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Abstract

We introduce FinLitQA, the first benchmark of long-context financial numerical
reasoning questions derived directly from real credit card agreements. The dataset
contains over 4,300 questions, including first-person variants that reflect how con-
sumers naturally ask about fees and payments. Evaluating multiple large language
reasoning models under Chain-of-Thought (CoT) and Program-of-Thought (PoT)
prompting, we find that first-person CoT improves accuracy, while PoT increases
answer coverage but reduces accuracy. Our error analysis highlights weaknesses
with compounding using the exponential operator, understanding interest, timeline
ordering, categorical policy logic, and minimum payment rules. We find that these
errors often arise in edge cases such as late-payment penalties or small-balance
scenarios that are more likely to affect lower-income or financially vulnerable
individuals.

1 Introduction

The advancements of Large Language Models (LLMs) have unlocked significant opportunities for
tackling knowledge and reasoning-intensive tasks [14]. Such tasks include coding [16, 22, 18],
mathematics [10, 7, 25, 31], logic [24, 11] and beyond. Existing math reasoning benchmarks have
shown that LLMs can achieve impressive results, but they also highlight important limitations. Studies
suggest that model performance in mathematical reasoning is often tied to the kinds of problems and
data distributions the models were trained on, which means their abilities do not always generalize
well across different types of reasoning tasks [13]. Moreover, models exhibit memorization-like
behavior, where they ignore modified assumptions and apply techniques from the original problem,
or even reproduce the outcome of the unmodified version. Together, these findings raise concerns
that current benchmarks may overstate true reasoning ability [15].

These limitations are particularly relevant in the financial domain, which demands interpretabil-
ity, accuracy, and high-stakes decision making. Here, reasoning often requires multi-step cal-
culations, frequently updated assumptions, and specialized terms and rules that are unlikely
to be well represented in pretraining data. The current body of work for financial reasoning
[29, 4, 33, 32, 27, 23, 34, 35, 17, 5, 28] has revealed insights into LLM bottlenecks with respect to
limited business and financial understanding, tradeoffs with respect to cost and performance efficiency
given model size, and the presence of numerical calculation errors. These state-of-the-art benchmarks
in financial reasoning typically draw on questions and problems from financial textbooks, industry
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financial documents such as analyst and published company reports, and professional practice exams
such as those used in CFA or accounting training.

While this line of research has been valuable, a critical frontier remains underexplored and largely
absent from focus: harnessing LLMs to promote financial literacy. Low literacy is consistently
linked to excessive debt [19], bankruptcy [2], and inadequate saving for retirement or emergencies
[20]. At the macro-level, it fuels wealth inequality and weakens economic resilience. Perhaps
nowhere else is the financial literacy crisis more visible than in the education surrounding credit
cards. Credit card debt in the United States has surpassed $1.2 trillion [1]. Low-literacy cardholders
are disproportionately caught in debt spirals, where missed payments lead to mounting interest and
a cycle of borrowing they cannot escape [8]. A significant factor behind this information gap is
the complexity of credit card agreements, which set out the terms and conditions of a credit card,
including how interest rates, grace periods, and penalties are calculated. Credit card agreements are
many pages long and written at a reading level well beyond the average U.S. consumer [26].

There is a clear need for tools that make financial understanding accessible, and recent advances
in LLMs and Generative Al provide a unique opportunity to transform financial knowledge into
personalized, widely accessible education [12]. However, given the high cost of incorrect financial
advice and decision-making, the first step is to rigorously evaluate LLMs’ reasoning ability in the
unique context of financial literacy. As such, to the best of our knowledge, we present the first
financial numerical reasoning benchmark designed to evaluate LLMs’ ability to reason through credit
card agreements and credit-related financial questions. Our contribution is as follows:

* We create the first dataset of long-context financial numerical reasoning questions derived
directly from the terms and conditions of real credit card agreements.

* A collection of first-person financial reasoning questions, attempting to replicate how
individuals naturally frame financial questions.

* We provide evidence that LLMs struggle with context-dependent conditions and reasoning,
revealing failures that mirror broader limitations in general mathematical reasoning.

2 Dataset Overview
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Figure 1: Overview of the FinLitQA construction and evaluation stages, including data preprocessing,
question generation, and model evaluation.

