{\mathrm{d}x_{i_1,j_1}}}_{\mathrm{scalar}}$$

$$= \langle \underbrace{\frac{\mathrm{d}u(X)_{i_0}}{\mathrm{d}x_{i_1,j_1}}}_{\mathrm{scalar}}, \underbrace{\mathbf{1}_n}_{\mathrm{scalar}}$$

$$= \langle \underbrace{\frac{\mathrm{d}u(X)_{i_0}}{\mathrm{d}x_{i_1,j_1}}}_{\mathrm{scalar}}, \underbrace{\mathbf{1}_n}_{\mathrm{scalar}} \rangle$$

$$= \langle \underbrace{u(X)_{i_0}}_{\mathrm{scalar}} \circ (e_{i_1} \cdot \langle W_{j_1,*}, X_{*,i_0} \rangle), \underbrace{\mathbf{1}_n}_{\mathrm{scalar}} \rangle$$

$$= \langle \underbrace{u(X)_{i_0}}_{\mathrm{scalar}} \circ (e_{i_1}, \underbrace{\mathbf{1}_n}_{\mathrm{scalar}}) \cdot \langle W_{j_1,*}, X_{*,i_0} \rangle$$

$$= \underbrace{u(X)_{i_0,i_1}}_{\mathrm{scalar}} \cdot \langle W_{j_1,*}, X_{*,i_0} \rangle$$

$$= \underbrace{u(X)_{i_0,i_1}}_{\mathrm{scalar}} \cdot \langle W_{j_1,*}, X_{*,i_0} \rangle$$

1068 1069

where the 1st step follows from the definition of $\alpha(X)_{i_0}$ (see Definition A.5), the 2nd step follows from Fact A.2, the 3rd step follows from Lemma A.11, the 4th step is rearrangement, the 5th step is derived by Fact A.1.

1073 1074

1075 A.6 GRADIENT COMPUTATION FOR $\alpha(X)_{in}^{-1}$

1076 Lemma A.13 (A generalization of Lemma 5.6 in Deng et al. (2023b)). If the following conditions hold

1079

• Let $\alpha(X)_{i_0}$ be defined as Definition A.5

we have • Part 1. For $i_0 = i_1 \in [n], j_1 \in [d]$ $\underbrace{\frac{\mathrm{d}\alpha(X)_{i_0}^{-1}}{\mathrm{d}x_{i_1,j_1}}}_{=} = -\alpha(X)_{i_0}^{-1} \cdot (f(X)_{i_0,i_0} \cdot \langle W_{j_1,*}, X_{*,i_0} \rangle + \langle f(X)_{i_0}, X^\top W_{*,j_1} \rangle) \rangle)$ • Part 2. For $i_0 \neq i_1 \in [n], j_1 \in [d]$ $\underbrace{\frac{\mathrm{d}\alpha(X)_{i_0}^{-1}}{\mathrm{d}x_{i_1,j_1}}}_{=} = -\alpha(X)_{i_0}^{-1} \cdot f(X)_{i_0,i_1} \cdot \langle W_{j_1,*}, X_{*,i_0} \rangle$ Proof. Proof of Part 1. $\underbrace{\frac{\mathrm{d}\alpha(X)_{i_0}}{\mathrm{d}x_{i_1,j_1}}}_{\mathrm{scalar}} = \underbrace{-1}_{\mathrm{scalar}} \cdot \underbrace{(\alpha(X)_{i_0})^{-2}}_{\mathrm{scalar}} \cdot \underbrace{\frac{\mathrm{d}(\alpha(X)_{i_0})}{\mathrm{d}x_{i_1,j_1}}}_{\mathrm{scalar}}$ $= -(\underbrace{\alpha(X)_{i_0}}_{i_0})^{-2} \cdot (u(X)_{i_0,i_0} \cdot \langle W_{j_1,*}, X_{*,i_0} \rangle + \langle u(X)_{i_0}, X^\top W_{*,j_1} \rangle)$ $= -\alpha(X)_{i_0}^{-1} \cdot (f(X)_{i_0,i_0} \cdot \langle W_{j_1,*}, X_{*,i_0} \rangle + \langle f(X)_{i_0}, X^\top W_{*,j_1} \rangle)$ where the 1st step follows from Fact A.2, the 2nd step follows by Lemma A.12. **Proof of Part 2.** $\underbrace{\frac{\mathrm{d}\alpha(X)_{i_0}^{-1}}{\mathrm{d}x_{i_1,j_1}}}_{\mathrm{scalar}} = \underbrace{-1}_{\mathrm{scalar}} \cdot \underbrace{(\alpha(X)_{i_0})^{-2}}_{\mathrm{scalar}} \cdot \underbrace{\frac{\mathrm{d}(\alpha(X)_{i_0})}{\mathrm{d}x_{i_1,j_1}}}_{\mathrm{scalar}} = -\underbrace{(\alpha(X)_{i_0})^{-2}}_{\mathrm{scalar}} \cdot u(X)_{i_0,i_1} \cdot \langle W_{j_1,*}, X_{*,i_0} \rangle$ $= -\alpha(X)_{i_0}^{-1} \cdot f(X)_{i_0,i_1} \cdot \langle W_{j_1,*}, X_{*,i_0} \rangle$ where the 1st step follows from Fact A.2, the 2nd step follows from result from Lemma A.12. A.7 GRADIENT FOR $f(X)_{i_0}$ Lemma A.14. If the following conditions hold • Let $f(X)_{i_0}$ be defined as Definition A.6 Then, we have • **Part 1.** For all $i_0 = i_1 \in [n], j_1 \in [d]$ $\underbrace{\frac{\mathrm{d}f(X)_{i_0}}{\mathrm{d}x_{i_1,j_1}}}_{\mathrm{scalar}} = -\underbrace{f(X)_{i_0}}_{n\times 1} \cdot \underbrace{(f(X)_{i_0,i_0} \cdot \langle W_{j_1,*}, X_{*,i_0} \rangle + \langle f(X)_{i_0}, X^\top W_{*,j_1} \rangle)}_{\mathrm{scalar}}$ + $\underbrace{f(X)_{i_0} \circ (e_{i_0} \cdot \langle W_{j_1,*}, X_{*,i_0} \rangle + X^\top W_{*,j_1})}_{n \times 1}$ • Part 2. For all $i_0 \neq i_1 \in [n], \, j_1 \in [d]$ $\underbrace{\frac{\mathrm{d}f(X)_{i_0}}{\mathrm{d}x_{i_1,j_1}}}_{\underbrace{\mathrm{d}x_{i_1,j_1}}} = -\underbrace{f(X)_{i_0}}_{n\times 1} \cdot \underbrace{f(X)_{i_0,i_1} \cdot \langle W_{j_1,*}, X_{*,i_0} \rangle}_{\mathrm{scalar}}$

$$\underbrace{f(X)_{i_0} \circ (e_{i_1} \cdot \langle W_{j_1,*}, X_{*,i_0} \rangle)}_{n \times 1}$$

1137 *Proof.* **Proof of Part 1.**

where the 1st step follows from the definition of $f(X)_{i_0}$ (see Definition A.6), the 2nd step follows from Fact A.2, the 3rd step follows from Lemma A.13, the 4th step follows from result from Lemma A.11, the 5th step from the definition of $f(X)_{i_0}$ (see Definition A.6).

¹¹⁶⁵ Proof of Part 2.

$$\begin{array}{rcl}
\begin{array}{c} \frac{\mathrm{d}f(X)_{i_{0}}}{\mathrm{d}x_{i_{1},j_{1}}} &=& \frac{\mathrm{d}\alpha(X)_{i_{0}}^{-1}u(X)_{i_{0}}}{\mathrm{d}x_{i_{1},j_{1}}} \\ &=& \underbrace{u(X)_{i_{0}}}{\mathrm{d}x_{i_{1},j_{1}}} & \underbrace{\mathrm{d}x_{i_{1},j_{1}}}{\mathrm{n \times 1}} \\ &=& \underbrace{u(X)_{i_{0}}}{\mathrm{n \times 1}} \cdot \underbrace{\mathrm{d}x_{i_{1},j_{1}}}{\mathrm{scalar}} + \underbrace{\alpha(X)_{i_{0}}^{-1}}{\mathrm{scalar}} \cdot \underbrace{\mathrm{d}x_{i_{1},j_{1}}}{\mathrm{n \times 1}} \\ &=& \underbrace{u(X)_{i_{0}}}{\mathrm{n \times 1}} \cdot \underbrace{\mathrm{d}x_{i_{1},j_{1}}}{\mathrm{scalar}} \\ &=& \underbrace{u(X)_{i_{0}}}{\mathrm{n \times 1}} \cdot \underbrace{\mathrm{d}x_{i_{1},j_{1}}}{\mathrm{scalar}} \\ &=& \underbrace{u(X)_{i_{0}}}{\mathrm{n \times 1}} \cdot \underbrace{\mathrm{d}(X)_{i_{0}}}{\mathrm{scalar}} \\ &=& \underbrace{u(X)_{i_{0}}}{\mathrm{n \times 1}} \cdot \underbrace{\mathrm{d}(X)_{i_{0}}}{\mathrm{n \times 1}} \\ &=& \underbrace{u(X)_{i_{0}}}{\mathrm{n \times 1}} \cdot \underbrace{\mathrm{d}(X)_{i_{0}}}{\mathrm{n \times 1}} \\ &=& \underbrace{u(X)_{i_{0}}}{\mathrm{n \times 1}} \cdot \underbrace{\mathrm{d}(X)_{i_{0}}}{\mathrm{n \times 1}} \\ &=& \underbrace{u(X)_{i_{0}}}{\mathrm{n \times 1}} \cdot \underbrace{\mathrm{d}(X)_{i_{0}}}{\mathrm{n \times 1}} \\ &=& \underbrace{u(X)_{i_{0}}}{\mathrm{n \times 1}} \cdot \underbrace{\mathrm{d}(X)_{i_{0}}}{\mathrm{n \times 1}} \\ &=& \underbrace{u(X)_{i_{0}}}{\mathrm{n \times 1}} \cdot \underbrace{\mathrm{d}(X)_{i_{0}} \cdot \mathrm{d}(X)_{i_{0},i_{1}} \cdot \mathrm{d}(Y)_{i_{1},i_{1}}, X_{i_{1},i_{0}})}{\mathrm{n \times 1}} \\ &=& \underbrace{u(X)_{i_{0}}}{\mathrm{n \times 1}} \cdot \underbrace{\mathrm{d}(X)_{i_{0},i_{1}} \cdot \mathrm{d}(Y)_{i_{0},i_{1}} \cdot \mathrm{d}(Y)_{i_{1},i_{1}}, X_{i_{1},i_{0}})}{\mathrm{scalar}} \\ &=& \underbrace{u(X)_{i_{0}}}{\mathrm{n \times 1}} \cdot \underbrace{\mathrm{d}(X)_{i_{0},i_{1}} \cdot \mathrm{d}(Y)_{i_{0},i_{1}} \cdot \mathrm{d}(Y)_{$$

where the 1st step follows from the definition of $f(X)_{i_0}$ (see Definition A.6), the 2nd step follows from Fact A.2, the 3rd step follows from Lemma A.13, the 4th step follows from result from Lemma A.11, the 5th step from the definition of $f(X)_{i_0}$ (see Definition A.6). \square A.8 GRADIENT FOR $h(X)_{j_0}$ Lemma A.15. If the following conditions hold • Let $h(X)_{i_0}$ be defined as Definition A.7 Then, for all $i_1 \in [n]$, $j_0, j_1 \in [d]$, we have $\underbrace{\frac{\mathrm{d}h(X)_{j_0}}{\mathrm{d}x_{i_1,j_1}}}_{\pi\times 1} = e_{i_1} \cdot v_{j_1,j_0}$ Proof. $\underbrace{\frac{\mathrm{d}h(X)_{j_0}}{\mathrm{d}x_{i_1,j_1}}}_{n\times 1} = \underbrace{\frac{\mathrm{d}X^\top V_{*,j_0}}{\mathrm{d}x_{i_1,j_1}}}_{n\times 1}$ $= \underbrace{\frac{\mathrm{d}X^{\top}}{\mathrm{d}x_{i_1,j_1}}}_{\cdot} \underbrace{V_{*,j_0}}_{d\times 1}$ $=\underbrace{e_{i_1}}_{n\times 1}\cdot\underbrace{e_{j_1}^{\top}}_{1\times d}\cdot\underbrace{V_{*,j_0}}_{d\times 1}$ $=\underbrace{e_{i_1}}_{n\times 1}\cdot\underbrace{v_{j_1,j_0}}_{\text{scalar}}$ where the first step is by definition of $h(X)_{i_0}$ (see Definition A.7), the 2nd and the 3rd step are by differentiation rules, the 4th step is by simple algebra. A.9 GRADIENT FOR $c(X)_{i_0, i_0}$ Lemma A.16. If the following conditions hold • Let $c(X)_{i_0}$ be defined as Definition A.8 • Let $s(X)_{i_0, i_0} := \langle f(X)_{i_0}, h(X)_{i_0} \rangle$ Then, we have • Part 1. For all $i_0 = i_1 \in [n], j_0, j_1 \in [d]$ $\frac{\mathrm{d}c(X)_{i_0,j_0}}{\mathrm{d}x_{i_1,i_1}} = C_1(X) + C_2(X) + C_3(X) + C_4(X) + C_5(X)$ where we have definitions: - $C_1(X) := -s(X)_{i_0, j_0} \cdot f(X)_{i_0, i_0} \cdot \langle W_{j_1, *}, X_{*, i_0} \rangle$ - $C_2(X) := -s(X)_{i_0, j_0} \cdot \langle f(X)_{i_0}, X^\top W_{*, j_1} \rangle$ $- C_3(X) := f(X)_{i_0, i_0} \cdot h(X)_{j_0, i_0} \cdot \langle W_{j_1, *}, X_{*, i_0} \rangle$ - $C_4(X) := \langle f(X)_{i_0} \circ (X^\top W_{*,j_1}), h(X)_{j_0} \rangle$ - $C_5(X) := f(X)_{i_0, i_0} \cdot v_{j_1, j_0}$

 1242
 • Part 2. For all $i_0 \neq i_1 \in [n], j_0, j_1 \in [d]$

 1243
 $\frac{\mathrm{d}c(X)_{i_0,j_0}}{\mathrm{d}x_{i_1,j_1}} = C_6(X) + C_7(X) + C_8(X)$

 1246
 $\frac{\mathrm{d}c(X)_{i_0,j_0}}{\mathrm{d}x_{i_1,j_1}} = C_6(X) + C_7(X) + C_8(X)$

where we have definitions:

- $C_6(X) := -s(X)_{i_0,j_0} \cdot f(X)_{i_0,i_1} \cdot \langle W_{j_1,*}, X_{*,i_0} \rangle$

- $C_7(X) := f(X)_{i_0,i_1} \cdot h(X)_{j_0,i_1} \cdot \langle W_{j_1,*}, X_{*,i_0} \rangle$

* This is corresponding to $C_1(X)$

* This is corresponding to $C_3(X)$

* This is corresponding to $C_5(X)$

 $- C_8(X) := f(X)_{i_0, i_1} \cdot v_{j_1, j_0}$

1247

1255 1256

Proof. Proof of Part 1

$$\frac{dc(X)_{i_{0},j_{1}}}{dx_{i_{1},j_{1}}} = \frac{d(\langle f(X)_{i_{0}}, h(X)_{j_{0}} \rangle - b_{i_{0},j_{0}})}{dx_{i_{1},j_{1}}} = \frac{d(\langle f(X)_{i_{0}}, h(X)_{j_{0}} \rangle + \langle f(X)_{i_{0}}, b_{i_{1},j_{1}} \rangle}{dx_{i_{1},j_{1}}} = \frac{d(\langle f(X)_{i_{0}}, h(X)_{j_{0}} \rangle + \langle f(X)_{i_{0}}, b_{i_{1},j_{1}} \rangle}{dx_{i_{1},j_{1}}} = \frac{d(\langle f(X)_{i_{0}}, h(X)_{j_{0}} \rangle + \langle f(X)_{i_{0}}, b_{i_{1},j_{1}} \rangle}{dx_{i_{1},j_{1}}} = \frac{d(\langle f(X)_{i_{0}}, h(X)_{j_{0}} \rangle + \langle f(X)_{i_{0}}, b_{i_{1},j_{1}} \rangle}{dx_{i_{1},j_{1}}} = \frac{d(\langle f(X)_{i_{0}}, h(X)_{j_{0}} \rangle + \langle f(X)_{i_{0}}, b_{i_{1},j_{1}} \rangle}{dx_{i_{1},j_{1}}} = \frac{d(\langle f(X)_{i_{0}}, h(X)_{j_{0}} \rangle + \langle f(X)_{i_{0},j_{0}} \rangle}{dx_{i_{1},j_{1}}} + \frac{d(\langle f(X)_{i_{0}}, h(X)_{j_{0}} \rangle}{dx_{i_{1},j_{1}}} = \frac{d(\langle f(X)_{i_{0}}, h(X)_{j_{0}} \rangle + \langle f(X)_{i_{0},j_{0}} \rangle}{dx_{i_{1},j_{1}}} = \frac{d(\langle f(X)_{i_{0}}, h(X)_{j_{0}} \rangle}{dx_{i_{1},j_{1}}} + \frac{d(\langle f(X)_{i_{0}}, h(X)_{j_{0}} \rangle}{dx_{i_{1},j_{1}}} + \frac{d(\langle f(X)_{i_{0}}, h(X)_{j_{0}} \rangle}{dx_{i_{1},j_{1}}} = \frac{d(\langle f(X)_{i_{0}}, h(X)_{j_{0}} \rangle}{dx_{i_{1},j_{1}}} = \frac{d(\langle f(X)_{i_{0}}, h(X)_{j_{0}} \rangle}{dx_{i_{1},j_{1}}} + \frac{d(\langle f(X)_{i_{0}}, h(X)_{j_{0}} \rangle}{dx_{i_{1},j_{1}}} + \frac{d(\langle f(X)_{i_{0}}, h(X)_{j_{0},j_{0}} \rangle}{dx_{i_{1},j_{1}}} + \frac{d(\langle f(X)_{i_{0}}, h(X)_{j_{0},j_{0}} \rangle}{dx_{i_{1},j_{1}}} + \frac{d(\langle f(X)_{i_{0}}, h(X)_{j_{0}} \rangle}{dx_{i_{1},j_{1}}} + \frac{d(\langle f(X)_{i_{0}}, h(X)_{j_{0}} \rangle}{dx_{i_{1},j_{1}}} + \frac{d(\langle f(X)_{i_{0}}, h(X)_{j_{0},j_{0}} \rangle}{dx_{i_{1},j_{1}}} + \frac{d(\langle f(X)_{i_{0}}, h(X)_{j_{0}} \rangle}{dx_{i_{1},j_{1}}} + \frac{d(\langle f(X)_{i_{0}}, h(X)_{j_{0}} \rangle}{dx_{i_{1},j_{1}}} + \frac{d(\langle f(X)_{i_{0}}, h(X)_{j_{0},j_{0}} \rangle}{dx_{i_{1},j_{1}}} + \frac{d(\langle f(X)_{i_{0}}, h(X)_{j_{0},j_{0}} \rangle}{dx_{i_{1},j_{1}}} + \frac{$$

where the first step is by definition of $c(X)_{i_0,j_0}$ (see Definition A.8), the 2nd step is because b_{i_0,j_0} is independent of X, the 3rd step is by Fact A.2, the 4th step uses Lemma A.15, the 5th step uses Lemma A.14, the 6th and 8th step are rearrangement of terms, the 7th step holds by the definition of $f(X)_{i_0}$ (see Definition A.6).

1289 Proof of Part 2

1290
1291
$$\frac{\mathrm{d}c(X)_{i_0,j_1}}{\mathrm{d}x} = \frac{\mathrm{d}(\langle f(X)_{i_0}, h(X)_{j_0} \rangle - b_{i_0,j_0})}{\mathrm{d}x}$$

1292
$$\underbrace{dx_{i_1,j_1}}_{\text{scalar}} \underbrace{dx_{i_1,j_1}}_{\text{scalar}}$$

1294
1295
$$= \underbrace{\frac{\mathrm{d}\langle f(X)_{i_0}, h(X)_{j_0}\rangle}{\mathrm{d}x_{i_1, j_1}}}_{\mathrm{scalar}}$$

where the first step is by definition of $c(X)_{i_0,j_0}$ (see Definition A.8), the 2nd step is because b_{i_0,j_0} is independent of X, the 3rd step is by Fact A.2, the 4th step uses Lemma A.15, the 5th step uses Lemma A.14, the 6th and 7th step are rearrangement of terms.

A.10 GRADIENT FOR L(X)

Lemma A.17. If the following holds

• Let L(X) be defined as Definition A.9

For $i_1 \in [n]$, $j_1 \in [d]$, we have

$$\frac{\mathrm{d}L(X)}{\mathrm{d}x_{i_1,j_1}} = \sum_{i_0=1}^n \sum_{j_0=1}^d c(X)_{i_0,j_0} \cdot \frac{\mathrm{d}c(X)_{i_0,j_0}}{\mathrm{d}x_{i_1,j_1}}$$

Proof. The result directly follows by chain rule.

1336
1337 B HESSIAN CASE 1:
$$i_0 = i_1$$

Here in this section, we provide Hessian analysis for the first case. In Sections B.1, B.2, B.3, B.4, B.5, B.6 and B.8, we calculate the derivative for several important terms. In Section B.9, B.10, B.11, B.12 and B.13 we calculate derivative for C_1, C_2, C_3, C_4 and C_5 respectively. Finally in Section B.14 we calculate derivative of $\frac{c(X)_{i_0,j_0}}{\mathrm{d}x_{i_1,j_1}\mathrm{d}_{i_2,j_2}}$.

Now, we list some simplified notations which will be used in following sections.

Definition B.1. We have following definitions to simplify the expression.

•
$$s(X)_{i,j} := \langle f(X)_i, h(X)_j \rangle$$

1348 •
$$w(X)_{i,j} := \langle W_{j,*}, X_{*,i} \rangle$$

•
$$z(X)_{i,j} := \langle f(X)_i, X^\top W_{*,j} \rangle$$

• $z(X)_i := WX \cdot f(X)_i$ • $w(X)_{i,*} := WX_{*,i}$ **B.1** DERIVATIVE OF SCALAR FUNCTION $w(X)_{i_0, j_1}$ Lemma B.2. We have • **Part 1** For $i_0 = i_1 = i_2 \in [n], j_1, j_2 \in [d]$ $\frac{\mathrm{d}w(X)_{i_0,j_1}}{\mathrm{d}x_{i_2,j_2}} = w_{j_1,j_2}$ • Part 2 For $i_0 = i_1 \neq i_2 \in [n], j_1, j_2 \in [d]$ $\frac{\mathrm{d}w(X)_{i_0,j_1}}{\mathrm{d}x_{i_2,j_2}} = 0$ Proof. Proof of Part 1 $\frac{\mathrm{d} w(X)_{i_0,j_1}}{\mathrm{d} x_{i_2,j_2}} = \langle W_{j_1,*}, \frac{\mathrm{d} X_{*,i_0}}{\mathrm{d} x_{i_2,j_2}} \rangle$ $= \langle W_{j_1,*}, e_{j_2} \rangle$ $= w_{j_1, j_2}$ where the first step and the 2nd step are by Fact A.2, the 3rd step is simple algebra. **Proof of Part 2** $\frac{\mathrm{d}w(X)_{i_0,j_1}}{\mathrm{d}x_{i_2,j_2}} = \langle W_{j_1,*}, \frac{\mathrm{d}X_{*,i_0}}{\mathrm{d}x_{i_2,j_2}} \rangle$ $= \langle W_{j_1,*}, \mathbf{0}_d \rangle$ = 0where the first step is by Fact A.2, the 2nd step is because $i_0 \neq i_2$. DERIVATIVE OF VECTOR FUNCTION $X^{\top}W_{*,j_1}$ **B**.2 Lemma B.3. We have • **Part 1** For $i_0 = i_1 = i_2 \in [n], j_1, j_2 \in [d]$ $\frac{\mathrm{d} X^\top W_{*,j_1}}{\mathrm{d} x_{i_2,j_2}} = e_{i_0} \cdot w_{j_2,j_1}$ • **Part 2** For $i_0 = i_1 \neq i_2 \in [n], j_1, j_2 \in [d]$ $\frac{\mathrm{d}X^\top W_{*,j_1}}{\mathrm{d}x_{i_2,j_2}} = e_{i_2} \cdot w_{j_2,j_1}$ Proof. Proof of Part 1 $\frac{\mathrm{d}X^\top W_{*,j_1}}{\mathrm{d}x_{i_2,j_2}} = \frac{\mathrm{d}X^\top}{\mathrm{d}x_{i_2,j_2}} \cdot W_{*,j_1}$ $= e_{i_2} e_{i_2}^{\top} \cdot W_{*, i_1}$

where the first step and the 2nd step are by Fact A.2, the 3rd step is simple algebra, the 4th step holds since $i_0 = i_2$.

 $= e_{i_2} \cdot w_{j_2,j_1}$

 $= e_{i_0} \cdot w_{j_2, j_1}$

1404	Proof of Part 2	
1405	$\mathrm{d}X^{\top}W_{*i}$, $\mathrm{d}X^{\top}$	
1407	$\frac{\overline{dx_{i_2,i_2}}}{\overline{dx_{i_2,i_2}}} = \frac{\overline{dx_{i_2,i_2}}}{\overline{dx_{i_2,i_2}}} \cdot W_{*,j_1}$	
1408	$= e_{i,j} e^{-\frac{1}{j}} \cdot W_{*,i}$	
1409	$= e_1 \cdots e_{1} \cdots e_{1$	
1410	$=c_{i_2} \omega_{j_2,j_1}$	
1411 1412	where the first step and the 2nd step are by Fact A.2, the 3rd step is simple algebra.	
1413	B.3 Derivative of Scalar Function $f(X)_{i_0,i_0}$	
1414	Lemma B.4. If the following holds:	
1416	• Let $f(X)_{i_0}$ be defined as Definition A.6	
1417		
1419	We have	
1420	• Part 1 For $i_0 = i_2 \in [n], i_1, i_2 \in [d]$	
1421	$-\frac{1}{2} (X)$	
1422	$\frac{\mathrm{d}f(X)_{i_0,i_0}}{\mathrm{d}x} = -f(X)_{i_0,i_0} \cdot (f(X)_{i_0,i_0} \cdot w(X)_{i_0,j_2} + \langle f(X)_{i_0}, X^\top W_{*,j_2} \rangle)$	
1423	dx_{i_2,j_2}	
1425	$+ f(X)_{i_0,i_0} \cdot \langle W_{j_2,*} + W_{*,j_2}, X_{*,i_0} angle$	
1426	• Part 2 For $i_0 \neq i_2 \in [n], j_1, j_2 \in [d]$	
1427	$df(X)_{i_{i_{i_{i_{i_{i_{i_{i_{i_{i_{i_{i_{i_$	
1429	$\frac{dY(x) + i_0, i_0}{dx_{i_0, i_0}} = -f(X)_{i_0, i_0} \cdot f(X)_{i_0, i_2} \cdot w(X)_{i_0, j_2}$	
1430	*2,J2	
1431	Proof. Proof of Part 1	
1432	$df(X)_{i_0,i_0}$ (((X)) = 1 ((X) ((X) (X	
1433	$\frac{-(\alpha(X)_{i_0})}{dx_{i_2,j_2}} = (-(\alpha(X)_{i_0})^{-1} \cdot f(X)_{i_0} \cdot (u(X)_{i_0,i_0} \cdot w(X)_{i_0,j_2} + \langle u(X)_{i_0}, X^+ W_{*,j_2} \rangle)$	
1435	$+ f(X)_{i_0} \circ (e_{i_0} \cdot w(X)_{i_0})_{i_0} + X^{\top} W_{*,i_0}))_{i_0}$	
1436	$= -(\alpha(X))^{-1} \cdot f(X) \cdot \cdots \cdot (u(X) \cdot \cdots \cdot u(X)) \cdot \cdots + (u(X) \cdot \cdots \cdot X^{\top}W \cdot \cdot))$	
1437	$= (u(X)_{i_0}) j(X)_{i_0,i_0} (u(X)_{i_0,i_0} w(X)_{i_0,j_2} + (u(X)_{i_0}, X W_{*,j_2}))$	
1438	$+ (f(X)_{i_0} \circ (e_{i_0} \cdot w(X)_{i_0,j_2}))_{i_0} + (f(X)_{i_0} \circ (X \cdot W_{*,j_2}))_{i_0}$	
1439	$= - \left(\alpha(X)_{i_0} \right)^{-1} \cdot f(X)_{i_0, i_0} \cdot \left(u(X)_{i_0, i_0} \cdot w(X)_{i_0, j_2} + \langle u(X)_{i_0}, X^\top W_{*, j_2} \rangle \right)$	
1440	$+ f(X)_{i_0,i_0} \cdot w(X)_{i_0,j_2} + f(X)_{i_0,i_0} \cdot \langle W_{*,j_2}, X_{*,i_0} \rangle$	
1441	$= -f(X)_{i_0,i_0} \cdot (f(X)_{i_0,i_0} \cdot w(X)_{i_0,j_2} + \langle f(X)_{i_0}, X^\top W_{*,j_2} \rangle)$	
1443	$+ f(X)_{i_0,i_0} \cdot w(X)_{i_0,j_2} + f(X)_{i_0,i_0} \cdot \langle W_{*,j_2}, X_{*,i_0} \rangle$	
1444	where the first step uses Lemma $\Lambda 1/4$ for $i_{2} = i_{3}$, the following steps are taking the i_{3} , the entry c	۰f

where the first step uses Lemma A.14 for $i_0 = i_2$, the following steps are taking the i_0 -th entry of $f(X)_{i_0}$, the last step is by the definition of $f(X)_{i_0}$ (see Definition A.6).

