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ABSTRACT

In the realm of deep learning, transformers have emerged as a dominant architec-
ture, particularly in both natural language processing and computer vision tasks.
However, with their widespread adoption, concerns regarding the security and
privacy of the data processed by these models have arisen. In this paper, we address
a pivotal question: Can the data fed into transformers be recovered using their
attention weights and outputs? We introduce a theoretical framework to tackle
this problem. Specifically, we present an algorithm that aims to recover the input
data X ∈ Rd×n from given attention weights W = QK⊤ ∈ Rd×d and output
B ∈ Rn×n by minimizing the loss function L(X). This loss function captures the
discrepancy between the expected output and the actual output of the transformer.
Our findings have significant implications for preventing privacy leakage from
attacking open-sourced model weights, suggesting potential vulnerabilities in the
model’s design from a security and privacy perspective - you may need only a few
steps of training to force LLMs to tell their secrets.

1 INTRODUCTION

In the intricate and constantly evolving domain of deep learning, the transformer architecture has
emerged as a game-changing innovation Vaswani et al. (2017). This novel architecture has propelled
the state-of-the-art performance in a myriad of tasks, and its potency lies in the underlying mechanism
known as the ”attention mechanism”. The essence of this mechanism can be distilled into its unique
interaction between three distinct matrices: the Query (Q), the Key (K), and the Value (V ), where
the Query matrix (Q) represents the questions or the aspects we’re interested in, the Key matrix (K)
denotes the elements against which these questions are compared or matched, and the Value matrix
(V ) encapsulates the information we want to retrieve based on the comparisons. These matrices are
not just mere multidimensional arrays; they play vital roles in encoding, comparing, and extracting
pertinent information from the data.

Given this context, the attention mechanism can be mathematically captured as follows:
Definition 1.1 (Attention matrix computation). Let Q,K ∈ Rn×d be two matrices that respectively
represent the query and key. Similarly, for a matrix V ∈ Rn×d denoting the value, the attention
matrix is defined as

Att(Q,K, V ) := D−1AV,

In this equation, two matrices are introduced: A ∈ Rn×n and D ∈ Rn×n, defined as:

A := exp(QK⊤) and D := diag(A1n).

Here, the matrix A represents the relationship scores between the query and key, and D ensures
normalization. The computation hence, deftly combines these relationships with the value matrix to
output the final attended representation.

In practical large-scale language models ChatGPT (2022); OpenAI (2023), there might be multi-levels
of the attention computation. For those multi-level architecture, the feed-forward training can be
represented as

X⊤
ℓ+1 ← D(Xℓ)

−1 exp(X⊤
ℓ QℓKℓXℓ)X

⊤
ℓ Vℓ
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Algorithm 1 Sketch of inverse attack to transformer-based models

Input: Ideal model prediction B ∈ Rn×d

Parameters: Model function f , pretrained weights W , training steps T
Output: Leaked input X ∈ Rn×d for output B
procedure INVERSEATTACK(B, f,W, T )

Initialize each entry of X0 ∈ Rn×d from Gaussian distribution N (0, 1).
t← 1
for t < T do

Compute loss by some specific metric ℓ(·, ·), such that Lt := ℓ(f(W,Xt−1), B)
Compute gradient gt := ∇Xt−1Lt

Compute update for X via first-order or second order algorithm using gt, denote ∆X
Update Xt ← Xt−1 −∆X
t← t+ 1

end for
return XT with guaranteed Lt ≤ ϵ (Theorem 4.3 and Theorem 4.4)

end procedure

where Xℓ is the input of ℓ-th layer, and Xℓ+1 is the output of ℓ-th layer, and Qℓ,Kℓ, Vℓ are the
attention weights in ℓ-th layer.

This architecture has particularly played a pivotal role in driving progress across various sub-
disciplines of natural language processing (NLP) Firat et al. (2016); Choi et al. (2018); Usama
et al. (2020); Naseem et al. (2020); Martin et al. (2019); ChatGPT (2022); OpenAI (2023). This
trajectory of influence is most prominently embodied by the creation and widespread adoption of
Large Language Models (LLMs) like GPT-4 and Claude-3. These models are hallmarks due to their
staggering number of parameters and complex architectural designs.

Yet, the very complexity and architectural sophistication that propel the success of transformers
come with a host of consequential challenges, making their effective and responsible usage nontrivial.
Prominent among these challenges is the overarching imperative of ensuring data security and privacy
Pan et al. (2020); Brown et al. (2022); Kandpal et al. (2022). Within the corridors of the research
community, an increasingly pertinent question is emerging regarding the inherent vulnerabilities of
these architectures. Specifically,

is it possible to know the input data by analyzing the attention weights and model outputs?

To put it in mathematical terms, given a language model represented as B = f(W ;X), if one has
access to the output B and the attention weights W , is it possible to mathematically invert the model
to obtain the original input data X?

Addressing this line of inquiry extends far beyond the realm of academic speculation; it has direct
and significant implications for practical, real-world applications. This is especially true when these
transformer models interact with data that is either sensitive in nature, like personal health records
Cascella et al. (2023), or proprietary, as in the financial sector Wu et al. (2023). With the broader
deployment of Large Language Models into environments that adhere to stringent data confidentiality
regulations, the mandate for achieving data security becomes essential. In this work, we aim to delve
deeply into this issue, striving to offer a nuanced understanding of these potential vulnerabilities while
suggesting pathways for ensuring safety in the development, training, and utilization of transformer
technologies.

This paper addresses a distinct attention-based regression model that differs from the conventional
task of finding optimal weights for a given input and output. Specifically, we assume that the weights
are already known, and our objective is to invert the output to recover the original data. The key focus
of our investigation lies in identifying the conditions under which successful inversion of the original
input is feasible. This problem holds significant relevance in the context of addressing security
concerns associated with attention networks.

Our contribution In this paper, we formulate the formal regression model for the inverse attack
on the soft-max attention layer. Utilizing simplified notations of the loss function, we are able to
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calculate a close-form representation of its Hessian. By assuming bounded parameters and adding a
moderate regularizer, we prove the smoothness (Lipschitz continuity) and strongly-convexity (Positive
Semi-definiteness) of our regression problem, which leads to the convergence of gradient-based and
Hessian-based methods that approach the approximate optimal. Therefore, we apply these algorithms
to invert the attention weights to the input data. We provided numerical experiments to verify the
reliability of our methods.

Roadmap. We arrange the rest of our paper as follows. In Section 2 we present some works related
our topic. In Section 3, we state an overview of our techniques, summarizing the method we use
to recover data via attention weights. We state our main theories in Section 4. We provide our
experiment results in Section 5. We conclude our work in Section 6.

2 RELATED WORKS

This section discusses related works in the LLM community. We summarize the current research on
LLM security and inversion attack in Section 2.1. We concern about attention computation theory
and LLM-based regression theory in Section 2.2.

2.1 LLM SECURITY

Security concerns about LLM. Amid LLM advancements, concerns about misuse have arisen
Pan et al. (2020); Brown et al. (2022); Kandpal et al. (2022); Kirchenbauer et al. (2023); Vyas et al.
(2023); Chu et al. (2023a); Xu et al. (2023); Gao et al. (2023d); Kirchenbauer et al. (2023); He et al.
(2022a;b); Gao et al. (2023f); Shen et al. (2023a). Pan et al. (2020) assesses the privacy risks of
capturing sensitive data with eight models and introduces defensive strategies, balancing performance
and privacy. Brown et al. (2022) asserts that current methods fall short in guaranteeing comprehensive
privacy for language models, recommending training on publicly intended text. Kandpal et al. (2022)
reveals that the vulnerability of large language models to privacy attacks is significantly tied to data
duplication in training sets, emphasizing that deduplicating this data greatly boosts their resistance
to such breaches. Kirchenbauer et al. (2023) devised a way to watermark LLM output without
compromising quality or accessing LLM internals. Meanwhile, Vyas et al. (2023) introduced near
access-freeness (NAF), ensuring generative models, like transformers and image diffusion models,
don’t closely mimic copyrighted content by over k-bits.

Inverting the neural network. Originating from the explosion of deep learning, there have been
a series of works focused on inverting the neural network Jensen et al. (1999); Lu et al. (1999);
Mahendran & Vedaldi (2015); Dosovitskiy & Brox (2016); Zhang et al. (2020d). Jensen et al. (1999)
surveys various techniques for neural network inversion, which involves finding input values that
produce desired outputs, and highlights its applications in query-based learning, sonar performance
analysis, power system security assessment, control, and codebook vector generation. Lu et al. (1999)
presents a method for inverting trained neural networks by formulating the problem as a mathematical
programming task, enabling various network inversions and enhancing generalization performance..
Mahendran & Vedaldi (2015) explores the reconstruction of image representations, including CNNs,
to assess the extent to which it’s possible to recreate the original image, revealing that certain layers
in CNNs retain accurate visual information with varying degrees of geometric and photometric
invariance. Zhang et al. (2020d) presents a novel generative model-inversion attack method that can
effectively reverse deep neural networks, particularly in the context of face image reconstruction, and
explores the connection between a model’s predictive ability and vulnerability to such attacks while
noting limitations in using differential privacy for defense.

Attacking the Neural Networks. During the development of artificial intelligence, there have been
many works on attaching the neural networks Zhu et al. (2019); Wei et al. (2020); Rigaki & Garcia
(2020); Huang et al. (2020); Yin et al. (2021); Huang et al. (2021b); Gao et al. (2023c). Several
studies Zhu et al. (2019); Wei et al. (2020); Rigaki & Garcia (2020); Yin et al. (2021) have warned
that local training data can be compromised using only exchanged gradient information. These
methods start with dummy data and gradients, and through gradient descent, they empirically show
that the original data can be fully reconstructed. A follow-up study Zhao et al. (2020) specifically
focuses on classification tasks and finds that the real labels can also be accurately recovered. Other
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types of attacks include membership and property inference Shokri et al. (2017); Melis et al. (2019),
the use of Generative Adversarial Networks (GANs) Hitaj et al. (2017); Goodfellow et al. (2014),
and additional machine-learning techniques McPherson et al. (2016); Papernot et al. (2016). A recent
paper Wang et al. (2023) uses tensor decomposition for gradient leakage attacks but is limited by its
inefficiency and focus on over-parametrized networks.

2.2 ATTENTION COMPUTATION AND REGRESSION

Attention Computation Theory. Following the rise of LLM, numerous studies have emerged on
attention computation Kitaev et al. (2020); Tay et al. (2020); Chen et al. (2021); Zandieh et al. (2023);
Tarzanagh et al. (2023); Sanford et al. (2023); Panigrahi et al. (2023a); Zhang et al. (2020a); Arora &
Goyal (2023); Tay et al. (2021); Deng et al. (2023b); Xia et al. (2023); Kacham et al. (2023). LSH
techniques approximate attention, and based on them, the KDEformer offers a notable dot-product
attention approximation Zandieh et al. (2023). Recent works Alman & Song (2023); Brand et al.
(2023); Deng et al. (2023c) explored diverse attention computation methods and strategies to enhance
model efficiency. On the optimization front, Zhang et al. (2020b) highlighted that adaptive methods
excel over SGD due to heavy-tailed noise distributions. Other insights include the emergence of the
KTIW property Snell et al. (2021) and various regression problems inspired by attention computation
Gao et al. (2023a); Li et al. (2023c;b), revealing deeper nuances of attention models.

Theoretical Approaches to Understanding LLMs. Recent strides have been made in under-
standing and optimizing regression models using various activation functions. Research on over-
parameterized neural networks has examined exponential and hyperbolic activation functions for
their convergence properties and computational efficiency Gao et al. (2023a); Li et al. (2023c); Deng
et al. (2023b); Gao et al. (2023d); Li et al. (2023a); Gao et al. (2023e); Song et al. (2023); Sinha
et al. (2023); Chu et al. (2023a;b); Shen et al. (2023b). Modifications such as regularization terms
and algorithmic innovations, like a convergent approximation Newton method, have been introduced
to enhance their performance Li et al. (2023c); Deng et al. (2022). Studies have also leveraged
tensor tricks to vectorize regression models, allowing for advanced Lipschitz and time-complexity
analyses Gao et al. (2023b); Deng et al. (2023a). Simultaneously, the field is seeing innovations in
optimization algorithms tailored for LLMs. Techniques like block gradient estimators have been
employed for huge-scale optimization problems, significantly reducing computational complexity
Cai et al. (2021). Unique approaches like Direct Preference Optimization bypass the need for reward
models, fine-tuning LLMs based on human preference data Rafailov et al. (2023). Additionally,
advancements in second-order optimizers have relaxed the conventional Lipschitz Hessian assump-
tions, providing more flexibility in convergence proofs Liu et al. (2023). Also, there is a series of
work on understanding fine-tuning Malladi et al. (2023a;b); Panigrahi et al. (2023b). Collectively,
these theoretical contributions are refining our understanding and optimization of LLMs, even as they
introduce new techniques to address challenges such as non-guaranteed Hessian Lipschitz conditions.

Optimization and Convergence of Deep Neural Networks. Prior research Li & Liang (2018);
Du et al. (2018); Allen-Zhu et al. (2019a;b); Arora et al. (2019a;b); Song & Yang (2019); Cai et al.
(2019); Zhang et al. (2019); Cao & Gu (2019); Zou & Gu (2019); Oymak & Soltanolkotabi (2020); Ji
& Telgarsky (2019); Lee et al. (2020); Huang et al. (2021a); Zhang et al. (2020c); Brand et al. (2020);
Zhang et al. (2020a); Song et al. (2021); Alman et al. (2023); Munteanu et al. (2022); Zhang (2022);
Gao et al. (2023a); Li et al. (2023c); Qin et al. (2023) on the optimization and convergence of deep
neural networks has been crucial in understanding their exceptional performance across various tasks.
These studies have also contributed to enhancing the safety and efficiency of AI systems. In Gao
et al. (2023a) they define a neural function using an exponential activation function and apply the
gradient descent algorithm to find optimal weights. In Li et al. (2023c), they focus on the exponential
regression problem inspired by the attention mechanism in large language models. They address the
non-convex nature of standard exponential regression by considering a regularization version that is
convex. They propose an algorithm that leverages input sparsity to achieve efficient computation.
The algorithm has a logarithmic number of iterations and requires nearly linear time per iteration,
making use of the sparsity of the input matrix.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3 RECOVERING DATA VIA ATTENTION WEIGHTS

In this section, we propose our theoretical method to recover the training data from trained transformer
weights and outputs. In Section 3.1, we provide a detailed description of our approach. In Section 3.2,
we introduce our simplified notations to calculate the Hessian of the loss function. In Section 3.3, we
state the decomposed expression of the Hessian.

3.1 TRAINING OBJECTIVE OF ATTENTION INVERSION ATTACK

In this study, we propose a novel technique for inverting the attention weights of a transformer model
using Hessian-based algorithms. We consider the single-layer soft-max attention function

f(W ;X) := D(X)−1 exp(X⊤WX)V

, where W = KQ⊤ ∈ Rd×d represents the attention weights and D(X) = diag(exp(X⊤WX)) ∈
Rn×n is the diagonal matrix for normalization.

Our aim is to find the input X ∈ Rd×n that minimizes the Frobenius norm of the difference between
f(W ;X) and the output B. Here, dimension d denotes the length of a token, dimension n denotes
the total number of the tokens in X . To achieve this, we introduce an algorithm that minimizes the
loss function L(X), defined as follows:
Definition 3.1 (Regression model). Given the attention weights W = KQ⊤ ∈ Rd×d, V ∈ Rd×d

and output B ∈ Rn×d, the goal is find X ∈ Rd×n such that
L(X) := ∥D(X)−1 exp(X⊤WX)X⊤V −B∥2F + Lreg, (1)

D(X)−1
X⊤

W X

X⊤

V

B

X⊤

W X

1n W K

Q⊤

L(X) := ∥ × exp (
× ×

)×
× − ∥

F

2

where D(X) := diag(exp(
× ×

)× ) and := ×

n

n d d n d d d

n

Figure 1: Visualization of our loss function.

Lreg captures the additional regularization terms which we introduce later. This loss function
quantifies the discrepancy between the expected output and the actual output of the transformer.

In our approach, we leverage Hessian decomposition to efficiently compute the Hessian matrix and
apply a second-order method to approximate the optimal input X . Utilizing the Hessian, we can
gain insights into the curvature of the loss function, which improves the efficiency of finding the
approximate optimal solution.

By integrating Hessian decomposition and second-order optimization techniques (Anstreicher (2000);
Lee et al. (2019); Cohen et al. (2019); Jiang et al. (2021); Huang et al. (2022); Gu & Song (2022); Gu
et al. (2023)), our proposed algorithm provides a promising approach for addressing the challenging
task of inverting attention weights in transformer models.

3.2 MODEL SIMPLIFICATION

Due to the complexity of the loss function (Eq. (1)), it is challenging to give the explicit formula of its
Hessian. To simplify the computation, we introduce several notations (See Figure 2 for visualization):

Exponential Function: u(X)i := exp(X⊤WX∗,i)

5
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Sum of Softmax: α(X)i := ⟨u(X)i,1n⟩
Softmax Probability: f(X)i := α(X)−1

i u(X)i

Value Function: h(X)j := X⊤V∗,j
One-entry Loss Function: c(X)i,j := ⟨f(X)i, h(X)j⟩ − bi,j .

X⊤

W X∗,i

u(X)i :=exp (
× ×

)n

d d 1

(a) Exponential Function

u(X)i 1nα(X)i :=⟨
,
⟩n

1 1

(b) Sum of Softmax

u(X)if(X)i := α(X)−1
i × n

1

(c) Softmax Probability

h(X)j := X⊤ V∗,j×n

d

1

(d) Value Function

f(X)i h(X)jc(X)i,j := ⟨
,
⟩ −bijn

1 1

(e) One-unit Loss Function

Figure 2: Visualization of Notations We Defined

Using these terms, we can express the loss function L(X) as the sum over the loss in each
entry as below, which allows us to break down the computation into several steps. L(X) =∑n

i=1

∑d
j=1(c(X)i,j)

2.

3.3 HESSIAN DECOMPOSITION

This section provides our technique to decompose the Hessian. By decomposing the Hessian into
several cases, we can give a close-form expression, which enables us to comprehend and analyze the
Hessian. We use variables ik ∈ [n], jk ∈ [d], k = 1, 2, 3 to denote the indexes.

Now, we split dc(X)i0,j0

dxi1,j1
(the gradient of c(X)i0,j0 ) into two cases:

• Case 1: The situation when i0 = i1.
• Case 2: The situation when i0 ̸= i1.

Similar, we break down the computation of d2c(X)i0,j0

dxi1,j1
dxi2,j2

into five cases to handle different scenarios:

• Case 1: The situation when i0 = i1 = i2.
• Case 2: The situation when i0 = i1 ̸= i2.
• Case 3: The situation when i0 = i2 ̸= i1.
• Case 4: The situation when i0 ̸= i1, i0 ̸= i2 and i1 = i2.
• Case 5: The situation when i0 ̸= i1, i0 ̸= i2 and i1 ̸= i2.

It is worth mentioning that the second case and the third case are equivalent by switching indexes. By
considering these cases, we can calculate the Hessian for each element in X . This allows us to gain
further insights into the curvature of the loss function and optimize the parameters more effectively.

Since our decision variable X is a n× d matrix, we define the Hessian of c(X)i0,j0 by considering
its Hessian with respect to x = vec(X). This means that, ∇2c(X)i0,j0 is a nd× nd matrix with its
i1 · j1, i2 · j2-th entry being dc(X)i0,j0

dxi1,j2
xi2,j2

. Leveraging the split of different scenarios, we decompose
the Hessian into a partition of square matrices.
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Definition 3.2 (Hessian split). We use H(i1,i2)
k ∈ Rd×d to represent the square matrix corresponding

to the k-th case in Hessian computation. Notice that the j1, j2-th entry of H(i1,i2)
k is dc(X)i0,j0

dxi1,j2xi2,j2
.

Then, the Hessian of the loss is a matrix partition consists of matrices of the above five cases. The
formal representation can be found in Appendix D.1.

The reason we introduce the Hessian split is that the square matrices of the same type share the
similar formula. Therefore, we can compute the expression of each type (see detailed calculation in
Section D) to derive dc(X)i0,j0

dxi1,j2
xi2,j2

. This gives us the information of the Hessian of the loss function.

4 MAIN RESULTS

Now, we state the analysis of the correctness of our inversion attack strategy. Assuming the parameters
are bounded, we verify the Hession of our loss function is Lipschitz continuous and PSD lower-
bounded. Therefore, gradient-based and Hessian-based methods are used to solve the regularized
regression model. We defer the proofs to the Appendix.

Properties of the Hessian We assume an unified upper bound for all parameters in our model,
including the weight W , the value V , the output B, and the decision variable X .

Assumption 4.1 (Bounded Parameters, Informal version of Assumption F.1). We assume ∥W∥ ≤
R, ∥V ∥ ≤ R, ∥X∥ ≤ R, bi,j ≤ R2, where ∥ · ∥ is the matrix 2-norm and R > 1 is some constant.

Next, we state the bounds for the Hessian of the loss function in terms of poly(n, d,R).

Theorem 4.2 (Properties of the Hessian, Informal version of Theorem G.12 and Theorem H.2). We
assume that Assumption 4.1 holds. Then, the Hessian of L(X) is Lipschitz continuous with Lipschitz
constant being O(n3.5d3.5R10). Also, it has PSD lower bound: L(X) ⪰ −O(ndR8) · Ind.

Therefore, we define the regularization term to be Lreg := O(ndR8) · ∥ vec(X)∥22 to have the PSD
guarantee for our regression problem.

Convergence analysis With above properties of the loss function, we have the convergence results
stated as follows. Theorem 4.3 shows the correctness of the gradient-based method. Theorem 4.3
shows the correctness of the Hessian-based method. The algorithm for approximating PSD matrices
in Deng et al. (2022) can be applied to approximate the Hessian efficiently.

Theorem 4.3 (First-Order Main Result, Informal version of Theorem I.2). We assume that Assump-
tion 4.1 holds. Let X∗ denote the optimal point of the regularized regression model defined in
Definition 3.1. Then, for any accuracy parameter ϵ ∈ (0, 0.1), an algorithm based on the gradient-
descent method can be employed to recover the initial data. It outputs a matrix X̃ ∈ Rd×n satisfying
∥X̃ −X∗∥F ≤ ϵ. The algorithm runs T = O(poly(n, d,R) · log(∥X0 −X∗∥F /ϵ)) iterations, with
execution time for each iteration being poly(n, d), where the degree of d depends on the current
matrix computation time.

Theorem 4.4 (Second-Order Main Result, Informal version of Theorem I.3). We assume that
Assumption 4.1 holds. Let X∗ denote the optimal point of the regularized regression model defined
in Definition 3.1. Suppose we choose an initial point X0 such that M · ∥X0 −X∗∥F ≤ O(ndR8)
where M = O(n3d3R10). Then, for any accuracy parameter ϵ ∈ (0, 0.1) and any failure probability
δ ∈ (0, 0.1), an algorithm based on the approximation-Newton method can be employed to recover
the initial data. It outputs a matrix X̃ ∈ Rd×n satisfying ∥X̃ − X∗∥F ≤ ϵ with a probability
at least 1 − δ. The algorithm runs T = O(log(|X0 − X∗|F /ϵ)) iterations, with execution time
for each iteration being poly(n, d, log(1/δ)), where the degree of d depends on the current matrix
computation time.

These theorems show that we can utilize first-order method and second-order method to search an
ϵ-optimal approximation to the real input data X within a preferable running time.
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step recovering text loss

0 GrapeJUST once received cancer treatment at this hospital. 4.74
2500 precious quoted once received cancer treatment at this hospital. 4.61
5000 grass Tradable once received cancer treatment at this hospital. 4.50
6500 acrylic Bob once received cancer treatment at this hospital. 4.29
7500 Alan Bob once received cancer treatment at this hospital. 2.27

Table 1: Visualization of the results. Here, the original target text is Alan Bob once received cancer
treatment at this hospital. We mask the sensitive data Alan Bob and run the gradient-descent
inverse attack to recover. The blue-colored texts are the outputs in each iteration. The column on the
right shows the value of the cross-entropy loss. It can be seen that the original data is leaked after
7500 steps, which echoes our convergence analysis.

5 EXPERIMENT

In this section, to verify the accuracy of our theory, we conducted a simple experiment to evaluate
how our approach recovers data from the pre-trained weights in the LLM. In Section 5.1, we provide
the setup and the design of our data-attack experiment. Next, we discuss our results in Section 5.2.
Supplementary experimental details are provided in Appendix J.

