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ABSTRACT

Autoregressive (AR) generation almost dominates sequence generation for its ef-
ficacy. Recently, non-autoregressive (NAR) generation gains increasing popular-
ity for its efficiency and growing efficacy. However, its efficiency is still bot-
tlenecked by softmax attention of quadratic complexity on computational time
and memory cost. Such bottleneck prevents non-autoregressive models from scal-
ing to long sequence generation and few works have been done to mitigate this
problem. In this paper, we propose a novel MLP variant, Attentive Multi-Layer
Perceptron (AMLP), to produce a generation model with linear time and space
complexity. Different from classic MLP with static and learnable projection ma-
trices, AMLP leverages adaptive projections computed from inputs in an attentive
mode. And different from softmax attention, AMLP uses sample-aware adaptive
projections to enable communications among tokens in a sequence, and models
the measurement between the query and key space. Furthermore, we marry AMLP
with popular NAR models, deriving a highly efficient NAR-AMLP architecture
with linear time and space complexity. The empirical results show that such mar-
riage architecture NAR-AMLP surpasses competitive efficient NAR models, by a
significant margin on text-to-speech synthesis and machine translation. We also
test AMLP’s self- and cross-attention ability separately with extensive ablation
experiments, and find them comparable or even superior to the other efficient
models. The efficiency analysis further shows that AMLP speeds up the infer-
ence and extremely reduces the memory cost against vanilla non-autoregressive
models. All the experiments reveal that NAR-AMLP is a promising architecture
in both of efficiency and efficacy.

1 INTRODUCTION

Attention-based sequence generation methods have achieved great success and gained increasing
popularity in machine learning (Vaswani et al., 2017; Li et al., 2019a; Liu et al., 2021b; Dosovitskiy
et al., 2021). A large body of research in neural architectures has been devoted to the autoregres-
sive (AR) method (Peng et al., 2022; 2021), where tokens are generated one after another in an
iterative manner. The computational overhead in decoding can thus be prohibitive, especially for
long sequences. Recently, non-autoregressive (NAR) generation attracts more attention for its effi-
ciency and growing efficacy (Gu et al., 2018; 2019; Qian et al., 2021a;b; Ren et al., 2021; Chang
et al., 2022). In a non-autoregressive model, the decoder generates the target sequence all at once,
significantly reducing its computational overhead at the inference stage.

Nevertheless, relatively little research has been done on the attention architecture in non-
autoregressive models. In particular, the conventionally adopted softmax attention comes with a
quadratic time and memory cost. It is therefore still difficult to scale up non-autoregressive models
to long sequence generation tasks.

In this paper, we propose Attentive Multi-Layer Perceptron (§2.2; AMLP) to integrate the attention
mechanism with the multi-layer perceptron (MLP) in non-autoregressive architecture, resulting in
a fully parallelizable sequence generation model with linear complexity. Unlike the widely-used
MLP whose weights are invariant across different sequences, we compute the weights in AMLP
through adaptive projections from (multiple) input tokens and model their interactions in an attentive
manner. Specifically, we put forward two methods (§2.3) to compute the adaptive projections in
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AMLP, which implicitly model the association between the query and key space. We utilize the
simplicity and efficiency of MLP while obtaining the strong modeling capability of AMLP for input
tokens’ communication. Finally, we present a hybrid NAR-AMLP model (§2.4) to achieve both
linear complexity and high parallelism.

We evaluate the AMLP architecture on text-to-speech synthesis for a relatively long sequence sce-
nario and machine translation for a relatively short sequence scenario. Experiments show that AMLP
achieves more superior scores with objective measurements compared with the strong softmax at-
tention counterpart (§3.2) on text-to-speech synthesis, with less computational cost (§3.4). On ma-
chine translation, AMLP performs slightly behind vanilla attention (by "1 BLEU) but achieves the
best result among efficient NAR models with linear complexity (§3.2). Further, we test the self-
and cross-attention ability of AMLP on super resolution and long sequence time-series forecasting
tasks, respectively. Empirical results show that AMLP is on par with other efficient attention in self-
attention and achieves the best performance in cross-attention scenarios (§3.3). Additionally, when
scaling to long sequence, AMLP reduces the memory footprint substantially and further improves
the inference speed in NAR models (§3.4).

2 NON-AUTOREGRESSIVE GENERATION WITH ATTENTIVE MLP

In this section, we first give a brief introduction to autoregressive (AR) and non-
autoregressive (NAR) generation, and then present the AMLP architecture to model the commu-
nication among sequence tokens. Finally, we build up an NAR-AMLP architecture with linear time
and space complexity.

2.1 BACKGROUND: AUTOREGRESSIVE AND NON-AUTOREGRESSIVE GENERATION

Given a source sequence X1.,,, conditional sequence generation targets to predict a target sequence
Y7., by modeling the conditional probability p(Y|X). Autoregressive generation decomposes the
probability p(Y'|X) as:

p(VIX) =[] p(YilYei, X), Y1 = 0. (1)

i=1..n

Although such decomposition is proved effective, it suffers from two main drawbacks: efficiency
and exposure bias. On the one hand, the autoregressive decoding process, where each token depends
on the previous predicted ones, prevents the model from fast inference in usage. On the other hand,
teacher-forcing exposes ground truth tokens in network inputs during the training process, where the
exposed tokens are unable to observe in inference. Such exposure creates an inconsistency between
the training and inference, and harms the prediction quality.