1447 Proof of Part 2

$$\frac{\mathrm{d}f(X)_{i_0,i_0}}{\mathrm{d}x_{i_2,j_2}} = (-(\alpha(X)_{i_0})^{-1} \cdot f(X)_{i_0} \cdot u(X)_{i_0,i_2} \cdot w(X)_{i_0,j_2} + f(X)_{i_0} \circ (e_{i_2} \cdot w(X)_{i_0,j_2}))_{i_0} = -(\alpha(X)_{i_0})^{-1} \cdot f(X)_{i_0,i_0} \cdot u(X)_{i_0,i_2} \cdot w(X)_{i_0,j_2} + (f(X)_{i_0} \circ (e_{i_2} \cdot w(X)_{i_0,j_2}))_{i_0} = -(\alpha(X)_{i_0})^{-1} \cdot f(X)_{i_0,i_0} \cdot u(X)_{i_0,i_2} \cdot w(X)_{i_0,j_2}$$

- 1456 $= -f(X)_{i_0,i_0} \cdot f(X)_{i_0,i_2} \cdot w(X)_{i_0,j_2}$
- where the first step uses Lemma A.14 for $i_0 \neq i_2$, the 2nd step is taking the i_0 -th entry of $f(X)_{i_0}$, the 3rd step is because $i_0 \neq i_2$, the last step is by the definition of $f(X)_{i_0}$ (see Definition A.6). \Box

1458 **B**.4 DERIVATIVE OF SCALAR FUNCTION $h(X)_{i_0,i_0}$ 1459 1460 Lemma B.5. If the following holds: 1461 • Let $h(X)_{i_0}$ be defined as Definition A.7 1462 1463 We have 1464 • Part 1 For $i_0 = i_2 \in [n], j_1, j_2 \in [d]$ 1465 $\frac{\mathrm{d}h(X)_{j_0,i_0}}{\mathrm{d}x_{i_2,j_2}} = v_{j_2,j_0}$ 1466 1467 1468 • Part 2 For $i_0 \neq i_2 \in [n], j_1, j_2 \in [d]$ 1469 $\mathrm{d}h(X)_{j_0,i_0} = 0$ 1470 1471 $\overline{\mathrm{d}x_{i_2,j_2}}$ 1472 1473 Proof. Proof of Part 1 1474 $\frac{\mathrm{d}h(X)_{j_0,i_0}}{\mathrm{d}x_{i_2,j_2}} = (e_{i_2} \cdot v_{j_2,j_0})_{i_0}$ 1475 1476 $= v_{j_2, j_0}$ 1477 where the first step is by Lemma A.15, the 2nd step is because $i_0 = i_2$. 1478 1479 **Proof of Part 2** 1480 $\frac{\mathrm{d}h(X)_{j_0,i_0}}{\mathrm{d}x_{i_2,j_2}} = (e_{i_2} \cdot v_{j_2,j_0})_{i_0}$ 1481 1482 1483 where the first step is by Lemma A.15, the 2nd step is because $i_0 \neq i_2$. 1484 1485 **B.5** DERIVATIVE OF SCALAR FUNCTION $z(X)_{i_0, j_1}$ 1486 1487 Lemma B.6. If the following holds: 1488 1489 • Let $f(X)_{i_0}$ be defined as Definition A.6 1490 • Let $z(X)_{i_0, j_1} := \langle f(X)_{i_0}, X^\top W_{*, j_1} \rangle$ 1491 1492 • Let $w(X)_{i_0, j_1} = \langle W_{j_1, *}, X_{*, i_0} \rangle$ 1493 1494 We have 1495 • Part 1 For $i_0 = i_1 = i_2 \in [n], j_1, j_2 \in [d]$ 1496 $\mathrm{d}z(X)_{i_0,j_1}$ 1497 $\mathrm{d}x_{i_2,j_2}$ 1498 1499 $= -z(X)_{i_0,j_1} \cdot f(X)_{i_0,i_0} \cdot w(X)_{i_0,j_2}$ 1500 $- z(X)_{i_0,j_1} \cdot z(X)_{i_0,j_2}$ 1501 $+ f(X)_{i_0,i_0} \cdot \langle W_{*,j_1}, X_{*,i_0} \rangle \cdot w(X)_{i_0,j_2}$ 1502 $+ \langle f(X)_{i_0} \circ X^\top W_{*,j_2}, X^\top W_{*,j_1} \rangle$ 1503 $+ f(X)_{i_0,i_0} \cdot w_{j_2,j_1}$ 1504 1505 • Part 2 For $i_0 = i_1 \neq i_2 \in [n], j_1, j_2 \in [d]$ 1506 $\frac{\mathrm{d}\langle f(X)_{i_0}, X^\top W_{*,j_1}\rangle}{\mathrm{d}x_{i_2,j_2}}$ 1507 1509 $= -z(X)_{i_0,j_1} \cdot f(X)_{i_0,i_0} \cdot w(X)_{i_0,j_2}$ 1510 $+ f(X)_{i_0,i_0} \cdot w(X)_{i_0,j_2} \cdot \langle W_{*,j_1}, X_{*,i_0} \rangle$ 1511 $+ f(X)_{i_0,i_0} \cdot w_{j_2,j_1}$

1512 Proof. Proof of Part 1 1513 $\frac{\mathrm{d}\langle f(X)_{i_0}, X^\top W_{*,j_1}\rangle}{\mathrm{d}x_{i_2,j_2}}$ 1514 1515 1516 $= \langle \frac{\mathrm{d}f(X)_{i_0}}{\mathrm{d}x_{i_2,i_2}}, X^{\top} W_{*,j_1} \rangle + \langle f(X)_{i_0}, \frac{\mathrm{d}X^{\top} W_{*,j_1}}{\mathrm{d}x_{i_2,i_2}} \rangle$ 1517 1518 $= \langle \frac{\mathrm{d}f(X)_{i_0}}{\mathrm{d}x_{i_0,i_0}}, X^\top W_{*,j_1} \rangle + \langle f(X)_{i_0}, e_{i_0} \cdot w_{j_2,j_1} \rangle$ 1520 $= \langle \frac{\mathrm{d}f(X)_{i_0}}{\mathrm{d}x_{i_2,j_2}}, X^\top W_{*,j_1} \rangle + f(X)_{i_0,i_0} \cdot w_{j_2,j_1}$ 1521 1523 $= \langle -(\alpha(X)_{i_0})^{-1} \cdot f(X)_{i_0} \cdot (u(X)_{i_0,i_0} \cdot w(X)_{i_0,j_2} + \langle u(X)_{i_0}, X^{\top} W_{*,j_2} \rangle)$ $+ f(X)_{i_0} \circ (e_{i_0} \cdot w(X)_{i_0, i_2} + X^{\top} W_{*, i_2}), X^{\top} W_{*, i_1} \rangle + f(X)_{i_0, i_0} \cdot w_{i_2, i_1}$ 1525 $= \langle -f(X)_{i_0} \cdot (f(X)_{i_0,i_0} \cdot w(X)_{i_0,j_2} + \langle f(X)_{i_0}, X^\top W_{*,j_2} \rangle)$ 1527 $+ f(X)_{i_0} \circ (e_{i_0} \cdot w(X)_{i_0, j_2} + X^{\top} W_{*, j_2}), X^{\top} W_{*, j_1} + f(X)_{i_0, i_0} \cdot w_{j_2, j_1}$ 1528 $= -z(X)_{i_0, j_1} \cdot f(X)_{i_0, i_0} \cdot w(X)_{i_0, j_2}$ 1529 $-z(X)_{i_0,i_1} \cdot z(X)_{i_0,i_2}$ 1531 $+ f(X)_{i_0,i_0} \cdot \langle W_{*,j_1}, X_{*,i_0} \rangle \cdot w(X)_{i_0,j_2}$ 1532 $+\langle f(X)_{i_0} \circ X^\top W_{*,j_2}, X^\top W_{*,j_1} \rangle$ 1533 $+ f(X)_{i_0,i_0} \cdot w_{i_2,i_1}$ 1534

where the 1st step is by Fact A.2, the 2nd step uses Lemma B.3, the 3rd step is taking the i_0 -th entry of $f(X)_{i_0}$, the 4th step uses Lemma A.14, the 5th step is by the definition of $f(X)_{i_0}$ (see Definition A.6).

1538 1539 **Proof of Part 2**

where the 1st step is by Fact A.2, the 2nd step uses Lemma B.3, the 3rd step is taking the i_0 -th entry of $f(X)_{i_0}$, the 4th step uses Lemma A.14, the last step is by the definition of $f(X)_{i_0}$ (see Definition A.6).

1562 B.6 DERIVATIVE OF SCALAR FUNCTION $f(X)_{i_0,i_0} \cdot h(X)_{j_0,i_0}$ 1563

1564 Lemma B.7. If the following holds:

1565

• Let $f(X)_{i_0}$ be defined as Definition A.6

• Let $h(X)_{j_0}$ be defined as Definition A.7 1567 1568 We have 1569 • **Part 1** For $i_0 = i_1 = i_2 \in [n], j_1, j_2 \in [d]$ 1570 $\frac{\mathrm{d}f(X)_{i_0,i_0} \cdot h(X)_{j_0,i_0}}{\mathrm{d}x_{i_2,j_2}}$ 1571 1572 $= (-f(X)_{i_0,i_0} \cdot (f(X)_{i_0,i_0} \cdot w(X)_{i_0,i_2} + \langle f(X)_{i_0}, X^\top W_{*,i_2} \rangle)$ 1574 + $f(X)_{i_0,i_0} \cdot \langle W_{j_2,*} + W_{*,j_2}, X_{*,i_0} \rangle) \cdot h(X)_{j_0,i_0} + f(X)_{i_0,i_0} \cdot v_{j_2,j_0}$ 1575 • **Part 2** For $i_0 = i_1 \neq i_2 \in [n], j_1, j_2 \in [d]$ $\frac{\mathrm{d}f(X)_{i_0,i_0} \cdot h(X)_{j_0,i_0}}{\mathrm{d}x_{i_0,i_0}} = -f(X)_{i_0,i_0} \cdot f(X)_{i_0,i_2} \cdot w(X)_{i_0,j_2} \cdot h(X)_{j_0,i_0}$ 1579 1580 Proof. Proof of Part 1 1581 $\frac{\mathrm{d}f(X)_{i_0,i_0}\cdot h(X)_{j_0,i_0}}{\mathrm{d}x_{i_2,j_2}}$ $= \frac{\mathrm{d}f(X)_{i_0,i_0}}{\mathrm{d}x_{i_2,j_2}} \cdot h(X)_{j_0,i_0} + f(X)_{i_0,i_0} \cdot \frac{\mathrm{d}h(X)_{j_0,i_0}}{\mathrm{d}x_{i_2,j_2}}$ 1585 $= \frac{\mathrm{d}f(X)_{i_0,i_0}}{\mathrm{d}x_{i_2,j_2}} \cdot h(X)_{j_0,i_0} + f(X)_{i_0,i_0} \cdot v_{j_2,j_0}$ 1587 1588 $= (-(\alpha(X)_{i_0})^{-1} \cdot f(X)_{i_0,i_0} \cdot (u(X)_{i_0,i_0} \cdot w(X)_{i_0,j_2} + \langle u(X)_{i_0}, X^{\top} W_{*,j_2} \rangle)$ 1590 $+ f(X)_{i_0,i_0} \cdot \langle W_{j_2,*} + W_{*,j_2}, X_{*,i_0} \rangle) \cdot h(X)_{j_0,i_0} + f(X)_{i_0,i_0} \cdot v_{j_2,j_0}$ 1591 $= (-f(X)_{i_0,i_0} \cdot (f(X)_{i_0,i_0} \cdot w(X)_{i_0,j_2} + \langle f(X)_{i_0}, X^\top W_{*,j_2} \rangle)$ 1592 $+ f(X)_{i_0,i_0} \cdot \langle W_{j_2,*} + W_{*,j_2}, X_{*,i_0} \rangle) \cdot h(X)_{j_0,i_0} + f(X)_{i_0,i_0} \cdot v_{j_2,j_0}$ 1593 1594 where the fist step is by Fact A.2, the 2nd step calls Lemma B.5, the 3rd step uses Lemma B.4, the last step is by the definition of $f(X)_{i_0}$ (see Definition A.6). 1596 **Proof of Part 2** 1597 $\frac{\mathrm{d}f(X)_{i_0,i_0}\cdot h(X)_{j_0,i_0}}{\mathrm{d}x_{i_2,j_2}}$ 1598 1599 $= \frac{\mathrm{d}f(X)_{i_0,i_0}}{\mathrm{d}x_{i_0,i_2}} \cdot h(X)_{j_0,i_0} + f(X)_{i_0,i_0} \cdot \frac{\mathrm{d}h(X)_{j_0,i_0}}{\mathrm{d}x_{i_0,i_0}}$ $= - (\alpha(X)_{i_0})^{-1} \cdot f(X)_{i_0,i_0} \cdot u(X)_{i_0,i_2} \cdot w(X)_{i_0,j_2} \cdot h(X)_{j_0,i_0}$ 1603 $= -f(X)_{i_0,i_0} \cdot f(X)_{i_0,i_2} \cdot w(X)_{i_0,j_2} \cdot h(X)_{j_0,i_0}$ 1604 where the fist step is by Fact A.2, the 2nd step calls Lemma B.5, the 3rd step uses Lemma B.4, the 1605 last step is by the definition of $f(X)_{i_0}$ (see Definition A.6). 1608 **B.7** DERIVATIVE OF SCALAR FUNCTION $f(X)_{i_0,i_0} \cdot w(X)_{i_0,j_1}$ 1609 Lemma B.8. If the following holds: 1610

• Let $f(X)_{i_0}$ be defined as Definition A.6

1613 We have

1611

1612

1614

1615 1616 • Part 1 For $i_0 = i_1 = i_2 \in [n], j_1, j_2 \in [d]$

$$\underline{\mathrm{d}} f(X)_{i_0,i_0} \cdot w(X)_{i_0,j_1}$$

1617
$$dx_{i_2,j_2}$$

$$= (f(X)_{i_0,i_0} \cdot (f(X)_{i_0,i_0} \cdot w(X)_{i_0,j_2} + \langle f(X)_{i_0}, X^\top W_{*,j_2} \rangle) + f(X)_{i_0,i_0} \cdot \langle W_{j_2,*} + W_{*,j_2}, X_{*,i_0} \rangle) \cdot w(X)_{i_0,j_1} + f(X)_{i_0,i_0} \cdot w_{j_1,j_2}$$

 $\frac{\mathrm{d}f(X)_{i_0,i_0}\cdot w(X)_{i_0,j_1}}{\mathrm{d}x_{i_2,j_2}}$

1620
1621
1622
1623
• Part 2 For
$$i_0 = i_1 \neq i_2 \in [n], j_1, j_2 \in [d]$$

 $\frac{df(X)_{i_0,i_0} \cdot w(X)_{i_0,j_1}}{dx_{i_2,j_2}} = -f(X)_{i_0,i_0} \cdot f(X)_{i_0,i_2} \cdot w(X)_{i_0,j_2} \cdot w(X)_{i_0,j_1}$

 $= \frac{\mathrm{d}f(X)_{i_0,i_0}}{\mathrm{d}x_{i_2,j_2}} \cdot w(X)_{i_0,j_1} + f(X)_{i_0,i_0} \cdot \frac{\mathrm{d}w(X)_{i_0,j_1}}{\mathrm{d}x_{i_2,j_2}}$

 $= \frac{\mathrm{d}f(X)_{i_0,i_0}}{\mathrm{d}x_{i_2,j_2}} \cdot w(X)_{i_0,j_1} + f(X)_{i_0,i_0} \cdot w_{j_1,j_2}$

Proof. Proof of Part 1 1625

1624

1628 1629

1633

1634

$$+ f(X)_{i_0,i_0} \cdot \langle W_{j_2,*} + W_{*,j_2}, X_{*,i_0} \rangle) \cdot w(X)_{i_0,j_1} + f(X)_{i_0,i_0} \cdot w_{j_1,j_2} \\ = (-f(X)_{i_0,i_0} \cdot (f(X)_{i_0,i_0} \cdot w(X)_{i_0,j_2} + \langle f(X)_{i_0}, X^\top W_{*,j_2} \rangle) \\ + f(X)_{i_0,i_0} \cdot \langle W_{j_2,*} + W_{*,j_2}, X_{*,i_0} \rangle) \cdot w(X)_{i_0,j_1} + f(X)_{i_0,i_0} \cdot w_{j_1,j_2} \end{cases}$$

1638 where step 1 is by Fact A.2, the 2nd step calls Lemma B.2, the 3rd step uses Lemma B.4, the last step 1639 is by the definition of $f(X)_{i_0}$ (see Definition A.6). 1640

 $= (-(\alpha(X)_{i_0})^{-1} \cdot f(X)_{i_0,i_0} \cdot (u(X)_{i_0,i_0} \cdot w(X)_{i_0,j_2} + \langle u(X)_{i_0}, X^\top W_{*,j_2} \rangle)$

Proof of Part 2

1641

1644 1645

$$= \frac{\mathrm{d}f(X)_{i_0,i_0}}{\mathrm{d}x_{i_2,i_2}} \cdot w(X)_{i_0,j_1} + f(X)_{i_0,i_0} \cdot \frac{\mathrm{d}w(X)_{i_0,j_1}}{\mathrm{d}x_{i_2,j_2}}$$

 $\frac{\mathrm{d}f(X)_{i_0,i_0} \cdot w(X)_{i_0,j_1}}{\mathrm{d}x_{i_2,j_2}}$

$$-\frac{1}{\mathrm{d}x_{i_2,j_2}}\cdot w_0$$

1646
1647
$$= \frac{\mathrm{d}f(X)}{\mathrm{d}f(X)}$$

1647
$$= \frac{\mathrm{d}f(X)_{i_0,i_0}}{\mathrm{d}x_{i_2,j_2}} \cdot w(X)_{i_0,j_1}$$

1649
$$= -(\alpha(X)_{i_0})^{-1} \cdot f(X)_{i_0,i_0} \cdot u(X)_{i_0,i_2} \cdot w(X)_{i_0,j_2} \cdot w(X)_{i_0,j_1}$$

1650
$$= -f(X)_{i_0,i_0} \cdot f(X)_{i_0,i_0} \cdot w(X)_{i_0,i_0} \cdot w(X)_{i_0,i_0}$$

 $= -f(X)_{i_0,i_0} \cdot f(X)_{i_0,i_2} \cdot w(X)_{i_0,j_2} \cdot w(X)_{i_0,j_1}$ 1651

where step 1 is by Fact A.2, the 2nd step calls Lemma B.2, the 3rd step uses Lemma B.4, the last step 1652 is by the definition of $f(X)_{i_0}$ (see Definition A.6). 1653

1654 **B.8** DERIVATIVE OF VECTOR FUNCTION $f(X)_{i_0} \circ (X^{\top} W_{*, j_1})$ 1655

1656 Lemma B.9. If the following holds: 1657

• Let $f(X)_{i_0}$ be defined as Definition A.6

1659 We have

1658

1661 • **Part 1** For $i_0 = i_1 = i_2 \in [n], j_1, j_2 \in [d]$ 1662 $\frac{\mathrm{d}f(X)_{i_0} \circ (X^\top W_{*,j_1})}{\mathrm{d}x_{i_2,j_2}}$ 1663 1664 1665 $= (-f(X)_{i_0} \cdot (f(X)_{i_0,i_0} \cdot w(X)_{i_0,j_2} + \langle f(X)_{i_0}, X^\top W_{*,j_2} \rangle)$ $+ f(X)_{i_0} \circ (e_{i_0} \cdot w(X)_{i_0, j_2} + X^\top W_{*, j_2})) \circ (X^\top W_{*, j_1}) + f(X)_{i_0} \circ (e_{i_0} \cdot w_{j_2, j_1})$ • Part 2 For $i_0 = i_1 \neq i_2 \in [n], j_1, j_2 \in [d]$ 1669 $\frac{\mathrm{d}f(X)_{i_0}\circ (X^\top W_{*,j_1})}{\mathrm{d}x_{i_2,j_2}}$ 1670 1671 $= (-f(X)_{i_0} \cdot f(X)_{i_0,i_2} \cdot w(X)_{i_0,j_2}$ 1673 $+ f(X)_{i_0} \circ (e_{i_2} \cdot w(X)_{i_0, j_2})) \circ (X^{\top} W_{*, j_1}) + f(X)_{i_0} \circ (e_{i_2} \cdot w_{j_2, j_1})$

ID	Term	Symmetric?	Table Name
1	$+2s(X)_{i_0,j_0} \cdot f(X)_{i_0,i_0}^2 \cdot w(X)_{i_0,j_1} \cdot w(X)_{i_0,j_2}$	Yes	N/A
2	$-f(X)_{i_0,i_0}^2 \cdot h(X)_{j_0,i_0} \cdot w(X)_{i_0,j_2} \cdot w(X)_{i_0,j_1}$	Yes	N/A
3	$-f(X)_{i_0,i_0} \cdot \langle f(X)_{i_0} \circ (X^\top W_{*,j_2}), h(X)_{j_0} \rangle \cdot w(X)_{i_0,j_1}$	No	Table 5: 1
4	$-f(X)_{i_0,i_0}^2 \cdot v_{j_2,j_0} \cdot w(X)_{i_0,j_1}$	No	Table 6: 1
5	$-s(X)_{i_0,j_0} \cdot f(X)_{i_0,i_0} \cdot w(X)_{i_0,j_2} \cdot w(X)_{i_0,j_1}$	Yes	N/A
6	$-s(X)_{i_0,j_0} \cdot f(X)_{i_0,i_0} \cdot \langle W_{*,j_2}, X_{*,i_0} \rangle \cdot w(X)_{i_0,j_1}$	No	Table 3: 7
7	$-s(X)_{i_0,j_0} \cdot f(X)_{i_0,i_0} \cdot w_{j_1,j_2}$	No	Table 3: 9
8	$2f(X)_{i_0,i_0} \cdot s(X)_{i_0,j_0} \cdot z(X)_{i_0,j_2} \cdot w(X)_{i_0,j_1}$	No	Table 3: 1

Table 2:	C_1	Part	1	Summary
----------	-------	------	---	---------

Proof. Proof of Part 1

$$\begin{aligned} \frac{\mathrm{d}f(X)_{i_0} \circ (X^\top W_{*,j_1})}{\mathrm{d}x_{i_2,j_2}} \\ &= \frac{\mathrm{d}f(X)_{i_0}}{\mathrm{d}x_{i_2,j_2}} \circ (X^\top W_{*,j_1}) + f(X)_{i_0} \circ \frac{\mathrm{d}X^\top W_{*,j_1}}{\mathrm{d}x_{i_2,j_2}} \\ &= \frac{\mathrm{d}f(X)_{i_0}}{\mathrm{d}x_{i_2,j_2}} \circ (X^\top W_{*,j_1}) + f(X)_{i_0} \circ (e_{i_0} \cdot w_{j_2,j_1}) \\ &= (-(\alpha(X)_{i_0})^{-1} \cdot f(X)_{i_0} \cdot (u(X)_{i_0,i_0} \cdot w(X)_{i_0,j_2} + \langle u(X)_{i_0}, X^\top W_{*,j_2} \rangle) \\ &\quad + f(X)_{i_0} \circ (e_{i_0} \cdot w(X)_{i_0,j_2} + X^\top W_{*,j_2})) \circ (X^\top W_{*,j_1}) + f(X)_{i_0} \circ (e_{i_0} \cdot w_{j_2,j_1}) \\ &= (-f(X)_{i_0} \cdot (f(X)_{i_0,i_0} \cdot w(X)_{i_0,j_2} + \langle f(X)_{i_0}, X^\top W_{*,j_2} \rangle) \\ &\quad + f(X)_{i_0} \circ (e_{i_0} \cdot w(X)_{i_0,j_2} + X^\top W_{*,j_2})) \circ (X^\top W_{*,j_1}) + f(X)_{i_0} \circ (e_{i_0} \cdot w_{j_2,j_1}) \end{aligned}$$

where the 1st step is by Fact A.2, the 2nd step uses Lemma B.3, the 3rd step uses Lemma A.14, the last step is by the definition of $f(X)_{i_0}$ (see Definition A.6).

Proof of Part 2

$$\frac{\mathrm{d}f(X)_{i_0} \circ (X^\top W_{*,j_1})}{\mathrm{d}x_{i_2,j_2}} = \frac{\mathrm{d}f(X)_{i_0}}{\mathrm{d}x_{i_2,j_2}} \circ (X^\top W_{*,j_1}) + f(X)_{i_0} \circ \frac{\mathrm{d}X^\top W_{*,j_1}}{\mathrm{d}x_{i_2,j_2}}$$

1710
1711
$$= \frac{\mathrm{d}f(X)_{i_0}}{\mathrm{d}x_{i_0}} \circ (X^\top W_{*,j_1}) + f(X)_{i_0} \circ (e_{i_2} \cdot w_{j_2,j_1})$$

1712
$$ax_{i_2,j_2}$$

1712
1713
$$= -\left((\alpha(X)_{i_0})^{-1} \cdot f(X)_{i_0} \cdot u(X)_{i_0,i_2} \cdot w(X)_{i_0,j_2}\right)$$

1714
$$+ f(X)_{i_0} \circ (e_{i_2} \cdot w(X)_{i_0,j_2})) \circ (X^\top W_{*,j_1}) + f(X)_{i_0} \circ (e_{i_2} \cdot w_{j_2,j_1})$$

1715
$$= (-f(X)_{i_0} \cdot f(X)_{i_0,i_2} \cdot w(X)_{i_0,j_2}$$
1716

$$+ f(X)_{i_0} \circ (e_{i_2} \cdot w(X)_{i_0,j_2})) \circ (X^\top W_{*,j_1}) + f(X)_{i_0} \circ (e_{i_2} \cdot w_{j_2,j_1})$$

where the 1st step is by Fact A.2, the 2nd step uses Lemma B.3, the 3rd step uses Lemma A.14, the last step is by the definition of $f(X)_{i_0}$ (see Definition A.6).

B.9 DERIVATIVE OF $C_1(X)$

Lemma B.10. If the following holds:

