

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 TENSOR POWER METHODS: FASTER AND ROBUST FOR ARBITRARY ORDER

Anonymous authors

Paper under double-blind review

ABSTRACT

Tensor decomposition is a fundamental method used in various areas to deal with high-dimensional data. Among the widely recognized techniques for tensor decomposition is the Canonical/Polyadic (CP) decomposition, which breaks down a tensor into a combination of rank-1 components. In this paper, we specifically focus on CP decomposition and present a novel faster robust tensor power method (TPM) for decomposing arbitrary order tensors. Our approach overcomes the limitations of existing methods that are often restricted to lower-order (≤ 3) tensors or require strong assumptions about the underlying data structure. By applying the sketching method, we achieve a running time of $\tilde{O}(n^{p-1})$ per iteration of TPM on a tensor of order p and dimension n . Furthermore, we provide a detailed analysis applicable to any p -th order tensor, addressing a gap in previous works. Our proposed method offers robustness and efficiency, expanding the applicability of CP decomposition to a broader class of high-dimensional data problems.

1 INTRODUCTION

In the era of data-driven science and technology, high-dimensional data has become ubiquitous across domains such as computational neuroscience (Bentzur et al., 2022), image processing (Bouveyron et al., 2007), and machine learning (Muja & Lowe, 2014). Higher-order (> 3) tensors have become a powerful paradigm for handling this high-dimensional data. Unlike matrices, these higher-order tensors provide a natural framework for representing multi-modal relationships in data, but they can be computationally expensive and challenging to analyze. To address this issue, tensor decomposition is introduced to reduce the dimensionality while preserving the essential structure of the data.

Tensor decomposition has become a fundamental tool in many fields (Kolda & Bader, 2009), including supervised and unsupervised learning (Anandkumar et al., 2014; Janzamin et al., 2015), reinforcement learning (Azizzadenesheli et al., 2016), statistics, and computer vision (Shashua & Hazan, 2005). Moreover, with the rapid outbreak of COVID-19 and the emergence of new variants driven by a large infectious population, recent research has applied tensor models to analyze pandemic data (Dulal et al., 2022) and used tensor decomposition to study gene expression related to COVID-19 (Taguchi & Turki, 2021). Since gene expression is typically highly complex, tensor decomposition can efficiently help researchers uncover connections between various variables, thereby enhancing the understanding of complex systems. This, in turn, may foster advancements in biological and medical research, ultimately benefiting public health.

A well-known decomposition method is the Candecomp/Parafac (CP) decomposition (Harshman, 1970; Carroll & Chang, 1970). In CP decomposition, the input tensor is decomposed into a set of rank-1 components. Although decomposing arbitrary tensors is NP-hard (Hillar & Lim, 2013), it becomes feasible for tensors with linearly independent components by applying a whitening procedure to transform them into orthogonally decomposable tensors. The tensor power method (TPM) is a straightforward and effective technique for decomposing an orthogonal tensor and serves as an extension of the matrix power method. To be more specific, TPM requires calculating the inner product of two vectors: one derived from a rank-1 matrix and the other from a segment of a tensor. This type of inner product can be estimated much more efficiently because sketch vectors have significantly lower dimensions, making it more convenient to compute their inner product. Additionally, sketching can be replaced with sampling to approximate inner products (Song et al., 2016).

When there is no noise in the data, the TPM, through random initialization followed by deflation, can effectively recover the components correctly. However, due to the NP-hard nature of arbitrary tensor decomposition, the perturbation analysis of this method is more complex compared to the matrix case. When large amounts of arbitrary noise are added to an orthogonal tensor, its decomposition becomes intractable. Previous research has demonstrated guaranteed component recovery under bounded noise conditions (Anandkumar et al., 2014), with further improvements outlined in (Anandkumar et al., 2017). More recent work (Wang & Anandkumar, 2016) has further refined the noise requirements.

Since real-world datasets are inherently noisy and high-order, existing methods for CP decomposition face significant challenges when applied to such data. Traditional approaches often rely on restrictive assumptions about tensor structure or are limited to low-order tensors (≤ 3), thereby constraining their applicability to many real-world scenarios. Moreover, many of these methods suffer from high computational complexity, making them impractical for large-scale or high-dimensional datasets. These limitations underscore the pressing need for a robust and scalable solution capable of handling tensors of arbitrary orders with efficiency and accuracy.