5.1 EXPERIMENT DESIGN AND SETUP

We use the pre-trained language model GPT-2-small Radford et al. (2019). For the dataset, we utilize
GPT-4 Achiam et al. (2023); Bubeck et al. (2023) to help us create hundreds of text data containing
virtual information. This can be viewed as the toy or the synthetic dataset. Then, we use the synthetic
dataset to fine-tune the pre-trained GPT-2-small with Adam optimizer Kingma & Ba (2014).

0 2000 4000 6000 8000 10000
step

0

1

2

3

4

5

0.0

0.2

0.4

0.6

0.8

1.0final success rate: 0.92loss
success rate

Figure 3: Training record of our inversion recovery attack. We state the maximum, mean, and
minimum loss during 10000 updates. We also present the success rate of attack in 1000 repeated
experiments.

For the recovery part, we first choose one text from the dataset and convert it into one-hot vectors
through the model’s vocabulary, denoted by S∗ ∈ Rn×N where N is the vocabulary size. Notice
that GPT-2-small is trained to conduct next-token prediction by causal mask, namely, it uses the
information of the first k words to predict the (k + 1)-th word. Therefore, we split S∗ to the masked
part S1 ∈ Rm×N and the unmasked part S2 ∈ R(n−m)×N . Then, we use S2 as part of the initial
input and we introduce our inversion attack approach to recover S1.

We initialize our recovery by a random matrix X0 ∈ Rm×N where each entry is sampled from
N (0, 1). We compute S0

1 ∈ Rm×N := softmax(X0), and concatenate it with S2 to form S0 ∈
Rn×N =

[
S0
1

S0
2

]
, then input it into the model. We denote the GPT-2-small model by a mapping

F : Rn×N → Rn×N . For any input matrix A ∈ Rn×N , the output of GPT-2-small F (A) ∈ Rn×N

will consist of row-wise soft-max vectors since we add a soft-max operation to the output of the last

8
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layer to compute the probability distribution. We use St ∈ Rn×N to represent the matrix of soft-max
vectors we recover at the t-th timestamp for integer t ≥ 0 by minimizing the loss.

We define our problem as minimizing the cross-entropy loss which is calculated as L(F (St), St) :=∑n−1
i=1

∑N
j=1−St

i+1,j · log(F (St)i,j).

Remark 5.1. We use the cross-entropy loss here instead since it is commonly used in the training
of current LLMs. Note that our approach to analyze the canonical softmax loss regression can be
modified to show the correctness of the cross-entropy loss regression. Similar topics have been
discussed in other LLM-related literature, e.g. Gao et al. (2023c).

We use the gradient-descent method to conduct the attack. The update rule is defined as:

Xt+1 ← Xt − η∇Xt
L(F (St), St),

where we use Xt to denote the recovering input at t-th timestamp for integer t ≥ 0. Note that η
denotes the learning rate. St is computed by Xt as we mentioned above.

The training involves Adam optimizer, and all the hyper-parameters are set to be defaults. Totally, we
trained 10000 steps for the input recovery. All the experiments are repeated 1000 times to ensure
reliability.

5.2 RESULTS

We state our results of recovery in Figure 3. We recorded the mean, maximum, and minimum loss
during the training. We also recorded the success rate at each stage in the 10000 updates. Notice
that the success rate at the k-th update is computed by the count of successful experiments (i.e., the
masked input data is recovered) at the k-th update divided by 1000, which is the repeated time. It’s
noteworthy that after 5000 steps, the success rate greatly increases, eventually, it demonstrates a high
value of 0.92. This result verifies our attacking method has a high probability of recovery training,
especially for private and sensitive data from open-source weights of language models.

Furthermore, we showcase one example of the recovery attacks in Table 1, where we create fake
data "Alan Bob once received cancer treatment at this hospital.". Accordingly, the name "Alan Bob"
in the context is private and masked. We cut these two words and converted the sentence " once
received cancer treatment at this hospital." into one-hot vectors as S2 in Section 5.1. Next, we run the
inverse attack and record the output and loss value at each step. We use blue text to represent the
text that is predicted by our algorithm. As we can see from Table 1, the recovering text is initially
GrapeJUST with the cross-entropy loss 4.74 at the beginning. Then, at the 6500-th step of recovering,
our algorithm outputs acrylic Bob, where the word "Bob" is successfully recovered. Finally, at the
7500-th step, our algorithm successfully recovers the target text Alan Bob.

6 CONCLUSION

In this study, we have presented a theoretical approach for conducting the inverse recovery on the
input data using weights and outputs.

We propose the mathematical framework of the attention-inspired mechanism regression model. Our
theoretical analysis part consists of the efficient calculation of the Hessian and the verification of its
smoothness and strongly-convexity. With the aim of these properties, we introduce gradient-based
and Hessian-based to do the inverse recovery. Then, we show the reliability of our proposed method
by experiments on text reconstruction using GPT-2-small.

The insights gained from this research are intended to deepen our understanding and facilitate
the development of more secure and robust transformer models. By doing so, we strive to foster
responsible and ethical advancements in the field of deep learning. This work lays the groundwork
for future research and development aimed at fortifying transformer technologies against potential
threats and vulnerabilities.
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Roadmap. We arrange the appendix as follows. In Section A we provide details of computing the
gradients. In Section B and Section C we provide detail of computing Hessian for two cases. In
Section D we show how to split the Hessian matrix. In Section E we combine the results before and
compute the Hessian for the loss function. In Section F we bound the basic functions to be used
later. In Section G we provide proof for the Lipschitz property of the Hessian of the loss function.
In Section H, we provide the proof for the PSD bound of the Hessian. In Section I, we provide the
convergence analysis for our proposed methods. In Section J, we provide additional details for our
experiment.

A GRADIENTS

Here in this section, we provide analysis for the gradient computation. In Section A.1 we state some
facts to be used. In Section A.2 we provide some definitions. In Sections A.3, A.4, A.5, A.6, A.7,
A.8 and A.9 we compute the gradient for the terms defined respectively. Finally in Section A.10 we
compute the gradient for L(X).

A.1 FACTS

Fact A.1 (Basic algebra). We have

• ⟨u, v⟩ = ⟨v, u⟩ = u⊤v = v⊤u.

• ⟨u ◦ v, w⟩ = ⟨u ◦ v ◦ w,1n⟩
• u⊤(v ◦ w) = u⊤ diag(v)w

Fact A.2 (Basic calculus rule). We have

• d⟨f(x),g(x)⟩
dt = ⟨df(x)dt , g(x)⟩+ ⟨f(x), dg(x)

dt ⟩ (here t can be any variable)

• dyz

dx = z · yz−1 dy
dx

• u · v = v · u
• dx

dxj
= ej where ej is a vector that only j-th entry is 1 and zero everywhere else.

• Let x ∈ Rd, let y ∈ R be independent of x, we have dx
dy = 0d.

• Let f(x), g(x) ∈ R, we have d(f(x)g(x))
dt = df(x)

dt g(x) + f(x)dg(x)dt

• Let x ∈ R, d
dx exp (x) = exp (x)

• Let f(x) ∈ Rn, we have d exp(f(x))
dt = exp(f(x)) ◦ df(x)

dt

A.2 DEFINITIONS

Definition A.3 (Simplified notations). We have following definitions

• We use u(X)i0,i1 to denote the i1-th entry of u(X)i0 .

• We use f(X)i0,i1 to denote the i1-th entry of f(X)i0 .

• We define Wj1,∗ to denote the j1-th row of W . (In the proof, we treat Wj1,∗ as a column
vector).

• We define W∗,j1 to denote the j1-th column of W .

• We define wj1,j0 to denote the scalar equals to the entry in j1-th row, j0-th column of W .

• We define V∗,j1 to denote the j1-th column of V .

• We define vj1,j0 to denote the scalar equals to the entry in j1-th row, j0-th column of V .
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• We define X∗,i0 to denote the i0-th column of X .

• We define xi1,j1 to denote the scalar equals to the entry in i1-th column, j1-th row of X .

Definition A.4 (Exponential function u). If the following conditions hold

• Let X ∈ Rd×n

• Let W ∈ Rd×d

For each i0 ∈ [n], we define u(X)i0 ∈ Rn as follows

u(X)i0 = exp(X⊤WX∗,i0)

Definition A.5 (Sum function of softmax α). If the following conditions hold

• Let X ∈ Rd×n

• Let u(X)i0 be defined as Definition A.4

We define α(X)i0 ∈ R for all i0 ∈ [n] as follows

α(X)i0 = ⟨u(X)i0 ,1n⟩
Definition A.6 (Softmax probability function f ). If the following conditions hold

• Let X ∈ Rd×n

• Let u(X)i0 be defined as Definition A.4

• Let α(X)i0 be defined as Definition A.5

We define f(X)i0 ∈ Rn for each i0 ∈ [n] as follows

f(X)i0 := α(X)−1
i0

u(X)i0

Definition A.7 (Value function h). If the following conditions hold

• Let X ∈ Rd×n

• Let V ∈ Rd×d

We define h(X)j0 ∈ Rn for each j0 ∈ [n] as follows

h(X)j0 := X⊤V∗,j0

Definition A.8 (One-unit loss function c). If the following conditions hold

• Let f(X)i0 be defined as Definition A.6

• Let h(X)j0 be defined as Definition A.7

We define c(X) ∈ Rn×d as follows

c(X)i0,j0 := ⟨f(X)i0 , h(X)j0⟩ − bi0,j0 ,∀i0 ∈ [n], j0 ∈ [d]

Definition A.9 (Overall function L). If the following conditions hold

• Let c(X)i0,j0 be defined as Definition A.8

We define L(X) ∈ R as follows

L(X) :=

n∑
i0=1

d∑
j0=1

(c(X)i0,j0)
2
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A.3 GRADIENT FOR EACH COLUMN OF X⊤WX∗,i0

Lemma A.10. We have

• Part 1. Let i0 = i1 ∈ [n], j1 ∈ [d]

dX⊤WX∗,i0
dxi1,j1︸ ︷︷ ︸
n×1

= ei0︸︷︷︸
n×1

· ⟨Wj1,∗, X∗,i0⟩︸ ︷︷ ︸
scalar

+ X⊤︸︷︷︸
n×d

W∗,j1︸ ︷︷ ︸
d×1

• Part 2 Let i0 ̸= i1 ∈ [n], j1 ∈ [d]

dX⊤WX∗,i0
dxi1,j1︸ ︷︷ ︸
n×1

= ei1︸︷︷︸
n×1

· ⟨Wj1,∗, X∗,i0⟩︸ ︷︷ ︸
scalar

Proof. Proof of Part 1.

dX⊤WX∗,i0
dxi1,j1︸ ︷︷ ︸
n×1

=
dX⊤

dXi1,j1︸ ︷︷ ︸
n×d

W︸︷︷︸
d×d

X∗,i0︸ ︷︷ ︸
d×1

+ X⊤︸︷︷︸
n×d

W︸︷︷︸
d×d

dX∗,i0
dXi1,j1︸ ︷︷ ︸

d×1

= ei1︸︷︷︸
n×1

e⊤j1︸︷︷︸
1×d

W︸︷︷︸
d×d

X∗,i0︸ ︷︷ ︸
d×1

+ X⊤︸︷︷︸
n×d

W︸︷︷︸
d×d

ej1︸︷︷︸
d×1

= ei1︸︷︷︸
n×1

· ⟨Wj1,∗, X∗,i0⟩︸ ︷︷ ︸
scalar

+ X⊤︸︷︷︸
n×d

W∗,j1︸ ︷︷ ︸
d×1

= ei0︸︷︷︸
n×1

· ⟨Wj1,∗, X∗,i0⟩︸ ︷︷ ︸
scalar

+ X⊤︸︷︷︸
n×d

W∗,j1︸ ︷︷ ︸
d×1

where the 1st step follows from Fact A.2, the 2nd step follows from simple derivative rule, the 3rd is
simple algebra, the 4th step ie because i0 = i1.

Proof of Part 2
dX⊤WX∗,i0

dxi1,j1︸ ︷︷ ︸
n×1

=
dX⊤

dxi1,j1︸ ︷︷ ︸
n×d

W︸︷︷︸
d×d

X∗,i0︸ ︷︷ ︸
d×1

+ X⊤︸︷︷︸
n×d

W︸︷︷︸
d×d

dX∗,i0
dxi1,j1︸ ︷︷ ︸
d×1

= ei1︸︷︷︸
n×1

e⊤j1︸︷︷︸
1×d

W︸︷︷︸
d×d

X∗,i0︸ ︷︷ ︸
d×1

+ X⊤︸︷︷︸
n×d

W︸︷︷︸
d×d

0d︸︷︷︸
d×1

= ei1︸︷︷︸
n×1

· ⟨Wj1,∗, X∗,i0⟩︸ ︷︷ ︸
scalar

where the 1st step follows from Fact A.2, the 2nd step follows from simple derivative rule, the 3rd is
simple algebra.

A.4 GRADIENT FOR u(X)i0

Lemma A.11. Under following conditions

• Let u(X)i0 be defined as Definition A.4

We have

• Part 1. For each i0 = i1 ∈ [n], j1 ∈ [d]

du(X)i0
dxi1,j1︸ ︷︷ ︸
n×1

= u(X)i0 ◦ (ei0 · ⟨Wj1,∗, X∗,i0⟩+X⊤W∗,j1)
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• Part 2 For each i0 ̸= i1 ∈ [n], j1 ∈ [d]

du(X)i0
dxi1,j1︸ ︷︷ ︸
n×1

= u(X)i0︸ ︷︷ ︸
n×1

◦(ei1 · ⟨Wj1,∗, X∗,i0⟩)

Proof.

Proof of Part 1
du(X)i0
dxi1,j1︸ ︷︷ ︸
n×1

=
d exp(X⊤WX∗,i0)

dxi1,j1︸ ︷︷ ︸
n×1

= exp(X⊤︸︷︷︸
n×d

W︸︷︷︸
d×d

X∗,i0︸ ︷︷ ︸
d×1

) ◦ dX
⊤WX∗,i0
dxi1,j1︸ ︷︷ ︸
n×1

= u(X)i0︸ ︷︷ ︸
n×1

◦ dX
⊤WX∗,i0
dxi1,j1︸ ︷︷ ︸
n×1

= u(X)i0︸ ︷︷ ︸
n×1

◦( ei0︸︷︷︸
n×1

· ⟨Wj1,∗, X∗,i0⟩︸ ︷︷ ︸
scalar

+ X⊤︸︷︷︸
n×d

W∗,j1︸ ︷︷ ︸
d×1

)

where the 1st step and the 3rd step follow from Definition of u(X)i0 (see Definition A.4), the 2nd
step follows from Fact A.2, the 4th step follows by Lemma A.10.

Proof of Part 2
du(X)i0
dxi1,j1︸ ︷︷ ︸
n×1

=
d exp(X⊤WX∗,i0)

dxi1,j1︸ ︷︷ ︸
n×1

= exp(X⊤︸︷︷︸
n×d

W︸︷︷︸
d×d

X∗,i0︸ ︷︷ ︸
d×1

) ◦ dX
⊤WX∗,i0
dxi1,j1︸ ︷︷ ︸
n×1

= u(X)i0︸ ︷︷ ︸
n×1

◦ dX
⊤WX∗,i0
dxi1,j1︸ ︷︷ ︸
n×1

= u(X)i0︸ ︷︷ ︸
n×1

◦( ei1︸︷︷︸
n×1

· ⟨Wj1,∗, X∗,i0⟩︸ ︷︷ ︸
scalar

)

where the 1st step and the 3rd step follow from Definition of u(X)i0 (see Definition A.4), the 2nd
step follows from Fact A.2, the 4th step follows by Lemma A.10.

A.5 GRADIENT COMPUTATION FOR α(X)i0

Lemma A.12 (A generalization of Lemma 5.6 in Deng et al. (2023b)). If the following conditions
hold

• Let α(X)i0 be defined as Definition A.5

Then, we have

• Part 1. For each i0 = i1 ∈ [n], j1 ∈ [d]

dα(X)i0
dxi1,j1︸ ︷︷ ︸
scalar

= u(X)i0,i0 · ⟨Wj1,∗, X∗,i0⟩+ ⟨u(X)i0 , X
⊤W∗,j1⟩
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• Part 2. For each i0 ̸= i1 ∈ [n], j1 ∈ [d]

dα(X)i0
dxi1,j1︸ ︷︷ ︸
scalar

= u(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩

Proof. Proof of Part 1.

dα(X)i0
dxi1,j1︸ ︷︷ ︸
scalar

=
d⟨u(X)i0 ,1n⟩

dxi1,j1︸ ︷︷ ︸
scalar

= ⟨du(X)i0
dxi1,j1︸ ︷︷ ︸
n×1

, 1n︸︷︷︸
n×1

⟩

= ⟨u(X)i0︸ ︷︷ ︸
n×1

◦(ei0 · ⟨Wj1,∗, X∗,i0⟩+X⊤W∗,j1), 1n︸︷︷︸
n×1

⟩

= ⟨u(X)i0︸ ︷︷ ︸
n×1

◦ei0 ,1n⟩ · ⟨Wj1,∗, X∗,i0⟩+ ⟨u(X)i0 ◦ (X⊤W∗,j1), 1n︸︷︷︸
n×1

⟩

= ⟨u(X)i0︸ ︷︷ ︸
n×1

, ei0⟩ · ⟨Wj1,∗, X∗,i0⟩+ ⟨u(X)i0 , X
⊤W∗,j1⟩

= u(X)i0,i0 · ⟨Wj1,∗, X∗,i0⟩+ ⟨u(X)i0 , X
⊤W∗,j1⟩

where the 1st step follows from the definition of α(X)i0 (see Definition A.5), the 2nd step follows
from Fact A.2, the 3rd step follows from Lemma A.11, the 4th step is rearrangement, the 5th step is
derived by Fact A.1, the last step is by the definition of U(X)i0,i0 .

Proof of Part 2.
dα(X)i0
dxi1,j1︸ ︷︷ ︸
scalar

=
d⟨u(X)i0 ,1n⟩

dxi1,j1︸ ︷︷ ︸
scalar

= ⟨du(X)i0
dxi1,j1︸ ︷︷ ︸
n×1

, 1n︸︷︷︸
n×1

⟩

= ⟨u(X)i0︸ ︷︷ ︸
n×1

◦(ei1 · ⟨Wj1,∗, X∗,i0⟩), 1n︸︷︷︸
n×1

⟩

= ⟨u(X)i0︸ ︷︷ ︸
n×1

◦ei1 , 1n︸︷︷︸
n×1

⟩ · ⟨Wj1,∗, X∗,i0⟩

= u(X)i0,i1︸ ︷︷ ︸
scalar

·⟨Wj1,∗, X∗,i0⟩

where the 1st step follows from the definition of α(X)i0 (see Definition A.5), the 2nd step follows
from Fact A.2, the 3rd step follows from Lemma A.11, the 4th step is rearrangement, the 5th step is
derived by Fact A.1.

A.6 GRADIENT COMPUTATION FOR α(X)−1
i0

Lemma A.13 (A generalization of Lemma 5.6 in Deng et al. (2023b)). If the following conditions
hold

• Let α(X)i0 be defined as Definition A.5
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we have

• Part 1. For i0 = i1 ∈ [n], j1 ∈ [d]

dα(X)−1
i0

dxi1,j1︸ ︷︷ ︸
scalar

= −α(X)−1
i0
· (f(X)i0,i0 · ⟨Wj1,∗, X∗,i0⟩+ ⟨f(X)i0 , X

⊤W∗,j1⟩)⟩)

• Part 2. For i0 ̸= i1 ∈ [n], j1 ∈ [d]

dα(X)−1
i0

dxi1,j1︸ ︷︷ ︸
scalar

= −α(X)−1
i0
· f(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩

Proof. Proof of Part 1.
dα(X)−1

i0

dxi1,j1︸ ︷︷ ︸
scalar

= −1︸︷︷︸
scalar

·(α(X)i0)
−2︸ ︷︷ ︸

scalar

· d(α(X)i0)

dxi1,j1︸ ︷︷ ︸
scalar

= −(α(X)i0)
−2︸ ︷︷ ︸

scalar

·(u(X)i0,i0 · ⟨Wj1,∗, X∗,i0⟩+ ⟨u(X)i0 , X
⊤W∗,j1⟩)

= − α(X)−1
i0
· (f(X)i0,i0 · ⟨Wj1,∗, X∗,i0⟩+ ⟨f(X)i0 , X

⊤W∗,j1⟩)
where the 1st step follows from Fact A.2, the 2nd step follows by Lemma A.12.

Proof of Part 2.
dα(X)−1

i0

dxi1,j1︸ ︷︷ ︸
scalar

= −1︸︷︷︸
scalar

·(α(X)i0)
−2︸ ︷︷ ︸

scalar

· d(α(X)i0)

dxi1,j1︸ ︷︷ ︸
scalar

= −(α(X)i0)
−2︸ ︷︷ ︸

scalar

·u(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩

= − α(X)−1
i0
· f(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩

where the 1st step follows from Fact A.2, the 2nd step follows from result from Lemma A.12.

A.7 GRADIENT FOR f(X)i0

Lemma A.14. If the following conditions hold

• Let f(X)i0 be defined as Definition A.6

Then, we have

• Part 1. For all i0 = i1 ∈ [n], j1 ∈ [d]

df(X)i0
dxi1,j1︸ ︷︷ ︸
n×1

= − f(X)i0︸ ︷︷ ︸
n×1

· (f(X)i0,i0 · ⟨Wj1,∗, X∗,i0⟩+ ⟨f(X)i0 , X
⊤W∗,j1⟩)︸ ︷︷ ︸

scalar

+ f(X)i0 ◦ (ei0 · ⟨Wj1,∗, X∗,i0⟩+X⊤W∗,j1)︸ ︷︷ ︸
n×1

• Part 2. For all i0 ̸= i1 ∈ [n], j1 ∈ [d]

df(X)i0
dxi1,j1︸ ︷︷ ︸
n×1

= − f(X)i0︸ ︷︷ ︸
n×1

· f(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩︸ ︷︷ ︸
scalar
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+ f(X)i0 ◦ (ei1 · ⟨Wj1,∗, X∗,i0⟩)︸ ︷︷ ︸
n×1

Proof. Proof of Part 1.

df(X)i0
dxi1,j1︸ ︷︷ ︸
n×1

=
dα(X)−1

i0
u(X)i0

dxi1,j1︸ ︷︷ ︸
n×1

= u(X)i0︸ ︷︷ ︸
n×1

· d

dxi1,j1

α(X)−1
i0︸ ︷︷ ︸

scalar

+α(X)−1
i0︸ ︷︷ ︸

scalar

· d

dxi1,j1

u(X)i0︸ ︷︷ ︸
n×1

= − u(X)i0︸ ︷︷ ︸
n×1

· (α(X)i0)
−1 · (f(X)i0,i0 · ⟨Wj1,∗, X∗,i0⟩+ ⟨f(X)i0 , X

⊤W∗,j1⟩)︸ ︷︷ ︸
scalar

+ α(X)−1
i0︸ ︷︷ ︸

scalar

· d

dxi1,j1

u(X)i0︸ ︷︷ ︸
n×1

= − u(X)i0︸ ︷︷ ︸
n×1

· (α(X)i0)
−1 · (f(X)i0,i0 · ⟨Wj1,∗, X∗,i0⟩+ ⟨f(X)i0 , X

⊤W∗,j1⟩)︸ ︷︷ ︸
scalar

+ α(X)−1
i0︸ ︷︷ ︸

scalar

· (u(X)i0 ◦ (ei0 · ⟨Wj1,∗, X∗,i0⟩+X⊤W∗,j1))︸ ︷︷ ︸
n×1

= − f(X)i0︸ ︷︷ ︸
n×1

· (f(X)i0,i0 · ⟨Wj1,∗, X∗,i0⟩+ ⟨f(X)i0 , X
⊤W∗,j1⟩)︸ ︷︷ ︸

scalar

+ f(X)i0 ◦ (ei0 · ⟨Wj1,∗, X∗,i0⟩+X⊤W∗,j1)︸ ︷︷ ︸
n×1

where the 1st step follows from the definition of f(X)i0 (see Definition A.6), the 2nd step follows
from Fact A.2, the 3rd step follows from Lemma A.13, the 4th step follows from result from
Lemma A.11, the 5th step from the definition of f(X)i0 (see Definition A.6).