• Let $C_1(X) \in \mathbb{R}$ be defined as in Lemma A.16

1726 • Let
$$z(X)_{i_0,j_1} = \langle f(X)_{i_0}, X^\top W_{*,j_1} \rangle$$

• Let $w(X)_{i_0,j_1} = \langle W_{j_1,*}, X_{*,i_0} \rangle$

1728 1729	We have
1730	• Part 1 For $i_0 = i_1 = i_2 \in [n], j_1, j_2 \in [d]$
1731	$AC(\mathbf{V})$
1732	$\frac{\mathrm{d} \mathrm{C}_1(\Lambda)}{1}$
1733	$\mathrm{d}x_{i_2,j_2}$
1734	$= + 2s(X)_{i_0, j_0} \cdot f(X)_{i_0, i_0}^2 \cdot w(X)_{i_0, j_2} \cdot w(X)_{i_0, j_1}$
1735	$+ 2f(X)_{i_0,i_0} \cdot s(X)_{i_0,j_0} \cdot z(X)_{i_0,j_2} \cdot w(X)_{i_0,j_1}$
1736	$-f(X)^2_{i_0,i_0} \cdot h(X)_{i_0,i_0} \cdot w(X)_{i_0,i_0} \cdot w(X)_{i_0,i_1}$
1738	$= f(\mathbf{Y}), \mathbf{y} \in f(\mathbf{Y}),$
1739	$\int (X_{i_0,i_0} + \sqrt{f(X_{i_0,i_0} + \sqrt{f(X_{i_0} + \sqrt{f(X_{i_0,i_0} + \sqrt{f(X_{i_0,i_0} + \sqrt{f(X_{i_0,i_0}$
1740	$-f(X)_{i_0,i_0} \cdot v_{j_2,j_0} \cdot w(X)_{i_0,j_1}$
1741	$- s(X)_{i_0,j_0} \cdot f(X)_{i_0,i_0} \cdot w(X)_{i_0,j_2} \cdot w(X)_{i_0,j_1}$
1742	$- s(X)_{i_0, j_0} \cdot f(X)_{i_0, i_0} \cdot \langle W_{*, j_2}, X_{*, i_0} \rangle \cdot w(X)_{i_0, j_1}$
1743	$-s(X)_{i_0,j_0} \cdot f(X)_{i_0,i_0} \cdot w_{j_1,j_2}$
1744	
1745	• Part 2 For $i_0 = i_1 \neq i_2 \in [n], j_1, j_2 \in [d]$
1746	$\mathrm{d}C_1(X)$
1747	$\frac{1}{\mathrm{d}x_{i_1,i_2}}$
1740	$= s(X)_{i \in \mathbb{N}} \cdot f(X)_{i \in \mathbb{N}} \cdot w(X)_{i \in \mathbb{N}} \cdot f(X)_{i \in \mathbb{N}} \cdot w(X)_{i \in \mathbb{N}}$
1749	$= f(X)_{i_0,j_0} - f(X)_{i_0,i_2} - w(X)_{i_0,j_2} - f(X)_{i_0,i_0} - w(X)_{i_0,j_1} - f(X)_{i_0,i_0} - h(X)_{i_0,i_0} - h($
1751	$ \int (X)_{i_0,i_2} + h(X)_{j_0,i_2} + w(X)_{i_0,j_2} + f(X)_{i_0,i_0} + w(X)_{i_0,j_1} $ $ f(Y) = f(Y) = w(Y) $
1752	$= \int (\mathbf{A})_{i_0,i_2} \cdot b_{j_2,j_0} \cdot \int (\mathbf{A})_{i_0,i_0} \cdot w(\mathbf{A})_{i_0,j_1}$ $= \int (\mathbf{Y}) = \int (\mathbf{Y}) \cdot f(\mathbf{Y}) = \int (\mathbf{Y}) \cdot w(\mathbf{Y}) \cdot f(\mathbf{Y}) = \int (\mathbf{Y}) \cdot f(\mathbf{Y}) \cdot f(\mathbf{Y}) \cdot f(\mathbf{Y}) = \int (\mathbf{Y}) \cdot f(\mathbf{Y}) \cdot f(\mathbf{Y}) \cdot f(\mathbf{Y}) = \int (\mathbf{Y}) \cdot f(\mathbf{Y}) \cdot f(\mathbf{Y}) \cdot f(\mathbf{Y}) = \int (\mathbf{Y}) \cdot f(\mathbf{Y}) \cdot f(\mathbf{Y}) \cdot f(\mathbf{Y}) = \int (\mathbf{Y}) \cdot f(\mathbf{Y}) \cdot f(\mathbf{Y}) \cdot f(\mathbf{Y}) = \int (\mathbf{Y}) \cdot f(\mathbf{Y}) \cdot f(\mathbf{Y}) \cdot f(\mathbf{Y}) = \int (\mathbf{Y}) \cdot f(\mathbf{Y}) \cdot f(\mathbf{Y}) \cdot f(\mathbf{Y}) = \int (\mathbf{Y}) \cdot f(\mathbf{Y}) \cdot f(\mathbf{Y}) \cdot f(\mathbf{Y}) \cdot f(\mathbf{Y}) = \int (\mathbf{Y}) \cdot f(\mathbf{Y}) \cdot f(\mathbf{Y}) \cdot f(\mathbf{Y}) \cdot f(\mathbf{Y}) = \int (\mathbf{Y}) \cdot f(\mathbf{Y}) \cdot f(\mathbf{Y}) \cdot f(\mathbf{Y}) \cdot f(\mathbf{Y}) = \int (\mathbf{Y}) \cdot f(\mathbf{Y}) \cdot f(\mathbf{Y}) \cdot f(\mathbf{Y}) \cdot f(\mathbf{Y}) = \int (\mathbf{Y}) \cdot f(\mathbf{Y}) \cdot f(\mathbf{Y}) \cdot f(\mathbf{Y}) \cdot f(\mathbf{Y}) \cdot f(\mathbf{Y}) \cdot f(\mathbf{Y}) = \int (\mathbf{Y}) \cdot f(\mathbf{Y}) = \int (\mathbf{Y}) \cdot f(\mathbf{Y}) \cdot f($
1753	$+ s_{(\boldsymbol{\Lambda})i_{0},j_{0}} \cdot f_{(\boldsymbol{\Lambda})i_{0},i_{0}} \cdot f_{(\boldsymbol{\Lambda})i_{0},i_{2}} \cdot w_{(\boldsymbol{\Lambda})i_{0},j_{2}} \cdot w_{(\boldsymbol{\Lambda})i_{0},j_{1}}$
1754	
1755	Proof Proof of Part 1
1756	
1759	$\frac{\mathrm{d}C_1(X)}{1}$
1759	$\mathrm{d}x_{i_2,j_2}$
1760	$= \frac{\mathrm{d} - s(X)_{i_0, j_0} \cdot f(X)_{i_0, i_0} \cdot w(X)_{i_0, j_1}}{\mathrm{d} - s(X)_{i_0, j_0} \cdot w(X)_{i_0, j_1}}$
1761	$\mathrm{d} x_{i_2,j_2}$
1762	$= -\frac{\mathrm{d}s(X)_{i_0,j_0}}{\mathrm{d}s(X)_{i_0,j_0}} \cdot f(X)_{i_0,i_0} \cdot w(X)_{i_0,j_0}$
1763	$dx_{i_{2},j_{2}}$
1764	$= g(\mathbf{X})_{i_0,i_0} \cdot w(X)_{i_0,j_1}$
1765	
	dx_{i_2,j_2}
1766	$ \frac{ds(X)_{i_0,j_0}}{ds(X)_{i_0,j_0}} \frac{dx_{i_2,j_2}}{ds(X)} $
1766 1767	$= -\frac{\mathrm{d}s(X)_{i_0,j_0}}{\mathrm{d}x_{i_2,j_2}} \cdot f(X)_{i_0,i_0} \cdot w(X)_{i_0,j_1}$
1766 1767 1768 1769	$= -\frac{\mathrm{d}s(X)_{i_0,j_0}}{\mathrm{d}x_{i_2,j_2}} \cdot f(X)_{i_0,i_0} \cdot w(X)_{i_0,j_1}$ $= -\frac{\mathrm{d}s(X)_{i_0,j_0}}{\mathrm{d}x_{i_2,j_2}} \cdot f(X)_{i_0,i_0} \cdot w(X)_{i_0,j_1}$ $- s(X)_{i_0,i_0} \cdot ((-(\alpha(X)_{i_0})^{-1} \cdot f(X)_{i_0,i_0} \cdot (u(X)_{i_0,i_0} \cdot w(X)_{i_0,i_0} + \langle u(X)_{i_0,i_0} X^\top W_{*,i_0} \rangle)$
1766 1767 1768 1769 1770	$ = -\frac{\mathrm{d}s(X)_{i_0,j_0}}{\mathrm{d}x_{i_2,j_2}} \cdot f(X)_{i_0,i_0} \cdot w(X)_{i_0,j_1} - s(X)_{i_0,j_0} \cdot ((-(\alpha(X)_{i_0})^{-1} \cdot f(X)_{i_0,i_0} \cdot (u(X)_{i_0,i_0} \cdot w(X)_{i_0,j_2} + \langle u(X)_{i_0}, X^\top W_{*,j_2} \rangle) + f(X)_{i_0,i_0} \cdot \langle W_{i_0,i_0} + W_{i_0,i_0} \cdot X_{i_0,i_0} \rangle \cdot w(X)_{i_0,i_0} + f(X)_{i_0,i_0} \cdot w_{i_0,i_0} \rangle $
1766 1767 1768 1769 1770 1771	$ = -\frac{\mathrm{d}s(X)_{i_0,j_0}}{\mathrm{d}x_{i_2,j_2}} \cdot f(X)_{i_0,i_0} \cdot w(X)_{i_0,j_1} - s(X)_{i_0,j_0} \cdot ((-(\alpha(X)_{i_0})^{-1} \cdot f(X)_{i_0,i_0} \cdot (u(X)_{i_0,i_0} \cdot w(X)_{i_0,j_2} + \langle u(X)_{i_0}, X^\top W_{*,j_2} \rangle) + f(X)_{i_0,i_0} \cdot \langle W_{j_2,*} + W_{*,j_2}, X_{*,i_0} \rangle) \cdot w(X)_{i_0,j_1} + f(X)_{i_0,i_0} \cdot w_{j_1,j_2}) - (-c(X) - c(X) - c(X$
1766 1767 1768 1769 1770 1771 1772	$ \begin{aligned} &= -\frac{\mathrm{d}s(X)_{i_0,j_0}}{\mathrm{d}x_{i_2,j_2}} &= -\frac{\mathrm{d}s(X)_{i_0,j_0}}{\mathrm{d}x_{i_2,j_2}} \cdot f(X)_{i_0,i_0} \cdot w(X)_{i_0,j_1} \\ &= -\frac{\mathrm{d}s(X)_{i_0,j_0}}{\mathrm{d}x_{i_2,j_2}} \cdot ((-(\alpha(X)_{i_0})^{-1} \cdot f(X)_{i_0,i_0} \cdot (u(X)_{i_0,i_0} \cdot w(X)_{i_0,j_2} + \langle u(X)_{i_0}, X^\top W_{*,j_2} \rangle) \\ &+ f(X)_{i_0,i_0} \cdot \langle W_{j_2,*} + W_{*,j_2}, X_{*,i_0} \rangle) \cdot w(X)_{i_0,j_1} + f(X)_{i_0,i_0} \cdot w_{j_1,j_2} \rangle \\ &= -(-s(X)_{i_0,j_0} \cdot f(X)_{i_0,i_0} \cdot w(X)_{i_0,j_2} - s(X)_{i_0,j_0} \cdot \langle f(X)_{i_0}, X^\top W_{*,j_2} \rangle \\ &+ f(X) = -(-s(X)_{i_0,j_0} \cdot f(X)_{i_0,i_0} \cdot w(X)_{i_0,j_2} - s(X)_{i_0,j_0} \cdot \langle f(X)_{i_0}, X^\top W_{*,j_2} \rangle \end{aligned} $
1766 1767 1768 1769 1770 1771 1772 1773	$ \begin{aligned} &= -\frac{\mathrm{d}s(X)_{i_0,j_0}}{\mathrm{d}x_{i_2,j_2}} &= -\frac{\mathrm{d}s(X)_{i_0,j_0}}{\mathrm{d}x_{i_2,j_2}} \cdot f(X)_{i_0,i_0} \cdot w(X)_{i_0,j_1} \\ &- s(X)_{i_0,j_0} \cdot ((-(\alpha(X)_{i_0})^{-1} \cdot f(X)_{i_0,i_0} \cdot (u(X)_{i_0,i_0} \cdot w(X)_{i_0,j_2} + \langle u(X)_{i_0}, X^\top W_{*,j_2} \rangle) \\ &+ f(X)_{i_0,i_0} \cdot \langle W_{j_2,*} + W_{*,j_2}, X_{*,i_0} \rangle) \cdot w(X)_{i_0,j_1} + f(X)_{i_0,i_0} \cdot w_{j_1,j_2} \rangle \\ &= - (-s(X)_{i_0,j_0} \cdot f(X)_{i_0,i_0} \cdot w(X)_{i_0,j_2} - s(X)_{i_0,j_0} \cdot \langle f(X)_{i_0}, X^\top W_{*,j_2} \rangle \\ &+ f(X)_{i_0,i_0} \cdot h(X)_{j_0,i_0} \cdot w(X)_{i_0,j_2} - s(X)_{i_0,j_0} \cdot \langle f(X)_{i_0}, X^\top W_{*,j_2} \rangle \end{aligned} $
1766 1767 1768 1769 1770 1771 1772 1773 1774	$\begin{aligned} &= -\frac{\mathrm{d}s(X)_{i_0,j_0}}{\mathrm{d}x_{i_2,j_2}} &= -\frac{\mathrm{d}s(X)_{i_0,j_0}}{\mathrm{d}x_{i_2,j_2}} \cdot f(X)_{i_0,i_0} \cdot w(X)_{i_0,j_1} \\ &= -s(X)_{i_0,j_0} \cdot ((-(\alpha(X)_{i_0})^{-1} \cdot f(X)_{i_0,i_0} \cdot (u(X)_{i_0,i_0} \cdot w(X)_{i_0,j_2} + \langle u(X)_{i_0}, X^\top W_{*,j_2} \rangle)) \\ &+ f(X)_{i_0,i_0} \cdot \langle W_{j_2,*} + W_{*,j_2}, X_{*,i_0} \rangle) \cdot w(X)_{i_0,j_1} + f(X)_{i_0,i_0} \cdot w_{j_1,j_2} \rangle \\ &= -(-s(X)_{i_0,j_0} \cdot f(X)_{i_0,i_0} \cdot w(X)_{i_0,j_2} - s(X)_{i_0,j_0} \cdot \langle f(X)_{i_0}, X^\top W_{*,j_2} \rangle \\ &+ f(X)_{i_0,i_0} \cdot h(X)_{j_0,i_0} \cdot w(X)_{i_0,j_2} \\ &+ \langle f(X)_{i_0} \circ (X^\top W_{*,j_2}), h(X)_{j_0} \rangle + f(X)_{i_0,i_2} \cdot v_{j_2,j_0}) \cdot f(X)_{i_0,i_0} \cdot w(X)_{i_0,j_1} \end{aligned}$
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775	$\begin{aligned} &= -\frac{\mathrm{d}s(X)_{i_0,j_0}}{\mathrm{d}x_{i_2,j_2}} &= -\frac{\mathrm{d}s(X)_{i_0,j_0}}{\mathrm{d}x_{i_2,j_2}} \cdot f(X)_{i_0,i_0} \cdot w(X)_{i_0,j_1} \\ &= -\frac{\mathrm{d}s(X)_{i_0,j_0}}{\mathrm{d}x_{i_2,j_2}} \cdot f(X)_{i_0,i_0} \cdot w(X)_{i_0,j_0} \cdot (u(X)_{i_0,i_0} \cdot w(X)_{i_0,j_2} + \langle u(X)_{i_0}, X^\top W_{*,j_2} \rangle) \\ &+ f(X)_{i_0,i_0} \cdot \langle W_{j_2,*} + W_{*,j_2}, X_{*,i_0} \rangle) \cdot w(X)_{i_0,j_1} + f(X)_{i_0,i_0} \cdot w_{j_1,j_2} \rangle \\ &= -(-s(X)_{i_0,j_0} \cdot f(X)_{i_0,i_0} \cdot w(X)_{i_0,j_2} - s(X)_{i_0,j_0} \cdot \langle f(X)_{i_0}, X^\top W_{*,j_2} \rangle \\ &+ f(X)_{i_0,i_0} \cdot h(X)_{j_0,i_0} \cdot w(X)_{i_0,j_2} \\ &+ \langle f(X)_{i_0} \circ (X^\top W_{*,j_2}), h(X)_{j_0} \rangle + f(X)_{i_0,i_2} \cdot v_{j_2,j_0}) \cdot f(X)_{i_0,i_0} \cdot w(X)_{i_0,j_1} \\ &- s(X)_{i_0,j_0} \cdot ((-f(X)_{i_0,i_0} \cdot (f(X)_{i_0,i_0} \cdot w(X)_{i_0,j_2} + \langle f(X)_{i_0}, X^\top W_{*,j_2} \rangle) \end{aligned}$
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776	$\begin{aligned} &= -\frac{\mathrm{d}s(X)_{i_0,j_0}}{\mathrm{d}x_{i_2,j_2}} &= -\frac{\mathrm{d}s(X)_{i_0,j_0}}{\mathrm{d}x_{i_2,j_2}} \cdot f(X)_{i_0,i_0} \cdot w(X)_{i_0,j_1} \\ &= -\frac{\mathrm{d}s(X)_{i_0,j_0}}{\mathrm{d}x_{i_2,j_2}} \cdot f(X)_{i_0,i_0} \cdot w(X)_{i_0,i_0} \cdot (u(X)_{i_0,i_0} \cdot w(X)_{i_0,j_2} + \langle u(X)_{i_0}, X^\top W_{*,j_2} \rangle) \\ &+ f(X)_{i_0,i_0} \cdot \langle W_{j_2,*} + W_{*,j_2}, X_{*,i_0} \rangle) \cdot w(X)_{i_0,j_1} + f(X)_{i_0,i_0} \cdot w_{j_1,j_2} \rangle \\ &= -(-s(X)_{i_0,j_0} \cdot f(X)_{i_0,i_0} \cdot w(X)_{i_0,j_2} - s(X)_{i_0,j_0} \cdot \langle f(X)_{i_0}, X^\top W_{*,j_2} \rangle \\ &+ f(X)_{i_0,i_0} \cdot h(X)_{j_0,i_0} \cdot w(X)_{i_0,j_2} \\ &+ \langle f(X)_{i_0} \circ (X^\top W_{*,j_2}), h(X)_{j_0} \rangle + f(X)_{i_0,i_2} \cdot v_{j_2,j_0}) \cdot f(X)_{i_0,i_0} \cdot w(X)_{i_0,j_1} \\ &- s(X)_{i_0,j_0} \cdot ((-f(X)_{i_0,i_0} \cdot (f(X)_{i_0,i_0} \cdot w(X)_{i_0,j_2} + \langle f(X)_{i_0}, X^\top W_{*,j_2} \rangle) \\ &+ f(X)_{i_0,i_0} \cdot \langle W_{j_2,*} + W_{*,j_2}, X_{*,i_0} \rangle) \cdot w(X)_{i_0,j_1} + f(X)_{i_0,i_0} \cdot w_{j_1,j_2}) \end{aligned}$
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778	$\begin{aligned} &= -\frac{ds(X)_{i_0,j_0}}{dx_{i_2,j_2}} &= -\frac{ds(X)_{i_0,j_0}}{dx_{i_2,j_2}} \cdot f(X)_{i_0,i_0} \cdot w(X)_{i_0,j_1} \\ &= -\frac{ds(X)_{i_0,j_0}}{dx_{i_2,j_2}} \cdot f(X)_{i_0,i_0} \cdot w(X)_{i_0,j_0} \cdot (u(X)_{i_0,i_0} \cdot w(X)_{i_0,j_2} + \langle u(X)_{i_0}, X^\top W_{*,j_2} \rangle) \\ &+ f(X)_{i_0,i_0} \cdot \langle W_{j_2,*} + W_{*,j_2}, X_{*,i_0} \rangle) \cdot w(X)_{i_0,j_1} + f(X)_{i_0,i_0} \cdot w_{j_1,j_2} \rangle \\ &= -(-s(X)_{i_0,j_0} \cdot f(X)_{i_0,i_0} \cdot w(X)_{i_0,j_2} - s(X)_{i_0,j_0} \cdot \langle f(X)_{i_0}, X^\top W_{*,j_2} \rangle \\ &+ f(X)_{i_0,i_0} \cdot h(X)_{j_0,i_0} \cdot w(X)_{i_0,j_2} \\ &+ \langle f(X)_{i_0} \circ (X^\top W_{*,j_2}), h(X)_{j_0} \rangle + f(X)_{i_0,i_2} \cdot v_{j_2,j_0}) \cdot f(X)_{i_0,i_0} \cdot w(X)_{i_0,j_1} \\ &- s(X)_{i_0,j_0} \cdot ((-f(X)_{i_0,i_0} \cdot (f(X)_{i_0,i_0} \cdot w(X)_{i_0,j_2} + \langle f(X)_{i_0}, X^\top W_{*,j_2} \rangle) \\ &+ f(X)_{i_0,i_0} \cdot \langle W_{j_2,*} + W_{*,j_2}, X_{*,i_0} \rangle) \cdot w(X)_{i_0,j_1} + f(X)_{i_0,i_0} \cdot w_{j_1,j_2} \rangle \\ &= 2s(X)_{i_0,j_0} \cdot f(X)_{i_0,i_0}^2 \cdot w(X)_{i_0,j_2} \cdot w(X)_{i_0,j_1} \end{aligned}$
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1778	$\begin{aligned} &= -\frac{ds(X)_{i_0,j_0}}{dx_{i_2,j_2}} &= -\frac{ds(X)_{i_0,j_0}}{dx_{i_2,j_2}} \cdot f(X)_{i_0,i_0} \cdot w(X)_{i_0,j_1} \\ &= -\frac{ds(X)_{i_0,j_0}}{dx_{i_2,j_2}} \cdot f(X)_{i_0,i_0} \cdot w(X)_{i_0,j_0} \cdot (u(X)_{i_0,i_0} \cdot w(X)_{i_0,j_2} + \langle u(X)_{i_0}, X^\top W_{*,j_2} \rangle) \\ &+ f(X)_{i_0,i_0} \cdot \langle W_{j_2,*} + W_{*,j_2}, X_{*,i_0} \rangle) \cdot w(X)_{i_0,j_1} + f(X)_{i_0,i_0} \cdot w_{j_1,j_2} \rangle \\ &= -(-s(X)_{i_0,j_0} \cdot f(X)_{i_0,i_0} \cdot w(X)_{i_0,j_2} - s(X)_{i_0,j_0} \cdot \langle f(X)_{i_0}, X^\top W_{*,j_2} \rangle \\ &+ f(X)_{i_0,i_0} \cdot h(X)_{j_0,i_0} \cdot w(X)_{i_0,j_2} \\ &+ \langle f(X)_{i_0} \circ (X^\top W_{*,j_2}), h(X)_{j_0} \rangle + f(X)_{i_0,i_0} \cdot w(X)_{i_0,j_1} + \langle f(X)_{i_0,i_0} \cdot \langle W_{j_2,*} + W_{*,j_2}, X_{*,i_0} \rangle) \cdot w(X)_{i_0,j_1} + f(X)_{i_0,i_0} \cdot w_{j_1,j_2} \rangle \\ &= 2s(X)_{i_0,j_0} \cdot f(X)_{i_0,i_0}^2 \cdot w(X)_{i_0,j_2} \cdot w(X)_{i_0,j_1} \\ &+ 2s(X)_{i_0,j_0} \cdot Z(X)_{i_0,j_2} \cdot f(X)_{i_0,i_0} \cdot w(X)_{i_0,j_1} \\ &+ 2s(X)_{i_0,j_0} \cdot Z(X)_{i_0,j_2} \cdot f(X)_{i_0,i_0} \cdot w(X)_{i_0,j_1} \\ \end{aligned}$
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780	$\begin{aligned} &= -\frac{ds(X)_{i_0,j_0}}{dx_{i_2,j_2}} &= -\frac{ds(X)_{i_0,j_0}}{dx_{i_2,j_2}} \cdot f(X)_{i_0,i_0} \cdot w(X)_{i_0,j_1} \\ &= -\frac{ds(X)_{i_0,j_0}}{dx_{i_2,j_2}} \cdot f(X)_{i_0,i_0} \cdot w(X)_{i_0,j_0} \cdot (u(X)_{i_0,i_0} \cdot w(X)_{i_0,j_2} + \langle u(X)_{i_0}, X^\top W_{*,j_2} \rangle) \\ &+ f(X)_{i_0,i_0} \cdot \langle W_{j_2,*} + W_{*,j_2}, X_{*,i_0} \rangle) \cdot w(X)_{i_0,j_1} + f(X)_{i_0,i_0} \cdot w_{j_1,j_2} \rangle \\ &= -(-s(X)_{i_0,j_0} \cdot f(X)_{i_0,i_0} \cdot w(X)_{i_0,j_2} - s(X)_{i_0,j_0} \cdot \langle f(X)_{i_0}, X^\top W_{*,j_2} \rangle \\ &+ f(X)_{i_0,i_0} \cdot h(X)_{j_0,i_0} \cdot w(X)_{i_0,j_2} \\ &+ \langle f(X)_{i_0} \circ (X^\top W_{*,j_2}), h(X)_{j_0} \rangle + f(X)_{i_0,i_2} \cdot v_{j_2,j_0} \rangle \cdot f(X)_{i_0,i_0} \cdot w(X)_{i_0,j_1} \\ &- s(X)_{i_0,j_0} \cdot ((-f(X)_{i_0,i_0} \cdot (f(X)_{i_0,i_0} \cdot w(X)_{i_0,j_2} + \langle f(X)_{i_0}, X^\top W_{*,j_2} \rangle) \\ &+ f(X)_{i_0,i_0} \cdot \langle W_{j_2,*} + W_{*,j_2}, X_{*,i_0} \rangle) \cdot w(X)_{i_0,j_1} + f(X)_{i_0,i_0} \cdot w_{j_1,j_2}) \\ &= 2s(X)_{i_0,j_0} \cdot f(X)_{i_0,i_0}^2 \cdot w(X)_{i_0,j_2} \cdot w(X)_{i_0,j_1} \\ &+ 2s(X)_{i_0,j_0} \cdot Z(X)_{i_0,j_2} \cdot f(X)_{i_0,i_0} \cdot w(X)_{i_0,j_1} \\ &- f(X)_{i_2}^2 \cdot h(X)_{i_0,i_0} \cdot w(X)_{i_0,i_0} \cdot w(X)_{i_0,j_1} , \\ &- f(X)_{i_2}^2 \cdot h(X)_{i_0,i_0} \cdot w(X)_{i_0,i_0} \cdot w(X)_{i_0,j_1} , \\ &- f(X)_{i_2}^2 \cdot h(X)_{i_0,i_0} \cdot w(X)_{i_0,i_0} \cdot w(X)_{i_0,j_1} , \\ &- f(X)_{i_2}^2 \cdot h(X)_{i_0,i_0} \cdot w(X)_{i_0,i_0} \cdot w(X)_{i_0,j_1} , \\ &- f(X)_{i_2}^2 \cdot h(X)_{i_0,i_0} \cdot w(X)_{i_0,i_0} \cdot w(X)_{i_0,j_1} , \\ &- f(X)_{i_2}^2 \cdot h(X)_{i_0,i_0} \cdot w(X)_{i_0,i_0} \cdot w(X)_{i_0,j_1} , \\ &- f(X)_{i_2}^2 \cdot h(X)_{i_0,i_0} \cdot w(X)_{i_0,i_0} \cdot w(X)_{i_0,i_0} , \\ &- f(X)_{i_0,i_0}^2 \cdot h(X)_{i_0,i_0} \cdot w(X)_{i_0,i_0} \cdot w(X)_{i_0,i_0} , \\ &- f(X)_{i_0,i_0}^2 \cdot h(X)_{i_0,i_0} \cdot w(X)_{i_0,i_0} \cdot w(X)_{i_0,i_0} , \\ &- f(X)_{i_0,i_0}^2 \cdot h(X)_{i_0,i_0} - f(X)_{i_0,i_0}^2 \cdot h(X)_{i_0,i_0} , \\ &- f(X)_{i_0,i_0}^2 \cdot h(X)$

1784	ID	Term	Symmetric Terms	Table Name
1785	1	$2s(X)_{i_0,j_0} \cdot f(X)_{i_0,i_0} \cdot w(X)_{i_0,j_2} \cdot z(X)_{i_0,j_1}$	No	Table 2: 9
1786	2	$s(X)_{i_0,j_0} \cdot z(X)_{i_0,j_2} \cdot z(X)_{i_0,j_1}$	Yes	N/A
1787	3	$-f(X)_{i_0,i_0} \cdot h(X)_{j_0,i_0} \cdot w(X)_{i_0,j_2} \cdot z(X)_{i_0,j_1}$	No	Table 4: 3
1788	4	$-\langle f(X)_{i_0} \circ (X^\top W_{*,j_2}), h(X)_{j_0} \rangle \cdot z(X)_{i_0,j_1}$	No	Table 5: 2
1789	5	$-f(X)_{i_0,i_0} \cdot v_{j_2,j_0} \cdot z(X)_{i_0,j_1}$	No	Table 6: 2
1790	6	$+s(X)_{i_0,j_0} \cdot z(X)_{i_0,j_1} \cdot f(X)_{i_0,i_0} \cdot z(X)_{i_0,j_2}$	Yes	N/A
1791	7	$-s(X)_{i_0,j_0} \cdot f(X)_{i_0,i_0} \cdot \langle W_{*,j_1}, X_{*,i_0} \rangle \cdot w(X)_{i_0,j_2}$	No	Table 2: 6
1792	8	$-s(X)_{i_0,j_0} \cdot \langle f(X)_{i_0} \circ (X^\top W_{*,j_2}), X^\top W_{*,j_1} \rangle$	Yes	N/A
1793	9	$-s(X)_{i_0,j_0} \cdot f(X)_{i_0,i_0} \cdot w_{j_2,j_1}$	No	Table 2: 7

1782

1783

1796

1797 1798 1799

1800

1801

1802

1826

1827

1832

1833 1834 1835 $- f(X)_{i_0,i_0}^2 \cdot v_{j_2,j_0} \cdot w(X)_{i_0,j_1}$ $- s(X)_{i_0,j_0} \cdot f(X)_{i_0,i_0} \cdot \langle W_{j_2,*} + W_{*,j_2}, X_{*,i_0} \rangle \cdot w(X)_{i_0,j_1}$ $- s(X)_{i_0,j_0} \cdot f(X)_{i_0,i_0} \cdot w_{j_1,j_2}$

where the first step is by definition of $C_1(X)$ (see Lemma A.16), the 2nd step is by Fact A.2, the 3rd step is by Lemma B.8, the 4th step is because Lemma A.16, the 5th step is a rearrangement.

1803 Proof of Part 2

1824
$$+ s(X)_{i_0,j_0} \cdot f(X)_{i_0,i_0} \cdot f(X)_{i_0,i_2} \cdot w(X)_{i_0,j_2} \cdot w(X)_{i_0,j_1}$$

1825

where the first step is by definition of $C_1(X)$ (see Lemma A.16), the 2nd step is by Fact A.2, the 3rd step is by Lemma B.8, the 4th step is because Lemma A.16, the 5th step is a rearrangement.

 $,j_2$

1828 1829 B.10 DERIVATIVE OF $C_2(X)$

18301831Lemma B.11. If the following holds:

• Let $C_2(X)$ be defined as in Lemma A.16

• We define
$$z(X)_{i_0,j_1} := \langle f(X)_{i_0}, X^{\top} W_{*,j_1} \rangle$$
.

We have

Table 3: C₂ Part 1 Summary

1836 • Part 1 For $i_0 = i_1 = i_2 \in [n], j_1, j_2 \in [d]$ $\mathrm{d}C_2(X)$ 1838 dx_{i_2, j_2} 1840 $= + 2s(X)_{i_0,j_0} \cdot f(X)_{i_0,i_0} \cdot w(X)_{i_0,j_2} \cdot z(X)_{i_0,j_1}$ 1841 $+ s(X)_{i_0,j_0} \cdot z(X)_{i_0,j_2} \cdot z(X)_{i_0,j_1}$ $-f(X)_{i_0,i_0} \cdot h(X)_{j_0,i_0} \cdot w(X)_{i_0,j_2} \cdot z(X)_{i_0,j_1}$ 1843 $-\langle f(X)_{i_0} \circ (X^{\top} W_{*,i_2}), h(X)_{i_0} \rangle \cdot z(X)_{i_0,i_1}$ $-f(X)_{i_0,i_0} \cdot v_{j_2,j_0} \cdot z(X)_{i_0,j_1}$ 1845 $+ s(X)_{i_0,j_0} \cdot z(X)_{i_0,j_1} \cdot f(X)_{i_0,i_0} \cdot z(X)_{i_0,j_2}$ 1847 $-s(X)_{i_0,j_0} \cdot f(X)_{i_0,i_0} \cdot \langle W_{*,j_1}, X_{*,i_0} \rangle \cdot w(X)_{i_0,j_2}$ $-s(X)_{i_0,i_0} \cdot \langle f(X)_{i_0} \circ (X^{\top} W_{*,i_2}), X^{\top} W_{*,i_1} \rangle$ 1849 $-s(X)_{i_0,j_0} \cdot f(X)_{i_0,i_0} \cdot w_{j_2,j_1}$ 1851 • Part 2 For $i_0 = i_1 \neq i_2 \in [n], j_1, j_2 \in [d]$ $\mathrm{d}C_2(X)$ dx_{i_2, i_2} 1855 $= + s(X)_{i_0, j_0} \cdot f(X)_{i_0, i_2} \cdot w(X)_{i_0, j_2} \cdot z(X)_{i_0, j_1}$ 1856 $-f(X)_{i_0,i_2} \cdot h(X)_{j_0,i_2} \cdot w(X)_{i_0,j_2} \cdot z(X)_{i_0,j_1}$ $-f(X)_{i_0,i_2} \cdot v_{j_2,j_0} \cdot z(X)_{i_0,j_1}$ 1858 $+ s(X)_{i_0,j_0} \cdot \langle f(X)_{i_0}, X^{\top} W_{*,j_1} \rangle \cdot f(X)_{i_0,i_0} \cdot w(X)_{i_0,j_2}$ 1860 $-s(X)_{i_0,j_0} \cdot f(X)_{i_0,i_0} \cdot \langle W_{*,j_1}, X_{*,i_0} \rangle \cdot w(X)_{i_0,j_2}$ 1861 $-s(X)_{i_0,j_0} \cdot f(X)_{i_0,i_0} \cdot w_{j_2,j_1}$ 1862 1863 Proof. Proof of Part 1 1864 $d - C_2(X)$ 1865 1866 dx_{i_2,j_2} 1867 $\mathrm{d}s(X)_{i_0,j_0} \cdot z(X)_{i_0,j_1}$ 1868 dx_{i_2, i_2} $\frac{\mathrm{d}s(X)_{i_0,j_0}}{\mathrm{d}x_1} \cdot z(X)_{i_0,j_1} + s(X)_{i_0,j_0} \cdot \frac{\mathrm{d}z(X)_{i_0,j_1}}{\mathrm{d}x_{i_2,j_2}}$ 1870 = $\mathrm{d}x_{i_2,j_2}$ 1871 $= \frac{\mathrm{d}s(X)_{i_0,j_0}}{\mathrm{d}x_{i_2,j_2}} \cdot z(X)_{i_0,j_1}$ 1872 1873 1874 $+ s(X)_{i_0,j_0} \cdot \left(\left(-(\alpha(X)_{i_0})^{-1} \cdot f(X)_{i_0} \cdot (u(X)_{i_0,i_0} \cdot w(X)_{i_0,j_2} + \left\langle u(X)_{i_0}, X^\top W_{*,j_2} \right\rangle \right) \right)$ 1875 + $f(X)_{i_0} \circ (e_{i_0} \cdot w(X)_{i_0,j_2} + X^\top W_{*,j_2}), X^\top W_{*,j_1} \rangle + f(X)_{i_0,i_0} \cdot w_{j_2,j_1})$ 1876 1877 $= (-s(X)_{i_0,j_0} \cdot f(X)_{i_0,i_0} \cdot w(X)_{i_0,j_2} - s(X)_{i_0,j_0} \cdot \langle f(X)_{i_0}, X^{\top} W_{*,j_2} \rangle$ 1878 $+ f(X)_{i_0,i_0} \cdot h(X)_{j_0,i_0} \cdot w(X)_{i_0,j_2}$ 1879 $+\langle f(X)_{i_0} \circ (X^{\top}W_{*,j_2}), h(X)_{j_0} \rangle + f(X)_{i_0,i_2} \cdot v_{j_2,j_0} \rangle \cdot z(X)_{i_0,j_1}$ 1880 $+ s(X)_{i_0, i_0} \cdot \left(\langle -(\alpha(X)_{i_0})^{-1} \cdot f(X)_{i_0} \cdot (u(X)_{i_0, i_0} \cdot w(X)_{i_0, i_2} + \langle u(X)_{i_0}, X^{\top} W_{*, i_2} \rangle \right)$ 1881 $+ f(X)_{i_0} \circ (e_{i_0} \cdot w(X)_{i_0, j_2} + X^{\top} W_{*, j_2}), X^{\top} W_{*, j_1} + f(X)_{i_0, i_0} \cdot w_{j_2, j_1})$ $= -s(X)_{i_0,j_0} \cdot f(X)_{i_0,i_0} \cdot w(X)_{i_0,j_2} \cdot z(X)_{i_0,j_1}$ 1884 $-s(X)_{i_0,j_0} \cdot z(X)_{i_0,j_2} \cdot z(X)_{i_0,j_1}$ 1885 + $f(X)_{i_0,i_0} \cdot h(X)_{j_0,i_0} \cdot w(X)_{i_0,j_2} \cdot z(X)_{i_0,j_1}$ 1887 + $\langle f(X)_{i_0} \circ (X^{\top} W_{*,j_2}), h(X)_{j_0} \rangle \cdot z(X)_{i_0,j_1}$ $+ f(X)_{i_0,i_2} \cdot v_{j_2,j_0} \cdot z(X)_{i_0,j_1}$ 1889 $-s(X)_{i_0,j_0} \cdot \langle f(X)_{i_0}, X^{\top} W_{*,j_1} \rangle \cdot f(X)_{i_0,i_0} \cdot w(X)_{i_0,j_2}$

Table 4:	C_3	Part	1	Summary
----------	-------	------	---	---------

ID	Term	Symmetric Terms	Table Name
1	$-f(X)_{i_0,i_0}^2 \cdot h(X)_{j_0,i_0} \cdot w(X)_{i_0,j_2} \cdot w(X)_{i_0,j_1}$	Yes	N/A
2	$f(X)_{i_0,i_0} \cdot w(X)_{i_0,j_2} \cdot h(X)_{j_0,i_0} \cdot w(X)_{i_0,j_1}$	Yes	N/A
3	$-f(X)_{i_0,i_0} \cdot z(X)_{i_0,j_2} \cdot h(X)_{j_0,i_0} \cdot w(X)_{i_0,j_1}$	No	Table 3: 3
4	$f(X)_{i_0,i_0} \cdot \langle W_{*,j_2}, X_{*,i_0} \rangle \cdot h(X)_{j_0,i_0} \cdot w(X)_{i_0,j_1}$	No	Table 5: 3
5	$f(X)_{i_0,i_0} \cdot v_{j_2,j_0} \cdot w(X)_{i_0,j_1}$	No	Table 6: 3
6	$f(X)_{i_0,i_0} \cdot h(X)_{i_0,i_0} \cdot w_{j_1,j_2}$	No	Table 5: 5

 $- s(X)_{i_0, j_0} \cdot \langle f(X)_{i_0}, X^{\top} W_{*, j_1} \rangle \cdot f(X)_{i_0, i_0} \cdot \langle f(X)_{i_0}, X^{\top} W_{*, j_2} \rangle$ $+ s(X)_{i_0,j_0} \cdot f(X)_{i_0,i_0} \cdot \langle W_{*,j_1}, X_{*,i_0} \rangle \cdot w(X)_{i_0,j_2}$ $+ s(X)_{i_0,j_0} \cdot \langle f(X)_{i_0} \circ (X^\top W_{*,j_2}), X^\top W_{*,j_1} \rangle$ $+ s(X)_{i_0,j_0} \cdot f(X)_{i_0,i_0} \cdot w_{j_2,j_1}$

where the first step is by definition of $C_2(X)$ (see Lemma A.16), the 2nd step is by Fact A.2, the 3rd step is by Lemma B.6, the 4th step is because Lemma A.16, the 5th step is a rearrangement.

