
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

UNMASKING TRANSFORMERS:
A THEORETICAL APPROACH TO DATA RECOVERY VIA
ATTENTION WEIGHTS

Anonymous authors
Paper under double-blind review

ABSTRACT

In the realm of deep learning, transformers have emerged as a dominant architec-
ture, particularly in both natural language processing and computer vision tasks.
However, with their widespread adoption, concerns regarding the security and
privacy of the data processed by these models have arisen. In this paper, we address
a pivotal question: Can the data fed into transformers be recovered using their
attention weights and outputs? We introduce a theoretical framework to tackle
this problem. Specifically, we present an algorithm that aims to recover the input
data X ∈ Rd×n from given attention weights W = QK⊤ ∈ Rd×d and output
B ∈ Rn×n by minimizing the loss function L(X). This loss function captures the
discrepancy between the expected output and the actual output of the transformer.
Our findings have significant implications for preventing privacy leakage from
attacking open-sourced model weights, suggesting potential vulnerabilities in the
model’s design from a security and privacy perspective - you may need only a few
steps of training to force LLMs to tell their secrets.

1 INTRODUCTION

In the intricate and constantly evolving domain of deep learning, the transformer architecture has
emerged as a game-changing innovation Vaswani et al. (2017). This novel architecture has propelled
the state-of-the-art performance in a myriad of tasks, and its potency lies in the underlying mechanism
known as the ”attention mechanism”. The essence of this mechanism can be distilled into its unique
interaction between three distinct matrices: the Query (Q), the Key (K), and the Value (V), where
the Query matrix (Q) represents the questions or the aspects we’re interested in, the Key matrix (K)
denotes the elements against which these questions are compared or matched, and the Value matrix
(V) encapsulates the information we want to retrieve based on the comparisons. These matrices are
not just mere multidimensional arrays; they play vital roles in encoding, comparing, and extracting
pertinent information from the data.

Given this context, the attention mechanism can be mathematically captured as follows:
Definition 1.1 (Attention matrix computation). Let Q,K ∈ Rn×d be two matrices that respectively
represent the query and key. Similarly, for a matrix V ∈ Rn×d denoting the value, the attention
matrix is defined as

Att(Q,K, V) := D−1AV,

In this equation, two matrices are introduced: A ∈ Rn×n and D ∈ Rn×n, defined as:

A := exp(QK⊤) and D := diag(A1n).

Here, the matrix A represents the relationship scores between the query and key, and D ensures
normalization. The computation hence, deftly combines these relationships with the value matrix to
output the final attended representation.

In practical large-scale language models ChatGPT (2022); OpenAI (2023), there might be multi-levels
of the attention computation. For those multi-level architecture, the feed-forward training can be
represented as

X⊤
ℓ+1 ← D(Xℓ)

−1 exp(X⊤
ℓ QℓKℓXℓ)X

⊤
ℓ Vℓ

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Algorithm 1 Sketch of inverse attack to transformer-based models

Input: Ideal model prediction B ∈ Rn×d

Parameters: Model function f , pretrained weights W , training steps T
Output: Leaked input X ∈ Rn×d for output B
procedure INVERSEATTACK(B, f,W, T)

Initialize each entry of X0 ∈ Rn×d from Gaussian distribution N (0, 1).
t← 1
for t < T do

Compute loss by some specific metric ℓ(·, ·), such that Lt := ℓ(f(W,Xt−1), B)
Compute gradient gt := ∇Xt−1Lt

Compute update for X via first-order or second order algorithm using gt, denote ∆X
Update Xt ← Xt−1 −∆X
t← t+ 1

end for
return XT with guaranteed Lt ≤ ϵ (Theorem 4.3 and Theorem 4.4)

end procedure

where Xℓ is the input of ℓ-th layer, and Xℓ+1 is the output of ℓ-th layer, and Qℓ,Kℓ, Vℓ are the
attention weights in ℓ-th layer.

This architecture has particularly played a pivotal role in driving progress across various sub-
disciplines of natural language processing (NLP) Firat et al. (2016); Choi et al. (2018); Usama
et al. (2020); Naseem et al. (2020); Martin et al. (2019); ChatGPT (2022); OpenAI (2023). This
trajectory of influence is most prominently embodied by the creation and widespread adoption of
Large Language Models (LLMs) like GPT-4 and Claude-3. These models are hallmarks due to their
staggering number of parameters and complex architectural designs.

Yet, the very complexity and architectural sophistication that propel the success of transformers
come with a host of consequential challenges, making their effective and responsible usage nontrivial.
Prominent among these challenges is the overarching imperative of ensuring data security and privacy
Pan et al. (2020); Brown et al. (2022); Kandpal et al. (2022). Within the corridors of the research
community, an increasingly pertinent question is emerging regarding the inherent vulnerabilities of
these architectures. Specifically,

is it possible to know the input data by analyzing the attention weights and model outputs?

To put it in mathematical terms, given a language model represented as B = f(W ;X), if one has
access to the output B and the attention weights W , is it possible to mathematically invert the model
to obtain the original input data X?

Addressing this line of inquiry extends far beyond the realm of academic speculation; it has direct
and significant implications for practical, real-world applications. This is especially true when these
transformer models interact with data that is either sensitive in nature, like personal health records
Cascella et al. (2023), or proprietary, as in the financial sector Wu et al. (2023). With the broader
deployment of Large Language Models into environments that adhere to stringent data confidentiality
regulations, the mandate for achieving data security becomes essential. In this work, we aim to delve
deeply into this issue, striving to offer a nuanced understanding of these potential vulnerabilities while
suggesting pathways for ensuring safety in the development, training, and utilization of transformer
technologies.

This paper addresses a distinct attention-based regression model that differs from the conventional
task of finding optimal weights for a given input and output. Specifically, we assume that the weights
are already known, and our objective is to invert the output to recover the original data. The key focus
of our investigation lies in identifying the conditions under which successful inversion of the original
input is feasible. This problem holds significant relevance in the context of addressing security
concerns associated with attention networks.

Our contribution In this paper, we formulate the formal regression model for the inverse attack
on the soft-max attention layer. Utilizing simplified notations of the loss function, we are able to

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

calculate a close-form representation of its Hessian. By assuming bounded parameters and adding a
moderate regularizer, we prove the smoothness (Lipschitz continuity) and strongly-convexity (Positive
Semi-definiteness) of our regression problem, which leads to the convergence of gradient-based and
Hessian-based methods that approach the approximate optimal. Therefore, we apply these algorithms
to invert the attention weights to the input data. We provided numerical experiments to verify the
reliability of our methods.

Roadmap. We arrange the rest of our paper as follows. In Section 2 we present some works related
our topic. In Section 3, we state an overview of our techniques, summarizing the method we use
to recover data via attention weights. We state our main theories in Section 4. We provide our
experiment results in Section 5. We conclude our work in Section 6.

2 RELATED WORKS

This section discusses related works in the LLM community. We summarize the current research on
LLM security and inversion attack in Section 2.1. We concern about attention computation theory
and LLM-based regression theory in Section 2.2.

2.1 LLM SECURITY

Security concerns about LLM. Amid LLM advancements, concerns about misuse have arisen
Pan et al. (2020); Brown et al. (2022); Kandpal et al. (2022); Kirchenbauer et al. (2023); Vyas et al.
(2023); Chu et al. (2023a); Xu et al. (2023); Gao et al. (2023d); Kirchenbauer et al. (2023); He et al.
(2022a;b); Gao et al. (2023f); Shen et al. (2023a). Pan et al. (2020) assesses the privacy risks of
capturing sensitive data with eight models and introduces defensive strategies, balancing performance
and privacy. Brown et al. (2022) asserts that current methods fall short in guaranteeing comprehensive
privacy for language models, recommending training on publicly intended text. Kandpal et al. (2022)
reveals that the vulnerability of large language models to privacy attacks is significantly tied to data
duplication in training sets, emphasizing that deduplicating this data greatly boosts their resistance
to such breaches. Kirchenbauer et al. (2023) devised a way to watermark LLM output without
compromising quality or accessing LLM internals. Meanwhile, Vyas et al. (2023) introduced near
access-freeness (NAF), ensuring generative models, like transformers and image diffusion models,
don’t closely mimic copyrighted content by over k-bits.

Inverting the neural network. Originating from the explosion of deep learning, there have been
a series of works focused on inverting the neural network Jensen et al. (1999); Lu et al. (1999);
Mahendran & Vedaldi (2015); Dosovitskiy & Brox (2016); Zhang et al. (2020d). Jensen et al. (1999)
surveys various techniques for neural network inversion, which involves finding input values that
produce desired outputs, and highlights its applications in query-based learning, sonar performance
analysis, power system security assessment, control, and codebook vector generation. Lu et al. (1999)
presents a method for inverting trained neural networks by formulating the problem as a mathematical
programming task, enabling various network inversions and enhancing generalization performance..
Mahendran & Vedaldi (2015) explores the reconstruction of image representations, including CNNs,
to assess the extent to which it’s possible to recreate the original image, revealing that certain layers
in CNNs retain accurate visual information with varying degrees of geometric and photometric
invariance. Zhang et al. (2020d) presents a novel generative model-inversion attack method that can
effectively reverse deep neural networks, particularly in the context of face image reconstruction, and
explores the connection between a model’s predictive ability and vulnerability to such attacks while
noting limitations in using differential privacy for defense.

Attacking the Neural Networks. During the development of artificial intelligence, there have been
many works on attaching the neural networks Zhu et al. (2019); Wei et al. (2020); Rigaki & Garcia
(2020); Huang et al. (2020); Yin et al. (2021); Huang et al. (2021b); Gao et al. (2023c). Several
studies Zhu et al. (2019); Wei et al. (2020); Rigaki & Garcia (2020); Yin et al. (2021) have warned
that local training data can be compromised using only exchanged gradient information. These
methods start with dummy data and gradients, and through gradient descent, they empirically show
that the original data can be fully reconstructed. A follow-up study Zhao et al. (2020) specifically
focuses on classification tasks and finds that the real labels can also be accurately recovered. Other

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

types of attacks include membership and property inference Shokri et al. (2017); Melis et al. (2019),
the use of Generative Adversarial Networks (GANs) Hitaj et al. (2017); Goodfellow et al. (2014),
and additional machine-learning techniques McPherson et al. (2016); Papernot et al. (2016). A recent
paper Wang et al. (2023) uses tensor decomposition for gradient leakage attacks but is limited by its
inefficiency and focus on over-parametrized networks.

2.2 ATTENTION COMPUTATION AND REGRESSION

Attention Computation Theory. Following the rise of LLM, numerous studies have emerged on
attention computation Kitaev et al. (2020); Tay et al. (2020); Chen et al. (2021); Zandieh et al. (2023);
Tarzanagh et al. (2023); Sanford et al. (2023); Panigrahi et al. (2023a); Zhang et al. (2020a); Arora &
Goyal (2023); Tay et al. (2021); Deng et al. (2023b); Xia et al. (2023); Kacham et al. (2023). LSH
techniques approximate attention, and based on them, the KDEformer offers a notable dot-product
attention approximation Zandieh et al. (2023). Recent works Alman & Song (2023); Brand et al.
(2023); Deng et al. (2023c) explored diverse attention computation methods and strategies to enhance
model efficiency. On the optimization front, Zhang et al. (2020b) highlighted that adaptive methods
excel over SGD due to heavy-tailed noise distributions. Other insights include the emergence of the
KTIW property Snell et al. (2021) and various regression problems inspired by attention computation
Gao et al. (2023a); Li et al. (2023c;b), revealing deeper nuances of attention models.

Theoretical Approaches to Understanding LLMs. Recent strides have been made in under-
standing and optimizing regression models using various activation functions. Research on over-
parameterized neural networks has examined exponential and hyperbolic activation functions for
their convergence properties and computational efficiency Gao et al. (2023a); Li et al. (2023c); Deng
et al. (2023b); Gao et al. (2023d); Li et al. (2023a); Gao et al. (2023e); Song et al. (2023); Sinha
et al. (2023); Chu et al. (2023a;b); Shen et al. (2023b). Modifications such as regularization terms
and algorithmic innovations, like a convergent approximation Newton method, have been introduced
to enhance their performance Li et al. (2023c); Deng et al. (2022). Studies have also leveraged
tensor tricks to vectorize regression models, allowing for advanced Lipschitz and time-complexity
analyses Gao et al. (2023b); Deng et al. (2023a). Simultaneously, the field is seeing innovations in
optimization algorithms tailored for LLMs. Techniques like block gradient estimators have been
employed for huge-scale optimization problems, significantly reducing computational complexity
Cai et al. (2021). Unique approaches like Direct Preference Optimization bypass the need for reward
models, fine-tuning LLMs based on human preference data Rafailov et al. (2023). Additionally,
advancements in second-order optimizers have relaxed the conventional Lipschitz Hessian assump-
tions, providing more flexibility in convergence proofs Liu et al. (2023). Also, there is a series of
work on understanding fine-tuning Malladi et al. (2023a;b); Panigrahi et al. (2023b). Collectively,
these theoretical contributions are refining our understanding and optimization of LLMs, even as they
introduce new techniques to address challenges such as non-guaranteed Hessian Lipschitz conditions.

Optimization and Convergence of Deep Neural Networks. Prior research Li & Liang (2018);
Du et al. (2018); Allen-Zhu et al. (2019a;b); Arora et al. (2019a;b); Song & Yang (2019); Cai et al.
(2019); Zhang et al. (2019); Cao & Gu (2019); Zou & Gu (2019); Oymak & Soltanolkotabi (2020); Ji
& Telgarsky (2019); Lee et al. (2020); Huang et al. (2021a); Zhang et al. (2020c); Brand et al. (2020);
Zhang et al. (2020a); Song et al. (2021); Alman et al. (2023); Munteanu et al. (2022); Zhang (2022);
Gao et al. (2023a); Li et al. (2023c); Qin et al. (2023) on the optimization and convergence of deep
neural networks has been crucial in understanding their exceptional performance across various tasks.
These studies have also contributed to enhancing the safety and efficiency of AI systems. In Gao
et al. (2023a) they define a neural function using an exponential activation function and apply the
gradient descent algorithm to find optimal weights. In Li et al. (2023c), they focus on the exponential
regression problem inspired by the attention mechanism in large language models. They address the
non-convex nature of standard exponential regression by considering a regularization version that is
convex. They propose an algorithm that leverages input sparsity to achieve efficient computation.
The algorithm has a logarithmic number of iterations and requires nearly linear time per iteration,
making use of the sparsity of the input matrix.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3 RECOVERING DATA VIA ATTENTION WEIGHTS

In this section, we propose our theoretical method to recover the training data from trained transformer
weights and outputs. In Section 3.1, we provide a detailed description of our approach. In Section 3.2,
we introduce our simplified notations to calculate the Hessian of the loss function. In Section 3.3, we
state the decomposed expression of the Hessian.

3.1 TRAINING OBJECTIVE OF ATTENTION INVERSION ATTACK

In this study, we propose a novel technique for inverting the attention weights of a transformer model
using Hessian-based algorithms. We consider the single-layer soft-max attention function

f(W ;X) := D(X)−1 exp(X⊤WX)V

, where W = KQ⊤ ∈ Rd×d represents the attention weights and D(X) = diag(exp(X⊤WX)) ∈
Rn×n is the diagonal matrix for normalization.

Our aim is to find the input X ∈ Rd×n that minimizes the Frobenius norm of the difference between
f(W ;X) and the output B. Here, dimension d denotes the length of a token, dimension n denotes
the total number of the tokens in X . To achieve this, we introduce an algorithm that minimizes the
loss function L(X), defined as follows:
Definition 3.1 (Regression model). Given the attention weights W = KQ⊤ ∈ Rd×d, V ∈ Rd×d

and output B ∈ Rn×d, the goal is find X ∈ Rd×n such that
L(X) := ∥D(X)−1 exp(X⊤WX)X⊤V −B∥2F + Lreg, (1)

D(X)−1
X⊤

W X

X⊤

V

B

X⊤

W X

1n W K

Q⊤

L(X) := ∥ × exp (
× ×

)×
× − ∥

F

2

where D(X) := diag(exp(
× ×

)×) and := ×

n

n d d n d d d

n

Figure 1: Visualization of our loss function.

Lreg captures the additional regularization terms which we introduce later. This loss function
quantifies the discrepancy between the expected output and the actual output of the transformer.

In our approach, we leverage Hessian decomposition to efficiently compute the Hessian matrix and
apply a second-order method to approximate the optimal input X . Utilizing the Hessian, we can
gain insights into the curvature of the loss function, which improves the efficiency of finding the
approximate optimal solution.

By integrating Hessian decomposition and second-order optimization techniques (Anstreicher (2000);
Lee et al. (2019); Cohen et al. (2019); Jiang et al. (2021); Huang et al. (2022); Gu & Song (2022); Gu
et al. (2023)), our proposed algorithm provides a promising approach for addressing the challenging
task of inverting attention weights in transformer models.

3.2 MODEL SIMPLIFICATION

Due to the complexity of the loss function (Eq. (1)), it is challenging to give the explicit formula of its
Hessian. To simplify the computation, we introduce several notations (See Figure 2 for visualization):

Exponential Function: u(X)i := exp(X⊤WX∗,i)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Sum of Softmax: α(X)i := ⟨u(X)i,1n⟩
Softmax Probability: f(X)i := α(X)−1

i u(X)i

Value Function: h(X)j := X⊤V∗,j
One-entry Loss Function: c(X)i,j := ⟨f(X)i, h(X)j⟩ − bi,j .

X⊤

W X∗,i

u(X)i :=exp (
× ×

)n

d d 1

(a) Exponential Function

u(X)i 1nα(X)i :=⟨
,
⟩n

1 1

(b) Sum of Softmax

u(X)if(X)i := α(X)−1
i × n

1

(c) Softmax Probability

h(X)j := X⊤ V∗,j×n

d

1

(d) Value Function

f(X)i h(X)jc(X)i,j := ⟨
,
⟩ −bijn

1 1

(e) One-unit Loss Function

Figure 2: Visualization of Notations We Defined

Using these terms, we can express the loss function L(X) as the sum over the loss in each
entry as below, which allows us to break down the computation into several steps. L(X) =∑n

i=1

∑d
j=1(c(X)i,j)

2.

3.3 HESSIAN DECOMPOSITION

This section provides our technique to decompose the Hessian. By decomposing the Hessian into
several cases, we can give a close-form expression, which enables us to comprehend and analyze the
Hessian. We use variables ik ∈ [n], jk ∈ [d], k = 1, 2, 3 to denote the indexes.

Now, we split dc(X)i0,j0

dxi1,j1
(the gradient of c(X)i0,j0) into two cases:

• Case 1: The situation when i0 = i1.
• Case 2: The situation when i0 ̸= i1.

Similar, we break down the computation of d2c(X)i0,j0

dxi1,j1
dxi2,j2

into five cases to handle different scenarios:

• Case 1: The situation when i0 = i1 = i2.
• Case 2: The situation when i0 = i1 ̸= i2.
• Case 3: The situation when i0 = i2 ̸= i1.
• Case 4: The situation when i0 ̸= i1, i0 ̸= i2 and i1 = i2.
• Case 5: The situation when i0 ̸= i1, i0 ̸= i2 and i1 ̸= i2.

It is worth mentioning that the second case and the third case are equivalent by switching indexes. By
considering these cases, we can calculate the Hessian for each element in X . This allows us to gain
further insights into the curvature of the loss function and optimize the parameters more effectively.

Since our decision variable X is a n× d matrix, we define the Hessian of c(X)i0,j0 by considering
its Hessian with respect to x = vec(X). This means that, ∇2c(X)i0,j0 is a nd× nd matrix with its
i1 · j1, i2 · j2-th entry being dc(X)i0,j0

dxi1,j2
xi2,j2

. Leveraging the split of different scenarios, we decompose
the Hessian into a partition of square matrices.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Definition 3.2 (Hessian split). We use H(i1,i2)
k ∈ Rd×d to represent the square matrix corresponding

to the k-th case in Hessian computation. Notice that the j1, j2-th entry of H(i1,i2)
k is dc(X)i0,j0

dxi1,j2xi2,j2
.

Then, the Hessian of the loss is a matrix partition consists of matrices of the above five cases. The
formal representation can be found in Appendix D.1.

The reason we introduce the Hessian split is that the square matrices of the same type share the
similar formula. Therefore, we can compute the expression of each type (see detailed calculation in
Section D) to derive dc(X)i0,j0

dxi1,j2
xi2,j2

. This gives us the information of the Hessian of the loss function.

4 MAIN RESULTS

Now, we state the analysis of the correctness of our inversion attack strategy. Assuming the parameters
are bounded, we verify the Hession of our loss function is Lipschitz continuous and PSD lower-
bounded. Therefore, gradient-based and Hessian-based methods are used to solve the regularized
regression model. We defer the proofs to the Appendix.

Properties of the Hessian We assume an unified upper bound for all parameters in our model,
including the weight W , the value V , the output B, and the decision variable X .

Assumption 4.1 (Bounded Parameters, Informal version of Assumption F.1). We assume ∥W∥ ≤
R, ∥V ∥ ≤ R, ∥X∥ ≤ R, bi,j ≤ R2, where ∥ · ∥ is the matrix 2-norm and R > 1 is some constant.

Next, we state the bounds for the Hessian of the loss function in terms of poly(n, d,R).

Theorem 4.2 (Properties of the Hessian, Informal version of Theorem G.12 and Theorem H.2). We
assume that Assumption 4.1 holds. Then, the Hessian of L(X) is Lipschitz continuous with Lipschitz
constant being O(n3.5d3.5R10). Also, it has PSD lower bound: L(X) ⪰ −O(ndR8) · Ind.

Therefore, we define the regularization term to be Lreg := O(ndR8) · ∥ vec(X)∥22 to have the PSD
guarantee for our regression problem.

Convergence analysis With above properties of the loss function, we have the convergence results
stated as follows. Theorem 4.3 shows the correctness of the gradient-based method. Theorem 4.3
shows the correctness of the Hessian-based method. The algorithm for approximating PSD matrices
in Deng et al. (2022) can be applied to approximate the Hessian efficiently.

Theorem 4.3 (First-Order Main Result, Informal version of Theorem I.2). We assume that Assump-
tion 4.1 holds. Let X∗ denote the optimal point of the regularized regression model defined in
Definition 3.1. Then, for any accuracy parameter ϵ ∈ (0, 0.1), an algorithm based on the gradient-
descent method can be employed to recover the initial data. It outputs a matrix X̃ ∈ Rd×n satisfying
∥X̃ −X∗∥F ≤ ϵ. The algorithm runs T = O(poly(n, d,R) · log(∥X0 −X∗∥F /ϵ)) iterations, with
execution time for each iteration being poly(n, d), where the degree of d depends on the current
matrix computation time.

Theorem 4.4 (Second-Order Main Result, Informal version of Theorem I.3). We assume that
Assumption 4.1 holds. Let X∗ denote the optimal point of the regularized regression model defined
in Definition 3.1. Suppose we choose an initial point X0 such that M · ∥X0 −X∗∥F ≤ O(ndR8)
where M = O(n3d3R10). Then, for any accuracy parameter ϵ ∈ (0, 0.1) and any failure probability
δ ∈ (0, 0.1), an algorithm based on the approximation-Newton method can be employed to recover
the initial data. It outputs a matrix X̃ ∈ Rd×n satisfying ∥X̃ − X∗∥F ≤ ϵ with a probability
at least 1 − δ. The algorithm runs T = O(log(|X0 − X∗|F /ϵ)) iterations, with execution time
for each iteration being poly(n, d, log(1/δ)), where the degree of d depends on the current matrix
computation time.

These theorems show that we can utilize first-order method and second-order method to search an
ϵ-optimal approximation to the real input data X within a preferable running time.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

step recovering text loss

0 GrapeJUST once received cancer treatment at this hospital. 4.74
2500 precious quoted once received cancer treatment at this hospital. 4.61
5000 grass Tradable once received cancer treatment at this hospital. 4.50
6500 acrylic Bob once received cancer treatment at this hospital. 4.29
7500 Alan Bob once received cancer treatment at this hospital. 2.27

Table 1: Visualization of the results. Here, the original target text is Alan Bob once received cancer
treatment at this hospital. We mask the sensitive data Alan Bob and run the gradient-descent
inverse attack to recover. The blue-colored texts are the outputs in each iteration. The column on the
right shows the value of the cross-entropy loss. It can be seen that the original data is leaked after
7500 steps, which echoes our convergence analysis.

5 EXPERIMENT

In this section, to verify the accuracy of our theory, we conducted a simple experiment to evaluate
how our approach recovers data from the pre-trained weights in the LLM. In Section 5.1, we provide
the setup and the design of our data-attack experiment. Next, we discuss our results in Section 5.2.
Supplementary experimental details are provided in Appendix J.

5.1 EXPERIMENT DESIGN AND SETUP

We use the pre-trained language model GPT-2-small Radford et al. (2019). For the dataset, we utilize
GPT-4 Achiam et al. (2023); Bubeck et al. (2023) to help us create hundreds of text data containing
virtual information. This can be viewed as the toy or the synthetic dataset. Then, we use the synthetic
dataset to fine-tune the pre-trained GPT-2-small with Adam optimizer Kingma & Ba (2014).

0 2000 4000 6000 8000 10000
step

0

1

2

3

4

5

0.0

0.2

0.4

0.6

0.8

1.0final success rate: 0.92loss
success rate

Figure 3: Training record of our inversion recovery attack. We state the maximum, mean, and
minimum loss during 10000 updates. We also present the success rate of attack in 1000 repeated
experiments.

For the recovery part, we first choose one text from the dataset and convert it into one-hot vectors
through the model’s vocabulary, denoted by S∗ ∈ Rn×N where N is the vocabulary size. Notice
that GPT-2-small is trained to conduct next-token prediction by causal mask, namely, it uses the
information of the first k words to predict the (k + 1)-th word. Therefore, we split S∗ to the masked
part S1 ∈ Rm×N and the unmasked part S2 ∈ R(n−m)×N . Then, we use S2 as part of the initial
input and we introduce our inversion attack approach to recover S1.

We initialize our recovery by a random matrix X0 ∈ Rm×N where each entry is sampled from
N (0, 1). We compute S0

1 ∈ Rm×N := softmax(X0), and concatenate it with S2 to form S0 ∈
Rn×N =

[
S0
1

S0
2

]
, then input it into the model. We denote the GPT-2-small model by a mapping

F : Rn×N → Rn×N . For any input matrix A ∈ Rn×N , the output of GPT-2-small F (A) ∈ Rn×N

will consist of row-wise soft-max vectors since we add a soft-max operation to the output of the last

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

layer to compute the probability distribution. We use St ∈ Rn×N to represent the matrix of soft-max
vectors we recover at the t-th timestamp for integer t ≥ 0 by minimizing the loss.

We define our problem as minimizing the cross-entropy loss which is calculated as L(F (St), St) :=∑n−1
i=1

∑N
j=1−St

i+1,j · log(F (St)i,j).

Remark 5.1. We use the cross-entropy loss here instead since it is commonly used in the training
of current LLMs. Note that our approach to analyze the canonical softmax loss regression can be
modified to show the correctness of the cross-entropy loss regression. Similar topics have been
discussed in other LLM-related literature, e.g. Gao et al. (2023c).

