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ABSTRACT

In the realm of deep learning, transformers have emerged as a dominant architec-
ture, particularly in both natural language processing and computer vision tasks.
However, with their widespread adoption, concerns regarding the security and
privacy of the data processed by these models have arisen. In this paper, we address
a pivotal question: Can the data fed into transformers be recovered using their
attention weights and outputs? We introduce a theoretical framework to tackle
this problem. Specifically, we present an algorithm that aims to recover the input
data X € RIX™ from given attention weights W = QK ' € R%*¢ and output
B € R™*™ by minimizing the loss function L(X). This loss function captures the
discrepancy between the expected output and the actual output of the transformer.
Our findings have significant implications for preventing privacy leakage from
attacking open-sourced model weights, suggesting potential vulnerabilities in the
model’s design from a security and privacy perspective - you may need only a few
steps of training to force LLMs to tell their secrets.

1 INTRODUCTION

In the intricate and constantly evolving domain of deep learning, the transformer architecture has
emerged as a game-changing innovation Vaswani et al. (2017). This novel architecture has propelled
the state-of-the-art performance in a myriad of tasks, and its potency lies in the underlying mechanism
known as the “attention mechanism”. The essence of this mechanism can be distilled into its unique
interaction between three distinct matrices: the Query (@), the Key (K), and the Value (V'), where
the Query matrix (QQ) represents the questions or the aspects we’re interested in, the Key matrix (K)
denotes the elements against which these questions are compared or matched, and the Value matrix
(V) encapsulates the information we want to retrieve based on the comparisons. These matrices are
not just mere multidimensional arrays; they play vital roles in encoding, comparing, and extracting
pertinent information from the data.

Given this context, the attention mechanism can be mathematically captured as follows:
Definition 1.1 (Attention matrix computation). Let Q, K € R™"*? be two matrices that respectively
represent the query and key. Similarly, for a matrix V. € R"*? denoting the value, the attention
matrix is defined as
Att(Q, K, V) := DAV,
In this equation, two matrices are introduced: A € R™*"™ and D € R™*", defined as:
A:=exp(QK") and D := diag(Al,,).

Here, the matrix A represents the relationship scores between the query and key, and D ensures
normalization. The computation hence, deftly combines these relationships with the value matrix to
output the final attended representation.

In practical large-scale language models ChatGPT (2022); OpenAl (2023), there might be multi-levels
of the attention computation. For those multi-level architecture, the feed-forward training can be
represented as

Xy« D(Xo) " exp(X] Qe X0) X[ Vi
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Algorithm 1 Sketch of inverse attack to transformer-based models

Input: Ideal model prediction B € R™*¢
Parameters: Model function f, pretrained weights W, training steps T’
Output: Leaked input X € R™*? for output B
procedure INVERSEATTACK(B, f, W, T)
Initialize each entry of X, € R™*? from Gaussian distribution A"(0, 1).
t+1
fort < T do
Compute loss by some specific metric £(-, ), such that L, := £(f (W, X;_1), B)
Compute gradient g; := Vi, , Ly
Compute update for X via first-order or second order algorithm using g;, denote AX
Update X; «+ X; 1 — AX
t—t+1
end for
return X with guaranteed L; < € (Theorem 4.3 and Theorem 4.4)
end procedure

where X is the input of /-th layer, and X, is the output of ¢-th layer, and @, K, V; are the
attention weights in ¢-th layer.

This architecture has particularly played a pivotal role in driving progress across various sub-
disciplines of natural language processing (NLP) Firat et al. (2016); Choi et al. (2018); Usama
et al. (2020); Naseem et al. (2020); Martin et al. (2019); ChatGPT (2022); OpenAl (2023). This
trajectory of influence is most prominently embodied by the creation and widespread adoption of
Large Language Models (LLMs) like GPT-4 and Claude-3. These models are hallmarks due to their
staggering number of parameters and complex architectural designs.

Yet, the very complexity and architectural sophistication that propel the success of transformers
come with a host of consequential challenges, making their effective and responsible usage nontrivial.
Prominent among these challenges is the overarching imperative of ensuring data security and privacy
Pan et al. (2020); Brown et al. (2022); Kandpal et al. (2022). Within the corridors of the research
community, an increasingly pertinent question is emerging regarding the inherent vulnerabilities of
these architectures. Specifically,

is it possible to know the input data by analyzing the attention weights and model outputs?

To put it in mathematical terms, given a language model represented as B = f(WW; X), if one has
access to the output B and the attention weights W, is it possible to mathematically invert the model
to obtain the original input data X?

Addressing this line of inquiry extends far beyond the realm of academic speculation; it has direct
and significant implications for practical, real-world applications. This is especially true when these
transformer models interact with data that is either sensitive in nature, like personal health records
Cascella et al. (2023), or proprietary, as in the financial sector Wu et al. (2023). With the broader
deployment of Large Language Models into environments that adhere to stringent data confidentiality
regulations, the mandate for achieving data security becomes essential. In this work, we aim to delve
deeply into this issue, striving to offer a nuanced understanding of these potential vulnerabilities while
suggesting pathways for ensuring safety in the development, training, and utilization of transformer
technologies.

This paper addresses a distinct attention-based regression model that differs from the conventional
task of finding optimal weights for a given input and output. Specifically, we assume that the weights
are already known, and our objective is to invert the output to recover the original data. The key focus
of our investigation lies in identifying the conditions under which successful inversion of the original
input is feasible. This problem holds significant relevance in the context of addressing security
concerns associated with attention networks.

Our contribution In this paper, we formulate the formal regression model for the inverse attack
on the soft-max attention layer. Utilizing simplified notations of the loss function, we are able to
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calculate a close-form representation of its Hessian. By assuming bounded parameters and adding a
moderate regularizer, we prove the smoothness (Lipschitz continuity) and strongly-convexity (Positive
Semi-definiteness) of our regression problem, which leads to the convergence of gradient-based and
Hessian-based methods that approach the approximate optimal. Therefore, we apply these algorithms
to invert the attention weights to the input data. We provided numerical experiments to verify the
reliability of our methods.

Roadmap. We arrange the rest of our paper as follows. In Section 2 we present some works related
our topic. In Section 3, we state an overview of our techniques, summarizing the method we use
to recover data via attention weights. We state our main theories in Section 4. We provide our
experiment results in Section 5. We conclude our work in Section 6.

2 RELATED WORKS

This section discusses related works in the LLM community. We summarize the current research on
LLM security and inversion attack in Section 2.1. We concern about attention computation theory
and LLM-based regression theory in Section 2.2.

2.1 LLM SECURITY

Security concerns about LLM. Amid LLM advancements, concerns about misuse have arisen
Pan et al. (2020); Brown et al. (2022); Kandpal et al. (2022); Kirchenbauer et al. (2023); Vyas et al.
(2023); Chu et al. (2023a); Xu et al. (2023); Gao et al. (2023d); Kirchenbauer et al. (2023); He et al.
(2022a;b); Gao et al. (2023f); Shen et al. (2023a). Pan et al. (2020) assesses the privacy risks of
capturing sensitive data with eight models and introduces defensive strategies, balancing performance
and privacy. Brown et al. (2022) asserts that current methods fall short in guaranteeing comprehensive
privacy for language models, recommending training on publicly intended text. Kandpal et al. (2022)
reveals that the vulnerability of large language models to privacy attacks is significantly tied to data
duplication in training sets, emphasizing that deduplicating this data greatly boosts their resistance
to such breaches. Kirchenbauer et al. (2023) devised a way to watermark LLM output without
compromising quality or accessing LLM internals. Meanwhile, Vyas et al. (2023) introduced near
access-freeness (NAF), ensuring generative models, like transformers and image diffusion models,
don’t closely mimic copyrighted content by over k-bits.

Inverting the neural network. Originating from the explosion of deep learning, there have been
a series of works focused on inverting the neural network Jensen et al. (1999); Lu et al. (1999);
Mahendran & Vedaldi (2015); Dosovitskiy & Brox (2016); Zhang et al. (2020d). Jensen et al. (1999)
surveys various techniques for neural network inversion, which involves finding input values that
produce desired outputs, and highlights its applications in query-based learning, sonar performance
analysis, power system security assessment, control, and codebook vector generation. Lu et al. (1999)
presents a method for inverting trained neural networks by formulating the problem as a mathematical
programming task, enabling various network inversions and enhancing generalization performance..
Mahendran & Vedaldi (2015) explores the reconstruction of image representations, including CNNSs,
to assess the extent to which it’s possible to recreate the original image, revealing that certain layers
in CNNs retain accurate visual information with varying degrees of geometric and photometric
invariance. Zhang et al. (2020d) presents a novel generative model-inversion attack method that can
effectively reverse deep neural networks, particularly in the context of face image reconstruction, and
explores the connection between a model’s predictive ability and vulnerability to such attacks while
noting limitations in using differential privacy for defense.

Attacking the Neural Networks. During the development of artificial intelligence, there have been
many works on attaching the neural networks Zhu et al. (2019); Wei et al. (2020); Rigaki & Garcia
(2020); Huang et al. (2020); Yin et al. (2021); Huang et al. (2021b); Gao et al. (2023c). Several
studies Zhu et al. (2019); Wei et al. (2020); Rigaki & Garcia (2020); Yin et al. (2021) have warned
that local training data can be compromised using only exchanged gradient information. These
methods start with dummy data and gradients, and through gradient descent, they empirically show
that the original data can be fully reconstructed. A follow-up study Zhao et al. (2020) specifically
focuses on classification tasks and finds that the real labels can also be accurately recovered. Other
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types of attacks include membership and property inference Shokri et al. (2017); Melis et al. (2019),
the use of Generative Adversarial Networks (GANs) Hitaj et al. (2017); Goodfellow et al. (2014),
and additional machine-learning techniques McPherson et al. (2016); Papernot et al. (2016). A recent
paper Wang et al. (2023) uses tensor decomposition for gradient leakage attacks but is limited by its
inefficiency and focus on over-parametrized networks.

2.2  ATTENTION COMPUTATION AND REGRESSION

Attention Computation Theory. Following the rise of LLM, numerous studies have emerged on
attention computation Kitaev et al. (2020); Tay et al. (2020); Chen et al. (2021); Zandieh et al. (2023);
Tarzanagh et al. (2023); Sanford et al. (2023); Panigrahi et al. (2023a); Zhang et al. (2020a); Arora &
Goyal (2023); Tay et al. (2021); Deng et al. (2023b); Xia et al. (2023); Kacham et al. (2023). LSH
techniques approximate attention, and based on them, the KDEformer offers a notable dot-product
attention approximation Zandieh et al. (2023). Recent works Alman & Song (2023); Brand et al.
(2023); Deng et al. (2023c) explored diverse attention computation methods and strategies to enhance
model efficiency. On the optimization front, Zhang et al. (2020b) highlighted that adaptive methods
excel over SGD due to heavy-tailed noise distributions. Other insights include the emergence of the
KTIW property Snell et al. (2021) and various regression problems inspired by attention computation
Gao et al. (2023a); Li et al. (2023c;b), revealing deeper nuances of attention models.

Theoretical Approaches to Understanding LL.LMs. Recent strides have been made in under-
standing and optimizing regression models using various activation functions. Research on over-
parameterized neural networks has examined exponential and hyperbolic activation functions for
their convergence properties and computational efficiency Gao et al. (2023a); Li et al. (2023c); Deng
et al. (2023b); Gao et al. (2023d); Li et al. (2023a); Gao et al. (2023e); Song et al. (2023); Sinha
et al. (2023); Chu et al. (2023a;b); Shen et al. (2023b). Modifications such as regularization terms
and algorithmic innovations, like a convergent approximation Newton method, have been introduced
to enhance their performance Li et al. (2023c); Deng et al. (2022). Studies have also leveraged
tensor tricks to vectorize regression models, allowing for advanced Lipschitz and time-complexity
analyses Gao et al. (2023b); Deng et al. (2023a). Simultaneously, the field is seeing innovations in
optimization algorithms tailored for LLMs. Techniques like block gradient estimators have been
employed for huge-scale optimization problems, significantly reducing computational complexity
Cai et al. (2021). Unique approaches like Direct Preference Optimization bypass the need for reward
models, fine-tuning LLMs based on human preference data Rafailov et al. (2023). Additionally,
advancements in second-order optimizers have relaxed the conventional Lipschitz Hessian assump-
tions, providing more flexibility in convergence proofs Liu et al. (2023). Also, there is a series of
work on understanding fine-tuning Malladi et al. (2023a;b); Panigrahi et al. (2023b). Collectively,
these theoretical contributions are refining our understanding and optimization of LLMs, even as they
introduce new techniques to address challenges such as non-guaranteed Hessian Lipschitz conditions.

Optimization and Convergence of Deep Neural Networks. Prior research Li & Liang (2018);
Du et al. (2018); Allen-Zhu et al. (2019a;b); Arora et al. (2019a;b); Song & Yang (2019); Cai et al.
(2019); Zhang et al. (2019); Cao & Gu (2019); Zou & Gu (2019); Oymak & Soltanolkotabi (2020); Ji
& Telgarsky (2019); Lee et al. (2020); Huang et al. (2021a); Zhang et al. (2020c); Brand et al. (2020);
Zhang et al. (2020a); Song et al. (2021); Alman et al. (2023); Munteanu et al. (2022); Zhang (2022);
Gao et al. (2023a); Li et al. (2023c¢); Qin et al. (2023) on the optimization and convergence of deep
neural networks has been crucial in understanding their exceptional performance across various tasks.
These studies have also contributed to enhancing the safety and efficiency of Al systems. In Gao
et al. (2023a) they define a neural function using an exponential activation function and apply the
gradient descent algorithm to find optimal weights. In Li et al. (2023c), they focus on the exponential
regression problem inspired by the attention mechanism in large language models. They address the
non-convex nature of standard exponential regression by considering a regularization version that is
convex. They propose an algorithm that leverages input sparsity to achieve efficient computation.
The algorithm has a logarithmic number of iterations and requires nearly linear time per iteration,
making use of the sparsity of the input matrix.
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3 RECOVERING DATA VIA ATTENTION WEIGHTS

In this section, we propose our theoretical method to recover the training data from trained transformer
weights and outputs. In Section 3.1, we provide a detailed description of our approach. In Section 3.2,
we introduce our simplified notations to calculate the Hessian of the loss function. In Section 3.3, we
state the decomposed expression of the Hessian.

3.1 TRAINING OBJECTIVE OF ATTENTION INVERSION ATTACK

In this study, we propose a novel technique for inverting the attention weights of a transformer model
using Hessian-based algorithms. We consider the single-layer soft-max attention function
fW;X) .= D(X) L exp(XTWX)V

,where W = KQ" € R%*4 represents the attention weights and D(X) = diag(exp(X W X)) €
R™*™ is the diagonal matrix for normalization.

Our aim is to find the input X € R?*"™ that minimizes the Frobenius norm of the difference between
f(W; X)) and the output B. Here, dimension d denotes the length of a token, dimension n denotes
the total number of the tokens in X. To achieve this, we introduce an algorithm that minimizes the
loss function L(X), defined as follows:

Definition 3.1 (Regression model). Given the attention weights W = KQT € R4*4, VvV ¢ Rdx4
and output B € R™*%, the goal is find X € R¥™ such that

L(X) = |D(X) L exp(X " WX)X "V — B|% + Leg, )

n

d d n d d d
P — —_— —_— - PR D . 9
xexp || xT x| xT n
F

d 5
where D(X) := diag|exp||XT X and ;: %
QT

Figure 1: Visualization of our loss function.

Lyeg captures the additional regularization terms which we introduce later. This loss function
quantifies the discrepancy between the expected output and the actual output of the transformer.

In our approach, we leverage Hessian decomposition to efficiently compute the Hessian matrix and
apply a second-order method to approximate the optimal input X. Utilizing the Hessian, we can
gain insights into the curvature of the loss function, which improves the efficiency of finding the
approximate optimal solution.

By integrating Hessian decomposition and second-order optimization techniques (Anstreicher (2000);
Lee et al. (2019); Cohen et al. (2019); Jiang et al. (2021); Huang et al. (2022); Gu & Song (2022); Gu
et al. (2023)), our proposed algorithm provides a promising approach for addressing the challenging
task of inverting attention weights in transformer models.

3.2 MODEL SIMPLIFICATION

Due to the complexity of the loss function (Eq. (1)), it is challenging to give the explicit formula of its
Hessian. To simplify the computation, we introduce several notations (See Figure 2 for visualization):

Exponential Function: u(X); := exp(X ' WX, ;)
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Sum of Softmax: a(X); := (u(X);, 1,)
Softmax Probability: f(X); := a(X); "u(X);
Value Function: h(X); := X 'V,

One-entry Loss Function: ¢(X); ;

= (f(X)i, h(X);) — bi -

1

[¢ d 1
-

u(X); :=exp [n{xT F(X)i = a(X);h x ()it n

9

(a) Exponential Function (b) Sum of Softmax (c) Softmax Probability

1

h(X); == n{XxT| x @, o(X)ij = (n{ XD h(X);) by

(d) Value Function (e) One-unit Loss Function

Figure 2: Visualization of Notations We Defined

Using these terms, we can express the loss function L(X) as the sum over the loss in each
entry as below, which allows us to break down the computation into several steps. L(X) =

n d
it 2 (e(X)i )2
3.3 HESSIAN DECOMPOSITION

This section provides our technique to decompose the Hessian. By decomposing the Hessian into
several cases, we can give a close-form expression, which enables us to comprehend and analyze the
Hessian. We use variables i;, € [n], ji € [d], k = 1,2, 3 to denote the indexes.

Now, we split % (the gradient of ¢(X),, ;,) into two cases:
N

dwil

e Case 1: The situation when 79 = 71.
* Case 2: The situation when ig # 1.

.. . AZe(X)ig g0 - . .
Similar, we break down the computation of - C(, 3;9”9 into five cases to handle different scenarios:
11,71 12,72

e Case 1: The situation when 79 = i1 = io.
e Case 2: The situation when iy = i1 # io.
* Case 3: The situation when iy = i # 7.
* Case 4: The situation when iy # i1, ig # i2 and i1 = is.
e Case 5: The situation when iy # i1, 99 7 2 and i1 F# io.

It is worth mentioning that the second case and the third case are equivalent by switching indexes. By
considering these cases, we can calculate the Hessian for each element in X. This allows us to gain
further insights into the curvature of the loss function and optimize the parameters more effectively.

Since our decision variable X is a n x d matrix, we define the Hessian of ¢(X);, j, by considering

its Hessian with respect to = vec(X). This means that, VZ¢(X);, j, is a nd x nd matrix with its
dC(X)i[)-,jo

i1 - j1,12 - jo-th entry being Tory amnrs Leveraging the split of different scenarios, we decompose

the Hessian into a partition of square matrices.
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Definition 3.2 (Hessian split). We use H 15“’22) € R¥ to represent the square matrix corresponding
. . . . . . 11 .2 . de(X)in . i
to the k-th case in Hessian computation. Notice that the ji, ja-th entry of H,gz”z) is M
11,322,572
Then, the Hessian of the loss is a matrix partition consists of matrices of the above five cases. The

formal representation can be found in Appendix D.]1.

The reason we introduce the Hessian split is that the square matrices of the same type share the
similar formula. Therefore, we can compute the expression of each type (see detailed calculation in

de(X)ig, 40

Section D) to derive . This gives us the information of the Hessian of the loss function.

Tiy,jiaTig,jo

4 MAIN RESULTS

Now, we state the analysis of the correctness of our inversion attack strategy. Assuming the parameters
are bounded, we verify the Hession of our loss function is Lipschitz continuous and PSD lower-
bounded. Therefore, gradient-based and Hessian-based methods are used to solve the regularized
regression model. We defer the proofs to the Appendix.

Properties of the Hessian We assume an unified upper bound for all parameters in our model,
including the weight 1, the value V, the output B, and the decision variable X.

Assumption 4.1 (Bounded Parameters, Informal version of Assumption F.1). We assume |W| <
R, ||IV|| < R, || X|| < R,bi; < R? where || - || is the matrix 2-norm and R > 1 is some constant.