Proof of Part 2

1910	
1911	$\frac{\mathrm{d}-C_2(X)}{\mathrm{d}-C_2(X)}$
1912	$\mathrm{d}x_{i_2,j_2}$
1913	$\mathrm{d}s(X)_{i_0,j_0}\cdot \langle f(X)_{i_0},X^{ op}W_{*,j_1}\rangle$
1914	$= \frac{1}{\mathrm{d}x_{i_2,i_2}}$
1915	$d_{\mathbf{f}}(X) = d/f(X) = X^{\top}W$
1916	$= \frac{\mathrm{d}s(X)_{i_0,j_0}}{\mathrm{d}x} \cdot z(X)_{i_0,j_1} + s(X)_{i_0,j_0} \cdot \frac{\mathrm{d}\langle f(X)_{i_0}, X - W_{*,j_1} \rangle}{\mathrm{d}x}$
1917	$\mathrm{d} x_{i_2,j_2}$ $\mathrm{d} x_{i_2,j_2}$
1918	$= \frac{\mathrm{d}s(X)_{i_0,j_0}}{\cdot} \cdot z(X)_{i_0,j_0}$
1919	$\mathrm{d} x_{i_2,j_2}$
1920	$+ s(X)_{i_0,j_0} \cdot (\langle -(\alpha(X)_{i_0})^{-1} \cdot f(X)_{i_0} \cdot u(X)_{i_0,i_0} \cdot w(X)_{i_0,j_2}$
1921	$+ f(X) = o(e + w(X) + b) X^{\top} W + f(X) + w(Y)$
1922	$+ \int (X)_{i_0} \circ (C_{i_0} \circ w(X)_{i_0,j_2}), X \circ v_{*,j_1/} + \int (X)_{i_0,i_0} \circ w_{j_2,j_1})$
1923	$= (-s(X)_{i_0,j_0} \cdot f(X)_{i_0,i_2} \cdot w(X)_{i_0,j_2} + f(X)_{i_0,i_2} \cdot n(X)_{j_0,i_2} \cdot w(X)_{i_0,j_2}$
1924	$+ f(X)_{i_0,i_2} \cdot v_{j_2,j_0}) \cdot z(X)_{i_0,j_1}$
1925	$+ s(X)_{i_0,j_0} \cdot (\langle -(\alpha(X)_{i_0})^{-1} \cdot f(X)_{i_0} \cdot u(X)_{i_0,i_0} \cdot w(X)_{i_0,j_2}$
1926	$+ f(X) = o(e + w(X) + e) X^{\top} W_{+} + f(X) + e + w(X)$
1927	$= \int (\mathbf{X}) i_0 \circ (\mathbf{C}_{i_0} \circ (\mathbf{X}) i_{0,j_2}) \cdot \mathbf{X} (\mathbf{Y} * j_{1/2} + j_1 (\mathbf{X}) i_{0,i_0} \circ (\mathbf{C}_{j_2,j_1}) $
1928	$= -s(X)_{i_0,j_0} \cdot f(X)_{i_0,i_2} \cdot w(X)_{i_0,j_2} \cdot z(X)_{i_0,j_1}$
1929	$+ f(X)_{i_0, i_2} \cdot h(X)_{j_0, i_2} \cdot w(X)_{i_0, j_2} \cdot z(X)_{i_0, j_1}$
1930	$+ f(X)_{i_0,i_2} \cdot v_{j_2,j_0} \cdot z(X)_{i_0,j_1}$
1931	$-s(X)_{i_0,i_0} \cdot \langle f(X)_{i_0}, X^{\top}W_{*,i_0} \rangle \cdot f(X)_{i_0,i_0} \cdot w(X)_{i_0,i_0}$
1932	$\perp e(X) \cdots e(X) $
1933	$= S(X_{i_{0},j_{0}} + J(X_{i_{0},i_{0}} + V_{*,j_{1}}, X_{*,i_{0}}) + w(X_{i_{0},j_{2}})$
1934	$+ s(A)_{i_0,j_0} \cdot J(A)_{i_0,i_0} \cdot w_{j_2,j_1}$
1935	where the first step is by definition of $C_2(X)$ (see Lemma A.16), the 2nd step is by Fact A

A.2, the 3rd step is by Lemma B.6, the 4th step is because Lemma A.16, the 5th step is a rearrangement.

B.11 DERIVATIVE OF $C_3(X)$

Lemma B.12. If the following holds:

• Let $C_3(X)$ be defined as in Lemma A.16

We have

• Part 1 For $i_0 = i_1 = i_2 \in [n], j_1, j_2 \in [d]$
$dC_2(X)$
$\frac{d\sigma_3(n)}{dr}$
$(\mathbf{x}_{12}, \mathbf{j}_2) = (\mathbf{x}_1) + (\mathbf{x}_2) + (\mathbf{x}_2) + (\mathbf{x}_2) + (\mathbf{x}_1) + (\mathbf{x}_2) $
$= -f(X)_{i_0,i_0} \cdot h(X)_{j_0,i_0} \cdot w(X)_{i_0,j_2} \cdot w(X)_{i_0,j_1}$
$-f(X)_{i_0,i_0} \cdot z(X)_{i_0,j_2} \cdot h(X)_{j_0,i_0} \cdot w(X)_{i_0,j_1}$
$+ f(X)_{i_0,i_0} \cdot w(X)_{i_0,j_2} \cdot h(X)_{j_0,i_0} \cdot w(X)_{i_0,j_1}$
$+ f(X)_{i_0,i_0} \cdot \langle W_{*,j_2}, X_{*,i_0} \rangle \cdot h(X)_{j_0,i_0} \cdot w(X)_{i_0,j_1}$
$+ f(X)_{i_0, i_0} \cdot v_{i_0, i_0} \cdot w(X)_{i_0, i_1}$
$+ f(X)_{i-i} + h(X)_{i-i} + w_{i-i}$
$J (II) i_0, i_0 II (II) i_0, i_0 \cdots J_1, J_2$
• Part 2 For $i_0 = i_1 \neq i_2 \in [n], j_1, j_2 \in [d]$
$\mathrm{d}C_3(X)$
$\overline{\mathrm{d}x_{i_2,i_2}}$
$= -f(X)_{i_0,i_0} \cdot f(X)_{i_0,i_0} \cdot w(X)_{i_0,i_0} \cdot h(X)_{i_0,i_0} \cdot w(X)_{i_0,i_0}$
Proof. Proof of Part 1
$\mathrm{d}C_3(X)$
$\frac{dx_{i}}{dx_{i}}$
$df(X) \cdots dv(X) \cdots dv(X) \cdots$
$=\frac{df(x_{1})_{i_{0},i_{0}} - h(x_{1})_{i_{0},i_{0}} - h(x_{1})_{i_{0},j_{1}}}{dx_{1}}$
dx_{i_2,j_2} $df(\mathbf{V}) = h(\mathbf{V})$ $du(\mathbf{V})$
$=\frac{df(X)_{i_0,i_0}\cdot h(X)_{i_0,i_0}}{1}\cdot w(X)_{i_0,j_1} + f(X)_{i_0,i_0}\cdot h(X)_{i_0,i_0}\cdot \frac{dw(X)_{i_0,j_1}}{1}$
$\mathrm{d}x_{i_2,j_2}$ $\mathrm{d}x_{i_2,j_2}$
$= \frac{\mathrm{d}f(X)_{i_0,i_0} \cdot h(X)_{i_0,i_0}}{1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -$
$\mathrm{d} x_{i_2,j_2}$
$= \left(\left(-f(X)_{i_0, i_0} \cdot (f(X)_{i_0, i_0} \cdot w(X)_{i_0, j_2} + \langle f(X)_{i_0}, X^\top W_{*, j_2} \rangle \right) \right)$
$+ f(X)_{i_0,i_0} \cdot \langle W_{j_2,*} + W_{*,j_2}, X_{*,i_0} \rangle) \cdot h(X)_{j_0,i_0} + f(X)_{i_0,i_0} \cdot v_{j_2,j_0} \rangle \cdot w(X)_{i_0,j_1}$
$+ f(X)_{i_0,i_0} \cdot h(X)_{i_0,i_0} \cdot w_{i_1,i_2}$
$= -f(X)^{2} + h(X) + w(X) + w(X)$
$= \int (X)_{i_0,i_0} h(X)_{j_0,i_0} w(X)_{i_0,j_2} w(X)_{i_0,j_1}$
$- f(X)_{i_0,i_0} \cdot Z(X)_{i_0,j_2} \cdot h(X)_{j_0,i_0} \cdot w(X)_{i_0,j_1}$
$+ f(X)_{i_0,i_0} \cdot \langle W_{j_2,*} + W_{*,j_2}, X_{*,i_0} \rangle \cdot h(X)_{j_0,i_0} \cdot w(X)_{i_0,j_1}$
$+ f(X)_{i_0,i_0} \cdot v_{j_2,j_0} \cdot w(X)_{i_0,j_1}$
$+ f(X)_{i_0,i_0} \cdot h(X)_{i_0,i_0} \cdot w_{j_1,j_2}$
where the first step is by definition of $C_3(X)$ (see Lemma A.16), the 2nd step is by Fact A.2, the 3rd
step is by Lemma B.2, the 4th step is because Lemma B.7, the 5th step is a rearrangement.
Proof of Part 2
$\mathrm{d}C_3(X)$

 $\mathbf{d}x_{i_2,j_2}$

 $= \frac{\mathrm{d}f(X)_{i_0,i_0} \cdot h(X)_{i_0,i_0}}{\mathrm{d}x_{i_2,j_2}} \cdot w(X)_{i_0,j_1}$

 $= -f(X)_{i_0,i_0} \cdot f(X)_{i_0,i_2} \cdot w(X)_{i_0,j_2} \cdot h(X)_{j_0,i_0} \cdot w(X)_{i_0,j_1}$ where the first step is by definition of $C_3(X)$ (see Lemma A.16), the 2nd step is by Fact A.2, the 3rd step is by Lemma B.2, the 4th step is because Lemma B.7, the 5th step is a rearrangement.

 $= \frac{\mathrm{d}f(X)_{i_0,i_0} \cdot h(X)_{i_0,i_0} \cdot w(X)_{i_0,j_1}}{\mathrm{d}x_{i_2,j_2}}$ = $\frac{\mathrm{d}f(X)_{i_0,i_0} \cdot h(X)_{i_0,i_0}}{\mathrm{d}x_{i_2,j_2}} \cdot w(X)_{i_0,j_1} + f(X)_{i_0,i_0} \cdot h(X)_{i_0,i_0} \cdot \frac{\mathrm{d}w(X)_{i_0,j_1}}{\mathrm{d}x_{i_2,j_2}}$

Table 5: C_4 Part 1 Summary

2000	ID	Term	Symmetric?	Table Name
2001	1	$\frac{-\langle f(X)_i \circ (X^\top W_{i,i}), h(X)_i \rangle \cdot f(X)_{i,i} \cdot w(X)_{i,i}}{-\langle f(X)_i \circ (X^\top W_{i,i}), h(X)_i \rangle \cdot f(X)_{i,i}}$	No	Table 2: 3
2002	2	$\frac{\langle f(X)_{i} \rangle \langle f(X)_{i} \rangle \langle$	No	Table 3: 4
2003	3	$\frac{(f(X)_{i_0,i_0} \cdot h(X)_{i_0,i_0} \cdot (W_{*,i_1}, X_{*,i_0}) - (U_{*,i_0})_{i_0,i_0}}{f(X)_{i_0,i_0} \cdot h(X)_{i_0,i_0} \cdot (W_{*,i_1}, X_{*,i_0}) \cdot w(X)_{i_0,i_0}}$	No	Table 4: 4
2004	4	$\frac{\langle f(X)_{i_0} \circ (X^\top W_{*,i_0}) \circ (X^\top W_{*,i_1}), h(X)_{i_0} \rangle}{\langle f(X)_{i_0} \circ (X^\top W_{*,i_1}) \circ (X^\top W_{*,i_1}), h(X)_{i_0} \rangle}$	Yes	N/A
2005	5	$\frac{f(X)_{i_0,i_0} \cdot h(X)_{j_0,i_0} \cdot w_{j_2,j_1}}{f(X)_{i_0,i_0} \cdot h(X)_{j_0,i_0} \cdot w_{j_2,j_1}}$	No	Table 4: 6
2006	6	$\frac{1}{f(X)_{i_0,i_0}} \cdot \langle W_{*,j_1}, X_{*,i_0} \rangle \cdot v_{j_2,j_0}$	No	Table 6:4
2007				,
2008				
2009	B.12	Derivative of $C_4(X)$		
2010	Lemm	a B.13. If the following holds:		
2012		• Let $C_4(X)$ be defined as in Lemma A.16		
2014	We hav	1e		
2015	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
2010		• Part 1 For $i_0 = i_1 = i_2 \in [n], j_1, j_2 \in [d]$		
2017		$\mathrm{d}C_4(X)$		
2010		$\frac{dc_4(X)}{dx_{++}}$		
2020		$(1, j_2, j_2)$) (17)	
2021		$= - \langle f(X)_{i_0} \circ (X W_{*,j_1}), h(X)_{j_0} \rangle \cdot f(X)$	$)_{i_0,i_0} \cdot w(X)_{i_0,i_0}$	j_2
2022		$-\langle f(X)_{i_0} \circ (X^\top W_{*,j_1}), h(X)_{j_0} \rangle \cdot Z(X)$	$)_{i_0,j_2}$	
2023		$+ f(X)_{i_0,i_0} \cdot h(X)_{j_0,i_0} \cdot \langle W_{*,j_1}, X_{*,i_0} \rangle$	$w(X)_{i_0, j_2}$	
2024		$+ \langle f(X) \rangle \circ \langle X^{\top}W \rangle \circ \langle X^{\top}W \rangle$	(X)	
2025		$+ \int (\mathbf{X})_{i_0} \circ (\mathbf{X} \cdot \mathbf{v}_{*,j_2}) \circ (\mathbf{X} \cdot \mathbf{v}_{*,j_1}), \mathbf{u}$	(21) j0/	
2026		$+ \int (\Lambda)_{i_0,i_0} \cdot h(\Lambda)_{j_0,i_0} \cdot w_{j_2,j_1}$		
2027		$+ f(X)_{i_0,i_0} \cdot \langle W_{*,j_1}, X_{*,i_0} \rangle \cdot v_{j_2,j_0}$		
2028		• Part 2 For $i_0 - i_1 \neq i_0 \in [n]$ $i_1, i_0 \in [d]$		
2029		$1 \text{ are 2 } 107 \ 00 = 01 \neq 02 \in [70], \ 91, \ 92 \in [\infty]$		
2030		$\frac{\mathrm{d}C_4(X)}{\mathrm{d}C_4(X)}$		
2031		$\mathrm{d}x_{i_2,j_2}$		
2032		$= - \langle f(X)_{i_0} \circ (X^\top W_{*,j_1}), h(X)_{j_0} \rangle \cdot f(X)$	$)_{i_0,i_2} \cdot w(X)_{i_0,i_2}$	<i>i</i> 2
2033		$+ f(X)_{i_0,i_2} \cdot h(X)_{i_0,i_2} \cdot \langle W_{*,i_1}, X_{*,i_2} \rangle$	$w(X)_{i_0,i_2}$	
2034		$+ f(X)_{i_1, i_2} \cdot h(X)_{i_2, i_3} \cdot w_{i_1, i_2}$	()-0,52	
2035		$+ f(X) + (W + X) + \dots$		
2037		$+ J (\mathcal{I} , i_0, i_2 + (\mathcal{V} , j_1, \mathcal{I} , i_2, i_2 / + U_{j_2, j_0})$		
2038	Proof	Proof of Part 1		
2039	- : : : : : ; ;			
2040				
2041	$\underline{\mathrm{d}}$	$C_4(X)$		
2042	d	x_{i_2,j_2}		
2043	d	$\langle f(X)_{i_0} \circ (X^\top W_{*, j_1}), h(X)_{j_0} \rangle$		
2044	=	$\mathrm{d}x_{i_2,i_2}$		
2045	d	$f(X) = o(X^{\top} W_{i})$ - dk	p(X)	
2046	$=\langle -$	$\frac{dx}{dx} + \frac{dx}{dx} + dx$	$\frac{r(1)j_0}{r}$	
2047		(u_{i_2,j_2}) (x_{i_2,j_2}	
2048	$=\langle -$	$\frac{If(X)_{i_0} \circ (X \vee W_{*,j_1})}{2}, h(X)_{i_0} \rangle + \langle f(X)_{i_0} \circ (X^\top W_{*,i_0}), e_{i_0} \rangle$	$\langle \cdot v_{i_2,i_2} \rangle$	
2049	`	$\mathrm{d}x_{i_2,j_2}$	52,007	
2050	$=\langle (\cdot$	$-f(X)_{i_0} \cdot (f(X)_{i_0,i_0} \cdot w(X)_{i_0,j_2} + \langle f(X)_{i_0}, X^\top W_{*,j_2} \rangle)$		
2051	+	$f(X)_{i_0} \circ (e_{i_0} \cdot w(X)_{i_0, j_2} + X^\top W_{*, j_2})) \circ (X^\top W_{*, j_1}) + f(W_{*, j_2}) = 0$	$(X)_{i_0} \circ (e_{i_0} \cdot w_j)$	$_{j_2,j_1}),h(X)_{j_0}\rangle$

Term

Table 6: C_5	Part 1	Summary
----------------	--------	---------

No

No

No

No

Symmetric Terms

Table Name

 $C_1(X):4$

Table 3: 5

Table 4:5

Table 5: 6

0	n	5	0
~	v	5	~
_	_	_	_
2		15	з

2054 2055

2056

2057 2058

2060 2061

2062

2063

2064

2065 2066

2067

 $+ \langle f(X)_{i_0} \circ (X^{\top} W_{*, j_1}), e_{i_0} \cdot v_{j_2, j_0} \rangle$ $= - \langle f(X)_{i_0} \circ (X^\top W_{*,j_1}), h(X)_{j_0} \rangle \cdot f(X)_{i_0,i_0} \cdot w(X)_{i_0,j_2}$ $-\langle f(X)_{i_0} \circ (X^{\top} W_{*,i_1}), h(X)_{i_0} \rangle \cdot \langle f(X)_{i_0}, X^{\top} W_{*,i_2} \rangle$ + $f(X)_{i_0,i_0} \cdot h(X)_{j_0,i_0} \cdot \langle W_{*,j_1}, X_{*,i_0} \rangle \cdot w(X)_{i_0,j_2}$ $+ \langle f(X)_{i_0} \circ (X^{\top} W_{*, j_2}) \circ (X^{\top} W_{*, j_1}), h(X)_{j_0} \rangle$

 $-f(X)_{i_0,i_0}^2 \cdot w(X)_{i_0,j_2} \cdot v_{j_1,j_0}$

 $\begin{array}{c} -f(X)_{i_0,i_0} & \overline{\chi}(X)_{i_0,j_2} & \overline{y}_{1,j_0} \\ -f(X)_{i_0,i_0} & \overline{\chi}(X)_{i_0,j_2} & \overline{y}_{j_1,j_0} \\ f(X)_{i_0,i_0} & \overline{\psi}(X)_{i_0,j_2} & \overline{y}_{j_1,j_0} \\ f(X)_{i_0,i_0} & \overline{\psi}(W_{*,j_2}, X_{*,i_0}) & \overline{\psi}_{j_1,j_0} \end{array}$

 $+ f(X)_{i_0,i_0} \cdot h(X)_{j_0,i_0} \cdot w_{j_2,j_1}$ 2068 $+ f(X)_{i_0,i_0} \cdot \langle W_{*,j_1}, X_{*,i_0} \rangle \cdot v_{j_2,j_0}$

2069 2070

2071

2072

where the first step is by definition of $C_4(X)$ (see Lemma A.16), the 2nd step is by Fact A.2, the 3rd step is by Lemma A.15, the 4th step is because Lemma B.9, the 5th step is a rearrangement.

Proof of Part 2

2073 2074 2075

2078 2079

2080 2081

2084

2085 2086

2089

2090 2091

2092

2094

2095 2096

2097

2100

2103 2104 2105 $= \langle \frac{\mathrm{d}f(X)_{i_0} \circ (X^\top W_{*,j_1})}{\mathrm{d}x_{i_0,i_0}}, h(X)_{j_0} \rangle + \langle f(X)_{i_0} \circ (X^\top W_{*,j_1}), e_{i_2} \cdot v_{j_2,j_0} \rangle$ $= \langle -(f(X)_{i_0} \cdot f(X)_{i_0, i_2} \cdot w(X)_{i_0, j_2} \rangle$

 $\mathrm{d}C_4(X)$

 dx_{i_2, j_2}

 $+ f(X)_{i_0} \circ (e_{i_2} \cdot w(X)_{i_0, j_2})) \circ (X^\top W_{*, j_1}) + f(X)_{i_0} \circ (e_{i_2} \cdot w_{j_2, j_1}), h(X)_{j_0} \rangle$

 $= \langle \frac{\mathrm{d}f(X)_{i_0} \circ (X^\top W_{*,j_1})}{\mathrm{d}x_{i_2,j_2}}, h(X)_{j_0} \rangle + \langle f(X)_{i_0} \circ (X^\top W_{*,j_1}), \frac{\mathrm{d}h(X)_{j_0}}{\mathrm{d}x_{i_2,j_2}} \rangle$

$$+ \langle f(X)_{i_0} \circ (X^\top W_{*,j_1}), e_{i_2} \cdot v_{j_2,j_0} \rangle$$

 $= \frac{\mathrm{d}\langle f(X)_{i_0} \circ (X^\top W_{*,j_1}), h(X)_{j_0} \rangle}{\mathrm{d}x_{i_2,j_2}}$

$$= - \langle f(X)_{i_0} \circ (X^\top W_{*,j_1}), h(X)_{j_0} \rangle \cdot f(X)_{i_0,i_2} \cdot w(X)_{i_0,j_2}$$

+ $f(X)_{i_0,i_2} \cdot h(X)_{j_0,i_2} \cdot \langle W_{*,j_1}, X_{*,i_2} \rangle \cdot w(X)_{i_0,j_2}$ C(77) 1 (17)

$$+ f(X)_{i_0,i_2} \cdot n(X)_{j_0,i_2} \cdot w_{j_2,j_1} + f(X)_{i_0,i_2} \cdot \langle W_{*,j_1}, X_{*,i_2} \rangle \cdot v_{j_2,j_0}$$

where the first step is by definition of $C_4(X)$ (see Lemma A.16), the 2nd step is by Fact A.2, the 3rd step is by Lemma A.15, the 4th step is because Lemma B.9, the 5th step is a rearrangement.

B.13 DERIVATIVE OF $C_5(X)$

2098 Lemma B.14. If the following holds: 2099

• Let $C_5(X)$ be defined as in Lemma A.16

2101 We have 2102

• Part 1 For
$$i_0 = i_1 = i_2 \in [n], j_1, j_2 \in [d]$$

$$\frac{\mathrm{d}C_5(X)}{\mathrm{d}x_{i_2,j_2}} = -f(X)_{i_0,i_0}^2 \cdot w(X)_{i_0,j_2} \cdot v_{j_1,j_0}$$

2160	$+2f(X)_{i_0,i_0} \cdot s(X)_{i_0,i_0} \cdot z(X)_{i_0,i_1} \cdot w(X)_{i_0,i_0}$
2161	$D(\mathbf{Y}) := f(\mathbf{Y})^2 = h(\mathbf{Y}) = au(\mathbf{Y}) = au(\mathbf{Y})$
2162	$D_{3}(X) := - \int (X)_{i_{0},i_{0}} \cdot h(X)_{j_{0},i_{0}} \cdot w(X)_{i_{0},j_{2}} \cdot w(X)_{i_{0},j_{1}}$
2163	$D_4(X) := -f(X)_{i_0,i_0} \cdot \langle f(X)_{i_0} \circ (X^\top W_{*,j_2}), h(X)_{j_0} \rangle \cdot w(X)_{i_0,j_1}$
2164	$(f(X)_{i_0,i_0} \cdot \langle f(X)_{i_0} \circ (X^{\top} W_{*,i_1}), h(X)_{i_0} \rangle \cdot w(X)_{i_0,i_2}$
2165	$D_{r}(X) := -f(X)^{2} + w + w(X) + -f(X)^{2} + w + w(X) + \cdots$
2166	$D_{5}(X) := \int (X)_{i_{0},i_{0}} \cdot b_{j_{2},j_{0}} \cdot w(X)_{i_{0},j_{1}} \int (X)_{i_{0},i_{0}} \cdot b_{j_{1},j_{0}} \cdot w(X)_{i_{0},j_{2}}$
2107	$D_6(X) := -s(X)_{i_0,j_0} \cdot f(X)_{i_0,i_0} \cdot w(X)_{i_0,j_2} \cdot w(X)_{i_0,j_1}$
2100	$D_7(X) := -s(X)_{i_0,j_0} \cdot f(X)_{i_0,i_0} \cdot \langle W_{*,j_2}, X_{*,i_0} \rangle \cdot w(X)_{i_0,j_1}$
2105	$- s(X)_{i_0, j_0} \cdot f(X)_{i_0, i_0} \cdot \langle W_{*, j_1}, X_{*, i_0} \rangle \cdot w(X)_{i_0, j_2}$
2171	$D_8(X) := -s(X)_{i_0, j_0} \cdot f(X)_{i_0, i_0} \cdot w_{j_1, j_2} - s(X)_{i_0, j_0} \cdot f(X)_{i_0, i_0} \cdot w_{j_2, j_1}$
2172	$D_9(X) := s(X)_{i_0,j_0} \cdot z(X)_{i_0,j_2} \cdot z(X)_{i_0,j_1}$
2173	$D_{10}(X) := -f(X)_{i_0,i_0} \cdot h(X)_{i_0,i_0} \cdot w(X)_{i_0,j_2} \cdot z(X)_{i_0,j_1}$
2174	$-f(X)_{i_0,i_0} \cdot h(X)_{j_0,i_0} \cdot w(X)_{i_0,j_1} \cdot z(X)_{i_0,j_2}$
2175	$D_{11}(X) := -\langle f(X)_{i_0} \circ (X^{\top} W_{*,i_0}), h(X)_{i_0} \rangle \cdot z(X)_{i_0,i_1}$
2176	$-\langle f(X)_{i} \circ (X^{\top}W_{i}) h(X)_{i} \rangle \cdot z(X)_{i}$
2177	$D_{12}(X) := -f(X) + x_{11} + x_{22} + x_{23} $
2170	$D_{12}(X) := \int (X)_{i_0,i_0} + \partial_{j_2,j_0} + \mathcal{L}(X)_{i_0,j_1} + \int (X)_{i_0,i_0} + \partial_{j_1,j_0} + \mathcal{L}(X)_{i_0,j_2}$ $D_{-}(X) := \mathcal{L}(X) + \mathcal{L}($
2180	$D_{13}(\Lambda) := S(\Lambda)_{i_0,j_0} \cdot \mathcal{Z}(\Lambda)_{i_0,j_1} \cdot f(\Lambda)_{i_0,i_0} \cdot \mathcal{Z}(\Lambda)_{i_0,j_2}$
2181	$D_{14}(X) := -s(X)_{i_0,j_0} \cdot \langle f(X)_{i_0} \circ (X^{\top} W_{*,j_2}), X^{\top} W_{*,j_1} \rangle$
2182	$D_{15}(X) := -f(X)_{i_0,i_0}^2 \cdot h(X)_{j_0,i_0} \cdot w(X)_{i_0,j_2} \cdot w(X)_{i_0,j_1}$
2183	$D_{16}(X) := f(X)_{i_0 \ i_0} \cdot w(X)_{i_0 \ i_0} \cdot h(X)_{i_0 \ i_0} \cdot w(X)_{i_0 \ i_1}$
2184	$D_{17}(X) := f(X)_{i_1, i_2} \cdot \langle W_{*, i_1}, X_{*, i_2} \rangle \cdot h(X)_{i_2, i_3} \cdot w(X)_{i_4, i_4}$
2185	$= 17(-7)^{10} f(-7)_{10,10} (7, *, 12)^{10} + h(X) \\ + f(X)_{10} (7, *, 12)^{10} + h(X)_{10} (7, 10)^{10} + h(X)_{10} (1, 10)^{10} + h(X)_{10} $
2186	$D_{-1}(Y) := f(Y) = a_{1} a_{2}(Y) = a_{2}$
2187	$D_{18}(X) := f(X)_{i_0,i_0} \cdot b_{j_2,j_0} \cdot w(X)_{i_0,j_1} + f(X)_{i_0,i_0} \cdot b_{j_1,j_0} \cdot w(X)_{i_0,j_2}$
2188	$D_{19}(X) := f(X)_{i_0,i_0} \cdot h(X)_{i_0,i_0} \cdot w_{j_1,j_2} + f(X)_{i_0,i_0} \cdot h(X)_{i_0,i_0} \cdot w_{j_2,j_1}$
2189	$D_{20}(X) := \langle f(X)_{i_0} \circ (X^\top W_{*,j_2}) \circ (X^\top W_{*,j_1}), h(X)_{j_0} \rangle$
2190	$D_{21}(X) := f(X)_{i_0, i_0} \cdot \langle W_{*, j_2}, X_{*, i_0} \rangle \cdot v_{j_1, j_0} + f(X)_{i_0, i_0} \cdot \langle W_{*, j_1}, X_{*, i_0} \rangle \cdot v_{j_2, j_0}$
2191	
2192	• Part 2 For $i_0 = i_1 \neq i_2 \in [n], j_1, j_2 \in [a]$
2194	$dc(X)_{i_0,j_0} = \sum_{i_j \in \mathcal{N}} E(X)$
2195	$\frac{1}{\mathrm{d}x_{i_1,j_1}x_{i_2,j_2}} = \sum_{i=1}^{L} L_i(\Lambda)$
2196	
2197	where we have following definitions
2198	$E_1(X) := 2s(X)_{i_0, i_0} \cdot f(X)_{i_0, i_2} \cdot w(X)_{i_0, i_2} \cdot f(X)_{i_0, i_0} \cdot w(X)_{i_0, i_1}$
2199	$E_2(X) := -2f(X)_{i_0,i_0} \cdot h(X)_{i_0,i_0} \cdot w(X)_{i_0,i_0} \cdot f(X)_{i_0,i_0} \cdot w(X)_{i_0,i_0}$
2200	$E_2(X) := -f(X) + \cdots + f(X) + \cdots + y(X) + \cdots$
2201	$F_{i}(Y) := c(Y) = c($
2202	$E_4(X) := S(X)_{i_0,j_0} \cdot f(X)_{i_0,i_2} \cdot w(X)_{i_0,j_2} \cdot z(X)_{i_0,j_1}$ $E(X) := \frac{f(Y)}{h(Y)} \cdot \frac{h(Y)}{h(Y)} \cdot w(Y) \cdot z(Y)$
2203	$E_{5}(X) := - f(X)_{i_{0}, i_{2}} \cdot n(X)_{j_{0}, i_{2}} \cdot w(X)_{i_{0}, j_{2}} \cdot z(X)_{i_{0}, j_{1}}$
2204	$E_6(X) := -f(X)_{i_0,i_2} \cdot v_{j_2,j_0} \cdot z(X)_{i_0,j_1}$
2200	$E_7(X) := s(X)_{i_0, j_0} \cdot \langle f(X)_{i_0}, X^\top W_{*, j_1} \rangle \cdot f(X)_{i_0, i_0} \cdot w(X)_{i_0, j_2}$
2200	$E_8(X) := -s(X)_{i_0, j_0} \cdot f(X)_{i_0, i_0} \cdot \langle W_{*, j_1}, X_{*, i_0} \rangle \cdot w(X)_{i_0, j_2}$
2208	$E_9(X) := -s(X)_{i_0, j_0} \cdot f(X)_{i_0, i_0} \cdot w_{j_2, j_1}$
2209	$E_{10}(X) := -f(X)_{i_0,i_0} \cdot f(X)_{i_0,i_0} \cdot w(X)_{i_0,i_0} \cdot h(X)_{i_0,i_0} \cdot w(X)_{i_0,i_0}$
2210	$E_{11}(X) := -\langle f(X) \rangle \circ \langle X^\top W \rangle \circ h(X) \rangle \circ f(X) \circ (u)(X)$
2211	$E_{11}(X) := \langle J(X)_{l_0} \lor \langle X \lor *, j_1 \rangle, h(A)_{j_0} \land J(A)_{l_0, i_2} \land w(A)_{l_0, j_2}$ $E_{11}(X) = f(X) = f(X) \land J(X) \land $

- 2211 2212 $E_{12}(X) := f(X)_{i_0, i_2} \cdot h(X)_{j_0, i_2} \cdot \langle W_{*, j_1}, X_{*, i_2} \rangle \cdot w(X)_{i_0, j_2}$
- 2212 2213 $E_{13}(X) := f(X)_{i_0, i_2} \cdot h(X)_{j_0, i_2} \cdot w_{j_2, j_1}$
 - $E_{14}(X) := f(X)_{i_0, i_2} \cdot \langle W_{*, j_1}, X_{*, i_2} \rangle \cdot v_{j_2, j_0}$

$$E_{15}(X) := -f(X)_{i_0,i_0} \cdot f(X)_{i_0,i_2} \cdot w(X)_{i_0,j_2} \cdot v_{j_1,j_0}$$

Proof. The proof is a combination of derivatives of $C_i(X)$ in this section.