We use the gradient-descent method to conduct the attack. The update rule is defined as:

Xt+1 ← Xt − η∇Xt
L(F (St), St),

where we use Xt to denote the recovering input at t-th timestamp for integer t ≥ 0. Note that η
denotes the learning rate. St is computed by Xt as we mentioned above.

The training involves Adam optimizer, and all the hyper-parameters are set to be defaults. Totally, we
trained 10000 steps for the input recovery. All the experiments are repeated 1000 times to ensure
reliability.

5.2 RESULTS

We state our results of recovery in Figure 3. We recorded the mean, maximum, and minimum loss
during the training. We also recorded the success rate at each stage in the 10000 updates. Notice
that the success rate at the k-th update is computed by the count of successful experiments (i.e., the
masked input data is recovered) at the k-th update divided by 1000, which is the repeated time. It’s
noteworthy that after 5000 steps, the success rate greatly increases, eventually, it demonstrates a high
value of 0.92. This result verifies our attacking method has a high probability of recovery training,
especially for private and sensitive data from open-source weights of language models.

Furthermore, we showcase one example of the recovery attacks in Table 1, where we create fake
data "Alan Bob once received cancer treatment at this hospital.". Accordingly, the name "Alan Bob"
in the context is private and masked. We cut these two words and converted the sentence " once
received cancer treatment at this hospital." into one-hot vectors as S2 in Section 5.1. Next, we run the
inverse attack and record the output and loss value at each step. We use blue text to represent the
text that is predicted by our algorithm. As we can see from Table 1, the recovering text is initially
GrapeJUST with the cross-entropy loss 4.74 at the beginning. Then, at the 6500-th step of recovering,
our algorithm outputs acrylic Bob, where the word "Bob" is successfully recovered. Finally, at the
7500-th step, our algorithm successfully recovers the target text Alan Bob.

6 CONCLUSION

In this study, we have presented a theoretical approach for conducting the inverse recovery on the
input data using weights and outputs.

We propose the mathematical framework of the attention-inspired mechanism regression model. Our
theoretical analysis part consists of the efficient calculation of the Hessian and the verification of its
smoothness and strongly-convexity. With the aim of these properties, we introduce gradient-based
and Hessian-based to do the inverse recovery. Then, we show the reliability of our proposed method
by experiments on text reconstruction using GPT-2-small.

The insights gained from this research are intended to deepen our understanding and facilitate
the development of more secure and robust transformer models. By doing so, we strive to foster
responsible and ethical advancements in the field of deep learning. This work lays the groundwork
for future research and development aimed at fortifying transformer technologies against potential
threats and vulnerabilities.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In International conference on machine learning, pp. 242–252. PMLR, 2019a.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. On the convergence rate of training recurrent neural
networks. Advances in neural information processing systems, 32, 2019b.

Josh Alman and Zhao Song. Fast attention requires bounded entries. In NeurIPS. arXiv preprint
arXiv:2302.13214, 2023.

Josh Alman, Jiehao Liang, Zhao Song, Ruizhe Zhang, and Danyang Zhuo. Bypass exponential time
preprocessing: Fast neural network training via weight-data correlation preprocessing. In NeurIPS.
arXiv preprint arXiv:2211.14227, 2023.

Kurt M Anstreicher. The volumetric barrier for semidefinite programming. Mathematics of Operations
Research, 2000.

Sanjeev Arora and Anirudh Goyal. A theory for emergence of complex skills in language models.
arXiv preprint arXiv:2307.15936, 2023.

Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis of
optimization and generalization for overparameterized two-layer neural networks. In International
Conference on Machine Learning, pp. 322–332. PMLR, 2019a.

Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Russ R Salakhutdinov, and Ruosong Wang. On
exact computation with an infinitely wide neural net. Advances in neural information processing
systems, 32, 2019b.

Jan van den Brand, Binghui Peng, Zhao Song, and Omri Weinstein. Training (overparametrized)
neural networks in near-linear time. arXiv preprint arXiv:2006.11648, 2020.

Jan van den Brand, Zhao Song, and Tianyi Zhou. Algorithm and hardness for dynamic attention
maintenance in large language models. arXiv preprint arXiv:2304.02207, 2023.

Hannah Brown, Katherine Lee, Fatemehsadat Mireshghallah, Reza Shokri, and Florian Tramèr.
What does it mean for a language model to preserve privacy? In Proceedings of the 2022 ACM
Conference on Fairness, Accountability, and Transparency, pp. 2280–2292, 2022.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general intelligence:
Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

HanQin Cai, Yuchen Lou, Daniel Mckenzie, and Wotao Yin. A zeroth-order block coordinate descent
algorithm for huge-scale black-box optimization. arXiv preprint arXiv:2102.10707, 2021.

Tianle Cai, Ruiqi Gao, Jikai Hou, Siyu Chen, Dong Wang, Di He, Zhihua Zhang, and Liwei Wang.
Gram-gauss-newton method: Learning overparameterized neural networks for regression problems.
arXiv preprint arXiv:1905.11675, 2019.

Yuan Cao and Quanquan Gu. Generalization bounds of stochastic gradient descent for wide and deep
neural networks. Advances in neural information processing systems, 32, 2019.

Marco Cascella, Jonathan Montomoli, Valentina Bellini, and Elena Bignami. Evaluating the feasibility
of chatgpt in healthcare: an analysis of multiple clinical and research scenarios. Journal of Medical
Systems, 47(1):33, 2023.

ChatGPT. Optimizing language models for dialogue. OpenAI Blog, November 2022. URL https:
//openai.com/blog/chatgpt/.

10

https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Beidi Chen, Zichang Liu, Binghui Peng, Zhaozhuo Xu, Jonathan Lingjie Li, Tri Dao, Zhao Song,
Anshumali Shrivastava, and Christopher Re. Mongoose: A learnable lsh framework for efficient
neural network training. In International Conference on Learning Representations, 2021.

Heeyoul Choi, Kyunghyun Cho, and Yoshua Bengio. Fine-grained attention mechanism for neural
machine translation. Neurocomputing, 284:171–176, 2018.

Timothy Chu, Zhao Song, and Chiwun Yang. How to protect copyright data in optimization of large
language models? arXiv preprint arXiv:2308.12247, 2023a.

Timothy Chu, Zhao Song, and Chiwun Yang. Fine-tune language models to approximate unbiased
in-context learning. arXiv preprint arXiv:2310.03331, 2023b.

Michael B Cohen, Yin Tat Lee, and Zhao Song. Solving linear programs in the current matrix
multiplication time. In STOC, 2019.

Yichuan Deng, Zhao Song, and Omri Weinstein. Discrepancy minimization in input sparsity time.
arXiv preprint arXiv:2210.12468, 2022.

Yichuan Deng, Zhihang Li, Sridhar Mahadevan, and Zhao Song. Zero-th order algorithm for softmax
attention optimization. arXiv preprint arXiv:2307.08352, 2023a.

Yichuan Deng, Zhihang Li, and Zhao Song. Attention scheme inspired softmax regression. arXiv
preprint arXiv:2304.10411, 2023b.

Yichuan Deng, Sridhar Mahadevan, and Zhao Song. Randomized and deterministic attention sparsifi-
cation algorithms for over-parameterized feature dimension. arxiv preprint: arxiv 2304.03426,
2023c.

Yichuan Deng, Zhao Song, and Shenghao Xie. Convergence of two-layer regression with nonlinear
units. arXiv preprint arXiv:2308.08358, 2023d.

Alexey Dosovitskiy and Thomas Brox. Inverting visual representations with convolutional networks.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4829–4837,
2016.

Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes
over-parameterized neural networks. arXiv preprint arXiv:1810.02054, 2018.

Orhan Firat, Kyunghyun Cho, and Yoshua Bengio. Multi-way, multilingual neural machine translation
with a shared attention mechanism. arXiv preprint arXiv:1601.01073, 2016.

Yeqi Gao, Sridhar Mahadevan, and Zhao Song. An over-parameterized exponential regression. arXiv
preprint arXiv:2303.16504, 2023a.

Yeqi Gao, Zhao Song, and Shenghao Xie. In-context learning for attention scheme: from single soft-
max regression to multiple softmax regression via a tensor trick. arXiv preprint arXiv:2307.02419,
2023b.

Yeqi Gao, Zhao Song, and Shenghao Xie. In-context learning for attention scheme: from single soft-
max regression to multiple softmax regression via a tensor trick. arXiv preprint arXiv:2307.02419,
2023c.

Yeqi Gao, Zhao Song, and Xin Yang. Differentially private attention computation. arXiv preprint
arXiv:2305.04701, 2023d.

Yeqi Gao, Zhao Song, Xin Yang, and Ruizhe Zhang. Fast quantum algorithm for attention computa-
tion. arXiv preprint arXiv:2307.08045, 2023e.

Yeqi Gao, Zhao Song, and Junze Yin. Gradientcoin: A peer-to-peer decentralized large language
models. arXiv preprint arXiv:2308.10502, 2023f.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yuzhou Gu and Zhao Song. A faster small treewidth sdp solver. arXiv preprint arXiv:2211.06033,
2022.

Yuzhou Gu, Zhao Song, and Lichen Zhang. A nearly-linear time algorithm for structured support
vector machines. arXiv preprint arXiv:2307.07735, 2023.

Xuanli He, Qiongkai Xu, Lingjuan Lyu, Fangzhao Wu, and Chenguang Wang. Protecting intellec-
tual property of language generation apis with lexical watermark. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 36, pp. 10758–10766, 2022a.

Xuanli He, Qiongkai Xu, Yi Zeng, Lingjuan Lyu, Fangzhao Wu, Jiwei Li, and Ruoxi Jia. Cater:
Intellectual property protection on text generation apis via conditional watermarks. Advances in
Neural Information Processing Systems, 35:5431–5445, 2022b.

Briland Hitaj, Giuseppe Ateniese, and Fernando Perez-Cruz. Deep models under the gan: information
leakage from collaborative deep learning. In Proceedings of the 2017 ACM SIGSAC conference on
computer and communications security, pp. 603–618, 2017.

Baihe Huang, Xiaoxiao Li, Zhao Song, and Xin Yang. Fl-ntk: A neural tangent kernel-based
framework for federated learning analysis. In International Conference on Machine Learning, pp.
4423–4434. PMLR, 2021a.

Baihe Huang, Shunhua Jiang, Zhao Song, Runzhou Tao, and Ruizhe Zhang. Solving sdp faster: A
robust ipm framework and efficient implementation. In 2022 IEEE 63rd Annual Symposium on
Foundations of Computer Science (FOCS), pp. 233–244. IEEE, 2022.

Yangsibo Huang, Zhao Song, Kai Li, and Sanjeev Arora. Instahide: Instance-hiding schemes for
private distributed learning. In International conference on machine learning, pp. 4507–4518.
PMLR, 2020.

Yangsibo Huang, Samyak Gupta, Zhao Song, Kai Li, and Sanjeev Arora. Evaluating gradient
inversion attacks and defenses in federated learning. Advances in Neural Information Processing
Systems, 34:7232–7241, 2021b.

Craig A Jensen, Russell D Reed, Robert Jackson Marks, Mohamed A El-Sharkawi, Jae-Byung Jung,
Robert T Miyamoto, Gregory M Anderson, and Christian J Eggen. Inversion of feedforward neural
networks: algorithms and applications. Proceedings of the IEEE, 87(9):1536–1549, 1999.

Ziwei Ji and Matus Telgarsky. Polylogarithmic width suffices for gradient descent to achieve
arbitrarily small test error with shallow relu networks. arXiv preprint arXiv:1909.12292, 2019.

Shunhua Jiang, Zhao Song, Omri Weinstein, and Hengjie Zhang. Faster dynamic matrix inverse for
faster lps. In STOC, 2021.

Praneeth Kacham, Vahab Mirrokni, and Peilin Zhong. Polysketchformer: Fast transformers via
sketches for polynomial kernels. arXiv preprint arXiv:2310.01655, 2023.

Nikhil Kandpal, Eric Wallace, and Colin Raffel. Deduplicating training data mitigates privacy risks
in language models. In International Conference on Machine Learning, pp. 10697–10707. PMLR,
2022.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, Ian Miers, and Tom Goldstein. A
watermark for large language models. arXiv preprint arXiv:2301.10226, 2023.

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. arXiv
preprint arXiv:2001.04451, 2020.

Jason D Lee, Ruoqi Shen, Zhao Song, Mengdi Wang, et al. Generalized leverage score sampling for
neural networks. Advances in Neural Information Processing Systems, 33:10775–10787, 2020.

Yin Tat Lee, Zhao Song, and Qiuyi Zhang. Solving empirical risk minimization in the current matrix
multiplication time. In Conference on Learning Theory (COLT), pp. 2140–2157. PMLR, 2019.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Shuai Li, Zhao Song, Yu Xia, Tong Yu, and Tianyi Zhou. The closeness of in-context learning and
weight shifting for softmax regression. arXiv preprint arXiv:2304.13276, 2023a.

Yuanzhi Li and Yingyu Liang. Learning overparameterized neural networks via stochastic gradient
descent on structured data. Advances in neural information processing systems, 31, 2018.

Yuchen Li, Yuanzhi Li, and Andrej Risteski. How do transformers learn topic structure: Towards a
mechanistic understanding. arXiv preprint arXiv:2303.04245, 2023b.

Zhihang Li, Zhao Song, and Tianyi Zhou. Solving regularized exp, cosh and sinh regression problems.
arXiv preprint, 2303.15725, 2023c.

Hong Liu, Zhiyuan Li, David Hall, Percy Liang, and Tengyu Ma. Sophia: A scalable stochastic
second-order optimizer for language model pre-training. arXiv preprint arXiv:2305.14342, 2023.

Bao-Liang Lu, Hajime Kita, and Yoshikazu Nishikawa. Inverting feedforward neural networks using
linear and nonlinear programming. IEEE Transactions on Neural networks, 10(6):1271–1290,
1999.

Aravindh Mahendran and Andrea Vedaldi. Understanding deep image representations by inverting
them. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
5188–5196, 2015.

Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex Damian, Jason D Lee, Danqi Chen, and Sanjeev
Arora. Fine-tuning language models with just forward passes. arXiv preprint arXiv:2305.17333,
2023a.

Sadhika Malladi, Alexander Wettig, Dingli Yu, Danqi Chen, and Sanjeev Arora. A kernel-based
view of language model fine-tuning. In International Conference on Machine Learning, pp.
23610–23641. PMLR, 2023b.

Louis Martin, Benjamin Muller, Pedro Javier Ortiz Suarez, Yoann Dupont, Laurent Romary, Eric Ville-
monte de La Clergerie, Djame Seddah, and Benoit Sagot. Camembert: a tasty french language
model. arXiv preprint arXiv:1911.03894, 2019.

Richard McPherson, Reza Shokri, and Vitaly Shmatikov. Defeating image obfuscation with deep
learning. arXiv preprint arXiv:1609.00408, 2016.

Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vitaly Shmatikov. Exploiting unintended
feature leakage in collaborative learning. In 2019 IEEE symposium on security and privacy (SP),
pp. 691–706. IEEE, 2019.

Alexander Munteanu, Simon Omlor, Zhao Song, and David Woodruff. Bounding the width of neural
networks via coupled initialization a worst case analysis. In International Conference on Machine
Learning, pp. 16083–16122. PMLR, 2022.

Usman Naseem, Imran Razzak, Katarzyna Musial, and Muhammad Imran. Transformer based deep
intelligent contextual embedding for twitter sentiment analysis. Future Generation Computer
Systems, 113:58–69, 2020.

OpenAI. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

Samet Oymak and Mahdi Soltanolkotabi. Toward moderate overparameterization: Global con-
vergence guarantees for training shallow neural networks. IEEE Journal on Selected Areas in
Information Theory, 1(1):84–105, 2020.

Xudong Pan, Mi Zhang, Shouling Ji, and Min Yang. Privacy risks of general-purpose language
models. In 2020 IEEE Symposium on Security and Privacy (SP), pp. 1314–1331. IEEE, 2020.

Abhishek Panigrahi, Sadhika Malladi, Mengzhou Xia, and Sanjeev Arora. Trainable transformer in
transformer. arXiv preprint arXiv:2307.01189, 2023a.

Abhishek Panigrahi, Nikunj Saunshi, Haoyu Zhao, and Sanjeev Arora. Task-specific skill localization
in fine-tuned language models. arXiv preprint arXiv:2302.06600, 2023b.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik, and Ananthram
Swami. The limitations of deep learning in adversarial settings. In 2016 IEEE European symposium
on security and privacy (EuroS&P), pp. 372–387. IEEE, 2016.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019.

Lianke Qin, Zhao Song, and Yuanyuan Yang. Efficient sgd neural network training via sublinear
activated neuron identification. arXiv preprint arXiv:2307.06565, 2023.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D.Manning, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. arXiv
preprint arXiv:2305.18290, 2023.

Maria Rigaki and Sebastian Garcia. A survey of privacy attacks in machine learning. ACM Computing
Surveys, 2020.

Clayton Sanford, Daniel Hsu, and Matus Telgarsky. Representational strengths and limitations of
transformers. arXiv preprint arXiv:2306.02896, 2023.

Hanpu Shen, Cheng-Long Wang, Zihang Xiang, Yiming Ying, and Di Wang. Differentially private
non-convex learning for multi-layer neural networks. arXiv preprint arXiv:2310.08425, 2023a.

Lingfeng Shen, Aayush Mishra, and Daniel Khashabi. Do pretrained transformers really learn
in-context by gradient descent? arXiv preprint arXiv:2310.08540, 2023b.

Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference attacks
against machine learning models. In 2017 IEEE symposium on security and privacy (SP), pp. 3–18.
IEEE, 2017.

Ritwik Sinha, Zhao Song, and Tianyi Zhou. A mathematical abstraction for balancing the trade-off
between creativity and reality in large language models. arXiv preprint arXiv:2306.02295, 2023.

Charlie Snell, Ruiqi Zhong, Dan Klein, and Jacob Steinhardt. Approximating how single head
attention learns. arXiv preprint arXiv:2103.07601, 2021.

Zhao Song and Xin Yang. Quadratic suffices for over-parametrization via matrix chernoff bound.
arXiv preprint arXiv:1906.03593, 2019.

Zhao Song, Lichen Zhang, and Ruizhe Zhang. Training multi-layer over-parametrized neural network
in subquadratic time. arXiv preprint arXiv:2112.07628, 2021.

Zhao Song, Junze Yin, and Lichen Zhang. Solving attention kernel regression problem via pre-
conditioner. arXiv preprint arXiv:2308.14304, 2023.

Davoud Ataee Tarzanagh, Yingcong Li, Christos Thrampoulidis, and Samet Oymak. gsxs as support
vector machines. arXiv preprint arXiv:2308.16898, 2023.

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao,
Liu Yang, Sebastian Ruder, and Donald Metzler. Long range arena: A benchmark for efficient
transformers. arXiv preprint arXiv:2011.04006, 2020.

Yi Tay, Dara Bahri, Donald Metzler, Da-Cheng Juan, Zhe Zhao, and Che Zheng. Synthesizer:
Rethinking self-attention for transformer models. In International conference on machine learning,
pp. 10183–10192. PMLR, 2021.

Mohd Usama, Belal Ahmad, Enmin Song, M Shamim Hossain, Mubarak Alrashoud, and Ghulam
Muhammad. Attention-based sentiment analysis using convolutional and recurrent neural network.
Future Generation Computer Systems, 113:571–578, 2020.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Nikhil Vyas, Sham Kakade, and Boaz Barak. Provable copyright protection for generative models.
arXiv preprint arXiv:2302.10870, 2023.

Zihan Wang, Jason Lee, and Qi Lei. Reconstructing training data from model gradient, provably. In
International Conference on Artificial Intelligence and Statistics, pp. 6595–6612. PMLR, 2023.

Wenqi Wei, Ling Liu, Margaret Loper, Ka-Ho Chow, Mehmet Emre Gursoy, Stacey Truex, and
Yanzhao Wu. A framework for evaluating gradient leakage attacks in federated learning. arXiv
preprint arXiv:2004.10397, 2020.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transformers:
State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771, 2019.

Shijie Wu, Ozan Irsoy, Steven Lu, Vadim Dabravolski, Mark Dredze, Sebastian Gehrmann, Prabhan-
jan Kambadur, David Rosenberg, and Gideon Mann. Bloomberggpt: A large language model for
finance. arXiv preprint arXiv:2303.17564, 2023.

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi Chen. Sheared llama: Accelerating language
model pre-training via structured pruning. arXiv preprint arXiv:2310.06694, 2023.

Zheng Xu, Yanxiang Zhang, Galen Andrew, Christopher A Choquette-Choo, Peter Kairouz, H Bren-
dan McMahan, Jesse Rosenstock, and Yuanbo Zhang. Federated learning of gboard language
models with differential privacy. arXiv preprint arXiv:2305.18465, 2023.

Hongxu Yin, Arun Mallya, Arash Vahdat, Jose M Alvarez, Jan Kautz, and Pavlo Molchanov. See
through gradients: Image batch recovery via gradinversion. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 16337–16346, 2021.

Amir Zandieh, Insu Han, Majid Daliri, and Amin Karbasi. Kdeformer: Accelerating transformers via
kernel density estimation. arXiv preprint arXiv:2302.02451, 2023.

Guodong Zhang, James Martens, and Roger B Grosse. Fast convergence of natural gradient descent
for over-parameterized neural networks. Advances in Neural Information Processing Systems, 32,
2019.

Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit, Seungyeon Kim, Sashank Reddi, Sanjiv
Kumar, and Suvrit Sra. Why are adaptive methods good for attention models? Advances in Neural
Information Processing Systems, 33:15383–15393, 2020a.

Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit, Seungyeon Kim, Sashank Reddi, Sanjiv
Kumar, and Suvrit Sra. Why are adaptive methods good for attention models? Advances in Neural
Information Processing Systems, 33:15383–15393, 2020b.

Lichen Zhang. Speeding up optimizations via data structures: Faster search, sample and maintenance.
PhD thesis, Master’s thesis, Carnegie Mellon University, 2022.

Yi Zhang, Orestis Plevrakis, Simon S Du, Xingguo Li, Zhao Song, and Sanjeev Arora. Over-
parameterized adversarial training: An analysis overcoming the curse of dimensionality. Advances
in Neural Information Processing Systems, 33:679–688, 2020c.

Yuheng Zhang, Ruoxi Jia, Hengzhi Pei, Wenxiao Wang, Bo Li, and Dawn Song. The secret revealer:
Generative model-inversion attacks against deep neural networks. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 253–261, 2020d.

Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. idlg: Improved deep leakage from gradients.
arXiv preprint arXiv:2001.02610, 2020.

Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from gradients. Advances in neural information
processing systems, 32, 2019.

Difan Zou and Quanquan Gu. An improved analysis of training over-parameterized deep neural
networks. Advances in neural information processing systems, 32, 2019.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Roadmap. We arrange the appendix as follows. In Section A we provide details of computing the
gradients. In Section B and Section C we provide detail of computing Hessian for two cases. In
Section D we show how to split the Hessian matrix. In Section E we combine the results before and
compute the Hessian for the loss function. In Section F we bound the basic functions to be used
later. In Section G we provide proof for the Lipschitz property of the Hessian of the loss function.
In Section H, we provide the proof for the PSD bound of the Hessian. In Section I, we provide the
convergence analysis for our proposed methods. In Section J, we provide additional details for our
experiment.

A GRADIENTS

Here in this section, we provide analysis for the gradient computation. In Section A.1 we state some
facts to be used. In Section A.2 we provide some definitions. In Sections A.3, A.4, A.5, A.6, A.7,
A.8 and A.9 we compute the gradient for the terms defined respectively. Finally in Section A.10 we
compute the gradient for L(X).

A.1 FACTS

Fact A.1 (Basic algebra). We have

• ⟨u, v⟩ = ⟨v, u⟩ = u⊤v = v⊤u.

• ⟨u ◦ v, w⟩ = ⟨u ◦ v ◦ w,1n⟩
• u⊤(v ◦ w) = u⊤ diag(v)w

Fact A.2 (Basic calculus rule). We have

• d⟨f(x),g(x)⟩
dt = ⟨df(x)dt , g(x)⟩+ ⟨f(x), dg(x)

dt ⟩ (here t can be any variable)

• dyz

dx = z · yz−1 dy
dx

• u · v = v · u
• dx

dxj
= ej where ej is a vector that only j-th entry is 1 and zero everywhere else.

• Let x ∈ Rd, let y ∈ R be independent of x, we have dx
dy = 0d.

• Let f(x), g(x) ∈ R, we have d(f(x)g(x))
dt = df(x)

dt g(x) + f(x)dg(x)dt

• Let x ∈ R, d
dx exp (x) = exp (x)

• Let f(x) ∈ Rn, we have d exp(f(x))
dt = exp(f(x)) ◦ df(x)

dt

A.2 DEFINITIONS

Definition A.3 (Simplified notations). We have following definitions

• We use u(X)i0,i1 to denote the i1-th entry of u(X)i0 .

• We use f(X)i0,i1 to denote the i1-th entry of f(X)i0 .

• We define Wj1,∗ to denote the j1-th row of W . (In the proof, we treat Wj1,∗ as a column
vector).

• We define W∗,j1 to denote the j1-th column of W .

• We define wj1,j0 to denote the scalar equals to the entry in j1-th row, j0-th column of W .

• We define V∗,j1 to denote the j1-th column of V .

• We define vj1,j0 to denote the scalar equals to the entry in j1-th row, j0-th column of V .

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

• We define X∗,i0 to denote the i0-th column of X .

• We define xi1,j1 to denote the scalar equals to the entry in i1-th column, j1-th row of X .