Proof of Part 2.
df(X)i0
dxi1,j1︸ ︷︷ ︸
n×1

=
dα(X)−1

i0
u(X)i0

dxi1,j1︸ ︷︷ ︸
n×1

= u(X)i0︸ ︷︷ ︸
n×1

· d

dxi1,j1

α(X)−1
i0︸ ︷︷ ︸

scalar

+α(X)−1
i0︸ ︷︷ ︸

scalar

· d

dxi1,j1

u(X)i0︸ ︷︷ ︸
n×1

= − u(X)i0︸ ︷︷ ︸
n×1

· (α(X)i0)
−2 · u(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩︸ ︷︷ ︸

scalar

+ α(X)−1
i0︸ ︷︷ ︸

scalar

· d

dxi1,j1

u(X)i0︸ ︷︷ ︸
n×1

= − u(X)i0︸ ︷︷ ︸
n×1

· (α(X)i0)
−2 · u(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩︸ ︷︷ ︸

scalar

+ α(X)−1
i0︸ ︷︷ ︸

scalar

· (u(X)i0 ◦ (ei1 · ⟨Wj1,∗, X∗,i0⟩)︸ ︷︷ ︸
n×1

= − f(X)i0︸ ︷︷ ︸
n×1

· f(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩︸ ︷︷ ︸
scalar

+ ei1 · f(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩)︸ ︷︷ ︸
scalar
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where the 1st step follows from the definition of f(X)i0 (see Definition A.6), the 2nd step follows
from Fact A.2, the 3rd step follows from Lemma A.13, the 4th step follows from result from
Lemma A.11, the 5th step from the definition of f(X)i0 (see Definition A.6).

A.8 GRADIENT FOR h(X)j0

Lemma A.15. If the following conditions hold

• Let h(X)j0 be defined as Definition A.7

Then, for all i1 ∈ [n], j0, j1 ∈ [d], we have

dh(X)j0
dxi1,j1︸ ︷︷ ︸
n×1

= ei1 · vj1,j0

Proof.

dh(X)j0
dxi1,j1︸ ︷︷ ︸
n×1

=
dX⊤V∗,j0
dxi1,j1︸ ︷︷ ︸
n×1

=
dX⊤

dxi1,j1︸ ︷︷ ︸
n×d

·V∗,j0︸︷︷︸
d×1

= ei1︸︷︷︸
n×1

· e⊤j1︸︷︷︸
1×d

·V∗,j0︸︷︷︸
d×1

= ei1︸︷︷︸
n×1

· vj1,j0︸ ︷︷ ︸
scalar

where the first step is by definition of h(X)j0 (see Definition A.7), the 2nd and the 3rd step are by
differentiation rules, the 4th step is by simple algebra.

A.9 GRADIENT FOR c(X)i0,j0

Lemma A.16. If the following conditions hold

• Let c(X)i0 be defined as Definition A.8

• Let s(X)i0,j0 := ⟨f(X)i0 , h(X)j0⟩

Then, we have

• Part 1. For all i0 = i1 ∈ [n], j0, j1 ∈ [d]

dc(X)i0,j0
dxi1,j1

= C1(X) + C2(X) + C3(X) + C4(X) + C5(X)

where we have definitions:

– C1(X) := −s(X)i0,j0 · f(X)i0,i0 · ⟨Wj1,∗, X∗,i0⟩
– C2(X) := −s(X)i0,j0 · ⟨f(X)i0 , X

⊤W∗,j1⟩
– C3(X) := f(X)i0,i0 · h(X)j0,i0 · ⟨Wj1,∗, X∗,i0⟩
– C4(X) := ⟨f(X)i0 ◦ (X⊤W∗,j1), h(X)j0⟩
– C5(X) := f(X)i0,i0 · vj1,j0
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• Part 2. For all i0 ̸= i1 ∈ [n], j0, j1 ∈ [d]

dc(X)i0,j0
dxi1,j1

= C6(X) + C7(X) + C8(X)

where we have definitions:

– C6(X) := −s(X)i0,j0 · f(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩
* This is corresponding to C1(X)

– C7(X) := f(X)i0,i1 · h(X)j0,i1 · ⟨Wj1,∗, X∗,i0⟩
* This is corresponding to C3(X)

– C8(X) := f(X)i0,i1 · vj1,j0
* This is corresponding to C5(X)

Proof. Proof of Part 1

dc(X)i0,j1
dxi1,j1︸ ︷︷ ︸
scalar

=
d(⟨f(X)i0 , h(X)j0⟩ − bi0,j0)

dxi1,j1︸ ︷︷ ︸
scalar

=
d⟨f(X)i0 , h(X)j0⟩

dxi1,j1︸ ︷︷ ︸
scalar

= ⟨df(X)i0
dxi1,j1︸ ︷︷ ︸
n×1

, h(X)j0︸ ︷︷ ︸
n×1

⟩+ ⟨f(X)i0︸ ︷︷ ︸
n×1

,
dh(X)j0
dxi1,j1︸ ︷︷ ︸
n×1

⟩

= ⟨df(X)i0
dxi1,j1︸ ︷︷ ︸
n×1

, h(X)j0︸ ︷︷ ︸
n×1

⟩+ ⟨f(X)i0︸ ︷︷ ︸
n×1

, ei1︸︷︷︸
n×1

· vj1,j0︸ ︷︷ ︸
scalar

⟩

= ⟨− f(X)i0︸ ︷︷ ︸
n×1

· (f(X)i0,i0 · ⟨Wj1,∗, X∗,i0⟩+ ⟨f(X)i0 , X
⊤W∗,j1⟩)︸ ︷︷ ︸

scalar

+ f(X)i0 ◦ (ei0 · ⟨Wj1,∗, X∗,i0⟩+X⊤W∗,j1)︸ ︷︷ ︸
n×1

, h(X)j0︸ ︷︷ ︸
n×1

⟩+ ⟨f(X)i0︸ ︷︷ ︸
n×1

, ei1︸︷︷︸
n×1

· vj1,j0︸ ︷︷ ︸
scalar

⟩

= − s(X)i0,j0 · f(X)i0,i0 · ⟨Wj1,∗, X∗,i0⟩
− s(X)i0,j0 · ⟨f(X)i0 , X

⊤W∗,j1⟩
+ f(X)i0,i0h(X)j0,i0⟨Wj1,∗, X∗,i0⟩
+ ⟨f(X)i0 ◦ (X⊤W∗,j1), h(X)j0⟩
+ f(X)i0,i1vj1,j0

:= C1(X) + C2(X) + C3(X) + C4(X) + C5(X)

where the first step is by definition of c(X)i0,j0 (see Definition A.8), the 2nd step is because bi0,j0
is independent of X , the 3rd step is by Fact A.2, the 4th step uses Lemma A.15, the 5th step uses
Lemma A.14, the 6th and 8th step are rearrangement of terms, the 7th step holds by the definition of
f(X)i0 (see Definition A.6).

Proof of Part 2

dc(X)i0,j1
dxi1,j1︸ ︷︷ ︸
scalar

=
d(⟨f(X)i0 , h(X)j0⟩ − bi0,j0)

dxi1,j1︸ ︷︷ ︸
scalar

=
d⟨f(X)i0 , h(X)j0⟩

dxi1,j1︸ ︷︷ ︸
scalar
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= ⟨df(X)i0
dxi1,j1︸ ︷︷ ︸
n×1

, h(X)j0︸ ︷︷ ︸
n×1

⟩+ ⟨f(X)i0︸ ︷︷ ︸
n×1

,
dh(X)j0
dxi1,j1︸ ︷︷ ︸
n×1

⟩

= ⟨df(X)i0
dxi1,j1︸ ︷︷ ︸
n×1

, h(X)j0︸ ︷︷ ︸
n×1

⟩+ ⟨f(X)i0︸ ︷︷ ︸
n×1

, ei1︸︷︷︸
n×1

· vj1,j0︸ ︷︷ ︸
scalar

⟩

= ⟨− (α(X)i0)
−1︸ ︷︷ ︸

scalar

· f(X)i0︸ ︷︷ ︸
n×1

·u(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩︸ ︷︷ ︸
scalar

+ f(X)i0 ◦ (ei1 · ⟨Wj1,∗, X∗,i0⟩)︸ ︷︷ ︸
n×1

, h(X)j0︸ ︷︷ ︸
n×1

⟩+ ⟨f(X)i0︸ ︷︷ ︸
n×1

, ei1︸︷︷︸
n×1

· vj1,j0︸ ︷︷ ︸
scalar

⟩

= − (α(X)i0)
−1 · ⟨f(X)i0 , h(X)j0⟩ · u(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩︸ ︷︷ ︸

scalar

+ ⟨f(X)i0 ◦ ei1 , h(X)j0⟩ · ⟨Wj1,∗, X∗,i0⟩︸ ︷︷ ︸
scalar

+ ⟨f(X)i0︸ ︷︷ ︸
n×1

, ei1︸︷︷︸
n×1

· vj1,j0︸ ︷︷ ︸
scalar

⟩

= − s(X)i0,j0 · f(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩
+ f(X)i0,i1 · h(X)j0,i1 · ⟨Wj1,∗, X∗,i0⟩
+ f(X)i0,i1 · vj1,j0

:= C6(X) + C7(X) + C8(X)

where the first step is by definition of c(X)i0,j0 (see Definition A.8), the 2nd step is because bi0,j0
is independent of X , the 3rd step is by Fact A.2, the 4th step uses Lemma A.15, the 5th step uses
Lemma A.14, the 6th and 7th step are rearrangement of terms.

A.10 GRADIENT FOR L(X)

Lemma A.17. If the following holds

• Let L(X) be defined as Definition A.9

For i1 ∈ [n], j1 ∈ [d], we have

dL(X)

dxi1,j1

=

n∑
i0=1

d∑
j0=1

c(X)i0,j0 ·
dc(X)i0,j0
dxi1,j1

Proof. The result directly follows by chain rule.

B HESSIAN CASE 1: i0 = i1

Here in this section, we provide Hessian analysis for the first case. In Sections B.1, B.2, B.3, B.4, B.5,
B.6 and B.8, we calculate the derivative for several important terms. In Section B.9, B.10, B.11, B.12
and B.13 we calculate derivative for C1, C2, C3, C4 and C5 respectively. Finally in Section B.14 we
calculate derivative of c(X)i0,j0

dxi1,j1
di2,j2

.

Now, we list some simplified notations which will be used in following sections.
Definition B.1. We have following definitions to simplify the expression.

• s(X)i,j := ⟨f(X)i, h(X)j⟩
• w(X)i,j := ⟨Wj,∗, X∗,i⟩

• z(X)i,j := ⟨f(X)i, X
⊤W∗,j⟩
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• z(X)i := WX · f(X)i

• w(X)i,∗ := WX∗,i

B.1 DERIVATIVE OF SCALAR FUNCTION w(X)i0,j1

Lemma B.2. We have

• Part 1 For i0 = i1 = i2 ∈ [n], j1, j2 ∈ [d]

dw(X)i0,j1
dxi2,j2

= wj1,j2

• Part 2 For i0 = i1 ̸= i2 ∈ [n], j1, j2 ∈ [d]

dw(X)i0,j1
dxi2,j2

= 0

Proof. Proof of Part 1

dw(X)i0,j1
dxi2,j2

= ⟨Wj1,∗,
dX∗,i0
dxi2,j2

⟩

= ⟨Wj1,∗, ej2⟩
= wj1,j2

where the first step and the 2nd step are by Fact A.2, the 3rd step is simple algebra.

Proof of Part 2
dw(X)i0,j1
dxi2,j2

= ⟨Wj1,∗,
dX∗,i0
dxi2,j2

⟩

= ⟨Wj1,∗,0d⟩
= 0

where the first step is by Fact A.2, the 2nd step is because i0 ̸= i2.

B.2 DERIVATIVE OF VECTOR FUNCTION X⊤W∗,j1

Lemma B.3. We have

• Part 1 For i0 = i1 = i2 ∈ [n], j1, j2 ∈ [d]

dX⊤W∗,j1
dxi2,j2

= ei0 · wj2,j1

• Part 2 For i0 = i1 ̸= i2 ∈ [n], j1, j2 ∈ [d]

dX⊤W∗,j1
dxi2,j2

= ei2 · wj2,j1

Proof. Proof of Part 1

dX⊤W∗,j1
dxi2,j2

=
dX⊤

dxi2,j2

·W∗,j1

= ei2e
⊤
j2 ·W∗,j1

= ei2 · wj2,j1

= ei0 · wj2,j1

where the first step and the 2nd step are by Fact A.2, the 3rd step is simple algebra, the 4th step holds
since i0 = i2.
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Proof of Part 2

dX⊤W∗,j1
dxi2,j2

=
dX⊤

dxi2,j2

·W∗,j1

= ei2e
⊤
j2 ·W∗,j1

= ei2 · wj2,j1

where the first step and the 2nd step are by Fact A.2, the 3rd step is simple algebra.

B.3 DERIVATIVE OF SCALAR FUNCTION f(X)i0,i0

Lemma B.4. If the following holds:

• Let f(X)i0 be defined as Definition A.6

We have

• Part 1 For i0 = i2 ∈ [n], j1, j2 ∈ [d]

df(X)i0,i0
dxi2,j2

= − f(X)i0,i0 · (f(X)i0,i0 · w(X)i0,j2 + ⟨f(X)i0 , X
⊤W∗,j2⟩)

+ f(X)i0,i0 · ⟨Wj2,∗ +W∗,j2 , X∗,i0⟩

• Part 2 For i0 ̸= i2 ∈ [n], j1, j2 ∈ [d]

df(X)i0,i0
dxi2,j2

= −f(X)i0,i0 · f(X)i0,i2 · w(X)i0,j2

Proof. Proof of Part 1

df(X)i0,i0
dxi2,j2

= (−(α(X)i0)
−1 · f(X)i0 · (u(X)i0,i0 · w(X)i0,j2 + ⟨u(X)i0 , X

⊤W∗,j2⟩)

+ f(X)i0 ◦ (ei0 · w(X)i0,j2 +X⊤W∗,j2))i0

= − (α(X)i0)
−1 · f(X)i0,i0 · (u(X)i0,i0 · w(X)i0,j2 + ⟨u(X)i0 , X

⊤W∗,j2⟩)
+ (f(X)i0 ◦ (ei0 · w(X)i0,j2))i0 + (f(X)i0 ◦ (X⊤W∗,j2))i0

= − (α(X)i0)
−1 · f(X)i0,i0 · (u(X)i0,i0 · w(X)i0,j2 + ⟨u(X)i0 , X

⊤W∗,j2⟩)
+ f(X)i0,i0 · w(X)i0,j2 + f(X)i0,i0 · ⟨W∗,j2 , X∗,i0⟩

= − f(X)i0,i0 · (f(X)i0,i0 · w(X)i0,j2 + ⟨f(X)i0 , X
⊤W∗,j2⟩)

+ f(X)i0,i0 · w(X)i0,j2 + f(X)i0,i0 · ⟨W∗,j2 , X∗,i0⟩
where the first step uses Lemma A.14 for i0 = i2, the following steps are taking the i0-th entry of
f(X)i0 , the last step is by the definition of f(X)i0 (see Definition A.6).

Proof of Part 2
df(X)i0,i0
dxi2,j2

= (−(α(X)i0)
−1 · f(X)i0 · u(X)i0,i2 · w(X)i0,j2

+ f(X)i0 ◦ (ei2 · w(X)i0,j2))i0

= − (α(X)i0)
−1 · f(X)i0,i0 · u(X)i0,i2 · w(X)i0,j2

+ (f(X)i0 ◦ (ei2 · w(X)i0,j2))i0

= − (α(X)i0)
−1 · f(X)i0,i0 · u(X)i0,i2 · w(X)i0,j2

= − f(X)i0,i0 · f(X)i0,i2 · w(X)i0,j2

where the first step uses Lemma A.14 for i0 ̸= i2, the 2nd step is taking the i0-th entry of f(X)i0 ,
the 3rd step is because i0 ̸= i2, the last step is by the definition of f(X)i0 (see Definition A.6).
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B.4 DERIVATIVE OF SCALAR FUNCTION h(X)j0,i0

Lemma B.5. If the following holds:

• Let h(X)j0 be defined as Definition A.7

We have

• Part 1 For i0 = i2 ∈ [n], j1, j2 ∈ [d]

dh(X)j0,i0
dxi2,j2

= vj2,j0

• Part 2 For i0 ̸= i2 ∈ [n], j1, j2 ∈ [d]

dh(X)j0,i0
dxi2,j2

= 0

Proof. Proof of Part 1
dh(X)j0,i0
dxi2,j2

= (ei2 · vj2,j0)i0
= vj2,j0

where the first step is by Lemma A.15, the 2nd step is because i0 = i2.

Proof of Part 2
dh(X)j0,i0
dxi2,j2

= (ei2 · vj2,j0)i0
= 0

where the first step is by Lemma A.15, the 2nd step is because i0 ̸= i2.

B.5 DERIVATIVE OF SCALAR FUNCTION z(X)i0,j1

Lemma B.6. If the following holds:

• Let f(X)i0 be defined as Definition A.6

• Let z(X)i0,j1 := ⟨f(X)i0 , X
⊤W∗,j1⟩

• Let w(X)i0,j1 = ⟨Wj1,∗, X∗,i0⟩

We have

• Part 1 For i0 = i1 = i2 ∈ [n], j1, j2 ∈ [d]

dz(X)i0,j1
dxi2,j2

= − z(X)i0,j1 · f(X)i0,i0 · w(X)i0,j2
− z(X)i0,j1 · z(X)i0,j2
+ f(X)i0,i0 · ⟨W∗,j1 , X∗,i0⟩ · w(X)i0,j2

+ ⟨f(X)i0 ◦X⊤W∗,j2 , X
⊤W∗,j1⟩

+ f(X)i0,i0 · wj2,j1

• Part 2 For i0 = i1 ̸= i2 ∈ [n], j1, j2 ∈ [d]

d⟨f(X)i0 , X
⊤W∗,j1⟩

dxi2,j2

= − z(X)i0,j1 · f(X)i0,i0 · w(X)i0,j2
+ f(X)i0,i0 · w(X)i0,j2 · ⟨W∗,j1 , X∗,i0⟩
+ f(X)i0,i0 · wj2,j1
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Proof. Proof of Part 1

d⟨f(X)i0 , X
⊤W∗,j1⟩

dxi2,j2

= ⟨df(X)i0
dxi2,j2

, X⊤W∗,j1⟩+ ⟨f(X)i0 ,
dX⊤W∗,j1
dxi2,j2

⟩

= ⟨df(X)i0
dxi2,j2

, X⊤W∗,j1⟩+ ⟨f(X)i0 , ei0 · wj2,j1⟩

= ⟨df(X)i0
dxi2,j2

, X⊤W∗,j1⟩+ f(X)i0,i0 · wj2,j1

= ⟨−(α(X)i0)
−1 · f(X)i0 · (u(X)i0,i0 · w(X)i0,j2 + ⟨u(X)i0 , X

⊤W∗,j2⟩)
+ f(X)i0 ◦ (ei0 · w(X)i0,j2 +X⊤W∗,j2), X

⊤W∗,j1⟩+ f(X)i0,i0 · wj2,j1

= ⟨−f(X)i0 · (f(X)i0,i0 · w(X)i0,j2 + ⟨f(X)i0 , X
⊤W∗,j2⟩)

+ f(X)i0 ◦ (ei0 · w(X)i0,j2 +X⊤W∗,j2), X
⊤W∗,j1⟩+ f(X)i0,i0 · wj2,j1

= − z(X)i0,j1 · f(X)i0,i0 · w(X)i0,j2
− z(X)i0,j1 · z(X)i0,j2
+ f(X)i0,i0 · ⟨W∗,j1 , X∗,i0⟩ · w(X)i0,j2

+ ⟨f(X)i0 ◦X⊤W∗,j2 , X
⊤W∗,j1⟩

+ f(X)i0,i0 · wj2,j1

where the 1st step is by Fact A.2, the 2nd step uses Lemma B.3, the 3rd step is taking the i0-th
entry of f(X)i0 , the 4th step uses Lemma A.14, the 5th step is by the definition of f(X)i0 (see
Definition A.6).

Proof of Part 2

d⟨f(X)i0 , X
⊤W∗,j1⟩

dxi2,j2

= ⟨df(X)i0
dxi2,j2

, X⊤W∗,j1⟩+ ⟨f(X)i0 ,
dX⊤W∗,j1
dxi2,j2

⟩

= ⟨df(X)i0
dxi2,j2

, X⊤W∗,j1⟩+ ⟨f(X)i0 , ei2 · wj2,j1⟩

= ⟨df(X)i0
dxi2,j2

, X⊤W∗,j1⟩+ f(X)i0,i2 · wj2,j1

= ⟨−(α(X)i0)
−1 · f(X)i0 · u(X)i0,i0 · w(X)i0,j2

+ f(X)i0 ◦ (ei0 · w(X)i0,j2), X
⊤W∗,j1⟩+ f(X)i0,i0 · wj2,j1

= ⟨−f(X)i0 · f(X)i0,i0 · w(X)i0,j2

+ f(X)i0 ◦ (ei0 · w(X)i0,j2), X
⊤W∗,j1⟩+ f(X)i0,i0 · wj2,j1

= − z(X)i0,j1 · f(X)i0,i0 · w(X)i0,j2
+ f(X)i0,i0 · w(X)i0,j2 · ⟨W∗,j1 , X∗,i0⟩
+ f(X)i0,i0 · wj2,j1

where the 1st step is by Fact A.2, the 2nd step uses Lemma B.3, the 3rd step is taking the i0-th
entry of f(X)i0 , the 4th step uses Lemma A.14, the last step is by the definition of f(X)i0 (see
Definition A.6).

B.6 DERIVATIVE OF SCALAR FUNCTION f(X)i0,i0 · h(X)j0,i0

Lemma B.7. If the following holds:

• Let f(X)i0 be defined as Definition A.6
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• Let h(X)j0 be defined as Definition A.7

We have

• Part 1 For i0 = i1 = i2 ∈ [n], j1, j2 ∈ [d]

df(X)i0,i0 · h(X)j0,i0
dxi2,j2

= (−f(X)i0,i0 · (f(X)i0,i0 · w(X)i0,j2 + ⟨f(X)i0 , X
⊤W∗,j2⟩)

+ f(X)i0,i0 · ⟨Wj2,∗ +W∗,j2 , X∗,i0⟩) · h(X)j0,i0 + f(X)i0,i0 · vj2,j0

• Part 2 For i0 = i1 ̸= i2 ∈ [n], j1, j2 ∈ [d]

df(X)i0,i0 · h(X)j0,i0
dxi2,j2

= −f(X)i0,i0 · f(X)i0,i2 · w(X)i0,j2 · h(X)j0,i0

Proof. Proof of Part 1
df(X)i0,i0 · h(X)j0,i0

dxi2,j2

=
df(X)i0,i0
dxi2,j2

· h(X)j0,i0 + f(X)i0,i0 ·
dh(X)j0,i0
dxi2,j2

=
df(X)i0,i0
dxi2,j2

· h(X)j0,i0 + f(X)i0,i0 · vj2,j0

= (−(α(X)i0)
−1 · f(X)i0,i0 · (u(X)i0,i0 · w(X)i0,j2 + ⟨u(X)i0 , X

⊤W∗,j2⟩)
+ f(X)i0,i0 · ⟨Wj2,∗ +W∗,j2 , X∗,i0⟩) · h(X)j0,i0 + f(X)i0,i0 · vj2,j0

= (−f(X)i0,i0 · (f(X)i0,i0 · w(X)i0,j2 + ⟨f(X)i0 , X
⊤W∗,j2⟩)

+ f(X)i0,i0 · ⟨Wj2,∗ +W∗,j2 , X∗,i0⟩) · h(X)j0,i0 + f(X)i0,i0 · vj2,j0
where the fist step is by Fact A.2, the 2nd step calls Lemma B.5, the 3rd step uses Lemma B.4, the
last step is by the definition of f(X)i0 (see Definition A.6).

Proof of Part 2
df(X)i0,i0 · h(X)j0,i0

dxi2,j2

=
df(X)i0,i0
dxi2,j2

· h(X)j0,i0 + f(X)i0,i0 ·
dh(X)j0,i0
dxi2,j2

= − (α(X)i0)
−1 · f(X)i0,i0 · u(X)i0,i2 · w(X)i0,j2 · h(X)j0,i0

= − f(X)i0,i0 · f(X)i0,i2 · w(X)i0,j2 · h(X)j0,i0

where the fist step is by Fact A.2, the 2nd step calls Lemma B.5, the 3rd step uses Lemma B.4, the
last step is by the definition of f(X)i0 (see Definition A.6).