Recently, non-autoregressive generation shows its capability of sequence modeling in terms of both
efficiency and efficacy, which decomposes the conditional probability p(Y|X) via a Naive Bayes
assumption:

p(Y1X)= [] p(¥ilX) 2)

1=1..n

The NAR decomposition enables parallel decoding for each token, and speeds up the inference
process substantially. Although NAR generation is much faster than AR generation, its speed is still
limited by the O ((n + m)2) time complexity of the softmax attention module. This is especially
problematic in modeling long sequences.

2.2  ATTENTIVE MULTI-LAYER PERCEPTRON

Modeling interactions between tokens is crucial and challenging in sequence generation. Trans-
former (Vaswani et al., 2017) stacks the MLP, which aims to learn features of individual tokens,
on top of the attention block, which is responsible for modeling the communication within the se-
quence. In AR generation, the attention needs to be recomputed for each time step through the
recurrent process, as the key and value set is changing. However, this procedure is non-causal in
NAR generation. We therefore are able to integrate the modeling of token interactions into the MLP
architecture and make the whole architecture fully parallelizable and more efficient.
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Given a sequence representation X € R"*%, where n is the sequence length and d is dimensionality
of the feature space, the conventional MLP models the feature of individual token X; € R? as:

MLP(Xz) = O’(Xiwl)WQ (3)
where W, € R%*dn 1, ¢ R %4 are learnable parameters dj, is the dimensionality of hidden
space. o(-) is a non-linear activation function such as ReLU(-). However, it disables the communi-
cation between tokens in the sequence, and prevents the model from learning contextualized token
representations.

A widely-used approach to enable communication between each token in a sequence is the attention
mechanism (Vaswani et al., 2017). Vanilla attention learns to incorporate source sequence features
K,V € R™* into target Q € R™*? with an attention matrix

Attn(Q, K, V) = softmax(QK ")V (4)
where m, n are the source and target length respectively. Here we omit the input projections for
Q. K, V., the output projection, and the scaling factor 1/+/d for simplicity.

The motivation of Attentive Multi-Layer Perceptron (AMLP) starts from the fact that the vanilla
softmax attention can be viewed as a projection function as SA(-|K, V) : R**¢ — R"*4 which
projects the original Q € R™*? with K and V features as its context while preserving Q’s shape.
Thus we propose an alternative solution by fusing key K € R”*? and value V € R™*¢ information
into query Q € R™*9, via a symmetric and positive semi-definite distance matrix £ € R%*? on Q
and K space. The contextualizing process on QQ can be formulated as:

QK V)=QEK'V 5)
where 3 is computed from Q and K, representing the distance between target sequences and source
sequences in each embedding component.

from attention to AMLP in Appendix
Previous work on efficient attention (Xiong et al., 2021) has shown that the softmax attention matrix
softmax(QK ") could be decomposed [fillf] two low-rank matrices. iSRSNI

can also be treated as a low-rank matrix. Without taking any low-rank assumptions
on input Q, K, we decompose the distance matrix as:
» =UAUT =UA2A:UT ~ UA2A3UT = (UA2)(UA2)T =LL" (6)
where U is the orthogonal eigenvector of matrix and A is the diagonal eigenvalues matrix. A
here is an approximation to A by keeping largest-c eigen-values and masking the others with 0,
where c is a hyper-parameter in AMLP. Thus we derive a decomposition equation 3 ~ LL T where
L = x(Q,K)" € R¥¢ indicates a low-rank matrix. We will show two different methods for
parameterization of L, resulting in two different AMLP variants. We rewrite Eq. 5 by decomposing
the distance matrix X as:
f(QK, V)= QLL'K'V (7
Now Eq. 5 could be approximated with Eq. 7 by linearly projecting the original Q with adaptive
weights twice. By reordering the computation and adding nonlinearity into Eq. 5, we derive a
general form of AMLP model as:

AMLP(Q;K, V) = 01(QWq x)Wq kv (®)
where the nonlinear function o1 (-) can be adjusted arbitrarily. Following the form of Eq. 8, we
will further introduce two AMLP variants in the rest of this section, by specifying L = Wq k =
x(Q, K), computational order and nonlinear function. The computation of weights in AMLP fuses
token-level communication, while MLP models {8l in a sequence independently. Therefore,
AMLP enables the communication between tokens in a sequence. And different from vanilla soft-
max attention, AMLP utilizes a distance matrix ¥ between Q and K spaces to fuse information
among their contexts and outputs a contextualized Q. Through this distance matrix, AMLP com-
putes the similarity between Q and K like softmax attention, and leverages it to aggregate V.

2.3 PARAMETERIZATION OF ADAPTIVE WEIGHTS

In this section, we describe two methods for the parameterization of two adaptive weight matrices
Wq k and Wq k v. Fig. 1 illustrates the computation graph of these two methods. !