1.1 OUR RESULT

Motivated by these challenges, we propose an algorithm that not only relies on milder assumptions but also is suitable for a broader range of tensor choices. Specifically, we generalize the previous robust TPM algorithm for third-order tensors (Wang & Anandkumar, 2016) to tensors of arbitrary orders. Our proposed algorithm, given any *arbitrary-order* tensor $A \in \mathbb{R}^{n^p}$, outputs the estimated eigenvector/eigenvalue pair along with the deflated tensor. We present our main result as follows:

Theorem 1.1 (Informal version of Theorem D.2). *There is a robust TPM (Algorithm 1) that takes any p -th order and dimension n tensor as input, uses $\tilde{O}(n^p)$ space and $\tilde{O}(n^p)$ time in initialization, and in each iteration, it takes $\tilde{O}(n^{p-1})$ time.*

Notation. For any matrix $A \in \mathbb{R}^{n \times k}$, we use $\|A\| := \max_{x \in \mathbb{R}^k \setminus \{0\}^k} \|Ax\|_2 / \|x\|_2$ to denote the spectral norm of A . We use $\|x\|_2 := (\sum_{i=1}^n x_i^2)^{1/2}$ to denote the ℓ_2 norm of vector x . For two vectors $u \in \mathbb{R}^n$ and $v \in \mathbb{R}^n$, we use $\langle u, v \rangle$ to denote inner product, i.e., $\langle u, v \rangle = \sum_{i=1}^n u_i v_i$.

Let $p \geq 1$ denote some integer. We say $E \in \mathbb{R}^{n \times \dots \times n}$ (where there are p of n), if E is a p -th order tensor and every dimension is n . For simplicity, we write $E \in \mathbb{R}^{n^p}$. If $p = 1$, then E is a vector. If $p = 2$, then $E \in \mathbb{R}^{n \times n}$ is a matrix. If $p = 3$, then $E \in \mathbb{R}^{n \times n \times n}$ is a 3rd-order tensor. For any two unit vectors x, y , we define $\cos\theta(x, y) = \langle x, y \rangle$. For a 3rd-order tensor $E \in \mathbb{R}^{n \times n \times n}$, we have $E(a, b, c) = \sum_{i=1}^n \sum_{j=1}^n \sum_{k=1}^n E_{i,j,k} a_i b_j c_k \in \mathbb{R}^n$, $\|E\| := \max_{x: \|x\|_2=1} |E(x, x, x)|$, $E(I, b, c)_i = \sum_{j=1}^n \sum_{k=1}^n E_{i,j,k} b_j c_k \in \mathbb{R}^n, \forall i \in [n]$, and $E(I, I, c)_{i,j} = \sum_{k=1}^n E_{i,j,k} c_k \in \mathbb{R}^{n \times n}, \forall i, j \in [n] \times [n]$.

The notation of tensor for $p = 3$ can be generalized to any p -th order tensor for $p > 3$. For $a, b, c \in \mathbb{R}^n$ and $E = a \otimes b \otimes c \in \mathbb{R}^{n \times n \times n}$, we have $E_{i,j,k} = a_i b_j c_k, \forall i \in [n], j \in [n], k \in [n]$. For $E = a \otimes a \otimes a = a^{\otimes 3} \in \mathbb{R}^{n \times n \times n}$, we have $E_{i,j,k} = a_i a_j a_k, \forall i \in [n], j \in [n], k \in [n]$. For $E = \sum_{i=1}^m u_i^{\otimes 3}$, we have $E(a, b, c) = \sum_{i=1}^m (u_i^{\otimes 3}(a, b, c)) = \sum_{i=1}^m \langle u_i, a \rangle \langle u_i, b \rangle \langle u_i, c \rangle \in \mathbb{R}$.

For $\mu \in \mathbb{R}^d$ and $\Sigma \in \mathbb{R}^{n \times n}$, we use $\mathcal{N}(\mu, \Sigma)$ to denote a Gaussian distribution with mean μ and covariance Σ . For $x \sim \mathcal{N}(\mu, \Sigma)$, we denote x as a Gaussian vector.

For all, $a \in \mathbb{R}^n$, we use $\max_{i \in [n]} a_i$ to denote a value b over sets $\{a_1, a_2, \dots, a_n\}$. For any vector $a \in \mathbb{R}^n$, we use $\arg \max_{i \in [n]} a_i$ to denote the index j such that $a_j = \max_{i \in [n]} a_i$.

Roadmap. In Section 2, we present the related work. In Section 3, we introduce the techniques used in this paper. In Section 4, we present our main result. In Section 5, we summarize this paper and provide some future research directions in this field.

