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Abstract—Early and accurate detection of Alzheimer’s disease
(AD) is vital for timely intervention and better patient outcomes.
However, training machine learning (ML) models for this purpose
is challenging due to the limited medical images available and the
imbalance of classes. The size and quality of the training dataset
directly affect model performance. Recent advances in diffusion
models mitigate this limitation by generating synthetic images
from a small sample of real images. In this work, we adapted two
diffusion models and trained VGG16 and ConvNeXt classification
models for AD classification. The first diffusion model was a
Denoising Diffusion Probabilistic Model (DDPM) with a U-Net
architecture, and the second was a U-KAN framework that
integrates Kolmogorov–Arnold Networks (KANs) with the U-
Net. Both models were fine-tuned to generate MRI scans of
AD or Late Mild Cognitive Impairment (LMCI). We conducted
a comparative analysis to assess the reliability and usefulness
of these synthetic images for training classification models. The
best metrics achieved by the classification models using synthetic
images for the AD class were precision of 96%, recall of 83%,
F1 score of 87%, and AUC of 0.88. For the LMCI class, the best
values were precision of 78%, recall of 88%, F1 score of 82%, and
AUC of 0.88. They both demonstrated noticeable improvement
from the baseline trained only on the original images.

Index Terms—Diffusion Model, Classification Model, U-Net,
Alzheimer’s Disease, Class imbalance, ConvNeXt, VGG16

I. INTRODUCTION

Alzheimer’s disease (AD) is a progressive neurodegener-
ative disorder affecting millions worldwide, with prevalence
rising as populations age. Early and accurate diagnosis sup-
ports timely intervention and management. AI models based
on medical imaging have been applied to the classification of
MRI scans into typically five categories: Cognitively Normal
(CN), Subjective Memory Complaint (SMC), Early Mild Cog-
nitive Impairment (EMCI), Late Mild Cognitive Impairment
(LMCI), and AD. However, class imbalance poses a major
challenge. Generative methods like diffusion models mitigate
this by generating realistic synthetic images from limited data.
Although these images may not fully capture subtle diagnostic
details, by promoting data diversity and alleviating overfitting,
they improve model training and overall performance in cases
of low patient samples. [1], [2]

We adapted two diffusion models: DDPM [1] and U-KAN
[3] to enhance classification performance using VGG16 [4]
and ConvNeXt [5] architectures. The diffusion models were
trained to generate MRI images for AD severity levels using
limited data. We assess the reliability and validity of these
synthetic images when used to augment training datasets for

AD severity classification. The implementation process for this
study is shown in Figure 1.

II. RELATED WORK

Different synthetic image generators have been developed
over the years, with the most commonly used being Genera-
tive Adversarial Networks (GANs), Variational Autoencoders
(VAEs), and Diffusion Models. GANs are unsupervised gen-
erative models composed of a generator that creates data and
a discriminator that distinguishes between real and synthetic
data. VAEs generate data by encoding inputs into a latent
space and decoding them back. Diffusion models consist of
two phases: a forward phase that adds Gaussian noise to the
data, and a denoising phase that gradually removes the noise
to recover the original data.

GANs can generate high-quality images but suffer from
unstable training and require careful tuning. VAEs are easier to
train on small datasets but often produce less realistic outputs.
In contrast, diffusion models generate detailed images, have
stable training, and can perform well with limited data through
augmentation.

Diffusion models, which add and remove noise in steps,
have shown strong performance in medical imaging applica-
tions, including image generation and anomaly detection [2],
[6], [7].

Deep learning techniques, especially U-Net-based architec-
tures, have significantly advanced medical image segmenta-
tion. U-Net is widely used in image generation and segmen-
tation tasks [3]. Recent advances involve modifying U-Net
for diffusion models, particularly for segmentation. U-KAN,
which integrates Kolmogorov–Arnold Networks (KANs) into
U-Net, improves interpretability and efficiency, outperforming
other models in both accuracy and speed [3].