B.7 DERIVATIVE OF SCALAR FUNCTION f(X)i0,i0 · w(X)i0,j1

Lemma B.8. If the following holds:

• Let f(X)i0 be defined as Definition A.6

We have

• Part 1 For i0 = i1 = i2 ∈ [n], j1, j2 ∈ [d]

df(X)i0,i0 · w(X)i0,j1
dxi2,j2

= (f(X)i0,i0 · (f(X)i0,i0 · w(X)i0,j2 + ⟨f(X)i0 , X
⊤W∗,j2⟩)

+ f(X)i0,i0 · ⟨Wj2,∗ +W∗,j2 , X∗,i0⟩) · w(X)i0,j1 + f(X)i0,i0 · wj1,j2
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• Part 2 For i0 = i1 ̸= i2 ∈ [n], j1, j2 ∈ [d]

df(X)i0,i0 · w(X)i0,j1
dxi2,j2

= −f(X)i0,i0 · f(X)i0,i2 · w(X)i0,j2 · w(X)i0,j1

Proof. Proof of Part 1
df(X)i0,i0 · w(X)i0,j1

dxi2,j2

=
df(X)i0,i0
dxi2,j2

· w(X)i0,j1 + f(X)i0,i0 ·
dw(X)i0,j1
dxi2,j2

=
df(X)i0,i0
dxi2,j2

· w(X)i0,j1 + f(X)i0,i0 · wj1,j2

= (−(α(X)i0)
−1 · f(X)i0,i0 · (u(X)i0,i0 · w(X)i0,j2 + ⟨u(X)i0 , X

⊤W∗,j2⟩)
+ f(X)i0,i0 · ⟨Wj2,∗ +W∗,j2 , X∗,i0⟩) · w(X)i0,j1 + f(X)i0,i0 · wj1,j2

= (−f(X)i0,i0 · (f(X)i0,i0 · w(X)i0,j2 + ⟨f(X)i0 , X
⊤W∗,j2⟩)

+ f(X)i0,i0 · ⟨Wj2,∗ +W∗,j2 , X∗,i0⟩) · w(X)i0,j1 + f(X)i0,i0 · wj1,j2

where step 1 is by Fact A.2, the 2nd step calls Lemma B.2, the 3rd step uses Lemma B.4, the last step
is by the definition of f(X)i0 (see Definition A.6).

Proof of Part 2
df(X)i0,i0 · w(X)i0,j1

dxi2,j2

=
df(X)i0,i0
dxi2,j2

· w(X)i0,j1 + f(X)i0,i0 ·
dw(X)i0,j1
dxi2,j2

=
df(X)i0,i0
dxi2,j2

· w(X)i0,j1

= − (α(X)i0)
−1 · f(X)i0,i0 · u(X)i0,i2 · w(X)i0,j2 · w(X)i0,j1

= − f(X)i0,i0 · f(X)i0,i2 · w(X)i0,j2 · w(X)i0,j1

where step 1 is by Fact A.2, the 2nd step calls Lemma B.2, the 3rd step uses Lemma B.4, the last step
is by the definition of f(X)i0 (see Definition A.6).

B.8 DERIVATIVE OF VECTOR FUNCTION f(X)i0 ◦ (X⊤W∗,j1)

Lemma B.9. If the following holds:

• Let f(X)i0 be defined as Definition A.6

We have

• Part 1 For i0 = i1 = i2 ∈ [n], j1, j2 ∈ [d]

df(X)i0 ◦ (X⊤W∗,j1)
dxi2,j2

= (−f(X)i0 · (f(X)i0,i0 · w(X)i0,j2 + ⟨f(X)i0 , X
⊤W∗,j2⟩)

+ f(X)i0 ◦ (ei0 · w(X)i0,j2 +X⊤W∗,j2)) ◦ (X⊤W∗,j1) + f(X)i0 ◦ (ei0 · wj2,j1)

• Part 2 For i0 = i1 ̸= i2 ∈ [n], j1, j2 ∈ [d]

df(X)i0 ◦ (X⊤W∗,j1)
dxi2,j2

= (−f(X)i0 · f(X)i0,i2 · w(X)i0,j2

+ f(X)i0 ◦ (ei2 · w(X)i0,j2)) ◦ (X⊤W∗,j1) + f(X)i0 ◦ (ei2 · wj2,j1)
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Table 2: C1 Part 1 Summary

ID Term Symmetric? Table Name
1 +2s(X)i0,j0 · f(X)2i0,i0 · w(X)i0,j1 · w(X)i0,j2 Yes N/A
2 −f(X)2i0,i0 · h(X)j0,i0 · w(X)i0,j2 · w(X)i0,j1 Yes N/A
3 −f(X)i0,i0 · ⟨f(X)i0 ◦ (X⊤W∗,j2), h(X)j0⟩ · w(X)i0,j1 No Table 5: 1
4 −f(X)2i0,i0 · vj2,j0 · w(X)i0,j1 No Table 6: 1
5 −s(X)i0,j0 · f(X)i0,i0 · w(X)i0,j2 · w(X)i0,j1 Yes N/A
6 −s(X)i0,j0 · f(X)i0,i0 · ⟨W∗,j2 , X∗,i0⟩ · w(X)i0,j1 No Table 3: 7
7 −s(X)i0,j0 · f(X)i0,i0 · wj1,j2 No Table 3: 9
8 2f(X)i0,i0 · s(X)i0,j0 · z(X)i0,j2 · w(X)i0,j1 No Table 3: 1

Proof. Proof of Part 1

df(X)i0 ◦ (X⊤W∗,j1)
dxi2,j2

=
df(X)i0
dxi2,j2

◦ (X⊤W∗,j1) + f(X)i0 ◦
dX⊤W∗,j1
dxi2,j2

=
df(X)i0
dxi2,j2

◦ (X⊤W∗,j1) + f(X)i0 ◦ (ei0 · wj2,j1)

= (−(α(X)i0)
−1 · f(X)i0 · (u(X)i0,i0 · w(X)i0,j2 + ⟨u(X)i0 , X

⊤W∗,j2⟩)
+ f(X)i0 ◦ (ei0 · w(X)i0,j2 +X⊤W∗,j2)) ◦ (X⊤W∗,j1) + f(X)i0 ◦ (ei0 · wj2,j1)

= (−f(X)i0 · (f(X)i0,i0 · w(X)i0,j2 + ⟨f(X)i0 , X
⊤W∗,j2⟩)

+ f(X)i0 ◦ (ei0 · w(X)i0,j2 +X⊤W∗,j2)) ◦ (X⊤W∗,j1) + f(X)i0 ◦ (ei0 · wj2,j1)

where the 1st step is by Fact A.2, the 2nd step uses Lemma B.3, the 3rd step uses Lemma A.14, the
last step is by the definition of f(X)i0 (see Definition A.6).

Proof of Part 2

df(X)i0 ◦ (X⊤W∗,j1)
dxi2,j2

=
df(X)i0
dxi2,j2

◦ (X⊤W∗,j1) + f(X)i0 ◦
dX⊤W∗,j1
dxi2,j2

=
df(X)i0
dxi2,j2

◦ (X⊤W∗,j1) + f(X)i0 ◦ (ei2 · wj2,j1)

= − ((α(X)i0)
−1 · f(X)i0 · u(X)i0,i2 · w(X)i0,j2

+ f(X)i0 ◦ (ei2 · w(X)i0,j2)) ◦ (X⊤W∗,j1) + f(X)i0 ◦ (ei2 · wj2,j1)

= (−f(X)i0 · f(X)i0,i2 · w(X)i0,j2

+ f(X)i0 ◦ (ei2 · w(X)i0,j2)) ◦ (X⊤W∗,j1) + f(X)i0 ◦ (ei2 · wj2,j1)

where the 1st step is by Fact A.2, the 2nd step uses Lemma B.3, the 3rd step uses Lemma A.14, the
last step is by the definition of f(X)i0 (see Definition A.6).

B.9 DERIVATIVE OF C1(X)

Lemma B.10. If the following holds:

• Let C1(X) ∈ R be defined as in Lemma A.16

• Let z(X)i0,j1 = ⟨f(X)i0 , X
⊤W∗,j1⟩

• Let w(X)i0,j1 = ⟨Wj1,∗, X∗,i0⟩

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

We have

• Part 1 For i0 = i1 = i2 ∈ [n], j1, j2 ∈ [d]

dC1(X)

dxi2,j2

= + 2s(X)i0,j0 · f(X)2i0,i0 · w(X)i0,j2 · w(X)i0,j1

+ 2f(X)i0,i0 · s(X)i0,j0 · z(X)i0,j2 · w(X)i0,j1

− f(X)2i0,i0 · h(X)j0,i0 · w(X)i0,j2 · w(X)i0,j1

− f(X)i0,i0 · ⟨f(X)i0 ◦ (X⊤W∗,j2), h(X)j0⟩ · w(X)i0,j1

− f(X)2i0,i0 · vj2,j0 · w(X)i0,j1

− s(X)i0,j0 · f(X)i0,i0 · w(X)i0,j2 · w(X)i0,j1
− s(X)i0,j0 · f(X)i0,i0 · ⟨W∗,j2 , X∗,i0⟩ · w(X)i0,j1
− s(X)i0,j0 · f(X)i0,i0 · wj1,j2

• Part 2 For i0 = i1 ̸= i2 ∈ [n], j1, j2 ∈ [d]

dC1(X)

dxi2,j2

= s(X)i0,j0 · f(X)i0,i2 · w(X)i0,j2 · f(X)i0,i0 · w(X)i0,j1
− f(X)i0,i2 · h(X)j0,i2 · w(X)i0,j2 · f(X)i0,i0 · w(X)i0,j1
− f(X)i0,i2 · vj2,j0 · f(X)i0,i0 · w(X)i0,j1
+ s(X)i0,j0 · f(X)i0,i0 · f(X)i0,i2 · w(X)i0,j2 · w(X)i0,j1

Proof. Proof of Part 1

dC1(X)

dxi2,j2

=
d− s(X)i0,j0 · f(X)i0,i0 · w(X)i0,j1

dxi2,j2

= − ds(X)i0,j0
dxi2,j2

· f(X)i0,i0 · w(X)i0,j1

− s(X)i0,j0 ·
df(X)i0,i0 · w(X)i0,j1

dxi2,j2

= − ds(X)i0,j0
dxi2,j2

· f(X)i0,i0 · w(X)i0,j1

− s(X)i0,j0 · ((−(α(X)i0)
−1 · f(X)i0,i0 · (u(X)i0,i0 · w(X)i0,j2 + ⟨u(X)i0 , X

⊤W∗,j2⟩)
+ f(X)i0,i0 · ⟨Wj2,∗ +W∗,j2 , X∗,i0⟩) · w(X)i0,j1 + f(X)i0,i0 · wj1,j2)

= − (−s(X)i0,j0 · f(X)i0,i0 · w(X)i0,j2 − s(X)i0,j0 · ⟨f(X)i0 , X
⊤W∗,j2⟩

+ f(X)i0,i0 · h(X)j0,i0 · w(X)i0,j2

+ ⟨f(X)i0 ◦ (X⊤W∗,j2), h(X)j0⟩+ f(X)i0,i2 · vj2,j0) · f(X)i0,i0 · w(X)i0,j1

− s(X)i0,j0 · ((−f(X)i0,i0 · (f(X)i0,i0 · w(X)i0,j2 + ⟨f(X)i0 , X
⊤W∗,j2⟩)

+ f(X)i0,i0 · ⟨Wj2,∗ +W∗,j2 , X∗,i0⟩) · w(X)i0,j1 + f(X)i0,i0 · wj1,j2)

= 2s(X)i0,j0 · f(X)2i0,i0 · w(X)i0,j2 · w(X)i0,j1

+ 2s(X)i0,j0 · Z(X)i0,j2 · f(X)i0,i0 · w(X)i0,j1

− f(X)2i0,i0 · h(X)j0,i0 · w(X)i0,j2 · w(X)i0,j1

− f(X)i0,i0 · ⟨f(X)i0 ◦ (X⊤W∗,j2), h(X)j0⟩ · w(X)i0,j1
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Table 3: C2 Part 1 Summary

ID Term Symmetric Terms Table Name
1 2s(X)i0,j0 · f(X)i0,i0 · w(X)i0,j2 · z(X)i0,j1 No Table 2: 9
2 s(X)i0,j0 · z(X)i0,j2 · z(X)i0,j1 Yes N/A
3 −f(X)i0,i0 · h(X)j0,i0 · w(X)i0,j2 · z(X)i0,j1 No Table 4: 3
4 −⟨f(X)i0 ◦ (X⊤W∗,j2), h(X)j0⟩ · z(X)i0,j1 No Table 5: 2
5 −f(X)i0,i0 · vj2,j0 · z(X)i0,j1 No Table 6: 2
6 +s(X)i0,j0 · z(X)i0,j1 · f(X)i0,i0 · z(X)i0,j2 Yes N/A
7 −s(X)i0,j0 · f(X)i0,i0 · ⟨W∗,j1 , X∗,i0⟩ · w(X)i0,j2 No Table 2: 6
8 −s(X)i0,j0 · ⟨f(X)i0 ◦ (X⊤W∗,j2), X

⊤W∗,j1⟩ Yes N/A
9 −s(X)i0,j0 · f(X)i0,i0 · wj2,j1 No Table 2: 7

− f(X)2i0,i0 · vj2,j0 · w(X)i0,j1

− s(X)i0,j0 · f(X)i0,i0 · ⟨Wj2,∗ +W∗,j2 , X∗,i0⟩ · w(X)i0,j1
− s(X)i0,j0 · f(X)i0,i0 · wj1,j2

where the first step is by definition of C1(X) (see Lemma A.16), the 2nd step is by Fact A.2, the 3rd
step is by Lemma B.8, the 4th step is because Lemma A.16, the 5th step is a rearrangement.

Proof of Part 2

dC1(X)

dxi2,j2

=
d− s(X)i0,j0 · f(X)i0,i0 · w(X)i0,j1

dxi2,j2

= − ds(X)i0,j0
dxi2,j2

· f(X)i0,i0 · w(X)i0,j1

− s(X)i0,j0 ·
df(X)i0,i0 · w(X)i0,j1

dxi2,j2

= − ds(X)i0,j0
dxi2,j2

· f(X)i0,i0 · w(X)i0,j1

+ s(X)i0,j0 · f(X)i0,i0 · f(X)i0,i2 · w(X)i0,j2 · w(X)i0,j1
= − (−s(X)i0,j0 · f(X)i0,i2 · w(X)i0,j2 + f(X)i0,i2 · h(X)j0,i2 · w(X)i0,j2

+ f(X)i0,i2 · vj2,j0) · f(X)i0,i0 · w(X)i0,j1
+ s(X)i0,j0 · f(X)i0,i0 · f(X)i0,i2 · w(X)i0,j2 · w(X)i0,j1

= s(X)i0,j0 · f(X)i0,i2 · w(X)i0,j2 · f(X)i0,i0 · w(X)i0,j1
− f(X)i0,i2 · h(X)j0,i2 · w(X)i0,j2 · f(X)i0,i0 · w(X)i0,j1
− f(X)i0,i2 · vj2,j0 · f(X)i0,i0 · w(X)i0,j1
+ s(X)i0,j0 · f(X)i0,i0 · f(X)i0,i2 · w(X)i0,j2 · w(X)i0,j1

where the first step is by definition of C1(X) (see Lemma A.16), the 2nd step is by Fact A.2, the 3rd
step is by Lemma B.8, the 4th step is because Lemma A.16, the 5th step is a rearrangement.

B.10 DERIVATIVE OF C2(X)

Lemma B.11. If the following holds:

• Let C2(X) be defined as in Lemma A.16

• We define z(X)i0,j1 := ⟨f(X)i0 , X
⊤W∗,j1⟩.

We have
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• Part 1 For i0 = i1 = i2 ∈ [n], j1, j2 ∈ [d]

dC2(X)

dxi2,j2

= + 2s(X)i0,j0 · f(X)i0,i0 · w(X)i0,j2 · z(X)i0,j1
+ s(X)i0,j0 · z(X)i0,j2 · z(X)i0,j1
− f(X)i0,i0 · h(X)j0,i0 · w(X)i0,j2 · z(X)i0,j1

− ⟨f(X)i0 ◦ (X⊤W∗,j2), h(X)j0⟩ · z(X)i0,j1
− f(X)i0,i0 · vj2,j0 · z(X)i0,j1
+ s(X)i0,j0 · z(X)i0,j1 · f(X)i0,i0 · z(X)i0,j2
− s(X)i0,j0 · f(X)i0,i0 · ⟨W∗,j1 , X∗,i0⟩ · w(X)i0,j2

− s(X)i0,j0 · ⟨f(X)i0 ◦ (X⊤W∗,j2), X
⊤W∗,j1⟩

− s(X)i0,j0 · f(X)i0,i0 · wj2,j1

• Part 2 For i0 = i1 ̸= i2 ∈ [n], j1, j2 ∈ [d]

dC2(X)

dxi2,j2

= + s(X)i0,j0 · f(X)i0,i2 · w(X)i0,j2 · z(X)i0,j1
− f(X)i0,i2 · h(X)j0,i2 · w(X)i0,j2 · z(X)i0,j1
− f(X)i0,i2 · vj2,j0 · z(X)i0,j1

+ s(X)i0,j0 · ⟨f(X)i0 , X
⊤W∗,j1⟩ · f(X)i0,i0 · w(X)i0,j2

− s(X)i0,j0 · f(X)i0,i0 · ⟨W∗,j1 , X∗,i0⟩ · w(X)i0,j2
− s(X)i0,j0 · f(X)i0,i0 · wj2,j1

Proof. Proof of Part 1

d− C2(X)

dxi2,j2

=
ds(X)i0,j0 · z(X)i0,j1

dxi2,j2

=
ds(X)i0,j0
dxi2,j2

· z(X)i0,j1 + s(X)i0,j0 ·
dz(X)i0,j1
dxi2,j2

=
ds(X)i0,j0
dxi2,j2

· z(X)i0,j1

+ s(X)i0,j0 · (⟨−(α(X)i0)
−1 · f(X)i0 · (u(X)i0,i0 · w(X)i0,j2 + ⟨u(X)i0 , X

⊤W∗,j2⟩)
+ f(X)i0 ◦ (ei0 · w(X)i0,j2 +X⊤W∗,j2), X

⊤W∗,j1⟩+ f(X)i0,i0 · wj2,j1)

= (−s(X)i0,j0 · f(X)i0,i0 · w(X)i0,j2 − s(X)i0,j0 · ⟨f(X)i0 , X
⊤W∗,j2⟩

+ f(X)i0,i0 · h(X)j0,i0 · w(X)i0,j2

+ ⟨f(X)i0 ◦ (X⊤W∗,j2), h(X)j0⟩+ f(X)i0,i2 · vj2,j0) · z(X)i0,j1

+ s(X)i0,j0 · (⟨−(α(X)i0)
−1 · f(X)i0 · (u(X)i0,i0 · w(X)i0,j2 + ⟨u(X)i0 , X

⊤W∗,j2⟩)
+ f(X)i0 ◦ (ei0 · w(X)i0,j2 +X⊤W∗,j2), X

⊤W∗,j1⟩+ f(X)i0,i0 · wj2,j1)

= − s(X)i0,j0 · f(X)i0,i0 · w(X)i0,j2 · z(X)i0,j1
− s(X)i0,j0 · z(X)i0,j2 · z(X)i0,j1
+ f(X)i0,i0 · h(X)j0,i0 · w(X)i0,j2 · z(X)i0,j1

+ ⟨f(X)i0 ◦ (X⊤W∗,j2), h(X)j0⟩ · z(X)i0,j1
+ f(X)i0,i2 · vj2,j0 · z(X)i0,j1

− s(X)i0,j0 · ⟨f(X)i0 , X
⊤W∗,j1⟩ · f(X)i0,i0 · w(X)i0,j2
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Table 4: C3 Part 1 Summary

ID Term Symmetric Terms Table Name
1 −f(X)2i0,i0 · h(X)j0,i0 · w(X)i0,j2 · w(X)i0,j1 Yes N/A
2 f(X)i0,i0 · w(X)i0,j2 · h(X)j0,i0 · w(X)i0,j1 Yes N/A
3 −f(X)i0,i0 · z(X)i0,j2 · h(X)j0,i0 · w(X)i0,j1 No Table 3: 3
4 f(X)i0,i0 · ⟨W∗,j2 , X∗,i0⟩ · h(X)j0,i0 · w(X)i0,j1 No Table 5: 3
5 f(X)i0,i0 · vj2,j0 · w(X)i0,j1 No Table 6: 3
6 f(X)i0,i0 · h(X)i0,i0 · wj1,j2 No Table 5: 5

− s(X)i0,j0 · ⟨f(X)i0 , X
⊤W∗,j1⟩ · f(X)i0,i0 · ⟨f(X)i0 , X

⊤W∗,j2⟩
+ s(X)i0,j0 · f(X)i0,i0 · ⟨W∗,j1 , X∗,i0⟩ · w(X)i0,j2

+ s(X)i0,j0 · ⟨f(X)i0 ◦ (X⊤W∗,j2), X
⊤W∗,j1⟩

+ s(X)i0,j0 · f(X)i0,i0 · wj2,j1

where the first step is by definition of C2(X) (see Lemma A.16), the 2nd step is by Fact A.2, the 3rd
step is by Lemma B.6, the 4th step is because Lemma A.16, the 5th step is a rearrangement.

Proof of Part 2

d− C2(X)

dxi2,j2

=
ds(X)i0,j0 · ⟨f(X)i0 , X

⊤W∗,j1⟩
dxi2,j2

=
ds(X)i0,j0
dxi2,j2

· z(X)i0,j1 + s(X)i0,j0 ·
d⟨f(X)i0 , X

⊤W∗,j1⟩
dxi2,j2

=
ds(X)i0,j0
dxi2,j2

· z(X)i0,j1

+ s(X)i0,j0 · (⟨−(α(X)i0)
−1 · f(X)i0 · u(X)i0,i0 · w(X)i0,j2

+ f(X)i0 ◦ (ei0 · w(X)i0,j2), X
⊤W∗,j1⟩+ f(X)i0,i0 · wj2,j1)

= (−s(X)i0,j0 · f(X)i0,i2 · w(X)i0,j2 + f(X)i0,i2 · h(X)j0,i2 · w(X)i0,j2
+ f(X)i0,i2 · vj2,j0) · z(X)i0,j1

+ s(X)i0,j0 · (⟨−(α(X)i0)
−1 · f(X)i0 · u(X)i0,i0 · w(X)i0,j2

+ f(X)i0 ◦ (ei0 · w(X)i0,j2), X
⊤W∗,j1⟩+ f(X)i0,i0 · wj2,j1)

= − s(X)i0,j0 · f(X)i0,i2 · w(X)i0,j2 · z(X)i0,j1
+ f(X)i0,i2 · h(X)j0,i2 · w(X)i0,j2 · z(X)i0,j1
+ f(X)i0,i2 · vj2,j0 · z(X)i0,j1

− s(X)i0,j0 · ⟨f(X)i0 , X
⊤W∗,j1⟩ · f(X)i0,i0 · w(X)i0,j2

+ s(X)i0,j0 · f(X)i0,i0 · ⟨W∗,j1 , X∗,i0⟩ · w(X)i0,j2
+ s(X)i0,j0 · f(X)i0,i0 · wj2,j1

where the first step is by definition of C2(X) (see Lemma A.16), the 2nd step is by Fact A.2, the 3rd
step is by Lemma B.6, the 4th step is because Lemma A.16, the 5th step is a rearrangement.

B.11 DERIVATIVE OF C3(X)

Lemma B.12. If the following holds:

• Let C3(X) be defined as in Lemma A.16

We have
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• Part 1 For i0 = i1 = i2 ∈ [n], j1, j2 ∈ [d]

dC3(X)

dxi2,j2

= − f(X)2i0,i0 · h(X)j0,i0 · w(X)i0,j2 · w(X)i0,j1

− f(X)i0,i0 · z(X)i0,j2 · h(X)j0,i0 · w(X)i0,j1
+ f(X)i0,i0 · w(X)i0,j2 · h(X)j0,i0 · w(X)i0,j1
+ f(X)i0,i0 · ⟨W∗,j2 , X∗,i0⟩ · h(X)j0,i0 · w(X)i0,j1
+ f(X)i0,i0 · vj2,j0 · w(X)i0,j1
+ f(X)i0,i0 · h(X)i0,i0 · wj1,j2

• Part 2 For i0 = i1 ̸= i2 ∈ [n], j1, j2 ∈ [d]

dC3(X)

dxi2,j2

= − f(X)i0,i0 · f(X)i0,i2 · w(X)i0,j2 · h(X)j0,i0 · w(X)i0,j1

Proof. Proof of Part 1
dC3(X)

dxi2,j2

=
df(X)i0,i0 · h(X)i0,i0 · w(X)i0,j1

dxi2,j2

=
df(X)i0,i0 · h(X)i0,i0

dxi2,j2

· w(X)i0,j1 + f(X)i0,i0 · h(X)i0,i0 ·
dw(X)i0,j1
dxi2,j2

=
df(X)i0,i0 · h(X)i0,i0

dxi2,j2

· w(X)i0,j1 + f(X)i0,i0 · h(X)i0,i0 · wj1,j2

= ((−f(X)i0,i0 · (f(X)i0,i0 · w(X)i0,j2 + ⟨f(X)i0 , X
⊤W∗,j2⟩)

+ f(X)i0,i0 · ⟨Wj2,∗ +W∗,j2 , X∗,i0⟩) · h(X)j0,i0 + f(X)i0,i0 · vj2,j0) · w(X)i0,j1
+ f(X)i0,i0 · h(X)i0,i0 · wj1,j2

= − f(X)2i0,i0 · h(X)j0,i0 · w(X)i0,j2 · w(X)i0,j1

− f(X)i0,i0 · Z(X)i0,j2 · h(X)j0,i0 · w(X)i0,j1
+ f(X)i0,i0 · ⟨Wj2,∗ +W∗,j2 , X∗,i0⟩ · h(X)j0,i0 · w(X)i0,j1
+ f(X)i0,i0 · vj2,j0 · w(X)i0,j1
+ f(X)i0,i0 · h(X)i0,i0 · wj1,j2

where the first step is by definition of C3(X) (see Lemma A.16), the 2nd step is by Fact A.2, the 3rd
step is by Lemma B.2, the 4th step is because Lemma B.7, the 5th step is a rearrangement.