Selecting Credit Card Agreements We collected 27 credit card agreements from the Consumer
Financial Protection Bureau’s database [6], covering major issuers such as American Express and
Discover. We selected agreements from Q4 2024, as terms and conditions can change, and focused



on the highest-volume products in the credit card market. For each provider, we included agreements
from three categories: premium/elite, everyday retail, and subprime cards. This was done to capture
heterogeneity in real-world usage.

In the CFPB database, credit card agreements are provided in PDF format and often include images,
tables, and text. However, to make them accessible for LLMs, we converted all agreements into
Markdown format. Additionally, to ensure fairness, the question generation process relied solely on
these Markdown versions so that no information outside the models’ accessible context was used.

Dataset Description We then created o .
3062 questions spread roughly evenly Table 1: Statistics of Credit Card Agreements and

across the credit cards. Before beginning FINLitQA Dataset.

the question generation process, all anno-
tators were required to familiarize them-

Credit Card Agreements

selves with both the agreements and the  # of Financial Numeric Terms 280
relevant financial terminology. Each an-  # of Words (Med / Avg) 9115 /8830
notator then read through their assigned  # of Percentages (Med / Avg) 20/22.6
agreement and identified financial numeric ~ # of Dollar Amounts (Med / Avg) 15.5/19.25
terms, defined as terms involving a per- # of Bullet Points (Med / Avg) ) 55.5/68.6
centage, dollar value, or unit of time, Ililves)ch—chald Readability Score (Min / 9.2/11.3
from which questions could be constructed. &
Questions were generated with respect to FinLitQA Dataset
these terms, and in many cases involve mul-  Nyumber of Third Person Questions 3062
tiple terms. Question Length (Med / Avg) 30/33.4
. . e Number of First Person Questions 1250
g,lach qube stlofn 1stﬁeﬁnet:f1 tl)y 1ts 1;1put(s), First Person Question Length (Med / Avg) 28.0/31.6
¢ umber of mathematical Operations Ie-—, ;¢ \1,1h Operations Required (Med / Avg) 3/34

quired (as defined by [5]), and its output.
The inputs and outputs fall into one of four
categories: dollar values, units of time, percentages, or binary/categories (e.g., Yes/No, In Default/Not
in Default). Inputs are a combination of user-provided values and information retrieved from the
credit card agreement. Appendix A shows the information for a particular question. Before beginning
the question generation process, all annotators were required to familiarize themselves with both
the agreements and the relevant financial terminology. Data quality was ensured by having multiple
annotators review each question’s mathematical operators and reasoning steps.

In addition, we include 1,250 questions written in the first person. These were created by manually
converting the previously created third-person questions into first-person form. Table 1 summarizes
key statistics of the dataset and the underlying credit card agreements. One notable observation is
the low Flesch—Kincaid readability scores of these agreements, which correspond to reading levels
typically associated with college graduates or professionals [30].

3 Experiments

We evaluate our approach using four large language models of varying sizes and architectures:
Llama-3.3-70B, Qwen3-235B-A22B-Instruct-2507, gpt-oss-120b, and gpt-oss-20b. These models
were selected to provide coverage across different model families (Llama, Qwen, and GPT-style
open-source systems) and parameter scales, ranging from 20B to 235B parameters.

For prompting, we consider two widely used reasoning paradigms: Chain-of-Thought (CoT) (see
Figure 2) and Program-of-Thought (PoT) prompting, as shown in Appendix B. We restrict outputs to
2,000 tokens, a limit that is relatively longer than those used in similar previous tasks.

4 Results

Table 2 shows the performance of the LLMs using CoT and PoT prompting methods, as well as CoT
on the First Person dataset. There are a few interesting observations.

Using First Person We find that COT First Person consistently achieves higher accuracy and lower
unanswered rates than standard COT by a large margin. One explanation is that first-person framing



COT Prompt

System Prompt:

You are a financial expert. You are expected to answer the given question based on the
provided financial document context. Follow these instructions carefully:

1. First, think through the problem step by step, clearly documenting each necessary step of
your reasoning.

2. After completing your analysis, provide a single final conclusion at the end.

3. The final answer can be either a numeric value or a Yes/No response, depending on the
question type.

4. Important: Always place the final answer in the last line of your response, using this
exact format:

"Therefore, the answer is {{final answer}}."

Make sure to include the curly brackets around the final answer.