'AMLP is implemented with multiple heads (Vaswani et al., 2017), but for simplicity and without loss of
generality, we will discuss our AMLP computation process in a single-head setting.
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Figure 1:

[EEESE AMLP-Cov and AMLP-PQuery.

(Cross-)Covariance Here we present AMLP-Cov, a variant that adopts (cross-)covariance to pa-
rameterize Wq k and Wq k,v. One challenge of AMLP is to fuse information of Q, K,V of
different shapes into static-shaped projection matrices Wq k and Wq k v. Inspired by (Ali et al.,
2021), we propose to use Q, K’s covariance and the cross-covariance between K and V in AMLP.
To obtain L = x(Q, K) T, we separately compute Q’s and K’s covariance matrices and combines
them with learned down-sampling projection matrices C; € R°*? and Cj, € R¢*%:

K(Q,K) = C, (02(Q7Q)) + C) (02(K'K)) 9)

where o2(+) is set to softmax function as Ali et al. (2021) suggest. The covariance matrices of
Q, K are of the same shape and can be directly fused. We add the softmax function as a non-linear
activation to enhance the expressiveness. For Wq i v, we notice the shapes of K and 'V are usually

identical, and we hence use their cross-covariance K 'V for computation in Eq. 8. Wq kv is then
formulated by transforming the cross-covariance K TV to query space by L as:

Waokv =L 02(K'V) (10)

Pseudo-Queries To further improve the communication between target and source sequences,
we propose AMLP-PQuery, which treats learnable C,, C and LT as pseudo attention queries.
Specifically, AMLP-PQuery estimates Wq k by fusing features from query and key to the hidden
space with an extra learnable weight TV € R24x4:

Wok =L" = [02(C,Q")Q;02(Ct K K| W (11)

where o2(+) is set to softmax as AMLP-Cov. For Wq k v, we notice that L7 has fused features
from Q. So we again treat L " as a pseudo query to fuse features from the source sequence:

WQ,K,V = O'Q(LTKT)V (12)

With explicit communication between Q and K in Wq k v, the alignment between different se-
quences is enhanced; therefore, AMLP-PQuery is more adaptive to cross-attention.

2.4 HYBRID ARCHITECTURE: NAR-AMLP

We combine AMLP with NAR for lower memory costs, faster inference speed and higher parallelism
because AMLP and NAR are mutually reinforcing. On one hand, NAR parallelizes the inference
process, but its efficiency is still hindered by vanilla attention. AMLP, as a plug-in efficient attentive
module, mitigates the inefficiency effortlessly. On the other hand, the non-autoregressive pipeline
provides a non-causal encoding framework, with which the computation of AMLP avoids fine-
grained operations. However, in autoregressive modeling, the dedicated operations similar to Peng
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et al. (2021) are indispensable to maintain the causality. These computation steps increase heavy
memory costs and large time consumption in the training phase, which is illustrated in Appendix A
with more details. Therefore, we decide to incorporate AMLP into NAR to produce an efficient
model in both training and inference stages.

2.5 COMPLEXITY ANALYSIS

Without loss of generality, we focus on the complexity in the typical decoder architecture and omit
the independent factor w.rt. target length n and source length m for simplicity.

AMLP-Cov & AMLP-PQuery Note that the inner dimension c is a constant to both m and n.
The sequential computation of two adaptive projection matrices and the overall MLP computation
in Eq. 8 are all of O(n + m). Therefore, the time and memory complexity of AMLP (both AMLP-
Cov and AMLP-PQuery) is O(n + m).

NAR-AMLP Due to the quadratic complexity of softmax attention, traditional non-autoregressive
models still take up [SESESMEEE) time and memory in the whole architecture. Therefore,
we replace softmax modules in non-autoregressive models with AMLP, deriving an NAR-AMLP
architecture with linear time and space complexity.

3 EXPERIMENTS

We conduct extensive experiments, covering the fields of speech, natural language processing, time-
series and computer vision.” Specifically, we first apply our hybrid architecture NAR-AMLP in two
tasks: Text-to-Speech Synthesis and Machine Translation. Then we assess AMLP’s self-attention
and cross-attention abilities on super resolution and long sequence time-series forecasting tasks,
respectively. Finally, we conduct ablation studies to show the hidden philosophy of AMLP and
explore how efficient if AMLP scales to long-sequence modeling.

3.1 BASELINES

We compare AMLP with the following efficient architectures.

gMLP (Liu et al., 2021a): gMLP remains W; the same as vanilla MLP, but uses a special gating
unit to parameterize W5 in Eq. 3. Similar to vanilla MLP, gMLP could not integrate features from
other sequences to the sample-aware matrix. Therefore, it is incapable of cross-attention.

XCA (Ali et al., 2021): XCA approximates QK T by replacing it with the cross-covariance KT Q.
Although this substitution achieves linear complexity, it also forbids XCA from generalizing to
cross-attention due to different target and source sequence lengths.

ABC (Peng et al., 2022): ABC is an efficient attention that uses two learnable matrices to compress
K and V to bounded memory respectively. It can replace both vanilla self and cross attention.

local attention (Luong et al., 2015b): Local attention intuitively forces each query token to focus
on its neighborhood tokens within a fixed window size. It is applicable to self-attention. Given prior
sequence alignment information, it can also work as cross-attention.