Proof of Part 2
dC3(X)

dxi2,j2

=
df(X)i0,i0 · h(X)i0,i0 · w(X)i0,j1

dxi2,j2

=
df(X)i0,i0 · h(X)i0,i0

dxi2,j2

· w(X)i0,j1 + f(X)i0,i0 · h(X)i0,i0 ·
dw(X)i0,j1
dxi2,j2

=
df(X)i0,i0 · h(X)i0,i0

dxi2,j2

· w(X)i0,j1

= − f(X)i0,i0 · f(X)i0,i2 · w(X)i0,j2 · h(X)j0,i0 · w(X)i0,j1
where the first step is by definition of C3(X) (see Lemma A.16), the 2nd step is by Fact A.2, the 3rd
step is by Lemma B.2, the 4th step is because Lemma B.7, the 5th step is a rearrangement.

37



1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

Table 5: C4 Part 1 Summary

ID Term Symmetric? Table Name
1 −⟨f(X)i0 ◦ (X⊤W∗,j1), h(X)j0⟩ · f(X)i0,i0 · w(X)i0,j2 No Table 2: 3
2 −⟨f(X)i0 ◦ (X⊤W∗,j1), h(X)j0⟩ · Z(X)i0,j2 No Table 3: 4
3 f(X)i0,i0 · h(X)j0,i0 · ⟨W∗,j1 , X∗,i0⟩ · w(X)i0,j2 No Table 4: 4
4 ⟨f(X)i0 ◦ (X⊤W∗,j2) ◦ (X⊤W∗,j1), h(X)j0⟩ Yes N/A
5 f(X)i0,i0 · h(X)j0,i0 · wj2,j1 No Table 4: 6
6 f(X)i0,i0 · ⟨W∗,j1 , X∗,i0⟩ · vj2,j0 No Table 6:4

B.12 DERIVATIVE OF C4(X)

Lemma B.13. If the following holds:

• Let C4(X) be defined as in Lemma A.16

We have

• Part 1 For i0 = i1 = i2 ∈ [n], j1, j2 ∈ [d]

dC4(X)

dxi2,j2

= − ⟨f(X)i0 ◦ (X⊤W∗,j1), h(X)j0⟩ · f(X)i0,i0 · w(X)i0,j2

− ⟨f(X)i0 ◦ (X⊤W∗,j1), h(X)j0⟩ · Z(X)i0,j2
+ f(X)i0,i0 · h(X)j0,i0 · ⟨W∗,j1 , X∗,i0⟩ · w(X)i0,j2

+ ⟨f(X)i0 ◦ (X⊤W∗,j2) ◦ (X⊤W∗,j1), h(X)j0⟩
+ f(X)i0,i0 · h(X)j0,i0 · wj2,j1

+ f(X)i0,i0 · ⟨W∗,j1 , X∗,i0⟩ · vj2,j0

• Part 2 For i0 = i1 ̸= i2 ∈ [n], j1, j2 ∈ [d]

dC4(X)

dxi2,j2

= − ⟨f(X)i0 ◦ (X⊤W∗,j1), h(X)j0⟩ · f(X)i0,i2 · w(X)i0,j2
+ f(X)i0,i2 · h(X)j0,i2 · ⟨W∗,j1 , X∗,i2⟩ · w(X)i0,j2
+ f(X)i0,i2 · h(X)j0,i2 · wj2,j1

+ f(X)i0,i2 · ⟨W∗,j1 , X∗,i2⟩ · vj2,j0

Proof. Proof of Part 1

dC4(X)

dxi2,j2

=
d⟨f(X)i0 ◦ (X⊤W∗,j1), h(X)j0⟩

dxi2,j2

= ⟨df(X)i0 ◦ (X⊤W∗,j1)
dxi2,j2

, h(X)j0⟩+ ⟨f(X)i0 ◦ (X⊤W∗,j1),
dh(X)j0
dxi2,j2

⟩

= ⟨df(X)i0 ◦ (X⊤W∗,j1)
dxi2,j2

, h(X)j0⟩+ ⟨f(X)i0 ◦ (X⊤W∗,j1), ei2 · vj2,j0⟩

= ⟨(−f(X)i0 · (f(X)i0,i0 · w(X)i0,j2 + ⟨f(X)i0 , X
⊤W∗,j2⟩)

+ f(X)i0 ◦ (ei0 · w(X)i0,j2 +X⊤W∗,j2)) ◦ (X⊤W∗,j1) + f(X)i0 ◦ (ei0 · wj2,j1), h(X)j0⟩
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Table 6: C5 Part 1 Summary

Term Symmetric Terms Table Name
−f(X)2i0,i0 · w(X)i0,j2 · vj1,j0 No C1(X) : 4
−f(X)i0,i0 · z(X)i0,j2 · vj1,j0 No Table 3: 5
f(X)i0,i0 · w(X)i0,j2 · vj1,j0 No Table 4:5
f(X)i0,i0 · ⟨W∗,j2 , X∗,i0⟩ · vj1,j0 No Table 5: 6

+ ⟨f(X)i0 ◦ (X⊤W∗,j1), ei0 · vj2,j0⟩
= − ⟨f(X)i0 ◦ (X⊤W∗,j1), h(X)j0⟩ · f(X)i0,i0 · w(X)i0,j2

− ⟨f(X)i0 ◦ (X⊤W∗,j1), h(X)j0⟩ · ⟨f(X)i0 , X
⊤W∗,j2⟩

+ f(X)i0,i0 · h(X)j0,i0 · ⟨W∗,j1 , X∗,i0⟩ · w(X)i0,j2

+ ⟨f(X)i0 ◦ (X⊤W∗,j2) ◦ (X⊤W∗,j1), h(X)j0⟩
+ f(X)i0,i0 · h(X)j0,i0 · wj2,j1

+ f(X)i0,i0 · ⟨W∗,j1 , X∗,i0⟩ · vj2,j0
where the first step is by definition of C4(X) (see Lemma A.16), the 2nd step is by Fact A.2, the 3rd
step is by Lemma A.15, the 4th step is because Lemma B.9, the 5th step is a rearrangement.

Proof of Part 2
dC4(X)

dxi2,j2

=
d⟨f(X)i0 ◦ (X⊤W∗,j1), h(X)j0⟩

dxi2,j2

= ⟨df(X)i0 ◦ (X⊤W∗,j1)
dxi2,j2

, h(X)j0⟩+ ⟨f(X)i0 ◦ (X⊤W∗,j1),
dh(X)j0
dxi2,j2

⟩

= ⟨df(X)i0 ◦ (X⊤W∗,j1)
dxi2,j2

, h(X)j0⟩+ ⟨f(X)i0 ◦ (X⊤W∗,j1), ei2 · vj2,j0⟩

= ⟨−(f(X)i0 · f(X)i0,i2 · w(X)i0,j2

+ f(X)i0 ◦ (ei2 · w(X)i0,j2)) ◦ (X⊤W∗,j1) + f(X)i0 ◦ (ei2 · wj2,j1), h(X)j0⟩
+ ⟨f(X)i0 ◦ (X⊤W∗,j1), ei2 · vj2,j0⟩

= − ⟨f(X)i0 ◦ (X⊤W∗,j1), h(X)j0⟩ · f(X)i0,i2 · w(X)i0,j2
+ f(X)i0,i2 · h(X)j0,i2 · ⟨W∗,j1 , X∗,i2⟩ · w(X)i0,j2
+ f(X)i0,i2 · h(X)j0,i2 · wj2,j1

+ f(X)i0,i2 · ⟨W∗,j1 , X∗,i2⟩ · vj2,j0
where the first step is by definition of C4(X) (see Lemma A.16), the 2nd step is by Fact A.2, the 3rd
step is by Lemma A.15, the 4th step is because Lemma B.9, the 5th step is a rearrangement.

B.13 DERIVATIVE OF C5(X)

Lemma B.14. If the following holds:

• Let C5(X) be defined as in Lemma A.16

We have

• Part 1 For i0 = i1 = i2 ∈ [n], j1, j2 ∈ [d]

dC5(X)

dxi2,j2

= − f(X)2i0,i0 · w(X)i0,j2 · vj1,j0
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− f(X)i0,i0 · z(X)i0,j2 · vj1,j0
+ f(X)i0,i0 · w(X)i0,j2 · vj1,j0
+ f(X)i0,i0 · ⟨W∗,j2 , X∗,i0⟩ · vj1,j0

• Part 2 For i0 = i1 ̸= i2 ∈ [n], j1, j2 ∈ [d]

dC5(X)

dxi2,j2

= − f(X)i0,i0 · f(X)i0,i2 · w(X)i0,j2 · vj1,j0

Proof. Proof of Part 1

dC5(X)

dxi2,j2

=
df(X)i0,i0 · vj1,j0

dxi2,j2

=
df(X)i0,i0
dxi2,j2

· vj1,j0

= (−f(X)i0,i0 · (f(X)i0,i0 · w(X)i0,j2 + ⟨f(X)i0 , X
⊤W∗,j2⟩)

+ f(X)i0,i0 · ⟨Wj2,∗ +W∗,j2 , X∗,i0⟩) · vj1,j0
= − f(X)2i0,i0 · w(X)i0,j2 · vj1,j0
− f(X)i0,i0 · ⟨f(X)i0 , X

⊤W∗,j2⟩ · vj1,j0
+ f(X)i0,i0 · ⟨Wj2,∗ +W∗,j2 , X∗,i0⟩ · vj1,j0

where the first step is by definition of C5(X) (see Lemma A.16), the 2nd step is by Fact A.2, the 3rd
step is by Lemma B.4, the 4th step is a rearrangement.

Proof of Part 2
dC5(X)

dxi2,j2

=
df(X)i0,i0 · vj1,j0

dxi2,j2

=
df(X)i0,i0
dxi2,j2

· vj1,j0
= − f(X)i0,i0 · f(X)i0,i2 · w(X)i0,j2 · vj1,j0

where the first step is by definition of C5(X) (see Lemma A.16), the 2nd step is by Fact A.2, the 3rd
step is by Lemma B.4.

B.14 DERIVATIVE OF
c(X)i0,j0

dxi1,j1

Lemma B.15. If the following holds:

• Let c(X)i0,j0 be defined as in Definition A.8

We have

• Part 1 For i0 = i1 = i2 ∈ [n], j1, j2 ∈ [d]

dc(X)i0,j0
dxi1,j1xi2,j2

=

21∑
i=1

Di(X)

where we have following definitions

D1(X) := 2s(X)i0,j0 · f(X)2i0,i0 · w(X)i0,j2 · w(X)i0,j1

D2(X) := 2f(X)i0,i0 · s(X)i0,j0 · z(X)i0,j2 · w(X)i0,j1
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+ 2f(X)i0,i0 · s(X)i0,j0 · z(X)i0,j1 · w(X)i0,j2

D3(X) := − f(X)2i0,i0 · h(X)j0,i0 · w(X)i0,j2 · w(X)i0,j1

D4(X) := − f(X)i0,i0 · ⟨f(X)i0 ◦ (X⊤W∗,j2), h(X)j0⟩ · w(X)i0,j1

− f(X)i0,i0 · ⟨f(X)i0 ◦ (X⊤W∗,j1), h(X)j0⟩ · w(X)i0,j2

D5(X) := − f(X)2i0,i0 · vj2,j0 · w(X)i0,j1 − f(X)2i0,i0 · vj1,j0 · w(X)i0,j2

D6(X) := − s(X)i0,j0 · f(X)i0,i0 · w(X)i0,j2 · w(X)i0,j1
D7(X) := − s(X)i0,j0 · f(X)i0,i0 · ⟨W∗,j2 , X∗,i0⟩ · w(X)i0,j1

− s(X)i0,j0 · f(X)i0,i0 · ⟨W∗,j1 , X∗,i0⟩ · w(X)i0,j2
D8(X) := − s(X)i0,j0 · f(X)i0,i0 · wj1,j2 − s(X)i0,j0 · f(X)i0,i0 · wj2,j1

D9(X) := s(X)i0,j0 · z(X)i0,j2 · z(X)i0,j1
D10(X) := − f(X)i0,i0 · h(X)j0,i0 · w(X)i0,j2 · z(X)i0,j1

− f(X)i0,i0 · h(X)j0,i0 · w(X)i0,j1 · z(X)i0,j2

D11(X) := − ⟨f(X)i0 ◦ (X⊤W∗,j2), h(X)j0⟩ · z(X)i0,j1

− ⟨f(X)i0 ◦ (X⊤W∗,j1), h(X)j0⟩ · z(X)i0,j2
D12(X) := − f(X)i0,i0 · vj2,j0 · z(X)i0,j1 − f(X)i0,i0 · vj1,j0 · z(X)i0,j2
D13(X) := s(X)i0,j0 · z(X)i0,j1 · f(X)i0,i0 · z(X)i0,j2

D14(X) := − s(X)i0,j0 · ⟨f(X)i0 ◦ (X⊤W∗,j2), X
⊤W∗,j1⟩

D15(X) := − f(X)2i0,i0 · h(X)j0,i0 · w(X)i0,j2 · w(X)i0,j1

D16(X) := f(X)i0,i0 · w(X)i0,j2 · h(X)j0,i0 · w(X)i0,j1
D17(X) := f(X)i0,i0 · ⟨W∗,j2 , X∗,i0⟩ · h(X)j0,i0 · w(X)i0,j1

+ f(X)i0,i0 · ⟨W∗,j1 , X∗,i0⟩ · h(X)j0,i0 · w(X)i0,j2
D18(X) := f(X)i0,i0 · vj2,j0 · w(X)i0,j1 + f(X)i0,i0 · vj1,j0 · w(X)i0,j2
D19(X) := f(X)i0,i0 · h(X)i0,i0 · wj1,j2 + f(X)i0,i0 · h(X)i0,i0 · wj2,j1

D20(X) := ⟨f(X)i0 ◦ (X⊤W∗,j2) ◦ (X⊤W∗,j1), h(X)j0⟩
D21(X) := f(X)i0,i0 · ⟨W∗,j2 , X∗,i0⟩ · vj1,j0 + f(X)i0,i0 · ⟨W∗,j1 , X∗,i0⟩ · vj2,j0

• Part 2 For i0 = i1 ̸= i2 ∈ [n], j1, j2 ∈ [d]

dc(X)i0,j0
dxi1,j1xi2,j2

=

15∑
i=1

Ei(X)

where we have following definitions

E1(X) := 2s(X)i0,j0 · f(X)i0,i2 · w(X)i0,j2 · f(X)i0,i0 · w(X)i0,j1
E2(X) :=− 2f(X)i0,i2 · h(X)j0,i2 · w(X)i0,j2 · f(X)i0,i0 · w(X)i0,j1
E3(X) := − f(X)i0,i2 · vj2,j0 · f(X)i0,i0 · w(X)i0,j1
E4(X) := s(X)i0,j0 · f(X)i0,i2 · w(X)i0,j2 · z(X)i0,j1
E5(X) := − f(X)i0,i2 · h(X)j0,i2 · w(X)i0,j2 · z(X)i0,j1
E6(X) := − f(X)i0,i2 · vj2,j0 · z(X)i0,j1

E7(X) := s(X)i0,j0 · ⟨f(X)i0 , X
⊤W∗,j1⟩ · f(X)i0,i0 · w(X)i0,j2

E8(X) := − s(X)i0,j0 · f(X)i0,i0 · ⟨W∗,j1 , X∗,i0⟩ · w(X)i0,j2
E9(X) := − s(X)i0,j0 · f(X)i0,i0 · wj2,j1

E10(X) := − f(X)i0,i0 · f(X)i0,i2 · w(X)i0,j2 · h(X)j0,i0 · w(X)i0,j1

E11(X) := − ⟨f(X)i0 ◦ (X⊤W∗,j1), h(X)j0⟩ · f(X)i0,i2 · w(X)i0,j2
E12(X) := f(X)i0,i2 · h(X)j0,i2 · ⟨W∗,j1 , X∗,i2⟩ · w(X)i0,j2
E13(X) := f(X)i0,i2 · h(X)j0,i2 · wj2,j1

E14(X) := f(X)i0,i2 · ⟨W∗,j1 , X∗,i2⟩ · vj2,j0
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E15(X) := − f(X)i0,i0 · f(X)i0,i2 · w(X)i0,j2 · vj1,j0

Proof. The proof is a combination of derivatives of Ci(X) in this section.

Notice that the symmetricity for Part 1 is verified by tables in this section.

C HESSIAN CASE 2: i0 ̸= i1

In this section, we focus on the second case of Hessian. In Sections C.1, C.2, C.3, C.4 and C.5, we
calculated derivative of some important terms. In Sections C.6, C.7 and C.8 we calculate derivative
of C6, C7 and C8 respectively. And in Section C.9 we calculate the derivative of dc(X)i0,j1

dxi1,j1
.

C.1 DERIVATIVE OF SCALAR FUNCTION f(X)i0,i1

Lemma C.1. If the following holds:

• Let f(X)i0 be defined as Definition A.6

• For i0 ̸= i2 ∈ [n], j1, j2 ∈ [d]

We have

• Part 1. For i0 ̸= i2, i1 = i2 ∈ [n], j1, j2 ∈ [d]

df(X)i0,i1
dxi2,j2

= − f(X)i0,i1 · f(X)i0,i2 · w(X)i0,j2

+ f(X)i0,i1 · w(X)i0,j2

• Part 2. For i0 ̸= i2, i1 ̸= i2 ∈ [n], j1, j2 ∈ [d]

df(X)i0,i1
dxi2,j2

= − f(X)i0,i1 · f(X)i0,i2 · w(X)i0,j2

Proof. Proof of Part 1

df(X)i0,i1
dxi2,j2

= (−(α(X)i0)
−1 · f(X)i0 · u(X)i0,i2 · ⟨Wj2,∗, X∗,i0⟩

+ f(X)i0 ◦ (ei1 · ⟨Wj2,∗, X∗,i0⟩))i1
= − (α(X)i0)

−1 · f(X)i0,i1 · u(X)i0,i2 · ⟨Wj2,∗, X∗,i0⟩
+ f(X)i0,i1 · ⟨Wj2,∗, X∗,i0⟩

= − f(X)i0,i1 · f(X)i0,i2 · w(X)i0,j2
+ f(X)i0,i1 · w(X)i0,j2

where the first step follows from Part 1 of Lemma A.14, the second step follows from simple algebra,
the first step follows from Definition A.6.

Proof of Part 2

df(X)i0,i1
dxi2,j2

= (−(α(X)i0)
−1 · f(X)i0 · u(X)i0,i2 · ⟨Wj2,∗, X∗,i0⟩

+ f(X)i0 ◦ (ei2 · ⟨Wj2,∗, X∗,i0⟩))i1
= − (α(X)i0)

−1 · f(X)i0,i1 · u(X)i0,i2 · ⟨Wj2,∗, X∗,i0⟩
= − f(X)i0,i1 · f(X)i0,i2 · w(X)i0,j2

where the first step follows from Part 1 of Lemma A.14, the second step follows from simple algebra,
the first step follows from Definition A.6.
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C.2 DERIVATIVE OF SCALAR FUNCTION h(X)j0,i1

Lemma C.2. If the following holds:

• Let h(X)j0 be defined as Definition A.7

• For i0 ̸= i2 ∈ [n], j1, j2 ∈ [d]

We have

• Part 1. For i0 ̸= i2, i1 = i2 ∈ [n], j1, j2 ∈ [d]

dh(X)j0,i1
dxi2,j2

= vj2,j0

• Part 2. For i0 ̸= i2, i1 ̸= i2 ∈ [n], j1, j2 ∈ [d]

dh(X)j0,i1
dxi2,j2

= 0

Proof. Proof of Part 1.

dh(X)j0,i1
dxi2,j2

= (ei2 · vj2,j0)i1
= vj2,j0

where the first step follows from Lemma A.7, the second step follows from i1 = i2.

Proof of Part 1.
dh(X)j0,i1
dxi2,j2

= (ei2 · vj2,j0)i1
= 0

where the first step follows from Lemma A.7, the second step follows from i1 ̸= i2.

C.3 DERIVATIVE OF SCALAR FUNCTION ⟨f(X)i0 , h(X)j0⟩

Lemma C.3. If the following holds:

• Let f(X)i0 be defined as Definition A.6

• Let h(X)j0 be defined as Definition A.7

• For i0 ̸= i2 ∈ [n], j1, j2 ∈ [d]

We have

d⟨f(X)i0 , h(X)j0⟩
dxi2,j2

= ⟨−f(X)i0 · f(X)i0,i2 · ⟨Wj2,∗, X∗,i0⟩

+ f(X)i0 ◦ (ei2 · ⟨Wj2,∗, X∗,i0⟩), h(X)j0⟩+ f(X)i0,i2 · vj2,j0

Proof.

d⟨f(X)i0 , h(X)j0⟩
dxi2,j2

= ⟨df(X)i0
dxi2,j2

, h(X)j0⟩+ ⟨f(X)i0 ,
dh(X)j0
dxi2,j2

⟩

= ⟨−(α(X)i0)
−1 · f(X)i0 · u(X)i0,i2 · ⟨Wj2,∗, X∗,i0⟩

+ f(X)i0 ◦ (ei2 · ⟨Wj2,∗, X∗,i0⟩), h(X)j0⟩+ ⟨f(X)i0 ,
dh(X)j0
dxi2,j2

⟩

= ⟨−f(X)i0 · f(X)i0,i2 · ⟨Wj2,∗, X∗,i0⟩
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+ f(X)i0 ◦ (ei2 · ⟨Wj2,∗, X∗,i0⟩), h(X)j0⟩+ ⟨f(X)i0 ,
dh(X)j0
dxi2,j2

⟩

= ⟨−f(X)i0 · f(X)i0,i2 · ⟨Wj2,∗, X∗,i0⟩
+ f(X)i0 ◦ (ei2 · ⟨Wj2,∗, X∗,i0⟩), h(X)j0⟩+ ⟨f(X)i0 , ei2 · vj2,j0⟩

= ⟨−f(X)i0 · f(X)i0,i2 · ⟨Wj2,∗, X∗,i0⟩
+ f(X)i0 ◦ (ei2 · ⟨Wj2,∗, X∗,i0⟩), h(X)j0⟩+ f(X)i0,i2 · vj2,j0

where the first step follows from simple differential rule, the second step follows from Lemma A.14,
the third step follows from simple algebra and Definition A.6, the fourth step follows from
Lemma A.15, the last step follows from simple algebra.

C.4 DERIVATIVE OF SCALAR FUNCTION f(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩

Lemma C.4. If the following holds:

• Let f(X)i0 be defined as Definition A.6

• For i0 ̸= i2 ∈ [n], j1, j2 ∈ [d]

We have

• Part 1. For i0 ̸= i2, i1 = i2 ∈ [n], j1, j2 ∈ [d]

df(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩
dxi2,j2

= (−f(X)i0,i2 · f(X)i0,i1 + f(X)i0,i1) · ⟨Wj2,∗, X∗,i0⟩ · ⟨Wj1,∗, X∗,i0⟩

• Part 2. For i0 ̸= i2, i1 ̸= i2 ∈ [n], j1, j2 ∈ [d]

df(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩
dxi2,j2

= − f(X)i0,i2 · f(X)i0,i1 · ⟨Wj2,∗, X∗,i0⟩ · ⟨Wj1,∗, X∗,i0⟩

Proof. Proof of Part 1

df(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩
dxi2,j2

=
df(X)i0,i1
dxi2,j2

· ⟨Wj1,∗, X∗,i0⟩+
d⟨Wj1,∗, X∗,i0⟩

dxi2,j2

· f(X)i0,i1

= (−f(X)i0,i2f(X)i0,i1 + f(X)i0,i1) · ⟨Wj2,∗, X∗,i0⟩ · ⟨Wj1,∗, X∗,i0⟩

+
d⟨Wj1,∗, X∗,i0⟩

dxi2,j2

· f(X)i0,i1

= (−f(X)i0,i2f(X)i0,i1 + f(X)i0,i1) · ⟨Wj2,∗, X∗,i0⟩ · ⟨Wj1,∗, X∗,i0⟩+ 0d · f(X)i0,i1
= (−f(X)i0,i2f(X)i0,i1 + f(X)i0,i1) · ⟨Wj2,∗, X∗,i0⟩ · ⟨Wj1,∗, X∗,i0⟩

where the first step follows from simple differential rule, the second step follows from Lemma C.1,
the third step follows from i0 ̸= i2, the last step follows from simple algebra.