Next, we state the bounds for the Hessian of the loss function in terms of poly(n, d, R).

Theorem 4.2 (Properties of the Hessian, Informal version of Theorem G.12 and Theorem H.2). We
assume that Assumption 4.1 holds. Then, the Hessian of L(X) is Lipschitz continuous with Lipschitz
constant being O(n3-5d3-5 R'°). Also, it has PSD lower bound: L(X) = —O(ndR®) - 1,,4.

Therefore, we define the regularization term to be Ly := O(ndR?®) - || vec(X)||3 to have the PSD
guarantee for our regression problem.

Convergence analysis With above properties of the loss function, we have the convergence results
stated as follows. Theorem 4.3 shows the correctness of the gradient-based method. Theorem 4.3
shows the correctness of the Hessian-based method. The algorithm for approximating PSD matrices
in Deng et al. (2022) can be applied to approximate the Hessian efficiently.

Theorem 4.3 (First-Order Main Result, Informal version of Theorem 1.2). We assume that Assump-
tion 4.1 holds. Let X* denote the optimal point of the regularized regression model defined in
Definition 3.1. Then, for any accuracy parameter € € (0,0.1), an algorithm based on the gradient-
descent method can be employed to recover the initial data. It outputs a matrix X € R¥" satisfying
|IX — X*||F < e. The algorithm runs T = O(poly(n,d, R) - log(|| Xo — X*||r/¢)) iterations, with
execution time for each iteration being poly(n, d), where the degree of d depends on the current
matrix computation time.

Theorem 4.4 (Second-Order Main Result, Informal version of Theorem 1.3). We assume that
Assumption 4.1 holds. Let X* denote the optimal point of the regularized regression model defined
in Definition 3.1. Suppose we choose an initial point Xo such that M - || Xo — X*||p < O(ndR®)
where M = O(n3d3R'°). Then, for any accuracy parameter € € (0,0.1) and any failure probability
0 € (0,0.1), an algorithm based on the approximation-Newton method can be employed to recover
the initial data. It outputs a matrix X € RY" satisfying | X — X*||r < € with a probability
at least 1 — §. The algorithm runs T = O(log(|Xo — X*|r/¢€)) iterations, with execution time
Sor each iteration being poly(n, d,log(1/0)), where the degree of d depends on the current matrix
computation time.

These theorems show that we can utilize first-order method and second-order method to search an
e-optimal approximation to the real input data X within a preferable running time.
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step recovering text loss

0 GrapeJUST once received cancer treatment at this hospital. 4.74
2500 precious quoted once received cancer treatment at this hospital.  4.61
5000  grass Tradable once received cancer treatment at this hospital. ~ 4.50
6500 acrylic Bob once received cancer treatment at this hospital. 4.29
7500 Alan Bob once received cancer treatment at this hospital. 2.27

Table 1: Visualization of the results. Here, the original target text is Alan Bob once received cancer
treatment at this hospital. We mask the sensitive data Alan Bob and run the gradient-descent
inverse attack to recover. The blue-colored texts are the outputs in each iteration. The column on the
right shows the value of the cross-entropy loss. It can be seen that the original data is leaked after
7500 steps, which echoes our convergence analysis.

5 EXPERIMENT

In this section, to verify the accuracy of our theory, we conducted a simple experiment to evaluate
how our approach recovers data from the pre-trained weights in the LLM. In Section 5.1, we provide
the setup and the design of our data-attack experiment. Next, we discuss our results in Section 5.2.
Supplementary experimental details are provided in Appendix J.

5.1 EXPERIMENT DESIGN AND SETUP

We use the pre-trained language model GPT-2-small Radford et al. (2019). For the dataset, we utilize
GPT-4 Achiam et al. (2023); Bubeck et al. (2023) to help us create hundreds of text data containing
virtual information. This can be viewed as the toy or the synthetic dataset. Then, we use the synthetic
dataset to fine-tune the pre-trained GPT-2-small with Adam optimizer Kingma & Ba (2014).

5- o final success rate: 0.92 -1.0
- success rate

4 -0.8

3- -0.6

2- -0.4

1 -0.2

0 -0.0
0 2000 4000 6000 8000 10000

step

Figure 3: Training record of our inversion recovery attack. We state the maximum, mean, and
minimum loss during 10000 updates. We also present the success rate of attack in 1000 repeated
experiments.

For the recovery part, we first choose one text from the dataset and convert it into one-hot vectors
through the model’s vocabulary, denoted by S* € R™*¥ where N is the vocabulary size. Notice
that GPT-2-small is trained to conduct next-token prediction by causal mask, namely, it uses the
information of the first k& words to predict the (k + 1)-th word. Therefore, we split S* to the masked
part S; € R™*¥ and the unmasked part So € R(*=™) XN Then, we use S, as part of the initial
input and we introduce our inversion attack approach to recover S;.

We initialize our recovery by a random matrix X° € R™*¥ where each entry is sampled from
N(0,1). We compute S{ € R™*Y := softmax(X"), and concatenate it with S5 to form S° €

0
RN = [g%)] , then input it into the model. We denote the GPT-2-small model by a mapping
2

F :R™N — R™*N_ For any input matrix A € R™*¥ the output of GPT-2-small F(4) € R™*N
will consist of row-wise soft-max vectors since we add a soft-max operation to the output of the last
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layer to compute the probability distribution. We use S* € R™*¥ to represent the matrix of soft-max
vectors we recover at the ¢-th timestamp for integer ¢ > 0 by minimizing the loss.

We define our problem as minimizing the cross-entropy loss which is calculated as L(F'(S*), S*) :=
n—1 N
1 Zj:l _Sfﬂ,j ~log(F(S%)i )

Remark 5.1. We use the cross-entropy loss here instead since it is commonly used in the training
of current LLMs. Note that our approach to analyze the canonical softmax loss regression can be
modified to show the correctness of the cross-entropy loss regression. Similar topics have been
discussed in other LLM-related literature, e.g. Gao et al. (2023c¢).

We use the gradient-descent method to conduct the attack. The update rule is defined as:
Xt-‘rl — Xt - antL(F(St)7 St);

where we use X; to denote the recovering input at ¢-th timestamp for integer ¢ > 0. Note that
denotes the learning rate. S* is computed by X; as we mentioned above.

The training involves Adam optimizer, and all the hyper-parameters are set to be defaults. Totally, we
trained 10000 steps for the input recovery. All the experiments are repeated 1000 times to ensure
reliability.

5.2 RESULTS

We state our results of recovery in Figure 3. We recorded the mean, maximum, and minimum loss
during the training. We also recorded the success rate at each stage in the 10000 updates. Notice
that the success rate at the k-th update is computed by the count of successful experiments (i.e., the
masked input data is recovered) at the k-th update divided by 1000, which is the repeated time. It’s
noteworthy that after 5000 steps, the success rate greatly increases, eventually, it demonstrates a high
value of 0.92. This result verifies our attacking method has a high probability of recovery training,
especially for private and sensitive data from open-source weights of language models.

Furthermore, we showcase one example of the recovery attacks in Table 1, where we create fake
data "Alan Bob once received cancer treatment at this hospital.". Accordingly, the name "Alan Bob"
in the context is private and masked. We cut these two words and converted the sentence " once
received cancer treatment at this hospital." into one-hot vectors as S5 in Section 5.1. Next, we run the
inverse attack and record the output and loss value at each step. We use blue text to represent the
text that is predicted by our algorithm. As we can see from Table 1, the recovering text is initially
GrapeJUST with the cross-entropy loss 4.74 at the beginning. Then, at the 6500-th step of recovering,
our algorithm outputs acrylic Bob, where the word "Bob" is successfully recovered. Finally, at the
7500-th step, our algorithm successfully recovers the target text Alan Bob.

6 CONCLUSION

In this study, we have presented a theoretical approach for conducting the inverse recovery on the
input data using weights and outputs.

We propose the mathematical framework of the attention-inspired mechanism regression model. Our
theoretical analysis part consists of the efficient calculation of the Hessian and the verification of its
smoothness and strongly-convexity. With the aim of these properties, we introduce gradient-based
and Hessian-based to do the inverse recovery. Then, we show the reliability of our proposed method
by experiments on text reconstruction using GPT-2-small.

The insights gained from this research are intended to deepen our understanding and facilitate
the development of more secure and robust transformer models. By doing so, we strive to foster
responsible and ethical advancements in the field of deep learning. This work lays the groundwork
for future research and development aimed at fortifying transformer technologies against potential
threats and vulnerabilities.
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Roadmap. We arrange the appendix as follows. In Section A we provide details of computing the
gradients. In Section B and Section C we provide detail of computing Hessian for two cases. In
Section D we show how to split the Hessian matrix. In Section E we combine the results before and
compute the Hessian for the loss function. In Section F we bound the basic functions to be used
later. In Section G we provide proof for the Lipschitz property of the Hessian of the loss function.
In Section H, we provide the proof for the PSD bound of the Hessian. In Section I, we provide the
convergence analysis for our proposed methods. In Section J, we provide additional details for our
experiment.

A GRADIENTS

Here in this section, we provide analysis for the gradient computation. In Section A.1 we state some
facts to be used. In Section A.2 we provide some definitions. In Sections A.3, A.4, A.5, A.6, A.7,
A.8 and A.9 we compute the gradient for the terms defined respectively. Finally in Section A.10 we
compute the gradient for L(X).

A.1 FAcCTS

Fact A.1 (Basic algebra). We have

o (u,v) = (v,u)y =ulv="0u

* (uov,w) =(uovow,1,)
e u' (vow)=u' diag(v)w

Fact A.2 (Basic calculus rule). We have

. d<f(z(;;9(z)> = <d{i(tm) ,9(x)y + (f(2), d%(f)} (here t can be any variable)

dy*
dz

_ .. z—1dy
=z dz

*CUV=DV U

dzx

da; = € where e; is a vector that only j-th entry is 1 and zero everywhere else.

o Letx € RY, let y € R be independent of x, we have 3—2 = 04.

o Let f(x),9(x) € R, we have d(f(:fl)lfg(m)) = dgf)g(x) + f(m)dgd—(tx)

« Letz € R, <L exp(z) = exp (z)

Let f(z) € R", we have S=EHE — exp(f()) o 4

A.2 DEFINITIONS

Definition A.3 (Simplified notations). We have following definitions
» We use u(X);, ., to denote the i1-th entry of u(X);,.
» We use f(X)i,.i, to denote the i1-th entry of f(X);,.

» We define W;, . to denote the ji-th row of W. (In the proof, we treat W, . as a column
vector).

» We define W, ;, to denote the ji-th column of W.
» We define wj, ;, to denote the scalar equals to the entry in ji-th row, jo-th column of W.
» We define V. ;, to denote the ji-th column of V.

» We define v;, ;, to denote the scalar equals to the entry in ji-th row, jo-th column of V.
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» We define X, ;, to denote the iy-th column of X.

» We define x;, ;, to denote the scalar equals to the entry in i;-th column, j,-th row of X.

Definition A.4 (Exponential function u). If the following conditions hold
o Let X € RIXn
e Let W € R4
For each ig € [n], we define u(X);, € R™ as follows
u(X)i, = exp(X W X,i,)
Definition A.5 (Sum function of softmax «). If the following conditions hold
o Let X € R¥Xn
* Let u(X);, be defined as Definition A.4
We define (X );, € R for all ig € [n] as follows
a(X)ig = (u(X)ig, 1n)
Definition A.6 (Softmax probability function f). If the following conditions hold
 Let X € R¥xn
 Let u(X);, be defined as Definition A.4
» Let a(X);, be defined as Definition A.5
We define f(X);, € R™ for each ig € [n] as follows
F(X)iy = a(X)3 u(X);,
Definition A.7 (Value function h). If the following conditions hold
o Let X € R¥xn
« Let V € RIxd
We define h(X);, € R" for each jo € [n] as follows
h(X)jo = X Vijo
Definition A.8 (One-unit loss function c¢). If the following conditions hold
* Let f(X),, be defined as Definition A.6
* Let h(X);, be defined as Definition A.7

We define c(X) € R™*? as follows

C(X)io,jo = <f(X)ioa h(X)j0> - bio’ijiO € [n]ajO
Definition A.9 (Overall function L). If the following conditions hold

m
=

* Let ¢(X);,,j, be defined as Definition A.8

We define L(X) € R as follows

n d

L(X) = Z Z(C(X)ioajo)z

io=1 jo=1

17
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A.3 GRADIENT FOR EACH COLUMN OF XTI/VXM-0
Lemma A.10. We have

e Part 1. Let iy = 41 € [n], j1 € [d]

dXTWX
dz, 4*’% = Cip '<Wj1,*>X*,io>+\XT,W*,j1
ol nx1 scalar nxd g1
nx1l
» Part 2 Let iy # i1 € [n], j1 € [d]
dXTWX,
dx =t = i '<Wj17*>X*,io>
i
ol nx1 scalar
nxl1
Proof. Proof of Part 1.
XWX, _ dXT WX 4 xT w i
d‘rihjl dXil-,jl M\\*/’Z.g r;;?:d/dXil’jl
—— dx1 ———
nx1 nxd * dx1
T
= e, e W Xii(+X W e

~—
nx1 1xd dxd dx1 nxd dxd dx1

_ T

= € - <Wj17*7 X*,i0> +X W*,jl
~ ————— VT

nx1 scalar nxd dx1

= 62‘0 . <Wj1;*7 X*,i0> + )(—r W*,jl
nx1 scalar nxd  gyq

where the 1st step follows from Fact A.2, the 2nd step follows from simple derivative rule, the 3rd is

simple algebra, the 4th step ie because ¢g = ;.

Proof of Part 2

AXTWX,, dxT dX,;
*%0 %% X*,ig"_XT W *,20
dxil J1 dxil g1 S N~~~ v y dxh J1
) ) dxd %1 nxd dxd\w’_/
nx1 nxd dx1
= e, e W Xujy+ X' W 0
- i1 j1 *,10 d

= €4 '<Wj1,*vX*7io>
~ ——
nx1 scalar

where the 1st step follows from Fact A.2, the 2nd step follows from simple derivative rule, the 3rd is
simple algebra. O

A.4  GRADIENT FOR u(X);,
Lemma A.11. Under following conditions
» Let u(X);, be defined as Definition A.4
We have
* Part 1. For each iy = i1 € [n}, j1 € [d]
du(X);,

T = U(X)io © (eio : <Wj1,*v X*-,io> + XTW*vjl)
Liy 51

nxl1

18
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e Part 2 For eachig # i1 € [n], j1 € [d]

du(X);
QX0 _ 4 x), ofers - (Wysoe X))
dxihjl Wl_/
n X
nx1

Proof.
Proof of Part 1
du(X)i, _ dexp(XTWX.,,)
dziujl B dxihjl
——
nx1l nx1l
dXTWX,
=exp(X'T W X,; )0 ———20
~ N~ dz;, 5,
nxd dxd ;34 )
nx1l
dXTWX,
= u(X)jpo—F—
—— dxihjl
nx1l
nx1l

= u(X)io O( €ig * <Wj17*’ X*,i0> + X7 W*a.jl)
—_—— ~ —m—
nx1 nx1 scalar nxd g1

where the 1st step and the 3rd step follow from Definition of u(X);, (see Definition A.4), the 2nd
step follows from Fact A.2, the 4th step follows by Lemma A.10.

Proof of Part 2
du(X);,, dexp(X'WX,;)
dxil:jl dxihjl
nx1 nxl
dXTWX,
_ exp(XT w X, io) o L
N~ i dxihjl
nxd dxd dx1
nx1
AXTWX,,;
= u(X);, 0 .
dmihjl
nxl1
nxl1

= U(X)io o( €iy * <W71,*’X*,i0>)
—_—— N —,— —
nx1 nx1 scalar

where the st step and the 3rd step follow from Definition of u(X);, (see Definition A.4), the 2nd
step follows from Fact A.2, the 4th step follows by Lemma A.10.

O

A.5 GRADIENT COMPUTATION FOR «(X);,

Lemma A.12 (A generalization of Lemma 5.6 in Deng et al. (2023b)). If the following conditions
hold

* Let o(X);, be defined as Definition A.5
Then, we have
 Part 1. For eachig = i1 € [n], j1 € [d]
dO[(X)iO

Az = U(X)io,io ’ <Wj1,*vX*-,io> + <U(X)ionTW*-j1>
1,51

scalar

19



Under review as a conference paper at ICLR 2025

* Part 2. For each iy # i1 € [n), j1 € [d]
da(X)iO

= w(X)ig,i - Wiy 0 X
dxil,jl U( )0,1 < Ji, 7o>

scalar

Proof. Proof of Part 1.
da(X)io _ d<u(X>i07 17L>

dxihjl dx’il’h
———
scalar scalar
- dU(X)ZO
(0 1)
dmil;jl ~
N—— nX1
nx1

= <U(X)lo o(eio : <Wj1,*7X*,io> +XTW*,]'1), 1, >
nx1 nx1

= (u(X) iy 0€ig 1) - (Wi, s i) + (w(X)ig 0 (X TWerjy), 1)
N—— \fl’
nx1 nx

= <U(X)i0’eio> ' <Wj1,*7X*,io> + <u(X)ioa XTW*,J'1>
nx1

= U(X)ioyio ’ <Wj1,*?X*7io> + <U(X)ionTW*7j1>

where the 1st step follows from the definition of a(X);, (see Definition A.5), the 2nd step follows
from Fact A.2, the 3rd step follows from Lemma A.11, the 4th step is rearrangement, the Sth step is
derived by Fact A.1, the last step is by the definition of U (X)

Proof of Part 2.

©0,%0*

da(X)iy _ d{u(X)i, 1n)

dmilvjl dmilvjl

scalar scalar

du(X);
= (& 4,
Liy,j1 =~
—— nX1
nx1

= (u(X)i, o(€s; - (Wi Xsiio))s 1n
(u(X)ig oeiy - (Wi x5 Xig) )

nx1 nx1
<u(X)Lo OCiy; 1, > ’ <Wj17*7X*7io>
nx1 nx1
= u(X)io,il '<Wj17*’X*,io>
——

scalar

where the 1st step follows from the definition of a(X);, (see Definition A.5), the 2nd step follows
from Fact A.2, the 3rd step follows from Lemma A.11, the 4th step is rearrangement, the Sth step is
derived by Fact A.1.

O

—1
0

A.6 GRADIENT COMPUTATION FOR «(X)

Lemma A.13 (A generalization of Lemma 5.6 in Deng et al. (2023b)). If the following conditions
hold

* Let a(X);, be defined as Definition A.5
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we have
* Part 1. For iy = i1 € [n], j1 € [d]
da(X);! .

dx.. = _a(X)iol : (f(X)imio : <Wj1=*7X*,i0> + <f(X)730’XTW*1j1>)>)
11,71

scalar

» Part 2. Forig # i1 € [n], j1 € [d]

do(X);! _
Tjo = _a(X)iol ’ f(X)ioﬂd : <Wj1,*7X*>io>
scalar
Proof. Proof of Part 1.
da(X); d(a(X);
j( )lzo = _1 ( (X)i())_2 (C?‘( )0)
ley]l le J1
scalar scalar
scalar scalar
= _(a(X)io)_Q '(u(X)io,io : <Wj1,*7 X*,io> + <u(X)i0>XTW*J1>)
scalar
= = a(X);Ol : (f(X)io,io ’ <Wj1>*7X*,i0> + <f(X)i0’XTW*,j1>)

where the 1st step follows from Fact A.2, the 2nd step follows by Lemma A.12.
Proof of Part 2.

da(X); d(a(X);
( )'Lo = 1 -(OA(X)Z‘O)72- (a( )Lo)
dxil,jl SC\ET; %T_/ dxil,jl
scalar seatat scalar
= _(a(X)io)_2 'U(X)io,il ’ <Wj1,*7X*,i0>
1
scalar

= = a(X);ol ’ f(X)imh ) <Wj17*’ X*7i0>
where the 1st step follows from Fact A.2, the 2nd step follows from result from Lemma A.12.