Definition A.4 (Exponential function u). If the following conditions hold

• Let X ∈ Rd×n

• Let W ∈ Rd×d

For each i0 ∈ [n], we define u(X)i0 ∈ Rn as follows

u(X)i0 = exp(X⊤WX∗,i0)

Definition A.5 (Sum function of softmax α). If the following conditions hold

• Let X ∈ Rd×n

• Let u(X)i0 be defined as Definition A.4

We define α(X)i0 ∈ R for all i0 ∈ [n] as follows

α(X)i0 = ⟨u(X)i0 ,1n⟩
Definition A.6 (Softmax probability function f). If the following conditions hold

• Let X ∈ Rd×n

• Let u(X)i0 be defined as Definition A.4

• Let α(X)i0 be defined as Definition A.5

We define f(X)i0 ∈ Rn for each i0 ∈ [n] as follows

f(X)i0 := α(X)−1
i0

u(X)i0

Definition A.7 (Value function h). If the following conditions hold

• Let X ∈ Rd×n

• Let V ∈ Rd×d

We define h(X)j0 ∈ Rn for each j0 ∈ [n] as follows

h(X)j0 := X⊤V∗,j0

Definition A.8 (One-unit loss function c). If the following conditions hold

• Let f(X)i0 be defined as Definition A.6

• Let h(X)j0 be defined as Definition A.7

We define c(X) ∈ Rn×d as follows

c(X)i0,j0 := ⟨f(X)i0 , h(X)j0⟩ − bi0,j0 ,∀i0 ∈ [n], j0 ∈ [d]

Definition A.9 (Overall function L). If the following conditions hold

• Let c(X)i0,j0 be defined as Definition A.8

We define L(X) ∈ R as follows

L(X) :=

n∑
i0=1

d∑
j0=1

(c(X)i0,j0)
2

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A.3 GRADIENT FOR EACH COLUMN OF X⊤WX∗,i0

Lemma A.10. We have

• Part 1. Let i0 = i1 ∈ [n], j1 ∈ [d]

dX⊤WX∗,i0
dxi1,j1︸ ︷︷ ︸
n×1

= ei0︸︷︷︸
n×1

· ⟨Wj1,∗, X∗,i0⟩︸ ︷︷ ︸
scalar

+ X⊤︸︷︷︸
n×d

W∗,j1︸ ︷︷ ︸
d×1

• Part 2 Let i0 ̸= i1 ∈ [n], j1 ∈ [d]

dX⊤WX∗,i0
dxi1,j1︸ ︷︷ ︸
n×1

= ei1︸︷︷︸
n×1

· ⟨Wj1,∗, X∗,i0⟩︸ ︷︷ ︸
scalar

Proof. Proof of Part 1.

dX⊤WX∗,i0
dxi1,j1︸ ︷︷ ︸
n×1

=
dX⊤

dXi1,j1︸ ︷︷ ︸
n×d

W︸︷︷︸
d×d

X∗,i0︸ ︷︷ ︸
d×1

+ X⊤︸︷︷︸
n×d

W︸︷︷︸
d×d

dX∗,i0
dXi1,j1︸ ︷︷ ︸

d×1

= ei1︸︷︷︸
n×1

e⊤j1︸︷︷︸
1×d

W︸︷︷︸
d×d

X∗,i0︸ ︷︷ ︸
d×1

+ X⊤︸︷︷︸
n×d

W︸︷︷︸
d×d

ej1︸︷︷︸
d×1

= ei1︸︷︷︸
n×1

· ⟨Wj1,∗, X∗,i0⟩︸ ︷︷ ︸
scalar

+ X⊤︸︷︷︸
n×d

W∗,j1︸ ︷︷ ︸
d×1

= ei0︸︷︷︸
n×1

· ⟨Wj1,∗, X∗,i0⟩︸ ︷︷ ︸
scalar

+ X⊤︸︷︷︸
n×d

W∗,j1︸ ︷︷ ︸
d×1

where the 1st step follows from Fact A.2, the 2nd step follows from simple derivative rule, the 3rd is
simple algebra, the 4th step ie because i0 = i1.

Proof of Part 2
dX⊤WX∗,i0

dxi1,j1︸ ︷︷ ︸
n×1

=
dX⊤

dxi1,j1︸ ︷︷ ︸
n×d

W︸︷︷︸
d×d

X∗,i0︸ ︷︷ ︸
d×1

+ X⊤︸︷︷︸
n×d

W︸︷︷︸
d×d

dX∗,i0
dxi1,j1︸ ︷︷ ︸
d×1

= ei1︸︷︷︸
n×1

e⊤j1︸︷︷︸
1×d

W︸︷︷︸
d×d

X∗,i0︸ ︷︷ ︸
d×1

+ X⊤︸︷︷︸
n×d

W︸︷︷︸
d×d

0d︸︷︷︸
d×1

= ei1︸︷︷︸
n×1

· ⟨Wj1,∗, X∗,i0⟩︸ ︷︷ ︸
scalar

where the 1st step follows from Fact A.2, the 2nd step follows from simple derivative rule, the 3rd is
simple algebra.

A.4 GRADIENT FOR u(X)i0

Lemma A.11. Under following conditions

• Let u(X)i0 be defined as Definition A.4

We have

• Part 1. For each i0 = i1 ∈ [n], j1 ∈ [d]

du(X)i0
dxi1,j1︸ ︷︷ ︸
n×1

= u(X)i0 ◦ (ei0 · ⟨Wj1,∗, X∗,i0⟩+X⊤W∗,j1)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

• Part 2 For each i0 ̸= i1 ∈ [n], j1 ∈ [d]

du(X)i0
dxi1,j1︸ ︷︷ ︸
n×1

= u(X)i0︸ ︷︷ ︸
n×1

◦(ei1 · ⟨Wj1,∗, X∗,i0⟩)

Proof.

Proof of Part 1
du(X)i0
dxi1,j1︸ ︷︷ ︸
n×1

=
d exp(X⊤WX∗,i0)

dxi1,j1︸ ︷︷ ︸
n×1

= exp(X⊤︸︷︷︸
n×d

W︸︷︷︸
d×d

X∗,i0︸ ︷︷ ︸
d×1

) ◦ dX
⊤WX∗,i0
dxi1,j1︸ ︷︷ ︸
n×1

= u(X)i0︸ ︷︷ ︸
n×1

◦ dX
⊤WX∗,i0
dxi1,j1︸ ︷︷ ︸
n×1

= u(X)i0︸ ︷︷ ︸
n×1

◦(ei0︸︷︷︸
n×1

· ⟨Wj1,∗, X∗,i0⟩︸ ︷︷ ︸
scalar

+ X⊤︸︷︷︸
n×d

W∗,j1︸ ︷︷ ︸
d×1

)

where the 1st step and the 3rd step follow from Definition of u(X)i0 (see Definition A.4), the 2nd
step follows from Fact A.2, the 4th step follows by Lemma A.10.

Proof of Part 2
du(X)i0
dxi1,j1︸ ︷︷ ︸
n×1

=
d exp(X⊤WX∗,i0)

dxi1,j1︸ ︷︷ ︸
n×1

= exp(X⊤︸︷︷︸
n×d

W︸︷︷︸
d×d

X∗,i0︸ ︷︷ ︸
d×1

) ◦ dX
⊤WX∗,i0
dxi1,j1︸ ︷︷ ︸
n×1

= u(X)i0︸ ︷︷ ︸
n×1

◦ dX
⊤WX∗,i0
dxi1,j1︸ ︷︷ ︸
n×1

= u(X)i0︸ ︷︷ ︸
n×1

◦(ei1︸︷︷︸
n×1

· ⟨Wj1,∗, X∗,i0⟩︸ ︷︷ ︸
scalar

)

where the 1st step and the 3rd step follow from Definition of u(X)i0 (see Definition A.4), the 2nd
step follows from Fact A.2, the 4th step follows by Lemma A.10.

A.5 GRADIENT COMPUTATION FOR α(X)i0

Lemma A.12 (A generalization of Lemma 5.6 in Deng et al. (2023b)). If the following conditions
hold

• Let α(X)i0 be defined as Definition A.5

Then, we have

• Part 1. For each i0 = i1 ∈ [n], j1 ∈ [d]

dα(X)i0
dxi1,j1︸ ︷︷ ︸
scalar

= u(X)i0,i0 · ⟨Wj1,∗, X∗,i0⟩+ ⟨u(X)i0 , X
⊤W∗,j1⟩

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

• Part 2. For each i0 ̸= i1 ∈ [n], j1 ∈ [d]

dα(X)i0
dxi1,j1︸ ︷︷ ︸
scalar

= u(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩

Proof. Proof of Part 1.

dα(X)i0
dxi1,j1︸ ︷︷ ︸
scalar

=
d⟨u(X)i0 ,1n⟩

dxi1,j1︸ ︷︷ ︸
scalar

= ⟨du(X)i0
dxi1,j1︸ ︷︷ ︸
n×1

, 1n︸︷︷︸
n×1

⟩

= ⟨u(X)i0︸ ︷︷ ︸
n×1

◦(ei0 · ⟨Wj1,∗, X∗,i0⟩+X⊤W∗,j1), 1n︸︷︷︸
n×1

⟩

= ⟨u(X)i0︸ ︷︷ ︸
n×1

◦ei0 ,1n⟩ · ⟨Wj1,∗, X∗,i0⟩+ ⟨u(X)i0 ◦ (X⊤W∗,j1), 1n︸︷︷︸
n×1

⟩

= ⟨u(X)i0︸ ︷︷ ︸
n×1

, ei0⟩ · ⟨Wj1,∗, X∗,i0⟩+ ⟨u(X)i0 , X
⊤W∗,j1⟩

= u(X)i0,i0 · ⟨Wj1,∗, X∗,i0⟩+ ⟨u(X)i0 , X
⊤W∗,j1⟩

where the 1st step follows from the definition of α(X)i0 (see Definition A.5), the 2nd step follows
from Fact A.2, the 3rd step follows from Lemma A.11, the 4th step is rearrangement, the 5th step is
derived by Fact A.1, the last step is by the definition of U(X)i0,i0 .

Proof of Part 2.
dα(X)i0
dxi1,j1︸ ︷︷ ︸
scalar

=
d⟨u(X)i0 ,1n⟩

dxi1,j1︸ ︷︷ ︸
scalar

= ⟨du(X)i0
dxi1,j1︸ ︷︷ ︸
n×1

, 1n︸︷︷︸
n×1

⟩

= ⟨u(X)i0︸ ︷︷ ︸
n×1

◦(ei1 · ⟨Wj1,∗, X∗,i0⟩), 1n︸︷︷︸
n×1

⟩

= ⟨u(X)i0︸ ︷︷ ︸
n×1

◦ei1 , 1n︸︷︷︸
n×1

⟩ · ⟨Wj1,∗, X∗,i0⟩

= u(X)i0,i1︸ ︷︷ ︸
scalar

·⟨Wj1,∗, X∗,i0⟩

where the 1st step follows from the definition of α(X)i0 (see Definition A.5), the 2nd step follows
from Fact A.2, the 3rd step follows from Lemma A.11, the 4th step is rearrangement, the 5th step is
derived by Fact A.1.

A.6 GRADIENT COMPUTATION FOR α(X)−1
i0

Lemma A.13 (A generalization of Lemma 5.6 in Deng et al. (2023b)). If the following conditions
hold

• Let α(X)i0 be defined as Definition A.5

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

we have

• Part 1. For i0 = i1 ∈ [n], j1 ∈ [d]

dα(X)−1
i0

dxi1,j1︸ ︷︷ ︸
scalar

= −α(X)−1
i0
· (f(X)i0,i0 · ⟨Wj1,∗, X∗,i0⟩+ ⟨f(X)i0 , X

⊤W∗,j1⟩)⟩)

• Part 2. For i0 ̸= i1 ∈ [n], j1 ∈ [d]

dα(X)−1
i0

dxi1,j1︸ ︷︷ ︸
scalar

= −α(X)−1
i0
· f(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩

Proof. Proof of Part 1.
dα(X)−1

i0

dxi1,j1︸ ︷︷ ︸
scalar

= −1︸︷︷︸
scalar

·(α(X)i0)
−2︸ ︷︷ ︸

scalar

· d(α(X)i0)

dxi1,j1︸ ︷︷ ︸
scalar

= −(α(X)i0)
−2︸ ︷︷ ︸

scalar

·(u(X)i0,i0 · ⟨Wj1,∗, X∗,i0⟩+ ⟨u(X)i0 , X
⊤W∗,j1⟩)

= − α(X)−1
i0
· (f(X)i0,i0 · ⟨Wj1,∗, X∗,i0⟩+ ⟨f(X)i0 , X

⊤W∗,j1⟩)
where the 1st step follows from Fact A.2, the 2nd step follows by Lemma A.12.

Proof of Part 2.
dα(X)−1

i0

dxi1,j1︸ ︷︷ ︸
scalar

= −1︸︷︷︸
scalar

·(α(X)i0)
−2︸ ︷︷ ︸

scalar

· d(α(X)i0)

dxi1,j1︸ ︷︷ ︸
scalar

= −(α(X)i0)
−2︸ ︷︷ ︸

scalar

·u(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩

= − α(X)−1
i0
· f(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩

where the 1st step follows from Fact A.2, the 2nd step follows from result from Lemma A.12.

A.7 GRADIENT FOR f(X)i0

Lemma A.14. If the following conditions hold

• Let f(X)i0 be defined as Definition A.6

Then, we have

• Part 1. For all i0 = i1 ∈ [n], j1 ∈ [d]

df(X)i0
dxi1,j1︸ ︷︷ ︸
n×1

= − f(X)i0︸ ︷︷ ︸
n×1

· (f(X)i0,i0 · ⟨Wj1,∗, X∗,i0⟩+ ⟨f(X)i0 , X
⊤W∗,j1⟩)︸ ︷︷ ︸

scalar

+ f(X)i0 ◦ (ei0 · ⟨Wj1,∗, X∗,i0⟩+X⊤W∗,j1)︸ ︷︷ ︸
n×1

• Part 2. For all i0 ̸= i1 ∈ [n], j1 ∈ [d]

df(X)i0
dxi1,j1︸ ︷︷ ︸
n×1

= − f(X)i0︸ ︷︷ ︸
n×1

· f(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩︸ ︷︷ ︸
scalar

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

+ f(X)i0 ◦ (ei1 · ⟨Wj1,∗, X∗,i0⟩)︸ ︷︷ ︸
n×1

Proof. Proof of Part 1.

df(X)i0
dxi1,j1︸ ︷︷ ︸
n×1

=
dα(X)−1

i0
u(X)i0

dxi1,j1︸ ︷︷ ︸
n×1

= u(X)i0︸ ︷︷ ︸
n×1

· d

dxi1,j1

α(X)−1
i0︸ ︷︷ ︸

scalar

+α(X)−1
i0︸ ︷︷ ︸

scalar

· d

dxi1,j1

u(X)i0︸ ︷︷ ︸
n×1

= − u(X)i0︸ ︷︷ ︸
n×1

· (α(X)i0)
−1 · (f(X)i0,i0 · ⟨Wj1,∗, X∗,i0⟩+ ⟨f(X)i0 , X

⊤W∗,j1⟩)︸ ︷︷ ︸
scalar

+ α(X)−1
i0︸ ︷︷ ︸

scalar

· d

dxi1,j1

u(X)i0︸ ︷︷ ︸
n×1

= − u(X)i0︸ ︷︷ ︸
n×1

· (α(X)i0)
−1 · (f(X)i0,i0 · ⟨Wj1,∗, X∗,i0⟩+ ⟨f(X)i0 , X

⊤W∗,j1⟩)︸ ︷︷ ︸
scalar

+ α(X)−1
i0︸ ︷︷ ︸

scalar

· (u(X)i0 ◦ (ei0 · ⟨Wj1,∗, X∗,i0⟩+X⊤W∗,j1))︸ ︷︷ ︸
n×1

= − f(X)i0︸ ︷︷ ︸
n×1

· (f(X)i0,i0 · ⟨Wj1,∗, X∗,i0⟩+ ⟨f(X)i0 , X
⊤W∗,j1⟩)︸ ︷︷ ︸

scalar

+ f(X)i0 ◦ (ei0 · ⟨Wj1,∗, X∗,i0⟩+X⊤W∗,j1)︸ ︷︷ ︸
n×1

where the 1st step follows from the definition of f(X)i0 (see Definition A.6), the 2nd step follows
from Fact A.2, the 3rd step follows from Lemma A.13, the 4th step follows from result from
Lemma A.11, the 5th step from the definition of f(X)i0 (see Definition A.6).

Proof of Part 2.
df(X)i0
dxi1,j1︸ ︷︷ ︸
n×1

=
dα(X)−1

i0
u(X)i0

dxi1,j1︸ ︷︷ ︸
n×1

= u(X)i0︸ ︷︷ ︸
n×1

· d

dxi1,j1

α(X)−1
i0︸ ︷︷ ︸

scalar

+α(X)−1
i0︸ ︷︷ ︸

scalar

· d

dxi1,j1

u(X)i0︸ ︷︷ ︸
n×1

= − u(X)i0︸ ︷︷ ︸
n×1

· (α(X)i0)
−2 · u(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩︸ ︷︷ ︸

scalar

+ α(X)−1
i0︸ ︷︷ ︸

scalar

· d

dxi1,j1

u(X)i0︸ ︷︷ ︸
n×1

= − u(X)i0︸ ︷︷ ︸
n×1

· (α(X)i0)
−2 · u(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩︸ ︷︷ ︸

scalar

+ α(X)−1
i0︸ ︷︷ ︸

scalar

· (u(X)i0 ◦ (ei1 · ⟨Wj1,∗, X∗,i0⟩)︸ ︷︷ ︸
n×1

= − f(X)i0︸ ︷︷ ︸
n×1

· f(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩︸ ︷︷ ︸
scalar

+ ei1 · f(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩)︸ ︷︷ ︸
scalar

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

where the 1st step follows from the definition of f(X)i0 (see Definition A.6), the 2nd step follows
from Fact A.2, the 3rd step follows from Lemma A.13, the 4th step follows from result from
Lemma A.11, the 5th step from the definition of f(X)i0 (see Definition A.6).

A.8 GRADIENT FOR h(X)j0

Lemma A.15. If the following conditions hold

• Let h(X)j0 be defined as Definition A.7

Then, for all i1 ∈ [n], j0, j1 ∈ [d], we have

dh(X)j0
dxi1,j1︸ ︷︷ ︸
n×1

= ei1 · vj1,j0

Proof.

dh(X)j0
dxi1,j1︸ ︷︷ ︸
n×1

=
dX⊤V∗,j0
dxi1,j1︸ ︷︷ ︸
n×1

=
dX⊤

dxi1,j1︸ ︷︷ ︸
n×d

·V∗,j0︸︷︷︸
d×1

= ei1︸︷︷︸
n×1

· e⊤j1︸︷︷︸
1×d

·V∗,j0︸︷︷︸
d×1

= ei1︸︷︷︸
n×1

· vj1,j0︸ ︷︷ ︸
scalar

where the first step is by definition of h(X)j0 (see Definition A.7), the 2nd and the 3rd step are by
differentiation rules, the 4th step is by simple algebra.

A.9 GRADIENT FOR c(X)i0,j0

Lemma A.16. If the following conditions hold

• Let c(X)i0 be defined as Definition A.8

• Let s(X)i0,j0 := ⟨f(X)i0 , h(X)j0⟩

Then, we have

• Part 1. For all i0 = i1 ∈ [n], j0, j1 ∈ [d]

dc(X)i0,j0
dxi1,j1

= C1(X) + C2(X) + C3(X) + C4(X) + C5(X)

where we have definitions:

– C1(X) := −s(X)i0,j0 · f(X)i0,i0 · ⟨Wj1,∗, X∗,i0⟩
– C2(X) := −s(X)i0,j0 · ⟨f(X)i0 , X

⊤W∗,j1⟩
– C3(X) := f(X)i0,i0 · h(X)j0,i0 · ⟨Wj1,∗, X∗,i0⟩
– C4(X) := ⟨f(X)i0 ◦ (X⊤W∗,j1), h(X)j0⟩
– C5(X) := f(X)i0,i0 · vj1,j0

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

• Part 2. For all i0 ̸= i1 ∈ [n], j0, j1 ∈ [d]

dc(X)i0,j0
dxi1,j1

= C6(X) + C7(X) + C8(X)

where we have definitions:

– C6(X) := −s(X)i0,j0 · f(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩
* This is corresponding to C1(X)

– C7(X) := f(X)i0,i1 · h(X)j0,i1 · ⟨Wj1,∗, X∗,i0⟩
* This is corresponding to C3(X)

– C8(X) := f(X)i0,i1 · vj1,j0
* This is corresponding to C5(X)

Proof. Proof of Part 1

dc(X)i0,j1
dxi1,j1︸ ︷︷ ︸
scalar

=
d(⟨f(X)i0 , h(X)j0⟩ − bi0,j0)

dxi1,j1︸ ︷︷ ︸
scalar

=
d⟨f(X)i0 , h(X)j0⟩

dxi1,j1︸ ︷︷ ︸
scalar

= ⟨df(X)i0
dxi1,j1︸ ︷︷ ︸
n×1

, h(X)j0︸ ︷︷ ︸
n×1

⟩+ ⟨f(X)i0︸ ︷︷ ︸
n×1

,
dh(X)j0
dxi1,j1︸ ︷︷ ︸
n×1

⟩

= ⟨df(X)i0
dxi1,j1︸ ︷︷ ︸
n×1

, h(X)j0︸ ︷︷ ︸
n×1

⟩+ ⟨f(X)i0︸ ︷︷ ︸
n×1

, ei1︸︷︷︸
n×1

· vj1,j0︸ ︷︷ ︸
scalar

⟩

= ⟨− f(X)i0︸ ︷︷ ︸
n×1

· (f(X)i0,i0 · ⟨Wj1,∗, X∗,i0⟩+ ⟨f(X)i0 , X
⊤W∗,j1⟩)︸ ︷︷ ︸

scalar

+ f(X)i0 ◦ (ei0 · ⟨Wj1,∗, X∗,i0⟩+X⊤W∗,j1)︸ ︷︷ ︸
n×1

, h(X)j0︸ ︷︷ ︸
n×1

⟩+ ⟨f(X)i0︸ ︷︷ ︸
n×1

, ei1︸︷︷︸
n×1

· vj1,j0︸ ︷︷ ︸
scalar

⟩

= − s(X)i0,j0 · f(X)i0,i0 · ⟨Wj1,∗, X∗,i0⟩
− s(X)i0,j0 · ⟨f(X)i0 , X

⊤W∗,j1⟩
+ f(X)i0,i0h(X)j0,i0⟨Wj1,∗, X∗,i0⟩
+ ⟨f(X)i0 ◦ (X⊤W∗,j1), h(X)j0⟩
+ f(X)i0,i1vj1,j0

:= C1(X) + C2(X) + C3(X) + C4(X) + C5(X)

where the first step is by definition of c(X)i0,j0 (see Definition A.8), the 2nd step is because bi0,j0
is independent of X , the 3rd step is by Fact A.2, the 4th step uses Lemma A.15, the 5th step uses
Lemma A.14, the 6th and 8th step are rearrangement of terms, the 7th step holds by the definition of
f(X)i0 (see Definition A.6).

Proof of Part 2

dc(X)i0,j1
dxi1,j1︸ ︷︷ ︸
scalar

=
d(⟨f(X)i0 , h(X)j0⟩ − bi0,j0)

dxi1,j1︸ ︷︷ ︸
scalar

=
d⟨f(X)i0 , h(X)j0⟩

dxi1,j1︸ ︷︷ ︸
scalar

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

= ⟨df(X)i0
dxi1,j1︸ ︷︷ ︸
n×1

, h(X)j0︸ ︷︷ ︸
n×1

⟩+ ⟨f(X)i0︸ ︷︷ ︸
n×1

,
dh(X)j0
dxi1,j1︸ ︷︷ ︸
n×1

⟩

= ⟨df(X)i0
dxi1,j1︸ ︷︷ ︸
n×1

, h(X)j0︸ ︷︷ ︸
n×1

⟩+ ⟨f(X)i0︸ ︷︷ ︸
n×1

, ei1︸︷︷︸
n×1

· vj1,j0︸ ︷︷ ︸
scalar

⟩

= ⟨− (α(X)i0)
−1︸ ︷︷ ︸

scalar

· f(X)i0︸ ︷︷ ︸
n×1

·u(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩︸ ︷︷ ︸
scalar

+ f(X)i0 ◦ (ei1 · ⟨Wj1,∗, X∗,i0⟩)︸ ︷︷ ︸
n×1

, h(X)j0︸ ︷︷ ︸
n×1

⟩+ ⟨f(X)i0︸ ︷︷ ︸
n×1

, ei1︸︷︷︸
n×1

· vj1,j0︸ ︷︷ ︸
scalar

⟩

= − (α(X)i0)
−1 · ⟨f(X)i0 , h(X)j0⟩ · u(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩︸ ︷︷ ︸

scalar

+ ⟨f(X)i0 ◦ ei1 , h(X)j0⟩ · ⟨Wj1,∗, X∗,i0⟩︸ ︷︷ ︸
scalar

+ ⟨f(X)i0︸ ︷︷ ︸
n×1

, ei1︸︷︷︸
n×1

· vj1,j0︸ ︷︷ ︸
scalar

⟩

= − s(X)i0,j0 · f(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩
+ f(X)i0,i1 · h(X)j0,i1 · ⟨Wj1,∗, X∗,i0⟩
+ f(X)i0,i1 · vj1,j0

:= C6(X) + C7(X) + C8(X)

where the first step is by definition of c(X)i0,j0 (see Definition A.8), the 2nd step is because bi0,j0
is independent of X , the 3rd step is by Fact A.2, the 4th step uses Lemma A.15, the 5th step uses
Lemma A.14, the 6th and 7th step are rearrangement of terms.

A.10 GRADIENT FOR L(X)

Lemma A.17. If the following holds

• Let L(X) be defined as Definition A.9

For i1 ∈ [n], j1 ∈ [d], we have

dL(X)

dxi1,j1

=

n∑
i0=1

d∑
j0=1

c(X)i0,j0 ·
dc(X)i0,j0
dxi1,j1

Proof. The result directly follows by chain rule.

B HESSIAN CASE 1: i0 = i1

Here in this section, we provide Hessian analysis for the first case. In Sections B.1, B.2, B.3, B.4, B.5,
B.6 and B.8, we calculate the derivative for several important terms. In Section B.9, B.10, B.11, B.12
and B.13 we calculate derivative for C1, C2, C3, C4 and C5 respectively. Finally in Section B.14 we
calculate derivative of c(X)i0,j0

dxi1,j1
di2,j2

.

Now, we list some simplified notations which will be used in following sections.
Definition B.1. We have following definitions to simplify the expression.

• s(X)i,j := ⟨f(X)i, h(X)j⟩
• w(X)i,j := ⟨Wj,∗, X∗,i⟩

• z(X)i,j := ⟨f(X)i, X
⊤W∗,j⟩

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

• z(X)i := WX · f(X)i

• w(X)i,∗ := WX∗,i

B.1 DERIVATIVE OF SCALAR FUNCTION w(X)i0,j1

Lemma B.2. We have

• Part 1 For i0 = i1 = i2 ∈ [n], j1, j2 ∈ [d]

dw(X)i0,j1
dxi2,j2

= wj1,j2

• Part 2 For i0 = i1 ̸= i2 ∈ [n], j1, j2 ∈ [d]

dw(X)i0,j1
dxi2,j2

= 0

Proof. Proof of Part 1

dw(X)i0,j1
dxi2,j2

= ⟨Wj1,∗,
dX∗,i0
dxi2,j2

⟩

= ⟨Wj1,∗, ej2⟩
= wj1,j2

where the first step and the 2nd step are by Fact A.2, the 3rd step is simple algebra.

Proof of Part 2
dw(X)i0,j1
dxi2,j2

= ⟨Wj1,∗,
dX∗,i0
dxi2,j2

⟩

= ⟨Wj1,∗,0d⟩
= 0

where the first step is by Fact A.2, the 2nd step is because i0 ̸= i2.

B.2 DERIVATIVE OF VECTOR FUNCTION X⊤W∗,j1

Lemma B.3. We have

• Part 1 For i0 = i1 = i2 ∈ [n], j1, j2 ∈ [d]

dX⊤W∗,j1
dxi2,j2

= ei0 · wj2,j1

• Part 2 For i0 = i1 ̸= i2 ∈ [n], j1, j2 ∈ [d]

dX⊤W∗,j1
dxi2,j2

= ei2 · wj2,j1

Proof. Proof of Part 1

dX⊤W∗,j1
dxi2,j2

=
dX⊤

dxi2,j2

·W∗,j1

= ei2e
⊤
j2 ·W∗,j1

= ei2 · wj2,j1

= ei0 · wj2,j1

where the first step and the 2nd step are by Fact A.2, the 3rd step is simple algebra, the 4th step holds
since i0 = i2.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Proof of Part 2

dX⊤W∗,j1
dxi2,j2

=
dX⊤

dxi2,j2

·W∗,j1

= ei2e
⊤
j2 ·W∗,j1

= ei2 · wj2,j1

where the first step and the 2nd step are by Fact A.2, the 3rd step is simple algebra.