Proof of Part 2
df(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩

dxi2,j2

=
df(X)i0,i1
dxi2,j2

· ⟨Wj1,∗, X∗,i0⟩+
d⟨Wj1,∗, X∗,i0⟩

dxi2,j2

· f(X)i0,i1

= (−f(X)i0,i2f(X)i0,i1 + f(X)i0,i1) · ⟨Wj2,∗, X∗,i0⟩ · ⟨Wj1,∗, X∗,i0⟩

+
d⟨Wj1,∗, X∗,i0⟩

dxi2,j2

· f(X)i0,i1

44



2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

= (−f(X)i0,i2f(X)i0,i1 + f(X)i0,i1) · ⟨Wj2,∗, X∗,i0⟩ · ⟨Wj1,∗, X∗,i0⟩+ 0d · f(X)i0,i1
= − f(X)i0,i2 · f(X)i0,i1 · ⟨Wj2,∗, X∗,i0⟩ · ⟨Wj1,∗, X∗,i0⟩

where the first step follows from simple differential rule, the second step follows from Lemma C.1,
the third step follows from i0 ̸= i2, the last step follows from simple algebra.

C.5 DERIVATIVE OF SCALAR FUNCTION f(X)i0,i1 · h(X)j0,i1

Lemma C.5. If the following holds:

• Let f(X)i0 be defined as Definition A.6

• Let h(X)j0 be defined as Definition A.7

We have

• Part 1 For i0 ̸= i2, i1 = i2 ∈ [n], j1, j2 ∈ [d]

df(X)i0,i1 · h(X)j0,i1
dxi2,j2

= (−f(X)i0,i2 · f(X)i0,i1 + f(X)i0,i1) · ⟨Wj2,∗, X∗,i0⟩ · h(X)j0,i1
+ vj2,j0 · f(X)i0,i1

• Part 2 For i0 ̸= i2, i1 ̸= i2 ∈ [n], j1, j2 ∈ [d]

df(X)i0,i0 · h(X)j0,i0
dxi2,j2

= − f(X)i0,i2 · f(X)i0,i1 · ⟨Wj2,∗, X∗,i0⟩ · h(X)j0,i1

Proof. Proof of Part 1.

df(X)i0,i1 · h(X)j0,i1
dxi2,j2

=
df(X)i0,i1
dxi2,j2

· h(X)j0,i1 +
dh(X)j0,i1
dxi2,j2

· f(X)i0,i1

= (−f(X)i0,i2f(X)i0,i1 + f(X)i0,i1) · ⟨Wj2,∗, X∗,i0⟩ · h(X)j0,i1

+
dh(X)j0,i1
dxi2,j2

· f(X)i0,i1

= (−f(X)i0,i2 · f(X)i0,i1 + f(X)i0,i1) · ⟨Wj2,∗, X∗,i0⟩ · h(X)j0,i1
+ vj2,j0 · f(X)i0,i1

where the first step follows from simple differential rule, the second step follows from Lemma C.1,
the third step follows from Part 1 of Lemma C.2.

Proof of Part 2.
df(X)i0,i1 · h(X)j0,i1

dxi2,j2

=
df(X)i0,i1
dxi2,j2

· h(X)j0,i1 +
dh(X)j0,i1
dxi2,j2

· f(X)i0,i1

= − f(X)i0,i2 · f(X)i0,i1 · ⟨Wj2,∗, X∗,i0⟩ · h(X)j0,i1

+
dh(X)j0,i1
dxi2,j2

· f(X)i0,i1

= − f(X)i0,i2 · f(X)i0,i1 · ⟨Wj2,∗, X∗,i0⟩ · h(X)j0,i1

where the first step follows from simple differential rule, the second step follows from Lemma C.1,
the third step follows from Part 2 of Lemma C.2.

C.6 DERIVATIVE OF C6(X)

Lemma C.6. If the following holds:
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• Let C6(X) ∈ R be defined as in Lemma A.16

• For i0 ̸= i2 ∈ [n], j1, j2 ∈ [d]

We have

• Part 1 For i0 ̸= i2, i1 = i2 ∈ [n], j1, j2 ∈ [d]

dC6(X)

dxi2,j2

= − (⟨−f(X)i0 · f(X)i0,i2 · ⟨Wj2,∗, X∗,i0⟩
+ f(X)i0 ◦ (ei1 · ⟨Wj2,∗, X∗,i0⟩), h(X)j0⟩+ f(X)i0,i2 · vj2,j0) · f(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩
+ (−⟨f(X)i0 , h(X)j0⟩) · (−f(X)i0,i2f(X)i0,i1 + f(X)i0,i1) · ⟨Wj2,∗, X∗,i0⟩ · ⟨Wj1,∗, X∗,i0⟩

• Part 2 For i0 ̸= i2, i1 ̸= i2 ∈ [n], j1, j2 ∈ [d]

dC6(X)

dxi2,j2

= − (⟨−f(X)i0 · f(X)i0,i2 · ⟨Wj2,∗, X∗,i0⟩
+ f(X)i0 ◦ (ei2 · ⟨Wj2,∗, X∗,i0⟩), h(X)j0⟩+ f(X)i0,i2 · vj2,j0) · f(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩
+ ⟨f(X)i0 , h(X)j0⟩ · f(X)i0,i2 · f(X)i0,i1 · ⟨Wj2,∗, X∗,i0⟩ · ⟨Wj1,∗, X∗,i0⟩

Proof. Proof of Part 1

dC6(X)

dxi2,j2

=
d

dxi2,j2

(−⟨f(X)i0 , h(X)j0⟩ · f(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩)

=
d

dxi2,j2

(−⟨f(X)i0 , h(X)j0⟩) · f(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩

+ (−⟨f(X)i0 , h(X)j0⟩) ·
d

dxi2,j2

(f(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩)

=
d

dxi2,j2

(−⟨f(X)i0 , h(X)j0⟩) · f(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩

+ (−⟨f(X)i0 , h(X)j0⟩) · (−f(X)i0,i2f(X)i0,i1 + f(X)i0,i1) · ⟨Wj2,∗, X∗,i0⟩ · ⟨Wj1,∗, X∗,i0⟩
= − (⟨−f(X)i0 · f(X)i0,i2 · ⟨Wj2,∗, X∗,i0⟩

+ f(X)i0 ◦ (ei1 · ⟨Wj2,∗, X∗,i0⟩), h(X)j0⟩+ f(X)i0,i2 · vj2,j0) · f(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩
+ (−⟨f(X)i0 , h(X)j0⟩) · (−f(X)i0,i2f(X)i0,i1 + f(X)i0,i1) · ⟨Wj2,∗, X∗,i0⟩ · ⟨Wj1,∗, X∗,i0⟩

where the first step follows from Lemma A.16, the second step follows from simple differential rule,
the third step follows from Lemma C.4, last step follows from Lemma C.3.

Proof of Part 2
dC6(X)

dxi2,j2

=
d

dxi2,j2

(−⟨f(X)i0 , h(X)j0⟩ · f(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩)

=
d

dxi2,j2

(−⟨f(X)i0 , h(X)j0⟩) · f(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩

+ (−⟨f(X)i0 , h(X)j0⟩) ·
d

dxi2,j2

(f(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩)

=
d

dxi2,j2

(−⟨f(X)i0 , h(X)j0⟩) · f(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩
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+ ⟨f(X)i0 , h(X)j0⟩) · f(X)i0,i2 · f(X)i0,i1 · ⟨Wj2,∗, X∗,i0⟩ · ⟨Wj1,∗, X∗,i0⟩
= − (⟨−f(X)i0 · f(X)i0,i2 · ⟨Wj2,∗, X∗,i0⟩

+ f(X)i0 ◦ (ei2 · ⟨Wj2,∗, X∗,i0⟩), h(X)j0⟩+ f(X)i0,i2 · vj2,j0) · f(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩
+ ⟨f(X)i0 , h(X)j0⟩ · f(X)i0,i2 · f(X)i0,i1 · ⟨Wj2,∗, X∗,i0⟩ · ⟨Wj1,∗, X∗,i0⟩

where the first step follows from Lemma A.16, the second step follows from simple differential rule,
the third step follows from Lemma C.4, last step follows from Lemma C.3.

C.7 DERIVATIVE OF C7(X)

Lemma C.7. If the following holds:

• Let C7(X) ∈ R be defined as in Lemma A.16

We have

• Part 1. For i0 ̸= i2, i1 = i2 ∈ [n], j1, j2 ∈ [d]

dC7(X)

dxi2,j2

= (−f(X)i0,i2 + 1) · f(X)i0,i1 · ⟨Wj2,∗, X∗,i0⟩ · h(X)j0,i1 · ⟨Wj1,∗, X∗,i0⟩
+ vj2,j0 · f(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩

• Part 2. For i0 ̸= i2, i1 ̸= i2 ∈ [n], j1, j2 ∈ [d]

dC7(X)

dxi2,j2

= − f(X)i0,i2 · f(X)i0,i1 · ⟨Wj2,∗, X∗,i0⟩ · h(X)j0,i1 · ⟨Wj1,∗, X∗,i0⟩

Proof. Proof of Part 1.

dC7(X)

dxi2,j2

=
d

dxi2,j2

(f(X)i0,i1 · h(X)j0,i1 · ⟨Wj1,∗, X∗,i0⟩)

=
d

dxi2,j2

(f(X)i0,i1 · h(X)j0,i1) · ⟨Wj1,∗, X∗,i0⟩+ f(X)i0,i1 · h(X)j0,i1 ·
d

dxi2,j2

(⟨Wj1,∗, X∗,i0⟩)

= (−f(X)i0,i2 + 1) · f(X)i0,i1 · ⟨Wj2,∗, X∗,i0⟩ · h(X)j0,i1 · ⟨Wj1,∗, X∗,i0⟩
+ vj2,j0 · f(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩

+ f(X)i0,i1 · h(X)j0,i1 ·
d

dxi2,j2

(⟨Wj1,∗, X∗,i0⟩)

= (−f(X)i0,i2 + 1) · f(X)i0,i1 · ⟨Wj2,∗, X∗,i0⟩ · h(X)j0,i1 · ⟨Wj1,∗, X∗,i0⟩
+ vj2,j0 · f(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩

where the first step follows from Lemma A.16, the second step follows from differential rule, the
third step follows from Part 1 of Lemma C.3, the fourth step follows from i0 ̸= i2.

Proof of Part 2.
dC7(X)

dxi2,j2

=
d

dxi2,j2

(f(X)i0,i1 · h(X)j0,i1 · ⟨Wj1,∗, X∗,i0⟩)

=
d

dxi2,j2

(f(X)i0,i1 · h(X)j0,i1) · ⟨Wj1,∗, X∗,i0⟩+ f(X)i0,i1 · h(X)j0,i1 ·
d

dxi2,j2

(⟨Wj1,∗, X∗,i0⟩)
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= − f(X)i0,i2f(X)i0,i1 · ⟨Wj2,∗, X∗,i0⟩ · h(X)j0,i1 · ⟨Wj1,∗, X∗,i0⟩

+ f(X)i0,i1 · h(X)j0,i1 ·
d

dxi2,j2

(⟨Wj1,∗, X∗,i0⟩)

= − f(X)i0,i2f(X)i0,i1 · ⟨Wj2,∗, X∗,i0⟩ · h(X)j0,i1 · ⟨Wj1,∗, X∗,i0⟩
+ f(X)i0,i1 · h(X)j0,i1 · 0d

= − f(X)i0,i2 · f(X)i0,i1 · ⟨Wj2,∗, X∗,i0⟩ · h(X)j0,i1 · ⟨Wj1,∗, X∗,i0⟩
where the first step follows from Lemma A.16, the second step follows from differential rule, the third
step follows from Part 2 of Lemma C.3, the fourth step follows from i0 ̸= i2, the last step follows
from simple algebra.

C.8 DERIVATIVE OF C8(X)

Lemma C.8. If the following holds:

• Let C8(X) ∈ R be defined as in Lemma A.16

• For i0 ̸= i2 ∈ [n], j1, j2 ∈ [d]

We have

• Part 1. For i0 ̸= i2, i1 = i2 ∈ [n], j1, j2 ∈ [d]

dC8(X)

dxi2,j2

= (−f(X)i0,i2f(X)i0,i1 + f(X)i0,i1) · ⟨Wj2,∗, X∗,i0⟩ · vj1,j0

• Part 2. For i0 ̸= i2, i1 ̸= i2 ∈ [n], j1, j2 ∈ [d]

dC8(X)

dxi2,j2

= − f(X)i0,i2 · f(X)i0,i1 · ⟨Wj2,∗, X∗,i0⟩ · vj1,j0

Proof. Proof of Part 1

dC8(X)

dxi2,j2

=
d

dxi2,j2

f(X)i0,i1 · vj1,j0
= (−f(X)i0,i2f(X)i0,i1 + f(X)i0,i1) · ⟨Wj2,∗, X∗,i0⟩ · vj1,j0

where the first step follows from Lemma A.16, the second step follows from differential rule and
Lemma C.1.

Proof of Part 2
dC8(X)

dxi2,j2

=
d

dxi2,j2

f(X)i0,i1 · vj1,j0
= − f(X)i0,i2 · f(X)i0,i1 · ⟨Wj2,∗, X∗,i0⟩ · vj1,j0

where the first step follows from Lemma A.16, the second step follows from differential rule and
Lemma C.1.

C.9 DERIVATIVE OF
dc(X)i0,j1

dxi1,j1

Lemma C.9. If the following holds:

• Let c(X)i0,j1 ∈ R be defined as in Lemma A.16 and Definition A.8

We have
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• Part 1 For i0 ̸= i2, i1 = i2 ∈ [n], j1, j2 ∈ [d]

dc(X)

dxi1,j1 ,dxi2,j2

=

6∑
i=1

Fi(X)

where we have following definitions

F1(X) = 2s(X)i0,j0 · f(X)2i0,i1 · w(X)i0,j2 · w(X)i0,j1

F2(X) = − f(X)2i0,i1 · h(X)j0,i1 · w(X)i0,j2 · w(X)i0,j1

F3(X) = − f(X)2i0,i1 · vj2,j0 · w(X)i0,j1 − f(X)2i0,i1 · vj1,j0 · w(X)i0,j2

F4(X) = − s(X)i0,j0 · f(X)i0,i1 · w(X)i0,j1 · w(X)i0,j2
F5(X) = f(X)i0,i1 · w(X)i0,j1 · w(X)i0,j2 · h(X)j0,i1
F6(X) = vj2,j0 · f(X)i0,i1 · w(X)i0,j1 + vj1,j0 · f(X)i0,i1 · w(X)i0,j2

• Part 2 For i0 ̸= i2, i1 ̸= i2 ∈ [n], j1, j2 ∈ [d]

dc(X)

dxi1,j1 ,dxi2,j2

=

3∑
i=1

Gi(X)

where we have following definitions

G1(X) = 2s(X)i0,j0 · f(X)i0,i1 · f(X)i0,i2 · w(X)i0,j2 · w(X)i0,j1
G2(X) = − f(X)i0,i1 · f(X)i0,i2 · w(X)i0,j2 · w(X)i0,j1 · (h(X)j0,i2 + h(X)j0,i1)

G3(X) = − f(X)i0,i1 · f(X)i0,i2 · (vj2,j0 · w(X)i0,j1 + vj1,j0 · w(X)i0,j2)

Proof. Proof of Part 1.

dc(X)i0,j0
dxi1,j1 ,dxi2,j2

=
dC6

dxi2,j2

+
dC7

dxi2,j2

+
dC8

dxi2,j2

= − (⟨−f(X)i0 · f(X)i0,i1 · ⟨Wj2,∗, X∗,i0⟩+ f(X)i0 ◦ (ei1 · ⟨Wj2,∗, X∗,i0⟩), h(X)j0⟩
+ f(X)i0,i1 · vj2,j0) · f(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩
+ (−⟨f(X)i0 , h(X)j0⟩) · (−f(X)2i0,i1 + f(X)i0,i1) · ⟨Wj2,∗, X∗,i0⟩ · ⟨Wj1,∗, X∗,i0⟩
(−f(X)i0,i2 + 1) · f(X)i0,i1 · ⟨Wj2,∗, X∗,i0⟩ · h(X)j0,i1 · ⟨Wj1,∗, X∗,i0⟩
+ vj2,j0 · f(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩
+ (−f(X)2i0,i1 + f(X)i0,i1) · ⟨Wj2,∗, X∗,i0⟩ · vj1,j0

= 2s(X)i0,j0 · f(X)2i0,i1 · w(X)i0,j2 · w(X)i0,j1

− 2f(X)2i0,i1 · h(X)j0,i1 · w(X)i0,j2 · w(X)i0,j1

− f(X)2i0,i1 · vj2,j0 · w(X)i0,j1 − f(X)2i0,i1 · vj1,j0 · w(X)i0,j2

− s(X)i0,j0 · f(X)i0,i1 · w(X)i0,j1 · w(X)i0,j2
+ f(X)i0,i1 · w(X)i0,j1 · w(X)i0,j2 · h(X)j0,i1
+ vj2,j0 · f(X)i0,i1 · w(X)i0,j1 + vj1,j0 · f(X)i0,i1 · w(X)i0,j2

where the first step follows from Lemma A.16, the second step follows from previous results in this
section, the last step is a rearrangement.

Proof of Part 2.
dc(X)i0,j0

dxi1,j1 ,dxi2,j2

=
dC6

dxi2,j2

+
dC7

dxi2,j2

+
dC8

dxi2,j2
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= − (⟨−f(X)i0 · f(X)i0,i2 · ⟨Wj2,∗, X∗,i0⟩
+ f(X)i0 ◦ (ei2 · ⟨Wj2,∗, X∗,i0⟩), h(X)j0⟩+ f(X)i0,i2 · vj2,j0) · f(X)i0,i1 · ⟨Wj1,∗, X∗,i0⟩
+ ⟨f(X)i0 , h(X)j0⟩ · f(X)i0,i2 · f(X)i0,i1 · ⟨Wj2,∗, X∗,i0⟩ · ⟨Wj1,∗, X∗,i0⟩
− f(X)i0,i2 · f(X)i0,i1 · ⟨Wj2,∗, X∗,i0⟩ · h(X)j0,i1 · ⟨Wj1,∗, X∗,i0⟩
− f(X)i0,i2 · f(X)i0,i1 · ⟨Wj2,∗, X∗,i0⟩ · vj1,j0

= 2s(X)i0,j0 · f(X)i0,i1 · f(X)i0,i2 · w(X)i0,j2 · w(X)i0,j1
− f(X)i0,i1 · f(X)i0,i2 · h(X)j0,i2 · w(X)i0,j2 · w(X)i0,j1
− f(X)i0,i1 · f(X)i0,i2 · w(X)i0,j1 · w(X)i0,j2 · h(X)j0,i1
− f(X)i0,i1 · f(X)i0,i2 · vj2,j0 · w(X)i0,j1 − f(X)i0,i1 · f(X)i0,i2 · vj1,j0 · w(X)i0,j2

where the first step follows from Lemma A.16, the second step follows from Lemma C.6, the third
step follows from Part 2 of Lemma C.7, the last step follows from Lemma C.8.

Notice that, by our construction, Part 1 should be symmetric w.r.t. j1, j2, Part 2 should be symmetric
w.r.t. i1, i2, which are all satisfied.

D HESSIAN REFORMULATION

In this section, we provide a reformulation of Hessian formula, which simplifies our calculation
and analysis. In Section D.1 we show the way we split the Hessian. In Section D.2 we show the
decomposition when i0 = i1 = i2.

D.1 HESSIAN SPLIT

Definition D.1 (Hessian of functions of matrix). We define the Hessian of c(X)i0,j0 by considering
its Hessian with respect to x = vec(X). This means that, ∇2c(X)i0,j0 is a nd× nd matrix with its
(i1 · j1, i2 · j2)-th entry being

dc(X)i0,j0
dxi1,j2xi2,j2

Definition D.2 (Hessian split). We split the hessian of c(X)i0,j0 into following cases

• Part 1: i0 = i1 = i2 : H(i1,i2)
1

• Part 2: i0 = i1, i0 ̸= i2 : H(i1,i2)
2

• Part 3: i0 ̸= i1, i0 = i2 : H(i1,i2)
3

• Part 4: i0 ̸= i1, i0 ̸= i2, i1 = i2: H(i1,i2)
4

• Part 5: i0 ̸= i1, i0 ̸= i2, i1 ̸= i2: H(i1,i2)
5

In above, H(i1,i2)
i is a d× d matrix with its j1, j2-th entry being

dc(X)i0,j0
dxi1,j2xi2,j2

Utilizing above definitions, we split the Hessian to a n × n partition with its i1, i2-th component
being Hi(i1, i2) based on above definition.
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Definition D.3. We define ∇2c(X)i0,j0 to be as following

H
(1,1)
4 H

(1,2)
5 H

(1,3)
5 · · · H

(1,i0−1)
5 H

(1,i0)
3 H

(1,i0+1)
5 · · · H

(1,n)
5

H
(2,1)
5 H

(2,2)
4 H

(2,3)
5 · · · H

(2,i0−1)
5 H

(2,i0)
3 H

(2,i0+1)
5 · · · H

(2,n)
5

H
(3,1)
5 H

(3,2)
5 H

(3,3)
4 · · · H

(3,i0−1)
5 H

(3,i0)
3 H

(3,i0+1)
5 · · · H

(3,n)
5

...
...

...
. . .

...
...

...
. . .

...
H

(i0,1)
2 H

(i0,2)
2 H

(i0,3)
2 · · · H

(i0,i0−1)
2 H

(i0,i0)
1 H

(i0,i0+1)
2 · · · H

(i0,n)
2

H
(i0+1,1)
5 H

(i0+1,2)
5 H

(i0+1,3)
5 · · · H

(i0+1,i0−1)
5 H

(i0+1,i0)
3 H

(i0+1,i0+1)
4 · · · H

(i0+1,n)
5

...
...

...
. . .

...
...

...
. . .

...
H

(n,1)
5 H

(n,2)
5 H

(n,3)
5 · · · H

(n,i0−1)
5 H

(n,i0)
3 H

(n,i0+1)
5 · · · H

(n,n)
4


D.2 DECOMPOSITION HESSIAN : PART 1

Lemma D.4 (Helpful lemma). Under following conditions

• Let z(X)i0 := W⊤X · f(X)i0

• Let w(X)i0,∗ := WX∗,i0

we have

• Part 1: w(X)i0,j1 = e⊤j1 · w(X)i0,∗

• Part 2: z(X)i0,j1 = e⊤j1 · z(X)i0

Proof. Proof of Part 1

w(X)i0,j1 = ⟨Wj1,∗, X∗,i0⟩
= W⊤

j1,∗X∗,i0

= e⊤j1 ·WX∗,i0

= e⊤j1 · w(X)i0,∗

where the first step is by the definition of w(X)i0,j1 the 2nd and 3rd step are from linear algebra facts,
the 4th step is by the definition of w(X)i0,∗.

Proof of Part 2

z(X)i0,j1 = ⟨f(X)i0, X
⊤W∗,j1⟩

= (X⊤W∗,j1)
⊤f(X)i0

=W⊤
∗,j1X · f(X)i0

= e⊤j1 ·W⊤X · f(X)i0

= e⊤j1 · z(X)i0

where the first step is by the definition of w(X)i0,j1 the 2nd, 3rd, and the 4th step are from linear
algebra facts, the 5th step is by the definition of w(X)i0,∗.