Notice that the symmetricity for **Part 1** is verified by tables in this section.

C HESSIAN CASE 2: $i_0 \neq i_1$

In this section, we focus on the second case of Hessian. In Sections C.1, C.2, C.3, C.4 and C.5, we calculated derivative of some important terms. In Sections C.6, C.7 and C.8 we calculate derivative of C_6 , C_7 and C_8 respectively. And in Section C.9 we calculate the derivative of $\frac{dc(X)_{i_0,j_1}}{dx_{i_1,j_1}}$.

 $\frac{\mathrm{d}f(X)_{i_0,i_1}}{\mathrm{d}x_{i_2,j_2}} = -f(X)_{i_0,i_1} \cdot f(X)_{i_0,i_2} \cdot w(X)_{i_0,j_2} + f(X)_{i_0,i_1} \cdot w(X)_{i_0,j_2}$

 $\frac{\mathrm{d}f(X)_{i_0,i_1}}{\mathrm{d}x_{i_1,i_2}} = -f(X)_{i_0,i_1} \cdot f(X)_{i_0,i_2} \cdot w(X)_{i_0,j_2}$

2227 C.1 DERIVATIVE OF SCALAR FUNCTION $f(X)_{i_0,i_1}$

Lemma C.1. If the following holds:

• Let $f(X)_{i_0}$ be defined as Definition A.6

• Part 1. For $i_0 \neq i_2, i_1 = i_2 \in [n], j_1, j_2 \in [d]$

• Part 2. For $i_0 \neq i_2, i_1 \neq i_2 \in [n], j_1, j_2 \in [d]$

• For
$$i_0 \neq i_2 \in [n], j_1, j_2 \in [d]$$

We have

Proof. Proof of Part 1

$$\frac{\mathrm{d}f(X)_{i_0,i_1}}{\mathrm{d}x_{i_2,j_2}} = (-(\alpha(X)_{i_0})^{-1} \cdot f(X)_{i_0} \cdot u(X)_{i_0,i_2} \cdot \langle W_{j_2,*}, X_{*,i_0} \rangle + f(X)_{i_0} \circ (e_{i_1} \cdot \langle W_{j_2,*}, X_{*,i_0} \rangle))_{i_1} = -(\alpha(X)_{i_0})^{-1} \cdot f(X)_{i_0,i_1} \cdot u(X)_{i_0,i_2} \cdot \langle W_{j_2,*}, X_{*,i_0} \rangle + f(X)_{i_0,i_1} \cdot \langle W_{j_2,*}, X_{*,i_0} \rangle = -f(X)_{i_0,i_1} \cdot f(X)_{i_0,i_2} \cdot w(X)_{i_0,j_2} + f(X)_{i_0,i_1} \cdot w(X)_{i_0,j_2}$$

where the first step follows from Part 1 of Lemma A.14, the second step follows from simple algebra, the first step follows from Definition A.6.

2259 Proof of Part 2

$$\frac{\mathrm{d}f(X)_{i_0,i_1}}{\mathrm{d}x_{i_2,j_2}} = (-(\alpha(X)_{i_0})^{-1} \cdot f(X)_{i_0} \cdot u(X)_{i_0,i_2} \cdot \langle W_{j_2,*}, X_{*,i_0} \rangle + f(X)_{i_0} \circ (e_{i_2} \cdot \langle W_{j_2,*}, X_{*,i_0} \rangle))_{i_1} = -(\alpha(X)_{i_0})^{-1} \cdot f(X)_{i_0,i_1} \cdot u(X)_{i_0,i_2} \cdot \langle W_{j_2,*}, X_{*,i_0} \rangle = -f(X)_{i_0,i_1} \cdot f(X)_{i_0,i_2} \cdot w(X)_{i_0,j_2}$$

where the first step follows from Part 1 of Lemma A.14, the second step follows from simple algebra, the first step follows from Definition A.6. \Box

C.2 DERIVATIVE OF SCALAR FUNCTION $h(X)_{i_0,i_1}$

Lemma C.2. If the following holds:

• Let $h(X)_{j_0}$ be defined as Definition A.7

• Part 1. For $i_0 \neq i_2, i_1 = i_2 \in [n], j_1, j_2 \in [d]$

• Part 2. For $i_0 \neq i_2, i_1 \neq i_2 \in [n], j_1, j_2 \in [d]$

• For
$$i_0 \neq i_2 \in [n]$$
, $j_1, j_2 \in [d]$

We have

Proof. Proof of Part 1.

$$\frac{\mathrm{d}h(X)_{j_0,i_1}}{\mathrm{d}x_{i_2,j_2}} = (e_{i_2} \cdot v_{j_2,j_0})_{i_1}$$
$$= v_{j_2,j_0}$$

 $\frac{\mathrm{d}h(X)_{j_0,i_1}}{\mathrm{d}x_{i_2,j_2}} = v_{j_2,j_0}$

 $\frac{\mathrm{d}h(X)_{j_0,i_1}}{\mathrm{d}x_{i_2,j_2}} = 0$

where the first step follows from Lemma A.7, the second step follows from $i_1 = i_2$. **Proof of Part 1.** $\frac{\mathrm{d}h(X)_{j_0,i_1}}{\mathrm{d}x_{i_2,j_2}} = (e_{i_2} \cdot v_{j_2,j_0})_{i_1}$ = 0where the first step follows from Lemma A.7, the second step follows from $i_1 \neq i_2$. C.3 DERIVATIVE OF SCALAR FUNCTION $\langle f(X)_{i_0}, h(X)_{j_0} \rangle$ Lemma C.3. If the following holds: • Let $f(X)_{i_0}$ be defined as Definition A.6 • Let $h(X)_{i_0}$ be defined as Definition A.7 • For $i_0 \neq i_2 \in [n], j_1, j_2 \in [d]$

We have

$$\frac{\mathrm{d}\langle f(X)_{i_0}, h(X)_{j_0} \rangle}{\mathrm{d}x_{i_2, j_2}} = \langle -f(X)_{i_0} \cdot f(X)_{i_0, i_2} \cdot \langle W_{j_2, *}, X_{*, i_0} \rangle + f(X)_{i_0} \circ (e_{i_2} \cdot \langle W_{j_2, *}, X_{*, i_0} \rangle), h(X)_{j_0} \rangle + f(X)_{i_0, i_2} \cdot v_{j_2, j_0}$$

Proof.

$$\frac{d\langle f(X)_{i_0}, h(X)_{j_0} \rangle}{dx_{i_2,j_2}} = \langle \frac{df(X)_{i_0}}{dx_{i_2,j_2}}, h(X)_{j_0} \rangle + \langle f(X)_{i_0}, \frac{dh(X)_{j_0}}{dx_{i_2,j_2}} \rangle \\
= \langle -(\alpha(X)_{i_0})^{-1} \cdot f(X)_{i_0} \cdot u(X)_{i_0,i_2} \cdot \langle W_{j_2,*}, X_{*,i_0} \rangle \\
+ f(X)_{i_0} \circ (e_{i_2} \cdot \langle W_{j_2,*}, X_{*,i_0} \rangle), h(X)_{j_0} \rangle + \langle f(X)_{i_0}, \frac{dh(X)_{j_0}}{dx_{i_2,j_2}} \rangle \\
= \langle -f(X)_{i_0} \cdot f(X)_{i_0,i_2} \cdot \langle W_{j_2,*}, X_{*,i_0} \rangle$$

$$\begin{array}{ll} 2322\\ 2323\\ 2323\\ 2324\\ 2325\\ 2326\\ 2326\\ 2327\\ 2328\\ \end{array} + f(X)_{i_0} \circ (e_{i_2} \cdot \langle W_{j_2,*}, X_{*,i_0} \rangle), h(X)_{j_0} \rangle + \langle f(X)_{i_0}, \frac{\mathrm{d}h(X)_{j_0}}{\mathrm{d}x_{i_2,j_2}} \rangle \\ = \langle -f(X)_{i_0} \cdot f(X)_{i_0,i_2} \cdot \langle W_{j_2,*}, X_{*,i_0} \rangle \\ + f(X)_{i_0} \circ (e_{i_2} \cdot \langle W_{j_2,*}, X_{*,i_0} \rangle), h(X)_{j_0} \rangle + \langle f(X)_{i_0}, e_{i_2} \cdot v_{j_2,j_0} \rangle \\ = \langle -f(X)_{i_0} \cdot f(X)_{i_0,i_2} \cdot \langle W_{j_2,*}, X_{*,i_0} \rangle \\ + f(X)_{i_0} \circ (e_{i_2} \cdot \langle W_{j_2,*}, X_{*,i_0} \rangle), h(X)_{j_0} \rangle + f(X)_{i_0,i_2} \cdot v_{j_2,j_0} \rangle \\ \end{array}$$

where the first step follows from simple differential rule, the second step follows from Lemma A.14, the third step follows from simple algebra and Definition A.6, the fourth step follows from Lemma A.15, the last step follows from simple algebra.

C.4 DERIVATIVE OF SCALAR FUNCTION $f(X)_{i_0,i_1} \cdot \langle W_{j_1,*}, X_{*,i_0} \rangle$

Lemma C.4. If the following holds:

• Let
$$f(X)_{i_0}$$
 be defined as Definition A.6

• Part 1. For $i_0 \neq i_2, i_1 = i_2 \in [n], j_1, j_2 \in [d]$

• For
$$i_0 \neq i_2 \in [n], j_1, j_2 \in [d]$$

We have

$$= -f(X)_{i_0,i_2} \cdot f(X)_{i_0,i_1} \cdot \langle W_{j_2,*}, X_{*,i_0} \rangle \cdot \langle W_{j_1,*}, X_{*,i_0} \rangle$$

Proof. Proof of Part 1

$$\begin{aligned} \frac{\mathrm{d}f(X)_{i_0,i_1} \cdot \langle W_{j_1,*}, X_{*,i_0} \rangle}{\mathrm{d}x_{i_2,j_2}} \\ &= \frac{\mathrm{d}f(X)_{i_0,i_1}}{\mathrm{d}x_{i_2,j_2}} \cdot \langle W_{j_1,*}, X_{*,i_0} \rangle + \frac{\mathrm{d}\langle W_{j_1,*}, X_{*,i_0} \rangle}{\mathrm{d}x_{i_2,j_2}} \cdot f(X)_{i_0,i_1} \\ &= (-f(X)_{i_0,i_2}f(X)_{i_0,i_1} + f(X)_{i_0,i_1}) \cdot \langle W_{j_2,*}, X_{*,i_0} \rangle \cdot \langle W_{j_1,*}, X_{*,i_0} \rangle \\ &\quad + \frac{\mathrm{d}\langle W_{j_1,*}, X_{*,i_0} \rangle}{\mathrm{d}x_{i_2,j_2}} \cdot f(X)_{i_0,i_1} \\ &= (-f(X)_{i_0,i_2}f(X)_{i_0,i_1} + f(X)_{i_0,i_1}) \cdot \langle W_{j_2,*}, X_{*,i_0} \rangle \cdot \langle W_{j_1,*}, X_{*,i_0} \rangle + \mathbf{0}_d \cdot f(X)_{i_0,i_1} \\ &= (-f(X)_{i_0,i_2}f(X)_{i_0,i_1} + f(X)_{i_0,i_1}) \cdot \langle W_{j_2,*}, X_{*,i_0} \rangle \cdot \langle W_{j_1,*}, X_{*,i_0} \rangle + \mathbf{0}_d \cdot f(X)_{i_0,i_1} \end{aligned}$$

where the first step follows from simple differential rule, the second step follows from Lemma C.1, the third step follows from $i_0 \neq i_2$, the last step follows from simple algebra.

Proof of Part 2

237⁻

 $\frac{\mathrm{d}f(X)_{i_0,i_1}\cdot \langle W_{j_1,*}, X_{*,i_0}\rangle}{\mathrm{d}x_{i_2,j_2}}$

$$\begin{array}{ll} \textbf{2376} \\ \textbf{2377} \\ \textbf{2378} \end{array} = (-f(X)_{i_0,i_2} f(X)_{i_0,i_1} + f(X)_{i_0,i_1}) \cdot \langle W_{j_2,*}, X_{*,i_0} \rangle \cdot \langle W_{j_1,*}, X_{*,i_0} \rangle + \mathbf{0}_d \cdot f(X)_{i_0,i_1} \\ \textbf{2378} \\ = -f(X)_{i_0,i_2} \cdot f(X)_{i_0,i_1} \cdot \langle W_{j_2,*}, X_{*,i_0} \rangle \cdot \langle W_{j_1,*}, X_{*,i_0} \rangle \\ \end{array}$$

where the first step follows from simple differential rule, the second step follows from Lemma C.1, the third step follows from $i_0 \neq i_2$, the last step follows from simple algebra.

2382 C.5 DERIVATIVE OF SCALAR FUNCTION $f(X)_{i_0,i_1} \cdot h(X)_{j_0,i_1}$

2384 Lemma C.5. If the following holds:

• Let $f(X)_{i_0}$ be defined as Definition A.6

• Let
$$h(X)_{j_0}$$
 be defined as Definition A.7

2389 We have

• Part 1 For
$$i_0 \neq i_2, i_1 = i_2 \in [n], j_1, j_2 \in [d]$$

$$\frac{\frac{df(X)_{i_0,i_1} \cdot h(X)_{j_0,i_1}}{dx_{i_2,j_2}}}{= (-f(X)_{i_0,i_2} \cdot f(X)_{i_0,i_1} + f(X)_{i_0,i_1}) \cdot \langle W_{j_2,*}, X_{*,i_0} \rangle \cdot h(X)_{j_0,i_1}}{+ v_{j_2,j_0} \cdot f(X)_{i_0,i_1}}$$

• Part 2 For
$$i_0 \neq i_2, i_1 \neq i_2 \in [n], j_1, j_2 \in [d]$$

$$\frac{\mathrm{d}f(X)_{i_0, i_0} \cdot h(X)_{j_0, i_0}}{\mathrm{d}x_{i_0, i_0}}$$

$$= -f(X)_{i_0,i_2} \cdot f(X)_{i_0,i_1} \cdot \langle W_{j_2,*}, X_{*,i_0} \rangle \cdot h(X)_{j_0,i_1}$$

Proof. Proof of Part 1.

$$\frac{\mathrm{d}f(X)_{i_0,i_1} \cdot h(X)_{j_0,i_1}}{\mathrm{d}x_{i_2,j_2}} = \frac{\mathrm{d}f(X)_{i_0,i_1}}{\mathrm{d}x_{i_2,j_2}} \cdot h(X)_{j_0,i_1} + \frac{\mathrm{d}h(X)_{j_0,i_1}}{\mathrm{d}x_{i_2,j_2}} \cdot f(X)_{i_0,i_1} \\
= (-f(X)_{i_0,i_2}f(X)_{i_0,i_1} + f(X)_{i_0,i_1}) \cdot \langle W_{j_2,*}, X_{*,i_0} \rangle \cdot h(X)_{j_0,i_1} \\
+ \frac{\mathrm{d}h(X)_{j_0,i_1}}{\mathrm{d}x_{i_2,j_2}} \cdot f(X)_{i_0,i_1} \\
= (-f(X)_{i_0,i_2} \cdot f(X)_{i_0,i_1} + f(X)_{i_0,i_1}) \cdot \langle W_{j_2,*}, X_{*,i_0} \rangle \cdot h(X)_{j_0,i_1} \\
+ v_{j_2,j_0} \cdot f(X)_{i_0,i_1}$$

where the first step follows from simple differential rule, the second step follows from Lemma C.1,the third step follows from Part 1 of Lemma C.2.

Proof of Part 2.

$$\frac{\mathrm{d}f(X)_{i_0,i_1} \cdot h(X)_{j_0,i_1}}{\mathrm{d}x_{i_2,j_2}} = \frac{\mathrm{d}f(X)_{i_0,i_1}}{\mathrm{d}x_{i_2,j_2}} \cdot h(X)_{j_0,i_1} + \frac{\mathrm{d}h(X)_{j_0,i_1}}{\mathrm{d}x_{i_2,j_2}} \cdot f(X)_{i_0,i_1}$$
$$= -f(X)_{i_0,i_2} \cdot f(X)_{i_0,i_1} \cdot \langle W_{j_2,*}, X_{*,i_0} \rangle \cdot h(X)_{j_0,i_1}$$
$$+ \frac{\mathrm{d}h(X)_{j_0,i_1}}{\mathrm{d}x_{i_2,j_2}} \cdot f(X)_{i_0,i_1}$$
$$= -f(X)_{i_0,i_2} \cdot f(X)_{i_0,i_1} \cdot \langle W_{j_2,*}, X_{*,i_0} \rangle \cdot h(X)_{j_0,i_1}$$

where the first step follows from simple differential rule, the second step follows from Lemma C.1, the third step follows from Part 2 of Lemma C.2. \Box

2428 C.6 DERIVATIVE OF $C_6(X)$

Lemma C.6. If the following holds:

• Let
$$C_6(X) \in \mathbb{R}$$
 be defined as in Lemma A.16

• Part 1 For $i_0 \neq i_2, i_1 = i_2 \in [n], j_1, j_2 \in [d]$

• For
$$i_0 \neq i_2 \in [n], j_1, j_2 \in [d]$$

 $\mathrm{d}C_6(X)$

 dx_{i_2, j_2}

2434 We have

 $= -\left(\langle -f(X)_{i_0} \cdot f(X)_{i_0,i_2} \cdot \langle W_{j_2,*}, X_{*,i_0} \rangle + f(X)_{i_0,i_2} \cdot v_{j_2,j_0} \right) \cdot f(X)_{i_0,i_1} \cdot \langle W_{j_1,*}, X_{*,i_0} \rangle + f(X)_{i_0,i_2} \cdot v_{j_2,j_0} \right) \cdot f(X)_{i_0,i_1} \cdot \langle W_{j_1,*}, X_{*,i_0} \rangle + \left(-\langle f(X)_{i_0}, h(X)_{j_0} \rangle \right) \cdot \left(-f(X)_{i_0,i_2} f(X)_{i_0,i_1} + f(X)_{i_0,i_1} \right) \cdot \langle W_{j_2,*}, X_{*,i_0} \rangle \cdot \langle W_{j_1,*}, X_{*,i_0} \rangle$ • Part 2 For $i_0 \neq i_2, i_1 \neq i_2 \in [n], j_1, j_2 \in [d]$ $\frac{\mathrm{d}C_6(X)}{\mathrm{d}x_{i_2,j_2}}$ $= -\left(\langle -f(X)_{i_0} \cdot f(X)_{i_0,i_2} \cdot \langle W_{j_2,*}, X_{*,i_0} \rangle + f(X)_{i_0,i_2} \cdot v_{j_2,j_0} \right) \cdot f(X)_{i_0,i_1} \cdot \langle W_{j_1,*}, X_{*,i_0} \rangle + f(X)_{i_0} \circ (e_{i_2} \cdot \langle W_{j_2,*}, X_{*,i_0} \rangle), h(X)_{j_0} \rangle + f(X)_{i_0,i_2} \cdot v_{j_2,j_0}) \cdot f(X)_{i_0,i_1} \cdot \langle W_{j_1,*}, X_{*,i_0} \rangle + \langle f(X)_{i_0}, h(X)_{j_0} \rangle \cdot f(X)_{i_0,i_2} \cdot f(X)_{i_0,i_1} \cdot \langle W_{j_2,*}, X_{*,i_0} \rangle$

Proof. Proof of Part 1

$$\begin{array}{ll} \begin{array}{ll} 2453 \\ 2454 \\ 2455 \\ 2455 \\ 2456 \\ 2456 \\ 2457 \\ \end{array} &= \frac{\mathrm{d}}{\mathrm{d}x_{i_{2},j_{2}}} (-\langle f(X)_{i_{0}}, h(X)_{j_{0}} \rangle \cdot f(X)_{i_{0},i_{1}} \cdot \langle W_{j_{1},*}, X_{*,i_{0}} \rangle) \\ 2457 \\ 2458 \\ 2459 \\ \end{array} &= \frac{\mathrm{d}}{\mathrm{d}x_{i_{2},j_{2}}} (-\langle f(X)_{i_{0}}, h(X)_{j_{0}} \rangle) \cdot f(X)_{i_{0},i_{1}} \cdot \langle W_{j_{1},*}, X_{*,i_{0}} \rangle) \\ 2460 \\ + (-\langle f(X)_{i_{0}}, h(X)_{j_{0}} \rangle) \cdot \frac{\mathrm{d}}{\mathrm{d}x_{i_{2},j_{2}}} (f(X)_{i_{0},i_{1}} \cdot \langle W_{j_{1},*}, X_{*,i_{0}} \rangle) \\ 2461 \\ + (-\langle f(X)_{i_{0}}, h(X)_{j_{0}} \rangle) \cdot f(X)_{i_{0},i_{1}} \cdot \langle W_{j_{1},*}, X_{*,i_{0}} \rangle) \\ 2462 \\ 2463 \\ 2464 \\ = \frac{\mathrm{d}}{\mathrm{d}x_{i_{2},j_{2}}} (-\langle f(X)_{i_{0}}, h(X)_{j_{0}} \rangle) \cdot (-f(X)_{i_{0},i_{2}} f(X)_{i_{0},i_{1}} + f(X)_{i_{0},i_{1}}) \cdot \langle W_{j_{2},*}, X_{*,i_{0}} \rangle \cdot \langle W_{j_{1},*}, X_{*,i_{0}} \rangle \\ 2465 \\ + (-\langle f(X)_{i_{0}} \cdot f(X)_{i_{0},i_{2}} \cdot \langle W_{j_{2},*}, X_{*,i_{0}} \rangle) \\ 2466 \\ = -(\langle -f(X)_{i_{0}} \cdot f(X)_{i_{0},i_{2}} \cdot \langle W_{j_{2},*}, X_{*,i_{0}} \rangle) \\ + f(X)_{i_{0}} \circ (e_{i_{1}} \cdot \langle W_{j_{2},*}, X_{*,i_{0}} \rangle) \cdot (-f(X)_{i_{0},i_{1}} + f(X)_{i_{0},i_{1}} \cdot \langle W_{j_{1},*}, X_{*,i_{0}} \rangle) \\ + (-\langle f(X)_{i_{0}}, h(X)_{j_{0}} \rangle) \cdot (-f(X)_{i_{0},i_{2}} f(X)_{i_{0},i_{1}} + f(X)_{i_{0},i_{1}} \cdot \langle W_{j_{1},*}, X_{*,i_{0}} \rangle \\ + (-\langle f(X)_{i_{0}}, h(X)_{j_{0}} \rangle) \cdot (-f(X)_{i_{0},i_{2}} f(X)_{i_{0},i_{1}} + f(X)_{i_{0},i_{1}} \cdot \langle W_{j_{1},*}, X_{*,i_{0}} \rangle) \\ \end{array}$$

where the first step follows from Lemma A.16, the second step follows from simple differential rule,the third step follows from Lemma C.4, last step follows from Lemma C.3.

Proof of Part 2

$$\begin{array}{ll} 2473 & \frac{\mathrm{d}C_{6}(X)}{\mathrm{d}x_{i_{2},j_{2}}} \\ 2475 & \frac{\mathrm{d}C_{6}(X)}{\mathrm{d}x_{i_{2},j_{2}}} \\ 2476 & = \frac{\mathrm{d}}{\mathrm{d}x_{i_{2},j_{2}}} (-\langle f(X)_{i_{0}}, h(X)_{j_{0}} \rangle \cdot f(X)_{i_{0},i_{1}} \cdot \langle W_{j_{1},*}, X_{*,i_{0}} \rangle) \\ 2478 & = \frac{\mathrm{d}}{\mathrm{d}x_{i_{2},j_{2}}} (-\langle f(X)_{i_{0}}, h(X)_{j_{0}} \rangle) \cdot f(X)_{i_{0},i_{1}} \cdot \langle W_{j_{1},*}, X_{*,i_{0}} \rangle) \\ 2480 & + (-\langle f(X)_{i_{0}}, h(X)_{j_{0}} \rangle) \cdot \frac{\mathrm{d}}{\mathrm{d}x_{i_{2},j_{2}}} (f(X)_{i_{0},i_{1}} \cdot \langle W_{j_{1},*}, X_{*,i_{0}} \rangle) \\ 2482 & = \frac{\mathrm{d}}{\mathrm{d}x_{i_{2},j_{2}}} (-\langle f(X)_{i_{0}}, h(X)_{j_{0}} \rangle) \cdot f(X)_{i_{0},i_{1}} \cdot \langle W_{j_{1},*}, X_{*,i_{0}} \rangle) \end{array}$$

2484	$+ \langle f(X)_{i_0}, h(X)_{j_0} \rangle) \cdot f(X)_{i_0, i_2} \cdot f(X)_{i_0, i_1} \cdot \langle W_{j_2, *}, X_{*, i_0} \rangle \cdot \langle W_{j_1, *}, X_{*, i_0} \rangle$
2405	$= -(\langle -f(X)_{i_0} \cdot f(X)_{i_0,i_2} \cdot \langle W_{j_2,*}, X_{*,i_0} \rangle$
2400	$+ f(X)_{i_0} \circ (e_{i_2} \cdot \langle W_{j_2,*}, X_{*,i_0} \rangle), h(X)_{j_0} \rangle + f(X)_{i_0,i_2} \cdot v_{j_2,j_0}) \cdot f(X)_{i_0,i_1} \cdot \langle W_{j_1,*}, X_{*,i_0} \rangle$
2488	$+ \langle f(X)_{i_0}, h(X)_{j_0} \rangle \cdot f(X)_{i_0, i_2} \cdot f(X)_{i_0, i_1} \cdot \langle W_{j_2, *}, X_{*, i_0} \rangle \cdot \langle W_{j_1, *}, X_{*, i_0} \rangle$
2489	where the first step follows from Lemma A 16, the second step follows from simple differential rule
2490	the third step follows from Lemma C.4. last step follows from Lemma C.3.
2491	
2492 2493	C.7 DERIVATIVE OF $C_7(X)$
2494	Lemma C.7. If the following holds:
2496	• Let $C_7(X) \in \mathbb{R}$ be defined as in Lemma A.16
2497 2498	We have
2499	• Part 1. For $i_0 \neq i_2, i_1 = i_2 \in [n], j_1, j_2 \in [d]$
2500	$\mathrm{d}C_7(X)$
2502	$\overline{\mathrm{d}x_{i_2,j_2}}$
2503	$= (-f(X)_{i_0,i_2} + 1) \cdot f(X)_{i_0,i_1} \cdot \langle W_{i_2,*}, X_{*,i_0} \rangle \cdot h(X)_{i_0,i_1} \cdot \langle W_{i_1,*}, X_{*,i_0} \rangle$
2504	$+ v_{i_2 i_0} \cdot f(X)_{i_0 i_1} \cdot \langle W_{i_1 *}, X_{* i_0} \rangle$
2505	
2506	
2507	• Part 2. For $i_0 \neq i_2, i_1 \neq i_2 \in [n], j_1, j_2 \in [d]$
2508	$\mathrm{d}C_{7}(X)$
2509	$\frac{dx_i}{dx_i}$
2510	$- f(X) \cdots f(X)$
2512	$= \int (\mathcal{I}_{10,i2} + \int (\mathcal{I}_{10,i1} + \langle vv_{j2,*}, \mathcal{I}_{*,i0} \rangle + h(\mathcal{I}_{10,i1} + \langle vv_{j1,*}, \mathcal{I}_{*,i0} \rangle)$
2513	Proof. Proof of Part 1.
2514	$\mathrm{d}C_7(X)$
2515	$\frac{1}{\mathrm{d}x_{i_1,i_2}}$
2516	d ((()) () () () () () () () (
2518	$= \frac{1}{\mathrm{d}x_{i_2,j_2}} (f(X)_{i_0,i_1} \cdot h(X)_{j_0,i_1} \cdot \langle W_{j_1,*}, X_{*,i_0} \rangle)$
2519	$-\frac{\mathrm{d}}{\mathrm{d}}(f(X),\ldots,h(X),\ldots),(W, X,\ldots)+f(X),\ldots,h(X),\ldots,\frac{\mathrm{d}}{\mathrm{d}}((W, X,\ldots))$
2520	$= \frac{1}{\mathrm{d}x_{i_2,j_2}} (f(X_{i_0,i_1} + h(X_{j_0,i_1}) + (W_{j_1,*}, X_{*,i_0}) + f(X_{j_0,i_1} + h(X_{j_0,i_1} + \frac{1}{\mathrm{d}x_{i_2,j_2}})) + \frac{1}{\mathrm{d}x_{i_2,j_2}} (W_{j_1,*}, X_{*,i_0}) + \frac{1}{\mathrm{d}x_{i_2,j_2}} ($
2521	$= (-f(X)_{i_0,i_2} + 1) \cdot f(X)_{i_0,i_1} \cdot \langle W_{j_2,*}, X_{*,i_0} \rangle \cdot h(X)_{j_0,i_1} \cdot \langle W_{j_1,*}, X_{*,i_0} \rangle$
2522	$+ v_{j_2,j_0} \cdot f(X)_{i_0,i_1} \cdot \langle W_{j_1,*}, X_{*,i_0} \rangle$
2524	+ $f(X)_{i_0,i_1} \cdot h(X)_{j_0,i_1} \cdot \frac{\mathrm{d}}{\mathrm{d}x_{i_0,i_0}}(\langle W_{j_1,*}, X_{*,i_0} \rangle)$
2526	$= (-f(X)_{i_0,i_2} + 1) \cdot f(X)_{i_0,i_1} \cdot \langle W_{i_2,*}, X_{*,i_0} \rangle \cdot h(X)_{i_0,i_1} \cdot \langle W_{i_1,*}, X_{*,i_0} \rangle$
2527	$+ v_{j_2,j_0} \cdot f(X)_{i_0,i_1} \cdot \langle W_{j_1,*}, X_{*,i_0} \rangle$
2528 2529 2530	where the first step follows from Lemma A.16, the second step follows from differential rule, the third step follows from Part 1 of Lemma C.3, the fourth step follows from $i_0 \neq i_2$.