3.2 MAIN RESULTS OF NAR-AMLP

Text-to-Speech We select LISpeech (Ito & Johnson, 2017) dataset for this task, and use Fast-
Speech 2 (FS2) (Ren et al., 2021) and Transformer-TTS (Tr-TTS) (Li et al., 2019a) as the backbone
models for NAR and AR, respectively. For both backbones, we replace all softmax attention mod-
ules with efficient ones to achieve linear complexity. We use AMLP-Cov variant and ReLU(-) as
o1(-) in Eq. 8. The alignment tool “g2pE” (Wang et al., 2021) is applied to train FastSpeech 2.
For reproducibility, we use two widely-used objective evaluation metrics, Mel Cepstral Distor-
tion (MCD) and Mel Spectral Distortion (MSD), to assess the quality of synthesized audio clips.

?In experiments, we take softmax(-) as the nonlinear function oy (-) unless otherwise specified.
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Table 1: Automatic evaluation metric on
LJSpeech dataset. All models are trained by
ourselves. n,m are the target and source
sequence lengths. Colored rows represent
NAR models.

Table 2: BLEU4 scores on WMT14 EN-DE
and WMT14 DE-EN dataset. All models for
comparison are implemented by ourselves.
n,m are the target and source sequence
lengths. Colored rows represent NAR mod-
els. Subscript figures A denote performance

LJSpeech drop comparing with backbone models.
Arch Model
MCD|, MSD|
WMT’ 14
Complexity: O(n?) or O ((n + m)2) Arch Model En-Depn De-Enp
AR Tr-TTS 4.0953 2.1985 Complexity: O ((n + m)?)
NAR FS2 3.4748 1.9735 AR Tt 2738 31.26
Complexity: O(n) or O(n +m) NAR GLAT 26.24 30.10
AR Tr-TTS(ABC) 5.1302 2.5957 Complexity: O(n +m)
FS2 (local) 3.4189 19704 AR Tr (local) 2477561 28.21305
FS2 (ABC) 3.3925 1.9658 Tr (ABC) 2586152 29.09217
NAR FS2 (XCA) 3.5003 2.0239 GLAT (local) 18.19305 21.36374
FS2 (gMLP) 34025 1.9641 NAR _GLAT(ABC) 219845 247853

GLAT (AMLP) 25.00121 2842165

FS2 (AMLP) 3.3274 1.9396

We demonstrate the results in Table 1. AMLP substantially lowers the MCD and MSD values by a
great margin up to 0.15 MCD with even lower complexity compared to vanilla models. Additionally,
AMLP also outperforms other efficient models. Notably, we have significantly lower MCD than
XCA which also leverages (cross-)covariance matrices.

Machine Translation For Machine Translation (MT), we launch our experiments on WMT 2014
English-German (WMT’ 14 En-De) and German-English (WMT’ 14 De-En) datasets (Bojar et al.,
2014). We adopt AMLP-PQuery variant to GLAT (Qian et al., 2021a), which is a powerful fully
NAR architecture without extra decoding algorithms. We exclude the AR-reranking process to make
a fully linear-complexity generation process. Similar to TTS, we replace self/cross-attention mod-
ules in Transformer and GLAT to obtain their efficient variants. For completeness, we include
widely-used AR architecture Transformer (Tr) (Vaswani et al., 2017) with competitive linear atten-
tions. We report BLEU-4 (Papineni et al., 2002) scores as the performance metric.

Results in Table 2 indicate that the NAR-AMLP architecture achieves the best result among efficient
NAR models with linear complexity. Among the NAR models, AMLP surpasses a strong linear
attention variant ABC, by 3.02 BLEU on the en-de dataset and 3.64 BLEU on the de-en dataset.
Compared with an even stronger ABC-based Transformer model in an autoregressive manner, our
NAR-AMLP achieves less performance drop with 1.24 and 1.68 BLEU on en-de and de-en transla-
tion correspondingly.

3.3 SELF- AND CROSS-ATTENTION ABLATION

Self-attention We evaluate the self-encoding ability of AMLP on Super Resolution (SR) task.
SR aims to convert low-resolution (16 x 16) images into high-resolution (128 x 128) ones. We
use a powerful backbone — SR3 (Saharia et al., 2022) and replace the softmax self-attention with
the efficient architectures.” Following Saharia et al. (2022), we use the Flickr-Faces-HQ (FFHQ)
dataset (Karras et al., 2019) for the training set and CelebA-HQ dataset (Karras et al., 2018) for the
evaluation set. We use Peak Signal-to-Noise Ratio (PSNR) and Structural SIMilarity (SSIM) (Wang
et al., 2004) to measure efficient models. Experiment results are shown in Table 3. AMLP improves
the performance of SR3 to 23.28 (+0.10) on PSNR and 0.684 (+0.09) on SSMI against the vanilla
baseline, indicating that AMLP has a strong self-encoding ability. When compared to gMLP, AMLP
also has a slight performance gain. AMLP outperforms covariance-based architecture XCA by 0.20
and 0.14 on PSNR and SSMI, respectively.