A.7 GRADIENT FOR f(X);,
Lemma A.14. Ifthe following conditions hold

* Let f(X),, be defined as Definition A.6
Then, we have

 Part 1. Forall iy = i1 € [n], j; € [d]

% = — F(X)ig - (F(X)igiio - Wiy s, Xuig) + (F(X)igy X TWeaii))
11,71 N——

nx1 scalar
nx1

+ f(X)Zo © (610 ! <Wj1,*7X*710> + XTW*»]&)

nx1

 Part 2. Forall iy # i1 € [n], 51 € [d]

df(X)i

d( ) v = - f(X)io 'f(X)io-,i1 : <Wj1,*7X*7io>
Tl nx1 1
~ scalar
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+ f(X)Zo o (eil ’ <Wj1,*7X*,i0>)

nx1
Proof. Proof of Part 1.
df(X)iy _ da(X);;  u(X);,
dxil,jl dxil,jl
nx1 nx1
= u(X)s—L a0 a0t L (x),
B \ﬁx,l_m/ dxil,jl io H/ﬂ/ dxihjl ‘o
scalar scalar nx1
= - u(X)'lO ' (a(X)io)_l : (f(X)i07i0 : <Wj1,*7X*7io> + <f(X)i07XTW*7j1>)
——
nx1 scalar
+ a(X) 1 d u(X);
“ dxihjl v
scalar
nx1
= - U(X)lo ! (O‘(X)io)71 ' (f(X)i(Jﬂh ' <Wj17*7X*7i0> + <f(X)i07XTW*7j1>)
——
nx1 scalar
+ O‘(X)i_gl : (U(X)’io ° (eio ’ <Wj17*v X*ﬂ?o> + XTW*,jl ))
———
scalar nx1
= = f(X)io ’ (f(X)ioﬂb : <Wj1,*’X*,i0> + <f(X)i0>XTW*,j1>)
——
nx1 scalar
+ f(X)io o (eio ’ <Wj1,*7X*7io> + XTW*Jd)

nx1

where the st step follows from the definition of f(X);, (see Definition A.6), the 2nd step follows
from Fact A.2, the 3rd step follows from Lemma A.13, the 4th step follows from result from
Lemma A.11, the 5th step from the definition of f(X);, (see Definition A.6).

Proof of Part 2.

df (X)iy _ do(X);, u(X)s
dmil j1 dm“m
nxl1 nxl1
(X, T—a(X);! + (X))} S —u(x)
= Uu it T« ; [ . u i
HX'TU/ dz;, U day ’
" scalar scalar nx1
= = U(X)io ) (a(X)in)_2 'u(X)ioﬂl : <Wj1,*’X*,i0>
——
nx1 scalar
+a(X); ! d u(X);
0 dxihh ZU
scalar 1
= - u(X)io '(a(X)in)_2 'U(X)imil : <Wj1,*7 X*,i0>
——
nx1 scalar
+ a(X)';)l ’ (u(X)Zo © (eil : <Wj1,*7X*-,io>)
——
scalar nx1
= - f(X)lo 'f(X)io,il ’ <Wj1,*7X*7io>
——
nx1 scalar
+ €y - f(X)io,il ' <W7'1,*7X*,i0>)
scalar
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where the 1st step follows from the definition of f(X);, (see Definition A.6), the 2nd step follows
from Fact A.2, the 3rd step follows from Lemma A.13, the 4th step follows from result from
Lemma A.11, the 5th step from the definition of f(X);, (see Definition A.6). O

A.8 GRADIENT FOR h(X);,
Lemma A.15. If the following conditions hold
* Let h(X);, be defined as Definition A.7

Then, for all i1 € [n], jo,j1 € [d], we have
dh(X)jo

dxilajl

i1 " Uj1,jo

nx1

Proof.
dh(X)]O dXTV*,jO
dmih]l dxi1,j1
nx1 nx1
dxlh]l w
dx1
nxd

nxl 1xqd dx1
= €y "Uj g0
nx1 scalar

where the first step is by definition of ~(X);, (see Definition A.7), the 2nd and the 3rd step are by
differentiation rules, the 4th step is by simple algebra. O

A.9 GRADIENT FOR ¢(X )i, j,
Lemma A.16. If the following conditions hold
* Let ¢(X);, be defined as Definition A.8
* Let 5(X)ig o := (f(X)ig, M(X)j0)
Then, we have
 Part 1. For allig = i1 € [n], jo,J1 € [d]

dC(X)io ,Jo

= Ci(X) + Co(X) + Ca(X) + Cu(X) + C5(X)

where we have definitions:

- C1(X) = (X)io,jo F(XDigio - Wiy s, Xig)
- 02(X) ( Zo,jo ’ <f(X)ioaXTW*,j1>

= C3(X) = f(Xig,io - M(X)jo o~ (Wi Xssio)
- Ca(X) = (f(X)ig o (X TWe i), h(X) o)

- Cs5(X) == f(X)iosio * Vi1 jo
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e Part 2. For all iy 75 i1 € [n], j()7j1 S [d}

dC(X)io ,Jo
dl‘il i1

= CG(X) + C7(X) + Cg(X)

where we have definitions:

- CG(X) = _S(X)io,jo 'f(X)io,h ' <Wj1,*7X*,io>
x This is corresponding to C1(X)

- C7(X) = f(X)io,il : h(X)jo,il ’ <Wj17*7X*,io>
s This is corresponding to C5(X)

= Cs(X) = f(X)i,is - Vj1,j4o
s This is corresponding to C5(X)

Proof. Proof of Part 1
dC(X)j’Oajl _ d(<f(X)Zo’ h’(X)Jo> - bio»jo)

dl.il-,jl dxil-jl
scalar scalar
_ d<f(X)iov h(X)jo>
dxila.jl
scalar
df(X); dh(X);
=(—/— Az, * h(X); >+<f(X)i°’d‘7@>
Liy,j1 R/—’ ~—— Liy,j1
nx1 nx1
nx1 nx1l
df(X)i
= <d70 h(X) o) + {(f(X)igs €4 "Ujl,jo>
Liy,j1 H/—’ S~ N~
nx1 nx1 nx1 scalar
nx1
= <_ f(X)Zo : (f(X)ioyio : <Wj1,*’ X*7i0> + <f(X)ionTW*7j1>)
——
nxl1 scalar
+ f(X)lo o (eio ’ <Wj1,*7X*7io> + XTW*-,jl)vh(X)jo> + <f(X)107 €4y 'vjl,jo>
S—— e g
nx1l nx1 nx1 nx1 scalar
= S(X)Zo Jo ° ( )2071’0 : <Wj11*7X*7i0>

(X)ZOJO : < ( )lov XTW*J1>
(X)lmlo ( )Jo,lo <Wj1’*’ X*’io>
+ (F(X)ig 0 (XTW.jy), h(X)j0)
+ f(X)io i1 Vi1 o
1= C1(X) + C2(X) + C3(X) + Cu(X) + C5(X)

where the first step is by definition of ¢(X);, j, (see Definition A.8), the 2nd step is because b;, j,
is independent of X, the 3rd step is by Fact A.2, the 4th step uses Lemma A.15, the 5th step uses
Lemma A.14, the 6th and 8th step are rearrangement of terms, the 7th step holds by the definition of
f(X)i, (see Definition A.6).

Proof of Part 2
dC(X)ioJi _ d(<f(X)ioa h(X)jo> — bioyjo)
dwi1,j1 dwihjl
scalar scalar
_ d<f(X)ioa h(X)j0>
dziy,j,
scalar
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Lo X X _—\""/7Jo
= (T ) 4 (4130, G2
nx1 nx1
nx1l nxl1
df 20
= (i (30),) + (i e 310)
Tiy, 51 N—— N~
nx1 nx1 nx1 gscalar
nx1
= <_ (a(X)io)_l . f(X)Zo .u(X)i077;1 ’ <Wj17*’ X*7i0>
scalar nx1 1
+ f(X)io o (eil ’ <Wi1,*7X*7io>)7 h(X)jo> + <f(X)i07 €iy 'Ujhjo)
nx1l nx1 nx1 nx1 scalar

= — (@(X)ig) " (F(Xigs MX)jo) - (X ig.i, - (Wi s X i)
scalar
+ <f(X)lo 0 €, h(X)j0> : <Wj1’*7 X*,io>
scalar
+ (f(X)ios €ir - Vjy jo)
= ( )10730 ’ (X)io,i1 . <W]17*’X*,10>
( )10,21 ’ (X)j07i1 ’ <W]17 7X*710>
+ f(X Jio,in - Uj1.j0
1= C(X) + C7(X) + Cs(X)
where the first step is by definition of ¢(X);, j, (see Definition A.8), the 2nd step is because b;

0,70

is independent of X, the 3rd step is by Fact A.2, the 4th step uses Lemma A.15, the 5th step uses
Lemma A.14, the 6th and 7th step are rearrangement of terms. O

A.10 GRADIENT FOR L(X)
Lemma A.17. If the following holds
» Let L(X) be defined as Definition A.9

For iy € [n], j1 € [d], we have

n d
§ : § : . (X)lo ,Jo
Zo ,Jo
dxlldl =1jo=1 dxll 2J1

io

Proof. The result directly follows by chain rule. O

B HESSIAN CASE 1: 70 = 71

Here in this section, we provide Hessian analysis for the first case. In Sections B.1, B.2, B.3, B.4, B.5,
B.6 and B.8, we calculate the derivative for several important terms. In Section B.9, B.10, B.11, B.12
and B.13 we calculate derivative for C, Cs, C3, Cy and C respectively. Finally in Section B.14 we

. . c(X 0.7
calculate derivative of %.
Tiy,j1 dig,j2

Now, we list some simplified notations which will be used in following sections.
Definition B.1. We have following definitions to simplify the expression.

o 5(X)ij = (f(X)i, h(X);)
c w(X)ij = (W, Xui)
© 2(X)iy = (f(X)i, X TW. ;)

)
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® ’lU(X)z7* = WX*J'
B.1 DERIVATIVE OF SCALAR FUNCTION w(X);, j,
Lemma B.2. We have

e Part1 Forig =11 =is € [n], J1,J2 € [d]

dw(X)imh = wj, .,
dxi2’j2 '
e Part 2 Forig = i 75 19 € [n], J1,J2 € [d]
dw(X)io»jl -0
dmizdb
Proof. Proof of Part 1
dw(X)z J dX*,i
dz; . == (W, dx; =)
xl2»]2 1’12,]2
= <Wj1,*7 ej2>
= Wy, 52

where the first step and the 2nd step are by Fact A.2, the 3rd step is simple algebra.
Proof of Part 2
dw(X )io \J1
dxiz’h

dX. s
dxiz,jé
= <Wj1,*7 0d>
=0

= <Wj17*7 >

where the first step is by Fact A.2, the 2nd step is because ig # 5. O

B.2 DERIVATIVE OF VECTOR FUNCTION X "W, ;,
Lemma B.3. We have

e Part1 Forig =1, =19 € [TL}, 1,72 € [d]
AXTW,

= €iy " Wy 5y
dxi27j2

e Part 2 For io =10 7& 19 € [TL}, j1,j2 S [d]
dXTW,

= €iy " Wy, jy
dxi%jz

Proof. Proof of Part 1
dXTWw-1 _ dx’
dxizdz dxiz’h

T
'W*Jl

J2

'W*jl

)
= €4,€
= Ciy " Wy, 5,
= €ip - Wyy,5;

where the first step and the 2nd step are by Fact A.2, the 3rd step is simple algebra, the 4th step holds
since 79 = is.
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Proof of Part 2
dXTW, ; dx’
dxi%h’] L= . Wi jy
= ei2ejT2 Wi
= €iy " Wjy 5y
where the first step and the 2nd step are by Fact A.2, the 3rd step is simple algebra. O

B.3 DERIVATIVE OF SCALAR FUNCTION f(X);, 4,

Lemma B.4. If the following holds:

* Let f(X),, be defined as Definition A.6
We have

» Part 1 Forig = iz € [n], j1,j2 € [d]

Y Xivio — _ (x),0 1 (FXiosie - (X i+ (X )in XTW. 1))

dxiz,jz
+ f(X)ioyio : <Wj27* + W*JQ? X*,i0>

* Part 2 Forig # iz € [n], j1,J2 € [d]
4 (i

dxz27]2 _f(X)ioJo ’ f(X)ioﬂ'z : w(X)io,jz

Proof. Proof of Part 1
d.f( )70 %0

dz; ; = (_(a(X)’io)il : f(X)lo : (U(X)’imio 'w(X)’iod'z + < (X)l07XTW*7j2>)

+ f(X)lo (elo ’ w(X)io g2 T XTW ,J2)> 10

= (a(X)lo) ( )Zo i ° (U(X)ioalo ’ (X)’L'()Jz + < (X)i()?X W* ]2>)
+ (f(X)ip 0 (elo' (X )ig,2))io + (F(X)ig © (X Wi )i
= (a(X)l ) ( )10710 . ( )lo,lo : (X)imjz + < (X)107XTW*7J'2>)

(X
+ f(X)lo,lo ’ ( )107J2 + f(X 0,%0 <W ;J27X* Zo)
= = f( )i(),io ’ (f( )70710 ’ (X)lo g2 T <f(X)730’XTW*J2>)
+ f(X)i(),io w( )10732 + f( )10710 ’ <W*,j27X*7’io>

where the first step uses Lemma A.14 for ip = 42, the following steps are taking the 7o-th entry of
f(X)4,, the last step is by the definition of f(X);, (see Definition A.6).

Proof of Part 2
df( )10,10

dzi, ; = (—(@(X)i) ™"+ F(Xig + ul(X)ig i - w(X)ig o

f(X)’io © (622 ( )7/0,]2))L0
— (

+

= a(X)Zo ( )10,20 'u(X)MJQ ) (X)io,jz
+ (f(X)ig 0 (% “w(X)ig.32))io
= (Oé( ) ) (X)lo,lo : ( )Zo,i2 'w(X)’io,jz

f( )Zo i ° f(X)Zo,lz ’ w(X)107]2

where the first step uses Lemma A.14 for ig # i2, the 2nd step is taking the io-th entry of f(X),,
the 3rd step is because iy # iz, the last step is by the definition of f(X);, (see Definition A.6). [
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B.4 DERIVATIVE OF SCALAR FUNCTION A(X)

Josio
Lemma B.S. If the following holds:
* Let h(X);, be defined as Definition A.7
We have
» Part 1 Forig =iz € [n], j1,J2 € [d]
dh(X)jo,io o
Aoy, j, | e
* Part 2 Forig # iz € [n], j1,J2 € [d]
dh(X) 00 _
dzi, ;,

Proof. Proof of Part 1
dh(X)jo.q
TN = (€45 " Vja,jo)io
12,72
= Uj2,jo
where the first step is by Lemma A.15, the 2nd step is because 7g = io.
Proof of Part 2
dh(X)

Josto
d = (eiz 'sz,jo)io
Liy,jo

=0
where the first step is by Lemma A.15, the 2nd step is because ig # is.

B.5 DERIVATIVE OF SCALAR FUNCTION z(X);, ,
Lemma B.6. Ifthe following holds:

* Let f(X),, be defined as Definition A.6

o Let 2(X)ig jy = (F(X)ig, X "W j,)

o Let w(X)ig,jn = Wiy e Xaio)

We have
e Part1 Forig =11 =is € [TL], J1,J2 € [d]
dZ(X)imh
dmi21j2

= = 2(X)igg1  F(X)ig,io - W(X)ig,j
= 2(X)ig g1+ 2(X)ig.ga
+ [ (Xiosio - (Wijis Xio) » w(X)ig 5
+ (f(X)ig 0 X TW. 5, X TWej,)
+ F(XDigio - Wi

» Part 2 Forig =iy # i € [n], j1,J2 € [d]
A(f(X)ip, X TWej,)
dx;, 4,

= —2(X)ig. 1 - [(X)igsio - W(X)ig.js
+ F(Xigsio - W(X)ig gy + (Wi gy s Xusio)
+ F(X)igio - Wi
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Proof. Proof of Part 1

A(f (X)ig, X W 1)
dxiz,jz

AXTW,

— (Y Ty (X0, )

dl'm 2J2 dxi2,j2
df(X);
< . XTW ,J1> <f(X)i0’ei0 'wj2;j1>

dz;
i2,j2

df(X);

= dz;., s : ’XTW*J1> + f(X)io,io * Wiz,

12,72

= <7(a(X)i0)71 ’ f(X)lo ’ (U(X)io-,io : w(X)io,jz + < (X)ZonTW*Jé»

+ F(X)ig 0 (eig - 0(X)ig o + X Wajy), X TWaji) + F(X)iio * Wi o
= < F(Xig - (F(Xigsio - w(Xig,jo + (f(X)igs X T Wejp))

(X)lo (620 ’ (X)i07j2 + XTW*Jé)vXTW*Jl) + f(X)io,io “ Wiz, 51
= = 2(X)ig.g1 - [(Xigio - w(X)ig g

(X)lo Ji° ( )Zo J2

X)lo,lo <W* s X, 20> : (X)imj?,

+ f(
+ <f(X)Zo © XTW*JQ? XTW*,]'1>
+ F(X)io,io - W ja

where the 1st step is by Fact A.2, the 2nd step uses Lemma B.3, the 3rd step is taking the iy-th
entry of f(X);,, the 4th step uses Lemma A.14, the 5th step is by the definition of f(X);, (see
Definition A.6).

Proof of Part 2

d<f(X)i07 XTW*J1>
dxiz’jz

AXTW,

— (Yo Ty (X, )

dw, j, di,,j,
df(X)i
= (o X W) + (X i - wja )
12,72
df (X)i
< ] 0 XTW*A,]‘J + f(X)io,iz * Wys 51
Li,jo

= <_(a(X)io)_1 : f(X)io 'U(X)io,io : w(X)iO,jz
(eto : (X)i07j2)7XTW*,j1> + f(X)’imiU " Wiy, 51
X ) ( )20710 'w(X)iOJ’.’

Jio

< )i
X)Zo © (elo : (X)i07j2)’XTW*,j1> + f(X)ioyio " Wia, 51

)i

)i

+ (X
I
+ /(
(X 10,J1 ( )lo,zo : w(X)imjz

10,50 ( )107]2 ’ <W*7j17X*,io>

Jiosio " Wia gy

+ f(X
+ f(X
where the 1st step is by Fact A.2, the 2nd step uses Lemma B.3, the 3rd step is taking the i(-th
entry of f(X);,, the 4th step uses Lemma A.14, the last step is by the definition of f(X);, (see
Definition A.6). O]

B.6 DERIVATIVE OF SCALAR FUNCTION f(X)iy.i0 - 7(X) o i0
Lemma B.7. If the following holds:

* Let f(X),, be defined as Definition A.6
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*» Let h(X);, be defined as Definition A.7
We have

e Part1 Forig =1, =19 € [TL], J1,J2 € [d]
df (X)igio - P(X)jo,io
dxizyjz
= (_f(X)ioﬂo : (f(X)io,io 'w(X)ioajz + <f(X)i07XTW*,j2>)
—+ f(X)io,io ’ <Wj2,* + W*,jw X*,i0>) ’ h(X)joﬂb + f(X)io,io " Ujiz,j0

e Part 2 Forig = i 75 i9 € [TL], J1,J2 € [d]
df(X>i0,i0 'h(X)jmio _

d$i2,j2

_f(X)io,io : f(X)io,iz . w(X)iO;jz ’ h(X)jmio

Proof. Proof of Part 1
df(X)io,io ) h(X)j(Mh

dxiz,jz
df(X)io 0 dh(X)jo,i
:77.h(X), ¥y +f(X)1 y e Sl VL L0}
dxi27j2 ot o d$i2,j2
= Y Hios h(X)josio + F(X)iosio * Viasjo
dxi2’j2

= (_(a(X)io)_l . f(X)iO7iO ’ (U(X)io,io ' w(X)iO;jz + <U(X)i07XTW*J2>)
+ f(X)io,io ) <Wj2,* + W*,j27 X*»io>) ’ h(X)j():io + f(X)io,io " Uja,jo

= (_f(X)io,io : (f(X)io,io ' w(X)imjz + <f(X)i07XTW*»j2>)
+ [ (Xioio = Wiae + Wi gos Xuio)) - 1(X)joio + F(X)inio * Via.do

where the fist step is by Fact A.2, the 2nd step calls Lemma B.5, the 3rd step uses Lemma B.4, the
last step is by the definition of f(X);, (see Definition A.6).