Proof of Part 2.

$$= -f(X)_{i_0,i_2} f(X)_{i_0,i_1} \cdot \langle W_{j_2,*}, X_{*,i_0} \rangle \cdot h(X)_{j_0,i_1} \cdot \langle W_{j_1,*}, X_{*,i_0} \rangle$$

$$= -f(X)_{i_0,i_2} f(X)_{i_0,i_1} \cdot \langle W_{j_2,*}, X_{*,i_0} \rangle \cdot h(X)_{j_0,i_1} \cdot \langle W_{j_1,*}, X_{*,i_0} \rangle$$

$$= -f(X)_{i_0,i_2} f(X)_{i_0,i_1} \cdot \langle W_{j_2,*}, X_{*,i_0} \rangle \cdot h(X)_{j_0,i_1} \cdot \langle W_{j_1,*}, X_{*,i_0} \rangle$$

$$= -f(X)_{i_0,i_2} \cdot f(X)_{i_0,i_1} \cdot \langle W_{j_2,*}, X_{*,i_0} \rangle \cdot h(X)_{j_0,i_1} \cdot \langle W_{j_1,*}, X_{*,i_0} \rangle$$
where the first step follows from Lemma A.16, the second step follows from differential rule, the third step follows from the 2 of Lemma C.3, the fourth step follows from $i_0 \neq i_2$, the last step follows from simple algebra.
$$C.8 \quad \text{DERIVATIVE OF } C_8(X)$$
Lemma C.8. If the following holds:
$$\cdot Let C_8(X) \in \mathbb{R} \text{ be defined as in Lemma A.16}$$

$$\cdot For i_0 \neq i_2 \in [n], j_1, j_2 \in [d]$$
We have
$$\cdot \text{Part 1. For } i_0 \neq i_2, i_1 = i_2 \in [n], j_1, j_2 \in [d]$$

$$\frac{dC_8(X)}{dt_{i_0,j_2}}$$

$$= -f(X)_{i_0,i_2} f(X)_{i_0,i_1} + f(X)_{i_0,i_1} \cdot \langle W_{j_2,*}, X_{*,i_0} \rangle \cdot v_{j_1,j_0}$$

$$= -f(X)_{i_0,i_2} f(X)_{i_0,i_1} + f(X)_{i_0,i_1} \cdot \langle W_{j_2,*}, X_{*,i_0} \rangle \cdot v_{j_1,j_0}$$

$$= -f(X)_{i_0,i_2} f(X)_{i_0,i_1} + f(X)_{i_0,i_1} \cdot \langle W_{j_2,*}, X_{*,i_0} \rangle \cdot v_{j_1,j_0}$$

$$= -f(X)_{i_0,i_2} f(X)_{i_0,i_1} + f(X)_{i_0,i_1} \cdot \langle W_{j_2,*}, X_{*,i_0} \rangle \cdot v_{j_1,j_0}$$

$$= -f(X)_{i_0,i_2} f(X)_{i_0,i_1} + f(X)_{i_0,i_1} \cdot \langle W_{j_2,*}, X_{*,i_0} \rangle \cdot v_{j_1,j_0}$$
Where the first step follows from Lemma A.16, the second step follows from differential rule and Lemma C.1.

Froof of Part 2
$$\frac{dC_8(X)}{dx_{i_2,j_2}} = \frac{d}{dx_{i_2,j_2}} f(X)_{i_0,i_1} \cdot \langle W_{j_2,*}, X_{*,i_0} \rangle \cdot v_{j_1,j_0}$$
where the first step follows from Lemma A.16, the second step follows from differential rule and Lemma C.1.

Froof of Part 2
$$\frac{dC_8(X)}{dx_{i_2,j_2}}} = \frac{d}{dx_{i_2,j_2}} f(X)_{i_0,i_1} \cdot \langle W_{j_2,*}, X_{*,i_0} \rangle \cdot v_{j_1,j_0}$$
Where the first step follows from Lemma A.16, the second step follows from differential rule and Lemma C.1.
$$C.9 \quad \text{DERIVATIVE OF } \frac{dc(X)_{i_0,j_1}}{dx_{i_1,j_1}}$$
Lemma C.9. If the following holds:
$$\cdot Let$$

We have

• Part 1 For $i_0 \neq i_2, i_1 = i_2 \in [n], j_1, j_2 \in [d]$

$$\frac{\mathrm{d}c(X)}{\mathrm{d}x_{i_1,j_1},\mathrm{d}x_{i_2,j_2}} = \sum_{i=1}^6 F_i(X)$$

where we have following definitions

$F_1(X) = 2s(X)_{i_0, j_0} \cdot f(X)_{i_0, i_1}^2 \cdot w(X)_{i_0, j_2} \cdot w(X)_{i_0, j_1}$	
$F_2(X) = -f(X)_{i_0,i_1}^2 \cdot h(X)_{j_0,i_1} \cdot w(X)_{i_0,j_2} \cdot w(X)_{i_0,j_2}$	1
$F_3(X) = -f(X)_{i_0,i_1}^2 \cdot v_{j_2,j_0} \cdot w(X)_{i_0,j_1} - f(X)_{i_0,i_1}^2 \cdot v_{j_2,j_0}$	$v_{j_1,j_0} \cdot w(X)_{i_0,j_2}$
$F_4(X) = -s(X)_{i_0,j_0} \cdot f(X)_{i_0,i_1} \cdot w(X)_{i_0,j_1} \cdot w(X)_{i_0,j_2}$	2
$F_5(X) = f(X)_{i_0, i_1} \cdot w(X)_{i_0, j_1} \cdot w(X)_{i_0, j_2} \cdot h(X)_{j_0, i_1}$	
$F_6(X) = v_{j_2, j_0} \cdot f(X)_{i_0, i_1} \cdot w(X)_{i_0, j_1} + v_{j_1, j_0} \cdot f(X)_{i_0, i_1}$	$_{i_1} \cdot w(X)_{i_0,j_2}$

• **Part 2** For $i_0 \neq i_2, i_1 \neq i_2 \in [n], j_1, j_2 \in [d]$

$$\frac{\mathrm{d}c(X)}{\mathrm{d}x_{i_1,j_1},\mathrm{d}x_{i_2,j_2}} = \sum_{i=1}^3 G_i(X)$$

where we have following definitions

 $G_{1}(X) = 2s(X)_{i_{0},j_{0}} \cdot f(X)_{i_{0},i_{1}} \cdot f(X)_{i_{0},i_{2}} \cdot w(X)_{i_{0},j_{2}} \cdot w(X)_{i_{0},j_{1}}$ $G_{2}(X) = -f(X)_{i_{0},i_{1}} \cdot f(X)_{i_{0},i_{2}} \cdot w(X)_{i_{0},j_{2}} \cdot w(X)_{i_{0},j_{1}} \cdot (h(X)_{j_{0},i_{2}} + h(X)_{j_{0},i_{1}})$ $G_{3}(X) = -f(X)_{i_{0},i_{1}} \cdot f(X)_{i_{0},i_{2}} \cdot (v_{j_{2},j_{0}} \cdot w(X)_{i_{0},j_{1}} + v_{j_{1},j_{0}} \cdot w(X)_{i_{0},j_{2}})$

Proof. Proof of Part 1.

 $\mathrm{d}c(X)_{i_0,j_0}$ $\overline{\mathrm{d}}x_{i_1,j_1},\mathrm{d}x_{i_2,j_2}$ $= \frac{\mathrm{d}C_6}{\mathrm{d}x_{i_2,j_2}} + \frac{\mathrm{d}C_7}{\mathrm{d}x_{i_2,j_2}} + \frac{\mathrm{d}C_8}{\mathrm{d}x_{i_2,j_2}}$ $= -(\langle -f(X)_{i_0} \cdot f(X)_{i_0,i_1} \cdot \langle W_{j_2,*}, X_{*,i_0} \rangle + f(X)_{i_0} \circ (e_{i_1} \cdot \langle W_{j_2,*}, X_{*,i_0} \rangle), h(X)_{j_0} \rangle$ $+ f(X)_{i_0,i_1} \cdot v_{j_2,j_0} \cdot f(X)_{i_0,i_1} \cdot \langle W_{j_1,*}, X_{*,i_0} \rangle$ $+ \left(- \langle f(X)_{i_0}, h(X)_{j_0} \rangle \right) \cdot \left(- f(X)_{i_0, i_1}^2 + f(X)_{i_0, i_1} \right) \cdot \langle W_{j_2, *}, X_{*, i_0} \rangle \cdot \langle W_{j_1, *}, X_{*, i_0} \rangle$ $(-f(X)_{i_0,i_2}+1) \cdot f(X)_{i_0,i_1} \cdot \langle W_{j_2,*}, X_{*,i_0} \rangle \cdot h(X)_{j_0,i_1} \cdot \langle W_{j_1,*}, X_{*,i_0} \rangle$ $+ v_{j_2,j_0} \cdot f(X)_{i_0,i_1} \cdot \langle W_{j_1,*}, X_{*,i_0} \rangle$ + $(-f(X)_{i_0,i_1}^2 + f(X)_{i_0,i_1}) \cdot \langle W_{j_2,*}, X_{*,i_0} \rangle \cdot v_{j_1,j_0}$ $= 2s(X)_{i_0,j_0} \cdot f(X)_{i_0,i_1}^2 \cdot w(X)_{i_0,j_2} \cdot w(X)_{i_0,j_1}$ $-2f(X)_{i_0,i_1}^2 \cdot h(X)_{j_0,i_1} \cdot w(X)_{i_0,j_2} \cdot w(X)_{i_0,j_1}$ $-f(X)_{i_0,i_1}^2 \cdot v_{j_2,j_0} \cdot w(X)_{i_0,j_1} - f(X)_{i_0,i_1}^2 \cdot v_{j_1,j_0} \cdot w(X)_{i_0,j_2}$ $-s(X)_{i_0,j_0} \cdot f(X)_{i_0,i_1} \cdot w(X)_{i_0,j_1} \cdot w(X)_{i_0,j_2}$ $+ f(X)_{i_0,i_1} \cdot w(X)_{i_0,j_1} \cdot w(X)_{i_0,j_2} \cdot h(X)_{j_0,i_1}$ $+ v_{j_2,j_0} \cdot f(X)_{i_0,i_1} \cdot w(X)_{i_0,j_1} + v_{j_1,j_0} \cdot f(X)_{i_0,i_1} \cdot w(X)_{i_0,j_2}$

where the first step follows from Lemma A.16, the second step follows from previous results in this section, the last step is a rearrangement.

Proof of Part 2.

$$= \frac{\frac{\mathrm{d}c(X)_{i_0,j_0}}{\mathrm{d}x_{i_1,j_1},\mathrm{d}x_{i_2,j_2}}}{= \frac{\mathrm{d}C_6}{\mathrm{d}x_{i_2,j_2}} + \frac{\mathrm{d}C_7}{\mathrm{d}x_{i_2,j_2}} + \frac{\mathrm{d}C_8}{\mathrm{d}x_{i_2,j_2}}}$$

2646 $= -(\langle -f(X)_{i_0} \cdot f(X)_{i_0,i_2} \cdot \langle W_{i_2,*}, X_{*,i_0} \rangle)$ 2647 $+ f(X)_{i_0} \circ (e_{i_2} \cdot \langle W_{j_2,*}, X_{*,i_0} \rangle), h(X)_{j_0} \rangle + f(X)_{i_0,i_2} \cdot v_{j_2,j_0}) \cdot f(X)_{i_0,i_1} \cdot \langle W_{j_1,*}, X_{*,i_0} \rangle$ 2648 $+ \langle f(X)_{i_0}, h(X)_{j_0} \rangle \cdot f(X)_{i_0, i_2} \cdot f(X)_{i_0, i_1} \cdot \langle W_{j_2, *}, X_{*, i_0} \rangle \cdot \langle W_{j_1, *}, X_{*, i_0} \rangle$ 2649 $-f(X)_{i_0,i_2} \cdot f(X)_{i_0,i_1} \cdot \langle W_{j_2,*}, X_{*,i_0} \rangle \cdot h(X)_{j_0,i_1} \cdot \langle W_{j_1,*}, X_{*,i_0} \rangle$ 2650 $-f(X)_{i_0,i_2} \cdot f(X)_{i_0,i_1} \cdot \langle W_{j_2,*}, X_{*,i_0} \rangle \cdot v_{j_1,j_0}$ 2651 2652 $= 2s(X)_{i_0,j_0} \cdot f(X)_{i_0,i_1} \cdot f(X)_{i_0,i_2} \cdot w(X)_{i_0,j_2} \cdot w(X)_{i_0,j_1}$ $-f(X)_{i_0,i_1} \cdot f(X)_{i_0,i_2} \cdot h(X)_{j_0,i_2} \cdot w(X)_{i_0,j_2} \cdot w(X)_{i_0,j_1}$ 2654 $-f(X)_{i_0,i_1} \cdot f(X)_{i_0,i_2} \cdot w(X)_{i_0,j_1} \cdot w(X)_{i_0,j_2} \cdot h(X)_{j_0,i_1}$ 2655 $-f(X)_{i_0,i_1} \cdot f(X)_{i_0,i_2} \cdot v_{j_2,j_0} \cdot w(X)_{i_0,j_1} - f(X)_{i_0,i_1} \cdot f(X)_{i_0,i_2} \cdot v_{j_1,j_0} \cdot w(X)_{i_0,j_2}$ 2656 2657 where the first step follows from Lemma A.16, the second step follows from Lemma C.6, the third 2658 step follows from Part 2 of Lemma C.7, the last step follows from Lemma C.8. 2659 2660 Notice that, by our construction, **Part 1** should be symmetric w.r.t. j_1, j_2 , **Part 2** should be symmetric 2661 w.r.t. i_1, i_2 , which are all satisfied.

D HESSIAN REFORMULATION

In this section, we provide a reformulation of Hessian formula, which simplifies our calculation and analysis. In Section D.1 we show the way we split the Hessian. In Section D.2 we show the decomposition when $i_0 = i_1 = i_2$.

D.1 HESSIAN SPLIT

2662 2663

2664 2665

2669

2671 2672

2676 2677 2678

2679

2681

2683

2684 2685 2686

2687 2688

2689 2690

2691 2692

2693 2694 2695

Definition D.1 (Hessian of functions of matrix). We define the Hessian of $c(X)_{i_0,j_0}$ by considering its Hessian with respect to x = vec(X). This means that, $\nabla^2 c(X)_{i_0,j_0}$ is a $nd \times nd$ matrix with its $(i_1 \cdot j_1, i_2 \cdot j_2)$ -th entry being

$$\frac{\mathrm{d}c(X)_{i_0,j_0}}{\mathrm{d}x_{i_1,j_2}x_{i_2,j_2}}$$

Definition D.2 (Hessian split). We split the hessian of $c(X)_{i_0,j_0}$ into following cases

• Part 1:
$$i_0 = i_1 = i_2 : H_1^{(i_1, i_2)}$$

- Part 2: $i_0 = i_1, i_0 \neq i_2$: $H_2^{(i_1, i_2)}$
- Part 3: $i_0 \neq i_1$, $i_0 = i_2$: $H_3^{(i_1,i_2)}$
- Part 4: $i_0 \neq i_1$, $i_0 \neq i_2$, $i_1 = i_2$: $H_4^{(i_1, i_2)}$
- Part 5: $i_0 \neq i_1$, $i_0 \neq i_2$, $i_1 \neq i_2$: $H_5^{(i_1,i_2)}$

In above, $H_i^{(i_1,i_2)}$ is a $d \times d$ matrix with its j_1, j_2 -th entry being

$$\frac{\mathrm{d}c(X)_{i_0,j_0}}{\mathrm{d}x_{i_1,j_2}x_{i_2,j_2}}$$

2696 2697

Utilizing above definitions, we split the Hessian to a $n \times n$ partition with its i_1, i_2 -th component being $H_i(i_1, i_2)$ based on above definition. **Definition D.3.** We define $\nabla^2 c(X)_{i_0,j_0}$ to be as following

$$\begin{array}{c} \textbf{2702} \\ \textbf{2703} \\ \textbf{2703} \\ \textbf{2704} \\ \textbf{2705} \end{array} \left[\begin{array}{ccccc} H_4^{(1,1)} & H_5^{(1,2)} & H_5^{(1,3)} & \cdots & H_5^{(1,i_0-1)} & H_3^{(1,i_0)} & H_5^{(1,i_0+1)} & \cdots & H_5^{(1,n)} \\ H_5^{(2,1)} & H_4^{(2,2)} & H_5^{(2,3)} & \cdots & H_5^{(2,i_0-1)} & H_3^{(2,i_0)} & H_5^{(2,i_0+1)} & \cdots & H_5^{(2,n)} \\ H_5^{(3,1)} & H_5^{(3,2)} & H_4^{(3,3)} & \cdots & H_5^{(3,i_0-1)} & H_3^{(3,i_0)} & H_5^{(3,i_0+1)} & \cdots & H_5^{(3,n)} \\ \vdots & \vdots \\ \end{array} \right]$$

 D.2 DECOMPOSITION HESSIAN : PART 1

Lemma D.4 (Helpful lemma). Under following conditions

• Let
$$z(X)_{i_0} := W^\top X \cdot f(X)_{i_0}$$

• Let
$$w(X)_{i_0,*} := WX_{*,i_0}$$

we have

• Part 1:
$$w(X)_{i_0,j_1} = e_{j_1}^\top \cdot w(X)_{i_0,*}$$

• Part 2:
$$z(X)_{i_0,j_1} = e_{j_1}^\top \cdot z(X)_{i_0}$$

Proof. Proof of Part 1

$$w(X)_{i_0,j_1} = \langle W_{j_1,*}, X_{*,i_0} \rangle$$

= $W_{j_1,*}^{\top} X_{*,i_0}$
= $e_{j_1}^{\top} \cdot W X_{*,i_0}$
= $e_{j_1}^{\top} \cdot w(X)_{i_0,*}$

where the first step is by the definition of $w(X)_{i_0,j_1}$ the 2nd and 3rd step are from linear algebra facts, the 4th step is by the definition of $w(X)_{i_0,*}$.

Proof of Part 2

2736	$z(X)_{i_0,j_1} = \langle f(X)i_0, X^{\top}W_{*,j_1} \rangle$
2737	$-(\mathbf{V}^{\top}\mathbf{W})^{\top}\mathbf{f}(\mathbf{V})$
2738	$\equiv (\Lambda W_{*,j_1}) J(\Lambda)_{i_0}$
2739	$= W_{*,j_1}^\top X \cdot f(X)_{i_0}$
2740	$= e_{\cdot}^{\top} \cdot W^{\top} X \cdot f(X)_{i}$
2741	$J_1 \qquad \qquad J_1 $
2742	$= e_{j_1}^{\scriptscriptstyle +} \cdot z(X)_{i_0}$

where the first step is by the definition of $w(X)_{i_0,j_1}$ the 2nd, 3rd, and the 4th step are from linear algebra facts, the 5th step is by the definition of $w(X)_{i_0,*}$.

2746 Lemma D.5. Under following conditions

• Let $D_i(X)$ be defined as Lemma B.15

• Let $z(X)_{i_0} := W^\top X \cdot f(X)_{i_0}$

• Let
$$w(X)_{i_0,*} := WX_{*,i_0}$$

2752 we have 2753

$$D_1(X) = e_{j_1}^\top \cdot w(X)_{i_0,*} \cdot 2s(X)_{i_0,j_0} \cdot f(X)_{i_0,i_0}^2 \cdot w(X)_{i_0,*}^\top \cdot e_{j_2}$$

2754 $D_2(X) = e_{i_1}^{\top} \cdot (w(X)_{i_0,*} \cdot 2f(X)_{i_0,i_0} \cdot s(X)_{i_0,i_0} \cdot z(X)_{i_0}^{\top}$ 2755 $+ z(X)_{i_0} \cdot 2f(X)_{i_0,i_0} \cdot s(X)_{i_0,j_0} \cdot w(X)_{i_0,*}^{\top}) \cdot e_{j_2}$ 2756 $D_3(X) = -e_{i_1}^{\top} \cdot w(X)_{i_0,*} \cdot f(X)_{i_0,i_0}^2 \cdot h(X)_{j_0,i_0} \cdot w(X)_{i_0,*}^{\top} \cdot e_{j_2}$ 2757 2758 $D_4(X) = -e_{i_1}^{\top} \cdot W^{\top} \cdot f(X)_{i_0,i_0} \cdot X \cdot \operatorname{diag}(f(X)_{i_0}) \cdot h(X)_{i_0} \cdot w(X)_{i_0}^{\top} \cdot e_{i_2}$ 2759 $-e_{i_1}^{\top} \cdot w(X)_{i_0,*} \cdot f(X)_{i_0,i_0} \cdot h(X)_{i_0}^{\top} \cdot \operatorname{diag}(f(X)_{i_0}) \cdot X^{\top} \cdot W \cdot e_{i_2}$ 2760 2761 $D_5(X) = -e_{i_1}^{\top} \cdot (w(X)_{i_0,*} \cdot f(X)_{i_0,i_0}^2 \cdot V_{*,i_0}^{\top} + V_{*,i_0} \cdot f(X)_{i_0,i_0}^2 \cdot w(X)_{i_0,*}^{\top}) \cdot e_{i_2}$ 2762 $D_6(X) = -e_{i_1}^{\top} \cdot w(X)_{i_0,*} \cdot s(X)_{i_0,i_0} \cdot f(X)_{i_0,i_0} \cdot w(X)_{i_0,*}^{\top} \cdot e_{i_2}$ 2763 $D_{7}(X) = -e_{i_{1}}^{\top} \cdot w(X)_{i_{0},*} \cdot s(X)_{i_{0},i_{0}} \cdot f(X)_{i_{0},i_{0}} \cdot X_{*i_{0}}^{\top} \cdot W \cdot e_{i_{2}}$ 2764 2765 $-e_{i_{*}}^{\top} \cdot W^{\top} \cdot X_{*,i_{0}} \cdot s(X)_{i_{0},j_{0}} \cdot f(X)_{i_{0},i_{0}} \cdot w(X)_{i_{0},*}^{\top} \cdot e_{j_{2}}$ 2766 $D_8(X) = e_{i_1}^{\top} \cdot s(X)_{i_0, i_0} \cdot f(X)_{i_0, i_0} \cdot (W^{\top} - W) \cdot e_{i_2}$ 2767 2768 $D_{9}(X) = e_{i_{1}}^{\top} \cdot z(X)_{i_{0}} \cdot s(X)_{i_{0}, i_{0}} \cdot z(X)_{i_{0}}^{\top} \cdot e_{i_{2}}$ 2769 $D_{10}(X) = -e_{i_1}^{\top} \cdot (z(X)_{i_0} \cdot f(X)_{i_0,i_0} \cdot h(X)_{j_0,i_0} \cdot w(X)_{i_0,*}^{\top}$ 2770 2771 $+w(X)_{i_0,*} \cdot f(X)_{i_0,i_0} \cdot h(X)_{i_0,i_0} \cdot z(X)_{i_0}^{\top} \cdot e_{i_2}$ 2772 $D_{11}(X) = -e_{i_1}^{\top} \cdot (z(X)_{i_0} \cdot h(X)_{i_0}^{\top} \cdot \operatorname{diag}(f(X)_{i_0}) \cdot X^{\top} \cdot W$ 2773 $+ W^{\top} \cdot X \cdot \operatorname{diag}(f(X)_{i_0}) \cdot h(X)_{i_0} \cdot z(X)_{i_0}^{\top}) \cdot e_{i_2}$ 2774 $D_{12}(X) = -e_{j_1}^{\top} \cdot (z(X)_{i_0} \cdot f(X)_{i_0,i_0} \cdot V_{*,j_0}^{\top} + V_{*,j_0} \cdot f(X)_{i_0,i_0} \cdot z(X)_{i_0}^{\top}) \cdot e_{j_2}$ 2775 2776 $D_{13}(X) = e_{i_1}^{\top} \cdot z(X)_{i_0} \cdot s(X)_{i_0, j_0} \cdot f(X)_{i_0, i_0} \cdot z(X)_{i_0}^{\top} \cdot e_{j_2}$ 2777 $D_{14}(X) = -e_{j_1}^{\top} \cdot W^{\top} \cdot X \cdot s(X)_{i_0, j_0} \cdot \operatorname{diag}(f(X)_{i_0}) \cdot X^{\top} \cdot W \cdot e_{j_2}$ 2778 2779 $D_{15}(X) = -e_{j_1}^{\top} \cdot w(X)_{i_0,*} \cdot f(X)_{i_0,i_0}^2 \cdot h(X)_{j_0,i_0} \cdot w(X)_{i_0,*}^{\top} \cdot e_{j_2}$ 2780 $D_{16}(X) = e_{j_1}^{\top} \cdot w(X)_{i_0,*} \cdot f(X)_{i_0,i_0} \cdot h(X)_{j_0,i_0} \cdot \cdot w(X)_{i_0,*}^{\top} \cdot e_{j_2}$ 2781 2782 $D_{17}(X) = e_{i_1}^{\top} \cdot (w(X)_{i_0,*} \cdot f(X)_{i_0,i_0} \cdot X_{*,i_0}^{\top} \cdot h(X)_{i_0,i_0} \cdot W$ 2783 $+W^{\top} \cdot X_{*,i_0} \cdot f(X)_{i_0,i_0} \cdot h(X)_{i_0,i_0} \cdot w(X)_{i_0} \cdot e_{i_2}$ 2784 $D_{18}(X) = e_{i_1}^{\top} \cdot (w(X)_{i_0,*} f(X)_{i_0,i_0} \cdot V_{i_2,*}^{\top} + V_{i_1,*}^{\top} \cdot f(X)_{i_0,i_0} \cdot w(X)_{i_0,*}^{\top}) \cdot e_{j_2}$ 2785 2786 $D_{19}(X) = e_{i_1}^{\top} \cdot f(X)_{i_0, i_0} \cdot h(X)_{i_0, i_0} \cdot (W + W^{\top}) \cdot e_{j_2}$ 2787 $D_{20}(X) := e_{j_1}^{\top} \cdot W^{\top} \cdot X \cdot \operatorname{diag}(f(X)_{j_0}) \cdot \operatorname{diag}(h(X)_{j_0}) \cdot X^{\top} \cdot W \cdot e_{j_2}$ 2788 2789 $D_{21}(X) := e_{i_1}^{\top} \cdot (W^{\top} \cdot X_{*,i_0} \cdot f(X)_{i_0,i_0} \cdot V_{*,i_0}^{\top} + V_{*,i_0} \cdot f(X)_{i_0,i_0} \cdot X_{*,i_0}^{\top} \cdot W) \cdot e_{i_2}$ 2790 2791 *Proof.* This lemma is followed by Lemma D.4 and linear algebra facts. 2792

Based on above auxiliary lemma, we have following definition.

Definition D.6. Under following conditions

• Let $z(X)_{i_0} := W^\top X \cdot f(X)_{i_0}$

• Let $w(X)_{i_0,*} := WX_{*,i_0}$

We present the Case 1 component of Hessian $c(X)_{i_0,j_0}$ to be

$$H_1^{(i_0,i_0)}(X) := B(X)$$

(· ·)

where we have

2793

2794

2795 2796

2797 2798

2799

2800 2801

2802 2803

2804

2805 2806 $B(X) := \sum_{i=1}^{21} B_i(X)$ $B_1(X) := w(X)_{i_0,*} \cdot 2s(X)_{i_0,j_0} \cdot f(X)_{i_0,i_0}^2 \cdot w(X)_{i_0,*}^\top$ 2808 $B_2(X) := w(X)_{i_0,*} \cdot 2f(X)_{i_0,i_0} \cdot s(X)_{i_0,i_0} \cdot z(X)_{i_0}^{\top}$ 2809 $+ z(X)_{i_0} \cdot 2f(X)_{i_0,i_0} \cdot s(X)_{i_0,j_0} \cdot w(X)_{i_0,i_0}^{\top}$ 2810 $B_3(X) := -w(X)_{i_0,*} \cdot f(X)_{i_0,i_0}^2 \cdot h(X)_{j_0,i_0} \cdot w(X)_{i_0,*}^\top$ 2811 2812 $B_4(X) := -W^{\top} \cdot f(X)_{i_0, i_0} \cdot X \cdot \text{diag}(f(X)_{i_0}) \cdot h(X)_{i_0} \cdot w(X)_{i_0}^{\top}$ 2813 $-w(X)_{i_0,*} \cdot f(X)_{i_0,i_0} \cdot h(X)_{i_0}^{\top} \cdot \operatorname{diag}(f(X)_{i_0}) \cdot X^{\top} \cdot W$ 2814 $B_5(X) := -w(X)_{i_0,*} \cdot f(X)_{i_0,i_0}^2 \cdot V_{*,j_0}^\top - V_{*,j_0} \cdot f(X)_{i_0,i_0}^2 \cdot w(X)_{i_0,*}^\top$ 2816 $B_6(X) := -w(X)_{i_0,*} \cdot s(X)_{i_0,j_0} \cdot f(X)_{i_0,i_0} \cdot w(X)_{i_0,*}^{\top}$ 2817 $B_7(X) := -w(X)_{i_0,*} \cdot s(X)_{i_0,j_0} \cdot f(X)_{i_0,i_0} \cdot X_{*,i_0}^\top \cdot W$ 2818 2819 $-W^{\top} \cdot X_{*,i_0} \cdot s(X)_{i_0,i_0} \cdot f(X)_{i_0,i_0} \cdot w(X)_{i_0,i_0}^{\top}$ $B_8(X) := s(X)_{i_0, j_0} \cdot f(X)_{i_0, i_0} \cdot (W^{\top} - W)$ 2821 2822 $B_9(X) := z(X)_{i_0} \cdot s(X)_{i_0, j_0} \cdot z(X)_{i_0}^{\top}$ 2823 $B_{10}(X) := -z(X)_{i_0} \cdot f(X)_{i_0,i_0} \cdot h(X)_{i_0,i_0} \cdot w(X)_{i_0}^{\top} *$ 2824 $-w(X)_{i_0,*} \cdot f(X)_{i_0,i_0} \cdot h(X)_{j_0,i_0} \cdot z(X)_{i_0}^{\top}$ 2825 2826 $B_{11}(X) := -z(X)_{i_0} \cdot (h(X)_{i_0}^{\top} \cdot \text{diag}(f(X)_{i_0}) \cdot X^{\top} \cdot W$ 2827 $-W^{\top} \cdot X \cdot \operatorname{diag}(f(X)_{i_0}) \cdot h(X)_{j_0} \cdot z(X)_{i_0}^{\top}$ 2828 $B_{12}(X) := -z(X)_{i_0} \cdot f(X)_{i_0,i_0} \cdot V_{*,i_0}^{\top} + V_{*,i_0} \cdot f(X)_{i_0,i_0} \cdot z(X)_{i_0}^{\top}$ 2829 2830 $B_{13}(X) := z(X)_{i_0} \cdot s(X)_{i_0, i_0} \cdot f(X)_{i_0, i_0} \cdot z(X)_{i_0}^{\top}$ 2831 $B_{14}(X) := -W^{\top} \cdot X \cdot s(X)_{i_0, j_0} \cdot \operatorname{diag}(f(X)_{i_0}) \cdot X^{\top} \cdot W$ $B_{15}(X) := -w(X)_{i_0,*} \cdot f(X)_{i_0,i_0}^2 \cdot h(X)_{j_0,i_0} \cdot \cdot w(X)_{i_0,*}^\top$ 2834 $B_{16}(X) := w(X)_{i_0,*} \cdot f(X)_{i_0,i_0} \cdot h(X)_{j_0,i_0} \cdot w(X)_{i_0,*}^{\top}$ 2836 $B_{17}(X) := w(X)_{i_0,*} \cdot f(X)_{i_0,i_0} \cdot X_{*i_0}^{\top} \cdot h(X)_{i_0,i_0} \cdot W$ 2837 $+W^{\top} \cdot X_{*,i_0} \cdot f(X)_{i_0,i_0} \cdot h(X)_{i_0,i_0} \cdot w(X)_{i_0}$ 2838 $B_{18}(X) := w(X)_{i_0,*} \cdot f(X)_{i_0,i_0} \cdot V_{j_2,*}^{\top} + V_{j_1,*}^{\top} \cdot f(X)_{i_0,i_0} \cdot w(X)_{i_0,*}^{\top}$ 2839 2840 $B_{19}(X) := f(X)_{i_0, i_0} \cdot h(X)_{i_0, i_0} \cdot (W + W^{\top})$ 2841 $B_{20}(X) := W^{\top} \cdot X \cdot \operatorname{diag}(f(X)_{i_0}) \cdot \operatorname{diag}(h(X)_{i_0}) \cdot X^{\top}$ 2842 $B_{21}(X) := W^{\top} \cdot X_{*,i_0} \cdot f(X)_{i_0,i_0} \cdot V_{*,i_0}^{\top} + V_{*,i_0} \cdot f(X)_{i_0,i_0} \cdot X_{*,i_0}^{\top} \cdot W$ 2843 2845 D.3 **DECOMPOSITION HESSIAN: PART 2 AND PART 3** 2846 Lemma D.7. Under following conditions 2847 2848 • Let $E_i(X)$ be defined as Lemma B.15