Lemma D.5. Under following conditions

• Let Di(X) be defined as Lemma B.15

• Let z(X)i0 := W⊤X · f(X)i0

• Let w(X)i0,∗ := WX∗,i0

we have

D1(X) = e⊤j1 · w(X)i0,∗ · 2s(X)i0,j0 · f(X)2i0,i0 · w(X)⊤i0,∗ · ej2
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D2(X) = e⊤j1 · (w(X)i0,∗ · 2f(X)i0,i0 · s(X)i0,j0 · z(X)⊤i0
+ z(X)i0 · 2f(X)i0,i0 · s(X)i0,j0 · w(X)⊤i0,∗) · ej2

D3(X) = − e⊤j1 · w(X)i0,∗ · f(X)2i0,i0 · h(X)j0,i0 · w(X)⊤i0,∗ · ej2
D4(X) = − e⊤j1 ·W⊤ · f(X)i0,i0 ·X · diag(f(X)i0) · h(X)j0 · w(X)⊤i0,∗ · ej2

− e⊤j1 · w(X)i0,∗ · f(X)i0,i0 · h(X)⊤j0 · diag(f(X)i0) ·X⊤ ·W · ej2
D5(X) = − e⊤j1 · (w(X)i0,∗ · f(X)2i0,i0 · V ⊤

∗,j0 + V∗,j0 · f(X)2i0,i0 · w(X)⊤i0,∗) · ej2
D6(X) = − e⊤j1 · w(X)i0,∗ · s(X)i0,j0 · f(X)i0,i0 · w(X)⊤i0,∗ · ej2
D7(X) = − e⊤j1 · w(X)i0,∗ · s(X)i0,j0 · f(X)i0,i0 ·X⊤

∗,i0 ·W · ej2
− e⊤j1 ·W⊤ ·X∗,i0 · s(X)i0,j0 · f(X)i0,i0 · w(X)⊤i0,∗ · ej2

D8(X) = e⊤j1 · s(X)i0,j0 · f(X)i0,i0 · (W⊤ −W ) · ej2
D9(X) = e⊤j1 · z(X)i0 · s(X)i0,j0 · z(X)⊤i0 · ej2
D10(X) = − e⊤j1 · (z(X)i0 · f(X)i0,i0 · h(X)j0,i0 · w(X)⊤i0,∗

+ w(X)i0,∗ · f(X)i0,i0 · h(X)j0,i0 · z(X)⊤i0) · ej2
D11(X) = − e⊤j1 · (z(X)i0 · h(X)⊤j0 · diag(f(X)i0) ·X⊤ ·W

+W⊤ ·X · diag(f(X)i0) · h(X)j0 · z(X)⊤i0) · ej2
D12(X) = − e⊤j1 · (z(X)i0 · f(X)i0,i0 · V ⊤

∗,j0 + V∗,j0 · f(X)i0,i0 · z(X)⊤i0) · ej2
D13(X) = e⊤j1 · z(X)i0 · s(X)i0,j0 · f(X)i0,i0 · z(X)⊤i0 · ej2
D14(X) = − e⊤j1 ·W⊤ ·X · s(X)i0,j0 · diag(f(X)i0) ·X⊤ ·W · ej2
D15(X) = − e⊤j1 · w(X)i0,∗ · f(X)2i0,i0 · h(X)j0,i0 · ·w(X)⊤i0,∗ · ej2
D16(X) = e⊤j1 · w(X)i0,∗ · f(X)i0,i0 · h(X)j0,i0 · ·w(X)⊤i0,∗ · ej2
D17(X) = e⊤j1 · (w(X)i0,∗ · f(X)i0,i0 ·X⊤

∗,i0 · h(X)j0,i0 ·W
+W⊤ ·X∗,i0 · f(X)i0,i0 · h(X)j0,i0 · w(X)i0) · ej2

D18(X) = e⊤j1 · (w(X)i0,∗f(X)i0,i0 · V ⊤
j2,∗ + V ⊤

j1,∗ · f(X)i0,i0 · w(X)⊤i0,∗) · ej2
D19(X) = e⊤j1 · f(X)i0,i0 · h(X)i0,i0 · (W +W⊤) · ej2
D20(X) := e⊤j1 ·W⊤ ·X · diag(f(X)i0) · diag(h(X)j0) ·X⊤ ·W · ej2
D21(X) := e⊤j1 · (W⊤ ·X∗,i0 · f(X)i0,i0 · V ⊤

∗,j0 + V∗,j0 · f(X)i0,i0 ·X⊤
∗,i0 ·W ) · ej2

Proof. This lemma is followed by Lemma D.4 and linear algebra facts.

Based on above auxiliary lemma, we have following definition.

Definition D.6. Under following conditions

• Let z(X)i0 := W⊤X · f(X)i0

• Let w(X)i0,∗ := WX∗,i0

We present the Case 1 component of Hessian c(X)i0,j0 to be

H
(i0,i0)
1 (X) := B(X)

where we have

B(X) :=

21∑
i=1

Bi(X)

B1(X) := w(X)i0,∗ · 2s(X)i0,j0 · f(X)2i0,i0 · w(X)⊤i0,∗
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B2(X) := w(X)i0,∗ · 2f(X)i0,i0 · s(X)i0,j0 · z(X)⊤i0
+ z(X)i0 · 2f(X)i0,i0 · s(X)i0,j0 · w(X)⊤i0,∗

B3(X) := − w(X)i0,∗ · f(X)2i0,i0 · h(X)j0,i0 · w(X)⊤i0,∗

B4(X) := −W⊤ · f(X)i0,i0 ·X · diag(f(X)i0) · h(X)j0 · w(X)⊤i0,∗

− w(X)i0,∗ · f(X)i0,i0 · h(X)⊤j0 · diag(f(X)i0) ·X⊤ ·W
B5(X) := − w(X)i0,∗ · f(X)2i0,i0 · V ⊤

∗,j0 − V∗,j0 · f(X)2i0,i0 · w(X)⊤i0,∗

B6(X) := − w(X)i0,∗ · s(X)i0,j0 · f(X)i0,i0 · w(X)⊤i0,∗

B7(X) := − w(X)i0,∗ · s(X)i0,j0 · f(X)i0,i0 ·X⊤
∗,i0 ·W

−W⊤ ·X∗,i0 · s(X)i0,j0 · f(X)i0,i0 · w(X)⊤i0,∗

B8(X) := s(X)i0,j0 · f(X)i0,i0 · (W⊤ −W )

B9(X) := z(X)i0 · s(X)i0,j0 · z(X)⊤i0
B10(X) := − z(X)i0 · f(X)i0,i0 · h(X)j0,i0 · w(X)⊤i0,∗

− w(X)i0,∗ · f(X)i0,i0 · h(X)j0,i0 · z(X)⊤i0
B11(X) := − z(X)i0 · (h(X)⊤j0 · diag(f(X)i0) ·X⊤ ·W

−W⊤ ·X · diag(f(X)i0) · h(X)j0 · z(X)⊤i0
B12(X) := − z(X)i0 · f(X)i0,i0 · V ⊤

∗,j0 + V∗,j0 · f(X)i0,i0 · z(X)⊤i0
B13(X) := z(X)i0 · s(X)i0,j0 · f(X)i0,i0 · z(X)⊤i0
B14(X) := −W⊤ ·X · s(X)i0,j0 · diag(f(X)i0) ·X⊤ ·W
B15(X) := − w(X)i0,∗ · f(X)2i0,i0 · h(X)j0,i0 · ·w(X)⊤i0,∗

B16(X) := w(X)i0,∗ · f(X)i0,i0 · h(X)j0,i0 · ·w(X)⊤i0,∗

B17(X) := w(X)i0,∗ · f(X)i0,i0 ·X⊤
∗,i0 · h(X)j0,i0 ·W

+W⊤ ·X∗,i0 · f(X)i0,i0 · h(X)j0,i0 · w(X)i0

B18(X) := w(X)i0,∗ · f(X)i0,i0 · V ⊤
j2,∗ + V ⊤

j1,∗ · f(X)i0,i0 · w(X)⊤i0,∗

B19(X) := f(X)i0,i0 · h(X)i0,i0 · (W +W⊤)

B20(X) :=W⊤ ·X · diag(f(X)i0) · diag(h(X)j0) ·X⊤

B21(X) :=W⊤ ·X∗,i0 · f(X)i0,i0 · V ⊤
∗,j0 + V∗,j0 · f(X)i0,i0 ·X⊤

∗,i0 ·W

D.3 DECOMPOSITION HESSIAN: PART 2 AND PART 3

Lemma D.7. Under following conditions

• Let Ei(X) be defined as Lemma B.15

• Let z(X)i0 := W⊤X · f(X)i0

• Let w(X)i0,∗ := WX∗,i0

we have

E1(X) = e⊤j1 · w(X)i0,∗ · 2s(X)i0,j0 · f(X)i0,i2 · f(X)i0,i0 · w(X)⊤i0,∗ · ej2
E2(X) =− e⊤j1 · w(X)i0,∗ · 2f(X)i0,i2 · h(X)j0,i2 · f(X)i0,i0 · w(X)⊤i0,∗ · ej2
E3(X) = − e⊤j1 · w(X)i0,∗ · f(X)i0,i2 · f(X)i0,i0 · V ⊤

∗,j0 · ej2
E4(X) = e⊤j1 · z(X)i0 · s(X)i0,j0 · f(X)i0,i2 · w(X)⊤i0,∗ · ej2
E5(X) = − e⊤j1 · z(X)i0 · f(X)i0,i2 · h(X)j0,i2 · w(X)⊤i0,∗ · ej2
E6(X) = − e⊤j1 · z(X)i0 · f(X)i0,i2 · V ⊤

∗,j0 · ej2
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E7(X) = e⊤j1 · z(X)i0 · s(X)i0,j0 · f(X)i0,i0 · w(X)⊤i0,∗ · ej2
E8(X) = − e⊤j1 · w(X)i0,∗ · s(X)i0,j0 · f(X)i0,i0 · w(X)⊤i0,∗ · ej2
E9(X) = − e⊤j1 ·W⊤ · s(X)i0,j0 · f(X)i0,i0 · ej2
E10(X) = − e⊤j1 · w(X)i0,∗ · f(X)i0,i0 · f(X)i0,i2 · h(X)j0,i0 · w(X)⊤i0,∗ · ej2
E11(X) = − e⊤j1 ·W⊤ ·X · diag(f(X)i0) · h(X)j0 · f(X)i0,i2 · w(X)⊤i0,∗ · ej2
E12(X) = e⊤j1 ·W⊤ ·X∗,i2 · f(X)i0,i2 · h(X)j0,i2 · w(X)⊤i0,∗ · ej2
E13(X) = e⊤j1 ·W⊤f(X)i0,i2 · h(X)j0,i2 · ej2
E14(X) = e⊤j1 ·W⊤ ·X∗,i2 · f(X)i0,i2 · V ⊤

∗,j0 · ej2
E15(X) = − e⊤j1 · V∗,j0 · f(X)i0,i0 · f(X)i0,i2 · w(X)⊤i0,∗ · ej2

Proof. This lemma is followed by Lemma D.4 and linear algebra facts.

Based on above auxiliary lemma, we have following definition.
Definition D.8. Under following conditions

• Let z(X)i0 := W⊤X · f(X)i0

• Let w(X)i0,∗ := WX∗,i0

We present the Case 2 component of Hessian c(X)i0,j0 to be

H
(i0,i2)
2 (X) := J(X)

where we have

J(X) :=

15∑
i=1

Ji(X)

J1(X) := w(X)i0,∗ · 2s(X)i0,j0 · f(X)i0,i2 · f(X)i0,i0 · w(X)⊤i0,∗

J2(X) :=− w(X)i0,∗ · 2f(X)i0,i2 · h(X)j0,i2 · f(X)i0,i0 · w(X)⊤i0,∗

J3(X) := − w(X)i0,∗ · f(X)i0,i2 · f(X)i0,i0 · V ⊤
∗,j0

J4(X) := z(X)i0 · s(X)i0,j0 · f(X)i0,i2 · w(X)⊤i0,∗

J5(X) := − z(X)i0 · f(X)i0,i2 · h(X)j0,i2 · w(X)⊤i0,∗

J6(X) := − z(X)i0 · f(X)i0,i2 · V ⊤
∗,j0

J7(X) := z(X)i0 · s(X)i0,j0 · f(X)i0,i0 · w(X)⊤i0,∗

J8(X) := − w(X)i0,∗ · s(X)i0,j0 · f(X)i0,i0 · w(X)⊤i0,∗

J9(X) := −W⊤ · s(X)i0,j0 · f(X)i0,i0

J10(X) := − w(X)i0,∗ · f(X)i0,i0 · f(X)i0,i2 · h(X)j0,i0 · w(X)⊤i0,∗

J11(X) := −W⊤ ·X · diag(f(X)i0) · h(X)j0 · f(X)i0,i2 · w(X)⊤i0,∗

J12(X) :=W⊤ ·X∗,i2 · f(X)i0,i2 · h(X)j0,i2 · w(X)⊤i0,∗

J13(X) :=W⊤f(X)i0,i2 · h(X)j0,i2

J14(X) :=W⊤ ·X∗,i2 · f(X)i0,i2 · V ⊤
∗,j0

J15(X) := − V∗,j0 · f(X)i0,i0 · f(X)i0,i2 · w(X)⊤i0,∗

Next, we define the third case by the symmetricity of Hessian.
Definition D.9. We present the Case 3 component of Hessian c(X)i0,j0 to be

H
(i,i0)
3 (X) := H

(i0,i)
2 (X)
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D.4 DECOMPOSITION HESSIAN : PART 4

Lemma D.10. Under following conditions

• Let Fi(X) be defined as Lemma C.9

• Let z(X)i0 := W⊤X · f(X)i0

• Let w(X)i0,∗ := WX∗,i0

we have

F1(X) = e⊤j1 · w(X)i0,∗ · 2s(X)i0,j0 · f(X)2i0,i1 · w(X)⊤i0,∗ · ej2
F2(X) = − e⊤j1 · w(X)i0,∗ · f(X)2i0,i1 · h(X)j0,i1 · w(X)⊤i0,∗ · ej2
F3(X) = − e⊤j1 · (w(X)i0,∗ · f(X)2i0,i1 · V ⊤

∗,j0 + V∗,j0 · f(X)2i0,i1 · w(X)⊤i0,∗) · ej2
F4(X) = − e⊤j1 · w(X)i0,∗ · s(X)i0,j0 · f(X)i0,i1 · w(X)⊤i0,∗ · ej2
F5(X) = e⊤j1 · w(X)i0,∗ · f(X)i0,i1 · h(X)j0,i1 · w(X)⊤i0,∗ · ej2
F6(X) = e⊤j1 · (w(X)i0,∗ · f(X)i0,i1 · V ⊤

∗,j0 + V∗,j0 · f(X)i0,i1 · w(X)⊤i0,∗) · ej2

Proof. This lemma is followed by Lemma D.4 and linear algebra facts.

Based on above auxiliary lemma, we have following definition.
Definition D.11. Under following conditions

• Let z(X)i0 := W⊤X · f(X)i0

• Let w(X)i0,∗ := WX∗,i0

We present the Case 4 component of Hessian c(X)i0,j0 to be

H
(i1,i1)
4 (X) := K(X)

where we have

K(X) :=

6∑
i=1

Ki(X)

K1(X) := w(X)i0,∗ · 2s(X)i0,j0 · f(X)2i0,i1 · w(X)⊤i0,∗

K2(X) := − w(X)i0,∗ · f(X)2i0,i1 · h(X)j0,i1 · w(X)⊤i0,∗

K3(X) := − w(X)i0,∗ · f(X)2i0,i1 · V ⊤
∗,j0 − V∗,j0 · f(X)2i0,i1 · w(X)⊤i0,∗

K4(X) := − w(X)i0,∗ · s(X)i0,j0 · f(X)i0,i1 · w(X)⊤i0,∗

K5(X) := w(X)i0,∗ · f(X)i0,i1 · h(X)j0,i1 · w(X)⊤i0,∗

K6(X) := w(X)i0,∗ · f(X)i0,i1 · V ⊤
∗,j0 + V∗,j0 · f(X)i0,i1 · w(X)⊤i0,∗

D.5 DECOMPOSITION HESSIAN : PART 5

Lemma D.12. Under following conditions

• Let Gi(X) be defined as Lemma C.9

• Let z(X)i0 := W⊤X · f(X)i0

• Let w(X)i0,∗ := WX∗,i0

we have

G1(X) = e⊤j1 · w(X)i0,∗ · 2s(X)i0,j0 · f(X)i0,i1 · f(X)i0,i2 · w(X)⊤i0,∗ · ej2
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G2(X) = − e⊤j1 · w(X)i0,∗ · f(X)i0,i1 · f(X)i0,i2 · (h(X)j0,i2 + h(X)j0,i1) · w(X)⊤i0,∗ · ej2
G3(X) = − e⊤j1 · f(X)i0,i1 · f(X)i0,i2 · (w(X)i0,∗ · V ⊤

∗,j0 + V∗,j0 · w(X)∗,j2) · ej2

Proof. This lemma is followed by Lemma D.4 and linear algebra facts.

Based on above auxiliary lemma, we have following definition.
Definition D.13. Under following conditions

• Let z(X)i0 := W⊤X · f(X)i0

• Let w(X)i0,∗ := WX∗,i0

We present the Case 5 component of Hessian c(X)i0,j0 to be

H
(i1,i2)
5 (X) := N(X)

where we have

N(X) :=

3∑
i=1

Ni(X)

N1(X) := w(X)i0,∗ · 2s(X)i0,j0 · f(X)i0,i1 · f(X)i0,i2 · w(X)⊤i0,∗

N2(X) := − w(X)i0,∗ · f(X)i0,i1 · f(X)i0,i2 · (h(X)j0,i2 + h(X)j0,i1) · w(X)⊤i0,∗

N3(X) := − f(X)i0,i1 · f(X)i0,i2 · (w(X)i0,∗ · V ⊤
∗,j0 + V∗,j0 · w(X)⊤∗,j2)

E HESSIAN OF LOSS FUNCTION

In this section, we provide the Hessian of our loss function.
Lemma E.1 (A single entry). Under following conditions

• Let L(X) be defined as Definition A.9

we have

dL(X)

dxi1,j1xi2,j2

=

n∑
i0=1

d∑
j0=1

dc(X)i0,j0
dxi1,j1

· dc(X)i0,j0
dxi1,j2

+ c(X)i0,j0 ·
dc(X)i0,j0
dxi1,j1xi2,j2

Proof. Proof of Part 1: i1 = i2

dL(X)

dxi1,j1xi2,j2

=
d

dxi2,j2

(

n∑
i0=1

d∑
j0=1

c(X)i0,j0 ·
dc(X)i0,j0
dxi1,j1

)

=

n∑
i0=1

d∑
j0=1

dc(X)i0,j0
dxi1,j1

· dc(X)i0,j0
dxi2,j2

+ c(X)i0,j0 ·
dc(X)i0,j0
dxi1,j1xi2,j2

where the first step is given by chain rule, and the 2nd step are given by product rule.

Lemma E.2 (Matrix Representation of Hessian). Under following conditions

• Let c(X)i0,j0 be defined as Definition A.8

• Let L(X) be defined as Definition A.9

we have

∇2L(X) =

n∑
i0=1

d∑
j0=1

∇c(X)i0,j0 · ∇c(X)⊤i0,j0 + c(X)i0,j0 · ∇2c(X)i0,j0

Proof. This is directly given by the single-entry representation in Lemma E.1.
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F BOUNDS FOR BASIC FUNCTIONS

In this section, we prove the upper bound for each function, with following assumption about the
domain of parameters. In Section F.1 we bound the basic terms. In Section F.2 we bound the gradient
of f(X)i0 . In Section F.3 we bound the gradient of c(X)i0,j0
Assumption F.1 (Bounded parameters, formal version of Assumption 4.1). Let W,V,X,B be defined
as in Section A.2,

• Let R be some fixed constant satisfies R > 1

• We have ∥W∥ ≤ R, ∥V ∥ ≤ R, ∥X∥ ≤ R where ∥ · ∥ is the matrix spectral norm

• We have bi,j ≤ R2

F.1 BOUNDS FOR BASIC FUNCTIONS

Lemma F.2. Under Assumption F.1, for all i0 ∈ [n], j0 ∈ [d], we have following bounds:

• Part 1

∥f(X)i0∥2 ≤ 1

• Part 2

∥h(X)i0∥2 ≤ R2

• Part 3

|c(X)i0,j0 | ≤ 2R2

• Part 4

∥x⊤W∗,j0∥2 ≤ R2

• Part 5

|w(X)i0,j0 | ≤ R2

• Part 6

|z(X)i0,j0 | ≤ R2

• Part 7

|s(X)i0,j0 | ≤ R2

Proof. Proof of Part 1

The proof is similar to Deng et al. (2023d), and hence is omitted here.

Proof of Part 2

∥h(X)j0∥2 = ∥X⊤V∗,j0∥2
≤ ∥V ∥ · ∥X∥
≤ R2

where the first step is by Definition A.7, the 2nd step is by basic algebra, the 3rd follows by
Assumption F.1.

Proof of Part 3

|c(X)i0,j0 | = |⟨f(X)i0 , h(X)j0⟩ − bi0,j0 |
≤ |⟨f(X)i0 , h(X)j0⟩|+ |bi0,j0 |
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≤ ∥f(X)i0∥2 · ∥h(X)j0∥2 + |bi0,j0 |
≤ 2R2

where the first step is by Definition A.8, the 2nd step uses triangle inequality, the 3rd step uses
Cauchy-Schwartz inequality, the 4th step is by Assumption F.1 and Part 2.

Proof of Part 4

∥x⊤W∗,j0∥2 ≤ ∥x∥ · ∥W∥
≤ R2

where the first step is by basic algebra, the second is by Assumption F.1.

Proof of Part 5

|w(X)i0,j0 | = |⟨Wj0,∗, X∗,i0 |
≤ ∥Wj0,∗∥2 · ∥X∗,i0∥2
≤ R2

where the first step is by the definition of w(X)i0,j0 , the 2nd step is Cauchy-Schwartz inequality, the
3rd step is by Assumption F.1.

Proof of Part 6

|z(X)i0,j0 | = |⟨f(X)i0 , X
⊤W∗,j0⟩|

≤ ∥f(X)i0∥2 · ∥X∥ · ∥W∗,j0∥
≤ R2

where the first step is by the definition of z(X)i0,j0 , the 2nd step is Cauchy-Schwartz inequality, the
3rd step is by Assumption F.1.

Proof of Part 7

|s(X)i0,j0 | = |⟨f(X)i0 , h(X)j0⟩|
≤ ∥f(X)i0∥2 · ∥h(X)j0∥2
≤ R2

where the first step is by the definition of s(X)i0,j0 , the 2nd step is Cauchy-Schwartz inequality, the
3rd step is by Part 1 and Part 2.

F.2 BOUNDS FOR GRADIENT OF f(X)i0

Lemma F.3. Under following conditions

• Let f(X)i0 be defined as Definition A.6

• Assumption F.1 holds

• We use∇f(X)i0 to define a matrix that its (j0, i1 · j1)-th entry is

df(X)i0,j0
dxi1,j1

i.e., its (i1 · j1)-th column is

df(X)i0
dxi1,j1

Then we have:

• Part 1: for all i0, i1 ∈ [n], j1 ∈ [d],

∥df(X)i0
dxi1,j1

∥2 ≤ 4R2
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• Part 2:

∥∇f(X)i0∥F ≤ 4
√
ndR2

Proof. Proof of Part 1

|df(X)i0
dxi1,j1

| = | − f(X)i0 · (f(X)i0,i0 · ⟨Wj1,∗, X∗,i0⟩+ ⟨f(X)i0 , X
⊤W∗,j1⟩)

+ f(X)i0 ◦ (ei0 · ⟨Wj1,∗, X∗,i0⟩+X⊤W∗,j1)|
≤ ∥f(X)i0∥22 · |⟨Wj1,∗, X∗,i0⟩|+ ∥f(X)i0∥22 · ∥X⊤W∗,j1∥

+ ∥f(X)i0∥2 · |⟨Wj1,∗, X∗,i0⟩|+ ∥f(X)i0∥2 · ∥X⊤W∗,j1)∥2
≤ 4R2

where the 1st step is by Lemma A.14, the 2nd step is by Fact A.1, the 3rd step is by Lemma F.2.

Proof of Part 2

∥∇f(X)i0∥F = (
n∑

i1=1

d∑
j1=1

∥df(X)i0
dxi1,j1

∥22)
1
2

≤ (

n∑
i1=1

d∑
j1=1

16R4)
1
2

= 4
√
ndR2

where the first step is by the definition of∇f(X)i0 , the 2nd step is by Part 1.