Proof of Part 2
df(X)io,io | h(X)jo,io
dximjz
df (X)io,io dh(X)jo,i
- (X ot + F (X )iy - g
dwiz,jz Joe o dxiz,]z

= - (a(X)io)_l : f(X)ioyio ’ U(X)ioﬁig : w(X)ioajz ’ h(X)joyio

= - f(X)io,io ’ f(X)io,iz ’ w(X)io,jz ’ h(X)jmio
where the fist step is by Fact A.2, the 2nd step calls Lemma B.5, the 3rd step uses Lemma B.4, the
last step is by the definition of f(X);, (see Definition A.6). O

B.7 DERIVATIVE OF SCALAR FUNCTION f(X);;.i0 - W(X)ig. 5
Lemma B.8. If the following holds:

* Let f(X),, be defined as Definition A.6
We have

e Part1 Forig =11 = is € [TL], J1,J2 € [d]
df(X)ioyio ) w(X)i()gjl
dxiz,jz
= (f(X)iUJO ’ (f(X)io,io : w(X)i()Jé + <f(X)io’XTW*J2>)
+ f(X)i()aiO : <Wj2»* + W*,ij*,io» : w(X)imjl + f(X)ioa’io * Wiy o
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e Part 2 For ig = 11 7é 19 € [TL], J1,J2 € [d]
df(X)io,io i w(X)imh _

dmizdz

7f(X)i0,io ’ f(X)io-,i'z : w(X)i(hJé ’ w(X)imh

Proof. Proof of Part 1
df(X)iU,io ) w(X)io’Ji

dzi27j2
A (Xigio 4ot X o
(X )ig gy + (X ig g - gt
dxzz,JZ " w dxi27j2
df G0
d( )ioio ~W(X)ig 1 + F(X)igio * Wiy g
xzz,j2

= (_(a(X)io)_l : f(X)io,io ' (u( )lo,lo : (X)IOJQ < (X)ZO’X Wi 32>)
+ f(Xiosio * Wiz + Wi jos Xiig)) - w(X)ig jr + F(X)igio * Wiy o

= (* ( )lo,zo ( ( )2071'0 'w(X)lo J2 < (X)Z()?X *Jz>)
+ f( )10720 ’ <WJ27* + W*,jz’X*,to» ’ (X)to,h + f( )Zo»io * Wy, 52

where step 1 is by Fact A.2, the 2nd step calls Lemma B.2, the 3rd step uses Lemma B.4, the last step
is by the definition of f(X);, (see Definition A.6).

Proof of Part 2
df(X)io,in ) w(X)io’jl
dxi27j2

df( )1 i
d1‘12 ](; ; .w(X)i07j1 + f(X)imio ’

Af (X )i io

(1:1:742’j2 w( )107.71

= - (O‘(X)io)il ! f(X)io-,io : U‘(X)ia,lé 'w(X)iO»Jé : w(X)imjl
= = f(X)ioﬂ'o ’ f(X)io,i2 : w(X)imjz ’ w(X)io»]d

where step 1 is by Fact A.2, the 2nd step calls Lemma B.2, the 3rd step uses Lemma B.4, the last step
is by the definition of f(X);, (see Definition A.6). O

dw(X)imJi

dmizajz

B.8 DERIVATIVE OF VECTOR FUNCTION f(X);, o (X TW. )
Lemma B.9. If the following holds:

* Let f(X),, be defined as Definition A.6
We have

e Part1 Forig =1, =19 € [n], j1,j2 S [d]
df(X)io ° (XTW*J&)
dxi2,j2
= (_f(X)ZO ’ (f(X)ZoZO : w(X)io,jz + <f(X)Zoa XTW*,J'2>)
+ f(X)io © (eio ’ w(X)io,j2 + XTW*J2)) o (XTW*,jl) + f(X)io © (eio ) wjz;jl)

* Part 2 Forig =iy # i € [n], j1,J2 € [d]
df(X)ig o (X T W, jy)
dzi, j,
= (=f(X)io - [ (XDig,ia - w(X)ig.jo
+ [(X)ig © (€s - w(X)ig,52)) © (X TWaji) + F(X)ig 0 (€5, - w5,
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Table 2: C; Part 1 Summary

ID | Term Symmetric? | Table Name
T 4+25(X)ig o - FX7 iy - w(Xig gy - 0(X)ig s Yes N/A
2 _f(X)?O ig h(X)jowio i w(X)io,jz ) w(X)ion Yes N/A
3 - (X)’imio ) <f(X)7o © (XTW*Jz)a h(X)]0> . w(X)i(hjl No Table 5: 1
4 — (X)?O ig Vjy,jo w(X)io,jl No Table 6: 1
5 _S(X)ioﬂ'o . f(X)ioJo i w(X)iij ) w(X)io,jl Yes N/A
6 _S(X)io,jo . f(X)io,io . <W*,j27X*,io> . w(X)io,jl No Table 3: 7
T | =s(X)inio - F X Vivdo - Ws ia No Table 3: 0
8 2 (X)lo,io . S(X)i07j0 . Z(X)io,jz . w(X)iwl No Table 3: 1
Proof. Proof of Part 1
df(X)io © (XTW*Jl)
dxim]é
_dfX)ie T dX W,
X W, X); 1
dx7,27]2 ( 7]1) + f( ) 0 © dIiQ,QQ
_ df (X
= (XTW*J'l) + f(X)lo o (elo Wy, ]1)
dz;, j,
= (—(a(X)io) ™" F(Xig - (W Xigio - W(X)ig o + (u(X)ig, X Wi 35))
+ f( )Zo o (eln 'w(X)lmJé + XTW*,jz)) © (XTW*’jl) + f(X)Zo o (eio .wj2»jl)

= (_f(X)io : (f(X)io,io 'w(X)ioajz + <f(X)i07XTW*,j2>)
+ F(X)ig 0 (€ig - w(X )ig gy + X TWajy)) o (X TWaj,) + F(X)ig 0 (€3 - )y 5)

where the 1st step is by Fact A.2, the 2nd step uses Lemma B.3, the 3rd step uses Lemma A.14, the
last step is by the definition of f(X);, (see Definition A.6).

Proof of Part 2
df(X)ig o (X TWij,)
dxiz,jz
_ df(X)i, dX W,
=z, o (XTWaj,) + f(X)i Tm
- d(‘i];(;}(j) (XTW*,jl) + f(X>Zo © (eiQ : ijujl)
= (( ( )Zo) . ( ) ! U(X 0,82 (X)io,jz
+ [(X)ig 0 (eiy - w(X)ig55)) © (X7 Wij,) + f(X)ig 0 (€is - w50 )
( (X)lo f( )IA(JMQ ' ( )107]2
(X)io (622 : (X)io,jz)) o (XTW*-,jl) + f(X)lo ° (€i2 'wjmjl)

where the 1st step is by Fact A.2, the 2nd step uses Lemma B.3, the 3rd step uses Lemma A.14, the
last step is by the definition of f(X);, (see Definition A.6). O

B.9 DERIVATIVE OF Cy(X)
Lemma B.10. [fthe following holds:
* Let C1(X) € R be defined as in Lemma A.16
= (F(X)io, X TW.j0)
o Let w(X)ig.ju = Wiy s, Xusig)

* Let Z(X)io,jl
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We have

e Part1 Forig =11 =i € [n], J1,J2 € [d]

dCi(X)
dximh
= +25(X)igjo - F(X)7 s - 0(X)ig g0 - w(X )ig 5y

+ 21 (X)io,i0 * $(X)io,jo * 2(X)igrsa * W(X)ig,a
( )120,1‘0 (X )JOJO ~w(X )lo,j2 'w(X)ZOm
— F(XDioio - (F(X)ip 0 (X TWejy), h(X) o) - 0(X)ig s
(X300 " Vizsdo * W(X)ig s
(Xiogo = f(XDiosio - W(X)ig,50 - 0(X)ig, 51
= 5(X)iogo * S (Xigsio = (Wi jos Xio) - 0(X)ig
(X)

%0,J0 f(X)io,io * Wiy o

= S(X)io,jo : f(X)ioﬂé ’ w(X)io,jz : f(X)ioyio ’ w(X)io,jl
- f(X)i07i2 ’ h(X)joﬂé : w(X)io,jz ’ f(X)ioyio : w(X)i(hjl
- f(X)ioﬂé “Uja,go f(X)io,io : w(X)ioJi
+ 5(X)iogo * f (Xiosio - [(X)igin - w(X)ig gz - w(X)ip

Proof. Proof of Part 1

dC,(X)
dxi21j2
_ d— S<X)i0,j0 i f(X)i07i0 'w(X)iO,jl
dxi27j2
dS(X)lo Jo
= — ——— - [(X)ig,ip - w(X)ig,
dxig,jz f( ) 0,20 w( ) 0,J1
df(X)ig,i0 - W(X)ig,j
= 8(X)ig.jo - Od; , e
12,72
ds(X)io.jo
d-Tiz,jg f( ) 0,20 ’LU( ) 0]

— 5(X)iggo - (=(a(X)i) ™"+ F(XDigio - (W(X)ig i - w(X)ig g + (u(X)ig, X Wi j,))
+ [ (Xiosio * Wia e + Waja, Xsio)) - w(X)ig g0 + f(XDigsio - Wi o)
= — (=8(X)iogo - F(XDignio - (X )ig,jo = 8(X)ig o - (f(X)igs X Wi j,)
+ f(XDioio - 1(X)jo,i0 - w(X)ig g
+ (F(X)ig 0 (XTWa o), h(X)jo) + F(Xigin - Vinio) * F(XDiguio - w(X)ig 5y
— 8(X)igjo - (—F(X)igio - (F(Xiosio - W(X)ig o + (F(X)ig, X Wijy))
+ f(XDiosio * Wiz + Wi jos Xiiig)) - w(X)ig 1 + F(X)ig 0 - Wir,2)
= 25(X)ig. 5o - F(X)3, 40 - W(X )i, - w(X)ig 5y
+28(X)io.go * Z(X)iogo = f(X)io,io - W(X)ig .1
— F(X)ii0 - X josio = W(X i s - W(X i s
— F(Xigsio - (F(X )iy 0 (XTWe 3, h(X) o) - w(X)ig 5,
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Table 3: C5 Part 1 Summary

ID | Term Symmetric Terms | Table Name
1 ZS(X)iO,jO . f(X)i(JviO . w(X)ioij . Z(X)ig,jl No Table 2: 9

2 S(X)io,jo ) Z(X)io,jz . Z(X)io,jl Yes N/A

3 _f(X)in,io i h(X)jo,io : w(X)io,jz i Z(X)io,jl No Table 4: 3

4 _<.f(X)io © (XTW*,jz)’ h(X)j0> i Z(X)imjl No Table 5: 2

5 _f(X)in,io . /sz,jo . Z(X)io,jl No Table 6: 2

6 | +5(X)injo  2(Xiguin * F(Xigsio * 2(X)ig o Yes N/A

7 =5(X)insio  F(Xinsio - Wajrs Xuig) - W(X)ig,jn | NO Table 2: 6

8 | —s(X)igujo - (f(Xip 0 (X Wojp), XTW.jy) Yes N/A

9 _S(X)io,jo . f(X)io,iU * Wiy 51 No Table 2: 7

- f(X)zzo,io *Vja,40 w(X)io,Jd
= 8(X)igjo - F(XDigio * Wiy e + Wi gy Xusig) - w(X)ig 5
= 8(X)ig.jo - F(X)iguio " Wiy 4o

where the first step is by definition of C;(X) (see Lemma A.16), the 2nd step is by Fact A.2, the 3rd
step is by Lemma B.8, the 4th step is because Lemma A.16, the 5th step is a rearrangement.

Proof of Part 2

dCy(X)
dxi27j2
_ d— S(X)io,jo . f(X)io,io ) w(X)i07j1
dmizdz
dS(X)io Jo
= — ——— - [(X)ig,ip - w(X)i,
dl‘ig,jg f( ) 0,20 w( ) 0,J1
df (X )ig,io - W(X)ig,5
— 5(X) gy - Lo i
i2,j2
ds(X);, 4
L. F(XDio 0 - w(X)ig 1
dxi27j2

+ S(X)im]b ’ f(X)ioﬁio : f(X)i(Mé ’ w(X)io-,jQ ! w(X)io,jl
- = (*S(X)ioyjo ’ f(X)ioylé ’ w(X)ioJé + f(X)io,iz : h(X)joﬂé ’ w(X)imJé
+ F(XDiosiz  Viago) * F(XDiosio - w(X)ig i1
+ 8(X)io,jo * f(X)ioio = [(X)ig,in + W(X)igja - 0(X)ig 5,
= 5(X)ig.go - f (Xigiz - W(X)ig g5 (X )ioio - w(X)ig
= F(Xiosin - M X)josio - w(X)ig g+ F(Xiguio - w(X)io .5
= F(Xiosin * Vga o+ F(Xio,io - w(X)ig, 51
+ S(X)io’jo ’ f(X)io,io ’ f(X)io’Zé : w(X)imh : w(X)i(lvjl
where the first step is by definition of C7(X) (see Lemma A.16), the 2nd step is by Fact A.2, the 3rd
step is by Lemma B.8, the 4th step is because Lemma A.16, the 5Sth step is a rearrangement. O

B.10 DERIVATIVE OF C3(X)
Lemma B.11. [fthe following holds:
o Let Cy(X) be defined as in Lemma A.16
* We define (X )iy jr = (f(X)ig, X TWi j,).

We have
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e Part1 Forig =11 =iy € [TL], J1,J2 € [d]
dCs(X)
dzi, j,
=+ 2S(X)i0,j0 ’ f(X)io’io 'w(X>i0,j2 ’ z(X)io,jl
+ S(X)io,jo : Z(X)io,jz ’ Z(X)io,jl
- f(X)ioyio ) h(X)jo,io : w(X)io,jz ’ Z(X)im]d
~ (F(X)ig © (XTWajy), H(X)jo) - 2(X)
= [(X)iosio * Viago - 2(X)io s
+s X)io,jo : Z(X)io,jl ’ f(X)io’io ’ Z(X)io’jz
= 8(X)ig.go - F(X)igsio - Wajns Xasig) - w(X)ig
)io,jo : <f(X)Zo o (XTW*yjz)’XTW*Jl)
)

0,J0 f(X)io,io * Wig, 51

0,71

= + 8(X)igjo - [ (X)igsin = W(X)igjn + 2(X)ig 1
Jiosiz * P(X ) jo i W(X)igjn + 2(X)ig
Jiosia * Vjz,jo * 2(X)io,ja
+ s X)io,jo ! <f(X)io’XTW*7j1> ' f(X)io,io : w(X)imb
)ioJo ! f(X)io,io : <W*7j17X*,i0> : w(X)imJé
Jiosio " F(Xiosio * Wia i

Proof. Proof of Part 1

d— Cy(X)
dximj’z
_ dS(X)io,jo i Z(X)imjl
dl‘i27j2
dS(X)iO jo dZ(X)Z 1
_ 5 . X i X PRI 0,J1
das, J, 2(X)ig,51 + $(X)ig.o Az, 1,
~ds(X)4,4

10,00 Z(X)i07j1

dwx;, j,
+ 8(X)ig o - (—(@(X)ig) ™"+ F(X)ig - (w(X)iguig - w(X)ig o + (W(X)ig, X Wi j,))
+ F(X)ig 0 (€5 - 0(X)ig jo + X Wi i), X TWe 31 + F(Xigi - Wi i)
= (=5(X)iojo - F(X)iosio - W(X)igjo — $(X)igujo  (F(X)ig, X Wi jy)
+ [ (Xig,i0 * M(X ) josio - W(X ig
+ (F(X)ig 0 (XTWe ), h(X)jo) + F(Xigin * Vi o) - 2(X)ig o
+ S(X)io do - ((=(@(X)ig) ™ F(XDig - (WX ig i - w(X)ig s + (w(X)ig, X Wi j,))
F(X)ig 0 (€i - w(X)ig go + X Wi 3,)s X W) + F(X)ig o - w5 1)
= (X)zo,yo F(XDiosi0 - w(X)ig 50 - 2(X)ig
= 8(X)iggo * 2(X)ig,jo + 2(X)ig,
+ F(XDigsio * 1(X)jo 0 * W(X)ig g+ 2(X) i,
+ (F(X)ig 0 (X TW. j,), B(X) o) - 2(X)ig 5,
+ f(X)ig iz - Vja,j0 Z(X)'LO:jl
— 5(X)iggo - (F(X)igr X TWaji) - F(Xigio - w(X)ig
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Table 4: C'5 Part 1 Summary

ID | Term Symmetric Terms | Table Name
1 7f( )10 io h(X)joyio ) w(X)io-,jQ i w(X>io,j1 Yes N/A
2 f(X)lo i w(X)io,]é . h(X)joﬂ'o ) w(X)iovjl Yes N/A
3 | —f(X)igsio - 2(X)ig.ia - P X)) joi0 - W(X)ig. No Table 3: 3
4 | F(X)igio - Wi jns Xaig) - B(X) joio - W(X)io,51 | NoO Table 5: 3
5 1 (X igio - Vjnjo - WX)ig. No Table 6: 3
6 | F(X)igio - P(X)io.i0 - Wiy .js No Table 5: 5

— 5(X)ig o+ (F(X)igs X TWa i) - F(Xigi - (F(X)igs X Wi j)

+ (X )iggo  F(Xiosio - Wajns Xusig) - w(X)ig 5

+ (X )ig o - (f(X)ig 0 (X T Wi jp), X TWoji)

+ 8(X)iggo = f(XDigsio * Wa,in

where the first step is by definition of Cs (X

step is by Lemma B.6, the 4th step is because Lemma A.16, the 5th step is a rearrangement.

Proof of Part 2
d— Cy(X)
dxiz’h
= ds(X)ioajo ) <f(X)i07XTW*,j1>
dxiz,jQ
dS(X),L \j
= ﬁ : Z(X)io,jl + S(X)ioﬁjo :
dS(X)io Jo
= 7, X io.q
d$i27j2 Z( ) 0,71

where the first step is by definition of C (X

+ S(X)io,jo ’ (<_(a(X)io)_1 ’ f(X)Zo 'U(X)imio : w(X)iU,]'z

+ f(X)io © (eio ! w(X)i07j2)>XTW*,j1> +

f(X)io-,io ) ijajl)

= (_S(X)imjo ’ f(X)io,iz : w(X)iodé + f(X)io,iz ’ h(X)joﬂ'z 'w(X)iojz

+ f(X)%o,lz ’sz,]o) : Z<X)i0>j1

+ S(X)Zo 2Jjo ° (< ( (X)io)_l ’ f(X)Zo 'U(X)io»io : w(X)iU,]'z
+ f(X)lo (elo . (X)i07j2)>XTW*,j1> + f(X)io-,io 'wjzajl)

><

— — &
+ f(
+ f(
—s(X

s(X
+s(X

><><

i0,i2 * Vja,jo Z(X)ioijl

10,J0 f(X)imio : <W*7j17X*7i0> :
)iO)jO ’ f(X)io,io " Wja, 1

)10,]0 ’ f(X)Zo iz’ w(X>i0,]’2 ’ Z(X)io,jl
)1 ’ h(X)Jo,tz ’ w(X)io’jz ) Z(X)io’jl
)i

)i07j0 ’ <f(X)ioaXTW*,j1> ! f(X)io,io 'w(X)ioajz
) w(X)io,jz

step is by Lemma B.6, the 4th step is because Lemma A.16, the 5th step is a rearrangement.