The combination of U-Net-based diffusion models with
architectures like U-KAN has shown promising results in
medical image analysis, enhancing segmentation and anomaly
detection tasks [3], [6]. These developments show that diffu-
sion models are key to addressing data scarcity and privacy
concerns in medical imaging.

III. MATERIALS AND METHODS

A. Dataset Description

The dataset used in this study was obtained from the Kaggle
open source Alzheimer’s Disease dataset [8] and consists of



Fig. 1. Overview of the proposed experimental pipeline. The diagram shows how AD and LMCI classes are used to train two
diffusion models (U-KAN and DDPM) to generate synthetic images, which are then used to train two classification models
(VGG16 and ConvNeXt). Four training strategies combine different proportions of synthetic and original images to assess the
benefit of synthetic data for classification. All models are tested on a 20% original images dataset.

a total of 1,286 brain MRIs. These are classified into five
classes, ordered by level of severity: Cognitively Normal (CN),
Early Mild Cognitive Impairment (EMCI), Mild Cognitive
Impairment (MCI), Late Mild Cognitive Impairment (LMCI),
and Alzheimer’s Disease (AD). Images in each class are: CN
(580), EMCI (240), MCI (233), LMCI (72), and AD (171).
There is a noticeable class imbalance. In this study, we focused
on applying diffusion models to the two classes with the fewest
images, AD and LMCI.

B. Classification Model

VGG16 is a CNN (Convolutional Neural Network) that uses
blocks composed of multiple 3×3 convolutional layers. Max-
pooling layers are interspersed to halve the activation map size.
The model ends with two dense layers of 4096 neurons and
an output layer of 1000 neurons. The “16” in VGG16 refers
to the number of layers with weights: 13 convolutional layers
and 3 dense layers, out of a total of 21 layers, including 5
Max Pooling layers [4].

ConvNeXt is a family of pure ConvNet models designed
to rival Vision Transformers in accuracy, scalability, and
robustness. Built solely from standard ConvNet components,
ConvNeXt introduces modern elements inspired by Trans-
formers, such as adjusted stage compute ratios, a ”patchify”
stem, inverted bottlenecks, large kernels, and fewer activa-
tion/normalization layers. These updates allow ConvNeXt to
scale comparably to hierarchical vision Transformers while
retaining the simplicity of ConvNets. [5]

C. Diffusion Models

A diffusion model is an advanced technique in the field
of machine learning and multimedia content generation that
is used to create images and visual content from input data,
usually in the form of random noise. The distinguishing feature
of diffusion models is their gradual and controlled approach
to transform this initial noise into a final image. Diffusion
models use fundamental concepts of probability and statistics
to calculate how the noise must change at each step to obtain

an image that is consistent and realistic. In this study, we
adapted two diffusion models to the AD classification. The
first model was based on the denoising diffusion probabilistic
model (DDPM) framework [1]. The second model extended
a medical-focused diffusion model based on the U-KAN
backbone architecture, which was specifically designed for
medical image segmentation and generation tasks [3].

1) DDPM-based Diffusion Model: Denoising Diffusion
Probabilistic Models (DDPMs) are generative models that
synthesize high-quality images by reversing a sequence of
noisy transformations. In the forward process, a Markov chain
adds Gaussian noise until the image becomes nearly random.
The reverse process removes the noise step-by-step by training
a neural network to predict and denoise each state. DDPMs use
a score-matching objective during training to improve noise
prediction, resulting in accurate, high-quality outputs [1].

The U-Net architecture is commonly used in the reverse
process of DDPMs due to its encoder-decoder structure, which
captures both fine details and global context. The encoder
extracts high-level features by reducing spatial resolution,
while the decoder reconstructs the image. This design enables
progressive denoising, producing results that closely match
the original data distribution and perform well on benchmark
datasets [9].