B.3 DERIVATIVE OF SCALAR FUNCTION f(X)i0,i0

Lemma B.4. If the following holds:

• Let f(X)i0 be defined as Definition A.6

We have

• Part 1 For i0 = i2 ∈ [n], j1, j2 ∈ [d]

df(X)i0,i0
dxi2,j2

= − f(X)i0,i0 · (f(X)i0,i0 · w(X)i0,j2 + ⟨f(X)i0 , X
⊤W∗,j2⟩)

+ f(X)i0,i0 · ⟨Wj2,∗ +W∗,j2 , X∗,i0⟩

• Part 2 For i0 ̸= i2 ∈ [n], j1, j2 ∈ [d]

df(X)i0,i0
dxi2,j2

= −f(X)i0,i0 · f(X)i0,i2 · w(X)i0,j2

Proof. Proof of Part 1

df(X)i0,i0
dxi2,j2

= (−(α(X)i0)
−1 · f(X)i0 · (u(X)i0,i0 · w(X)i0,j2 + ⟨u(X)i0 , X

⊤W∗,j2⟩)

+ f(X)i0 ◦ (ei0 · w(X)i0,j2 +X⊤W∗,j2))i0

= − (α(X)i0)
−1 · f(X)i0,i0 · (u(X)i0,i0 · w(X)i0,j2 + ⟨u(X)i0 , X

⊤W∗,j2⟩)
+ (f(X)i0 ◦ (ei0 · w(X)i0,j2))i0 + (f(X)i0 ◦ (X⊤W∗,j2))i0

= − (α(X)i0)
−1 · f(X)i0,i0 · (u(X)i0,i0 · w(X)i0,j2 + ⟨u(X)i0 , X

⊤W∗,j2⟩)
+ f(X)i0,i0 · w(X)i0,j2 + f(X)i0,i0 · ⟨W∗,j2 , X∗,i0⟩

= − f(X)i0,i0 · (f(X)i0,i0 · w(X)i0,j2 + ⟨f(X)i0 , X
⊤W∗,j2⟩)

+ f(X)i0,i0 · w(X)i0,j2 + f(X)i0,i0 · ⟨W∗,j2 , X∗,i0⟩
where the first step uses Lemma A.14 for i0 = i2, the following steps are taking the i0-th entry of
f(X)i0 , the last step is by the definition of f(X)i0 (see Definition A.6).

Proof of Part 2
df(X)i0,i0
dxi2,j2

= (−(α(X)i0)
−1 · f(X)i0 · u(X)i0,i2 · w(X)i0,j2

+ f(X)i0 ◦ (ei2 · w(X)i0,j2))i0

= − (α(X)i0)
−1 · f(X)i0,i0 · u(X)i0,i2 · w(X)i0,j2

+ (f(X)i0 ◦ (ei2 · w(X)i0,j2))i0

= − (α(X)i0)
−1 · f(X)i0,i0 · u(X)i0,i2 · w(X)i0,j2

= − f(X)i0,i0 · f(X)i0,i2 · w(X)i0,j2

where the first step uses Lemma A.14 for i0 ̸= i2, the 2nd step is taking the i0-th entry of f(X)i0 ,
the 3rd step is because i0 ̸= i2, the last step is by the definition of f(X)i0 (see Definition A.6).

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

B.4 DERIVATIVE OF SCALAR FUNCTION h(X)j0,i0

Lemma B.5. If the following holds:

• Let h(X)j0 be defined as Definition A.7

We have

• Part 1 For i0 = i2 ∈ [n], j1, j2 ∈ [d]

dh(X)j0,i0
dxi2,j2

= vj2,j0

• Part 2 For i0 ̸= i2 ∈ [n], j1, j2 ∈ [d]

dh(X)j0,i0
dxi2,j2

= 0

Proof. Proof of Part 1
dh(X)j0,i0
dxi2,j2

= (ei2 · vj2,j0)i0
= vj2,j0

where the first step is by Lemma A.15, the 2nd step is because i0 = i2.

Proof of Part 2
dh(X)j0,i0
dxi2,j2

= (ei2 · vj2,j0)i0
= 0

where the first step is by Lemma A.15, the 2nd step is because i0 ̸= i2.

B.5 DERIVATIVE OF SCALAR FUNCTION z(X)i0,j1

Lemma B.6. If the following holds:

• Let f(X)i0 be defined as Definition A.6

• Let z(X)i0,j1 := ⟨f(X)i0 , X
⊤W∗,j1⟩

• Let w(X)i0,j1 = ⟨Wj1,∗, X∗,i0⟩

We have

• Part 1 For i0 = i1 = i2 ∈ [n], j1, j2 ∈ [d]

dz(X)i0,j1
dxi2,j2

= − z(X)i0,j1 · f(X)i0,i0 · w(X)i0,j2
− z(X)i0,j1 · z(X)i0,j2
+ f(X)i0,i0 · ⟨W∗,j1 , X∗,i0⟩ · w(X)i0,j2

+ ⟨f(X)i0 ◦X⊤W∗,j2 , X
⊤W∗,j1⟩

+ f(X)i0,i0 · wj2,j1

• Part 2 For i0 = i1 ̸= i2 ∈ [n], j1, j2 ∈ [d]

d⟨f(X)i0 , X
⊤W∗,j1⟩

dxi2,j2

= − z(X)i0,j1 · f(X)i0,i0 · w(X)i0,j2
+ f(X)i0,i0 · w(X)i0,j2 · ⟨W∗,j1 , X∗,i0⟩
+ f(X)i0,i0 · wj2,j1

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Proof. Proof of Part 1

d⟨f(X)i0 , X
⊤W∗,j1⟩

dxi2,j2

= ⟨df(X)i0
dxi2,j2

, X⊤W∗,j1⟩+ ⟨f(X)i0 ,
dX⊤W∗,j1
dxi2,j2

⟩

= ⟨df(X)i0
dxi2,j2

, X⊤W∗,j1⟩+ ⟨f(X)i0 , ei0 · wj2,j1⟩

= ⟨df(X)i0
dxi2,j2

, X⊤W∗,j1⟩+ f(X)i0,i0 · wj2,j1

= ⟨−(α(X)i0)
−1 · f(X)i0 · (u(X)i0,i0 · w(X)i0,j2 + ⟨u(X)i0 , X

⊤W∗,j2⟩)
+ f(X)i0 ◦ (ei0 · w(X)i0,j2 +X⊤W∗,j2), X

⊤W∗,j1⟩+ f(X)i0,i0 · wj2,j1

= ⟨−f(X)i0 · (f(X)i0,i0 · w(X)i0,j2 + ⟨f(X)i0 , X
⊤W∗,j2⟩)

+ f(X)i0 ◦ (ei0 · w(X)i0,j2 +X⊤W∗,j2), X
⊤W∗,j1⟩+ f(X)i0,i0 · wj2,j1

= − z(X)i0,j1 · f(X)i0,i0 · w(X)i0,j2
− z(X)i0,j1 · z(X)i0,j2
+ f(X)i0,i0 · ⟨W∗,j1 , X∗,i0⟩ · w(X)i0,j2

+ ⟨f(X)i0 ◦X⊤W∗,j2 , X
⊤W∗,j1⟩

+ f(X)i0,i0 · wj2,j1

where the 1st step is by Fact A.2, the 2nd step uses Lemma B.3, the 3rd step is taking the i0-th
entry of f(X)i0 , the 4th step uses Lemma A.14, the 5th step is by the definition of f(X)i0 (see
Definition A.6).

Proof of Part 2

d⟨f(X)i0 , X
⊤W∗,j1⟩

dxi2,j2

= ⟨df(X)i0
dxi2,j2

, X⊤W∗,j1⟩+ ⟨f(X)i0 ,
dX⊤W∗,j1
dxi2,j2

⟩

= ⟨df(X)i0
dxi2,j2

, X⊤W∗,j1⟩+ ⟨f(X)i0 , ei2 · wj2,j1⟩

= ⟨df(X)i0
dxi2,j2

, X⊤W∗,j1⟩+ f(X)i0,i2 · wj2,j1

= ⟨−(α(X)i0)
−1 · f(X)i0 · u(X)i0,i0 · w(X)i0,j2

+ f(X)i0 ◦ (ei0 · w(X)i0,j2), X
⊤W∗,j1⟩+ f(X)i0,i0 · wj2,j1

= ⟨−f(X)i0 · f(X)i0,i0 · w(X)i0,j2

+ f(X)i0 ◦ (ei0 · w(X)i0,j2), X
⊤W∗,j1⟩+ f(X)i0,i0 · wj2,j1

= − z(X)i0,j1 · f(X)i0,i0 · w(X)i0,j2
+ f(X)i0,i0 · w(X)i0,j2 · ⟨W∗,j1 , X∗,i0⟩
+ f(X)i0,i0 · wj2,j1

where the 1st step is by Fact A.2, the 2nd step uses Lemma B.3, the 3rd step is taking the i0-th
entry of f(X)i0 , the 4th step uses Lemma A.14, the last step is by the definition of f(X)i0 (see
Definition A.6).

B.6 DERIVATIVE OF SCALAR FUNCTION f(X)i0,i0 · h(X)j0,i0

Lemma B.7. If the following holds:

• Let f(X)i0 be defined as Definition A.6

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

• Let h(X)j0 be defined as Definition A.7

We have

• Part 1 For i0 = i1 = i2 ∈ [n], j1, j2 ∈ [d]

df(X)i0,i0 · h(X)j0,i0
dxi2,j2

= (−f(X)i0,i0 · (f(X)i0,i0 · w(X)i0,j2 + ⟨f(X)i0 , X
⊤W∗,j2⟩)

+ f(X)i0,i0 · ⟨Wj2,∗ +W∗,j2 , X∗,i0⟩) · h(X)j0,i0 + f(X)i0,i0 · vj2,j0

• Part 2 For i0 = i1 ̸= i2 ∈ [n], j1, j2 ∈ [d]

df(X)i0,i0 · h(X)j0,i0
dxi2,j2

= −f(X)i0,i0 · f(X)i0,i2 · w(X)i0,j2 · h(X)j0,i0

Proof. Proof of Part 1
df(X)i0,i0 · h(X)j0,i0

dxi2,j2

=
df(X)i0,i0
dxi2,j2

· h(X)j0,i0 + f(X)i0,i0 ·
dh(X)j0,i0
dxi2,j2

=
df(X)i0,i0
dxi2,j2

· h(X)j0,i0 + f(X)i0,i0 · vj2,j0

= (−(α(X)i0)
−1 · f(X)i0,i0 · (u(X)i0,i0 · w(X)i0,j2 + ⟨u(X)i0 , X

⊤W∗,j2⟩)
+ f(X)i0,i0 · ⟨Wj2,∗ +W∗,j2 , X∗,i0⟩) · h(X)j0,i0 + f(X)i0,i0 · vj2,j0

= (−f(X)i0,i0 · (f(X)i0,i0 · w(X)i0,j2 + ⟨f(X)i0 , X
⊤W∗,j2⟩)

+ f(X)i0,i0 · ⟨Wj2,∗ +W∗,j2 , X∗,i0⟩) · h(X)j0,i0 + f(X)i0,i0 · vj2,j0
where the fist step is by Fact A.2, the 2nd step calls Lemma B.5, the 3rd step uses Lemma B.4, the
last step is by the definition of f(X)i0 (see Definition A.6).

Proof of Part 2
df(X)i0,i0 · h(X)j0,i0

dxi2,j2

=
df(X)i0,i0
dxi2,j2

· h(X)j0,i0 + f(X)i0,i0 ·
dh(X)j0,i0
dxi2,j2

= − (α(X)i0)
−1 · f(X)i0,i0 · u(X)i0,i2 · w(X)i0,j2 · h(X)j0,i0

= − f(X)i0,i0 · f(X)i0,i2 · w(X)i0,j2 · h(X)j0,i0

where the fist step is by Fact A.2, the 2nd step calls Lemma B.5, the 3rd step uses Lemma B.4, the
last step is by the definition of f(X)i0 (see Definition A.6).

B.7 DERIVATIVE OF SCALAR FUNCTION f(X)i0,i0 · w(X)i0,j1

Lemma B.8. If the following holds:

• Let f(X)i0 be defined as Definition A.6

We have

• Part 1 For i0 = i1 = i2 ∈ [n], j1, j2 ∈ [d]

df(X)i0,i0 · w(X)i0,j1
dxi2,j2

= (f(X)i0,i0 · (f(X)i0,i0 · w(X)i0,j2 + ⟨f(X)i0 , X
⊤W∗,j2⟩)

+ f(X)i0,i0 · ⟨Wj2,∗ +W∗,j2 , X∗,i0⟩) · w(X)i0,j1 + f(X)i0,i0 · wj1,j2

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

• Part 2 For i0 = i1 ̸= i2 ∈ [n], j1, j2 ∈ [d]

df(X)i0,i0 · w(X)i0,j1
dxi2,j2

= −f(X)i0,i0 · f(X)i0,i2 · w(X)i0,j2 · w(X)i0,j1

Proof. Proof of Part 1
df(X)i0,i0 · w(X)i0,j1

dxi2,j2

=
df(X)i0,i0
dxi2,j2

· w(X)i0,j1 + f(X)i0,i0 ·
dw(X)i0,j1
dxi2,j2

=
df(X)i0,i0
dxi2,j2

· w(X)i0,j1 + f(X)i0,i0 · wj1,j2

= (−(α(X)i0)
−1 · f(X)i0,i0 · (u(X)i0,i0 · w(X)i0,j2 + ⟨u(X)i0 , X

⊤W∗,j2⟩)
+ f(X)i0,i0 · ⟨Wj2,∗ +W∗,j2 , X∗,i0⟩) · w(X)i0,j1 + f(X)i0,i0 · wj1,j2

= (−f(X)i0,i0 · (f(X)i0,i0 · w(X)i0,j2 + ⟨f(X)i0 , X
⊤W∗,j2⟩)

+ f(X)i0,i0 · ⟨Wj2,∗ +W∗,j2 , X∗,i0⟩) · w(X)i0,j1 + f(X)i0,i0 · wj1,j2

where step 1 is by Fact A.2, the 2nd step calls Lemma B.2, the 3rd step uses Lemma B.4, the last step
is by the definition of f(X)i0 (see Definition A.6).

Proof of Part 2
df(X)i0,i0 · w(X)i0,j1

dxi2,j2

=
df(X)i0,i0
dxi2,j2

· w(X)i0,j1 + f(X)i0,i0 ·
dw(X)i0,j1
dxi2,j2

=
df(X)i0,i0
dxi2,j2

· w(X)i0,j1

= − (α(X)i0)
−1 · f(X)i0,i0 · u(X)i0,i2 · w(X)i0,j2 · w(X)i0,j1

= − f(X)i0,i0 · f(X)i0,i2 · w(X)i0,j2 · w(X)i0,j1

where step 1 is by Fact A.2, the 2nd step calls Lemma B.2, the 3rd step uses Lemma B.4, the last step
is by the definition of f(X)i0 (see Definition A.6).

B.8 DERIVATIVE OF VECTOR FUNCTION f(X)i0 ◦ (X⊤W∗,j1)

Lemma B.9. If the following holds:

• Let f(X)i0 be defined as Definition A.6

We have

• Part 1 For i0 = i1 = i2 ∈ [n], j1, j2 ∈ [d]

df(X)i0 ◦ (X⊤W∗,j1)
dxi2,j2

= (−f(X)i0 · (f(X)i0,i0 · w(X)i0,j2 + ⟨f(X)i0 , X
⊤W∗,j2⟩)

+ f(X)i0 ◦ (ei0 · w(X)i0,j2 +X⊤W∗,j2)) ◦ (X⊤W∗,j1) + f(X)i0 ◦ (ei0 · wj2,j1)

• Part 2 For i0 = i1 ̸= i2 ∈ [n], j1, j2 ∈ [d]

df(X)i0 ◦ (X⊤W∗,j1)
dxi2,j2

= (−f(X)i0 · f(X)i0,i2 · w(X)i0,j2

+ f(X)i0 ◦ (ei2 · w(X)i0,j2)) ◦ (X⊤W∗,j1) + f(X)i0 ◦ (ei2 · wj2,j1)

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Table 2: C1 Part 1 Summary

ID Term Symmetric? Table Name
1 +2s(X)i0,j0 · f(X)2i0,i0 · w(X)i0,j1 · w(X)i0,j2 Yes N/A
2 −f(X)2i0,i0 · h(X)j0,i0 · w(X)i0,j2 · w(X)i0,j1 Yes N/A
3 −f(X)i0,i0 · ⟨f(X)i0 ◦ (X⊤W∗,j2), h(X)j0⟩ · w(X)i0,j1 No Table 5: 1
4 −f(X)2i0,i0 · vj2,j0 · w(X)i0,j1 No Table 6: 1
5 −s(X)i0,j0 · f(X)i0,i0 · w(X)i0,j2 · w(X)i0,j1 Yes N/A
6 −s(X)i0,j0 · f(X)i0,i0 · ⟨W∗,j2 , X∗,i0⟩ · w(X)i0,j1 No Table 3: 7
7 −s(X)i0,j0 · f(X)i0,i0 · wj1,j2 No Table 3: 9
8 2f(X)i0,i0 · s(X)i0,j0 · z(X)i0,j2 · w(X)i0,j1 No Table 3: 1

Proof. Proof of Part 1

df(X)i0 ◦ (X⊤W∗,j1)
dxi2,j2

=
df(X)i0
dxi2,j2

◦ (X⊤W∗,j1) + f(X)i0 ◦
dX⊤W∗,j1
dxi2,j2

=
df(X)i0
dxi2,j2

◦ (X⊤W∗,j1) + f(X)i0 ◦ (ei0 · wj2,j1)

= (−(α(X)i0)
−1 · f(X)i0 · (u(X)i0,i0 · w(X)i0,j2 + ⟨u(X)i0 , X

⊤W∗,j2⟩)
+ f(X)i0 ◦ (ei0 · w(X)i0,j2 +X⊤W∗,j2)) ◦ (X⊤W∗,j1) + f(X)i0 ◦ (ei0 · wj2,j1)

= (−f(X)i0 · (f(X)i0,i0 · w(X)i0,j2 + ⟨f(X)i0 , X
⊤W∗,j2⟩)

+ f(X)i0 ◦ (ei0 · w(X)i0,j2 +X⊤W∗,j2)) ◦ (X⊤W∗,j1) + f(X)i0 ◦ (ei0 · wj2,j1)

where the 1st step is by Fact A.2, the 2nd step uses Lemma B.3, the 3rd step uses Lemma A.14, the
last step is by the definition of f(X)i0 (see Definition A.6).

Proof of Part 2

df(X)i0 ◦ (X⊤W∗,j1)
dxi2,j2

=
df(X)i0
dxi2,j2

◦ (X⊤W∗,j1) + f(X)i0 ◦
dX⊤W∗,j1
dxi2,j2

=
df(X)i0
dxi2,j2

◦ (X⊤W∗,j1) + f(X)i0 ◦ (ei2 · wj2,j1)

= − ((α(X)i0)
−1 · f(X)i0 · u(X)i0,i2 · w(X)i0,j2

+ f(X)i0 ◦ (ei2 · w(X)i0,j2)) ◦ (X⊤W∗,j1) + f(X)i0 ◦ (ei2 · wj2,j1)

= (−f(X)i0 · f(X)i0,i2 · w(X)i0,j2

+ f(X)i0 ◦ (ei2 · w(X)i0,j2)) ◦ (X⊤W∗,j1) + f(X)i0 ◦ (ei2 · wj2,j1)

where the 1st step is by Fact A.2, the 2nd step uses Lemma B.3, the 3rd step uses Lemma A.14, the
last step is by the definition of f(X)i0 (see Definition A.6).

B.9 DERIVATIVE OF C1(X)

Lemma B.10. If the following holds:

• Let C1(X) ∈ R be defined as in Lemma A.16

• Let z(X)i0,j1 = ⟨f(X)i0 , X
⊤W∗,j1⟩

• Let w(X)i0,j1 = ⟨Wj1,∗, X∗,i0⟩

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

We have

• Part 1 For i0 = i1 = i2 ∈ [n], j1, j2 ∈ [d]

dC1(X)

dxi2,j2

= + 2s(X)i0,j0 · f(X)2i0,i0 · w(X)i0,j2 · w(X)i0,j1

+ 2f(X)i0,i0 · s(X)i0,j0 · z(X)i0,j2 · w(X)i0,j1

− f(X)2i0,i0 · h(X)j0,i0 · w(X)i0,j2 · w(X)i0,j1

− f(X)i0,i0 · ⟨f(X)i0 ◦ (X⊤W∗,j2), h(X)j0⟩ · w(X)i0,j1

− f(X)2i0,i0 · vj2,j0 · w(X)i0,j1

− s(X)i0,j0 · f(X)i0,i0 · w(X)i0,j2 · w(X)i0,j1
− s(X)i0,j0 · f(X)i0,i0 · ⟨W∗,j2 , X∗,i0⟩ · w(X)i0,j1
− s(X)i0,j0 · f(X)i0,i0 · wj1,j2

• Part 2 For i0 = i1 ̸= i2 ∈ [n], j1, j2 ∈ [d]

dC1(X)

dxi2,j2

= s(X)i0,j0 · f(X)i0,i2 · w(X)i0,j2 · f(X)i0,i0 · w(X)i0,j1
− f(X)i0,i2 · h(X)j0,i2 · w(X)i0,j2 · f(X)i0,i0 · w(X)i0,j1
− f(X)i0,i2 · vj2,j0 · f(X)i0,i0 · w(X)i0,j1
+ s(X)i0,j0 · f(X)i0,i0 · f(X)i0,i2 · w(X)i0,j2 · w(X)i0,j1

Proof. Proof of Part 1

dC1(X)

dxi2,j2

=
d− s(X)i0,j0 · f(X)i0,i0 · w(X)i0,j1

dxi2,j2

= − ds(X)i0,j0
dxi2,j2

· f(X)i0,i0 · w(X)i0,j1

− s(X)i0,j0 ·
df(X)i0,i0 · w(X)i0,j1

dxi2,j2

= − ds(X)i0,j0
dxi2,j2

· f(X)i0,i0 · w(X)i0,j1

− s(X)i0,j0 · ((−(α(X)i0)
−1 · f(X)i0,i0 · (u(X)i0,i0 · w(X)i0,j2 + ⟨u(X)i0 , X

⊤W∗,j2⟩)
+ f(X)i0,i0 · ⟨Wj2,∗ +W∗,j2 , X∗,i0⟩) · w(X)i0,j1 + f(X)i0,i0 · wj1,j2)

= − (−s(X)i0,j0 · f(X)i0,i0 · w(X)i0,j2 − s(X)i0,j0 · ⟨f(X)i0 , X
⊤W∗,j2⟩

+ f(X)i0,i0 · h(X)j0,i0 · w(X)i0,j2

+ ⟨f(X)i0 ◦ (X⊤W∗,j2), h(X)j0⟩+ f(X)i0,i2 · vj2,j0) · f(X)i0,i0 · w(X)i0,j1

− s(X)i0,j0 · ((−f(X)i0,i0 · (f(X)i0,i0 · w(X)i0,j2 + ⟨f(X)i0 , X
⊤W∗,j2⟩)

+ f(X)i0,i0 · ⟨Wj2,∗ +W∗,j2 , X∗,i0⟩) · w(X)i0,j1 + f(X)i0,i0 · wj1,j2)

= 2s(X)i0,j0 · f(X)2i0,i0 · w(X)i0,j2 · w(X)i0,j1

+ 2s(X)i0,j0 · Z(X)i0,j2 · f(X)i0,i0 · w(X)i0,j1

− f(X)2i0,i0 · h(X)j0,i0 · w(X)i0,j2 · w(X)i0,j1

− f(X)i0,i0 · ⟨f(X)i0 ◦ (X⊤W∗,j2), h(X)j0⟩ · w(X)i0,j1

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Table 3: C2 Part 1 Summary

ID Term Symmetric Terms Table Name
1 2s(X)i0,j0 · f(X)i0,i0 · w(X)i0,j2 · z(X)i0,j1 No Table 2: 9
2 s(X)i0,j0 · z(X)i0,j2 · z(X)i0,j1 Yes N/A
3 −f(X)i0,i0 · h(X)j0,i0 · w(X)i0,j2 · z(X)i0,j1 No Table 4: 3
4 −⟨f(X)i0 ◦ (X⊤W∗,j2), h(X)j0⟩ · z(X)i0,j1 No Table 5: 2
5 −f(X)i0,i0 · vj2,j0 · z(X)i0,j1 No Table 6: 2
6 +s(X)i0,j0 · z(X)i0,j1 · f(X)i0,i0 · z(X)i0,j2 Yes N/A
7 −s(X)i0,j0 · f(X)i0,i0 · ⟨W∗,j1 , X∗,i0⟩ · w(X)i0,j2 No Table 2: 6
8 −s(X)i0,j0 · ⟨f(X)i0 ◦ (X⊤W∗,j2), X

⊤W∗,j1⟩ Yes N/A
9 −s(X)i0,j0 · f(X)i0,i0 · wj2,j1 No Table 2: 7

− f(X)2i0,i0 · vj2,j0 · w(X)i0,j1

− s(X)i0,j0 · f(X)i0,i0 · ⟨Wj2,∗ +W∗,j2 , X∗,i0⟩ · w(X)i0,j1
− s(X)i0,j0 · f(X)i0,i0 · wj1,j2

where the first step is by definition of C1(X) (see Lemma A.16), the 2nd step is by Fact A.2, the 3rd
step is by Lemma B.8, the 4th step is because Lemma A.16, the 5th step is a rearrangement.

Proof of Part 2

dC1(X)

dxi2,j2

=
d− s(X)i0,j0 · f(X)i0,i0 · w(X)i0,j1

dxi2,j2

= − ds(X)i0,j0
dxi2,j2

· f(X)i0,i0 · w(X)i0,j1

− s(X)i0,j0 ·
df(X)i0,i0 · w(X)i0,j1

dxi2,j2

= − ds(X)i0,j0
dxi2,j2

· f(X)i0,i0 · w(X)i0,j1

+ s(X)i0,j0 · f(X)i0,i0 · f(X)i0,i2 · w(X)i0,j2 · w(X)i0,j1
= − (−s(X)i0,j0 · f(X)i0,i2 · w(X)i0,j2 + f(X)i0,i2 · h(X)j0,i2 · w(X)i0,j2

+ f(X)i0,i2 · vj2,j0) · f(X)i0,i0 · w(X)i0,j1
+ s(X)i0,j0 · f(X)i0,i0 · f(X)i0,i2 · w(X)i0,j2 · w(X)i0,j1

= s(X)i0,j0 · f(X)i0,i2 · w(X)i0,j2 · f(X)i0,i0 · w(X)i0,j1
− f(X)i0,i2 · h(X)j0,i2 · w(X)i0,j2 · f(X)i0,i0 · w(X)i0,j1
− f(X)i0,i2 · vj2,j0 · f(X)i0,i0 · w(X)i0,j1
+ s(X)i0,j0 · f(X)i0,i0 · f(X)i0,i2 · w(X)i0,j2 · w(X)i0,j1

where the first step is by definition of C1(X) (see Lemma A.16), the 2nd step is by Fact A.2, the 3rd
step is by Lemma B.8, the 4th step is because Lemma A.16, the 5th step is a rearrangement.