B.11 DERIVATIVE OF C3(X)

Lemma B.12. [f the following holds:

o Let C5(X) be defined as in Lemma A.16

We have
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e Part1 Forig =11 =iy € [TL], J1,J2 € [d]

dCs(X)
dxz;, 5,

= — F(X)] 00 - (X)) joio - W(X)ig g5 - w(X )ig 5,
= [(Xiosio ~ 2(X)iogo = B(X)jo,i0 * w(X)ig
+ [ (Xig,io * w(X)ig s = (X)) josi0 - W(X)ig
+ [ (Xigio * (Wi jos Xsig) (X ) jg o - W(X)ig
+ F(XDiosio * Viajo - W(X)ig .5,
+ f(X)ioio - 1(X)igi0 " Wit ja

» Part 2 Forig = i1 # i € [n], J1,Jj2 € [d]
dC3(X)
dw;, j,

= = f(X)imio ’ f(X)io,iz . w(X)io,jz ' h(X)jmio 'w(X)io,jl

Proof. Proof of Part 1

4Cs(X)

di,,j,
_ df(X)im’io i h’(X)io,io i w(X)io,jl

dxi2~,j2

df (X)ig,io = P(X)ig,io dw(X)i,,5

= . = w(X)ig gy + F(Xiguio - M X )igig - — 2+
dxig,jg ( )0]1 )0 (0] ( 0,%0 dxig,jg

df(X)ig,io - D(X )i

- zixo . = w(X)io,jl + f(X)io»io : h(X)io,iO * Wiy 5o
12,72

= ((*f(X)io,io : (f(X)i07iU 'w(X)i07j2 + <f(X)i07XTW*J2>)
+ F(Xiosio - (Wiae + Wajas Xio)) - (X ) jo,io + F(Xig o Viago) - w(X i o
+ [(XDiosio - P X io o * Wiz
= - f(X)izo,io : h(X)jo,io 'w( )uwz : (X)zo J1
- f(X)ioyio : Z(X)io 22 h( )Jo g (X)lo J1
+ f(X)ioyio : <WJ2 «+ W, J27X* 20> h(X Joyto ( )107j1
+ f(X)ioyio " Vj2,50 w(X)Z(),h

+ f(X)io,io : h(X)io,io * Wiy ,ja
where the first step is by definition of C5(X) (see Lemma A.16), the 2nd step is by Fact A.2, the 3rd
step is by Lemma B.2, the 4th step is because Lemma B.7, the 5th step is a rearrangement.

Proof of Part 2
dCs3(X)
dxiz,jz
_ df(X)ioJo 'h(X)io,io ) w(X)imjl
dximjz
df (X)ig,io M XDig,i0 dw(X)ig,;
= 7 = w(X ig gy F(Xigsio - M igig - —7 2
dzig,jQ ( 0,J1 ( )0 0 ( )0 0 dzig,jz
df(X)ig,i0 - P(X)ig,i
ISR ST
33127]2

= = f(X)io,io : f(X)imiz ’ w(X>i0’j2 : h(X)jo,io ’ w(X)io’jl
where the first step is by definition of C3(X) (see Lemma A.16), the 2nd step is by Fact A.2, the 3rd
step is by Lemma B.2, the 4th step is because Lemma B.7, the 5th step is a rearrangement.

O
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Table 5: Cy Part 1 Summary

ID | Term Symmetric? | Table Name
U = (XDig o (XTWoj ) (X go) - f(XDigiq » w(X)ig g | No Table 2: 3
2 | —{f(X)ig o (XTW, 1), (X)) - Z(X)ig o No Table 3: 4
3 f( )10,10 : h(X)]oﬂo <W* ]1’X* lo> w( )10,]2 No Table 4: 4
4 | (f(X)iy o (XTW.j,) o (XTW.j), h(X)jo) Yes N/A

5 f(X)iU,io . h(X)jo,io * Wiy 4y No Table 4: 6
6 f(X)iO,iO . <W*,j1,X*’Z‘O> " Yja,jo No Table 6:4

B.12 DERIVATIVE OF Cy(X)

Lemma B.13. [fthe following holds:

o Let Cy(X) be defined as in Lemma A.16

We have

e Part1 Forig =1, =19 € [n], J1,J2 € [d]

dCy(X)
dximjz

= = <f(X)w o
= (f(X)i, 0

(XTW*,jl)’h(X) >f(X ig,ip " W ( )lo,jz
(XTWa 1) M(X)jo) - Z(X )i

+ [ (XDiosio - PX ) josio - (Wiegs Xasig) - 0(X)ig g
+ <f(X)Zo ° (XTW*J2> (X W, ’Jl)v h(X)jo>

+ f(X)io,io ’ h(X)joyio “ Wiz, 1

+ f(X)io,io ’ <W*1j1 ) X*,io> " Uja,jo

e Part 2 Forig = 1 75 19 € [n], J1,J2 € [d]

Proof. Proof of Part 1

dCy(X)

dxi27j2

- <f(X)lo o (XTW*J1)7 h(X)]O> ’ f(X)io,iz 'w(X)io,jz

+ f(X)io,iz : h(X)jo,Zé : <W*,j17X*,i2> : w(X)ioA,jQ
(XDiguiz - M(X)jo,i5 * Wiz iy
+ f(X)io,iz ’ <W*,j1>X*,i2> " Uja,jo

_ d<f(X> (XTW 7]1) h(X)Jo>

dxl27]2

=

df(X)Zo ° (XTW*J'l)

X j0) + {F (X 0 (XTWay), <=

dximjz

(

df(X)ip o (XTW, )

h(X)j0> + <f(X)io © (XTW*,]'l)? iy * Uj27j0>

dz;, j,

I
—
T
~

(X)io ’ (f(X)io,io 'w(X)io,jz + <f(X)i0’XTW*,j2>>

+ f(X)lo o (eio ’ w(X)ioyjfz + XTW*JE)) ° (XTW*,J&) + f(X)’io ° (eio ) wjz;h)? h(X)]o>
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Table 6: C5 Part 1 Summary

Term Symmetric Terms | Table Name
7f( )zo ig w(X)imh " V1,50 No Cl(X) 4
7f( )lo-,lo . Z(X)iodé * Uj1,50 No Table 3: 5
f(X)iO,iD . w(X)iOJQ * Vi1 .50 No Table 4:5
F(X)igio - Wi g Xuio) - Vi1 jo | NO Table 5: 6

+<f(X)ZOO( *J1) €ip * 1)]2]0>

= <f(X)lo ( W, j1) ( ) > f(X)Zo io ° w(X)io,jz
— (F(X)ip 0 (X TWijy), (X)) o) - (F(X)ig, X "W jy)
+ ) - w(X )10,]2

+(f(X)i 0 (XTW. ;) 0 (X TW.5,), h(X)j0)
)70770 ! (X)Joﬂo Wi ,j1
=+ f( )20710 ’ <W*,j1 ) X*,’io> " Vj,50

where the first step is by definition of Cy(X) (see Lemma A.16), the 2nd step is by Fact A.2, the 3rd
step is by Lemma A.15, the 4th step is because Lemma B.9, the 5th step is a rearrangement.

Proof of Part 2

f
f(X)loJo ' (X)Jo o < 731 X*ﬂ
+ f(X

dC4(X)
_ AU (X)ig 0 (XTWajy), h(X) jo)
dxm,p
df(X)ig 0 (X W, i
— () dxf e L (X)) + (X 0 (XTWm%dx(ii”
d *,J1
= < f(X) dmz()]( W . ) h(X)jo> + <f(X)Zo © (XTW*7j1)7ei2 ’ sz’j0>

—~

(=(f(X)io - F(X)ig,in - w(X)ig 4o

+ F(X)ig © (€5, - 0(X)ig 5)) 0 (X T Wi jy) + F(X)ip 0 (€65 - W), 51), h(X) o)
+ (F(X)ig 0 (XTW. j,), €4, - 0, o)

F(X)ig o (XTWo ), (XD j0) - F(Xiguin - 0(X )i g
+ f(XDig,in - 1(X)josi - Wigis Xusin) - w(X)ig o

+ f(Xigin - B(X)jo,in - Wia o

+ f(X )zo,zz Wy Xsin) * Vinjo

where the first step is by definition of C4(X) (see Lemma A.16), the 2nd step is by Fact A.2, the 3rd
step is by Lemma A.15, the 4th step is because Lemma B.9, the 5th step is a rearrangement.

O

B.13 DERIVATIVE OF C5(X)
Lemma B.14. [f the following holds:

o Let C5(X) be defined as in Lemma A.16
We have

e Part1 Forig =11 =iy € [TL], J1,J2 € [d]
dCs(X)

dxiz 2J2

= - f(X)Z?U,i(] ! w('X)Z.OJé . ’Ujhjo
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= F(X)iosio = 2(X)iojz * Vi jo
+ f(X)lo,lo : w(X)ioJé V41,50
+ f(X)ioﬂ'o ’ <W*7j2>X*,io> " V1,50

e Part 2 Forig = 11 7é 19 € [TL], J1,J2 € [d]

dC5(X)

dx;, 5 == f(X)io,io : f(X)io,iz : w(X)iO’Jé " Uji,j0
Lig,j2

Proof. Proof of Part 1
dCs(X)
dz;, j,
_ df(XDigsio * V.o
dz;, j,
df( )ZO 7‘0 .
dz;, 5,
= (= (Xigio - (F(Xiguio - w(X)ig o + (F(X)ig, X Wi j,))
+ [ (Xiosio - Wiae + Wi jor Xacio)) * Vi jo
= — [(X)ii0 - 0(X)ig, g Vi jo
= F(XDigsio - (F(X)io» X TWejy) - v, o
+ [ (Xiosio * Wias + Wajios Xssio) * Vi jo

where the first step is by definition of C5(X) (see Lemma A.16), the 2nd step is by Fact A.2, the 3rd
step is by Lemma B.4, the 4th step is a rearrangement.

Proof of Part 2

J1,J0

dC5(X)
dz;, j,
_ dF (X oo~ Vo
dz;, j,
. df(X )10 io

B dz;, j,
= - f(X)io,io : f(X)io,iz 'w(X)io,j‘z * Uj1.50

where the first step is by definition of C5(X) (see Lemma A.16), the 2nd step is by Fact A.2, the 3rd
step is by Lemma B.4. O

J1,J0

B.14 DERIVATIVE OF cg)io*“)

Tiy gy

Lemma B.15. [fthe following holds:

* Let ¢(X);, j, be defined as in Definition A.8
We have

* Part 1 Forig =41 =iy € [n], j1,J2 € [d]

de(X)ig o _
dx;, 5 Tiy s
where we have following definitions

Dl(X) = 28(X)i0,j0 ' f(X)2 i ‘w(X)io,jz 'w(X)io,jl

20,%0

D2( ) = 2f( )10710 ’ (X)i(ujo 'Z(X)’io-,jz 'w(X)io,h
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+ 21 (X)ig i - 8(X )iogo - 2(X)ig ja - w(X)io o

( )120,1'0 (X ) josi0 - W(X)ig go - W(X )ig 5y
(Xiosio  (F(X)ig © (XTWa ), (X)) - w(X)ig s

- f(X)io,io . < ( )lo (XT m)a X)J0> ( )107j2
(X)
(

h(

o h(
2o " lao * (X>10;J1_ (X)
w(

Ds(X):= — f(X i .io " Via.jo oo " Vitro ~w(X)ig,ja
DG(X) =S X)io,jo : f(X)io,io w( )lo ]2 : )207J1
D7(X) = S(X)io,jo : f(X)imio ’ < *,72 X, Zo> ( )Zo,jl
= 5(X)io,go * S (XDiosio - (Wi, Xusio) - w(X)ig g
Ds(X) := = s(X)igjo - [(XDiosio * Wjrgo = $(X)ig.go * [ (X)igio * Wia g
DQ(X) = S(X)io,jo : Z(X)io,jz : Z(X)loxh
Dio(X) == — f(X)io’io I )jo;io ~w(X )107J2 'Z(X)ioﬂd
- f(X)io’io ' h(X)jo,io ! ( )107]1 'Z(X)iodé
Du(X) = = (f(X)ig o (XTWa ), h(X)jo) - 2(X)ig jy
- <f(X)lo o (XTW*Jl) ( )Jo) ' Z(X)lo J2
DlQ(X) = f(X)ioyio *Uja,go Z(X)lo,]l - f(X)loJo Yji,g0 Z(X)io,jz
Di3(X) := 8(X)ig.go  2(X)ioga + [(XDiosio = 2(X)ig .
Dia(X) = = 5(X)iggo - (f(X)ig 0 (X Wi jp), X TWejy)
D15(X) = f(X)zzo,io : h( )Jo,lo : ( )10 J2 ° (X)io,]i
DlG(X) = f(X)io ) 'w(X)lo,]z : ( )Jo;lo ’ ( )107j1
D17(X) = f(X)Zo <W Jzr X, io) - h(X )Jo o (X)i()).jl
+ f( )Zo,lo ' <W 7]1’X* z0> ’ h(X)Joﬂo : w(X)io,jz
DlS(X) = f(X)ioaio " Vja,jo w(X)io,jl + f(X)ioyio " Vjrgo w(X)io,jz
D1o(X) := f(X)ig.io - M X )i io - Wir.go + (XDigig - (X )ig g - Wio 1
Dao(X) = (f(X)ig 0 (X T Wi ) 0 (X TWajy) A(X)jo)
Doy (X) = f(Xiguio = Wajor Xasio) * Vs o+ (Xioio - (Wajns Xasio) * Via o

e Part 2 Forig = i1 75 19 € [n] J1,J2 € [d]
de(X)q, A A ig,jo
: E(
dxlh]lwwdz Z

where we have following definitions
El(X) = 2S(X)i0,j0 ’ f(X)io,Zé ) w(X)iO,jz : f(X)io,io ’ w(X)iO:jl

Ey(X) = = 2f(X)ig,in - M(X) join - 0(X)ig o - (XD ig o - w(X)ig 1
E3(X) == — f(X)ig,is - Uj2,jo * F(X)io,i0 'w(X)io,Ji

Ey(X) :=s ( )lo,]o : ( )lo,iz 'w(X)io,j'z : Z(X)io,h

E5(X) i= = f(X)igiz - 1(X)jo,i - w(X)ig gy - 2(X)ig,1

Ee¢(X) := f(X)lo,lz Ujz,jo Z(X)io,jl

=S (X)i 0 <( )10’XTW*,j1>’f(X)i0,io'w(X)iOJQ

[e’3)
AN N N N N N N N N N N N

)
)
)
)
7(X) J
X) = 5( )207J0 ’ ( )1071'0 : <W*7j1’X*7io> 'w(X)io,jQ
o(X) = = s(X)ig,jo + f(X)iosio * Wiz,
Eo(X) = = f(X)io,io - f(XDigsiz - W(X)ig,jo - M(X)josio * (X )ig jx
Ei(X) = = (f(X)ig © (X W) h(X)jo) - F(XDigsin - w(Xig o
Eyg X) = f( )10 12 h( )Jo,w : <W*7j17X*,i2> : w(X)ion
Ei3(X) = f(X)ioin - M(X)jo,iz * W1
Ery X) = f(X)io,Zz ’ <W 7]1’X* 12> Vja,jo
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Ei5(X) = = [(Xigsio - F(X)igsin - w(X)ig 4o * Vs .o

Proof. The proof is a combination of derivatives of C;(X) in this section.

Notice that the symmetricity for Part 1 is verified by tables in this section. O

C HESSIAN CASE 2: 1y # iy

In this section, we focus on the second case of Hessian. In Sections C.1, C.2, C.3, C.4 and C.5, we

calculated derivative of some important terms. In Sections C.6, C.7 and C.8 we calculate derivative
de(X)ig, i

of Cs, C7 and Cy respectively. And in Section C.9 we calculate the derivative of ——=°
21,71

C.1 DERIVATIVE OF SCALAR FUNCTION f(X);, i,
Lemma C.1. [fthe following holds:

* Let f(X),, be defined as Definition A.6

* Forig # iz € [n], j1, j2 € [d]
We have

e Part 1. For iy 7& 19,11 = 19 € [’ll], J1,J2 € [d]

M = = f(X)imil ) f(X>i0,i2 ’ w(X)imjz

dxi27j2
+ f(X)iO:il ) w(X)io,jz

s Part 2. Forig # iz, i1 # i2 € [n], j1, j2 € [d]

M = - f(X)ioﬂd : f(X)io,iz ’ w(X)iOJQ
dxi27j2

Proof. Proof of Part 1
df(X)i,i,

Tdrng, (—(@(X)i) ™" F(Xig - (X ig,in + (Wi s Xesi)
+ f(X>lo °© (eil ’ <sz7*’X*7io>))i1
= — ((X)ip) " F(Xigin - u(X)igin - Wiy ws Xaiy)
+ F(XDioyin = (Wia s Xosig)
= = F(Xigsir - [ (XDig,i - w(X)ig o
+ f(X)igir - w(X)ig. g
where the first step follows from Part 1 of Lemma A.14, the second step follows from simple algebra,
the first step follows from Definition A.6.

Proof of Part 2
df(X)io,il

Ao (—(a(X)ig) ™" F(Xig - (X )iguia + Wiy s Xoig)
+ f(X)Zo o (ei2 ' <Wj2,*7X*7io>))i1

= — (a(X)ig) ™" F(Xigin - u(X)iguin - Wigowr Xusi)
= — [(Xig,ir - F(Xigin » W(X)ig 4o

where the first step follows from Part 1 of Lemma A.14, the second step follows from simple algebra,
the first step follows from Definition A.6. [
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C.2 DERIVATIVE OF SCALAR FUNCTION h(X);, 4,
Lemma C.2. If the following holds:

* Let h(X);, be defined as Definition A.7

* Forig # iz € [n], j1,j2 € [d]
We have

e Part 1. For i, 7& 12,11 = i € [n], J1,J2 € [d]

Ah(X)is
dxiz,jz J2,Jo
e Part 2. For iy 75 19,11 7é 19 € [n], J1,J2 € [d]
dh(X).jmil -0
dIi27j2
Proof. Proof of Part 1.
dh(X)jo,il _

diri%jg = (eiz ’ szJo)il

= V33,50

where the first step follows from Lemma A.7, the second step follows from i1 = 5.

Proof of Part 1.
dh(X)jo,il _

= (eiz 'vjz,jo)il
dxifz»jz

=0

where the first step follows from Lemma A.7, the second step follows from i1 # 5.

C.3 DERIVATIVE OF SCALAR FUNCTION (f(X)i,, h(X);,)
Lemma C.3. Ifthe following holds:

o Let f(X),, be defined as Definition A.6

* Let h(X);, be defined as Definition A.7

e Forig #is € [n], Ji,J2 € [d]

We have
WMD) — (3, - X Wi Ko
+ f(X)Zo o (eiQ : <Wj2,*7X*,i0>)7 h(X)]o> + f(X)Zo
Proof.
d<f(X)zov h(X) '0> o df(X)lo ) ) dh(X) jo
dmin2 ! - < dxiz,jz ah(X)]o> + <f(X)1o7 dxiz,fz >

= (—((X)ig) ™"+ F(X)ip - u(X)ig,in + Wiy X
+ f(X)io © (eiz : <Wj2,*7X*,i0>)7h(X)jo> + <f(X)ioa

= <_f(X)Lo : f(X)’io,iz ) <Wj27*’ X*7io>
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dh ;
+ f X io © (€i2 ’ <Wiz,*7X*,io>)7h(X)jo> + <f(X)io’ dx(;XjJO>

where the first step follows from simple differential rule, the second step follows from Lemma A.14,
the third step follows from simple algebra and Definition A.6, the fourth step follows from
Lemma A.15, the last step follows from simple algebra. O

C.4 DERIVATIVE OF SCALAR FUNCTION f(X)iy iy - (Wi, 0 X ig)
Lemma C.A4. Ifthe following holds:

* Let f(X),, be defined as Definition A.6

* Forig # iz € [n), 41,72 € [d]
We have

e Part 1. For iy 75 19,11 = 19 € [n], J1,J2 € [d]
df(X)io,il ) <Wj1,*7X*,i0>

dximjz

= (_f(X)io,i2 : f(X)imil + f(X>io,i1) : <Wj2,*’X*,i0> ' <Wj1~,*7X*>i0>

e Part 2. For ig 7é 19,11 75 1o € [n], 1,42 € [d]
df(X)iO,h ) <Wj17*’X*,io>
da;,
= = f(Xigyin - [(Xio,is + Wi s Xusio) (Wi s X))

Proof. Proof of Part 1
df(X)ioJl i <Wj1,*7X*7’io>
dxi27j2
df(X)io i1
== (Wj, ., Xs
dximj‘z < o ' O> - dxi27j2
= (=S (X)ioio f(X)ioir + F(X)iosir) - (Wizes Xusio) * (Wiiy x5 Xoig)
d<Wj1 0 X io>
— - [(X)ip
de‘iz’jQ f( ) 0,01
= (_f(X)io,izf(X)io,ﬁ + f(X)io,il) : <Wj27*7 X*-,i0> : <Wj17*ﬂ X*,io> +0q - f(X)io,i1
= (7f(X)io,i2f(X)io,i1 + f(X)io,il) : <Wj2,*7X*-,io> : <Wj17*vX*,io>
where the first step follows from simple differential rule, the second step follows from Lemma C.1,
the third step follows from ig # is, the last step follows from simple algebra.