• Let $z(X)_{i_0} := W^\top X \cdot f(X)_{i_0}$

• Let
$$w(X)_{i_0,*} := WX_{*,i_0}$$

2853 *we have* 2854

2849

2855

$$E_{1}(X) = e_{j_{1}}^{\top} \cdot w(X)_{i_{0},*} \cdot 2s(X)_{i_{0},j_{0}} \cdot f(X)_{i_{0},i_{2}} \cdot f(X)_{i_{0},i_{0}} \cdot w(X)_{i_{0},*}^{\top} \cdot e_{j_{2}}$$

$$E_{2}(X) = -e_{j_{1}}^{\top} \cdot w(X)_{i_{0},*} \cdot 2f(X)_{i_{0},i_{2}} \cdot h(X)_{j_{0},i_{2}} \cdot f(X)_{i_{0},i_{0}} \cdot w(X)_{i_{0},*}^{\top} \cdot e_{j_{2}}$$

$$E_{3}(X) = -e_{j_{1}}^{\top} \cdot w(X)_{i_{0},*} \cdot f(X)_{i_{0},i_{2}} \cdot f(X)_{i_{0},i_{0}} \cdot V_{*,j_{0}}^{\top} \cdot e_{j_{2}}$$

$$E_{4}(X) = e_{j_{1}}^{\top} \cdot z(X)_{i_{0}} \cdot s(X)_{i_{0},j_{0}} \cdot f(X)_{i_{0},i_{2}} \cdot w(X)_{i_{0},*}^{\top} \cdot e_{j_{2}}$$

$$E_{5}(X) = -e_{j_{1}}^{\top} \cdot z(X)_{i_{0}} \cdot f(X)_{i_{0},i_{2}} \cdot h(X)_{j_{0},i_{2}} \cdot w(X)_{i_{0},*}^{\top} \cdot e_{j_{2}}$$

$$E_{6}(X) = -e_{j_{1}}^{\top} \cdot z(X)_{i_{0}} \cdot f(X)_{i_{0},i_{2}} \cdot V_{*,j_{0}}^{\top} \cdot e_{j_{2}}$$

	$E_7(X) = e_{i_1}^{\top} \cdot z(X)_{i_0} \cdot s(X)_{i_0, j_0} \cdot f(X)_{i_0, i_0} \cdot w(X)_{i_0, *}^{\top} \cdot e_{j_2}$
	$E_{\mathbf{s}}(X) = -e_{\mathbf{k}}^{\top} \cdot w(X)_{i_{\mathbf{k}}, i_{\mathbf{k}}} \cdot s(X)_{i_{\mathbf{k}}, i_{\mathbf{k}}} \cdot f(X)_{i_{\mathbf{k}}, i_{\mathbf{k}}} \cdot w(X)_{\mathbf{k}}^{\top} \cdot e_{i_{\mathbf{k}}}$
	$ = \frac{1}{2} \int_{1}^{1} \frac{1}{2}$
	$E_{9}(X) = -e_{j_{1}} \cdot W \cdot S(X)_{i_{0},j_{0}} \cdot J(X)_{i_{0},i_{0}} \cdot e_{j_{2}}$
	$E_{10}(X) = -e_{j_1} \cdot w(X)_{i_0,*} \cdot f(X)_{i_0,i_0} \cdot f(X)_{i_0,i_2} \cdot h(X)_{j_0,i_0} \cdot w(X)_{i_0,*} \cdot e_{j_2}$
	$E_{11}(X) = -e_{j_1}^{\top} \cdot W^{\top} \cdot X \cdot \operatorname{diag}(f(X)_{i_0}) \cdot h(X)_{j_0} \cdot f(X)_{i_0, i_2} \cdot w(X)_{i_0, *}^{\top} \cdot e_{j_2}$
	$E_{12}(X) = e_{j_1}^{\top} \cdot W^{\top} \cdot X_{*, i_2} \cdot f(X)_{i_0, i_2} \cdot h(X)_{j_0, i_2} \cdot w(X)_{i_0, *}^{\top} \cdot e_{j_2}$
	$E_{13}(X) = e_i^\top \cdot W^\top f(X)_{i_0, i_0} \cdot h(X)_{i_0, i_0} \cdot e_{i_0}$
	$F_{i,i}(Y) = e^{\top} \cdot W^{\top} \cdot Y \cdots f(Y) \cdots V^{\top} \cdot e$
	$E_{14}(\mathbf{X}) = c_{j_1} \mathbf{V} \qquad \mathbf{X}_{*,i_2} \mathbf{f}(\mathbf{X})_{i_0,i_2} \mathbf{v}_{*,j_0} c_{j_2}$ $E_{-}(\mathbf{X}) = c_{j_1}^\top \mathbf{V} \qquad \mathbf{f}(\mathbf{Y}) \qquad \mathbf{f}(\mathbf{Y}) = c_{j_1}(\mathbf{Y})^\top \mathbf{c}_{j_2}$
	$E_{15}(\boldsymbol{\Lambda}) = -e_{j_1} \cdot v_{*,j_0} \cdot J(\boldsymbol{\Lambda})_{i_0,i_0} \cdot J(\boldsymbol{\Lambda})_{i_0,i_2} \cdot w(\boldsymbol{\Lambda})_{i_0,*} \cdot e_{j_2}$
Proof	f. This lemma is followed by Lemma D.4 and linear algebra facts.
Based	d on above auxiliary lemma, we have following definition.
Defin	ition D.8. Under following conditions
	• Let $z(X)_{i_0} := W^\top X \cdot f(X)_{i_0}$
	• Let $w(X)_{i_0,*} := WX_{*,i_0}$
We pr	resent the Case 2 component of Hessian $c(X)_{i_0,j_0}$ to be
	$H^{(i_0,i_2)}_{-}(X) := J(X)$
wnere	e we nave
	$J(X) := \sum^{13} J_i(X)$
	$\stackrel{i=1}{J_1(X) := w(X)_{i-1} \cdot 2s(X)_{i-1} \cdot f(X)_{i-1} \cdot f(X)_{i-1} \cdot w(X)_{i}^{\top}$
	$J_2(X) := -w(X)_{i_0,*} \cdot 2f(X)_{i_0,i_2} \cdot h(X)_{i_0,i_2} \cdot f(X)_{i_0,i_0} \cdot w(X)_{i_0,*}^\top$
	$J_{3}(X) := -w(X)_{i_{0},*} \cdot f(X)_{i_{0},i_{0}} \cdot f(X)_{i_{0},i_{0}} \cdot V_{*,i_{0}}^{\top}$
	$J_{4}(X) := z(X)_{i_{1}} \cdot s(X)_{i_{2}, i_{2}} \cdot f(X)_{i_{2}, i_{2}} \cdot w(X)^{\top}$
	$L(\mathbf{Y}) := \gamma(\mathbf{Y}) = f(\mathbf{Y}) = b(\mathbf{Y}) = a(\mathbf{Y})^{\top}$
	$J_{5}(X) := Z(X)_{i_{0}} + J(X)_{i_{0},i_{2}} + h(X)_{j_{0},i_{2}} + w(X)_{i_{0},*}$
	$J_{6}(X) := -z(X)_{i_{0}} \cdot f(X)_{i_{0},i_{2}} \cdot V_{*,j_{0}}$
	$J_7(X) := z(X)_{i_0} \cdot s(X)_{i_0, j_0} \cdot f(X)_{i_0, i_0} \cdot w(X)_{i_0, *}$
	$J_8(X) := -w(X)_{i_0,*} \cdot s(X)_{i_0,j_0} \cdot f(X)_{i_0,i_0} \cdot w(X)_{i_0,*}^{\top}$
	$J_9(X) := -W^{ op} \cdot s(X)_{i_0,j_0} \cdot f(X)_{i_0,i_0}$
	$J_{10}(X) := -w(X)_{i_0,*} \cdot f(X)_{i_0,i_0} \cdot f(X)_{i_0,i_0} \cdot h(X)_{i_0,i_0} \cdot w(X)_{i_0,*}^{\top}$
	$J_{11}(X) := -W^{\top} \cdot X \cdot \text{diag}(f(X)_{i_{1}}) \cdot h(X)_{i_{2}} \cdot f(X)_{i_{2},i_{2}} \cdot w(X)^{\top}$
	$J_{11}(\mathbf{Y}) := W^{\top} \mathbf{Y} = f(\mathbf{Y}) = h(\mathbf{Y}) = a_{0}(\mathbf{Y})^{\top}$
	$J_{12}(X) := W X_{*,i_2} \cdot J(X)_{i_0,i_2} \cdot h(X)_{j_0,i_2} \cdot w(X)_{i_0,*}$
	$J_{13}(\Lambda) := W^{\top} J(\Lambda)_{i_0, i_2} \cdot h(\Lambda)_{j_0, i_2}$
	$J_{14}(X) := W + X_{*,i_2} + f(X)_{i_0,i_2} + V_{*,j_0}$
	$J_{15}(X) := -V_{*,j_0} \cdot f(X)_{i_0,i_0} \cdot f(X)_{i_0,i_2} \cdot w(X)_{i_0,*}^{\top}$
Next,	we define the third case by the symmetricity of Hessian.
Defin	ition D.9. We present the Case 3 component of Hessian $c(X)_{i_0,j_0}$ to be
	$H_{c}^{(i,i_{0})}(X) := H_{c}^{(i_{0},i)}(X)$
	113 (11) - 112 (11)

$$(X) := H_2^{\circ}$$

D.4 DECOMPOSITION HESSIAN : PART 4 Lemma D.10. Under following conditions • Let $F_i(X)$ be defined as Lemma C.9 • Let $z(X)_{i_0} := W^{\top} X \cdot f(X)_{i_0}$ • Let $w(X)_{i_0,*} := WX_{*,i_0}$ we have $F_1(X) = e_{i_1}^{\top} \cdot w(X)_{i_0,*} \cdot 2s(X)_{i_0,i_0} \cdot f(X)_{i_0,i_1}^2 \cdot w(X)_{i_0,*}^{\top} \cdot e_{i_2}$ $F_2(X) = -e_{i_1}^{\top} \cdot w(X)_{i_0,*} \cdot f(X)_{i_0,i_1}^2 \cdot h(X)_{j_0,i_1} \cdot w(X)_{i_0,*}^{\top} \cdot e_{j_2}$ $F_{3}(X) = -e_{j_{1}}^{\top} \cdot (w(X)_{i_{0},*} \cdot f(X)_{i_{0},i_{1}}^{2} \cdot V_{*,j_{0}}^{\top} + V_{*,j_{0}} \cdot f(X)_{i_{0},i_{1}}^{2} \cdot w(X)_{i_{0},*}^{\top}) \cdot e_{j_{2}}$ $F_4(X) = -e_{i}^{\top} \cdot w(X)_{i_0,*} \cdot s(X)_{i_0,i_0} \cdot f(X)_{i_0,i_1} \cdot w(X)_{i_0,*}^{\top} \cdot e_{j_2}$ $F_5(X) = e_{i_1}^{\top} \cdot w(X)_{i_0,*} \cdot f(X)_{i_0,i_1} \cdot h(X)_{j_0,i_1} \cdot w(X)_{i_0,*}^{\top} \cdot e_{j_2}$ $F_6(X) = e_{i_1}^{\top} \cdot (w(X)_{i_0,*} \cdot f(X)_{i_0,i_1} \cdot V_{*,i_0}^{\top} + V_{*,i_0} \cdot f(X)_{i_0,i_1} \cdot w(X)_{i_0,*}^{\top}) \cdot e_{i_2}$ Proof. This lemma is followed by Lemma D.4 and linear algebra facts. Based on above auxiliary lemma, we have following definition. **Definition D.11.** Under following conditions • Let $z(X)_{i_0} := W^{\top} X \cdot f(X)_{i_0}$ • Let $w(X)_{i_0,*} := WX_{*,i_0}$ We present the **Case 4** component of Hessian $c(X)_{i_0, j_0}$ to be $H_{4}^{(i_{1},i_{1})}(X) := K(X)$ where we have $K(X) := \sum_{i=1}^{6} K_i(X)$ $K_1(X) := w(X)_{i_0,*} \cdot 2s(X)_{i_0,j_0} \cdot f(X)_{i_0,i_1}^2 \cdot w(X)_{i_0,*}^\top$ $K_2(X) := -w(X)_{i_0,*} \cdot f(X)_{i_0,i_1}^2 \cdot h(X)_{i_0,i_1} \cdot w(X)_{i_0,*}^\top$ $K_3(X) := -w(X)_{i_0,*} \cdot f(X)_{i_0,i_1}^2 \cdot V_{*,i_0}^\top - V_{*,i_0} \cdot f(X)_{i_0,i_1}^2 \cdot w(X)_{i_0,*}^\top$ $K_4(X) := -w(X)_{i_0,*} \cdot s(X)_{i_0,j_0} \cdot f(X)_{i_0,i_1} \cdot w(X)_{i_0,*}^{\dagger}$ $K_5(X) := w(X)_{i_0,*} \cdot f(X)_{i_0,i_1} \cdot h(X)_{i_0,i_1} \cdot w(X)_{i_0,*}^{\top}$ $K_6(X) := w(X)_{i_0,*} \cdot f(X)_{i_0,i_1} \cdot V_{*i_0}^{\top} + V_{*,i_0} \cdot f(X)_{i_0,i_1} \cdot w(X)_{i_0,*}^{\top}$ D.5 DECOMPOSITION HESSIAN : PART 5 Lemma D.12. Under following conditions • Let $G_i(X)$ be defined as Lemma C.9 • Let $z(X)_{i_0} := W^{\top} X \cdot f(X)_{i_0}$ • Let $w(X)_{i_0,*} := WX_{*,i_0}$ we have

 $G_1(X) = e_{j_1}^\top \cdot w(X)_{i_0,*} \cdot 2s(X)_{i_0,j_0} \cdot f(X)_{i_0,i_1} \cdot f(X)_{i_0,i_2} \cdot w(X)_{i_0,*}^\top \cdot e_{j_2}$

 $G_3(X) = -e_{j_1}^{\top} \cdot f(X)_{i_0, i_1} \cdot f(X)_{i_0, i_2} \cdot (w(X)_{i_0, *} \cdot V_{*, j_0}^{\top} + V_{*, j_0} \cdot w(X)_{*, j_2}) \cdot e_{j_2}$

Proof. This lemma is followed by Lemma D.4 and linear algebra facts.

Based on above auxiliary lemma, we have following definition. **Definition D.13.** Under following conditions

• Let $z(X)_{i_0} := W^\top X \cdot f(X)_{i_0}$

• Let
$$w(X)_{i_0,*} := WX_{*,i_0}$$

We present the **Case 5** component of Hessian $c(X)_{i_0,j_0}$ to be

$$H_5^{(i_1,i_2)}(X) := N(X)$$

 $G_2(X) = -e_{i_1}^{\top} \cdot w(X)_{i_0,*} \cdot f(X)_{i_0,i_1} \cdot f(X)_{i_0,i_2} \cdot (h(X)_{j_0,i_2} + h(X)_{j_0,i_1}) \cdot w(X)_{i_0,*}^{\top} \cdot e_{j_2}$

where we have

$$N(X) := \sum_{i=1}^{3} N_i(X)$$

$$N_1(X) := w(X)_{i_0,*} \cdot 2s(X)_{i_0,j_0} \cdot f(X)_{i_0,i_1} \cdot f(X)_{i_0,i_2} \cdot w(X)_{i_0,*}^{\top}$$

$$N_2(X) := -w(X)_{i_0,*} \cdot f(X)_{i_0,i_1} \cdot f(X)_{i_0,i_2} \cdot (h(X)_{j_0,i_2} + h(X)_{j_0,i_1}) \cdot w(X)_{i_0,*}^{\top}$$

$$N_3(X) := -f(X)_{i_0,i_1} \cdot f(X)_{i_0,i_2} \cdot (w(X)_{i_0,*} \cdot V_{*,i_0}^{\top} + V_{*,j_0} \cdot w(X)_{*,i_2}^{\top})$$

Е HESSIAN OF LOSS FUNCTION

In this section, we provide the Hessian of our loss function. Lemma E.1 (A single entry). Under following conditions

• Let L(X) be defined as Definition A.9

we have

 $\frac{\mathrm{d}L(X)}{\mathrm{d}x_{i_1,j_1}x_{i_2,j_2}} = \sum_{i_0=1}^n \sum_{j_0=1}^d \frac{\mathrm{d}c(X)_{i_0,j_0}}{\mathrm{d}x_{i_1,j_1}} \cdot \frac{\mathrm{d}c(X)_{i_0,j_0}}{\mathrm{d}x_{i_1,j_2}} + c(X)_{i_0,j_0} \cdot \frac{\mathrm{d}c(X)_{i_0,j_0}}{\mathrm{d}x_{i_1,j_1}x_{i_2,j_2}}$

Proof. **Proof of Part 1:** $i_1 = i_2$

$$\frac{\mathrm{d}L(X)}{\mathrm{d}x_{i_1,j_1}x_{i_2,j_2}} = \frac{\mathrm{d}}{\mathrm{d}x_{i_2,j_2}} \left(\sum_{i_0=1}^n \sum_{j_0=1}^d c(X)_{i_0,j_0} \cdot \frac{\mathrm{d}c(X)_{i_0,j_0}}{\mathrm{d}x_{i_1,j_1}}\right)$$

where the first step is given by chain rule, and the 2nd step are given by product rule.

$$=\sum_{i_0=1}^n \sum_{j_0=1}^d \frac{\mathrm{d}c(X)_{i_0,j_0}}{\mathrm{d}x_{i_1,j_1}} \cdot \frac{\mathrm{d}c(X)_{i_0,j_0}}{\mathrm{d}x_{i_2,j_2}} + c(X)_{i_0,j_0} \cdot \frac{\mathrm{d}c(X)_{i_0,j_0}}{\mathrm{d}x_{i_1,j_1}x_{i_2,j_2}}$$

Lemma E.2 (Matrix Representation of Hessian). Under following conditions

• Let $c(X)_{i_0,j_0}$ be defined as Definition A.8

• Let
$$L(X)$$
 be defined as Definition A.9

we have

$$\nabla^2 L(X) = \sum_{i_0=1}^n \sum_{j_0=1}^d \nabla c(X)_{i_0,j_0} \cdot \nabla c(X)_{i_0,j_0}^\top + c(X)_{i_0,j_0} \cdot \nabla^2 c(X)_{i_0,j_0}$$

Proof. This is directly given by the single-entry representation in Lemma E.1.

³⁰²⁴ F BOUNDS FOR BASIC FUNCTIONS ³⁰²⁵

In this section, we prove the upper bound for each function, with following assumption about the domain of parameters. In Section F.1 we bound the basic terms. In Section F.2 we bound the gradient of $f(X)_{i_0}$. In Section F.3 we bound the gradient of $c(X)_{i_0,j_0}$

Assumption F.1 (Bounded parameters, formal version of Assumption 4.1). Let W, V, X, B be defined as in Section A.2,

3031 3032 3033

3029

3030

3034 3035

3036 3037

3039 3040

3041 3042

3043 3044

3045

3046 3047

3048

3049 3050

3051 3052

3053 3054

3055

3056 3057

3058

3059 3060 3061

3062

3063 3064

3065

3066 3067

3068

3069

3070 3071

3072

3073

3074 3075

3076 3077 • Let R be some fixed constant satisfies R > 1

• We have $||W|| \le R$, $||V|| \le R$, $||X|| \le R$ where $||\cdot||$ is the matrix spectral norm

• We have $b_{i,j} \leq R^2$

3037 F.1 BOUNDS FOR BASIC FUNCTIONS 3038

Lemma F.2. Under Assumption F.1, for all $i_0 \in [n], j_0 \in [d]$, we have following bounds:

• Part 1 $||f(X)_{i_0}||_2 \le 1$ • Part 2 $||h(X)_{i_0}||_2 \le R^2$ • Part 3 $|c(X)_{i_0,j_0}| \le 2R^2$ • Part 4 $||x^{\top}W_{*,i_0}||_2 \leq R^2$ • Part 5 $|w(X)_{i_0, i_0}| \le R^2$ • *Part 6* $|z(X)_{i_0,j_0}| \le R^2$ • Part 7 $|s(X)_{i_0, i_0}| \le R^2$ Proof. Proof of Part 1 The proof is similar to Deng et al. (2023d), and hence is omitted here. **Proof of Part 2** $||h(X)_{j_0}||_2 = ||X^{\top}V_{*,j_0}||_2$ $\leq \|V\| \cdot \|X\|$ $\leq R^2$ where the first step is by Definition A.7, the 2nd step is by basic algebra, the 3rd follows by Assumption F.1. **Proof of Part 3**

$$\begin{aligned} |c(X)_{i_0,j_0}| &= |\langle f(X)_{i_0}, h(X)_{j_0} \rangle - b_{i_0,j_0}| \\ &\leq |\langle f(X)_{i_0}, h(X)_{j_0} \rangle| + |b_{i_0,j_0}| \end{aligned}$$

3080 $\leq \|f(X)_{i_0}\|_2 \cdot \|h(X)_{j_0}\|_2 + |b_{i_0,j_0}|$ $\leq 2R^2$

where the first step is by Definition A.8, the 2nd step uses triangle inequality, the 3rd step uses
 Cauchy-Schwartz inequality, the 4th step is by Assumption F.1 and Part 2.

Proof of Part 4

 $\|x^{\top}W_{*,j_0}\|_2 \le \|x\| \cdot \|W\| \le R^2$

 $|w(X)_{i_0,j_0}| = |\langle W_{j_0,*}, X_{*,i_0}|$

where the first step is by basic algebra, the second is by Assumption F.1.

Proof of Part 5

where the first step is by the definition of $w(X)_{i_0,j_0}$, the 2nd step is Cauchy-Schwartz inequality, the 3rd step is by Assumption F.1.

 $\leq \|W_{j_0,*}\|_2 \cdot \|X_{*,i_0}\|_2 \\< R^2$

3097 Proof of Part 6

 $|z(X)_{i_0,j_0}| = |\langle f(X)_{i_0}, X^\top W_{*,j_0} \rangle|$ $\leq ||f(X)_{i_0}||_2 \cdot ||X|| \cdot ||W_{*,j_0}||$ $\leq R^2$

where the first step is by the definition of $z(X)_{i_0,j_0}$, the 2nd step is Cauchy-Schwartz inequality, the 3rd step is by Assumption F.1.

Proof of Part 7

$$|s(X)_{i_0,j_0}| = |\langle f(X)_{i_0}, h(X)_{j_0} \rangle|$$

$$\leq ||f(X)_{i_0}||_2 \cdot ||h(X)_{j_0}||_2$$

$$< R^2$$

where the first step is by the definition of $s(X)_{i_0,j_0}$, the 2nd step is Cauchy-Schwartz inequality, the 3rd step is by **Part 1** and **Part 2**.

3113 F.2 BOUNDS FOR GRADIENT OF $f(X)_{i_0}$

3114 Lemma F.3. Under following conditions
3115

- Let $f(X)_{i_0}$ be defined as Definition A.6
- Assumption F.1 holds
 - We use $\nabla f(X)_{i_0}$ to define a matrix that its $(j_0, i_1 \cdot j_1)$ -th entry is

$$\frac{\mathrm{d}f(X)_{i_0,j_0}}{\mathrm{d}x_{i_1,j_1}}$$

i.e., *its* $(i_1 \cdot j_1)$ *-th column is*

$$\frac{\mathrm{d}f(X)_{i_0}}{\mathrm{d}x_{i_1,j_1}}$$

3128 Then we have:

• Part 1: for all
$$i_0, i_1 \in [n], j_1 \in [d]$$
,
$$\|\frac{\mathrm{d}f(X)_{i_0}}{\mathrm{d}x_{i_1,j_1}}\|_2 \leq 4R^2$$

• Part 2:

$$\|\nabla f(X)_{i_0}\|_F \leq 4\sqrt{ndR^2}$$
Proof. Proof of Part 1

$$\|\frac{df(X)_{i_0}}{dx_{i_1,j_1}}\| = |-f(X)_{i_0} \cdot (f(X)_{i_0,i_0} \cdot \langle W_{j_1,*}, X_{*,i_0} \rangle + (f(X)_{i_0}, X^\top W_{*,j_1})|$$

$$+ f(X)_{i_0} \circ (c_{i_0} \cdot \langle W_{j_1,*}, X_{*,i_0} \rangle + \|F(X)_{i_0}\|_2^2 \cdot \|X^\top W_{*,j_1}\|$$

$$+ \|f(X)_{i_0}\|_2 \cdot |\langle W_{j_1,*}, X_{*,i_0} \rangle| + \|f(X)_{i_0}\|_2 \cdot \|X^\top W_{*,j_1}\|$$

$$+ \|f(X)_{i_0}\|_2 \cdot |\langle W_{j_1,*}, X_{*,i_0} \rangle| + \|f(X)_{i_0}\|_2^2 \cdot \|X^\top W_{*,j_1}\|$$

$$+ \|f(X)_{i_0}\|_2 \cdot |\langle W_{j_1,*}, X_{*,i_0} \rangle| + \|f(X)_{i_0}\|_2^2 \cdot \|X^\top W_{*,j_1}\|$$

$$+ \|f(X)_{i_0}\|_2 \cdot |\langle W_{j_1,*}, X_{*,i_0} \rangle| + \|f(X)_{i_0}\|_2^2 \cdot \|X^\top W_{*,j_1}\|$$

$$+ \|f(X)_{i_0}\|_2 \cdot |\langle W_{j_1,*}, X_{*,i_0} \rangle| + \|f(X)_{i_0}\|_2^2 \cdot \|X^\top W_{*,j_1}\|$$

$$+ \|f(X)_{i_0}\|_2 \cdot |\langle W_{j_1,*}, X_{*,i_0} \rangle| + \|f(X)_{i_0}\|_2^2 \cdot \|X^\top W_{*,j_1}\|_2$$
where the 1st step is by Lemma A.14, the 2nd step is by Fact A.1, the 3rd step is by Lemma F.2.
Proof of Part 2

$$\|\nabla f(X)_{i_0}\|_F = (\sum_{i_1=1}^n \sum_{j_1=1}^d \|\frac{df(X)_{i_0}}{dx_{i_1,i_1}}\|_2^2)^{\frac{3}{2}}$$

$$\leq (\sum_{i_1=1}^n \sum_{j_1=1}^d 16R^4)^{\frac{3}{2}}$$

$$\leq (\sum_{i_1=1}^n \sum_{j_1=1}^d 16R^4)^{\frac{3}{2}}$$

$$= 4\sqrt{ndR^2}$$
where the first step is by the definition of $\nabla f(X)_{i_0}$, the 2nd step is by Part 1.
F.3 BOUNDS FOR GRADIENT OF $c(X)_{i_0,j_0}$
Lemma F.4 Under following conditions
• Let $c(X)_{i_0,j_0}$ be defined as Definition A.8
• Assumption F.1 holds
• We use $\nabla c(X)_{i_0,j_0}$ to denote the Hessian of $c(X)_{i_0,j_0}$ w.r.t. $\operatorname{vec}(X)$
Then we have:
• Part 1: for all $i_0, i_1 \in [n], j_1 \in [d]$,
 $\|\nabla c(X)_{i_0,j_0}\|_2 \le |\nabla \sqrt{ndR^4}$
Proof. Proof of part 1
 $|\frac{dc(X)_{i_0,j_0}}{dx_{i_1,j_1}}| = ||c_1(X) + |c_2(X)| + |c_3(X)| + |c_4(X)| + |c_5(X)|]$
 $\leq ||f(X)|_{n_0}|_2 \cdot ||h(X)_{j_0}|_2 \cdot |w(X)_{i_0,j_0}|_1 + ||h(X)_{j_0}|_2 \cdot ||x(X)_{i_0,j_0}|_1 + ||f(X)_{i_0,j_0}|_1 + ||f(X)_{i_0,j_0}|$

where the first step is by Lemma A.16, the 2nd step is by triangle inequality, the 3rd step is by Fact A.1, the 4th step is by Lemma F.2, the 5th step holds by R > 1.

Proof of Part 2	
$\ \nabla c(X)_{i_0,j_0}\ _2 = \left(\sum_{i_1=1}^n \sum_{j_1=1}^d \left\ \frac{\mathrm{d}c(X)_{i_0,j_0}}{\mathrm{d}x_{i_1,j_1}}\right\ _2^2\right)^{\frac{1}{2}}$	
$\leq (\sum_{i_1=1}^n \sum_{j_1=1}^d 25R^8)^{\frac{1}{2}}$	
$=5\sqrt{ndR^4}$	
where the first step is by the definition of $\nabla f(X)_{i_0}$, the 2nd step is by Part 1 .	
F.4 BOUNDS FOR HESSIAN OF $c(X)_{i_0,j_0}$	
Lemma F.5. Under following conditions	
• Let $c(X)_{i_0,j_0}$ be defined as Definition A.8	
• Assumption F.1 (Bounded parameter) holds	
• Let $B_i(X)$ be defined as in Definition D.6	
we have	
• Part 1: For all $i_0 = i_1 = i_2 \in [n]$, we have	
$\ H_{t}(X)^{(i_{0},i_{0})}\ < 23R^{6} + R^{5} + 12R^{3}$	
$\ \Pi(\Omega)\ \le 2010 + 10 + 1210$	
• Part 2: For all $i_0 = i_1 \neq i_2 \in [n]$, we have	
$ H_2(X)^{(i_0,i_2)} \le 11R^6 + 6R^3$	
• Part 3: For all $i_0 = i_2 \neq i_1 \in [n]$, we have	
$\ H_3(X)^{(i_1,i_0)}\ \le 11R^6 + 6R^3$	
• Part 4: For all $i_0 \neq i_1 = i_0 \in [n]$ we have	
$\ U(X)^{(i_1,i_1)} \ < 5D^6 + 4D^3$	
$\ \Pi_4(\Lambda)^{(1)}\ \le 5\pi + 4\pi$	
• <i>Part 5: For all</i> $i_0 \neq i_1, i_0 \neq i_2, i_1 \neq i_2 \in [n]$, we have	
$ H_5(X)^{(i_1,i_2)} \le 4R^6 + 2R^3$	
<i>Proof.</i> The proof is similar to Lemma F.4 and hence omit.	
G LIPSCHITZ OF HESSIAN	

In Section G.1 we provide tools and facts. In Sections G.2, G.3, G.4, G.7, G.6, G.7 and G.8 we provide proof of lipschitz property of several important terms. And finally in Section G.9 we provide the proof for Lipschitz property of gradient of L(X). In Section G.10 we provide proof for Lipschitz property of Hessian of L(X).