B.10 DERIVATIVE OF C2(X)

Lemma B.11. If the following holds:

• Let C2(X) be defined as in Lemma A.16

• We define z(X)i0,j1 := ⟨f(X)i0 , X
⊤W∗,j1⟩.

We have

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

• Part 1 For i0 = i1 = i2 ∈ [n], j1, j2 ∈ [d]

dC2(X)

dxi2,j2

= + 2s(X)i0,j0 · f(X)i0,i0 · w(X)i0,j2 · z(X)i0,j1
+ s(X)i0,j0 · z(X)i0,j2 · z(X)i0,j1
− f(X)i0,i0 · h(X)j0,i0 · w(X)i0,j2 · z(X)i0,j1

− ⟨f(X)i0 ◦ (X⊤W∗,j2), h(X)j0⟩ · z(X)i0,j1
− f(X)i0,i0 · vj2,j0 · z(X)i0,j1
+ s(X)i0,j0 · z(X)i0,j1 · f(X)i0,i0 · z(X)i0,j2
− s(X)i0,j0 · f(X)i0,i0 · ⟨W∗,j1 , X∗,i0⟩ · w(X)i0,j2

− s(X)i0,j0 · ⟨f(X)i0 ◦ (X⊤W∗,j2), X
⊤W∗,j1⟩

− s(X)i0,j0 · f(X)i0,i0 · wj2,j1

• Part 2 For i0 = i1 ̸= i2 ∈ [n], j1, j2 ∈ [d]

dC2(X)

dxi2,j2

= + s(X)i0,j0 · f(X)i0,i2 · w(X)i0,j2 · z(X)i0,j1
− f(X)i0,i2 · h(X)j0,i2 · w(X)i0,j2 · z(X)i0,j1
− f(X)i0,i2 · vj2,j0 · z(X)i0,j1

+ s(X)i0,j0 · ⟨f(X)i0 , X
⊤W∗,j1⟩ · f(X)i0,i0 · w(X)i0,j2

− s(X)i0,j0 · f(X)i0,i0 · ⟨W∗,j1 , X∗,i0⟩ · w(X)i0,j2
− s(X)i0,j0 · f(X)i0,i0 · wj2,j1

Proof. Proof of Part 1

d− C2(X)

dxi2,j2

=
ds(X)i0,j0 · z(X)i0,j1

dxi2,j2

=
ds(X)i0,j0
dxi2,j2

· z(X)i0,j1 + s(X)i0,j0 ·
dz(X)i0,j1
dxi2,j2

=
ds(X)i0,j0
dxi2,j2

· z(X)i0,j1

+ s(X)i0,j0 · (⟨−(α(X)i0)
−1 · f(X)i0 · (u(X)i0,i0 · w(X)i0,j2 + ⟨u(X)i0 , X

⊤W∗,j2⟩)
+ f(X)i0 ◦ (ei0 · w(X)i0,j2 +X⊤W∗,j2), X

⊤W∗,j1⟩+ f(X)i0,i0 · wj2,j1)

= (−s(X)i0,j0 · f(X)i0,i0 · w(X)i0,j2 − s(X)i0,j0 · ⟨f(X)i0 , X
⊤W∗,j2⟩

+ f(X)i0,i0 · h(X)j0,i0 · w(X)i0,j2

+ ⟨f(X)i0 ◦ (X⊤W∗,j2), h(X)j0⟩+ f(X)i0,i2 · vj2,j0) · z(X)i0,j1

+ s(X)i0,j0 · (⟨−(α(X)i0)
−1 · f(X)i0 · (u(X)i0,i0 · w(X)i0,j2 + ⟨u(X)i0 , X

⊤W∗,j2⟩)
+ f(X)i0 ◦ (ei0 · w(X)i0,j2 +X⊤W∗,j2), X

⊤W∗,j1⟩+ f(X)i0,i0 · wj2,j1)

= − s(X)i0,j0 · f(X)i0,i0 · w(X)i0,j2 · z(X)i0,j1
− s(X)i0,j0 · z(X)i0,j2 · z(X)i0,j1
+ f(X)i0,i0 · h(X)j0,i0 · w(X)i0,j2 · z(X)i0,j1

+ ⟨f(X)i0 ◦ (X⊤W∗,j2), h(X)j0⟩ · z(X)i0,j1
+ f(X)i0,i2 · vj2,j0 · z(X)i0,j1

− s(X)i0,j0 · ⟨f(X)i0 , X
⊤W∗,j1⟩ · f(X)i0,i0 · w(X)i0,j2

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

Table 4: C3 Part 1 Summary

ID Term Symmetric Terms Table Name
1 −f(X)2i0,i0 · h(X)j0,i0 · w(X)i0,j2 · w(X)i0,j1 Yes N/A
2 f(X)i0,i0 · w(X)i0,j2 · h(X)j0,i0 · w(X)i0,j1 Yes N/A
3 −f(X)i0,i0 · z(X)i0,j2 · h(X)j0,i0 · w(X)i0,j1 No Table 3: 3
4 f(X)i0,i0 · ⟨W∗,j2 , X∗,i0⟩ · h(X)j0,i0 · w(X)i0,j1 No Table 5: 3
5 f(X)i0,i0 · vj2,j0 · w(X)i0,j1 No Table 6: 3
6 f(X)i0,i0 · h(X)i0,i0 · wj1,j2 No Table 5: 5

− s(X)i0,j0 · ⟨f(X)i0 , X
⊤W∗,j1⟩ · f(X)i0,i0 · ⟨f(X)i0 , X

⊤W∗,j2⟩
+ s(X)i0,j0 · f(X)i0,i0 · ⟨W∗,j1 , X∗,i0⟩ · w(X)i0,j2

+ s(X)i0,j0 · ⟨f(X)i0 ◦ (X⊤W∗,j2), X
⊤W∗,j1⟩

+ s(X)i0,j0 · f(X)i0,i0 · wj2,j1

where the first step is by definition of C2(X) (see Lemma A.16), the 2nd step is by Fact A.2, the 3rd
step is by Lemma B.6, the 4th step is because Lemma A.16, the 5th step is a rearrangement.

Proof of Part 2

d− C2(X)

dxi2,j2

=
ds(X)i0,j0 · ⟨f(X)i0 , X

⊤W∗,j1⟩
dxi2,j2

=
ds(X)i0,j0
dxi2,j2

· z(X)i0,j1 + s(X)i0,j0 ·
d⟨f(X)i0 , X

⊤W∗,j1⟩
dxi2,j2

=
ds(X)i0,j0
dxi2,j2

· z(X)i0,j1

+ s(X)i0,j0 · (⟨−(α(X)i0)
−1 · f(X)i0 · u(X)i0,i0 · w(X)i0,j2

+ f(X)i0 ◦ (ei0 · w(X)i0,j2), X
⊤W∗,j1⟩+ f(X)i0,i0 · wj2,j1)

= (−s(X)i0,j0 · f(X)i0,i2 · w(X)i0,j2 + f(X)i0,i2 · h(X)j0,i2 · w(X)i0,j2
+ f(X)i0,i2 · vj2,j0) · z(X)i0,j1

+ s(X)i0,j0 · (⟨−(α(X)i0)
−1 · f(X)i0 · u(X)i0,i0 · w(X)i0,j2

+ f(X)i0 ◦ (ei0 · w(X)i0,j2), X
⊤W∗,j1⟩+ f(X)i0,i0 · wj2,j1)

= − s(X)i0,j0 · f(X)i0,i2 · w(X)i0,j2 · z(X)i0,j1
+ f(X)i0,i2 · h(X)j0,i2 · w(X)i0,j2 · z(X)i0,j1
+ f(X)i0,i2 · vj2,j0 · z(X)i0,j1

− s(X)i0,j0 · ⟨f(X)i0 , X
⊤W∗,j1⟩ · f(X)i0,i0 · w(X)i0,j2

+ s(X)i0,j0 · f(X)i0,i0 · ⟨W∗,j1 , X∗,i0⟩ · w(X)i0,j2
+ s(X)i0,j0 · f(X)i0,i0 · wj2,j1

where the first step is by definition of C2(X) (see Lemma A.16), the 2nd step is by Fact A.2, the 3rd
step is by Lemma B.6, the 4th step is because Lemma A.16, the 5th step is a rearrangement.

B.11 DERIVATIVE OF C3(X)

Lemma B.12. If the following holds:

• Let C3(X) be defined as in Lemma A.16

We have

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

• Part 1 For i0 = i1 = i2 ∈ [n], j1, j2 ∈ [d]

dC3(X)

dxi2,j2

= − f(X)2i0,i0 · h(X)j0,i0 · w(X)i0,j2 · w(X)i0,j1

− f(X)i0,i0 · z(X)i0,j2 · h(X)j0,i0 · w(X)i0,j1
+ f(X)i0,i0 · w(X)i0,j2 · h(X)j0,i0 · w(X)i0,j1
+ f(X)i0,i0 · ⟨W∗,j2 , X∗,i0⟩ · h(X)j0,i0 · w(X)i0,j1
+ f(X)i0,i0 · vj2,j0 · w(X)i0,j1
+ f(X)i0,i0 · h(X)i0,i0 · wj1,j2

• Part 2 For i0 = i1 ̸= i2 ∈ [n], j1, j2 ∈ [d]

dC3(X)

dxi2,j2

= − f(X)i0,i0 · f(X)i0,i2 · w(X)i0,j2 · h(X)j0,i0 · w(X)i0,j1

Proof. Proof of Part 1
dC3(X)

dxi2,j2

=
df(X)i0,i0 · h(X)i0,i0 · w(X)i0,j1

dxi2,j2

=
df(X)i0,i0 · h(X)i0,i0

dxi2,j2

· w(X)i0,j1 + f(X)i0,i0 · h(X)i0,i0 ·
dw(X)i0,j1
dxi2,j2

=
df(X)i0,i0 · h(X)i0,i0

dxi2,j2

· w(X)i0,j1 + f(X)i0,i0 · h(X)i0,i0 · wj1,j2

= ((−f(X)i0,i0 · (f(X)i0,i0 · w(X)i0,j2 + ⟨f(X)i0 , X
⊤W∗,j2⟩)

+ f(X)i0,i0 · ⟨Wj2,∗ +W∗,j2 , X∗,i0⟩) · h(X)j0,i0 + f(X)i0,i0 · vj2,j0) · w(X)i0,j1
+ f(X)i0,i0 · h(X)i0,i0 · wj1,j2

= − f(X)2i0,i0 · h(X)j0,i0 · w(X)i0,j2 · w(X)i0,j1

− f(X)i0,i0 · Z(X)i0,j2 · h(X)j0,i0 · w(X)i0,j1
+ f(X)i0,i0 · ⟨Wj2,∗ +W∗,j2 , X∗,i0⟩ · h(X)j0,i0 · w(X)i0,j1
+ f(X)i0,i0 · vj2,j0 · w(X)i0,j1
+ f(X)i0,i0 · h(X)i0,i0 · wj1,j2

where the first step is by definition of C3(X) (see Lemma A.16), the 2nd step is by Fact A.2, the 3rd
step is by Lemma B.2, the 4th step is because Lemma B.7, the 5th step is a rearrangement.

Proof of Part 2
dC3(X)

dxi2,j2

=
df(X)i0,i0 · h(X)i0,i0 · w(X)i0,j1

dxi2,j2

=
df(X)i0,i0 · h(X)i0,i0

dxi2,j2

· w(X)i0,j1 + f(X)i0,i0 · h(X)i0,i0 ·
dw(X)i0,j1
dxi2,j2

=
df(X)i0,i0 · h(X)i0,i0

dxi2,j2

· w(X)i0,j1

= − f(X)i0,i0 · f(X)i0,i2 · w(X)i0,j2 · h(X)j0,i0 · w(X)i0,j1
where the first step is by definition of C3(X) (see Lemma A.16), the 2nd step is by Fact A.2, the 3rd
step is by Lemma B.2, the 4th step is because Lemma B.7, the 5th step is a rearrangement.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

Table 5: C4 Part 1 Summary

ID Term Symmetric? Table Name
1 −⟨f(X)i0 ◦ (X⊤W∗,j1), h(X)j0⟩ · f(X)i0,i0 · w(X)i0,j2 No Table 2: 3
2 −⟨f(X)i0 ◦ (X⊤W∗,j1), h(X)j0⟩ · Z(X)i0,j2 No Table 3: 4
3 f(X)i0,i0 · h(X)j0,i0 · ⟨W∗,j1 , X∗,i0⟩ · w(X)i0,j2 No Table 4: 4
4 ⟨f(X)i0 ◦ (X⊤W∗,j2) ◦ (X⊤W∗,j1), h(X)j0⟩ Yes N/A
5 f(X)i0,i0 · h(X)j0,i0 · wj2,j1 No Table 4: 6
6 f(X)i0,i0 · ⟨W∗,j1 , X∗,i0⟩ · vj2,j0 No Table 6:4

B.12 DERIVATIVE OF C4(X)

Lemma B.13. If the following holds:

• Let C4(X) be defined as in Lemma A.16

We have

• Part 1 For i0 = i1 = i2 ∈ [n], j1, j2 ∈ [d]

dC4(X)

dxi2,j2

= − ⟨f(X)i0 ◦ (X⊤W∗,j1), h(X)j0⟩ · f(X)i0,i0 · w(X)i0,j2

− ⟨f(X)i0 ◦ (X⊤W∗,j1), h(X)j0⟩ · Z(X)i0,j2
+ f(X)i0,i0 · h(X)j0,i0 · ⟨W∗,j1 , X∗,i0⟩ · w(X)i0,j2

+ ⟨f(X)i0 ◦ (X⊤W∗,j2) ◦ (X⊤W∗,j1), h(X)j0⟩
+ f(X)i0,i0 · h(X)j0,i0 · wj2,j1

+ f(X)i0,i0 · ⟨W∗,j1 , X∗,i0⟩ · vj2,j0

• Part 2 For i0 = i1 ̸= i2 ∈ [n], j1, j2 ∈ [d]

dC4(X)

dxi2,j2

= − ⟨f(X)i0 ◦ (X⊤W∗,j1), h(X)j0⟩ · f(X)i0,i2 · w(X)i0,j2
+ f(X)i0,i2 · h(X)j0,i2 · ⟨W∗,j1 , X∗,i2⟩ · w(X)i0,j2
+ f(X)i0,i2 · h(X)j0,i2 · wj2,j1

+ f(X)i0,i2 · ⟨W∗,j1 , X∗,i2⟩ · vj2,j0

Proof. Proof of Part 1

dC4(X)

dxi2,j2

=
d⟨f(X)i0 ◦ (X⊤W∗,j1), h(X)j0⟩

dxi2,j2

= ⟨df(X)i0 ◦ (X⊤W∗,j1)
dxi2,j2

, h(X)j0⟩+ ⟨f(X)i0 ◦ (X⊤W∗,j1),
dh(X)j0
dxi2,j2

⟩

= ⟨df(X)i0 ◦ (X⊤W∗,j1)
dxi2,j2

, h(X)j0⟩+ ⟨f(X)i0 ◦ (X⊤W∗,j1), ei2 · vj2,j0⟩

= ⟨(−f(X)i0 · (f(X)i0,i0 · w(X)i0,j2 + ⟨f(X)i0 , X
⊤W∗,j2⟩)

+ f(X)i0 ◦ (ei0 · w(X)i0,j2 +X⊤W∗,j2)) ◦ (X⊤W∗,j1) + f(X)i0 ◦ (ei0 · wj2,j1), h(X)j0⟩

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

Table 6: C5 Part 1 Summary

Term Symmetric Terms Table Name
−f(X)2i0,i0 · w(X)i0,j2 · vj1,j0 No C1(X) : 4
−f(X)i0,i0 · z(X)i0,j2 · vj1,j0 No Table 3: 5
f(X)i0,i0 · w(X)i0,j2 · vj1,j0 No Table 4:5
f(X)i0,i0 · ⟨W∗,j2 , X∗,i0⟩ · vj1,j0 No Table 5: 6

+ ⟨f(X)i0 ◦ (X⊤W∗,j1), ei0 · vj2,j0⟩
= − ⟨f(X)i0 ◦ (X⊤W∗,j1), h(X)j0⟩ · f(X)i0,i0 · w(X)i0,j2

− ⟨f(X)i0 ◦ (X⊤W∗,j1), h(X)j0⟩ · ⟨f(X)i0 , X
⊤W∗,j2⟩

+ f(X)i0,i0 · h(X)j0,i0 · ⟨W∗,j1 , X∗,i0⟩ · w(X)i0,j2

+ ⟨f(X)i0 ◦ (X⊤W∗,j2) ◦ (X⊤W∗,j1), h(X)j0⟩
+ f(X)i0,i0 · h(X)j0,i0 · wj2,j1

+ f(X)i0,i0 · ⟨W∗,j1 , X∗,i0⟩ · vj2,j0
where the first step is by definition of C4(X) (see Lemma A.16), the 2nd step is by Fact A.2, the 3rd
step is by Lemma A.15, the 4th step is because Lemma B.9, the 5th step is a rearrangement.

Proof of Part 2
dC4(X)

dxi2,j2

=
d⟨f(X)i0 ◦ (X⊤W∗,j1), h(X)j0⟩

dxi2,j2

= ⟨df(X)i0 ◦ (X⊤W∗,j1)
dxi2,j2

, h(X)j0⟩+ ⟨f(X)i0 ◦ (X⊤W∗,j1),
dh(X)j0
dxi2,j2

⟩

= ⟨df(X)i0 ◦ (X⊤W∗,j1)
dxi2,j2

, h(X)j0⟩+ ⟨f(X)i0 ◦ (X⊤W∗,j1), ei2 · vj2,j0⟩

= ⟨−(f(X)i0 · f(X)i0,i2 · w(X)i0,j2

+ f(X)i0 ◦ (ei2 · w(X)i0,j2)) ◦ (X⊤W∗,j1) + f(X)i0 ◦ (ei2 · wj2,j1), h(X)j0⟩
+ ⟨f(X)i0 ◦ (X⊤W∗,j1), ei2 · vj2,j0⟩

= − ⟨f(X)i0 ◦ (X⊤W∗,j1), h(X)j0⟩ · f(X)i0,i2 · w(X)i0,j2
+ f(X)i0,i2 · h(X)j0,i2 · ⟨W∗,j1 , X∗,i2⟩ · w(X)i0,j2
+ f(X)i0,i2 · h(X)j0,i2 · wj2,j1

+ f(X)i0,i2 · ⟨W∗,j1 , X∗,i2⟩ · vj2,j0
where the first step is by definition of C4(X) (see Lemma A.16), the 2nd step is by Fact A.2, the 3rd
step is by Lemma A.15, the 4th step is because Lemma B.9, the 5th step is a rearrangement.

B.13 DERIVATIVE OF C5(X)

Lemma B.14. If the following holds:

• Let C5(X) be defined as in Lemma A.16

We have

• Part 1 For i0 = i1 = i2 ∈ [n], j1, j2 ∈ [d]

dC5(X)

dxi2,j2

= − f(X)2i0,i0 · w(X)i0,j2 · vj1,j0

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

− f(X)i0,i0 · z(X)i0,j2 · vj1,j0
+ f(X)i0,i0 · w(X)i0,j2 · vj1,j0
+ f(X)i0,i0 · ⟨W∗,j2 , X∗,i0⟩ · vj1,j0

• Part 2 For i0 = i1 ̸= i2 ∈ [n], j1, j2 ∈ [d]

dC5(X)

dxi2,j2

= − f(X)i0,i0 · f(X)i0,i2 · w(X)i0,j2 · vj1,j0

Proof. Proof of Part 1

dC5(X)

dxi2,j2

=
df(X)i0,i0 · vj1,j0

dxi2,j2

=
df(X)i0,i0
dxi2,j2

· vj1,j0

= (−f(X)i0,i0 · (f(X)i0,i0 · w(X)i0,j2 + ⟨f(X)i0 , X
⊤W∗,j2⟩)

+ f(X)i0,i0 · ⟨Wj2,∗ +W∗,j2 , X∗,i0⟩) · vj1,j0
= − f(X)2i0,i0 · w(X)i0,j2 · vj1,j0
− f(X)i0,i0 · ⟨f(X)i0 , X

⊤W∗,j2⟩ · vj1,j0
+ f(X)i0,i0 · ⟨Wj2,∗ +W∗,j2 , X∗,i0⟩ · vj1,j0

where the first step is by definition of C5(X) (see Lemma A.16), the 2nd step is by Fact A.2, the 3rd
step is by Lemma B.4, the 4th step is a rearrangement.

Proof of Part 2
dC5(X)

dxi2,j2

=
df(X)i0,i0 · vj1,j0

dxi2,j2

=
df(X)i0,i0
dxi2,j2

· vj1,j0
= − f(X)i0,i0 · f(X)i0,i2 · w(X)i0,j2 · vj1,j0

where the first step is by definition of C5(X) (see Lemma A.16), the 2nd step is by Fact A.2, the 3rd
step is by Lemma B.4.

B.14 DERIVATIVE OF
c(X)i0,j0

dxi1,j1

Lemma B.15. If the following holds:

• Let c(X)i0,j0 be defined as in Definition A.8

We have

• Part 1 For i0 = i1 = i2 ∈ [n], j1, j2 ∈ [d]

dc(X)i0,j0
dxi1,j1xi2,j2

=

21∑
i=1

Di(X)

where we have following definitions

D1(X) := 2s(X)i0,j0 · f(X)2i0,i0 · w(X)i0,j2 · w(X)i0,j1

D2(X) := 2f(X)i0,i0 · s(X)i0,j0 · z(X)i0,j2 · w(X)i0,j1

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

+ 2f(X)i0,i0 · s(X)i0,j0 · z(X)i0,j1 · w(X)i0,j2

D3(X) := − f(X)2i0,i0 · h(X)j0,i0 · w(X)i0,j2 · w(X)i0,j1

D4(X) := − f(X)i0,i0 · ⟨f(X)i0 ◦ (X⊤W∗,j2), h(X)j0⟩ · w(X)i0,j1

− f(X)i0,i0 · ⟨f(X)i0 ◦ (X⊤W∗,j1), h(X)j0⟩ · w(X)i0,j2

D5(X) := − f(X)2i0,i0 · vj2,j0 · w(X)i0,j1 − f(X)2i0,i0 · vj1,j0 · w(X)i0,j2

D6(X) := − s(X)i0,j0 · f(X)i0,i0 · w(X)i0,j2 · w(X)i0,j1
D7(X) := − s(X)i0,j0 · f(X)i0,i0 · ⟨W∗,j2 , X∗,i0⟩ · w(X)i0,j1

− s(X)i0,j0 · f(X)i0,i0 · ⟨W∗,j1 , X∗,i0⟩ · w(X)i0,j2
D8(X) := − s(X)i0,j0 · f(X)i0,i0 · wj1,j2 − s(X)i0,j0 · f(X)i0,i0 · wj2,j1

D9(X) := s(X)i0,j0 · z(X)i0,j2 · z(X)i0,j1
D10(X) := − f(X)i0,i0 · h(X)j0,i0 · w(X)i0,j2 · z(X)i0,j1

− f(X)i0,i0 · h(X)j0,i0 · w(X)i0,j1 · z(X)i0,j2

D11(X) := − ⟨f(X)i0 ◦ (X⊤W∗,j2), h(X)j0⟩ · z(X)i0,j1

− ⟨f(X)i0 ◦ (X⊤W∗,j1), h(X)j0⟩ · z(X)i0,j2
D12(X) := − f(X)i0,i0 · vj2,j0 · z(X)i0,j1 − f(X)i0,i0 · vj1,j0 · z(X)i0,j2
D13(X) := s(X)i0,j0 · z(X)i0,j1 · f(X)i0,i0 · z(X)i0,j2

D14(X) := − s(X)i0,j0 · ⟨f(X)i0 ◦ (X⊤W∗,j2), X
⊤W∗,j1⟩

D15(X) := − f(X)2i0,i0 · h(X)j0,i0 · w(X)i0,j2 · w(X)i0,j1

D16(X) := f(X)i0,i0 · w(X)i0,j2 · h(X)j0,i0 · w(X)i0,j1
D17(X) := f(X)i0,i0 · ⟨W∗,j2 , X∗,i0⟩ · h(X)j0,i0 · w(X)i0,j1

+ f(X)i0,i0 · ⟨W∗,j1 , X∗,i0⟩ · h(X)j0,i0 · w(X)i0,j2
D18(X) := f(X)i0,i0 · vj2,j0 · w(X)i0,j1 + f(X)i0,i0 · vj1,j0 · w(X)i0,j2
D19(X) := f(X)i0,i0 · h(X)i0,i0 · wj1,j2 + f(X)i0,i0 · h(X)i0,i0 · wj2,j1

D20(X) := ⟨f(X)i0 ◦ (X⊤W∗,j2) ◦ (X⊤W∗,j1), h(X)j0⟩
D21(X) := f(X)i0,i0 · ⟨W∗,j2 , X∗,i0⟩ · vj1,j0 + f(X)i0,i0 · ⟨W∗,j1 , X∗,i0⟩ · vj2,j0

• Part 2 For i0 = i1 ̸= i2 ∈ [n], j1, j2 ∈ [d]

dc(X)i0,j0
dxi1,j1xi2,j2

=

15∑
i=1

Ei(X)

where we have following definitions

E1(X) := 2s(X)i0,j0 · f(X)i0,i2 · w(X)i0,j2 · f(X)i0,i0 · w(X)i0,j1
E2(X) :=− 2f(X)i0,i2 · h(X)j0,i2 · w(X)i0,j2 · f(X)i0,i0 · w(X)i0,j1
E3(X) := − f(X)i0,i2 · vj2,j0 · f(X)i0,i0 · w(X)i0,j1
E4(X) := s(X)i0,j0 · f(X)i0,i2 · w(X)i0,j2 · z(X)i0,j1
E5(X) := − f(X)i0,i2 · h(X)j0,i2 · w(X)i0,j2 · z(X)i0,j1
E6(X) := − f(X)i0,i2 · vj2,j0 · z(X)i0,j1

E7(X) := s(X)i0,j0 · ⟨f(X)i0 , X
⊤W∗,j1⟩ · f(X)i0,i0 · w(X)i0,j2

E8(X) := − s(X)i0,j0 · f(X)i0,i0 · ⟨W∗,j1 , X∗,i0⟩ · w(X)i0,j2
E9(X) := − s(X)i0,j0 · f(X)i0,i0 · wj2,j1

E10(X) := − f(X)i0,i0 · f(X)i0,i2 · w(X)i0,j2 · h(X)j0,i0 · w(X)i0,j1

E11(X) := − ⟨f(X)i0 ◦ (X⊤W∗,j1), h(X)j0⟩ · f(X)i0,i2 · w(X)i0,j2
E12(X) := f(X)i0,i2 · h(X)j0,i2 · ⟨W∗,j1 , X∗,i2⟩ · w(X)i0,j2
E13(X) := f(X)i0,i2 · h(X)j0,i2 · wj2,j1

E14(X) := f(X)i0,i2 · ⟨W∗,j1 , X∗,i2⟩ · vj2,j0

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

E15(X) := − f(X)i0,i0 · f(X)i0,i2 · w(X)i0,j2 · vj1,j0

Proof. The proof is a combination of derivatives of Ci(X) in this section.

Notice that the symmetricity for Part 1 is verified by tables in this section.