User Prompt:

{Credit Card Agreement}

Question: {Question}

Let’s think step by step to answer the given question.

Figure 2: Chain-of-Thought (COT) prompt template.

gives the model a stronger signal that the query is a direct user instruction. Because instruction-tuned
datasets often contain first-person queries (e.g., “How much will I owe if...?”), this phrasing is closer
to the distribution models are trained to follow. Recent work on alignment faking shows that large
language models change their behavior based on subtle contextual cues about training or deployment
[9, 21]. In the same way, our findings suggest that first-person framing could act as such a cue,
leading models to provide more complete answers and achieve higher accuracy.

Table 2: Comparison of model performance across COT, COT First Person, and POT settings.

CoT CoT First Person PoT
Model Acc. % Unans. Acc. % Unans. Acc. % Unans.
Llama-3.3-70B-Instruct-Turbo 0.59 21.5 0.75 15.1 0.54 0.2
Qwen3-235B-A22B-Instruct-2507  0.64 28.9 0.79 14.2 0.56 0.7
gpt-0ss-120b 0.69 26.7 0.83 27.4 0.49 0.4
gpt-0ss-20b 0.65 9.5 0.79 7.8 0.48 1.5

CoT vs PoT We also observed that these models performed better with CoT than PoT, even though
PoT almost always produced an answer, suggesting that the models are more effective at reasoning
than at programming, under which circumstances PoT may not necessarily outperform [3]. However,
nearly all questions were answered using PoT, suggesting that improving PoT may be a promising
approach to reducing unanswered questions in reasoning tasks, but at the cost of hallucinations.
Another perspective to consider however, is that retail investors may not run code on their own which
could limit the efficacy of PoT.

Consistent Responses Table 3 highlights distinct agreement patterns across prompting methods.
PoT achieves the highest unanimous agreement (48.5%) but also has over a third of the questions
unanswered. CoT-FP, in contrast, substantially reduces unanswered cases (12.2%) but shows lower
full agreement. This suggests differences in the robustness of reasoning across prompting methods.
PoT leaves many questions unanswered, suggesting weaker reasoning generalizability, but shows
more stable and consistent reasoning when it succeeds, while CoT-FP outperforms CoT in producing
more reliable reasoning paths. All of this analysis should be interpreted with caution, as the models
evaluated are reasoning-enhanced and not specifically tuned for PoT or programming tasks.



Table 3: Percentage of questions answered correctly by exactly k£ models, across prompting methods.
Prompting Method 1 Model 2 Models 3 Models 4 Models 0 Models

CoT 14.7% 20.0% 32.4% 32.9% 28.8 %
CoT-FP 10.1% 18% 33.2% 38.6% 12.16%
PoT 13.4% 16.8% 21.2% 48.5% 34.6%

4.1 Error Analysis

Taking a look at questions where models perform particularly poorly, a few common trends in
incorrect and unanswered questions:

Struggles with Compounding: Models often confuse Annual Periodic Rate (APR), Daily Periodic
Rate (DPR), and the way interest is compounded (daily, monthly, or continuously), or mix up simple
and compound interest. These errors reflect both gaps in domain knowledge and flawed mathematical
reasoning, leading to major mistakes in estimating how interest grows and when payments end.

bl

Piecewise Rules & Thresholds: Models struggle with conditions like “whichever is greater,
minimum charges, fee caps, or tiered penalties. For example, they may always apply 1% of the
balance while ignoring a $5 minimum, or keep adding late fees past a $30 cap. In practice, this
means they follow only one branch of a rule or overlook limits, producing incorrect calculations.
These mistakes matter because such rules often govern late penalties or extra charges—costs that
disproportionately impact people who are already economically vulnerable.

Timeline & Date Ordering: Returned payments, billing cycle closes, grace periods, and due dates
require step by step reasoning. Models often misorder events or miscount days, for example by
starting a grace period before the billing cycle ends, which leads to wrong payment windows and
incorrect fee assessments. These errors are especially harmful in credit card settings because even a
few days’ difference can trigger costly penalties.

Categorical Logic: Some rules depend on account type, transaction category, or special conditions,
which must be checked before any math is done. Models sometimes skip this step and go straight
into calculation, applying the wrong rule. For example, they may charge a late fee on a Student
Card despite a first-time waiver, or apply a foreign transaction fee to a cash advance even when the
agreement excludes it.