2) U-KAN-based Diffusion Model: The U-KAN model
integrates Kolmogorov–Arnold Networks (KANs) into a mod-
ified U-Net framework for medical imaging. By replacing
standard convolutional layers with KAN layers, it captures
complex, non-linear patterns more effectively. Based on the
Kolmogorov–Arnold theorem, these layers help deconstruct
functions and interpret intricate data relationships, enabling U-
KAN to outperform traditional U-Net and other segmentation
models, especially in detecting subtle diagnostic features [3].

U-KAN also uses tokenization, dividing feature maps into
tokens processed by KAN layers to generate efficient seg-
mentation embeddings. This approach maintains high accu-
racy with reduced computational cost. Its enhanced feature
extraction also improves noise prediction in diffusion models,



making U-KAN well-suited for medical image denoising.
3) Experiment Strategies: The experiments in this study

were conducted using four different setups for each class and
each diffusion model, as summarized in Figure 1. Initially, the
VGG16 and ConvNeXt classification models were trained and
evaluated solely on the original images from the AD and LMCI
classes [8], using an 80-20 train-test split. These baseline
illustrates the models’ performances without any synthetic
images generated by the diffusion models.

For Experiment 1, the classification models were trained
using only synthetic images: 150 generated images for the AD
class and 100 for the LMCI class from each diffusion model
(DDPM and U-KAN). Experiments 2 and 3 then incrementally
added real images to the training set, increasing the proportion
of original data by 10% in each experiment, while keeping
the baseline of 150 AD and 100 LMCI-generated images.
This setup enabled a comparative analysis of how the varying
mixtures of original and synthetic images from each diffusion
model influenced detection performance.

The VGG16 and ConvNeXt models for each experiment
were always tested on the same original images that were used
for their baseline experiments to preserve the consistency of
the results and determine whether the addition of synthetic im-
ages to the training process improves the initial performance.
We used precision, recall, and F1 score as evaluation metrics
for all experiments. For an Alzheimer’s classification model
on brain MRI scans, the F1-score was chosen as the primary
metric because it balances precision and recall, effectively
addressing the critical dual concerns in medical diagnosis.
In this specific context, high precision to avoid false alarms
and high recall to ensure minimal missed cases are equally
important.

IV. EXPERIMENTAL RESULTS

We used Fréchet Inception Distance (FID), Inception Score
(IS), precision, and recall metrics to evaluate the quality
of the synthetic images. Table I shows that U-KAN has
consistently better performance than DDPM for both AD and
LMCI classes. Figure 2 shows a visual comparison of both
the generated and real images. Overall, U-KAN achieved the
best performance on LMCI class, which had the lowest FID
(121.3240) and the highest precision (0.9000). This also shows
that U-KAN has superior capability in generating medical
images that are both realistic and diverse.

Fig. 2. Visual comparison of original and synthetic AD/LMCI
MRI scans. Synthetic images from U-KAN and DDPM re-
semble original data in key features.

TABLE I. Image Quality Metrics for DDPM and U-KAN on
AD and LMCI Classes. Results show U-KAN achieves better
performance across most metrics.

Model FID (PCA) ↓ IS ↑ Precision ↑ Recall ↑

DDPM AD 138.3101 1.7800 0.8600 0.2398
U-KAN AD 131.5280 2.0110 0.7933 0.3099
DDPM LMCI 127.4667 1.9110 0.8700 0.3472
U-KAN LMCI 121.3240 1.9361 0.9000 0.3333

Tables 2 and 3 show the results of the experiments con-
ducted on the VGG16 and ConvNeXt models using the AD
class. They indicate that a balanced combination of synthetic
and real images yields strong performance. DDPM achieves
its best result in experiment 3 when the classification models
were trained with 20% of real images and 80% generated
images. Both classification models showed an improvement
of about 15% in precision compared to their baseline models
and achieved similar F1 scores. It can also be observed
that U-KAN model obtained considerably better results in
experiments 2 and 3, obtaining its best scores in experiment
number 3 with an F1 score of 87% for the VGG16 model
and a score of 75% for the ConvNeXt model, a noticeable
increment over the baseline model.