C HESSIAN CASE 2: i0 ̸= i1

In this section, we focus on the second case of Hessian. In Sections C.1, C.2, C.3, C.4 and C.5, we
calculated derivative of some important terms. In Sections C.6, C.7 and C.8 we calculate derivative
of C6, C7 and C8 respectively. And in Section C.9 we calculate the derivative of dc(X)i0,j1

dxi1,j1
.

C.1 DERIVATIVE OF SCALAR FUNCTION f(X)i0,i1

Lemma C.1. If the following holds:

• Let f(X)i0 be defined as Definition A.6

• For i0 ̸= i2 ∈ [n], j1, j2 ∈ [d]

We have

• Part 1. For i0 ̸= i2, i1 = i2 ∈ [n], j1, j2 ∈ [d]

df(X)i0,i1
dxi2,j2

= − f(X)i0,i1 · f(X)i0,i2 · w(X)i0,j2

+ f(X)i0,i1 · w(X)i0,j2

• Part 2. For i0 ̸= i2, i1 ̸= i2 ∈ [n], j1, j2 ∈ [d]

df(X)i0,i1
dxi2,j2

= − f(X)i0,i1 · f(X)i0,i2 · w(X)i0,j2

Proof. Proof of Part 1

df(X)i0,i1
dxi2,j2

= (−(α(X)i0)
−1 · f(X)i0 · u(X)i0,i2 · ⟨Wj2,∗, X∗,i0⟩

+ f(X)i0 ◦ (ei1 · ⟨Wj2,∗, X∗,i0⟩))i1
= − (α(X)i0)

−1 · f(X)i0,i1 · u(X)i0,i2 · ⟨Wj2,∗, X∗,i0⟩
+ f(X)i0,i1 · ⟨Wj2,∗, X∗,i0⟩

= − f(X)i0,i1 · f(X)i0,i2 · w(X)i0,j2
+ f(X)i0,i1 · w(X)i0,j2

where the first step follows from Part 1 of Lemma A.14, the second step follows from simple algebra,
the first step follows from Definition A.6.

Proof of Part 2

df(X)i0,i1
dxi2,j2

= (−(α(X)i0)
−1 · f(X)i0 · u(X)i0,i2 · ⟨Wj2,∗, X∗,i0⟩

+ f(X)i0 ◦ (ei2 · ⟨Wj2,∗, X∗,i0⟩))i1
= − (α(X)i0)

−1 · f(X)i0,i1 · u(X)i0,i2 · ⟨Wj2,∗, X∗,i0⟩
= − f(X)i0,i1 · f(X)i0,i2 · w(X)i0,j2

where the first step follows from Part 1 of Lemma A.14, the second step follows from simple algebra,
the first step follows from Definition A.6.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

C.2 DERIVATIVE OF SCALAR FUNCTION h(X)j0,i1

Lemma C.2. If the following holds:

• Let h(X)j0 be defined as Definition A.7

• For i0 ̸= i2 ∈ [n], j1, j2 ∈ [d]

We have

• Part 1. For i0 ̸= i2, i1 = i2 ∈ [n], j1, j2 ∈ [d]

dh(X)j0,i1
dxi2,j2

= vj2,j0

• Part 2. For i0 ̸= i2, i1 ̸= i2 ∈ [n], j1, j2 ∈ [d]

dh(X)j0,i1
dxi2,j2

= 0

Proof. Proof of Part 1.

dh(X)j0,i1
dxi2,j2

= (ei2 · vj2,j0)i1
= vj2,j0

where the first step follows from Lemma A.7, the second step follows from i1 = i2.

Proof of Part 1.
dh(X)j0,i1
dxi2,j2

= (ei2 · vj2,j0)i1
= 0

where the first step follows from Lemma A.7, the second step follows from i1 ̸= i2.

C.3 DERIVATIVE OF SCALAR FUNCTION ⟨f(X)i0 , h(X)j0⟩

Lemma C.3. If the following holds:

• Let f(X)i0 be defined as Definition A.6

• Let h(X)j0 be defined as Definition A.7

• For i0 ̸= i2 ∈ [n], j1, j2 ∈ [d]

We have

d⟨f(X)i0 , h(X)j0⟩
dxi2,j2

= ⟨−f(X)i0 · f(X)i0,i2 · ⟨Wj2,∗, X∗,i0⟩

+ f(X)i0 ◦ (ei2 · ⟨Wj2,∗, X∗,i0⟩), h(X)j0⟩+ f(X)i0,i2 · vj2,j0

Proof.

d⟨f(X)i0 , h(X)j0⟩
dxi2,j2

= ⟨df(X)i0
dxi2,j2

, h(X)j0⟩+ ⟨f(X)i0 ,
dh(X)j0
dxi2,j2

⟩

= ⟨−(α(X)i0)
−1 · f(X)i0 · u(X)i0,i2 · ⟨Wj2,∗, X∗,i0⟩

+ f(X)i0 ◦ (ei2 · ⟨Wj2,∗, X∗,i0⟩), h(X)j0⟩+ ⟨f(X)i0 ,
dh(X)j0
dxi2,j2

⟩

= ⟨−f(X)i0 · f(X)i0,i2 · ⟨Wj2,∗, X∗,i0⟩

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

+ f(X)i0 ◦ (ei2 · ⟨Wj2,∗, X∗,i0⟩), h(X)j0⟩+ ⟨f(X)i0 ,
dh(X)j0
dxi2,j2

⟩

= ⟨−f(X)i0 · f(X)i0,i2 · ⟨Wj2,∗, X∗,i0⟩
+ f(X)i0 ◦ (ei2 · ⟨Wj2,∗, X∗,i0⟩), h(X)j0⟩+ ⟨f(X)i0 , ei2 · vj2,j0⟩

= ⟨−f(X)i0 · f(X)i0,i2 · ⟨Wj2,∗, X∗,i0⟩
+ f(X)i0 ◦ (ei2 · ⟨Wj2,∗, X∗,i0⟩), h(X)j0⟩+ f(X)i0,i2 · vj2,j0

where the first step follows from simple differential rule, the second step follows from Lemma A.14,
the third step follows from simple algebra and Definition A.6, the fourth step follows from
Lemma A.15, the last step follows from simple algebra.

C.4 DERIVATIVE OF SCALAR FUNCTION f(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩

Lemma C.4. If the following holds:

• Let f(X)i0 be defined as Definition A.6

• For i0 ̸= i2 ∈ [n], j1, j2 ∈ [d]

We have

• Part 1. For i0 ̸= i2, i1 = i2 ∈ [n], j1, j2 ∈ [d]

df(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩
dxi2,j2

= (−f(X)i0,i2 · f(X)i0,i1 + f(X)i0,i1) · ⟨Wj2,∗, X∗,i0⟩ · ⟨Wj1,∗, X∗,i0⟩

• Part 2. For i0 ̸= i2, i1 ̸= i2 ∈ [n], j1, j2 ∈ [d]

df(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩
dxi2,j2

= − f(X)i0,i2 · f(X)i0,i1 · ⟨Wj2,∗, X∗,i0⟩ · ⟨Wj1,∗, X∗,i0⟩

Proof. Proof of Part 1

df(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩
dxi2,j2

=
df(X)i0,i1
dxi2,j2

· ⟨Wj1,∗, X∗,i0⟩+
d⟨Wj1,∗, X∗,i0⟩

dxi2,j2

· f(X)i0,i1

= (−f(X)i0,i2f(X)i0,i1 + f(X)i0,i1) · ⟨Wj2,∗, X∗,i0⟩ · ⟨Wj1,∗, X∗,i0⟩

+
d⟨Wj1,∗, X∗,i0⟩

dxi2,j2

· f(X)i0,i1

= (−f(X)i0,i2f(X)i0,i1 + f(X)i0,i1) · ⟨Wj2,∗, X∗,i0⟩ · ⟨Wj1,∗, X∗,i0⟩+ 0d · f(X)i0,i1
= (−f(X)i0,i2f(X)i0,i1 + f(X)i0,i1) · ⟨Wj2,∗, X∗,i0⟩ · ⟨Wj1,∗, X∗,i0⟩

where the first step follows from simple differential rule, the second step follows from Lemma C.1,
the third step follows from i0 ̸= i2, the last step follows from simple algebra.

Proof of Part 2
df(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩

dxi2,j2

=
df(X)i0,i1
dxi2,j2

· ⟨Wj1,∗, X∗,i0⟩+
d⟨Wj1,∗, X∗,i0⟩

dxi2,j2

· f(X)i0,i1

= (−f(X)i0,i2f(X)i0,i1 + f(X)i0,i1) · ⟨Wj2,∗, X∗,i0⟩ · ⟨Wj1,∗, X∗,i0⟩

+
d⟨Wj1,∗, X∗,i0⟩

dxi2,j2

· f(X)i0,i1

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

= (−f(X)i0,i2f(X)i0,i1 + f(X)i0,i1) · ⟨Wj2,∗, X∗,i0⟩ · ⟨Wj1,∗, X∗,i0⟩+ 0d · f(X)i0,i1
= − f(X)i0,i2 · f(X)i0,i1 · ⟨Wj2,∗, X∗,i0⟩ · ⟨Wj1,∗, X∗,i0⟩

where the first step follows from simple differential rule, the second step follows from Lemma C.1,
the third step follows from i0 ̸= i2, the last step follows from simple algebra.

C.5 DERIVATIVE OF SCALAR FUNCTION f(X)i0,i1 · h(X)j0,i1

Lemma C.5. If the following holds:

• Let f(X)i0 be defined as Definition A.6

• Let h(X)j0 be defined as Definition A.7

We have

• Part 1 For i0 ̸= i2, i1 = i2 ∈ [n], j1, j2 ∈ [d]

df(X)i0,i1 · h(X)j0,i1
dxi2,j2

= (−f(X)i0,i2 · f(X)i0,i1 + f(X)i0,i1) · ⟨Wj2,∗, X∗,i0⟩ · h(X)j0,i1
+ vj2,j0 · f(X)i0,i1

• Part 2 For i0 ̸= i2, i1 ̸= i2 ∈ [n], j1, j2 ∈ [d]

df(X)i0,i0 · h(X)j0,i0
dxi2,j2

= − f(X)i0,i2 · f(X)i0,i1 · ⟨Wj2,∗, X∗,i0⟩ · h(X)j0,i1

Proof. Proof of Part 1.

df(X)i0,i1 · h(X)j0,i1
dxi2,j2

=
df(X)i0,i1
dxi2,j2

· h(X)j0,i1 +
dh(X)j0,i1
dxi2,j2

· f(X)i0,i1

= (−f(X)i0,i2f(X)i0,i1 + f(X)i0,i1) · ⟨Wj2,∗, X∗,i0⟩ · h(X)j0,i1

+
dh(X)j0,i1
dxi2,j2

· f(X)i0,i1

= (−f(X)i0,i2 · f(X)i0,i1 + f(X)i0,i1) · ⟨Wj2,∗, X∗,i0⟩ · h(X)j0,i1
+ vj2,j0 · f(X)i0,i1

where the first step follows from simple differential rule, the second step follows from Lemma C.1,
the third step follows from Part 1 of Lemma C.2.

Proof of Part 2.
df(X)i0,i1 · h(X)j0,i1

dxi2,j2

=
df(X)i0,i1
dxi2,j2

· h(X)j0,i1 +
dh(X)j0,i1
dxi2,j2

· f(X)i0,i1

= − f(X)i0,i2 · f(X)i0,i1 · ⟨Wj2,∗, X∗,i0⟩ · h(X)j0,i1

+
dh(X)j0,i1
dxi2,j2

· f(X)i0,i1

= − f(X)i0,i2 · f(X)i0,i1 · ⟨Wj2,∗, X∗,i0⟩ · h(X)j0,i1

where the first step follows from simple differential rule, the second step follows from Lemma C.1,
the third step follows from Part 2 of Lemma C.2.

C.6 DERIVATIVE OF C6(X)

Lemma C.6. If the following holds:

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2025

• Let C6(X) ∈ R be defined as in Lemma A.16

• For i0 ̸= i2 ∈ [n], j1, j2 ∈ [d]

We have

• Part 1 For i0 ̸= i2, i1 = i2 ∈ [n], j1, j2 ∈ [d]

dC6(X)

dxi2,j2

= − (⟨−f(X)i0 · f(X)i0,i2 · ⟨Wj2,∗, X∗,i0⟩
+ f(X)i0 ◦ (ei1 · ⟨Wj2,∗, X∗,i0⟩), h(X)j0⟩+ f(X)i0,i2 · vj2,j0) · f(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩
+ (−⟨f(X)i0 , h(X)j0⟩) · (−f(X)i0,i2f(X)i0,i1 + f(X)i0,i1) · ⟨Wj2,∗, X∗,i0⟩ · ⟨Wj1,∗, X∗,i0⟩

• Part 2 For i0 ̸= i2, i1 ̸= i2 ∈ [n], j1, j2 ∈ [d]

dC6(X)

dxi2,j2

= − (⟨−f(X)i0 · f(X)i0,i2 · ⟨Wj2,∗, X∗,i0⟩
+ f(X)i0 ◦ (ei2 · ⟨Wj2,∗, X∗,i0⟩), h(X)j0⟩+ f(X)i0,i2 · vj2,j0) · f(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩
+ ⟨f(X)i0 , h(X)j0⟩ · f(X)i0,i2 · f(X)i0,i1 · ⟨Wj2,∗, X∗,i0⟩ · ⟨Wj1,∗, X∗,i0⟩

Proof. Proof of Part 1

dC6(X)

dxi2,j2

=
d

dxi2,j2

(−⟨f(X)i0 , h(X)j0⟩ · f(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩)

=
d

dxi2,j2

(−⟨f(X)i0 , h(X)j0⟩) · f(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩

+ (−⟨f(X)i0 , h(X)j0⟩) ·
d

dxi2,j2

(f(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩)

=
d

dxi2,j2

(−⟨f(X)i0 , h(X)j0⟩) · f(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩

+ (−⟨f(X)i0 , h(X)j0⟩) · (−f(X)i0,i2f(X)i0,i1 + f(X)i0,i1) · ⟨Wj2,∗, X∗,i0⟩ · ⟨Wj1,∗, X∗,i0⟩
= − (⟨−f(X)i0 · f(X)i0,i2 · ⟨Wj2,∗, X∗,i0⟩

+ f(X)i0 ◦ (ei1 · ⟨Wj2,∗, X∗,i0⟩), h(X)j0⟩+ f(X)i0,i2 · vj2,j0) · f(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩
+ (−⟨f(X)i0 , h(X)j0⟩) · (−f(X)i0,i2f(X)i0,i1 + f(X)i0,i1) · ⟨Wj2,∗, X∗,i0⟩ · ⟨Wj1,∗, X∗,i0⟩

where the first step follows from Lemma A.16, the second step follows from simple differential rule,
the third step follows from Lemma C.4, last step follows from Lemma C.3.

Proof of Part 2
dC6(X)

dxi2,j2

=
d

dxi2,j2

(−⟨f(X)i0 , h(X)j0⟩ · f(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩)

=
d

dxi2,j2

(−⟨f(X)i0 , h(X)j0⟩) · f(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩

+ (−⟨f(X)i0 , h(X)j0⟩) ·
d

dxi2,j2

(f(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩)

=
d

dxi2,j2

(−⟨f(X)i0 , h(X)j0⟩) · f(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2025

+ ⟨f(X)i0 , h(X)j0⟩) · f(X)i0,i2 · f(X)i0,i1 · ⟨Wj2,∗, X∗,i0⟩ · ⟨Wj1,∗, X∗,i0⟩
= − (⟨−f(X)i0 · f(X)i0,i2 · ⟨Wj2,∗, X∗,i0⟩

+ f(X)i0 ◦ (ei2 · ⟨Wj2,∗, X∗,i0⟩), h(X)j0⟩+ f(X)i0,i2 · vj2,j0) · f(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩
+ ⟨f(X)i0 , h(X)j0⟩ · f(X)i0,i2 · f(X)i0,i1 · ⟨Wj2,∗, X∗,i0⟩ · ⟨Wj1,∗, X∗,i0⟩

where the first step follows from Lemma A.16, the second step follows from simple differential rule,
the third step follows from Lemma C.4, last step follows from Lemma C.3.

C.7 DERIVATIVE OF C7(X)

Lemma C.7. If the following holds:

• Let C7(X) ∈ R be defined as in Lemma A.16

We have

• Part 1. For i0 ̸= i2, i1 = i2 ∈ [n], j1, j2 ∈ [d]

dC7(X)

dxi2,j2

= (−f(X)i0,i2 + 1) · f(X)i0,i1 · ⟨Wj2,∗, X∗,i0⟩ · h(X)j0,i1 · ⟨Wj1,∗, X∗,i0⟩
+ vj2,j0 · f(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩

• Part 2. For i0 ̸= i2, i1 ̸= i2 ∈ [n], j1, j2 ∈ [d]

dC7(X)

dxi2,j2

= − f(X)i0,i2 · f(X)i0,i1 · ⟨Wj2,∗, X∗,i0⟩ · h(X)j0,i1 · ⟨Wj1,∗, X∗,i0⟩

Proof. Proof of Part 1.

dC7(X)

dxi2,j2

=
d

dxi2,j2

(f(X)i0,i1 · h(X)j0,i1 · ⟨Wj1,∗, X∗,i0⟩)

=
d

dxi2,j2

(f(X)i0,i1 · h(X)j0,i1) · ⟨Wj1,∗, X∗,i0⟩+ f(X)i0,i1 · h(X)j0,i1 ·
d

dxi2,j2

(⟨Wj1,∗, X∗,i0⟩)

= (−f(X)i0,i2 + 1) · f(X)i0,i1 · ⟨Wj2,∗, X∗,i0⟩ · h(X)j0,i1 · ⟨Wj1,∗, X∗,i0⟩
+ vj2,j0 · f(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩

+ f(X)i0,i1 · h(X)j0,i1 ·
d

dxi2,j2

(⟨Wj1,∗, X∗,i0⟩)

= (−f(X)i0,i2 + 1) · f(X)i0,i1 · ⟨Wj2,∗, X∗,i0⟩ · h(X)j0,i1 · ⟨Wj1,∗, X∗,i0⟩
+ vj2,j0 · f(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩

where the first step follows from Lemma A.16, the second step follows from differential rule, the
third step follows from Part 1 of Lemma C.3, the fourth step follows from i0 ̸= i2.

Proof of Part 2.
dC7(X)

dxi2,j2

=
d

dxi2,j2

(f(X)i0,i1 · h(X)j0,i1 · ⟨Wj1,∗, X∗,i0⟩)

=
d

dxi2,j2

(f(X)i0,i1 · h(X)j0,i1) · ⟨Wj1,∗, X∗,i0⟩+ f(X)i0,i1 · h(X)j0,i1 ·
d

dxi2,j2

(⟨Wj1,∗, X∗,i0⟩)

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2025

= − f(X)i0,i2f(X)i0,i1 · ⟨Wj2,∗, X∗,i0⟩ · h(X)j0,i1 · ⟨Wj1,∗, X∗,i0⟩

+ f(X)i0,i1 · h(X)j0,i1 ·
d

dxi2,j2

(⟨Wj1,∗, X∗,i0⟩)

= − f(X)i0,i2f(X)i0,i1 · ⟨Wj2,∗, X∗,i0⟩ · h(X)j0,i1 · ⟨Wj1,∗, X∗,i0⟩
+ f(X)i0,i1 · h(X)j0,i1 · 0d

= − f(X)i0,i2 · f(X)i0,i1 · ⟨Wj2,∗, X∗,i0⟩ · h(X)j0,i1 · ⟨Wj1,∗, X∗,i0⟩
where the first step follows from Lemma A.16, the second step follows from differential rule, the third
step follows from Part 2 of Lemma C.3, the fourth step follows from i0 ̸= i2, the last step follows
from simple algebra.

C.8 DERIVATIVE OF C8(X)

Lemma C.8. If the following holds:

• Let C8(X) ∈ R be defined as in Lemma A.16

• For i0 ̸= i2 ∈ [n], j1, j2 ∈ [d]

We have

• Part 1. For i0 ̸= i2, i1 = i2 ∈ [n], j1, j2 ∈ [d]

dC8(X)

dxi2,j2

= (−f(X)i0,i2f(X)i0,i1 + f(X)i0,i1) · ⟨Wj2,∗, X∗,i0⟩ · vj1,j0

• Part 2. For i0 ̸= i2, i1 ̸= i2 ∈ [n], j1, j2 ∈ [d]

dC8(X)

dxi2,j2

= − f(X)i0,i2 · f(X)i0,i1 · ⟨Wj2,∗, X∗,i0⟩ · vj1,j0

Proof. Proof of Part 1

dC8(X)

dxi2,j2

=
d

dxi2,j2

f(X)i0,i1 · vj1,j0
= (−f(X)i0,i2f(X)i0,i1 + f(X)i0,i1) · ⟨Wj2,∗, X∗,i0⟩ · vj1,j0

where the first step follows from Lemma A.16, the second step follows from differential rule and
Lemma C.1.

Proof of Part 2
dC8(X)

dxi2,j2

=
d

dxi2,j2

f(X)i0,i1 · vj1,j0
= − f(X)i0,i2 · f(X)i0,i1 · ⟨Wj2,∗, X∗,i0⟩ · vj1,j0

where the first step follows from Lemma A.16, the second step follows from differential rule and
Lemma C.1.

C.9 DERIVATIVE OF
dc(X)i0,j1

dxi1,j1

Lemma C.9. If the following holds:

• Let c(X)i0,j1 ∈ R be defined as in Lemma A.16 and Definition A.8

We have

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2025

• Part 1 For i0 ̸= i2, i1 = i2 ∈ [n], j1, j2 ∈ [d]

dc(X)

dxi1,j1 ,dxi2,j2

=

6∑
i=1

Fi(X)

where we have following definitions

F1(X) = 2s(X)i0,j0 · f(X)2i0,i1 · w(X)i0,j2 · w(X)i0,j1

F2(X) = − f(X)2i0,i1 · h(X)j0,i1 · w(X)i0,j2 · w(X)i0,j1

F3(X) = − f(X)2i0,i1 · vj2,j0 · w(X)i0,j1 − f(X)2i0,i1 · vj1,j0 · w(X)i0,j2

F4(X) = − s(X)i0,j0 · f(X)i0,i1 · w(X)i0,j1 · w(X)i0,j2
F5(X) = f(X)i0,i1 · w(X)i0,j1 · w(X)i0,j2 · h(X)j0,i1
F6(X) = vj2,j0 · f(X)i0,i1 · w(X)i0,j1 + vj1,j0 · f(X)i0,i1 · w(X)i0,j2

• Part 2 For i0 ̸= i2, i1 ̸= i2 ∈ [n], j1, j2 ∈ [d]

dc(X)

dxi1,j1 ,dxi2,j2

=

3∑
i=1

Gi(X)

where we have following definitions

G1(X) = 2s(X)i0,j0 · f(X)i0,i1 · f(X)i0,i2 · w(X)i0,j2 · w(X)i0,j1
G2(X) = − f(X)i0,i1 · f(X)i0,i2 · w(X)i0,j2 · w(X)i0,j1 · (h(X)j0,i2 + h(X)j0,i1)

G3(X) = − f(X)i0,i1 · f(X)i0,i2 · (vj2,j0 · w(X)i0,j1 + vj1,j0 · w(X)i0,j2)

Proof. Proof of Part 1.

dc(X)i0,j0
dxi1,j1 ,dxi2,j2

=
dC6

dxi2,j2

+
dC7

dxi2,j2

+
dC8

dxi2,j2

= − (⟨−f(X)i0 · f(X)i0,i1 · ⟨Wj2,∗, X∗,i0⟩+ f(X)i0 ◦ (ei1 · ⟨Wj2,∗, X∗,i0⟩), h(X)j0⟩
+ f(X)i0,i1 · vj2,j0) · f(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩
+ (−⟨f(X)i0 , h(X)j0⟩) · (−f(X)2i0,i1 + f(X)i0,i1) · ⟨Wj2,∗, X∗,i0⟩ · ⟨Wj1,∗, X∗,i0⟩
(−f(X)i0,i2 + 1) · f(X)i0,i1 · ⟨Wj2,∗, X∗,i0⟩ · h(X)j0,i1 · ⟨Wj1,∗, X∗,i0⟩
+ vj2,j0 · f(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩
+ (−f(X)2i0,i1 + f(X)i0,i1) · ⟨Wj2,∗, X∗,i0⟩ · vj1,j0

= 2s(X)i0,j0 · f(X)2i0,i1 · w(X)i0,j2 · w(X)i0,j1

− 2f(X)2i0,i1 · h(X)j0,i1 · w(X)i0,j2 · w(X)i0,j1

− f(X)2i0,i1 · vj2,j0 · w(X)i0,j1 − f(X)2i0,i1 · vj1,j0 · w(X)i0,j2

− s(X)i0,j0 · f(X)i0,i1 · w(X)i0,j1 · w(X)i0,j2
+ f(X)i0,i1 · w(X)i0,j1 · w(X)i0,j2 · h(X)j0,i1
+ vj2,j0 · f(X)i0,i1 · w(X)i0,j1 + vj1,j0 · f(X)i0,i1 · w(X)i0,j2

where the first step follows from Lemma A.16, the second step follows from previous results in this
section, the last step is a rearrangement.

Proof of Part 2.
dc(X)i0,j0

dxi1,j1 ,dxi2,j2

=
dC6

dxi2,j2

+
dC7

dxi2,j2

+
dC8

dxi2,j2

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2025

= − (⟨−f(X)i0 · f(X)i0,i2 · ⟨Wj2,∗, X∗,i0⟩
+ f(X)i0 ◦ (ei2 · ⟨Wj2,∗, X∗,i0⟩), h(X)j0⟩+ f(X)i0,i2 · vj2,j0) · f(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩
+ ⟨f(X)i0 , h(X)j0⟩ · f(X)i0,i2 · f(X)i0,i1 · ⟨Wj2,∗, X∗,i0⟩ · ⟨Wj1,∗, X∗,i0⟩
− f(X)i0,i2 · f(X)i0,i1 · ⟨Wj2,∗, X∗,i0⟩ · h(X)j0,i1 · ⟨Wj1,∗, X∗,i0⟩
− f(X)i0,i2 · f(X)i0,i1 · ⟨Wj2,∗, X∗,i0⟩ · vj1,j0

= 2s(X)i0,j0 · f(X)i0,i1 · f(X)i0,i2 · w(X)i0,j2 · w(X)i0,j1
− f(X)i0,i1 · f(X)i0,i2 · h(X)j0,i2 · w(X)i0,j2 · w(X)i0,j1
− f(X)i0,i1 · f(X)i0,i2 · w(X)i0,j1 · w(X)i0,j2 · h(X)j0,i1
− f(X)i0,i1 · f(X)i0,i2 · vj2,j0 · w(X)i0,j1 − f(X)i0,i1 · f(X)i0,i2 · vj1,j0 · w(X)i0,j2

where the first step follows from Lemma A.16, the second step follows from Lemma C.6, the third
step follows from Part 2 of Lemma C.7, the last step follows from Lemma C.8.

Notice that, by our construction, Part 1 should be symmetric w.r.t. j1, j2, Part 2 should be symmetric
w.r.t. i1, i2, which are all satisfied.

D HESSIAN REFORMULATION

In this section, we provide a reformulation of Hessian formula, which simplifies our calculation
and analysis. In Section D.1 we show the way we split the Hessian. In Section D.2 we show the
decomposition when i0 = i1 = i2.