3We use the SR3 with attention layers added after the residual blocks.
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Table 3: PSNR and SSMI on CelebA-HQ Table 4: Cross-attention ablation on ETT

dataset. n is the pixel number of the images. dataset. The results are average on ETT-hl,
ETT-h2 and ETT-m1 datasets. n, m are the tar-
Super Resolution get and source sequence lengths.
Complexity Model PSNRT SSMIt p—
O(n?) vanilla ~ 23.18 0.675 Complexity Model MSE| MAE]|
local 23.33 0682 O(nm) Vanilla 1138 0.775
eMLP 2324 0.679
O(n) XCA 23.08 0.670 ABC 1.147  0.809
ABC 2254 0.635 Performer 1.254 0.819
AMLP 2328 0.684 O(n+m) cosFormer  1.219 0.823
: . AMLP 1.006  0.750

Cross-Attention We test the cross-attention ability on the long sequence time-series forecast-
ing (LSTF) task. We take Informer (Zhou et al., 2021) as the backbone neural networks and eval-
uate efficient models on Electricity Transformer Temperature (ETT) dataset, which contains three
sub-datasets ETT-h1, ETT-h2, and ETT-m1. We follow Zhou et al. (2021) to conduct univariate
and multivariate evaluations on three sub-datasets and average their Mean Square Error (MSE) and
Mean Absolute Error (MAE) to obtain final scores. Except for vanilla attention, we also compare
AMLP with other three efficient models with strong cross-alignment abilities: ABC (Peng et al.,
2022), Performer (Choromanski et al., 2021) and cosFormer (Qin et al., 2022). We exclude local
attention as it does not work for cross attention without explicit token alignment in the time-series
forecasting task. The detailed results are shown in Table 6 and the overall results on ETT are shown
in Table 4. AMLP, in contrast to the vanilla counterpart, achieves lower MSE and MAE as well
as more efficient complexity. Moreover, we notice that all other efficient models perform poorly
compared to vanilla attention. It suggests that AMLP has a solid ability to model non-homologous
information.

3.4 ABLATION STUDY

In this section, we conduct substantial ablation experiments to dig out the efficiency and superiority
of our AMLP mechanism. We first present our analysis in comparison with other efficient attention
modules on the TTS task. Then we show that our approximation ¢ < d in Eq. 6 does not deteriorate
the performance of speech generation. Finally, we elucidate the outstanding generation speed and
GPU peak usage of our AMLP in the NAR scenario.

Comparison with Efficient Attention Recently, a surge of efficient attention algorithms also ex-
plore efficient architectures for sequence modeling, and are also proved to be effective in real-world
tasks. MLP itself is efficient for vanilla attention while there have existed various kinds of novel at-
tention mechanisms that have proved to be effective to replace self-attention modules and efficient to
achieve a linear time complexity as well. We compare our AMLP with 5 efficient attention architec-
tures of strong performance on text-to-speech synthesis task, including LARA (Zheng et al., 2022),
Linformer (Wang et al., 2020), ABC (Peng et al., 2022), global attention (Luong et al., 2015a), and
Nystromformer (Xiong et al., 2021). All the efficient attentions adopt reported hyper-parameters of
their papers, and our AMLP uses the same setting as §3.2.

Fig. 2a shows the performance-speedup tradeoff of compared methods. Among these counterparts,
AMLP and LARA are much faster than other attention mechanisms, while AMLP is slightly faster
than LARA. In synthesizing speech, AMLP gains 1.15x speed-up than vanilla attention, which
is the most efficient module among the competitors. This fact also indicates that when sequences
become longer, AMLP with linear time complexity comes to show great efficiency. When it comes
to efficacy, efficient attentions like LARA and ABC can also outperform vanilla softmax attention
in the TTS task. It verifies that efficient attentions clean redundant information or noise in the
attention matrix, and further enhance the model representation ability. AMLP reduces the MCD
with a significant margin and shows its effectiveness in generating sequences.
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Figure 2: (a) Performance-speedup tradeoff of various efficient architectures. Lower MCD and
higher speedup indicate better performances. (b) Performance-speedup tradeoff of various interme-
diate dimension c¢ values. Lower MCD and higher speedup indicate more superior models.

Intermediate Dimension Analysis The approximation of eigenvalues in Eq. 6 prompts us to know
whether such approximation is feasible and whether the exorbitant approximation will deteriorate
the generation performance. To this end, we test several values of ¢ in AMLP and report each cor-
responding performance on TTS and the decoding speed when adopted to FastSpeech 2, in Fig. 2b.
Except for c value, we adopt the same setting in §3.2.

From Fig. 2b, we can see that AMLP with approximation rank c can achieve as well as no approxi-
mation setting (¢ = d = 128) and does not impact the performance greatly. But with a lower c value,
AMLP can achieve better decoding speed. Specifically, in contrast to ¢ = 64, a higher MCD when
setting ¢ to d also indicates that maintaining the whole eigenvalues in Eq. 6 may even lead to over-
parameterization and impair the overall decoding efficacy. It verifies the feasibility to approximate
3 with fewer eigenspectrums in AMLP.