Proof of Part 2
df(X)ioﬂ'l ! <Wj17*7X*7i0>
dximjz
df(X)io i1 d<Wj1 *7X* i0>
= =20 W *7X*. — J7’ 07, )(,,1
d$¢2’j2 < J1i, 710> + dxiz,jQ f( )1075
= (= f(X)ig,in [ (XDig,ix + [(Xigin) * Wiz, Xiciig) + (Wi s, Xocsig)
d W *7X*,i
+ M (XD

dxi%]é

d<Wj17*?X*7i0> . f(X)

10,11

+
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= (_f(X)io,izf(X)io,n + f(X)io,il) . <Wj2,*7 X*A,i0> : <Wj1,*7 X*,io> +0g- f(X)io,il
= - f(X)i07i2 ) f(X)io,il : <Wj2,*7X*,i0> : <Wj17*7X*,i0>

where the first step follows from simple differential rule, the second step follows from Lemma C.1,
the third step follows from ig # is, the last step follows from simple algebra. O

C.5 DERIVATIVE OF SCALAR FUNCTION f(X)i, iy - R(X)jo.6
Lemma C.5. If the following holds:

* Let f(X);, be defined as Definition A.6

* Let h(X);, be defined as Definition A.7
We have

» Part 1 Forig # i2,i1 = i2 € [n], 1,42 € [d]

df(X)io,il i h(X)jmil
dxi27j2
= (_f(X)imiz : f(X)io,i1 + vf(X)i07il) . <Wj27*’X*,io> ’ h(X)jo,h
+ Vjy 0 f(X)iO7i1

* Part 2 For iy # ia,i1 # i2 € [n], j1,J2 € [d]
df(X)iO7i0 i h’(X)

dxizdz
= — [(Xigsin - F(X)igsir * Wipwr Xicig) - M(X) o iy

Jo,to

Proof. Proof of Part 1.

df (X)ig,is - P(X)jo,in — df (X)ig,i dh(X)jo.i
0,71 0,81 _ 0N X)), LIS ST
dxiz,jQ dxi2,j2 h( )Jo,u + dxig,jg f( )10,11
= (_f(X)io,izf(X)imil + f(X)io,il) : <Wj2,*7X*,i0> ! h(X)joJl
dh(X)jo.i,
— - f(X)io,ix
* e, F(X)io,

= (_f(X)iOKiQ : f(X)imh + f(X)io,il) : <Wj2,*7X*,i0> : h(X)jOail
+ Vs o F(X)io,ia

where the first step follows from simple differential rule, the second step follows from Lemma C.1,
the third step follows from Part 1 of Lemma C.2.
Proof of Part 2.

df(X)imil ) h(X)jmil — df(X)ioﬂ'l dh(X)joﬂd . f(X) )

dzi, 5, dzi, 5, dwi, j, o

- f(X)io,iz ’ f(X)imil ’ <Wj27*’ X*7i0> ) h(X)j07il

dh(X)Jo i1
— - [(X)ig,i
T, Wi
= = f(X)io,iz ’ f(X)i(]yil ’ <Wj27*’ X*7i0> ’ h(X)jo,il
where the first step follows from simple differential rule, the second step follows from Lemma C.1,
the third step follows from Part 2 of Lemma C.2. O

: h(X)jo,il +

C.6 DERIVATIVE OF C4(X)

Lemma C.6. If the following holds:
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» Let Cs(X) € R be defined as in Lemma A.16
o For io 7& 19 € [TL], jl,jg S [d]
We have

e Part 1 Forig 75 19,11 = 19 € [n], J1,J2 € [d]
dCs(X)

dxiz,jz
= - (<_f(X)io : f(X)ioﬂé : Wj27*7X*7io>
+ f(X)io o (eil : <Wj2, 7X*,i0>)7h(X)j0> + f(X>i0,i2 ’ sz;jo) ’ f(X)imil ’ <Wj1,*7X*7i0>
+ (_<f(X)io7h(X>jo>) ) (_f(X)io,izf(X)io:il + f(X)io,h) ) <Wj27*’ X*,io> ) <Wj17*’ X*,i0>

e Part 2 Forig # iy, i1 # iy € [n], j1,72 € [d]
dCs(X)
dxiz,jz
= - (<7f(X)io ’ f(X)io,Zé : <Wj27*’X*7io>
+ f(X)Zo © (ei2 ' <Wj2,*7X*,iu>)7 h(X)]O> + f(X)io,lé ’ sz,jo) : f(X)’io,il ! <Wj17*’ X*7io>
+ <f(X)io’ h(X)jo> ’ f(X)io,iz ’ f(X)io,i1 : <Wj2,*7X*,i0> : <Wj1,*7X*,i0>

Proof. Proof of Part 1
dCs(X)

dxi2-j2
= X M50 F(Xiois - (W X))

dxiz,jz

- d(Ed . (_<f(X)Zo7h(X)jo>) ' f(X)io,il : <Wj1,*’X*,i0>
12,72
d

+ (= (f(X)ig, M( X)) - m

= T (U AL - T+ (Wi Ko

+ (_<f(X)i07 h(X)Jo>) ’ (_f(X)io,izf(X)io,h + f(X)ioyh) ’ <Wj2,*7X*,io> ’ <Wj1,*7X*,io>
= - (<7f(X)Zo : f(X)io,iz ' <Wj27*’X*,io>

+ f(X)lo o (eh : <Wj2,*aX*,io>)a h(X)j0> + f(X)ioyi'z : vj2,jo) : f(X)io,h ’ <Wj1,*7X*,io>

+ (_<f(X)107 h(X)]0>) : (_f(X)im’izf(X)iovil + f(X)’i(JJl) ! <Wj27*7X*7’io> ' <Wj1,*7X*7’i0>

where the first step follows from Lemma A.16, the second step follows from simple differential rule,
the third step follows from Lemma C.4, last step follows from Lemma C.3.

Proof of Part 2
dCs(X)

dmizdb
d
= X, A(X)jo) - F(XDiosin - (Wi s Ksia)
12,J2
d
= T (=(f(XDio, B(X)jo)) + F(XDigin = Wiy s Xosig)
d

+ (= {f(X)ig, M(X)jo)) - Az,
= d (_<f(X)Zo7 h(X)J0>) . f(X)imil ’ <Wj1,*7X*7i0>

dxi2=j2

(f(X)io,h : <Wj1,*7X*,io>)

(f(X)imh ’ <Wj1,*7X*7io>)
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+ <f(X)lo7 h(X)]0>) ’ f(X)io,iQ : f(X)io,il ’ <Wj2,*7X*,i0> ’ <Wj1¢*7X*,i0>

= = (=F(X)ig - F(XDigin - (Wiaes X))
+ f(X)io °© (61'2 ’ <Wj27*7X*7i0>)7 h(X)jo> + f(X)ioﬂ'z 'vjmjo) ’ f(X)io,il : <Wj17*’ X*Jo)
+ <f(X)707 h(X)jo> ' f(X)io,iQ : f(X)iO,il ’ <Wj2,*7X*,io> ’ <Wj1,*7X*ﬂ'o>

where the first step follows from Lemma A.16, the second step follows from simple differential rule,
the third step follows from Lemma C.4, last step follows from Lemma C.3. O

C.7 DERIVATIVE OF C7(X)
Lemma C.7. If the following holds:

o Let C7(X) € R be defined as in Lemma A.16
We have

o Part 1. Forig # ia,i1 = iz € [n], j1,72 € [d]
dCr(X)
dx;, 4,
= (—f(X)ioyiz + 1) - F(XDigsir * Wiizes Xsio) - H(X ) join + (Wiiy e, X))
+ Vo F(Xio,in * Wiy s Xoio)

e Part 2. For i, 7& 12,11 7& 19 € [’ﬂ], J1,J2 € [d]
dC7(X)
dxi27j2

= - f(X)io,iz . f(X)io,i1 : <Wj2,*7X*7i0> ’ h(X)jmil : <Wj1,*’X*,i0>

Proof. Proof of Part 1.
dC7(X)
dximj’z
d
= o &Xigin - (X Djosin - (Wi s Xsio)
12,J2

d d
= Az - (f(X)i(hil ’ h(X)j(hil) ’ <Wj17*v X*7io> + f(X)i(hil ) h(X)joﬂd ) Mf«wjh*’X*,io»
12,72 12,72
= (—f(X)io,i2 + 1) ’ f(X)io,Zd ’ <Wj27*’ X*7io> ’ h(X)jo,il : <Wj17*’X*7io>
+ Vjy 50 f(X)'io,il ’ <Wj17*7X*7io>

d
+ f(X)i07i1 ’ h(X)jo,il : f(<Wj1>*7X*,i0>)
dxwdz
= (_f(X)imiz + 1) ’ f(X)imil ’ <Wj27*’ X*7i0> ’ h(X)jmil : <Wj17*’X*,io>
+ Vjajo - f(X)i07i1 ’ <Wj1,*7X*7io>
where the first step follows from Lemma A.16, the second step follows from differential rule, the
third step follows from Part 1 of Lemma C.3, the fourth step follows from iy # 5.

Proof of Part 2.
dC7(X)

dxiz,jz

d
- dz:. (f(X)i(]yil ! h<X)j0,i1 . <Wj1,*7X*,io>)
xlz;]z

d d

(f(X)imil ’ h(X)jo,h) ’ <Wj17*ﬂ X*,i0> + f(X)io,il ’ h(X)jo,il ’ ﬁ(<Wj1,*7X*,io>)
12,72

dxiz 2J2
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= - f(X)lo sz( )10»11 : <Wj2,*7X*A,i0> : h(X)jo,il ’ <Wj1,*7X*,i0>
d
f(X)lo i1 ( )]07i1 : @«Wﬁ *7X* 20>)
= - f(X)lo Z2f( )lo i1 ” <Wj27*7X*,i0> : h(X) Jo,ir ’ <WJ1 *7X* 10>
f(X)lo i1 ( )J0711 - 0g

= - f( )m,zz 'f(X)zo,il . <Wj2,*’X*,io> : h(X)jO,h ' <Wj1,*7X*,io>

where the first step follows from Lemma A.16, the second step follows from differential rule, the third
step follows from Part 2 of Lemma C.3, the fourth step follows from i # 49, the last step follows
from simple algebra. O

C.8 DERIVATIVE OF Cg(X)

Lemma C.8. Ifthe following holds:
» Let Cg(X) € R be defined as in Lemma A.16
* Forig # iz € [n], j1, j2 € [d]

We have
 Part 1. Forig # 42,11 = iz € [n)], j1,j2 € [d]

aCs(X)
dxiz’h
= (7f(X)io,i2f(X)io7il + f(X)loh) : <Wj2,*’X*,io> * V51,50

e Part 2. For ig 7é 19,11 75 ig € [n], J1,J2 € [d]
dCs(X)

dxi27j2

= = f(X)imiQ : f(X)i(]yil ! <Wj2,*7X*7io> " Uj1,50

Proof. Proof of Part 1
dCg(X)  d

= X)os va s
dxiz,jz dmiz,jQ f( )LO,M U]l,]o
= (7f(X)io,i2f(X)io,i1 + f(X)ioﬂd) ’ <Wj2,*7X*,io> * Vj1,50

where the first step follows from Lemma A.16, the second step follows from differential rule and
Lemma C.1.

Proof of Part 2

dCs(X)  d
— X)i i -0

dxig,jg dxiQ,jg f( ) 0,21 UJ17J0
= — f(X)ip,in - F(X)ig,ir = Win s Xssig) * Vs o

where the first step follows from Lemma A.16, the second step follows from differential rule and
Lemma C.1. ]

(X)lo J1
Tiy,i1

Lemma C.9. If the following holds:

C.9 DERIVATIVE OF

* Let ¢(X)i,,j, € R be defined as in Lemma A.16 and Definition A.8

We have
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e Part 1 Forig 75 19,11 = 19 € [n], J1,J2 € [d]

de(X
_— F(X
dxll,h?dxlzdz Z

=1

where we have following definitions

P (X) = 2S(‘X)i(hjo : f(X)2 i1 w(X)imjz ’ w<X)io,j1

20,%1

Fy(X) = = F(X)5 4y - h(X)join - w(X)ig gy - w(X)ig 5,

F3(X) = — f(X)3 i1 - Vingo - w(X)ig gy — F(X)7 41~ Vi o - 0(X)ig g
Fy(X) = = s(X)ig,go - [(X)ig,ir - 0(X)ig,jr - w(X)ig 5o

F5(X) = f(X)ig,ir - w(X)ig 50 - W(X)ig o A(X) o,

Fo(X) = vjs,50 - f(XDig,ir - w(X)ig, 50 + V5o = [(X)igin - w(X)igjo

* Part 2 For iy # i, i1 # i2 € [n], j1,J2 € [d]

B
dxllx]l ’ dxlz 2J2

=1

where we have following definitions

Gl(X) = QS(X)iOJO ) f(X)io,i1 ’ f(X)io,iz 'w(X)io,jz : w(X)i07j1
G2(X) = = [(X)io,ir + f(X)igyia - (X )ig g - w(X)ig gy + (WX )joi0 + M(X)josi1)
G3(X) = = f(X)io,il : f(X)io,iz ' (vjmjo ' w(X)io,jl + Vi1 o 'w(X)iosz)

Proof. Proof of Part 1.
de(X)ig,jo
dxz;, 5., dws, g,
dCs dC, dCg
- dz;, 5, + dz;, 4, + dx;, j,
= = ((=f(X)io + f(XDioyir * Wiz, Xusio) + f(X)ig 0 (€iy - Wiz, X)), h(X) i)
+ F(X)ioin  Vinsjo)  F(X)ig,in + Wiy s Xissig)
+ (—(F(X)ig, (X)) - (= (X7 iy + F(Xigin) - Wi ws Xaig) - (Wi s X))
(= f(X)igsis ¥ 1) - F(X)igyir = Wia s Xusio) - M X)jo,in - Wiy ey Xig)
+ Vja,go - F(Xig,in + (Wi 50 Xig)
+ (= F(X)3 0 + F(Xigsin) - Wiy Xsio) * Vi o
= 25(X)ig.jo - [(X)5 41 - 0(X i, - w(X)ig s
= 2f(X)7 i WX oy - 0(Xig o - w(X)ig g
— F(X)% 0, - Vi, jo (X )ig s — F(X)7 00 Vingo - 0(X)ig g
= 8(X)io,jo  f(XDigyin - W(X)ig,jr * W(X)ig,ja
+ F(XDig,in - w(X)ig 1 - W(X)ig,50 - (X ) jo,ia
+ Vjago S (XDiosin - W(X)ig g1 + Vjngo = f(XDiosir - W(X)ig 50

where the first step follows from Lemma A.16, the second step follows from previous results in this
section, the last step is a rearrangement.

Proof of Part 2.

de(X)
dxilyjl ) dxiz,jz

dCs dC, dCys

= +
dximjz d‘rizdz dximjz

20,70
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= = ((=f(X)io - f(X)igin = Wiz, Xosig)
+ f(X)lo o (61-2 ’ <Wj2,*’X*,io>)7 h(X)j()) + f(X)io,iz 'vjz,jo) ’ f(X)i()yil : <Wj17*’ X*=i0>
+ (F(X)io, M(X)jo) - F(X)igsin - f(Xivsi - Wiy Xsio) - (Wi s X))
= F(XDigsiz * F(XDio,ir = (Wiiaes Xusig) - BX)jo i = Wiy s X))
= F(XDiosis = F(XDiosin - Wiz Xuio) " Vg .o

= 25(X)ig,5o = [ (X)iosir * f(XDig,in - W(X)ig,5o - W(X)ig
= [(XDiosin - F(XDiosia - (X ) o * W(X)ig o - w(X)ig
- f(X>i0,i1 : ( )10712 ’ (X)io,jl 'w( )107J2 h( )Jo,h
- f(X)io,il : (X)Zo@ Vja,jo w(X)lo,Jl - (X)Zo,h : ( )Zo,iz " Vj1,50 'w(X)io,jz

where the first step follows from Lemma A.16, the second step follows from Lemma C.6, the third

step follows from Part 2 of Lemma C.7, the last step follows from Lemma C.8.

Notice that, by our construction, Part 1 should be symmetric w.r.t. j1, jo, Part 2 should be symmetric
w.r.t. 21, 22, which are all satisfied. ]

D HESSIAN REFORMULATION

In this section, we provide a reformulation of Hessian formula, which simplifies our calculation
and analysis. In Section D.1 we show the way we split the Hessian. In Section D.2 we show the
decomposition when ig = i1 = 3.