Minimum Payments & Small-Balance Rules: Questions involving minimum payments and small
balances are particularly tricky because they require switching between percent-of-balance formulas,
fixed minimums, and other overriding conditions. Models often forget to apply the larger of a
percentage versus a fixed amount, ignore clauses that impose a minimum interest charge, or mishandle
very small balances where fixed fees dominate. These errors are especially impactful since minimum
payments and small balances are common among financially vulnerable cardholders.

5 Conclusion and Further Workshop

We introduce the first dataset of long-context financial numerical reasoning questions derived directly
from the terms and conditions of real credit card agreements. Our experiments show that chain-of-
thought reasoning performs better when framed from a first-person perspective. At the same time, we
find that models struggle with compounding and interest calculations, timeline and date ordering,
categorical logic, and minimum payment or small-balance rules. These weaknesses are especially
concerning because they disproportionately affect vulnerable cardholders, highlighting an important
issue to address.

We plan to benchmark a broader set of models including both reasoning and code-enhanced models.
We also aim to have more in depth error analysis to better understand which stage of the process
creates errors (retrieval, domain knowledge, step-by-step reasoning, or numerical computation).
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A Example Question

Table 4: Example of details created for each question.

Credit Card Agreement | Costco Anywhere Visa

Question If I transfer a debt of $281 to this card at the start of the month, will T ever be
able to pay off the balance at $5 per month?

Balance Transfer APR: 20.49%

Balance Transfer Fee: $5 or 5%

Numerical Inputs

Answer False
Output Type Category
Input Types Dollar Value, Percentage
#1 =281,
#2=15,
#3 =20.49,
#4 =35,
#5=5

#6 = divide(#5, 100),
#7 = add(1, #6),
#8 = multiply(#1, #7)

Operator Arguments #9 = add(#1, #4),
#10 = max(#9, #8)

#11 = divide(#3, 36500),
#12 = add(1, #11)

#13 = exponent(#12, 30),
#14 = subtract(#13, 1)

#15 = multiply(#10, #14),
#16 = greater_than(#2, #15)

B POT Prompt

POT Prompt

System Prompt:
You are a financial expert. You are supposed to generate a Python program to answer the given
question. The returned value of the program is supposed to be the answer. Here is an example of the
Python program:

def solution():
# Define variables name and value based on the given context

# Do math calculation to get the answer

# return answer
return answer

User Prompt:

{Credit Card Agreement}

Question: {Question}

Continue the program to answer the question. The returned value of the program is supposed to be
the answer:

def solution():
# Define variables name and value based on the given context




C Examples of Incorrect Prompt Outputs

Question: A cardholder has the lowest cash advance ATM fee in his credit card agreement. With a $250 cash
advance once a week, how many weeks will it take to owe at least 25% of the original cash advance total in fees?

Model Output

To solve this problem, we need to understand the cash advance ATM fee structure and calculate how many
weeks it will take to accumulate at least 25% of the original cash advance total in fees.

1. **Identity the cash advance ATM fee**: According to the provided credit card agreement, the cash
advance ATM fee is "Either $5 to $10 or 4% to 5% of the Advance amount, whichever is greater (maximum
fee (No Maximum))". ...

2. **Calculate the weekly fee**: With a $250 cash advance, if we apply the 4% fee (which is $10), it’s
higher than the $5 minimum . ..

6. **Find when the total fee is at least 25% of the total cash advance**: We want to find 'n” when the total
fee is at least 25% of the total cash advance. This can be represented as $10n > 0.25 * $250n.

7. **Solve for *n’**: Simplify the inequality $10n > 0.25 * $250n to find 'n’. - $10n > $62.5n - Since
$10n is the fee and $62.5n represents 25% of the total cash advance, we actually need to reconsider our
approach because ...

8. **Correct Approach**: The correct approach is to understand that 25% of the total cash advance is the
target for the total fees. Thus, we should ... However, this step was incorrectly approached. Let’s correct
the calculation by directly addressing the question: How many weeks will it take for the fees to accumulate
to at least 25% of the total cash advances made?

**Correct Calculation**: To find when the total fees equal at least 25% of the total cash advances, we
should consider the ratio of fees to advances and solve for ’n’ correctly.

**Final Calculation**: The error in the previous steps was in incorrectly setting up the equation to solve
for ’n’. The correct way to approach this problem is . ..