F.3 BOUNDS FOR GRADIENT OF c(X)i0,j0

Lemma F.4. Under following conditions

• Let c(X)i0,j0 be defined as Definition A.8

• Assumption F.1 holds

• We use∇c(X)i0,j0 to denote the Hessian of c(X)i0,j0 w.r.t. vec(X)

Then we have:

• Part 1: for all i0, i1 ∈ [n], j1 ∈ [d],

|c(X)i0,j0
dxi1,j1

|2 ≤ 5R4

• Part 2:

∥∇c(X)i0,j0∥2 ≤ 5
√
ndR4

Proof. Proof of part 1

|dc(X)i0,j0
dxi1,j1

| = |C1(X) + C2(X) + C3(X) + C4(X) + C5(X)|

≤ |C1(X)|+ |C2(X)|+ |C3(X)|+ |C4(X)|+ |C5(X)|
≤ ∥f(X)i0∥22 · ∥h(X)j0∥2 · |w(X)i0,j0 |+ ∥f(X)i0∥2 · ∥h(X)j0∥2 · |z(X)i0,j1 |

+ ∥f(X)i0∥2 · ∥h(X)j0∥2 · |w(X)i0,j0 |
+ ∥f(X)i0∥2 · ∥X∥ · ∥W∗,j1∥2 · ∥h(X)j0∥2 + ∥f(X)i0∥2 · ∥V ∥

≤ R4 +R4 +R4 +R4 +R2

≤ 5R4
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where the first step is by Lemma A.16, the 2nd step is by triangle inequality, the 3rd step is by
Fact A.1, the 4th step is by Lemma F.2, the 5th step holds by R > 1.

Proof of Part 2

∥∇c(X)i0,j0∥2 = (

n∑
i1=1

d∑
j1=1

∥dc(X)i0,j0
dxi1,j1

∥22)
1
2

≤ (

n∑
i1=1

d∑
j1=1

25R8)
1
2

= 5
√
ndR4

where the first step is by the definition of∇f(X)i0 , the 2nd step is by Part 1.

F.4 BOUNDS FOR HESSIAN OF c(X)i0,j0

Lemma F.5. Under following conditions

• Let c(X)i0,j0 be defined as Definition A.8

• Assumption F.1 (Bounded parameter) holds

• Let Bi(X) be defined as in Definition D.6

we have

• Part 1: For all i0 = i1 = i2 ∈ [n], we have

∥H1(X)(i0,i0)∥ ≤ 23R6 +R5 + 12R3

• Part 2: For all i0 = i1 ̸= i2 ∈ [n], we have

∥H2(X)(i0,i2)∥ ≤ 11R6 + 6R3

• Part 3: For all i0 = i2 ̸= i1 ∈ [n], we have

∥H3(X)(i1,i0)∥ ≤ 11R6 + 6R3

• Part 4: For all i0 ̸= i1 = i2 ∈ [n], we have

∥H4(X)(i1,i1)∥ ≤ 5R6 + 4R3

• Part 5: For all i0 ̸= i1, i0 ̸= i2, i1 ̸= i2 ∈ [n], we have

∥H5(X)(i1,i2)∥ ≤ 4R6 + 2R3

Proof. The proof is similar to Lemma F.4 and hence omit.

G LIPSCHITZ OF HESSIAN

In Section G.1 we provide tools and facts. In Sections G.2, G.3, G.4, G.7, G.6, G.7 and G.8 we
provide proof of lipschitz property of several important terms. And finally in Section G.9 we provide
the proof for Lipschitz property of gradient of L(X). In Section G.10 we provide proof for Lipschitz
property of Hessian of L(X).
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G.1 FACTS AND TOOLS

In this section, we introduce 2 tools for effectively calculate the Lipschitz for Hessian.

Fact G.1 (Mean value theorem for vector function, Fact 34 in Deng et al. (2023d)). Under following
conditions,

• Let x, y ∈ C ⊂ Rn where C is an open convex domain

• Let g(x) : C → Rn be a differentiable vector function on C

• Let ∥g′(a)∥F ≤ M for all a ∈ C, where g′(a) denotes a matrix which its (i, j)-th term is
dg(a)j
dai

then we have

∥g(y)− g(x)∥2 ≤M∥y − x∥2
Fact G.2 (Lipschitz for product of functions). Under following conditions

• Let {fi(x)}ni=1 be a sequence of function with same domain and range

• For each i ∈ [n] we have

– fi(x) is bounded: ∀x, ∥fi(x)∥ ≤Mi with Mi ≥ 1

– fi(x) is Lipschitz continuous: ∀x, y, ∥fi(x)− fi(y)∥ ≤ Li∥x− y∥

Then we have

∥
n∏

i=1

fi(x)−
n∏

i=1

fi(y)∥ ≤ 2n−1 ·max
i∈[n]
{Li} · (

n∏
i=1

Mi) · ∥x− y∥

Proof. We prove it by mathematical induction. The case that i = 1 obviously.

Now assume the case holds for i = k. Consider i = k + 1, we have.

∥
k+1∏
i=1

fi(x)−
k+1∏
i=1

fi(y)∥

≤ ∥
k+1∏
i=1

fi(x)− fk+1(x) ·
k∏

i=1

fi(y)∥+ ∥fk+1(x) ·
k∏

i=1

fi(y)−
k+1∏
i=1

fi(y)∥

≤ ∥fk+1(x)∥ · ∥
k∏

i=1

fi(x)−
k∏

i=1

fi(y)∥+ ∥fk+1(x)− fk+1(y)∥ · ∥
k∏

i=1

fi(y)−
k∏

i=1

fi(y)∥

≤Mk+1 · ∥
k∏

i=1

fi(x)−
k∏

i=1

fi(y)∥+ (

k∏
i=1

Mi) · ∥fk+1(x)− fk+1(y)∥

≤ 2k−1(

k+1∏
i=1

Mi) ·max
i∈[k]
{Li}∥x− y∥+ (

k∏
i=1

Mi) · ∥fk+1(x)− fk+1(y)∥

≤ 2k−1(

k+1∏
i=1

Mi) ·max
i∈[k]
{Li}∥x− y∥+ (

k∏
i=1

Mi) · Lk+1∥x− y∥

≤ 2k−1(

k+1∏
i=1

Mi) ·max
i∈[k]
{Li}∥x− y∥+ (

k+1∏
i=1

Mi) · Lk+1∥x− y∥

≤ 2k(

k+1∏
i=1

Mi) · max
i∈[k+1]

{Li}∥x− y∥
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where the first step is by triangle inequality, the 2nd step is by property of norm, the 3rd step is by
upper bound of functions, the 4th step is by induction hypothesis, the 5th step is by Lipschitz of
fk+1(x), the 6th step is by Mk+1 ≥ 1, the 7th step is a rearrangement.

Since the claim holds for i = k + 1, we prove the desired result.

G.2 LIPSCHITZ FOR f(X)i0

Definition G.3 (Notation of norm). For writing efficiency, we use ∥X − Y ∥ to denote ∥ vec(X)−
vec(Y )∥2, which is equivalent to ∥X − Y ∥F .

Lemma G.4. Under following conditions

• Assumption F.1 holds

• Let f(X)i0 be defined as Definition A.6

For X,Y ∈ Rd×n, we have

∥f(X)i0 − f(Y )i0∥2 ≤ 4
√
ndR2 · ∥X − Y ∥

Proof.

∥f(X)i0 − f(Y )i0∥2 ≤ ∥∇f(X)i0∥F · ∥X − Y ∥
≤ 4
√
ndR2 · ∥X − Y ∥

where the first step is given by Mean Value Theorem (Lemma G.1) and the 2nd step is due to upper
bound for gradient of f(X)i0 (Lemma F.3).

G.3 LIPSCHITZ FOR c(X)i0,j0

Lemma G.5. Under following conditions

• Assumption F.1 holds

• Let c(X)i0,j0 be defined as Definition A.8

For X,Y ∈ Rd×n, we have

|c(X)i0,j0 − c(Y )i0,j0 | ≤ 5
√
ndR4 · ∥X − Y ∥

Proof.

|c(X)i0,j0 − c(Y )i0,j0 | ≤ ∥∇c(X)i0,j0∥2 · ∥X − Y ∥
≤ 5
√
ndR4 · ∥X − Y ∥

where the first step is given by Mean Value Theorem (Lemma G.1) and the 2nd step is due to upper
bound for gradient of c(X)i0,j0 (Lemma F.4).

G.4 LIPSCHITZ FOR h(X)j0

Lemma G.6. Under following conditions

• Assumption F.1 holds

• Let h(X)j0 be defined as Definition A.7

For X,Y ∈ Rd×n, we have

∥h(X)j0 − h(Y )j0∥2 ≤ R∥X − Y ∥
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Proof.

∥h(X)j0 − h(Y )j0∥ = ∥V∗,j0∥2 · ∥X − Y ∥
≤ R · ∥X − Y ∥

where the first step is from the definition of h(X)j0 (see Definition A.7), the 2nd step is by Assump-
tion F.1.

G.5 LIPSCHITZ FOR w(X)i0,j0

Lemma G.7. Under following conditions

• Assumption F.1 holds

For X,Y ∈ Rd×n, we have

|w(X)i0,j0 − w(Y )i0,j0 | ≤ R∥X − Y ∥

Proof.

|w(X)i0,j0 − w(Y )i0,j0 | = |⟨Wj0,∗, X∗,i0 − Y∗,i0⟩|
≤ ∥Wj0,∗∥2 · ∥X − Y ∥
≤ R · ∥X − Y ∥

where the first step is from the definition of w(X)i0,j0 , the 2nd step is by Fact A.1, the 3rd step holds
since Assumption F.1.

G.6 LIPSCHITZ FOR z(X)i0,j0

Lemma G.8. Under following conditions

• Assumption F.1 holds

For X,Y ∈ Rd×n, we have

|z(X)i0,j0 − z(Y )i0,j0 | ≤ 5
√
ndR4 · ∥X − Y ∥

Proof.

|z(X)i0,j0 − z(Y )i0,j0 | = |⟨f(X)i0 , X
⊤W∗,j0⟩ − ⟨f(Y )i0 , Y

⊤W∗,j0⟩|
≤ |⟨f(X)i0 , X

⊤W∗,j0⟩ − ⟨f(X)i0 , Y
⊤W∗,j0⟩|

+ |⟨f(X)i0 , Y
⊤W∗,j0⟩ − ⟨f(Y )i0 , Y

⊤W∗,j0⟩|
≤ ∥f(X)i0∥2 · ∥X − Y ∥ · ∥W∗,j0∥2 + ∥f(X)i0 − f(Y )i0∥ · ∥Y ∥ · ∥W∗,j0∥
≤ R · ∥X − Y ∥+R2∥f(X)i0 − f(Y )i0∥
≤ 5
√
ndR4 · ∥X − Y ∥

where the first step is from the definition of w(X)i0,j0 , the 2nd step is by Fact A.1, the 3rd step holds
since Assumption F.1, the 4th step uses Lemma G.4.

G.7 LIPSCHITZ FOR FIRST ORDER DERIVATIVE OF c(X)i0,j0

Lemma G.9. Under following conditions

• Assumption F.1 holds

• Let c(X)i0,j0 be defined as Definition A.8

For X,Y ∈ Rd×n, we have

|c(X)i0,j0
dxi1,j1

− c(Y )i0,j0
dyi1,j1

| ≤ O(
√
ndR6) · ∥X − Y ∥
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Proof. Recall Ci(X) defined in Lemma A.16. The Lipschitz constant of c(X)i0,j0

dxi1,j1
is bounded the

summation of that of Ci(X). We only present the proof for Lipschitz for C1(X) here.

Notice that

C1(X) := −s(X)i0,j0 · f(X)i0,i0 · w(X)i0,j1

By upper bound and lipschitz constant for basic functions, we have

• |s(X)i0,j0 | ≤ R2

• |f(X)i0,i0 | ≤ 1

• |w(X)i0,j1 | ≤ R2

• maxf∈{s(X)i0,j0 ,f(X)i0,i0 ,w(X)i0,j1}{Lipschitz(f)} = 4
√
ndR2

• n = 3

By Fact G.2.

|C1(X)− C1(Y )| ≤ 2n−1 ·max
i∈[n]
{Li} · (

n∏
i=1

Mi) · ∥X − Y ∥

= 4 · 4
√
ndR2 ·R4 · ∥X − Y ∥

= 16
√
ndR6 · ∥X − Y ∥

G.8 LIPSCHITZ FOR SECOND ORDER DERIVATIVE OF c(X)i0,j0

Lemma G.10. Under following conditions

• Assumption F.1 holds

• Let c(X)i0,j0 be defined as Definition A.8

For X,Y ∈ Rd×n, we have

| c(X)i0,j0
dxi1,j1xi2,j2

− c(Y )i0,j0
dyi1,j1yi2,j2

| ≤ O(
√
ndR8) · ∥X − Y ∥

Proof. The proof is similar to Lemma G.9 and hence omit. Notice that the upper bound for
c(X)i0,j0

dxi1,j1
xi2,j2

is given by Lemma F.5.

G.9 LIPSCHITZ FOR GRADIENT OF L(X)

Lemma G.11. Under following conditions

• Assumption F.1 holds

• Let c(X)i0,j0 be defined as Definition A.8

For X,Y ∈ Rd×n, we have

∥∇2L(X)−∇2L(Y )∥ ≤ O(n1.5d1.5R10) · ∥X − Y ∥

Proof. We have calculated the gradient of L(X) in Lemma A.17:

dL(X)

dxi1,j1

=

n∑
i0=1

d∑
j0=1

c(X)i0,j0 ·
dc(X)i0,j0
dxi1,j1
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We can use the proof in Lemma G.9 to generate a Lipschitz bound for he gradient of L(X). Notice
that the Lipschitz of c(X)i0,j0 is given in Lemma G.5 and the Lipschitz of dc(X)i0,j0

dxi1,j1
is given in

Lemma G.9.

G.10 LIPSCHITZ FOR HESSIAN OF L(X)

Lemma G.12. Under following conditions

• Assumption F.1 holds

• Let c(X)i0,j0 be defined as Definition A.8

For X,Y ∈ Rd×n, we have

∥∇2L(X)−∇2L(Y )∥ ≤ O(n3.5d3.5R10) · ∥X − Y ∥

Proof. Recall that

dL(X)

dxi1,j1xi2,j2

=

n∑
i0=1

d∑
j0=1

dc(X)i0,j0
dxi1,j1

· dc(X)i0,j0
dxi2,j2

+ c(X)i0,j0 ·
dc(X)i0,j0
dxi1,j1xi2,j2

=

n∑
i0=1

d∑
j0=1

U1(X) + U2(X)

For the first item U1(X), we have

|U1(X)− U1(Y )| = |dc(X)i0,j0
dxi1,j1

· dc(X)i0,j0
dxi1,j2

− dc(Y )i0,j0
dxi1,j1

· dc(Y )i0,j0
dyi1,j2

|

≤ |dc(X)i0,j0
dxi1,j1

| · |dc(X)i0,j0
dxi1,j2

− dc(Y )i0,j0
dyi2,j2

|

+ |dc(X)i0,j0
dxi1,j1

· −dc(Y )i0,j0
dyi1,j1

| · |dc(Y )i0,j0
dyi2,j2

|

≤ 10R4 · |dc(X)i0,j0
dxi1,j1

· −dc(Y )i0,j0
dyi1,j1

|

≤ O(
√
ndR10) · ∥X − Y ∥

where the 2nd step is by triangle inequality, the 3rd step is by Lemma F.4, the 4th step uses Lemma G.9.

For the 2nd item U2(X), we have

|U2(X)− U2(Y )| = |c(X)i0,j0 ·
dc(X)i0,j0
dxi1,j1xi2,j2

− c(Y )i0,j0 ·
dc(Y )i0,j0
dyi1,j1yi2,j2

|

≤ |c(X)i0,j0 | · |
dc(X)i0,j0
dxi1,j1xi2,j2

− dc(Y )i0,j0
dyi1,j1yi2,j2

|

+ |c(X)i0,j0 − c(Y )i0,j0 | · |
dc(Y )i0,j0
dyi1,j1yi2,j2

|

≤ 2R2 · | dc(X)i0,j0
dxi1,j1xi2,j2

− dc(Y )i0,j0
dyi1,j1yi2,j2

|

+ |c(X)i0,j0 − c(Y )i0,j0 | · |
dc(Y )i0,j0
dyi1,j1yi2,j2

|

≤ 2R2 · | dc(X)i0,j0
dxi1,j1xi2,j2

− dc(Y )i0,j0
dyi1,j1yi2,j2

|+ 5
√
ndR4 · ∥X − Y ∥ · | dc(Y )i0,j0

dyi1,j1yi2,j2
|

≤ O(
√
ndR10) · ∥X − Y ∥+ 5

√
ndR4 · ∥X − Y ∥ · | dc(Y )i0,j0

dyi1,j1yi2,j2
|
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≤ O(
√
ndR10) · ∥X − Y ∥

where the 2nd step is by triangle inequality, the 3rd step uses Lemma F.2, the 4th step uses Lemma G.5,
the 5th step uses Lemma G.10, the last step uses Lemma F.5.

Combining the above 2 items, we have

| dL(X)

dxi1,j1xi2,j2

− dL(Y )

dyi1,j1yi2,j2
| ≤ O(n1.5d1.5R10) · ∥X − Y ∥

Then, we have

∥∇2L(X)−∇2L(Y )∥ ≤ ∥∇2L(X)−∇2L(Y )∥F
≤ n2d2 ·O(n1.5d1.5R10∥X − Y ∥
= O(n3.5d3.5R10) · ∥X − Y ∥

where the 1st step is by matrix calculus, the 2nd is by the lipschitz for each entry of∇2L(X).

H STRONGLY CONVEXITY

In this section, we provide proof for PSD bounds for the Hessian of Loss function.

H.1 PSD BOUNDS FOR HESSIAN OF c(X)i0,j0

Lemma H.1 (PSD bounds for ∇2c(X)i0,j0 ). Under following conditions,

• Let ci0,j0 be defined as in Definition A.8

• Let Assumption F.1 be satisfied

For all i0 ∈ [n], j0 ∈ [d], we have

−36R6 · Ind ⪯ ∇2c(X)i0,j0 ⪯ 36R6 · Ind

Proof. We prove this statement by the definition of PSD. Let p ∈ Rn×d be a vector. Let i ∈ [n], we
use pi ∈ Rd to denote the vector formed by the (i− 1) · n+ 1-th term to the i · n-th term of vector p.

Then, we have

|p⊤∇2c(X)i0,j0p| = |p⊤i0H1(X)i0,i0pi0 +
∑

i∈[n]\{i0}
p⊤i0H2(X)(i0,i)pi

+
∑

i∈[n]\{i0}
p⊤i H3(X)(i,i0)pi0 +

∑
i∈[n]\{i0}

p⊤i H4(X)(i,i)pi

+
∑

i1∈[n]\{i0}

∑
i2∈[n]\{i0}

p⊤i1H5(X)(i1,i2)pi2 |

≤ max
i∈[5]
∥Hi(X)∥ ·

∑
i1∈[n]

∑
i2∈[n]

p⊤i1pi2

≤ max
i∈[5]
∥Hi(X)∥ · p⊤p

≤ 36R6 · p⊤p

where the 1st step is by the formulation of∇2c(X)i0,j0 (see Definition D.3), the 2nd and 3rd steps
are from simple algebra, the 4th step uses Lemma F.5.

H.2 PSD BOUNDS FOR HESSIAN OF LOSS

Lemma H.2 (PSD bound for ∇2L(X)). Under following conditions,
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• Let L(X) be defined as in Definition A.9

• Let Assumption F.1 be satisfied

we have

∇2L(X) ⪰ −O(ndR8) · Ind

Proof. Recall in Lemma E.2, we have

∇2L(X) =

n∑
i0=1

d∑
j0=1

∇c(X)i0,j0 · ∇c(X)⊤i0,j0 + c(X)i0,j0 · ∇2c(X)i0,j0 (2)

Notice that the first term is PSD, so we omit it.

By Lemma F.2, we have

|c(X)i0,j0 | ≤ 2R2

Therefore, we have

∇2c(X)i0,j0 ⪰ − 72R8 · Ind
i.e.,∇2L(X) ⪰ − 72ndR8 · Ind

where the first line is by Lemma H.1 and the 2nd line is given by Eq. (2).

I CONVERGENCE ANALYSIS

In this section, we give the convergence analysis of the gradient-based (see Section I.1 and Hessian-
based method (see Section I.2) to conduct inverse attack. We utilize the Lipschitz and strongly-
convexity properties proved in previous sections.

I.1 GRADIENT METHOD

We first state a canonical result for the convergence gradient-descent method under Lipschitz smooth-
ness and strongly-convexity.
Theorem I.1 (Gradient descent). Let the following conditions hold

• Let f(x) be a convex and twice-differentiable function on Rn

• Let ∇f(x) have Lipschitz constant L:

∥∇f(x)−∇f(y)∥2 ≤ L∥x− y∥2 ∀x, y ∈ Rn

• Let f(x) be strongly convex with factor m:

∇2f(x) ⪰ mIn

• f(x) reaches its minimum (denoted as f∗) at some point x∗

Then, the gradient-descent algorithm with fixed step size t < 2
m+L satisfies

∥xk − x∗∥2 < (1− m

L
)k/2 · ∥x0 − x∗∥22

where xk is the update in k-th iteration.

In particular, it takes O( L
m · log(|x0 − x∗|2/ϵ)) to find a ϵ-optimal solution.

Now, we use the above theorem to show the convergence of our regression problem.

67



3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671

Under review as a conference paper at ICLR 2025

Theorem I.2 (Formal version of Theorem 4.3 ). We assume our model satisfies the following
conditions

• Bounded parameters: there exists R > 1 such that

– ∥W∥F ≤ R, ∥V ∥F ≤ R
– ∥X∥F ≤ R
– ∀i ∈ [n], j ∈ [d], |bi,j | ≤ R where bi,j denotes the i, j-th entry of B

• Regularization: we consider the following problem:

min
X∈Rn×d

∥D(X)−1 exp(X⊤WX)X⊤V −B∥2F
+ γ · ∥ vec(X)∥22

Then, for any accuracy parameter ϵ ∈ (0, 0.1), a gradient-descent algorithm can be employed to
recover the initial data. The algorithm uses

T = O(poly(n, d,R) · log(|X0 −X∗|F /ϵ))
iterations, it outputs a matrix X̃ ∈ Rd×n satisfying

∥X̃ −X∗∥F ≤ ϵ

The execution time for each iteration is poly(n, d).

Proof. Choosing γ ≥ O(ndR8), by Lemma H.2, we have our regression problem being strongly
convex with factor O(ndR8). Notice that, we proved in Lemma G.11 that the gradient of our loss
function is O(n1.5d1.5R10)-Lipschitz continuous. Applying Theorem I.1 with L = O(n1.5d1.5R10)
and m = O(ndR8), we have the result in this theorem.

The execution time for each iteration is the matrix-multiplication time.

I.2 HESSIAN METHOD

Theorem I.3 (Formal version of Theorem 4.4, Main Result). We assume our model satisfies the
following conditions

• Bounded parameters: there exists R > 1 such that

– ∥W∥F ≤ R, ∥V ∥F ≤ R
– ∥X∥F ≤ R
– ∀i ∈ [n], j ∈ [d], |bi,j | ≤ R where bi,j denotes the i, j-th entry of B

• Regularization: we consider the following problem:

min
X∈Rn×d

∥D(X)−1 exp(X⊤WX)X⊤V −B∥2F
+ γ · ∥ vec(X)∥22

• Good initial point: We choose an initial point X0 such that

M · ∥X0 −X∗∥F ≤ O(ndR8),

where M = O(n3d3R10).

Then, for any accuracy parameter ϵ ∈ (0, 0.1) and any failure probability δ ∈ (0, 0.1), an algorithm
based on the Newton method can be employed to recover the initial data. The result of this algorithm
guarantee within

T = O(log(|X0 −X∗|F /ϵ))
iterations, it outputs a matrix X̃ ∈ Rd×n satisfying

∥X̃ −X∗∥F ≤ ϵ

with a probability of at least 1− δ. The execution time for each iteration is poly(n, d, log(1/δ)).
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Proof. Choosing γ ≥ O(ndR8), by Lemma H.2, we have the PD property of Hessian.

By Lemma G.12, we have the Lipschitz property of Hessian.

Since M is bounded (in the condition of Theorem), then by iterative shrinking lemma (see Lemma 6.9
in Li et al. (2023c) as an example), we prove the convergence.

J SUPPLEMENTARY EXPERIMENTAL DETAILS

Here, we give the experimental details for our experiment as follows.

• Learning rate for fine-tuning: η = 0.0001 (for best effort).
• Learning rate for attack: η = 0.001 (default).
• Adam hyper-parameter β1 = 0.9 (default).
• Adam hyper-parameter β2 = 0.999 (default).
• Adam hyper-parameter ϵ = 1× 10−8 (default).
• Fine-tuning steps: 8000.
• Platform: PyTorch Paszke et al. (2019) and Huggingface Wolf et al. (2019).
• GPU device information: 1 RTX 4090 GPUs.
• Number of fine-tuning epochs 30.
• Batch size: 32 (for best effort).
• Quantization: fp16.
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