D.1 HESSIAN SPLIT

Definition D.1 (Hessian of functions of matrix). We define the Hessian of c(X)i0,j0 by considering
its Hessian with respect to x = vec(X). This means that, ∇2c(X)i0,j0 is a nd× nd matrix with its
(i1 · j1, i2 · j2)-th entry being

dc(X)i0,j0
dxi1,j2xi2,j2

Definition D.2 (Hessian split). We split the hessian of c(X)i0,j0 into following cases

• Part 1: i0 = i1 = i2 : H(i1,i2)
1

• Part 2: i0 = i1, i0 ̸= i2 : H(i1,i2)
2

• Part 3: i0 ̸= i1, i0 = i2 : H(i1,i2)
3

• Part 4: i0 ̸= i1, i0 ̸= i2, i1 = i2: H(i1,i2)
4

• Part 5: i0 ̸= i1, i0 ̸= i2, i1 ̸= i2: H(i1,i2)
5

In above, H(i1,i2)
i is a d× d matrix with its j1, j2-th entry being

dc(X)i0,j0
dxi1,j2xi2,j2

Utilizing above definitions, we split the Hessian to a n × n partition with its i1, i2-th component
being Hi(i1, i2) based on above definition.

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2025

Definition D.3. We define ∇2c(X)i0,j0 to be as following

H
(1,1)
4 H

(1,2)
5 H

(1,3)
5 · · · H

(1,i0−1)
5 H

(1,i0)
3 H

(1,i0+1)
5 · · · H

(1,n)
5

H
(2,1)
5 H

(2,2)
4 H

(2,3)
5 · · · H

(2,i0−1)
5 H

(2,i0)
3 H

(2,i0+1)
5 · · · H

(2,n)
5

H
(3,1)
5 H

(3,2)
5 H

(3,3)
4 · · · H

(3,i0−1)
5 H

(3,i0)
3 H

(3,i0+1)
5 · · · H

(3,n)
5

...
...

...
. . .

...
...

...
. . .

...
H

(i0,1)
2 H

(i0,2)
2 H

(i0,3)
2 · · · H

(i0,i0−1)
2 H

(i0,i0)
1 H

(i0,i0+1)
2 · · · H

(i0,n)
2

H
(i0+1,1)
5 H

(i0+1,2)
5 H

(i0+1,3)
5 · · · H

(i0+1,i0−1)
5 H

(i0+1,i0)
3 H

(i0+1,i0+1)
4 · · · H

(i0+1,n)
5

...
...

...
. . .

...
...

...
. . .

...
H

(n,1)
5 H

(n,2)
5 H

(n,3)
5 · · · H

(n,i0−1)
5 H

(n,i0)
3 H

(n,i0+1)
5 · · · H

(n,n)
4

D.2 DECOMPOSITION HESSIAN : PART 1

Lemma D.4 (Helpful lemma). Under following conditions

• Let z(X)i0 := W⊤X · f(X)i0

• Let w(X)i0,∗ := WX∗,i0

we have

• Part 1: w(X)i0,j1 = e⊤j1 · w(X)i0,∗

• Part 2: z(X)i0,j1 = e⊤j1 · z(X)i0

Proof. Proof of Part 1

w(X)i0,j1 = ⟨Wj1,∗, X∗,i0⟩
= W⊤

j1,∗X∗,i0

= e⊤j1 ·WX∗,i0

= e⊤j1 · w(X)i0,∗

where the first step is by the definition of w(X)i0,j1 the 2nd and 3rd step are from linear algebra facts,
the 4th step is by the definition of w(X)i0,∗.

Proof of Part 2

z(X)i0,j1 = ⟨f(X)i0, X
⊤W∗,j1⟩

= (X⊤W∗,j1)
⊤f(X)i0

=W⊤
∗,j1X · f(X)i0

= e⊤j1 ·W⊤X · f(X)i0

= e⊤j1 · z(X)i0

where the first step is by the definition of w(X)i0,j1 the 2nd, 3rd, and the 4th step are from linear
algebra facts, the 5th step is by the definition of w(X)i0,∗.

Lemma D.5. Under following conditions

• Let Di(X) be defined as Lemma B.15

• Let z(X)i0 := W⊤X · f(X)i0

• Let w(X)i0,∗ := WX∗,i0

we have

D1(X) = e⊤j1 · w(X)i0,∗ · 2s(X)i0,j0 · f(X)2i0,i0 · w(X)⊤i0,∗ · ej2

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2025

D2(X) = e⊤j1 · (w(X)i0,∗ · 2f(X)i0,i0 · s(X)i0,j0 · z(X)⊤i0
+ z(X)i0 · 2f(X)i0,i0 · s(X)i0,j0 · w(X)⊤i0,∗) · ej2

D3(X) = − e⊤j1 · w(X)i0,∗ · f(X)2i0,i0 · h(X)j0,i0 · w(X)⊤i0,∗ · ej2
D4(X) = − e⊤j1 ·W⊤ · f(X)i0,i0 ·X · diag(f(X)i0) · h(X)j0 · w(X)⊤i0,∗ · ej2

− e⊤j1 · w(X)i0,∗ · f(X)i0,i0 · h(X)⊤j0 · diag(f(X)i0) ·X⊤ ·W · ej2
D5(X) = − e⊤j1 · (w(X)i0,∗ · f(X)2i0,i0 · V ⊤

∗,j0 + V∗,j0 · f(X)2i0,i0 · w(X)⊤i0,∗) · ej2
D6(X) = − e⊤j1 · w(X)i0,∗ · s(X)i0,j0 · f(X)i0,i0 · w(X)⊤i0,∗ · ej2
D7(X) = − e⊤j1 · w(X)i0,∗ · s(X)i0,j0 · f(X)i0,i0 ·X⊤

∗,i0 ·W · ej2
− e⊤j1 ·W⊤ ·X∗,i0 · s(X)i0,j0 · f(X)i0,i0 · w(X)⊤i0,∗ · ej2

D8(X) = e⊤j1 · s(X)i0,j0 · f(X)i0,i0 · (W⊤ −W) · ej2
D9(X) = e⊤j1 · z(X)i0 · s(X)i0,j0 · z(X)⊤i0 · ej2
D10(X) = − e⊤j1 · (z(X)i0 · f(X)i0,i0 · h(X)j0,i0 · w(X)⊤i0,∗

+ w(X)i0,∗ · f(X)i0,i0 · h(X)j0,i0 · z(X)⊤i0) · ej2
D11(X) = − e⊤j1 · (z(X)i0 · h(X)⊤j0 · diag(f(X)i0) ·X⊤ ·W

+W⊤ ·X · diag(f(X)i0) · h(X)j0 · z(X)⊤i0) · ej2
D12(X) = − e⊤j1 · (z(X)i0 · f(X)i0,i0 · V ⊤

∗,j0 + V∗,j0 · f(X)i0,i0 · z(X)⊤i0) · ej2
D13(X) = e⊤j1 · z(X)i0 · s(X)i0,j0 · f(X)i0,i0 · z(X)⊤i0 · ej2
D14(X) = − e⊤j1 ·W⊤ ·X · s(X)i0,j0 · diag(f(X)i0) ·X⊤ ·W · ej2
D15(X) = − e⊤j1 · w(X)i0,∗ · f(X)2i0,i0 · h(X)j0,i0 · ·w(X)⊤i0,∗ · ej2
D16(X) = e⊤j1 · w(X)i0,∗ · f(X)i0,i0 · h(X)j0,i0 · ·w(X)⊤i0,∗ · ej2
D17(X) = e⊤j1 · (w(X)i0,∗ · f(X)i0,i0 ·X⊤

∗,i0 · h(X)j0,i0 ·W
+W⊤ ·X∗,i0 · f(X)i0,i0 · h(X)j0,i0 · w(X)i0) · ej2

D18(X) = e⊤j1 · (w(X)i0,∗f(X)i0,i0 · V ⊤
j2,∗ + V ⊤

j1,∗ · f(X)i0,i0 · w(X)⊤i0,∗) · ej2
D19(X) = e⊤j1 · f(X)i0,i0 · h(X)i0,i0 · (W +W⊤) · ej2
D20(X) := e⊤j1 ·W⊤ ·X · diag(f(X)i0) · diag(h(X)j0) ·X⊤ ·W · ej2
D21(X) := e⊤j1 · (W⊤ ·X∗,i0 · f(X)i0,i0 · V ⊤

∗,j0 + V∗,j0 · f(X)i0,i0 ·X⊤
∗,i0 ·W) · ej2

Proof. This lemma is followed by Lemma D.4 and linear algebra facts.

Based on above auxiliary lemma, we have following definition.

Definition D.6. Under following conditions

• Let z(X)i0 := W⊤X · f(X)i0

• Let w(X)i0,∗ := WX∗,i0

We present the Case 1 component of Hessian c(X)i0,j0 to be

H
(i0,i0)
1 (X) := B(X)

where we have

B(X) :=

21∑
i=1

Bi(X)

B1(X) := w(X)i0,∗ · 2s(X)i0,j0 · f(X)2i0,i0 · w(X)⊤i0,∗

52

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2025

B2(X) := w(X)i0,∗ · 2f(X)i0,i0 · s(X)i0,j0 · z(X)⊤i0
+ z(X)i0 · 2f(X)i0,i0 · s(X)i0,j0 · w(X)⊤i0,∗

B3(X) := − w(X)i0,∗ · f(X)2i0,i0 · h(X)j0,i0 · w(X)⊤i0,∗

B4(X) := −W⊤ · f(X)i0,i0 ·X · diag(f(X)i0) · h(X)j0 · w(X)⊤i0,∗

− w(X)i0,∗ · f(X)i0,i0 · h(X)⊤j0 · diag(f(X)i0) ·X⊤ ·W
B5(X) := − w(X)i0,∗ · f(X)2i0,i0 · V ⊤

∗,j0 − V∗,j0 · f(X)2i0,i0 · w(X)⊤i0,∗

B6(X) := − w(X)i0,∗ · s(X)i0,j0 · f(X)i0,i0 · w(X)⊤i0,∗

B7(X) := − w(X)i0,∗ · s(X)i0,j0 · f(X)i0,i0 ·X⊤
∗,i0 ·W

−W⊤ ·X∗,i0 · s(X)i0,j0 · f(X)i0,i0 · w(X)⊤i0,∗

B8(X) := s(X)i0,j0 · f(X)i0,i0 · (W⊤ −W)

B9(X) := z(X)i0 · s(X)i0,j0 · z(X)⊤i0
B10(X) := − z(X)i0 · f(X)i0,i0 · h(X)j0,i0 · w(X)⊤i0,∗

− w(X)i0,∗ · f(X)i0,i0 · h(X)j0,i0 · z(X)⊤i0
B11(X) := − z(X)i0 · (h(X)⊤j0 · diag(f(X)i0) ·X⊤ ·W

−W⊤ ·X · diag(f(X)i0) · h(X)j0 · z(X)⊤i0
B12(X) := − z(X)i0 · f(X)i0,i0 · V ⊤

∗,j0 + V∗,j0 · f(X)i0,i0 · z(X)⊤i0
B13(X) := z(X)i0 · s(X)i0,j0 · f(X)i0,i0 · z(X)⊤i0
B14(X) := −W⊤ ·X · s(X)i0,j0 · diag(f(X)i0) ·X⊤ ·W
B15(X) := − w(X)i0,∗ · f(X)2i0,i0 · h(X)j0,i0 · ·w(X)⊤i0,∗

B16(X) := w(X)i0,∗ · f(X)i0,i0 · h(X)j0,i0 · ·w(X)⊤i0,∗

B17(X) := w(X)i0,∗ · f(X)i0,i0 ·X⊤
∗,i0 · h(X)j0,i0 ·W

+W⊤ ·X∗,i0 · f(X)i0,i0 · h(X)j0,i0 · w(X)i0

B18(X) := w(X)i0,∗ · f(X)i0,i0 · V ⊤
j2,∗ + V ⊤

j1,∗ · f(X)i0,i0 · w(X)⊤i0,∗

B19(X) := f(X)i0,i0 · h(X)i0,i0 · (W +W⊤)

B20(X) :=W⊤ ·X · diag(f(X)i0) · diag(h(X)j0) ·X⊤

B21(X) :=W⊤ ·X∗,i0 · f(X)i0,i0 · V ⊤
∗,j0 + V∗,j0 · f(X)i0,i0 ·X⊤

∗,i0 ·W

D.3 DECOMPOSITION HESSIAN: PART 2 AND PART 3

Lemma D.7. Under following conditions

• Let Ei(X) be defined as Lemma B.15

• Let z(X)i0 := W⊤X · f(X)i0

• Let w(X)i0,∗ := WX∗,i0

we have

E1(X) = e⊤j1 · w(X)i0,∗ · 2s(X)i0,j0 · f(X)i0,i2 · f(X)i0,i0 · w(X)⊤i0,∗ · ej2
E2(X) =− e⊤j1 · w(X)i0,∗ · 2f(X)i0,i2 · h(X)j0,i2 · f(X)i0,i0 · w(X)⊤i0,∗ · ej2
E3(X) = − e⊤j1 · w(X)i0,∗ · f(X)i0,i2 · f(X)i0,i0 · V ⊤

∗,j0 · ej2
E4(X) = e⊤j1 · z(X)i0 · s(X)i0,j0 · f(X)i0,i2 · w(X)⊤i0,∗ · ej2
E5(X) = − e⊤j1 · z(X)i0 · f(X)i0,i2 · h(X)j0,i2 · w(X)⊤i0,∗ · ej2
E6(X) = − e⊤j1 · z(X)i0 · f(X)i0,i2 · V ⊤

∗,j0 · ej2

53

2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2025

E7(X) = e⊤j1 · z(X)i0 · s(X)i0,j0 · f(X)i0,i0 · w(X)⊤i0,∗ · ej2
E8(X) = − e⊤j1 · w(X)i0,∗ · s(X)i0,j0 · f(X)i0,i0 · w(X)⊤i0,∗ · ej2
E9(X) = − e⊤j1 ·W⊤ · s(X)i0,j0 · f(X)i0,i0 · ej2
E10(X) = − e⊤j1 · w(X)i0,∗ · f(X)i0,i0 · f(X)i0,i2 · h(X)j0,i0 · w(X)⊤i0,∗ · ej2
E11(X) = − e⊤j1 ·W⊤ ·X · diag(f(X)i0) · h(X)j0 · f(X)i0,i2 · w(X)⊤i0,∗ · ej2
E12(X) = e⊤j1 ·W⊤ ·X∗,i2 · f(X)i0,i2 · h(X)j0,i2 · w(X)⊤i0,∗ · ej2
E13(X) = e⊤j1 ·W⊤f(X)i0,i2 · h(X)j0,i2 · ej2
E14(X) = e⊤j1 ·W⊤ ·X∗,i2 · f(X)i0,i2 · V ⊤

∗,j0 · ej2
E15(X) = − e⊤j1 · V∗,j0 · f(X)i0,i0 · f(X)i0,i2 · w(X)⊤i0,∗ · ej2

Proof. This lemma is followed by Lemma D.4 and linear algebra facts.

Based on above auxiliary lemma, we have following definition.
Definition D.8. Under following conditions

• Let z(X)i0 := W⊤X · f(X)i0

• Let w(X)i0,∗ := WX∗,i0

We present the Case 2 component of Hessian c(X)i0,j0 to be

H
(i0,i2)
2 (X) := J(X)

where we have

J(X) :=

15∑
i=1

Ji(X)

J1(X) := w(X)i0,∗ · 2s(X)i0,j0 · f(X)i0,i2 · f(X)i0,i0 · w(X)⊤i0,∗

J2(X) :=− w(X)i0,∗ · 2f(X)i0,i2 · h(X)j0,i2 · f(X)i0,i0 · w(X)⊤i0,∗

J3(X) := − w(X)i0,∗ · f(X)i0,i2 · f(X)i0,i0 · V ⊤
∗,j0

J4(X) := z(X)i0 · s(X)i0,j0 · f(X)i0,i2 · w(X)⊤i0,∗

J5(X) := − z(X)i0 · f(X)i0,i2 · h(X)j0,i2 · w(X)⊤i0,∗

J6(X) := − z(X)i0 · f(X)i0,i2 · V ⊤
∗,j0

J7(X) := z(X)i0 · s(X)i0,j0 · f(X)i0,i0 · w(X)⊤i0,∗

J8(X) := − w(X)i0,∗ · s(X)i0,j0 · f(X)i0,i0 · w(X)⊤i0,∗

J9(X) := −W⊤ · s(X)i0,j0 · f(X)i0,i0

J10(X) := − w(X)i0,∗ · f(X)i0,i0 · f(X)i0,i2 · h(X)j0,i0 · w(X)⊤i0,∗

J11(X) := −W⊤ ·X · diag(f(X)i0) · h(X)j0 · f(X)i0,i2 · w(X)⊤i0,∗

J12(X) :=W⊤ ·X∗,i2 · f(X)i0,i2 · h(X)j0,i2 · w(X)⊤i0,∗

J13(X) :=W⊤f(X)i0,i2 · h(X)j0,i2

J14(X) :=W⊤ ·X∗,i2 · f(X)i0,i2 · V ⊤
∗,j0

J15(X) := − V∗,j0 · f(X)i0,i0 · f(X)i0,i2 · w(X)⊤i0,∗

Next, we define the third case by the symmetricity of Hessian.
Definition D.9. We present the Case 3 component of Hessian c(X)i0,j0 to be

H
(i,i0)
3 (X) := H

(i0,i)
2 (X)

54

2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Under review as a conference paper at ICLR 2025

D.4 DECOMPOSITION HESSIAN : PART 4

Lemma D.10. Under following conditions

• Let Fi(X) be defined as Lemma C.9

• Let z(X)i0 := W⊤X · f(X)i0

• Let w(X)i0,∗ := WX∗,i0

we have

F1(X) = e⊤j1 · w(X)i0,∗ · 2s(X)i0,j0 · f(X)2i0,i1 · w(X)⊤i0,∗ · ej2
F2(X) = − e⊤j1 · w(X)i0,∗ · f(X)2i0,i1 · h(X)j0,i1 · w(X)⊤i0,∗ · ej2
F3(X) = − e⊤j1 · (w(X)i0,∗ · f(X)2i0,i1 · V ⊤

∗,j0 + V∗,j0 · f(X)2i0,i1 · w(X)⊤i0,∗) · ej2
F4(X) = − e⊤j1 · w(X)i0,∗ · s(X)i0,j0 · f(X)i0,i1 · w(X)⊤i0,∗ · ej2
F5(X) = e⊤j1 · w(X)i0,∗ · f(X)i0,i1 · h(X)j0,i1 · w(X)⊤i0,∗ · ej2
F6(X) = e⊤j1 · (w(X)i0,∗ · f(X)i0,i1 · V ⊤

∗,j0 + V∗,j0 · f(X)i0,i1 · w(X)⊤i0,∗) · ej2

Proof. This lemma is followed by Lemma D.4 and linear algebra facts.

Based on above auxiliary lemma, we have following definition.
Definition D.11. Under following conditions

• Let z(X)i0 := W⊤X · f(X)i0

• Let w(X)i0,∗ := WX∗,i0

We present the Case 4 component of Hessian c(X)i0,j0 to be

H
(i1,i1)
4 (X) := K(X)

where we have

K(X) :=

6∑
i=1

Ki(X)

K1(X) := w(X)i0,∗ · 2s(X)i0,j0 · f(X)2i0,i1 · w(X)⊤i0,∗

K2(X) := − w(X)i0,∗ · f(X)2i0,i1 · h(X)j0,i1 · w(X)⊤i0,∗

K3(X) := − w(X)i0,∗ · f(X)2i0,i1 · V ⊤
∗,j0 − V∗,j0 · f(X)2i0,i1 · w(X)⊤i0,∗

K4(X) := − w(X)i0,∗ · s(X)i0,j0 · f(X)i0,i1 · w(X)⊤i0,∗

K5(X) := w(X)i0,∗ · f(X)i0,i1 · h(X)j0,i1 · w(X)⊤i0,∗

K6(X) := w(X)i0,∗ · f(X)i0,i1 · V ⊤
∗,j0 + V∗,j0 · f(X)i0,i1 · w(X)⊤i0,∗

D.5 DECOMPOSITION HESSIAN : PART 5

Lemma D.12. Under following conditions

• Let Gi(X) be defined as Lemma C.9

• Let z(X)i0 := W⊤X · f(X)i0

• Let w(X)i0,∗ := WX∗,i0

we have

G1(X) = e⊤j1 · w(X)i0,∗ · 2s(X)i0,j0 · f(X)i0,i1 · f(X)i0,i2 · w(X)⊤i0,∗ · ej2

55

2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

Under review as a conference paper at ICLR 2025

G2(X) = − e⊤j1 · w(X)i0,∗ · f(X)i0,i1 · f(X)i0,i2 · (h(X)j0,i2 + h(X)j0,i1) · w(X)⊤i0,∗ · ej2
G3(X) = − e⊤j1 · f(X)i0,i1 · f(X)i0,i2 · (w(X)i0,∗ · V ⊤

∗,j0 + V∗,j0 · w(X)∗,j2) · ej2

Proof. This lemma is followed by Lemma D.4 and linear algebra facts.

Based on above auxiliary lemma, we have following definition.
Definition D.13. Under following conditions

• Let z(X)i0 := W⊤X · f(X)i0

• Let w(X)i0,∗ := WX∗,i0

We present the Case 5 component of Hessian c(X)i0,j0 to be

H
(i1,i2)
5 (X) := N(X)

where we have

N(X) :=

3∑
i=1

Ni(X)

N1(X) := w(X)i0,∗ · 2s(X)i0,j0 · f(X)i0,i1 · f(X)i0,i2 · w(X)⊤i0,∗

N2(X) := − w(X)i0,∗ · f(X)i0,i1 · f(X)i0,i2 · (h(X)j0,i2 + h(X)j0,i1) · w(X)⊤i0,∗

N3(X) := − f(X)i0,i1 · f(X)i0,i2 · (w(X)i0,∗ · V ⊤
∗,j0 + V∗,j0 · w(X)⊤∗,j2)

E HESSIAN OF LOSS FUNCTION

In this section, we provide the Hessian of our loss function.
Lemma E.1 (A single entry). Under following conditions

• Let L(X) be defined as Definition A.9

we have

dL(X)

dxi1,j1xi2,j2

=

n∑
i0=1

d∑
j0=1

dc(X)i0,j0
dxi1,j1

· dc(X)i0,j0
dxi1,j2

+ c(X)i0,j0 ·
dc(X)i0,j0
dxi1,j1xi2,j2

Proof. Proof of Part 1: i1 = i2

dL(X)

dxi1,j1xi2,j2

=
d

dxi2,j2

(

n∑
i0=1

d∑
j0=1

c(X)i0,j0 ·
dc(X)i0,j0
dxi1,j1

)

=

n∑
i0=1

d∑
j0=1

dc(X)i0,j0
dxi1,j1

· dc(X)i0,j0
dxi2,j2

+ c(X)i0,j0 ·
dc(X)i0,j0
dxi1,j1xi2,j2

where the first step is given by chain rule, and the 2nd step are given by product rule.

Lemma E.2 (Matrix Representation of Hessian). Under following conditions

• Let c(X)i0,j0 be defined as Definition A.8

• Let L(X) be defined as Definition A.9

we have

∇2L(X) =

n∑
i0=1

d∑
j0=1

∇c(X)i0,j0 · ∇c(X)⊤i0,j0 + c(X)i0,j0 · ∇2c(X)i0,j0

Proof. This is directly given by the single-entry representation in Lemma E.1.

56

3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077

Under review as a conference paper at ICLR 2025

F BOUNDS FOR BASIC FUNCTIONS

In this section, we prove the upper bound for each function, with following assumption about the
domain of parameters. In Section F.1 we bound the basic terms. In Section F.2 we bound the gradient
of f(X)i0 . In Section F.3 we bound the gradient of c(X)i0,j0
Assumption F.1 (Bounded parameters, formal version of Assumption 4.1). Let W,V,X,B be defined
as in Section A.2,

• Let R be some fixed constant satisfies R > 1

• We have ∥W∥ ≤ R, ∥V ∥ ≤ R, ∥X∥ ≤ R where ∥ · ∥ is the matrix spectral norm

• We have bi,j ≤ R2

F.1 BOUNDS FOR BASIC FUNCTIONS

Lemma F.2. Under Assumption F.1, for all i0 ∈ [n], j0 ∈ [d], we have following bounds:

• Part 1

∥f(X)i0∥2 ≤ 1

• Part 2

∥h(X)i0∥2 ≤ R2

• Part 3

|c(X)i0,j0 | ≤ 2R2

• Part 4

∥x⊤W∗,j0∥2 ≤ R2

• Part 5

|w(X)i0,j0 | ≤ R2

• Part 6

|z(X)i0,j0 | ≤ R2

• Part 7

|s(X)i0,j0 | ≤ R2

Proof. Proof of Part 1

The proof is similar to Deng et al. (2023d), and hence is omitted here.

Proof of Part 2

∥h(X)j0∥2 = ∥X⊤V∗,j0∥2
≤ ∥V ∥ · ∥X∥
≤ R2

where the first step is by Definition A.7, the 2nd step is by basic algebra, the 3rd follows by
Assumption F.1.

Proof of Part 3

|c(X)i0,j0 | = |⟨f(X)i0 , h(X)j0⟩ − bi0,j0 |
≤ |⟨f(X)i0 , h(X)j0⟩|+ |bi0,j0 |

57

3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

Under review as a conference paper at ICLR 2025

≤ ∥f(X)i0∥2 · ∥h(X)j0∥2 + |bi0,j0 |
≤ 2R2

where the first step is by Definition A.8, the 2nd step uses triangle inequality, the 3rd step uses
Cauchy-Schwartz inequality, the 4th step is by Assumption F.1 and Part 2.

Proof of Part 4

∥x⊤W∗,j0∥2 ≤ ∥x∥ · ∥W∥
≤ R2

where the first step is by basic algebra, the second is by Assumption F.1.

Proof of Part 5

|w(X)i0,j0 | = |⟨Wj0,∗, X∗,i0 |
≤ ∥Wj0,∗∥2 · ∥X∗,i0∥2
≤ R2

where the first step is by the definition of w(X)i0,j0 , the 2nd step is Cauchy-Schwartz inequality, the
3rd step is by Assumption F.1.

Proof of Part 6

|z(X)i0,j0 | = |⟨f(X)i0 , X
⊤W∗,j0⟩|

≤ ∥f(X)i0∥2 · ∥X∥ · ∥W∗,j0∥
≤ R2

where the first step is by the definition of z(X)i0,j0 , the 2nd step is Cauchy-Schwartz inequality, the
3rd step is by Assumption F.1.

Proof of Part 7

|s(X)i0,j0 | = |⟨f(X)i0 , h(X)j0⟩|
≤ ∥f(X)i0∥2 · ∥h(X)j0∥2
≤ R2

where the first step is by the definition of s(X)i0,j0 , the 2nd step is Cauchy-Schwartz inequality, the
3rd step is by Part 1 and Part 2.