TABLE II. VGG16: Results Comparison for AD Class

Precision Recall F1

AD Original Baseline 0.76 0.82 0.79

Expt. DDPM U-KAN

Prec. Recall F1 Prec. Recall F1

1 0.59 0.75 0.66 0.73 0.89 0.80
2 0.72 0.71 0.72 0.80 0.89 0.84
3 0.88 0.61 0.79 0.91 0.83 0.87

TABLE III. ConvNeXt: Results Comparison for AD Class

Precision Recall F1

AD Original Baseline 0.73 0.65 0.69

Expt. DDPM U-KAN

Prec. Recall F1 Prec. Recall F1

1 0.79 0.53 0.63 0.66 0.86 0.75
2 0.94 0.44 0.60 0.95 0.58 0.72
3 0.95 0.58 0.72 0.96 0.61 0.75

Tables 4 and 5 highlight the effectiveness of diffusion
models in enhancing performance for classes with limited
training data. Initially, the LMCI class was trained with only
58 original images. In later experiments, the training set
was expanded to 100 images by incorporating synthetic data,
leading to significant performance gains. In experiment 3, the
best results obtained with DDPM-generated synthetic images
were an F1 score of 71% for the VGG16 model, a 31%
improvement over its baseline, and 74% for ConvNeXt, mark-
ing a 36% increase. Similarly, with UKAN-generated images,



VGG16 achieved an F1 score of 82% (a 42% improvement),
while ConvNeXt reached 75%, reflecting a 35% gain over its
baseline.

TABLE IV. VGG16: Results Comparison for LMCI Class

Precision Recall F1

LMCI Original Baseline 0.45 0.36 0.40

Expt. DDPM U-KAN

Prec. Recall F1 Prec. Recall F1

1 0.36 0.21 0.26 0.75 0.50 0.60
2 0.58 0.57 0.58 0.80 0.67 0.73
3 0.60 0.88 0.71 0.78 0.88 0.82

TABLE V. ConvNeXt: Results Comparison for LMCI Class

Precision Recall F1

LMCI Original Baseline 0.33 0.43 0.38

Expt. DDPM U-KAN

Prec. Recall F1 Prec. Recall F1

1 0.53 0.79 0.63 0.62 0.33 0.43
2 0.53 0.96 0.69 0.57 0.83 0.68
3 0.61 0.96 0.74 0.62 0.96 0.75

A Receiver Operating Characteristic (ROC) curve was also
generated to support and illustrate the results shown in the
previous tables. Figure 3 shows the ROC of the AD class,
including the baseline performance of the ConvNeXt and
VGG16 classification models and the best results for each
detection-diffusion model combination. Figure 4 presents the
corresponding ROC curves for the LMCI class.

Fig. 3. ROC curve for AD class. Adding synthetic data from
diffusion models significantly improves the AUC scores for
both classifiers.

V. CONCLUSION

An accurate classification of cognitive decline is critical
in the monitoring and treatment of AD. However, high-
severity conditions are typically associated with limited data.
To overcome this challenge, in this study, we adapted two
diffusion models to generate synthetic brain MRI scans for
two minority classes, AD and LMCI. U-Net was integrated

Fig. 4. ROC curve for LMCI class. Similar to the AD class,
the ROC curve for the LMCI class shows that using synthetic
data improves the performance of both classifiers, leading to
higher AUC scores.

with the diffusion models to improve the efficiency and accu-
racy. A comprehensive comparative analysis was performed to
understand the influence of the percentage of synthetic images
used in a training set.

Overall, these findings suggest that diffusion models and
synthetic images offer a promising approach to address the
scarcity of publicly available data in the medical field. By
developing specialized diffusion models tailored for medical
applications, these technologies could support the training
of essential classification models, helping to overcome data
limitations.

Future work includes expanding the study to larger AD
datasets and other clinical applications that suffer from class
imbalance.
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