Efficiency Analysis To further understand the performance of NAR-AMLP architecture in in-
ference, we set up a simulation experiment to test its efficiency. Fig. 3a shows that NAR-AMLP
extremely speeds up the inference process. To generate a long sequence with 8, 192 tokens, vanilla
NAR is 116 x faster than AR while NAR-AMLP is even 590 x faster. For sequences with more than
1500 tokens, both variants of AMLP are more efficient than vanilla attention; otherwise, the vanilla
attention is faster. Fig. 3b shows that NAR-AMLP significantly reduces memory consumption in
NAR generation. It saves 89% memory usage of NAR model when generating a sequence with
8,192 tokens. Note that AR models cost fewer memory resources because of incremental decoding,
which caches previous states and processes only one token at each step. But AR models still suffer
from huge memory usage as NAR models in training, since they are usually implemented with a
causal mask on the attention matrix. Thus it is reasonable to infer that NAR-AMLP is more efficient
than AR and NAR models in training. The detailed experiment settings are present in Appendix G.

4 RELATED WORK

Non-Autoregressive Generation Gu et al. (2018) first proposes a non-autoregressive model to
generate all the tokens within a sequence in parallel, which extremely speeds up the inference pro-
cess but is inferior in generation quality. To mitigate the quality degradation, many researchers
devote to improve the model performance with iterative decoding (Lee et al., 2018; Ghazvininejad
etal., 2019; Gu et al., 2019; Guo et al., 2020b; Huang et al., 2022), curriculum learning (Guo et al.,
2020a; Liu et al., 2020; Qian et al., 2021a;b; Bao et al., 2022), latent variable modeling (Ma et al.,
2019; Ran et al., 2021; Bao et al., 2019; 2022), imitation learning (Li et al., 2019b; Wei et al., 2019)
and learning objective (Saharia et al., 2020; Ghazvininejad et al., 2020; Liu et al., 2022; Du et al.,
2021). These previous works focus on pursuing the high efficacy of non-autoregressive generation,
but few works are presented to improve NAR’s efficiency in long sequence modeling. We target to
further improve its efficiency and scale non-autoregressive models to long sequences.
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Figure 3: Empirical running time (a) and memory cost (b) with sequence length. Logarithms of
relative measurement to the AR model are reported.

MLP Architecture Multi-layer perceptron (Gardner & Dorling, 1998) is a classic neural network
architecture and has been widely used. Recently, novel variants of MLP architectures are proposed
for text and image processing, achieving impressive results on image classification (Tolstikhin et al.,
2021; Liu et al., 2021a), text classification (Tay et al., 2021), multilingual parsing (Fusco et al.,
2022), and intent classification (Fusco et al., 2022). MLP-Mixer (Tolstikhin et al., 2021) is proposed
by leveraging a token-mixing and a channel-mixing MLP to enable token-wise and channel-wise
communication. MLP-Mixer is further improved to pNLP-Mixer with locality sensitive hashing (In-
dyk & Motwani, 1998) projection at the bottom calculating non-trainable fingerprints (Fusco et al.,
2022). Liu et al. (2021a) propose gMLP by introducing a spatial gating unit to enhance the com-
munication between neighboring tokens. CycleMLP (Chen et al., 2022) leverages a local window
to achieve linear time complexity on dense prediction. Besides, previous studies focus on encoding
text/image features with MLP, but we explore the possibility to leverage an MLP architecture for
sequence generation.

Attention Mechanism Attention is first proposed to align the target and source sequence in neu-
ral machine translation (Bahdanau et al., 2015), and is further improved to multi-head self/cross/-
causal attention (Vaswani et al., 2017). Due to its quadratic time complexity and memory cost
with sequence length, a surge of efficient attention is proposed to improve the efficiency of soft-
max attention. Due to the the sparsity of attention matrix, many researchers propose to explicitly
model a sparse attention mechanism to obtain fast computation without harming performance (Ho
et al., 2019; Tay et al., 2020; Kitaev et al., 2020; Beltagy et al., 2020; Zaheer et al., 2020; Roy
et al., 2021). The low-rank property of attention matrix also brings out matrix decomposition-based
methods (Xiong et al., 2021; Chen et al., 2021). The softmax attention can also be linearized via
exponential kernel decomposition (Choromanski et al., 2021; Peng et al., 2022; 2021; Zheng et al.,
2022; Qin et al., 2022). These attention variants are exploring an efficient way to approximate
softmax attention, but we focus on MLP architecture, which is naturally an efficient architecture.

5 CONCLUSIONS

In this work, we introduced Attentive Multi-Layer Perceptron (AMLP), an efficient plugin alterna-
tive to vanilla attention for non-autoregressive generation tasks. AMLP uses adaptive weights to
learn inter-token interactions as done in attention. And we also put forward two methods adopting
different philosophies to parameterize the adaptive weight matrices in AMLP. Substantial experi-
ments on generation tasks verify that AMLP surpasses attention in most tasks and achieves similar
performances with other strong efficient models in other tasks. Besides, efficiency analysis indi-
cates that AMLP combined NAR model could save time compared to AR models, and save space
compared to vanilla NAR models in long sequence settings.
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A AR-BASED AMLP

We here present the detailed reason why we do not fuse AMLP with AR models.