**Correct Insight**: The total fee per week is $10, and the total advance per week is $250. The fee is 4%
of the advance. We are looking for how many weeks (’n’) it takes for the total fees to accumulate to at least
25% of the total advances.

**Actual Calculation Needed**: Given that each week the cardholder pays a $10 fee on a $250 cash
advance, and we want to find out after how many weeks the total fees will be at least 25% of the total cash
advances, let’s correct the calculation:

**Final Step**: To solve for 'n’, we recognize that the total fees ($10n) need to be at least 25% of the total
advances ($62.5n, since end of output

The error here is that the model sets up the inequality (10n > 0.25 * 250n), which simplifies to (10n > 62.5n),
a condition that can never be true—so instead of concluding “no solution,” it keeps re-deriving the same step in
a loop.

Question Let’s say our APR is 21.99%, then what is the daily periodic rate and how much interest is charged in
5 days on a $2,500 balance if no payments are made?
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Model Output

To find the daily periodic rate and calculate the interest charged in 5 days on a $2,500 balance with an APR
of 21.99%, we’ll follow these steps:

1. Calculate the Daily Periodic Rate (DPR):
* The formula to calculate the DPR from the APR is: DPR = APR / 365
¢ Given APR =21.99%
e DPR =21.99% / 365
¢ DPR =0.0602 or 6.02% per day (as a decimal, this is 0.0602)

2. Calculate the Interest Charged in 5 Days:
¢ The formula to calculate interest is: Interest = Principal x Rate x Time
* Principal = $2,500, Rate =0.0602, Time =5 days
* Interest = $2,500 x 0.0602 x 5
* Interest = $2,500 x 0.301
* Interest =~ $752.50

However, the interest calculation provided above assumes a simple interest calculation over the period,
which might not exactly match how credit card interest is compounded daily. The correct approach for
calculating interest on a credit card balance, considering daily compounding, involves calculating the daily
interest and then compounding it over the period.

3. Daily Compounding Interest Calculation:
¢ Daily Interest = $2,500 x (21.99% / 365)
¢ Daily Interest ~ $2,500 x 0.0602
* Daily Interest ~ $150.50
* For 5 days, without compounding: $150.50 x 5 = $752.50

¢ With compounding, each day’s balance increases and affects the next day’s interest.

Therefore, the answer is $758.73.

The error is that the daily periodic rate was miscalculated as 0.0602 (6.02 %) instead of the correct 0.000602
(0.0602 %), which inflated the interest by a factor of 100.
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Question: Using the Visa Mastercard Platinum Card, I have a $1,500 balance that I forgot to pay. As a result, a
penalty APR imposed by the company of 27.99% is incurred. How much would I pay each month if I wanted to
pay off the balance in 10 months of equal payments?

Model Output

To calculate the monthly payment needed to pay off the balance in 10 months, we first need to understand
the interest charged and how it affects the total amount to be paid.

Given: - Initial balance: $1,500 - Penalty APR: 27.99% - Time to pay off the balance: 10 months

The penalty APR is an annual rate, so we first convert it to a monthly rate because we’re making monthly
payments.

27.99% _ 0.2799
12 12
To find the monthly payment (M) that will pay off the loan in 10 months, we can use the formula for

monthly payments on a loan, which is:

Monthly APR =

~ 0.023325 or 2.3325% per month

M:P{ r(l )" ]

Q+r)n-1
where: - M = monthly payment - P = principal loan amount (the initial balance) = $1,500 - = monthly

interest rate = 2.3325% = 0.023325 - n = number of payments = 10 months
Plugging the values into the formula:

10
M — 1500 {0.023325(1 +0.023325) ]

(14 0.023325)10 — 1
Calculating the values inside the brackets first:
(14 0.023325)"° ~ 1.2634

0.023325 x 1.2634 ~ 0.02945

1.2634 — 1 = 0.2634
0.02945

~ 0.111
0.2634 0 8

Then, multiplying by P:
M =~ 1500 x 0.1118 =~ 167.7
So, the monthly payment needed to pay off the $1,500 balance in 10 months with a penalty APR of 27.99%
would be approximately $167.70.
Therefore, the answer is $167.70.

The error here is caused by rounding approximations in the exponential calculations and subsequent
multiplications/divisions, which affect the final monthly payment.
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