F.2 BOUNDS FOR GRADIENT OF f(X)i0

Lemma F.3. Under following conditions

• Let f(X)i0 be defined as Definition A.6

• Assumption F.1 holds

• We use∇f(X)i0 to define a matrix that its (j0, i1 · j1)-th entry is

df(X)i0,j0
dxi1,j1

i.e., its (i1 · j1)-th column is

df(X)i0
dxi1,j1

Then we have:

• Part 1: for all i0, i1 ∈ [n], j1 ∈ [d],

∥df(X)i0
dxi1,j1

∥2 ≤ 4R2

58

3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185

Under review as a conference paper at ICLR 2025

• Part 2:

∥∇f(X)i0∥F ≤ 4
√
ndR2

Proof. Proof of Part 1

|df(X)i0
dxi1,j1

| = | − f(X)i0 · (f(X)i0,i0 · ⟨Wj1,∗, X∗,i0⟩+ ⟨f(X)i0 , X
⊤W∗,j1⟩)

+ f(X)i0 ◦ (ei0 · ⟨Wj1,∗, X∗,i0⟩+X⊤W∗,j1)|
≤ ∥f(X)i0∥22 · |⟨Wj1,∗, X∗,i0⟩|+ ∥f(X)i0∥22 · ∥X⊤W∗,j1∥

+ ∥f(X)i0∥2 · |⟨Wj1,∗, X∗,i0⟩|+ ∥f(X)i0∥2 · ∥X⊤W∗,j1)∥2
≤ 4R2

where the 1st step is by Lemma A.14, the 2nd step is by Fact A.1, the 3rd step is by Lemma F.2.

Proof of Part 2

∥∇f(X)i0∥F = (
n∑

i1=1

d∑
j1=1

∥df(X)i0
dxi1,j1

∥22)
1
2

≤ (

n∑
i1=1

d∑
j1=1

16R4)
1
2

= 4
√
ndR2

where the first step is by the definition of∇f(X)i0 , the 2nd step is by Part 1.

F.3 BOUNDS FOR GRADIENT OF c(X)i0,j0

Lemma F.4. Under following conditions

• Let c(X)i0,j0 be defined as Definition A.8

• Assumption F.1 holds

• We use∇c(X)i0,j0 to denote the Hessian of c(X)i0,j0 w.r.t. vec(X)

Then we have:

• Part 1: for all i0, i1 ∈ [n], j1 ∈ [d],

|c(X)i0,j0
dxi1,j1

|2 ≤ 5R4

• Part 2:

∥∇c(X)i0,j0∥2 ≤ 5
√
ndR4

Proof. Proof of part 1

|dc(X)i0,j0
dxi1,j1

| = |C1(X) + C2(X) + C3(X) + C4(X) + C5(X)|

≤ |C1(X)|+ |C2(X)|+ |C3(X)|+ |C4(X)|+ |C5(X)|
≤ ∥f(X)i0∥22 · ∥h(X)j0∥2 · |w(X)i0,j0 |+ ∥f(X)i0∥2 · ∥h(X)j0∥2 · |z(X)i0,j1 |

+ ∥f(X)i0∥2 · ∥h(X)j0∥2 · |w(X)i0,j0 |
+ ∥f(X)i0∥2 · ∥X∥ · ∥W∗,j1∥2 · ∥h(X)j0∥2 + ∥f(X)i0∥2 · ∥V ∥

≤ R4 +R4 +R4 +R4 +R2

≤ 5R4

59

3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239

Under review as a conference paper at ICLR 2025

where the first step is by Lemma A.16, the 2nd step is by triangle inequality, the 3rd step is by
Fact A.1, the 4th step is by Lemma F.2, the 5th step holds by R > 1.

Proof of Part 2

∥∇c(X)i0,j0∥2 = (

n∑
i1=1

d∑
j1=1

∥dc(X)i0,j0
dxi1,j1

∥22)
1
2

≤ (

n∑
i1=1

d∑
j1=1

25R8)
1
2

= 5
√
ndR4

where the first step is by the definition of∇f(X)i0 , the 2nd step is by Part 1.

F.4 BOUNDS FOR HESSIAN OF c(X)i0,j0

Lemma F.5. Under following conditions

• Let c(X)i0,j0 be defined as Definition A.8

• Assumption F.1 (Bounded parameter) holds

• Let Bi(X) be defined as in Definition D.6

we have

• Part 1: For all i0 = i1 = i2 ∈ [n], we have

∥H1(X)(i0,i0)∥ ≤ 23R6 +R5 + 12R3

• Part 2: For all i0 = i1 ̸= i2 ∈ [n], we have

∥H2(X)(i0,i2)∥ ≤ 11R6 + 6R3

• Part 3: For all i0 = i2 ̸= i1 ∈ [n], we have

∥H3(X)(i1,i0)∥ ≤ 11R6 + 6R3

• Part 4: For all i0 ̸= i1 = i2 ∈ [n], we have

∥H4(X)(i1,i1)∥ ≤ 5R6 + 4R3

• Part 5: For all i0 ̸= i1, i0 ̸= i2, i1 ̸= i2 ∈ [n], we have

∥H5(X)(i1,i2)∥ ≤ 4R6 + 2R3

Proof. The proof is similar to Lemma F.4 and hence omit.

G LIPSCHITZ OF HESSIAN

In Section G.1 we provide tools and facts. In Sections G.2, G.3, G.4, G.7, G.6, G.7 and G.8 we
provide proof of lipschitz property of several important terms. And finally in Section G.9 we provide
the proof for Lipschitz property of gradient of L(X). In Section G.10 we provide proof for Lipschitz
property of Hessian of L(X).

60

3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293

Under review as a conference paper at ICLR 2025

G.1 FACTS AND TOOLS

In this section, we introduce 2 tools for effectively calculate the Lipschitz for Hessian.

Fact G.1 (Mean value theorem for vector function, Fact 34 in Deng et al. (2023d)). Under following
conditions,

• Let x, y ∈ C ⊂ Rn where C is an open convex domain

• Let g(x) : C → Rn be a differentiable vector function on C

• Let ∥g′(a)∥F ≤ M for all a ∈ C, where g′(a) denotes a matrix which its (i, j)-th term is
dg(a)j
dai

then we have

∥g(y)− g(x)∥2 ≤M∥y − x∥2
Fact G.2 (Lipschitz for product of functions). Under following conditions

• Let {fi(x)}ni=1 be a sequence of function with same domain and range

• For each i ∈ [n] we have

– fi(x) is bounded: ∀x, ∥fi(x)∥ ≤Mi with Mi ≥ 1

– fi(x) is Lipschitz continuous: ∀x, y, ∥fi(x)− fi(y)∥ ≤ Li∥x− y∥

Then we have

∥
n∏

i=1

fi(x)−
n∏

i=1

fi(y)∥ ≤ 2n−1 ·max
i∈[n]
{Li} · (

n∏
i=1

Mi) · ∥x− y∥

Proof. We prove it by mathematical induction. The case that i = 1 obviously.

Now assume the case holds for i = k. Consider i = k + 1, we have.

∥
k+1∏
i=1

fi(x)−
k+1∏
i=1

fi(y)∥

≤ ∥
k+1∏
i=1

fi(x)− fk+1(x) ·
k∏

i=1

fi(y)∥+ ∥fk+1(x) ·
k∏

i=1

fi(y)−
k+1∏
i=1

fi(y)∥

≤ ∥fk+1(x)∥ · ∥
k∏

i=1

fi(x)−
k∏

i=1

fi(y)∥+ ∥fk+1(x)− fk+1(y)∥ · ∥
k∏

i=1

fi(y)−
k∏

i=1

fi(y)∥

≤Mk+1 · ∥
k∏

i=1

fi(x)−
k∏

i=1

fi(y)∥+ (

k∏
i=1

Mi) · ∥fk+1(x)− fk+1(y)∥

≤ 2k−1(

k+1∏
i=1

Mi) ·max
i∈[k]
{Li}∥x− y∥+ (

k∏
i=1

Mi) · ∥fk+1(x)− fk+1(y)∥

≤ 2k−1(

k+1∏
i=1

Mi) ·max
i∈[k]
{Li}∥x− y∥+ (

k∏
i=1

Mi) · Lk+1∥x− y∥

≤ 2k−1(

k+1∏
i=1

Mi) ·max
i∈[k]
{Li}∥x− y∥+ (

k+1∏
i=1

Mi) · Lk+1∥x− y∥

≤ 2k(

k+1∏
i=1

Mi) · max
i∈[k+1]

{Li}∥x− y∥

61

3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347

Under review as a conference paper at ICLR 2025

where the first step is by triangle inequality, the 2nd step is by property of norm, the 3rd step is by
upper bound of functions, the 4th step is by induction hypothesis, the 5th step is by Lipschitz of
fk+1(x), the 6th step is by Mk+1 ≥ 1, the 7th step is a rearrangement.

Since the claim holds for i = k + 1, we prove the desired result.

G.2 LIPSCHITZ FOR f(X)i0

Definition G.3 (Notation of norm). For writing efficiency, we use ∥X − Y ∥ to denote ∥ vec(X)−
vec(Y)∥2, which is equivalent to ∥X − Y ∥F .

Lemma G.4. Under following conditions

• Assumption F.1 holds

• Let f(X)i0 be defined as Definition A.6

For X,Y ∈ Rd×n, we have

∥f(X)i0 − f(Y)i0∥2 ≤ 4
√
ndR2 · ∥X − Y ∥

Proof.

∥f(X)i0 − f(Y)i0∥2 ≤ ∥∇f(X)i0∥F · ∥X − Y ∥
≤ 4
√
ndR2 · ∥X − Y ∥

where the first step is given by Mean Value Theorem (Lemma G.1) and the 2nd step is due to upper
bound for gradient of f(X)i0 (Lemma F.3).

G.3 LIPSCHITZ FOR c(X)i0,j0

Lemma G.5. Under following conditions

• Assumption F.1 holds

• Let c(X)i0,j0 be defined as Definition A.8

For X,Y ∈ Rd×n, we have

|c(X)i0,j0 − c(Y)i0,j0 | ≤ 5
√
ndR4 · ∥X − Y ∥

Proof.

|c(X)i0,j0 − c(Y)i0,j0 | ≤ ∥∇c(X)i0,j0∥2 · ∥X − Y ∥
≤ 5
√
ndR4 · ∥X − Y ∥

where the first step is given by Mean Value Theorem (Lemma G.1) and the 2nd step is due to upper
bound for gradient of c(X)i0,j0 (Lemma F.4).

G.4 LIPSCHITZ FOR h(X)j0

Lemma G.6. Under following conditions

• Assumption F.1 holds

• Let h(X)j0 be defined as Definition A.7

For X,Y ∈ Rd×n, we have

∥h(X)j0 − h(Y)j0∥2 ≤ R∥X − Y ∥

62

3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401

Under review as a conference paper at ICLR 2025

Proof.

∥h(X)j0 − h(Y)j0∥ = ∥V∗,j0∥2 · ∥X − Y ∥
≤ R · ∥X − Y ∥

where the first step is from the definition of h(X)j0 (see Definition A.7), the 2nd step is by Assump-
tion F.1.

G.5 LIPSCHITZ FOR w(X)i0,j0

Lemma G.7. Under following conditions

• Assumption F.1 holds

For X,Y ∈ Rd×n, we have

|w(X)i0,j0 − w(Y)i0,j0 | ≤ R∥X − Y ∥

Proof.

|w(X)i0,j0 − w(Y)i0,j0 | = |⟨Wj0,∗, X∗,i0 − Y∗,i0⟩|
≤ ∥Wj0,∗∥2 · ∥X − Y ∥
≤ R · ∥X − Y ∥

where the first step is from the definition of w(X)i0,j0 , the 2nd step is by Fact A.1, the 3rd step holds
since Assumption F.1.

G.6 LIPSCHITZ FOR z(X)i0,j0

Lemma G.8. Under following conditions

• Assumption F.1 holds

For X,Y ∈ Rd×n, we have

|z(X)i0,j0 − z(Y)i0,j0 | ≤ 5
√
ndR4 · ∥X − Y ∥

Proof.

|z(X)i0,j0 − z(Y)i0,j0 | = |⟨f(X)i0 , X
⊤W∗,j0⟩ − ⟨f(Y)i0 , Y

⊤W∗,j0⟩|
≤ |⟨f(X)i0 , X

⊤W∗,j0⟩ − ⟨f(X)i0 , Y
⊤W∗,j0⟩|

+ |⟨f(X)i0 , Y
⊤W∗,j0⟩ − ⟨f(Y)i0 , Y

⊤W∗,j0⟩|
≤ ∥f(X)i0∥2 · ∥X − Y ∥ · ∥W∗,j0∥2 + ∥f(X)i0 − f(Y)i0∥ · ∥Y ∥ · ∥W∗,j0∥
≤ R · ∥X − Y ∥+R2∥f(X)i0 − f(Y)i0∥
≤ 5
√
ndR4 · ∥X − Y ∥

where the first step is from the definition of w(X)i0,j0 , the 2nd step is by Fact A.1, the 3rd step holds
since Assumption F.1, the 4th step uses Lemma G.4.

G.7 LIPSCHITZ FOR FIRST ORDER DERIVATIVE OF c(X)i0,j0

Lemma G.9. Under following conditions

• Assumption F.1 holds

• Let c(X)i0,j0 be defined as Definition A.8

For X,Y ∈ Rd×n, we have

|c(X)i0,j0
dxi1,j1

− c(Y)i0,j0
dyi1,j1

| ≤ O(
√
ndR6) · ∥X − Y ∥

63

3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455

Under review as a conference paper at ICLR 2025

Proof. Recall Ci(X) defined in Lemma A.16. The Lipschitz constant of c(X)i0,j0

dxi1,j1
is bounded the

summation of that of Ci(X). We only present the proof for Lipschitz for C1(X) here.

Notice that

C1(X) := −s(X)i0,j0 · f(X)i0,i0 · w(X)i0,j1

By upper bound and lipschitz constant for basic functions, we have

• |s(X)i0,j0 | ≤ R2

• |f(X)i0,i0 | ≤ 1

• |w(X)i0,j1 | ≤ R2

• maxf∈{s(X)i0,j0 ,f(X)i0,i0 ,w(X)i0,j1}{Lipschitz(f)} = 4
√
ndR2

• n = 3

By Fact G.2.

|C1(X)− C1(Y)| ≤ 2n−1 ·max
i∈[n]
{Li} · (

n∏
i=1

Mi) · ∥X − Y ∥

= 4 · 4
√
ndR2 ·R4 · ∥X − Y ∥

= 16
√
ndR6 · ∥X − Y ∥

G.8 LIPSCHITZ FOR SECOND ORDER DERIVATIVE OF c(X)i0,j0

Lemma G.10. Under following conditions

• Assumption F.1 holds

• Let c(X)i0,j0 be defined as Definition A.8

For X,Y ∈ Rd×n, we have

| c(X)i0,j0
dxi1,j1xi2,j2

− c(Y)i0,j0
dyi1,j1yi2,j2

| ≤ O(
√
ndR8) · ∥X − Y ∥

Proof. The proof is similar to Lemma G.9 and hence omit. Notice that the upper bound for
c(X)i0,j0

dxi1,j1
xi2,j2

is given by Lemma F.5.

G.9 LIPSCHITZ FOR GRADIENT OF L(X)

Lemma G.11. Under following conditions

• Assumption F.1 holds

• Let c(X)i0,j0 be defined as Definition A.8

For X,Y ∈ Rd×n, we have

∥∇2L(X)−∇2L(Y)∥ ≤ O(n1.5d1.5R10) · ∥X − Y ∥

Proof. We have calculated the gradient of L(X) in Lemma A.17:

dL(X)

dxi1,j1

=

n∑
i0=1

d∑
j0=1

c(X)i0,j0 ·
dc(X)i0,j0
dxi1,j1

64

3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509

Under review as a conference paper at ICLR 2025

We can use the proof in Lemma G.9 to generate a Lipschitz bound for he gradient of L(X). Notice
that the Lipschitz of c(X)i0,j0 is given in Lemma G.5 and the Lipschitz of dc(X)i0,j0

dxi1,j1
is given in

Lemma G.9.

G.10 LIPSCHITZ FOR HESSIAN OF L(X)

Lemma G.12. Under following conditions

• Assumption F.1 holds

• Let c(X)i0,j0 be defined as Definition A.8

For X,Y ∈ Rd×n, we have

∥∇2L(X)−∇2L(Y)∥ ≤ O(n3.5d3.5R10) · ∥X − Y ∥

Proof. Recall that

dL(X)

dxi1,j1xi2,j2

=

n∑
i0=1

d∑
j0=1

dc(X)i0,j0
dxi1,j1

· dc(X)i0,j0
dxi2,j2

+ c(X)i0,j0 ·
dc(X)i0,j0
dxi1,j1xi2,j2

=

n∑
i0=1

d∑
j0=1

U1(X) + U2(X)

For the first item U1(X), we have

|U1(X)− U1(Y)| = |dc(X)i0,j0
dxi1,j1

· dc(X)i0,j0
dxi1,j2

− dc(Y)i0,j0
dxi1,j1

· dc(Y)i0,j0
dyi1,j2

|

≤ |dc(X)i0,j0
dxi1,j1

| · |dc(X)i0,j0
dxi1,j2

− dc(Y)i0,j0
dyi2,j2

|

+ |dc(X)i0,j0
dxi1,j1

· −dc(Y)i0,j0
dyi1,j1

| · |dc(Y)i0,j0
dyi2,j2

|

≤ 10R4 · |dc(X)i0,j0
dxi1,j1

· −dc(Y)i0,j0
dyi1,j1

|

≤ O(
√
ndR10) · ∥X − Y ∥

where the 2nd step is by triangle inequality, the 3rd step is by Lemma F.4, the 4th step uses Lemma G.9.

For the 2nd item U2(X), we have

|U2(X)− U2(Y)| = |c(X)i0,j0 ·
dc(X)i0,j0
dxi1,j1xi2,j2

− c(Y)i0,j0 ·
dc(Y)i0,j0
dyi1,j1yi2,j2

|

≤ |c(X)i0,j0 | · |
dc(X)i0,j0
dxi1,j1xi2,j2

− dc(Y)i0,j0
dyi1,j1yi2,j2

|

+ |c(X)i0,j0 − c(Y)i0,j0 | · |
dc(Y)i0,j0
dyi1,j1yi2,j2

|

≤ 2R2 · | dc(X)i0,j0
dxi1,j1xi2,j2

− dc(Y)i0,j0
dyi1,j1yi2,j2

|

+ |c(X)i0,j0 − c(Y)i0,j0 | · |
dc(Y)i0,j0
dyi1,j1yi2,j2

|

≤ 2R2 · | dc(X)i0,j0
dxi1,j1xi2,j2

− dc(Y)i0,j0
dyi1,j1yi2,j2

|+ 5
√
ndR4 · ∥X − Y ∥ · | dc(Y)i0,j0

dyi1,j1yi2,j2
|

≤ O(
√
ndR10) · ∥X − Y ∥+ 5

√
ndR4 · ∥X − Y ∥ · | dc(Y)i0,j0

dyi1,j1yi2,j2
|

65

3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563

Under review as a conference paper at ICLR 2025

≤ O(
√
ndR10) · ∥X − Y ∥

where the 2nd step is by triangle inequality, the 3rd step uses Lemma F.2, the 4th step uses Lemma G.5,
the 5th step uses Lemma G.10, the last step uses Lemma F.5.

Combining the above 2 items, we have

| dL(X)

dxi1,j1xi2,j2

− dL(Y)

dyi1,j1yi2,j2
| ≤ O(n1.5d1.5R10) · ∥X − Y ∥

Then, we have

∥∇2L(X)−∇2L(Y)∥ ≤ ∥∇2L(X)−∇2L(Y)∥F
≤ n2d2 ·O(n1.5d1.5R10∥X − Y ∥
= O(n3.5d3.5R10) · ∥X − Y ∥

where the 1st step is by matrix calculus, the 2nd is by the lipschitz for each entry of∇2L(X).

H STRONGLY CONVEXITY

In this section, we provide proof for PSD bounds for the Hessian of Loss function.

H.1 PSD BOUNDS FOR HESSIAN OF c(X)i0,j0

Lemma H.1 (PSD bounds for ∇2c(X)i0,j0). Under following conditions,

• Let ci0,j0 be defined as in Definition A.8

• Let Assumption F.1 be satisfied

For all i0 ∈ [n], j0 ∈ [d], we have

−36R6 · Ind ⪯ ∇2c(X)i0,j0 ⪯ 36R6 · Ind

Proof. We prove this statement by the definition of PSD. Let p ∈ Rn×d be a vector. Let i ∈ [n], we
use pi ∈ Rd to denote the vector formed by the (i− 1) · n+ 1-th term to the i · n-th term of vector p.

Then, we have

|p⊤∇2c(X)i0,j0p| = |p⊤i0H1(X)i0,i0pi0 +
∑

i∈[n]\{i0}
p⊤i0H2(X)(i0,i)pi

+
∑

i∈[n]\{i0}
p⊤i H3(X)(i,i0)pi0 +

∑
i∈[n]\{i0}

p⊤i H4(X)(i,i)pi

+
∑

i1∈[n]\{i0}

∑
i2∈[n]\{i0}

p⊤i1H5(X)(i1,i2)pi2 |

≤ max
i∈[5]
∥Hi(X)∥ ·

∑
i1∈[n]

∑
i2∈[n]

p⊤i1pi2

≤ max
i∈[5]
∥Hi(X)∥ · p⊤p

≤ 36R6 · p⊤p

where the 1st step is by the formulation of∇2c(X)i0,j0 (see Definition D.3), the 2nd and 3rd steps
are from simple algebra, the 4th step uses Lemma F.5.

H.2 PSD BOUNDS FOR HESSIAN OF LOSS

Lemma H.2 (PSD bound for ∇2L(X)). Under following conditions,

66

3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617

Under review as a conference paper at ICLR 2025

• Let L(X) be defined as in Definition A.9

• Let Assumption F.1 be satisfied

we have

∇2L(X) ⪰ −O(ndR8) · Ind

Proof. Recall in Lemma E.2, we have

∇2L(X) =

n∑
i0=1

d∑
j0=1

∇c(X)i0,j0 · ∇c(X)⊤i0,j0 + c(X)i0,j0 · ∇2c(X)i0,j0 (2)

Notice that the first term is PSD, so we omit it.

By Lemma F.2, we have

|c(X)i0,j0 | ≤ 2R2

Therefore, we have

∇2c(X)i0,j0 ⪰ − 72R8 · Ind
i.e.,∇2L(X) ⪰ − 72ndR8 · Ind

where the first line is by Lemma H.1 and the 2nd line is given by Eq. (2).

I CONVERGENCE ANALYSIS

In this section, we give the convergence analysis of the gradient-based (see Section I.1 and Hessian-
based method (see Section I.2) to conduct inverse attack. We utilize the Lipschitz and strongly-
convexity properties proved in previous sections.

I.1 GRADIENT METHOD

We first state a canonical result for the convergence gradient-descent method under Lipschitz smooth-
ness and strongly-convexity.
Theorem I.1 (Gradient descent). Let the following conditions hold

• Let f(x) be a convex and twice-differentiable function on Rn

• Let ∇f(x) have Lipschitz constant L:

∥∇f(x)−∇f(y)∥2 ≤ L∥x− y∥2 ∀x, y ∈ Rn

• Let f(x) be strongly convex with factor m:

∇2f(x) ⪰ mIn

• f(x) reaches its minimum (denoted as f∗) at some point x∗

Then, the gradient-descent algorithm with fixed step size t < 2
m+L satisfies

∥xk − x∗∥2 < (1− m

L
)k/2 · ∥x0 − x∗∥22

where xk is the update in k-th iteration.

In particular, it takes O(L
m · log(|x0 − x∗|2/ϵ)) to find a ϵ-optimal solution.

Now, we use the above theorem to show the convergence of our regression problem.

67

3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671

Under review as a conference paper at ICLR 2025

Theorem I.2 (Formal version of Theorem 4.3). We assume our model satisfies the following
conditions

• Bounded parameters: there exists R > 1 such that

– ∥W∥F ≤ R, ∥V ∥F ≤ R
– ∥X∥F ≤ R
– ∀i ∈ [n], j ∈ [d], |bi,j | ≤ R where bi,j denotes the i, j-th entry of B

• Regularization: we consider the following problem:

min
X∈Rn×d

∥D(X)−1 exp(X⊤WX)X⊤V −B∥2F
+ γ · ∥ vec(X)∥22

Then, for any accuracy parameter ϵ ∈ (0, 0.1), a gradient-descent algorithm can be employed to
recover the initial data. The algorithm uses

T = O(poly(n, d,R) · log(|X0 −X∗|F /ϵ))
iterations, it outputs a matrix X̃ ∈ Rd×n satisfying

∥X̃ −X∗∥F ≤ ϵ

The execution time for each iteration is poly(n, d).

Proof. Choosing γ ≥ O(ndR8), by Lemma H.2, we have our regression problem being strongly
convex with factor O(ndR8). Notice that, we proved in Lemma G.11 that the gradient of our loss
function is O(n1.5d1.5R10)-Lipschitz continuous. Applying Theorem I.1 with L = O(n1.5d1.5R10)
and m = O(ndR8), we have the result in this theorem.

The execution time for each iteration is the matrix-multiplication time.

I.2 HESSIAN METHOD

Theorem I.3 (Formal version of Theorem 4.4, Main Result). We assume our model satisfies the
following conditions

• Bounded parameters: there exists R > 1 such that

– ∥W∥F ≤ R, ∥V ∥F ≤ R
– ∥X∥F ≤ R
– ∀i ∈ [n], j ∈ [d], |bi,j | ≤ R where bi,j denotes the i, j-th entry of B

• Regularization: we consider the following problem:

min
X∈Rn×d

∥D(X)−1 exp(X⊤WX)X⊤V −B∥2F
+ γ · ∥ vec(X)∥22

• Good initial point: We choose an initial point X0 such that

M · ∥X0 −X∗∥F ≤ O(ndR8),

where M = O(n3d3R10).

Then, for any accuracy parameter ϵ ∈ (0, 0.1) and any failure probability δ ∈ (0, 0.1), an algorithm
based on the Newton method can be employed to recover the initial data. The result of this algorithm
guarantee within

T = O(log(|X0 −X∗|F /ϵ))
iterations, it outputs a matrix X̃ ∈ Rd×n satisfying

∥X̃ −X∗∥F ≤ ϵ

with a probability of at least 1− δ. The execution time for each iteration is poly(n, d, log(1/δ)).

68

3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725

Under review as a conference paper at ICLR 2025

Proof. Choosing γ ≥ O(ndR8), by Lemma H.2, we have the PD property of Hessian.

By Lemma G.12, we have the Lipschitz property of Hessian.

Since M is bounded (in the condition of Theorem), then by iterative shrinking lemma (see Lemma 6.9
in Li et al. (2023c) as an example), we prove the convergence.

J SUPPLEMENTARY EXPERIMENTAL DETAILS

Here, we give the experimental details for our experiment as follows.

• Learning rate for fine-tuning: η = 0.0001 (for best effort).
• Learning rate for attack: η = 0.001 (default).
• Adam hyper-parameter β1 = 0.9 (default).
• Adam hyper-parameter β2 = 0.999 (default).
• Adam hyper-parameter ϵ = 1× 10−8 (default).
• Fine-tuning steps: 8000.
• Platform: PyTorch Paszke et al. (2019) and Huggingface Wolf et al. (2019).
• GPU device information: 1 RTX 4090 GPUs.
• Number of fine-tuning epochs 30.
• Batch size: 32 (for best effort).
• Quantization: fp16.

69