In AR models, the self/cross attention is different from NAR models
and they require to maintain causality due to teacher forcing training. To enable causal (decoder)
AMLP, the overall time consumption and memory costs in the training phase are hugely increased.
Such drawback is also revealed in most efficient attention (like Nystromformer (Xiong et al., 2021),
Local, cosFormer (Qin et al., 2022), Performer (Choromanski et al., 2021)) that also adopt softmax
kernel decomposition for speed-up. To replace decoder self attention, they also need to pay extra
complexity during training (Peng et al., 2021). Therefore, these efficient attention and AMLP are
also not straightforward to be adopted for AR models.

In contrast to AR models where typical efficient models and AMLP all suffer
from inefficiency, the training objective and identically independent distribution (i.i.d.) assumption
of NAR models avoid teacher forcing. NAR thus suits the application of efficient attention and
AMLP. As a result, AMLP is dedicated to NAR models for even higher efficiency in both training
and inference.

Example of AR-AMLP We present the specific computation steps of AMLP in AR scenario and
explain the drawbacks of AR-AMLP. We take AMLP-Cov as an example. Given an query token g,

the covariances S? and SF of K; and Q¢, and the cross-covariance z; of K; and V¢, Wq k and
Waq k,v are formulated as follows:

Wa, x, = L = Cy(02(S2)) + Ci(02(SK)) (13)
Waq, k,.v, = L/ 02(z) (14)

where SR = S® | + ¢ q;, SK = SK | + k[ k, and z, = z,_; + k; v;. These computation steps
increase heavy memory costs and large time consumption in the training phase, with an additional
O(ned) costs beyond the overall computation. Recurrent computation also harms the parallelism
and further slows down the training process.

B FROM ATTENTION TO AMLP

1. In vanilla attention, softmax(QK ") is a softmax kernel which can be decomposed into a multi-
plication of two kernel functions: ¢(Q)-¢(K) T, which is verified in Performer (Choromanski et al.,
2021), cosFormer (Qin et al., 2022) and LARA (Zheng et al., 2022). Hence, we here use a distance
matrix Y to serve as a bridge which enables QXK T to be decomposed with fewer eigenspectrums
like Performer.

2. The low rank approximation of the attention matrix, softmax(QK "), does not impact the per-
formance much, which is verified by Nystromformer (Xiong et al., 2021). Based on their findings,
the kernel function QXK " can also enjoy lower computation costs from low rank approximation.

3. Combined with two results, AMLP reformulates the attention softmax(QK ") with QXK T and
uses Nystrom’s findings to decompose Y into two matrices. Finally, AMLP reparameterizes the
decomposed matrices and maintains the attentive functionality as Attn(Q, K, V).

C TASK DESCRIPTION

We provide the statistics of tasks in Table 5.
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Table 5: Task statistics of evaluation metrics, input sequence lengths and backbone neural networks.
For encoder-decoder architectures, we show both source and target lengths. (1) denotes the sequence
lengths of encoders and decoders of Tr-TTS. The number of final audio phonemes after the vocoder
is 559 as well.

Task  Dataset Length Model Metric
559 FastSpeech 2
TTS ~ LISpeech 100/141"  Transformer-TTS MCD/MSD
Transformer &
MT  WMT’ 14 EN-DE 23/21 GLAT BLEU
SR FFHQ & CelebA-HQ 16384 SR3 PSNR/SSMI
LSTF ETT 336/720 Informer MSE/MAE

D HYPERPARAMETERS OF TASKS

We provide the hyperparameters of each task in Table 7. We adopt the same hyperparameter sets for
Transformer-TTS and FastSpeech 2, which is referred from Wang et al. (2021). Following Vaswani
et al. (2017) and Qian et al. (2021a), we use the same hyperparameters to train Transformer-base
and GLAT, respectively. We implement Transformer-TTS, FastSpeech 2, GLAT and Transformer
with fairseq (Ott et al., 2019). In “Evaluation Checkpoint” of Table 7, “last” denotes that we use
the last saved checkpoint to test models. “best” denotes that we use the best checkpoint with the
lowest MCD value in the validation set for evaluation. “average last n”” denotes that we create a
new checkpoint whose parameters are averaged on the parameters of last n ones and use this new
checkpoint for performance comparison.

E DETAILS OF ATTENTION

Attention hyperparameters We provide the hyperparameters of attentions applied in different
tasks in Table 8. local attention has one hyperparameter wsize to control the number of tokens
around query one to be attended. ABC has one hyperparameter landmark to control the size of
bounded memory. AMLP has one hyperparameter £ fn_dimension to control the inner dimen-
sionality. Performer has one hyperparameter approx_attn_dim to control the dimensionality of
random feature matrices. For vanilla, gMLP, XCA and cosFormer, they do not adopt hyperparame-
ters.

Implementation details We implement ABC and local attention by ourselves because we can-
not find open-sourced official implementation for them. For Performer, cosFormer, and vanilla
attention, we use their official implementation and rewrite them with PyTorch (Paszke et al.,
2019) if necessary. These attention implementations in PyTorch will be released in https:
//github.com/Anonymous.