3240 G.1 FACTS AND TOOLS 3241

In this section, we introduce 2 tools for effectively calculate the Lipschitz for Hessian.

Fact G.1 (Mean value theorem for vector function, Fact 34 in Deng et al. (2023d)). Under following conditions,
 3245

- Let $x,y\in C\subset \mathbb{R}^n$ where C is an open convex domain
- Let $g(x): C \to \mathbb{R}^n$ be a differentiable vector function on C
- Let $\|g'(a)\|_F \leq M$ for all $a \in C$, where g'(a) denotes a matrix which its (i, j)-th term is $\frac{\mathrm{d}g(a)_j}{\mathrm{d}a_i}$

then we have

$$||g(y) - g(x)||_2 \le M ||y - x||_2$$

Fact G.2 (Lipschitz for product of functions). Under following conditions

- Let ${f_i(x)}_{i=1}^n$ be a sequence of function with same domain and range
 - For each $i \in [n]$ we have
 - $f_i(x)$ is bounded: $\forall x, ||f_i(x)|| \leq M_i$ with $M_i \geq 1$
 - $f_i(x)$ is Lipschitz continuous: $\forall x, y, ||f_i(x) f_i(y)|| \le L_i ||x y||$

Then we have

$$\left\|\prod_{i=1}^{n} f_{i}(x) - \prod_{i=1}^{n} f_{i}(y)\right\| \le 2^{n-1} \cdot \max_{i \in [n]} \{L_{i}\} \cdot \left(\prod_{i=1}^{n} M_{i}\right) \cdot \|x - y\|$$

Proof. We prove it by mathematical induction. The case that i = 1 obviously. Now assume the case holds for i = k. Consider i = k + 1, we have.

$$\begin{split} \| \prod_{i=1}^{k+1} f_i(x) - \prod_{i=1}^{k+1} f_i(y) \| \\ &\leq \| \prod_{i=1}^{k+1} f_i(x) - f_{k+1}(x) \cdot \prod_{i=1}^{k} f_i(y) \| + \| f_{k+1}(x) \cdot \prod_{i=1}^{k} f_i(y) - \prod_{i=1}^{k+1} f_i(y) \| \\ &\leq \| f_{k+1}(x) \| \cdot \| \prod_{i=1}^{k} f_i(x) - \prod_{i=1}^{k} f_i(y) \| + \| f_{k+1}(x) - f_{k+1}(y) \| \cdot \| \prod_{i=1}^{k} f_i(y) - \prod_{i=1}^{k} f_i(y) \| \\ &\leq M_{k+1} \cdot \| \prod_{i=1}^{k} f_i(x) - \prod_{i=1}^{k} f_i(y) \| + (\prod_{i=1}^{k} M_i) \cdot \| f_{k+1}(x) - f_{k+1}(y) \| \\ &\leq 2^{k-1} (\prod_{i=1}^{k+1} M_i) \cdot \max_{i \in [k]} \{ L_i \} \| x - y \| + (\prod_{i=1}^{k} M_i) \cdot L_{k+1} \| x - y \| \\ &\leq 2^{k-1} (\prod_{i=1}^{k+1} M_i) \cdot \max_{i \in [k]} \{ L_i \} \| x - y \| + (\prod_{i=1}^{k} M_i) \cdot L_{k+1} \| x - y \| \\ &\leq 2^{k-1} (\prod_{i=1}^{k+1} M_i) \cdot \max_{i \in [k]} \{ L_i \} \| x - y \| + (\prod_{i=1}^{k+1} M_i) \cdot L_{k+1} \| x - y \| \\ &\leq 2^{k} (\prod_{i=1}^{k+1} M_i) \cdot \max_{i \in [k+1]} \{ L_i \} \| x - y \| \\ &\leq 2^{k} (\prod_{i=1}^{k+1} M_i) \cdot \max_{i \in [k+1]} \{ L_i \} \| x - y \| \end{split}$$

3294 where the first step is by triangle inequality, the 2nd step is by property of norm, the 3rd step is by 3295 upper bound of functions, the 4th step is by induction hypothesis, the 5th step is by Lipschitz of 3296 $f_{k+1}(x)$, the 6th step is by $M_{k+1} \ge 1$, the 7th step is a rearrangement. 3297 Since the claim holds for i = k + 1, we prove the desired result. 3298 G.2 LIPSCHITZ FOR $f(X)_{i_0}$ 3300 **Definition G.3** (Notation of norm). For writing efficiency, we use ||X - Y|| to denote $||\operatorname{vec}(X) - X||$ 3302 $\operatorname{vec}(Y)\|_2$, which is equivalent to $\|X - Y\|_F$. 3303 Lemma G.4. Under following conditions 3304 3305 • Assumption F.1 holds 3306 3307 • Let $f(X)_{i_0}$ be defined as Definition A.6 3308 For $X, Y \in \mathbb{R}^{d \times n}$, we have 3309 3310 $||f(X)_{i_0} - f(Y)_{i_0}||_2 \le 4\sqrt{nd}R^2 \cdot ||X - Y||$ 3311 3312 Proof. 3313 3314 $||f(X)_{i_0} - f(Y)_{i_0}||_2 \le ||\nabla f(X)_{i_0}||_F \cdot ||X - Y||$ 3315 $< 4\sqrt{nd}R^2 \cdot \|X - Y\|$ 3316 3317 where the first step is given by Mean Value Theorem (Lemma G.1) and the 2nd step is due to upper 3318 bound for gradient of $f(X)_{i_0}$ (Lemma F.3). 3319 3320 G.3 LIPSCHITZ FOR $c(X)_{i_0, i_0}$ 3321 3322 Lemma G.5. Under following conditions 3323 3324 • Assumption F.1 holds 3325 • Let $c(X)_{i_0,j_0}$ be defined as Definition A.8 3326 3327 For $X, Y \in \mathbb{R}^{d \times n}$, we have 3328 3329 $|c(X)_{i_0, j_0} - c(Y)_{i_0, j_0}| \le 5\sqrt{nd}R^4 \cdot ||X - Y||$ 3330 3331 Proof. 3332 $|c(X)_{i_0,j_0} - c(Y)_{i_0,j_0}| \le \|\nabla c(X)_{i_0,j_0}\|_2 \cdot \|X - Y\|$ 3334 $< 5\sqrt{nd}R^4 \cdot \|X - Y\|$ 3335 where the first step is given by Mean Value Theorem (Lemma G.1) and the 2nd step is due to upper 3336 bound for gradient of $c(X)_{i_0, j_0}$ (Lemma F.4). 3337 3338 3339 G.4 LIPSCHITZ FOR $h(X)_{j_0}$ 3340 Lemma G.6. Under following conditions 3341 3342 • Assumption F.1 holds 3343 3344 • Let $h(X)_{i_0}$ be defined as Definition A.7 3345 3346 For $X, Y \in \mathbb{R}^{d \times n}$, we have 3347 $||h(X)_{i_0} - h(Y)_{i_0}||_2 \le R||X - Y||$

3348 Proof. 3349 $||h(X)_{j_0} - h(Y)_{j_0}|| = ||V_{*,j_0}||_2 \cdot ||X - Y||$ 3350 $< R \cdot ||X - Y||$ 3351 3352 where the first step is from the definition of $h(X)_{i_0}$ (see Definition A.7), the 2nd step is by Assump-3353 tion F.1. 3354 3355 G.5 LIPSCHITZ FOR $w(X)_{i_0, j_0}$ 3356 Lemma G.7. Under following conditions 3357 3358 • Assumption F.1 holds 3359 3360 For $X, Y \in \mathbb{R}^{d \times n}$, we have 3361 $|w(X)_{i_0, j_0} - w(Y)_{i_0, j_0}| \le R ||X - Y||$ 3362 3363 Proof. 3364 $|w(X)_{i_0,j_0} - w(Y)_{i_0,j_0}| = |\langle W_{j_0,*}, X_{*,i_0} - Y_{*,i_0} \rangle|$ 3365 3366 $\leq \|W_{i_0,*}\|_2 \cdot \|X - Y\|$ 3367 $< R \cdot ||X - Y||$ 3368 where the first step is from the definition of $w(X)_{i_0, j_0}$, the 2nd step is by Fact A.1, the 3rd step holds 3369 since Assumption F.1. 3370 3371 G.6 LIPSCHITZ FOR $z(X)_{i_0,j_0}$ 3372 3373 Lemma G.8. Under following conditions 3374 3375 • Assumption F.1 holds 3376 For $X, Y \in \mathbb{R}^{d \times n}$, we have 3377 3378 $|z(X)_{i_0, i_0} - z(Y)_{i_0, i_0}| \le 5\sqrt{nd}R^4 \cdot ||X - Y||$ 3379 3380 Proof. 3381 $|z(X)_{i_0,j_0} - z(Y)_{i_0,j_0}| = |\langle f(X)_{i_0}, X^\top W_{*,j_0} \rangle - \langle f(Y)_{i_0}, Y^\top W_{*,j_0} \rangle|$ 3382 $\leq |\langle f(X)_{i_0}, X^\top W_{*,i_0} \rangle - \langle f(X)_{i_0}, Y^\top W_{*,i_0} \rangle|$ 3383 3384 $+ |\langle f(X)_{i_0}, Y^{\top} W_{*, j_0} \rangle - \langle f(Y)_{i_0}, Y^{\top} W_{*, j_0} \rangle|$ 3385 $\leq \|f(X)_{i_0}\|_2 \cdot \|X - Y\| \cdot \|W_{*, i_0}\|_2 + \|f(X)_{i_0} - f(Y)_{i_0}\| \cdot \|Y\| \cdot \|W_{*, i_0}\|$ 3386 $\leq R \cdot \|X - Y\| + R^2 \|f(X)_{i_0} - f(Y)_{i_0}\|$ 3387 3388 $< 5\sqrt{nd}R^4 \cdot \|X - Y\|$ 3389 where the first step is from the definition of $w(X)_{i_0,j_0}$, the 2nd step is by Fact A.1, the 3rd step holds 3390 since Assumption F.1, the 4th step uses Lemma G.4. 3391 3392 G.7 LIPSCHITZ FOR FIRST ORDER DERIVATIVE OF $c(X)_{i_0, i_0}$ 3393 3394 Lemma G.9. Under following conditions 3395 3396 • Assumption F.1 holds 3397 • Let $c(X)_{i_0, j_0}$ be defined as Definition A.8 3398

3399 3400 For $X, Y \in \mathbb{R}^{d \times n}$, we have

$$\left|\frac{c(X)_{i_0,j_0}}{\mathrm{d}x_{i_1,j_1}} - \frac{c(Y)_{i_0,j_0}}{\mathrm{d}y_{i_1,j_1}}\right| \le O(\sqrt{nd}R^6) \cdot \|X - Y\|$$

Proof. Recall $C_i(X)$ defined in Lemma A.16. The Lipschitz constant of $\frac{c(X)_{i_0,j_0}}{dx_{i_1,j_1}}$ is bounded the summation of that of $C_i(X)$. We only present the proof for Lipschitz for $C_1(X)$ here. Notice that $C_1(X) := -s(X)_{i_0, j_0} \cdot f(X)_{i_0, i_0} \cdot w(X)_{i_0, j_1}$ By upper bound and lipschitz constant for basic functions, we have • $|s(X)_{i_0, j_0}| \le R^2$ • $|f(X)_{i_0,i_0}| \le 1$ • $|w(X)_{i_0,i_1}| < R^2$ • $\max_{f \in \{s(X)_{i_0,j_0}, f(X)_{i_0,i_0}, w(X)_{i_0,j_1}\}} \{\text{Lipschitz}(f)\} = 4\sqrt{nd}R^2$ • *n* = 3 By Fact G.2. $|C_1(X) - C_1(Y)| \le 2^{n-1} \cdot \max_{i \in [n]} \{L_i\} \cdot (\prod_{i=1}^n M_i) \cdot \|X - Y\|$ $= 4 \cdot 4\sqrt{nd}R^2 \cdot R^4 \cdot \|X - Y\|$ $= 16\sqrt{nd}R^6 \cdot \|X - Y\|$ G.8 LIPSCHITZ FOR SECOND ORDER DERIVATIVE OF $c(X)_{i_0, j_0}$ Lemma G.10. Under following conditions • Assumption F.1 holds • Let $c(X)_{i_0,j_0}$ be defined as Definition A.8 *For* $X, Y \in \mathbb{R}^{d \times n}$ *, we have* $\left|\frac{c(X)_{i_0,j_0}}{\mathrm{d}x_{i_1,j_1}x_{i_2,j_2}} - \frac{c(Y)_{i_0,j_0}}{\mathrm{d}y_{i_1,j_1}y_{i_2,j_2}}\right| \le O(\sqrt{nd}R^8) \cdot \|X - Y\|$ Proof. The proof is similar to Lemma G.9 and hence omit. Notice that the upper bound for $\frac{c(\tilde{X})_{i_0,j_0}}{1 - 1}$ is given by Lemma F.5. $\overline{\mathrm{d} x_{i_1,j_1} x}_{i_2,j_2}$ G.9 LIPSCHITZ FOR GRADIENT OF L(X)Lemma G.11. Under following conditions • Assumption F.1 holds • Let $c(X)_{i_0,j_0}$ be defined as Definition A.8 For $X, Y \in \mathbb{R}^{d \times n}$, we have $\|\nabla^2 L(X) - \nabla^2 L(Y)\| \le O(n^{1.5} d^{1.5} R^{10}) \cdot \|X - Y\|$ *Proof.* We have calculated the gradient of L(X) in Lemma A.17: $\frac{\mathrm{d}L(X)}{\mathrm{d}x_{i_1,j_1}} = \sum_{i=1}^n \sum_{i=1}^d c(X)_{i_0,j_0} \cdot \frac{\mathrm{d}c(X)_{i_0,j_0}}{\mathrm{d}x_{i_1,j_1}}$

We can use the proof in Lemma G.9 to generate a Lipschitz bound for he gradient of L(X). Notice that the Lipschitz of $c(X)_{i_0,j_0}$ is given in Lemma G.5 and the Lipschitz of $\frac{dc(X)_{i_0,j_0}}{dx_{i_1,j_1}}$ is given in Lemma G.9.

G.10 LIPSCHITZ FOR HESSIAN OF L(X)

Lemma G.12. Under following conditions

- Assumption F.1 holds
- Let $c(X)_{i_0,j_0}$ be defined as Definition A.8

For $X, Y \in \mathbb{R}^{d \times n}$, we have

$$\|\nabla^2 L(X) - \nabla^2 L(Y)\| \le O(n^{3.5}d^{3.5}R^{10}) \cdot \|X - Y\|$$

Proof. Recall that

$$\frac{\mathrm{d}L(X)}{\mathrm{d}x_{i_1,j_1}x_{i_2,j_2}} = \sum_{i_0=1}^n \sum_{j_0=1}^d \frac{\mathrm{d}c(X)_{i_0,j_0}}{\mathrm{d}x_{i_1,j_1}} \cdot \frac{\mathrm{d}c(X)_{i_0,j_0}}{\mathrm{d}x_{i_2,j_2}} + c(X)_{i_0,j_0} \cdot \frac{\mathrm{d}c(X)_{i_0,j_0}}{\mathrm{d}x_{i_1,j_1}x_{i_2,j_2}}$$
$$= \sum_{i_0=1}^n \sum_{j_0=1}^d U_1(X) + U_2(X)$$

For the first item $U_1(X)$, we have

$$|U_1(X) - U_1(Y)| = \left| \frac{\mathrm{d}c(X)_{i_0, j_0}}{\mathrm{d}x_{i_1, j_1}} \cdot \frac{\mathrm{d}c(X)_{i_0, j_0}}{\mathrm{d}x_{i_1, j_2}} - \frac{\mathrm{d}c(Y)_{i_0, j_0}}{\mathrm{d}x_{i_1, j_1}} \cdot \frac{\mathrm{d}c(Y)_{i_0, j_0}}{\mathrm{d}y_{i_1, j_2}} \right|$$

$$\leq |\frac{\mathrm{d}c(X)_{i_0,j_0}}{\mathrm{d}x_{i_1,j_1}}| \cdot |\frac{\mathrm{d}c(X)_{i_0,j_0}}{\mathrm{d}x_{i_1,j_2}} - \frac{\mathrm{d}c(Y)_{i_0,j_0}}{\mathrm{d}y_{i_2,j_2}}| \\ + |\frac{\mathrm{d}c(X)_{i_0,j_0}}{\mathrm{d}x_{i_1,j_1}} \cdot - \frac{\mathrm{d}c(Y)_{i_0,j_0}}{\mathrm{d}y_{i_1,j_1}}| \cdot |\frac{\mathrm{d}c(Y)_{i_0,j_0}}{\mathrm{d}y_{i_2,j_2}}| \\ \leq 10R^4 \cdot |\frac{\mathrm{d}c(X)_{i_0,j_0}}{\mathrm{d}x_{i_1,j_1}} \cdot - \frac{\mathrm{d}c(Y)_{i_0,j_0}}{\mathrm{d}y_{i_1,j_1}}|$$

where the 2nd step is by triangle inequality, the 3rd step is by Lemma F.4, the 4th step uses Lemma G.9. For the 2nd item $U_2(X)$, we have

 $\leq O(\sqrt{nd}R^{10}) \cdot \|X - Y\|$

$$|U_2(X) - U_2(Y)| = |c(X)_{i_0, j_0} \cdot \frac{\mathrm{d}c(X)_{i_0, j_0}}{\mathrm{d}x_{i_1, j_1} x_{i_2, j_2}} - c(Y)_{i_0, j_0} \cdot \frac{\mathrm{d}c(Y)_{i_0, j_0}}{\mathrm{d}y_{i_1, j_1} y_{i_2, j_2}}|$$

$$\leq |c(X)_{i_0,j_0}| \cdot |\frac{\mathrm{d}c(X)_{i_0,j_0}}{\mathrm{d}x_{i_1,j_1}x_{i_2,j_2}} - \frac{\mathrm{d}c(Y)_{i_0,j_0}}{\mathrm{d}y_{i_1,j_1}y_{i_2,j_2}}|$$

$$+ |c(X)_{i_0,j_0} - c(Y)_{i_0,j_0}| \cdot |\frac{\mathrm{d}c(Y)_{i_0,j_0}}{\mathrm{d}y_{i_1,j_1}y_{i_2,j_2}}$$

$$\leq 2R^2 \cdot \left| \frac{\mathrm{d}c(X)_{i_0,j_0}}{\mathrm{d}x_{i_1,j_1}x_{i_2,j_2}} - \frac{\mathrm{d}c(Y)_{i_0,j_0}}{\mathrm{d}y_{i_1,j_1}y_{i_2,j_2}} \right|$$

$$+ |c(X)_{i_0,j_0} - c(Y)_{i_0,j_0}| \cdot |\frac{\mathrm{d}c(Y)_{i_0,j_0}}{\mathrm{d}y_{i_1,j_1}y_{j_2,j_2}}|$$

3506
3507
$$\leq 2R^2 \cdot \left| \frac{\mathrm{d}c(X)_{i_0,j_0}}{\mathrm{d}c(X)_{i_0,j_0}} - \frac{\mathrm{d}c(Y)_{i_0,j_0}}{\mathrm{d}c(Y)_{i_0,j_0}} \right| + 5\sqrt{nd}R^4$$

$$\leq 2R^2 \cdot \left| \frac{\mathrm{d}c(X)_{i_0,j_0}}{\mathrm{d}x_{i_1,j_1}x_{i_2,j_2}} - \frac{\mathrm{d}c(Y)_{i_0,j_0}}{\mathrm{d}y_{i_1,j_1}y_{i_2,j_2}} \right| + 5\sqrt{nd}R^4 \cdot \|X - Y\| \cdot \left| \frac{\mathrm{d}c(Y)_{i_0,j_0}}{\mathrm{d}y_{i_1,j_1}y_{i_2,j_2}} \right|$$

$$\leq O(\sqrt{nd}R^{10}) \| \|Y - Y\| + 5\sqrt{nd}R^4 \| \|Y - Y\| + \frac{\mathrm{d}c(Y)_{i_0,j_0}}{\mathrm{d}c(Y)_{i_0,j_0}} + \frac{\mathrm{d}c(Y)_{i_0,j_0}}{\mathrm{d}c(Y)_$$

$$\leq O(\sqrt{ndR^{10}}) \cdot \|X - Y\| + 5\sqrt{ndR^4} \cdot \|X - Y\| \cdot |\frac{\mathrm{d}x(1/h_{0,j0})}{\mathrm{d}y_{i_1,j_1}y_{i_2,j_2}}|$$

$$3510 \le O(\sqrt{nd}R^{10}) \cdot \|X - Y\|$$

where the 2nd step is by triangle inequality, the 3rd step uses Lemma F.2, the 4th step uses Lemma G.5, the 5th step uses Lemma G.10, the last step uses Lemma F.5.

3514 Combining the above 2 items, we have

$$\left|\frac{\mathrm{d}L(X)}{\mathrm{d}x_{i_1,j_1}x_{i_2,j_2}} - \frac{\mathrm{d}L(Y)}{\mathrm{d}y_{i_1,j_1}y_{i_2,j_2}}\right| \le O(n^{1.5}d^{1.5}R^{10}) \cdot \|X - Y\|$$

3519 Then, we have

$$\begin{aligned} \|\nabla^2 L(X) - \nabla^2 L(Y)\| &\leq \|\nabla^2 L(X) - \nabla^2 L(Y)\|_F \\ &\leq n^2 d^2 \cdot O(n^{1.5} d^{1.5} R^{10} \|X - Y\| \\ &= O(n^{3.5} d^{3.5} R^{10}) \cdot \|X - Y\| \end{aligned}$$

where the 1st step is by matrix calculus, the 2nd is by the lipschitz for each entry of $\nabla^2 L(X)$. \Box

H STRONGLY CONVEXITY

In this section, we provide proof for PSD bounds for the Hessian of Loss function.

3531 H.1 PSD BOUNDS FOR HESSIAN OF $c(X)_{i_0, j_0}$

Lemma H.1 (PSD bounds for $\nabla^2 c(X)_{i_0,j_0}$). Under following conditions,

• Let c_{i_0,j_0} be defined as in Definition A.8

• Let Assumption F.1 be satisfied

3538 For all $i_0 \in [n], j_0 \in [d]$, we have

 $-36R^6 \cdot \mathbf{I}_{nd} \preceq \nabla^2 c(X)_{i_0, j_0} \preceq 36R^6 \cdot \mathbf{I}_{nd}$

 $i^{(i)}p_i$

Proof. We prove this statement by the definition of PSD. Let $p \in \mathbb{R}^{n \times d}$ be a vector. Let $i \in [n]$, we use $p_i \in \mathbb{R}^d$ to denote the vector formed by the $(i-1) \cdot n + 1$ -th term to the $i \cdot n$ -th term of vector p. Then, we have

$$\begin{split} |p^{\top}\nabla^{2}c(X)_{i_{0},j_{0}}p| &= |p_{i_{0}}^{\top}H_{1}(X)^{i_{0},i_{0}}p_{i_{0}} + \sum_{i\in[n]\setminus\{i_{0}\}} p_{i_{0}}^{\top}H_{2}(X)^{(i_{0},i)}p_{i} \\ &+ \sum_{i\in[n]\setminus\{i_{0}\}} p_{i}^{\top}H_{3}(X)^{(i,i_{0})}p_{i_{0}} + \sum_{i\in[n]\setminus\{i_{0}\}} p_{i}^{\top}H_{4}(X)^{(i_{0},i_{0})} \\ &+ \sum_{i_{1}\in[n]\setminus\{i_{0}\}} \sum_{i_{2}\in[n]\setminus\{i_{0}\}} p_{i_{1}}^{\top}H_{5}(X)^{(i_{1},i_{2})}p_{i_{2}}| \\ &\leq \max_{i\in[5]} \|H_{i}(X)\| \cdot \sum_{i_{1}\in[n]} \sum_{i_{2}\in[n]} p_{i_{1}}^{\top}p_{i_{2}} \\ &\leq \max_{i\in[5]} \|H_{i}(X)\| \cdot p^{\top}p \\ &\leq 36R^{6} \cdot p^{\top}p \end{split}$$

where the 1st step is by the formulation of $\nabla^2 c(X)_{i_0,j_0}$ (see Definition D.3), the 2nd and 3rd steps are from simple algebra, the 4th step uses Lemma F.5.

3562 H.2 PSD BOUNDS FOR HESSIAN OF LOSS

Lemma H.2 (PSD bound for $\nabla^2 L(X)$). Under following conditions,

Let
$$L(X)$$
 be defined as in Definition A.9

we have

$$\nabla^2 L(X) \succeq -O(ndR^8) \cdot \mathbf{I}_{nd}$$

Proof. Recall in Lemma E.2, we have

$$\nabla^2 L(X) = \sum_{i_0=1}^n \sum_{j_0=1}^d \nabla c(X)_{i_0,j_0} \cdot \nabla c(X)_{i_0,j_0}^\top + c(X)_{i_0,j_0} \cdot \nabla^2 c(X)_{i_0,j_0}$$
(2)

Notice that the first term is PSD, so we omit it.

By Lemma F.2, we have

$$|c(X)_{i_0, j_0}| \le 2R^2$$

Therefore, we have

$$\nabla^2 c(X)_{i_0,j_0} \succeq -72R^8 \cdot \mathbf{I}_{nd}$$

i.e., $\nabla^2 L(X) \succeq -72ndR^8 \cdot \mathbf{I}_{nd}$

where the first line is by Lemma H.1 and the 2nd line is given by Eq. (2).

Ι **CONVERGENCE ANALYSIS**

In this section, we give the convergence analysis of the gradient-based (see Section I.1 and Hessianbased method (see Section I.2) to conduct inverse attack. We utilize the Lipschitz and stronglyconvexity properties proved in previous sections.

I.1 GRADIENT METHOD

We first state a canonical result for the convergence gradient-descent method under Lipschitz smooth-ness and strongly-convexity.

Theorem I.1 (Gradient descent). Let the following conditions hold

- Let f(x) be a convex and twice-differentiable function on \mathbb{R}^n
- Let $\nabla f(x)$ have Lipschitz constant L:

$$\|\nabla f(x) - \nabla f(y)\|_2 \le L \|x - y\|_2 \quad \forall x, y \in \mathbb{R}^n$$

• Let f(x) be strongly convex with factor m:

$$\nabla^2 f(x) \succeq m \mathbf{I}_n$$

• f(x) reaches its minimum (denoted as f^*) at some point x^*

Then, the gradient-descent algorithm with fixed step size $t < \frac{2}{m+L}$ satisfies

$$||x_k - x^*||_2 < (1 - \frac{m}{L})^{k/2} \cdot ||x_0 - x^*||_2^2$$

where x_k is the update in k-th iteration.

In particular, it takes $O(\frac{L}{m} \cdot \log(|x_0 - x^*|_2/\epsilon))$ to find a ϵ -optimal solution.

Now, we use the above theorem to show the convergence of our regression problem.

3618 **Theorem I.2** (Formal version of Theorem 4.3). We assume our model satisfies the following 3619 conditions 3620 • Bounded parameters: there exists R > 1 such that 3621 3622 $- \|W\|_F \leq R, \|V\|_F \leq R$ $- \|X\|_{F} < R$ 3624 - $\forall i \in [n], j \in [d], |b_{i,j}| \leq R$ where $b_{i,j}$ denotes the *i*, *j*-th entry of B 3625 3626 • *Regularization: we consider the following problem:* $\min_{X \in \mathbb{R}^{n \times d}} \|D(X)^{-1} \exp(X^\top W X) X^\top V - B\|_F^2$ 3627 3628 3629 $+\gamma \cdot \|\operatorname{vec}(X)\|_2^2$ 3630 3631 Then, for any accuracy parameter $\epsilon \in (0, 0.1)$, a gradient-descent algorithm can be employed to 3632 recover the initial data. The algorithm uses 3633 $T = O(\operatorname{poly}(n, d, R) \cdot \log(|X_0 - X^*|_F / \epsilon))$ 3634 iterations, it outputs a matrix $\widetilde{X} \in \mathbb{R}^{d \times n}$ satisfying 3635 3636 $\|\widetilde{X} - X^*\|_F \le \epsilon$ 3637 The execution time for each iteration is poly(n, d). 3638 3639 *Proof.* Choosing $\gamma \geq O(ndR^8)$, by Lemma H.2, we have our regression problem being strongly 3640 convex with factor $O(ndR^8)$. Notice that, we proved in Lemma G.11 that the gradient of our loss 3641 function is $O(n^{1.5}d^{1.5}R^{10})$ -Lipschitz continuous. Applying Theorem I.1 with $L = O(n^{1.5}d^{1.5}R^{10})$ 3642 and $m = O(ndR^8)$, we have the result in this theorem. 3643 The execution time for each iteration is the matrix-multiplication time. 3644 3645 I.2 HESSIAN METHOD 3646 3647 Theorem I.3 (Formal version of Theorem 4.4, Main Result). We assume our model satisfies the 3648 following conditions 3649 • Bounded parameters: there exists R > 1 such that 3650 3651 $- \|W\|_{F} < R, \|V\|_{F} < R$ 3652 $- \|X\|_F \le R$ 3653 - $\forall i \in [n], j \in [d], |b_{i,j}| \leq R$ where $b_{i,j}$ denotes the *i*, *j*-th entry of B 3654 3655 • Regularization: we consider the following problem: 3656 $\min_{X \in \mathbb{R}^{n \times d}} \|D(X)^{-1} \exp(X^\top W X) X^\top V - B\|_F^2$ 3658 $+\gamma \cdot \|\operatorname{vec}(X)\|_2^2$ 3659 3660 • Good initial point: We choose an initial point X_0 such that 3661 $M \cdot \|X_0 - X^*\|_F \le O(ndR^8),$ 3662 where $M = O(n^3 d^3 R^{10})$. 3663 3664 Then, for any accuracy parameter $\epsilon \in (0, 0.1)$ and any failure probability $\delta \in (0, 0.1)$, an algorithm based on the Newton method can be employed to recover the initial data. The result of this algorithm 3666 guarantee within 3667 $T = O(\log(|X_0 - X^*|_F / \epsilon))$ 3668 iterations, it outputs a matrix $\widetilde{X} \in \mathbb{R}^{d \times n}$ satisfying 3669 3670 $\|X - X^*\|_F < \epsilon$ 3671 with a probability of at least $1 - \delta$. The execution time for each iteration is $poly(n, d, log(1/\delta))$.

3672	<i>Proof.</i> Choosing $\gamma \geq O(ndR^8)$, by Lemma H.2, we have the PD property of Hessian.
3673	By Lemma G.12, we have the Lipschitz property of Hessian.
3675 3676 3677	Since M is bounded (in the condition of Theorem), then by iterative shrinking lemma (see Lemma 6.9 in Li et al. (2023c) as an example), we prove the convergence.
3678 3679	J SUPPLEMENTARY EXPERIMENTAL DETAILS
3680 3681	Here, we give the experimental details for our experiment as follows.
3682	• Learning rate for fine-tuning: $\eta = 0.0001$ (for best effort).
3684	• Learning rate for attack: $\eta = 0.001$ (default).
3685	• Adam hyper-parameter $\beta_1 = 0.9$ (default).
3686	• Adam hyper-parameter $\beta_2 = 0.999$ (default).
3687	• Adam hyper-parameter $\epsilon = 1 \times 10^{-8}$ (default)
3688	• Fina tuning stans: 8000
3689	• Fine-tuning steps: 8000.
3690	• Platform: PyTorch Paszke et al. (2019) and Huggingface Wolf et al. (2019).
3691	• GPU device information: 1 RTX 4090 GPUs.
3692	• Number of fine-tuning epochs 30.
3693	• Batch size: 32 (for best effort).
3694	• Quantization: fp16.
3696	
3697	
3698	
3699	
3700	
3701	
3702	
3703	
3704	
3705	
3707	
3708	
3709	
3710	
3711	
3712	
3713	
3714	
3715	
3717	
3718	
3719	
3720	
3721	
3722	
3723	
3724	
3725	