D.1 HESSIAN SPLIT
Definition D.1 (Hessian of functions of matrix). We define the Hessian of ¢(X )i, j, by considering
its Hessian with respect to v = vec(X). This means that, V*c(X )i, j, is a nd x nd matrix with its

(41 - j1,%2 - jo)-th entry being

dC(X)io ,Jo

dziy j>Tis 5o

Definition D.2 (Hessian split). We split the hessian of ¢(X);, j, into following cases
o Part1:ig =141 =g Hl(il,iz)
o Part2:ig =11, 19 # i2 - H2(i1,i2)
» Part 3: ig # i1, io = @2 : H?Eil,ig)
o Part4: ig # iy, ig # i, i1 = io: (11712)
e Part 5: ig # 11, ig # ia, i1 # ia: Héil’iz)

In above, Hi(ihiz) is a d X d matrix with its ji, jo-th entry being

de(X )ig o

dxil,jz Lig,jo

Utilizing above definitions, we split the Hessian to a n X n partition with its 71, ¢o-th component
being H; (i1, i) based on above definition.
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Definition D.3. We define V*¢(X ), j, to be as following

- Hil’l) H5(1,2) H5(1,3) o HE()l,io—l) H:gl’io) Hél’iO—H)
Hé271) H§2,2) HéQ’S) H5(2,zo—1) H§2,zo) Hé27zo+1)

3,1 3,2 3,3 3,i0—1 3,7 3,i0+1
H5( 1) H5( :2) Hi ) H5( 0—1) H:g 0) H5( o+1)
H(éo,l) HQ(’;[),Q) H(lo, ) H(Zo,’bo 1) H(l’o,lo) H2(7,0:7,0+1)

2 : 1 : )
H§10+1,1) Hé20+1,2) H(Z(]Jrl 3) H(Zo+1 i0— 1) H?()l()+1,20) Hilo+1,lo+1)

H5(n,1) Hénﬂ) Hén,?)) H5(n,7,'071) H:gn,io) Hén,ig«kl)

D.2 DECOMPOSITION HESSIAN : PART 1

Lemma D.4 (Helpful lemma). Under following conditions
o Let 2(X);, = WTX - f(X);,
o Let w(X)iy« = WXy

we have
e Part 1: w(X);y 5, = €jT1 W (X )ig
o Part2: 2(X)i, 5, = e;rl - 2(X)ig

Proof. Proof of Part 1
w(X)i(),]i = <Wj1 *7X*,i0>
T
— W * ,20

J1,%

=el WX,

J1

= 6;1 ) w(X>i0;*

HéLn)
Hé27n)
Hé&”)

H('Lmn)
Hézo+1 ,n)

Hin,n)

where the first step is by the definition of w(X),, ;, the 2nd and 3rd step are from linear algebra facts,

the 4th step is by the definition of w(X);, ..
Proof of Part 2
Z(X)io,j1 = <f( )ZO, W 1>

(XTW,Jl )T (XD,
_W»:r_yl ( )
WX - f(X)ig
:e;rl'z(X)io

where the first step is by the definition of w(X);, ;, the 2nd, 3rd, and the 4th step are from linear

algebra facts, the 5th step is by the definition of w(X);, ..
Lemma D.5. Under following conditions

o Let D;(X) be defined as Lemma B.15

o Let 2(X)i = WX - f(X);,

o Let w(X)iy« = WXy
we have

Dl(X) =ej - w(X)im* ’ 2S(X)i07j0 ’ f(X)2 io w(X)T « " €ja

J1 20,%0 0,
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Dy(X) = e, - (w(X)igw - 2F(X)igiq = (X )ig jo - 2(X) s,

+ 2(X)ig - 2 (X)igio - 5(X )igugo - w(X)i 1) - €5
D3(X) = —e), - w(X)igw - F(X)7 5o - PX)joio - w(X) - €
Dy(X) = —ef - WT - f(X)igiy - X - diag(f(X)ig) - h(X)jo - w(X){] . - €5,

— e w(X)ig - F(X)ig i - MX)j, - diag(f(X)s,) - X T - W e,
Ds(X) = —e) - (W(X)igu - F(X)7 00 Vil + Vijo - F(X)2 40 - w(X)0 L) - e,
De(X) = —e) - w(X)ign 5(X)iojo - FXigsio - W(X)i 4 €5
Dr(X) = —e) - w(X)igs 5(X)igjo - F(X)igsio - Xiy - W - e,

—ej W Xy s(X)iggo - F(Xigio - w(X)i 4 - €5

Ds(X) =e] - $(X)igjo - f(X)igig - W' =W)-ej,

0,70

Dy(X) =ef, - 2(X)ig - 8(X)ig.go - 2(X) sy - €5

J1 0

Dyo(X) = JTl (2(X)ig + F(Xigio - MX)jgi0 - w( X)) .
(X)m, F(Xigsio - h(X)josio - 2(X)) - €5,

D1 (X) = —ej, - (2(X)ip - B(X)j, - diag(f(X)i,) - X - W

+ WT - X - diag(f(X)ig) - h(X)jo - 2(X) ) - €
Dia(X) = — e}, - (2(X)ig - F(X)igsio - Viljo + Vaso - F(X)igio - (X)) - €5,
Di3(X) =ej, - 2(X)ig - 5(X)ig o - F(X)igsio - Z(X)I) "€
Dyy(X) = — €jT1 WX 8(X)ig,jo - diag(F(X)i) - X T - W ey,
Dis(X) = —ej - w(X)ig - F(X)7 10 - P X)joio - -w(X)g - €5,
Dis(X) =€) - w(X)ign - F(X)igsio - M X)joio - w(X) - €5y
Di7(X) =€) - (w(X)ign - F(X)igsio - X iy - (X )joio - W

+ WT ! X*Jo ' f(X)lo i ° h(X)jo,io ' w(X)io) " €jy

Dyg(X) = ejTl (w(X)igw f(X)ig i - VJI* + V]T* F(Xigsie - W)L L) e,
Dig(X) =¢] - f(X)ig,io - M X)igsio - W +WT) e,

Dao(X) :=¢j, - W' - X - diag(f(X)i,) - diag(A(X)j,) - X' W - ey

Doy (X) = ejTl W X (X igio - VT + Vo - F(X)ignio - X*Tzo W) -ej,

Proof. This lemma is followed by Lemma D.4 and linear algebra facts.

Based on above auxiliary lemma, we have following definition.
Definition D.6. Under following conditions

o Let 2(X);, = WTX - f(X)i,
o Let w(X)ig « = WX 4
We present the Case 1 component of Hessian c(X);, j, to be
H{"")(X) := B(X)

where we have
21
) = ZBi(X)
i=1
Bi(X) := w(X)ig - 25(X)ig jo - F(X)7, 40 - w(X)y,
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By(X) 1= w(X)igs - 2F (X)ig iy - 8(X )i jo - 2(X)1,
+ 2(X)ig - 2F(Xigio * $(X)ig.jo - w(X),, .
B3(X) = —w(X)ige - FX)2 50+ hX) joiy - w(X),)
Ba(X) = =W - f(X)igio - X - diag(f( X)) - h(X)j - w(X )?0,*
— (X )ig e F(X)igio - MX), - diag(f( X)) - X - W
Bs(X) 1= = w(X)igw - F(X)3 10 Viliy = Vigo - F(X)Z, 4y - w(X)]
Be(X) = = w(X)igw - $(X)ig o+ F(Xigio - w(X);,
Br(X) = = w(X)igw - $(X)igjo - F(Xigio - X.Liy - W
— W Xaiy $(X)ig o - F(XDigyio - w(X)]
Bs(X) 1= 5(X)i jo - F(X)igsi - (W' = W)

B9(X) = Z( ) : (X)lo,]o' ( )zTo
Bio(X) = = 2(X)iy - F(X)igsip - MX )i - w0(X)s 0
- w( )io,* . f( )io,io ’ h(X)jo,io ) Z(X)Z—I(—)

Bii(X) := — 2(X)y, - (A(X)], - diag(f(X)i) - X - W
—WT - X - diag(f(X)is) - h(X)jq - 2(X) ],
B1o(X) == — 2(X)ig - F(X)igsio - Valiy + Vijo - F(X)igio - 2(X))
Bis(X) = 2(X)iy - 5(X)igjo  F(X)iguio - 2(X)i
Biy(X):= —WT - X-5(X)iyjo - diag(f(X)s,) - X - W
Bis(X) = = w(X)igw - F(X)3 i - 1K) jorio - w(X)ih
Bi6(X) == w(X)ig s« [(X)igio - ( jorio * w(X),h .
Bi7(X) == w(X)ig e - F(X)igio - X i - M(X)jouig - W
+ W Xeio - F(XDigio - PX) jonio - w(X )iy
Bis(X) = w(X)ige - F(Xioio  Vigo + Vit - F(XDigsio - w(X) 1, .
Bio(X) := f(X)igio - P(X)igio - W+ W)
Bao(X) :=WT - X -diag(f(X)s,) - diag(h(X);,) - X T
Boy(X) =W Xoio - F(X)inio - V*TJO + Vigo - F(X)igio - X ig - W

D.3 DECOMPOSITION HESSIAN: PART 2 AND PART 3
Lemma D.7. Under following conditions

» Let E;(X) be defined as Lemma B.15

o Let 2(X);, = WTX - f(X)i,

o Let w(X)iy v = WXy

we have
Ei(X) = e, - w(X)ig - 25(X)ig.go * [ (Xigsia * F(Xigsio - w(X)iy - €
Ex(X) = — e}, - w(X)ige - 2 (X)io iz - (XD joiz - F(Xioio ~w(X)Z),* "€y
Es(X) = —ef, - w(X)ige - f(X)igyiz - [(Xigsio - Viljy - €
Ey(X) =¢] - 2(X)iy - $(X)igjo - F(X)iosin - w(X) - €5
Es(X) = —ej - 2(X)ig - F(X)igin - M(X ) josin - w(X) 4 - €
Eg(X)= —e] - 2(X)iy - f(X)iosio - Vil - €50
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Er(X) = e}, - 2(X)ig - 8(X)ig o - [(X)ig,i0 - w(X)gy . - €5,

Es(X) = —e}, - w(X)ig - 5(X)iggo - F(X)igio - w(X) . €5,

Ey(X) = T W 8(XDig.go - F(Xiosio - €

Ep(X) = T o w(X)ig s f(XDigrio - f(XDigsia - BX ) josio - w(X) -
En(X) = ]T WX - diag(f(X)ig) - (XD gy - F(Xigin - 0(X) i, -
Eya(X)=¢] - W Xoiy - F(X)igin - B(X)join - w(X)3] - €5,

Ei3(X) = WTf( Jiosiz = (X )josiz - €5

Eiu(X) = WT Xusio  F(XDigis - Vi1 - €4

Ei5(X) = L Vago (XD igsio - F(Xionia w(X);* " €,

Proof. This lemma is followed by Lemma D.4 and linear algebra facts.

Based on above auxiliary lemma, we have following definition.

Definition D.8. Under following conditions
o Let 2(X);, = WTX - f(X);,
o Let w(X)iy« = WXy
We present the Case 2 component of Hessian ¢(X);, j, to be
H{™™(X) = J(X)

where we have

)= ZJi(X)

<

X
X

1

><

= - w(X)io, : f(X)io,iz . f(X)ioﬂo V*Tjo

= w(X)zo, (X)ZOJO ’ ( )10,i2 : f(X)io,io w(X);l(—)*
= U)( )10, . 2f( )10 s " (X)jo,iz : f(X)imio w(X)lTo*

(X):
J2(X)
J3(X)
Ja(X) = 2(X)iq * 5(X)ig,jo * [(X)ig,in - (X)),
I5(X) = = 2(X)ig - F(X)igyin - MX)jo,i - (X))
Jo(X) = = 2(X)ig - [(X)io,iz - Viljy
J7(X) = Z(X)m (X)Zouo : ( )m,io w(X)Z),*
T8(X) = = w(X)ig - 5(X)ig o - F(Xigio - w(X)7,
Jo(X) = =W s(X)igjo - [(X)iosio
Jio(X) = = w0(X)ige - FXigsio - F(Xigin - B(X)josio - w(X)i
Jn(X) = =W X - diag(f(X)iy) - B(X)jo - f(X)ig iz - w(X) .
Jio(X) =W Xaiy - F(Xigsin - R(X)jo i w(X);E*
J13(X) = W F(X)ig i - (X ) jo i
Ju(X)=w' X, - F(X)igis - V*Tjo
J15(X) = V*,jg : f(X)io,io : f(X)io,ig w(X);l;*
Next, we define the third case by the symmetricity of Hessian.
Definition D.9. We present the Case 3 component of Hessian c¢(X );, j, to be

H"™ (X) o= 1y (X)
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D.4 DECOMPOSITION HESSIAN : PART 4
Lemma D.10. Under following conditions
* Let F;(X) be defined as Lemma C.9
o Let 2(X);, = WTX - f(X)i,
o Let w(X)iy« = WXy,

we have
Fi(X) = ey - w(X)ig - 25(X )i o - (X5 0, - 0(X) 0 - €
Fp(X) = ]Tl WX ige - F(X)7 00 - X josin - w(X)i - €5
F3(X) = — e, - (w(X)igw - F(X)3 0, - Viljy + Vo - F (X7 iy - w(X)il 1) - €5,
Fy(X) = T (X )ig o $(X)iggo - F(Xign - w(X)3, - €5,
F5(X) =ej, w(X)m, FXigin - MX ) josin - w(X) - €5
Fo(X) = ;-(w(X)iO,*~f<X>iU,“ Vo  Vesgo - F(Xigyir - w(X) L) - e,

Proof. This lemma is followed by Lemma D.4 and linear algebra facts.

Based on above auxiliary lemma, we have following definition.
Definition D.11. Under following conditions

o Let 2(X )iy = WTX - f(X)iy
o Let w(X)iy = WX,
We present the Case 4 component of Hessian c(X);, j, to be
H{ W (X) = K(X)

where we have

6
K(X):= Y Ki(X)

=1
Ki(X) = w(X)ig - 25(X)igjo - (X34, - w(X)]
Ko(X) = = w(X)igw - F(X)3, 0 - h(X)jorin - w(X) ]
Ks(X) = = w(X)ig s F(X)3 1 - Vil = Vajo - F(X)7 4 - w(X),0
Ka(X) = = w(X)igs - 5(X)ig jo - F(X)igiy - w(X),, .
K5(X) 1= w(X)ig - [(X)igir - 1(X) joir - w(X)]
Ko(X) 1= w(X)jo - f<X>m,“ Vo + Vido - F(Xiguir - w(X)] .

D.5 DECOMPOSITION HESSIAN : PART 5
Lemma D.12. Under following conditions

 Let G;(X) be defined as Lemma C.9
* Let Z(X)lo =WTX. f(X)zo
o Let w(X)iy = WX,y

we have

G1(X) =), - w(X)igw - 25(X )igjo  F(Xiguir + F(X)igi - w(X)] . €5

55



Under review as a conference paper at ICLR 2025

GQ(X) = - eT 'w(X)io,* . f(X)i(]yil : f(X)lo i2 (h(X)]o is h(X)jo,il) ’LU(X);;’* .

G3(X) = - e;rl ’ f(X)io,il ’ f(X)io’Zé ’ (w( )10, V*Tjo + Vi *,J0 (X)*,jz) " €jy
Proof. This lemma is followed by Lemma D.4 and linear algebra facts.

Based on above auxiliary lemma, we have following definition.
Definition D.13. Under following conditions

* Let Z(X)io = WTX . f(X)lO

o Letw(X)io,* = WX*@O

We present the Case 5 component of Hessian ¢(X) to be

0,70

H{W(X) = N(X)

where we have

i=1
Ni(X) == w(X)ig - QS(X)io,jo f(XDigyin - F(X)igin - U)(X);E*
N2(X) = ’LU(X) f(X)ln,n ! (X>i0,i2 : (h(X)jo,iz + h(X)jo,il) : w(X)zT),*
N3(X> == f(X)lo,ll : (X ig,i2 )Zo, V;TJO + V* . (X>*T,32>

E HESSIAN OF LOSS FUNCTION

In this section, we provide the Hessian of our loss function.
Lemma E.1 (A single entry). Under following conditions

o Let L(X) be defined as Definition A.9

we have

Z Z 10 Jo . dC(X)io,jo +e(X)iy - dC(X)io,jo

20,J0
dxll Jlxw,]z dxll;]l dxzh]? dmlldlxlzﬂz

Z() lj() 1

Proof. Proof of Part 1: i; = iy

L) A g S 9

dxihjl Lig,jz dxiz,jz io—=1jo—=1 d‘rihjl
n d
_ dC(X)io,jo . dc(X)iOJO + (X) o dc(X)ioJo
- dr, dr.. - C 2070 dr, o
io=1jo=1 mllv]l ‘T742>]2 Liy ’]1x12»J2

where the first step is given by chain rule, and the 2nd step are given by product rule.

Lemma E.2 (Matrix Representation of Hessian). Under following conditions
* Let ¢(X);,,j, be defined as Definition A.8
* Let L(X) be defined as Definition A.9

we have

VQ Z Z VC 10,]0 . (X)z—'(r),jo + C(X)io,jo . V2C(X)io,j0

i0=1jo=1

Proof. This is directly given by the single-entry representation in Lemma E.1.
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F BOUNDS FOR BASIC FUNCTIONS

In this section, we prove the upper bound for each function, with following assumption about the
domain of parameters. In Section F.1 we bound the basic terms. In Section F.2 we bound the gradient
of f(X);,. In Section F.3 we bound the gradient of ¢(X);,

Assumption F.1 (Bounded parameters, formal version of Assumption 4.1). Let W, V, X, B be defined
as in Section A.2,

* Let R be some fixed constant satisfies R > 1

o We have |W| <R, |V|| <R,

X|| < R where || - || is the matrix spectral norm

* We have b; ; < R?

F.1 BOUNDS FOR BASIC FUNCTIONS

Lemma F.2. Under Assumption F.1, for all i € [n], jo € [d], we have following bounds:

e Part 1
[£(X)ipll2 <1

e Part2

[(X)ip ll2 < R?
* Part 3

(X))o 5ol < 2R
* Part4

lz" Wi joll2 < R?
e Part5

[0(X)ig,jo| < R?
e Part6

2(X)io jo| < R?
e Part7

[5(X )i, | < R?

Proof. Proof of Part 1

The proof is similar to Deng et al. (2023d), and hence is omitted here.

Proof of Part 2
1P(X)joll2 = 1X Vi joll2
<[V 11Xl
<R?

where the first step is by Definition A.7, the 2nd step is by basic algebra, the 3rd follows by
Assumption F.1.

Proof of Part 3
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< NFXDipll2 - [10(X) o ll2 + 1Big o |
< 2R?

where the first step is by Definition A.8, the 2nd step uses triangle inequality, the 3rd step uses
Cauchy-Schwartz inequality, the 4th step is by Assumption F.1 and Part 2.

Proof of Part 4
leT Wy llz < ll2ll - IW]
< R?
where the first step is by basic algebra, the second is by Assumption F.1.
Proof of Part 5

|w(X)i0,j0| = |<Wj07*’X*’io|
< Wi sll2 - [[ X io |2
<R?

where the first step is by the definition of w(X)
3rd step is by Assumption F.1.

Proof of Part 6

the 2nd step is Cauchy-Schwartz inequality, the

10,J0°

12(X )0 g0 = [{F(X)ig, X T Wi o)
<NFX Do ll2 - 1IX]] - W o
<R?

where the first step is by the definition of z(X)
3rd step is by Assumption F.1.

Proof of Part 7

the 2nd step is Cauchy-Schwartz inequality, the

0,70

|5(X)i07j0| = ‘<f(X)207h‘(X)Jo>‘
< (XDioll2 - [1R(X)joll2
< R?

where the first step is by the definition of s(X)
3rd step is by Part 1 and Part 2.

%0,J0°

the 2nd step is Cauchy-Schwartz inequality, the
O

F.2 BOUNDS FOR GRADIENT OF f(X);,
Lemma F.3. Under following conditions
* Let f(X),, be defined as Definition A.6
* Assumption F.1 holds

» We use V f(X);, to define a matrix that its (jo, %1 - j1)-th entry is

df(X)iO,jo
dxiujl
i.e., its (i1 - j1)-th column is
dxiujl
Then we have:
* Part I: forall ig,i; € [n],71 € [d],
df(X);
|8y, < 4
21,J1
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e Part 2:
IV £(X)iollr < 4vVndR?

Proof. Proof of Part 1
|df( )ZO | — |

dz; ; f(X)lo . (f(X)io,io ’ <Wj1,*7X*,i0> + <f(X)i07XTW*,j1>)
+ f( ) (eio : <Wj1,*aX*7io> + XTW*1j1)|
<UFXDioll3 - Wi ey X+ 1 (Xioll3 - 1XTWe i |

A ioll2 - [V, 05 Xaio) | 4 11 (X io ll2 - 1IX T Wiyl
< 4R?

1

where the 1st step is by Lemma A.14, the 2nd step is by Fact A.1, the 3rd step is by Lemma F.2.
Proof of Part 2

N

df(X)i, ;
TSI 5 Sy ST

1= 1]1 1 ,J1

(Z Z 16R%)?

i1=1j1=1
= 4VndR?
where the first step is by the definition of V f(X),,, the 2nd step is by Part 1.

F.3 BOUNDS FOR GRADIENT OF ¢(X);, jo
Lemma F.4. Under following conditions
* Let ¢(X)i,,j, be defined as Definition A.8
* Assumption F.1 holds

* We use Ve(X);,,j, to denote the Hessian of ¢(X);, j, w.rt. vec(X)
Then we have:

* Part I: for allig,i1 € [n], 71 € [d],

‘C(X)

20,J0 9 S 5R4
dxilvjl

e Part 2:
IVe(X)ig gy ll2 < 5VndR*

Proof. Proof of part 1
de(X)io .5

S = e
21,71

) + Co(X) + C5(X) + Cu(X) + C5(X)|
<|CLHX)| + |C2(X)] + |C3(X)| + |Ca(X)| + |Cs(X)|
<NFXDioll3 - MR g0 ll2 - [w (X ig o | + 11 (X il - (X)) joll2 - 12(X)ig 51 |
F 1 (XDioll2 - 1R(X)joll2 - 1w (X )ig,jo
+ LF X ioll2 - 12X - IWe gy ll2 - 1A(X ) jol2 + ([ (XD o 2 - V]
<R'*+R'+R'+ R'+ R?
<5R*
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where the first step is by Lemma A.16, the 2nd step is by triangle inequality, the 3rd step is by
Fact A.1, the 4th step is by Lemma F.2, the 5th step holds by R > 1.