F EXPERIMENTAL RESULTS ON ETT DATASET

We report the complete results on ETT-h1, ETT-h2 and ETT-m1 in Table 6.

G EXPERIMENT SETTINGS FOR EFFICIENCY ANALYSIS

The simulation experiment evaluates NAR-AMLP efficiency from running time and memory usage
with respect to sequence length from 256 to 8,192, compared with AR model and vanilla NAR
model. We simulate the generation process with a single efficient module. For AR, we test its causal
attention, which is its bottleneck in generation. For AMLP, we use 64 as the inner dimension with
ReLU activation function. AMLP-Cov andAMLP-PQuery shares the same complexity, so we use
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Table 6: Results on ETT-h1, ETT-h1, and ETT-m1 datasets. n, m are the target and source lengths.

ETThl ETTh2 ETTml
Complexity ~ Model MSE, MAE, MSE| MAE| MSE| MAE|

Multivariate
O(m® +nm)  vanilla 1257 0905 3.548 1652 1.028 0813
ABC 1332 0934 3430 1585 1.037  0.784
Performer 1455 0966 4.018 1770 1203  0.832
O(n +m) cosFormer 1384 0963 3912 1707 1.021  0.792
AMLP 1247 0.894 2748 1312 1015  0.792

Univariate
O(m? +nm)  vanilla 0251 0240 0266 0419 0479  0.619
ABC 0357 0522  0.294 0.44 0430  0.586
Performer 0.267 0.440 0.255 0.411 0.325 0.493
O(n +m) cosFormer 0311 0483 0276 0426 0.408  0.568
AMLP 0346 0509 0260 0415 0420 0575

Table 7: Hyperparameters of different tasks.

Task TTS MT SR LSTF
Backbone FastSpeech 2/ Transformer/GLAT SR Informer
Transformer-TTS
Batch Size 48 - 4 32
Number of Steps (epochs) 20K 100K/300K M 6 (epochs)
Warmup Steps 4K 4K - -
Peak Learning Rate Se-4 Se-4 le-4 le-4
Scheduler Inverse Sqrt Inverse Sqrt Linear Exponential Decay
Optimizer AdamW AdamW AdamW AdamW
Adam (0.9, 0.98) (0.9, 0.98) (0.9, 0.999) (0.9,0.999)
Clip Norm 5.0 5.0 0 0
Attention Dropout 0.1 0.3 0.2 0.05
Weight Decay 0.01 0.0001 0 0
Max Tokens - 65536 - -
Iteration - - - 5
Evaluation Checkpoint best average last 10 average last 5 last

“AMLP” to denote the two variants. The experiments are performed with batch size 12 on a single
A100 GPU, and the results are repeated with 100 runs. We remain running latency data ranging from
the first quatile and the third quatile among the 100 runs to remove noise. Finally, the remaining
figures are averaged to serve as the final time consumption.

Table 8: Hyperparameters of each attention architecture.

Architecture Hyperparameter TTS MT SR LSTF

local wsize 15 5 15 15
ABC landmarks 64 16 16 16
AMLP ffn_dimension 64 16 16 16
Performer approx_attn.dim 64 16 - 16
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H EXPERIMENT RESULTS ON MT AND TTS

We report the performance of cosFormer and Performer on TTS (Table 9) and MT (Table 10) tasks.
We do not include these results in Table 1 and Table 2 because these two models perform far behind
other efficient models. We show their results here for completeness and fair comparison.

Table 9: Automatic evaluation metric on
LJSpeech dataset. All models are trained by

Table 10: BLEU4 scores on WMT14 EN-
DE and WMT14 DE-EN dataset. All models
for comparison are implemented by ourselves.
Subscript figures A denote performance drop
comparing with backbone models. “~” denotes
the attention fails in this dataset.

WMT’ 14
En-Dea De-Ena

Arch Model

ourselves.

A LJSpeech

rch Model MCD| MSD|
Complexity: O(n?) or O ((n + m)2)
AR Tr-TTS 4.0953 2.1985
NAR FS2 3.4748 1.9735
Complexity: O(n + m)

AR Tr-TTS (ABC) 5.1302  2.5957
FS2 (local) 34189 1.9704
FS2 (cosFormer) 3.3998 1.9561
FS2 (Performer) 3.4374 1.9830
NAR FS2(ABC) 3.3925 1.9658
FS2 (XCA) 3.5003 2.0239
FS2 (gMLP) 3.4025 1.9641
FS2 (AMLP) 3.3274 1.9396

18

Complexity: O ((n+ m)?)

AR Tr 27.38 31.26
NAR GLAT 26.24 30.10
Complexity: O(n) or O(n + m)
AR Tr (local) 24.772'(,1 2821205
Tr (ABC) 25.86152  29.09;17
w/ conv 26.38100 30.041 2,
GLAT (10031) 18. 19&05 21 .36&74
GLAT (cosFormer) - -
NAR GLAT (Performer)  17.81g43 -
GLAT (ABC) 21.98426 24.78s53
GLAT (AMLP) 25.00124 28.42 ¢
w/ conv 25.980.26 29.6 1().49
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