Proof of Part 2

dC 1
IVe(X)ig.joll2 = ZZII “““H)?

11;J1

’Ll 1 ]1 1
n d
1
<33 ey
i1=1j1=1
=5VndR*
where the first step is by the definition of V f(X),,, the 2nd step is by Part 1.
O
F.4 BOUNDS FOR HESSIAN OF ¢(X);, o
Lemma E.5. Under following conditions
* Let ¢(X);,,j, be defined as Definition A.8
* Assumption F.I (Bounded parameter) holds
* Let B;(X) be defined as in Definition D.6
we have
* Part I: Forall iy = i1 = iy € [n], we have
(| H, (X)loio) || < 23RS + R® + 12R?
* Part2: Forall iy = i1 # i3 € [n], we have
| Hy (X)) || < 11RS + 6R3
* Part 3: Forall iy = iz # i1 € [n], we have
|| Hz(X)0)|| < 11RS + 6R?
* Part4: Forall iy # i1 = i3 € [n], we have
|Hy(X) @) | < 5R + 4R
 Part5: Forall ig # i1,19 # 42,11 # 12 € [n], we have
|| Hs (X)) || < 4R + 2R?
Proof. The proof is similar to Lemma F.4 and hence omit. O

G LIPSCHITZ OF HESSIAN

In Section G.1 we provide tools and facts. In Sections G.2, G.3, G.4, G.7, G.6, G.7 and G.8 we
provide proof of lipschitz property of several important terms. And finally in Section G.9 we provide
the proof for Lipschitz property of gradient of L(X). In Section G.10 we provide proof for Lipschitz
property of Hessian of L(X).
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G.1 FAcCTSs AND TOOLS

In this section, we introduce 2 tools for effectively calculate the Lipschitz for Hessian.

Fact G.1 (Mean value theorem for vector function, Fact 34 in Deng et al. (2023d)). Under following
conditions,

e Letx,y € C' C R™ where C' is an open convex domain
o Let g(x) : C — R™ be a differentiable vector function on C

o Let||g'(a)|lr < M forall a € C, where g'(a) denotes a matrix which its (i, j)-th term is
dg(a);
dai .
then we have

lg(y) —g(x)lla < My — |2

Fact G.2 (Lipschitz for product of functions). Under following conditions

o Let {fi(x)}"_ be a sequence of function with same domain and range
* For each i € [n] we have

- fi(z) is bounded: Vx, || f;(x)|| < M; with M; > 1
— fi(z) is Lipschitz continuous: Yz, y, || fi(z) — fi(y)|| < Lillz — y||

Then we have

n

| H file) = [T fi)l < 271 - max{Li} - (] M3) - 1= =y

i=1 icln] i=1

Proof. We prove it by mathematical induction. The case that ¢ = 1 obviously.

Now assume the case holds for i = k. Consider ¢ = k£ + 1, we have.

k+1 k+1
T fi@) =TT Hiw)l
1:1 - k k k41
I #@) = fon@) - TTAOI+ 1 fen@) - [T fitw) = [T AW
" k - k - - k k
< Wi @I 1T @) = TR+ @) = @l - 1T i) = [T @)
k k k
< Myyr - || H fi(x) — H fiw)ll + (H M) - || frg1(z) = frea ()l
k+12_ " - k
< 2’“(1_[ M;) - gré?lg]c{h}l\x —yll + (H M) | frg1(z) = frar (@)l
o
< 2’“(_1_[ M;) - gré%gf{h}l\x —yll + (_H M;) - Ly ||z =yl
. .
< 2’“(_1_[ M;) - gé?lg]c{Li}Hx -yl + (_H M;) - Lyl —yl|

k+1
<25 ([ M) max (Li}le — ]
i=1 i€lk+1]
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where the first step is by triangle inequality, the 2nd step is by property of norm, the 3rd step is by
upper bound of functions, the 4th step is by induction hypothesis, the 5th step is by Lipschitz of
fr+1(x), the 6th step is by My, > 1, the 7th step is a rearrangement.

Since the claim holds for ¢ = k + 1, we prove the desired result. O

G.2 LIPSCHITZ FOR f(X);,

Definition G.3 (Notation of norm). For writing efficiency, we use || X — Y|| to denote || vec(X) —
vec(Y)||2, which is equivalent to | X — Y| p.

Lemma G.4. Under following conditions

» Assumption F.1 holds
o Let f(X),, be defined as Definition A.6
For X,Y € R*™ we have

1f(X)ip — F(Y)ill2 < 4VndR* - | X — Y|

Proof.
1f(X)io = F(¥)igll2 < IVF(X)io llp - | X = Y|
<4VndR*- | X - Y|
where the first step is given by Mean Value Theorem (Lemma G.1) and the 2nd step is due to upper
bound for gradient of f(X);, (Lemma E.3). O

G.3 LIPSCHITZ FOR ¢(X)

%0,J0
Lemma G.5. Under following conditions

* Assumption F.1 holds

* Let ¢(X);,,j, be defined as Definition A.8
For X, Y € R¥™™ we have

|e(X)io.go — (Y )i jol < 5VndR* - | X — Y|

Proof.
(X ig.jo — (Y ig.gol S NVE(X)ig jgoll2 - [[X =Yl

<5VndR* - || X - Y|

20,J0

where the first step is given by Mean Value Theorem (Lemma G.1) and the 2nd step is due to upper
bound for gradient of ¢(X);, ;, (Lemma F.4). O

G.4 LIPSCHITZ FOR h(X);,
Lemma G.6. Under following conditions
» Assumption F.1 holds

* Let h(X);, be defined as Definition A.7

For X, Y € R¥™™ we have
”h(X)]o - h(Y)j0||2 < RHX - Y”
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Proof.
(XD jo = h(Y )joll = (Ve joll2 - [ X = Y|
<R-|X =Y
where the first step is from the definition of 2(X);, (see Definition A.7), the 2nd step is by Assump-
tion F.1. N

G.5 LIPSCHITZ FOR w(X )i, jo
Lemma G.7. Under following conditions
» Assumption F.1 holds

For X, Y € R¥™™ we have
|w(X)i07j0 - w(Y)io,j()' < R”X - Y”

Proof.
|w(X)i0,jo - w<Y)io,jo| = |<Wj07*’X*7i0 - Y*7i0>|
< [[Wio,«llz - | X =Y
<R-|X-Y|
where the first step is from the definition of w(X);, j,, the 2nd step is by Fact A.1, the 3rd step holds
since Assumption F.1. O

G.6 LIPSCHITZ FOR 2(X )i, jo
Lemma G.8. Under following conditions
* Assumption F.1 holds

For X,Y € R*™ we have
|Z(X)io,j0 - Z(Y)iodo‘ <5V ndR* - ”X - Y”

Proof.
12(Xiodo = 2(Y )iogol = [{F(X)igy X TWijo) = (f(Y)ig, Y W)
< (i X TWago) = (F(X)io: YT Wi o)
+ 1 (Xion YT Waj) = (F(V)ig, VT Wi )|
<NFXioll2 - 1X =Y - [IWago ll2 + 11 (XDio = F i - IV - IW o
SRX =Y+ R F(X)i, = F(Y)s, |
<5VndR'- || X — Y|
where the first step is from the definition of w(X);, .. the 2nd step is by Fact A.1, the 3rd step holds
since Assumption F.1, the 4th step uses Lemma G.4. O

G.7 LIPSCHITZ FOR FIRST ORDER DERIVATIVE OF ¢(X );, j,
Lemma G.9. Under following conditions

* Assumption F.1 holds

* Let ¢(X);,,j, be defined as Definition A.8

For X, Y € R¥™™ we have

X)io i V)i i
|C( )0,J0 _C( >0’]D|§O(\/@R6)-||X—YH
dxi17j1 dyh,jl
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Proof. Recall C;(X) defined in Lemma A.16. The Lipschitz constant of m is bounded the
11,01
summation of that of C;(X). We only present the proof for Lipschitz for C’l( ) here.

Notice that
CL(X) = =5(X)igjo - f(Xig i - w(X)ig s

By upper bound and lipschitz constant for basic functions, we have

* 1s(X)io.50| < R?

* |f(X)igyio]l <1

* |w(X)ip| < R?

© MAXfe (X ) 10500 F (X)iguig.w(X)ig 5, L LADSChIEZ(f)} = 4V/nd R

*n=23

By Fact G.2.

C1(X) = (V)| <27 ‘max{Li} - H X =Y

i€[n]
=4-4vVndR*- R*- HX —Y]
=16VndR® - | X - Y|

G.8 LIPSCHITZ FOR SECOND ORDER DERIVATIVE OF ¢(X);, o
Lemma G.10. Under following conditions

* Assumption F.1 holds

e Let ¢(X);,,j, be defined as Definition A.8
For X, Y € R¥™™ we have

| C(X)io,jo c(Y )Zo,Jo |<O(\/7R8) |X =Y

dxilvjlxiQ-jQ dyll J1Yiz g2

Proof. The proof is similar to Lemma G.9 and hence omit. Notice that the upper bound for
(X )i(JvJO . .
is given by Lemma FE.5. O

dziy,j) Tig,jo
G.9 LIPSCHITZ FOR GRADIENT OF L(X)

Lemma G.11. Under following conditions

e Assumption F.1 holds
*» Let ¢(X);,,j, be defined as Definition A.8

For X, Y € R¥™™ we have
[VL(X) = V2L(Y)|| < O(n'?d"°R") - | X - Y|

Proof. We have calculated the gradient of L(X) in Lemma A.17:

n d
Z Z (X de(X)i,jo
10710
dxlhh dmilgjl
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We can use the proof in Lemma G.9 to generate a Lipschitz bound for he gradient of L(X). Notice

that the Lipschitz of ¢(X);, j, is given in Lemma G.5 and the Lipschitz of % is given in
21,71
Lemma G.9. O
G.10 LIPSCHITZ FOR HESSIAN OF L(X)
Lemma G.12. Under following conditions
* Assumption F.1 holds
* Let ¢(X);,,j, be defined as Definition A.8
For X,Y € R¥™™ we have
IV2L(X) = V2L(Y)| < O(n**d**R'%) - | X — Y|
Proof. Recall that
n d
dL(X de(X)ig gy de(X)ig j de(X)i, 4
( ) _ Z Z C( )o,Jo . C( )odo +C(X)io,jg . C( )odo
dxilvjlxi27j2 io=1jo=1 dxihjl dzimjz dzi17jlxi2aj2
n d
= > > Ui(X) +Ua(X)
i0=1 jo=1

For the first item U; (X ), we have
| = ‘dc(X)imjo . dC(X)io’jo _ dc(y)imjo . dc(y)ioﬁjo
dz;, j, dz;, j, dwi, 5, dyiy j»
< de(X)ig o . |dC(X)z'o,jo ~de(Y)ig o |
B dxihjl dxihjz dyiz ,Jj2
dC(X)ioyjo N dC(Y)io-,jo dc(Y)i(),jo
e A
wlh]l ylh]l ylz yJ2
dC(X)imjo L dC(Y)iUJO
dxihjl dyilajl
< O(VndR")- | X — Y|
where the 2nd step is by triangle inequality, the 3rd step is by Lemma F.4, the 4th step uses Lemma G.9.
For the 2nd item Us(X), we have

U1(X) = Uw(Y)

< 10R* - |

dc(X)iOJO dC(Y)

|U2(X) = U2(Y)] = [e(X)io g0 - 7~ = <Y )io o - ﬁ|
11,J1712,]2 11,J1J%2,72
< |C(X) ) | . | dc(X)imjo _ dC(Y)iO,jU ‘
N 1000 dmihjl Liy,jo dyil 1 Yiz o
de(Y)

20,70 ‘

+ (X )ig. 5o — €Y )ig.jol - |7———
| ( )Zodo ( )107]0| ‘dyi1,j1yi27j2

dC(X)io,jo N dC(Y)ioJo |

dxh,jlxiz,jz dyildlyiz,jz

de(Y)iy 5
F1e(X)io.jo = (Y io ol - \#
11,J1J12,72

de(X)iojo — de(Y )ig o |+ 5VndR* - | X — Y- |
dxil,jlxiz,jz dyil’jlyi27j2

<O(VndR"™) - | X - Y| +5VndR* - | X - Y] |

<2R*- |

de(Y)

0,70 ‘

<2R*.|
dyil J1Yiz o
dc(y)io »Jo ‘

AYiy 1 Yia,jo
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< OWndRY™)-||X - Y|

where the 2nd step is by triangle inequality, the 3rd step uses Lemma F.2, the 4th step uses Lemma G.5,
the 5th step uses Lemma G. 10, the last step uses Lemma F.5.

Combining the above 2 items, we have
| dL(X) dL(Y)

d‘ril’jlxi%]é dyil,jl Yiz,jo

| S O(n1.5d1.5R10) . HX _ Y”

Then, we have
IVZL(X) = VAL(Y)| < |[V2L(X) = V2L(Y)||r
< n2d?- O(n'3d'SRYO||IX — Y|
= O(*3d3PRY) . | X — Y|

where the 1st step is by matrix calculus, the 2nd is by the lipschitz for each entry of VZL(X). [

H STRONGLY CONVEXITY
In this section, we provide proof for PSD bounds for the Hessian of Loss function.

H.1 PSD BOUNDS FOR HESSIAN OF ¢(X)

0,70
Lemma H.1 (PSD bounds for V2¢(X);, j,). Under following conditions,

* Let c;, j, be defined as in Definition A.8

* Let Assumption F.1 be satisfied

For all iy € [n], jo € [d], we have

—36R° - 1,0 = V¢e(X)ig.jo = 36R® - 1,4

Proof. We prove this statement by the definition of PSD. Let p € R"*% be a vector. Let i € [n], we
use p; € R? to denote the vector formed by the (i — 1) - n + 1-th term to the 7 - n-th term of vector p.

Then, we have

‘pTV2C(X)’i07jop| = ‘p;(rJHl (X)io’iopio + Z piToHQ(X)(iO7i)pi
i€[n]\{io}
+ Z p; Hs(X)"")p;, + Z pi Ha(X)p;
ie[n]\{io} i€[n]\{io}
+ Z Z piTlHS(X>(il,z'2)pi2|
i1€[n]\ {40} i2€[n]\{i0}
maxc || H,(X))] SN vl
i1€[n] i2€[n]

< max | H;(X)||-p"p
i€[5]

<36R°-p'p

IN

N

where the 1st step is by the formulation of V2¢(X);, j, (see Definition D.3), the 2nd and 3rd steps
are from simple algebra, the 4th step uses Lemma F.5. O

H.2 PSD BOUNDS FOR HESSIAN OF LOSS

Lemma H.2 (PSD bound for V2L(X)). Under following conditions,
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o Let L(X) be defined as in Definition A.9

* Let Assumption F.I be satisfied

we have

V2L(X) = —O(ndR®) - 1,4

Proof. Recall in Lemma E.2, we have
n d
VLX) =Y > Ve X)igo - Ve(X) g 5o + (X )iggo - V(X )i jo 2
io=1jo=1

Notice that the first term is PSD, so we omit it.
By Lemma F.2, we have

|C<X)i0,jo | < 2R2

Therefore, we have
VQC(X)io ,Jo
i.e., V2L(X)

= —T72R% 1,4
= — 72ndR® - 1,4

where the first line is by Lemma H.1 and the 2nd line is given by Eq. (2).

I CONVERGENCE ANALYSIS

In this section, we give the convergence analysis of the gradient-based (see Section I.1 and Hessian-
based method (see Section 1.2) to conduct inverse attack. We utilize the Lipschitz and strongly-
convexity properties proved in previous sections.

1.1 GRADIENT METHOD

We first state a canonical result for the convergence gradient-descent method under Lipschitz smooth-
ness and strongly-convexity.

Theorem I.1 (Gradient descent). Let the following conditions hold
 Let f(x) be a convex and twice-differentiable function on R™
* Let V f(x) have Lipschitz constant L:
IVf(@) = Vil < Lz —yl2 Yo,y eR”

* Let f(x) be strongly convex with factor m.:

sz(x) = ml,,

o f(z) reaches its minimum (denoted as f*) at some point x*

Then, the gradient-descent algorithm with fixed step size t < %H satisfies

Nlwo — 2|3

% m
lan — a7l < (1 = T2

where xj, is the update in k-th iteration.

In particular, it takes O(L - log(|zo — 2*|2/€)) to find a e-optimal solution.

Now, we use the above theorem to show the convergence of our regression problem.

67



Under review as a conference paper at ICLR 2025

Theorem 1.2 (Formal version of Theorem 4.3 ). We assume our model satisfies the following
conditions

* Bounded parameters: there exists R > 1 such that
- Wlr <R |V]r <R
- [IX[lr < R
- Vi€ [n],j €[d],|bi;| < Rwhereb; ; denotes the i, j-th entry of B

* Regularization: we consider the following problem:

min ||D(X) Lexp(X T WX)XTV - B|%
XeRnxd

+ - | vee(X)|13

Then, for any accuracy parameter € € (0,0.1), a gradient-descent algorithm can be employed to
recover the initial data. The algorithm uses

T = O(poly(n,d, R) -log(|Xo — X*|r/€))
iterations, it outputs a matrix X € Rdxn satisfying
IX = X*|p <e
The execution time for each iteration is poly(n, d).
Proof. Choosing v > O(ndR®), by Lemma H.2, we have our regression problem being strongly
convex with factor O(ndR?®). Notice that, we proved in Lemma G.11 that the gradient of our loss

function is O(n!-5d'-> R19)-Lipschitz continuous. Applying Theorem I.1 with L = O(n!-3d'-> R19)
and m = O(ndR®), we have the result in this theorem.

The execution time for each iteration is the matrix-multiplication time. O

1.2 HESSIAN METHOD

Theorem 1.3 (Formal version of Theorem 4.4, Main Result). We assume our model satisfies the
following conditions

* Bounded parameters: there exists R > 1 such that

- [Wllr <R,
- [ Xllr <R
- Vie[n],j€[d],|b;| < R whereb; ; denotes the i, j-th entry of B

VilF <R

* Regularization: we consider the following problem:
i D) esp(XTWX)XTV - B}
+ - [ vee(X)|13
* Good initial point: We choose an initial point X such that
M - Xo = X*||r < O(ndR®),
where M = O(n3d® R1?).

Then, for any accuracy parameter € € (0,0.1) and any failure probability 6 € (0,0.1), an algorithm
based on the Newton method can be employed to recover the initial data. The result of this algorithm
guarantee within

T = O(log(|Xo — X*|r/e))
iterations, it outputs a matrix X e Rixn satisfying
I = X"|p < e
with a probability of at least 1 — 0. The execution time for each iteration is poly(n, d,log(1/4)).
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Proof. Choosing v > O(ndR?), by Lemma H.2, we have the PD property of Hessian.
By Lemma G.12, we have the Lipschitz property of Hessian.

Since M is bounded (in the condition of Theorem), then by iterative shrinking lemma (see Lemma 6.9
in Li et al. (2023c¢) as an example), we prove the convergence. O

J  SUPPLEMENTARY EXPERIMENTAL DETAILS

Here, we give the experimental details for our experiment as follows.

* Learning rate for fine-tuning: n = 0.0001 (for best effort).
* Learning rate for attack: 7 = 0.001 (default).

e Adam hyper-parameter 5; = 0.9 (default).

* Adam hyper-parameter 82 = 0.999 (default).

+ Adam hyper-parameter ¢ = 1 x 10~ (default).

* Fine-tuning steps: 8000.

* Platform: PyTorch Paszke et al. (2019) and Huggingface Wolf et al. (2019).
* GPU device information: 1 RTX 4090 GPUs.

* Number of fine-tuning epochs 30.

e Batch size: 32 (for best effort).

* Quantization: fp16.
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