108

2 RELATED WORK

109
110 **Tensor decomposition.** (Hitchcock, 1927) is the first work that proposed the CP decomposi-
111 tion. Several works have focused on the efficient and fast decomposition of tensors (Tsourakakis,
112 2010; Phan et al., 2013; Choi & Vishwanathan, 2014; Huang et al., 2013; Kang et al., 2012; Wang
113 et al., 2014; Bhojanapalli & Sanghavi, 2015). Later work (Wang et al., 2015) provided a method
114 based on the random linear sketching technique to enable fast decomposition for orthogonal tensors.
115 (Robeva, 2016) studies the properties of symmetric orthogonally decomposable tensors. (Robeva &
116 Seigal, 2017) incorporate the spectral theory into these orthogonally decomposable tensors. Addi-
117 tionally, (Song et al., 2016) provided another approach to importance sampling, with a faster running
118 time. The canonical polyadic decomposition is a very famous and popular technique of decomposi-
119 tion, which is the CANDECOMP / PARAFAC (CP) decomposition (Song et al., 2016). In CP
120 decomposition, a tensor can be broken down into a combination of rank-1 tensors that add up to it
121 (Harshman, 1970), and this combination is the only possible one up to some minor variations, such
122 as scaling and reordering of the tensors. In other words, there is only one way to decompose the
123 tensor, and any other arrangement of the rank-1 tensors that add up to the same tensor is not possi-
124 ble. This property of tensor decomposition is more restrictive than that of matrices, and it holds
125 for a broader range of tensors. Therefore, tensor decomposition is considered to be more rigid than
126 matrix decomposition. In (Wang et al., 2015), multiple applications, including computational neuro-
127 science, data mining, and statistical learning, of tensor decomposition are mentioned. (Kileel et al.,
128 2021; Wang et al., 2025; Kileel & Pereira, 2025) present a power method for CP decomposition for
129 both symmetric and asymmetric tensors of arbitrary order. The works also guarantees SS-HOPM
130 converges with thorough analysis. In contrast, our work focuses on using sketching techniques to
131 obtain a faster TPM for arbitrary order p in the orthogonal tensor setting

132 **Unique tensor decomposition.** Previous research in algebraic statistics has already linked tensor
133 decompositions to the development of probabilistic models. By breaking down specific moment
134 tensors using low-rank decompositions, researchers could decide the extent of the identifiability
135 of latent variable models (Allman et al., 2009a;b; Rhodes & Sullivant, 2012). The utilization of
136 Kruskal’s theorem in (Kruskal, 1977) was crucial in establishing the accuracy of identifying the
137 model parameters. Nevertheless, this method assumes that people can use an infinite number of
138 samples and cannot provide any information on what is the minimum sample size required to learn
139 the model parameters in these given error bounds. Relying solely on Kruskal’s theorem does not
140 suffice to determine the bounds of sample complexity, since by using it, we can only get that the low-
141 rank decompositions of actual moment tensors are unique, but we cannot get enough information
142 about the decomposition of empirical moment tensors. Considering the necessary sample size to
143 learn the parameters of the model, we need to get a uniqueness guarantee which is more robust.
144 We need this guarantee satisfying the requirement that whenever T' , which is an empirical moment
145 tensor, closely approximates T , which is a moment tensor, a low-rank decomposition of T' would
146 also closely resemble a low-rank decomposition of T .

147 Due to space constraints, we move related works of Canonical/Polydic decomposition, Tucker de-
148 composition and Power Method to Appendix A.1, Sketching techniques to Appendix A.2 and Ap-
149 pendix A.3.

150

3 TECHNIQUE OVERVIEW

151 In this section, we present a summary of the methods used in our analysis. Since our formal proofs
152 presented in the appendix are very long, we use this section to present the sketch of proofs for the
153 important lemmas and theorems. Specifically, in paragraphs “recoverability of eigenvectors im-
154 plied by bounded noise” and “analysis of the recoverability”, we present the techniques for proving
155 Theorem 4.9. In paragraph “bounding the recovery error”, we present the techniques for proving
156 Lemma 3.1 (or equivalently Theorem D.1). Finally, in the paragraph “sketching technique”, we
157 present how we use the sketching method to generate the $(1 \pm \epsilon)$ approximation, which supports
158 Lemma 4.2.

159 **Loosened assumption.** Our main breakthrough is that we generalize the robust tensor power
160 method to support any order tensors. It efficiently resolves the drawback of the earlier method

162 in (Wang & Anandkumar, 2016) that is limited in the tensor of order below 3 and requires very strict
 163 assumptions. Moreover, we have created a strong and adaptable algorithm that can handle a variety
 164 of tensor data: natural language corpora, images, videos, etc. Then, we explain how we generalize
 165 this in detail.
 166

167 **Recoverability of eigenvectors implied by bounded noise.** Starting from the construction of
 168 the input tensor $A = A^* + \tilde{E} \in \mathbb{R}^{n^p}$ where it consists of a part of decomposable tensor A^* and a
 169 noise term \tilde{E} , we show that, for $u_t \in \mathbb{R}^n$ being a unit vector and $c_0 \geq 1$ and $\epsilon > 0$, if the norm is
 170 bounded, in the form of $\|\tilde{E}(I, u_t, \dots, u_t)\|_2 \leq 6\epsilon/c_0$ and $|\tilde{E}(v, u_t, \dots, u_t)| \leq 6\epsilon/(c_0\sqrt{n})$, where
 171 u_t is the approximate eigenvector at iteration t of our algorithm (see Algorithm 1), v_j is one of
 172 the orthonormal eigenvectors of the original, unperturbed tensor A^* . Then the compositions of A^*
 173 is able to be recovered from A (see details in Appendix D). **In this paper, we focus on symmetric**
 174 **tensors. The results can be directly extended to asymmetric tensors because these tensors can first be**
 175 **symmetrized using simple matrix operations (Anandkumar et al., 2012).** Formally, the eigenvectors
 176 have the following properties:

177 **Part 1.** The difference of the tangent from an eigenvector to the two unit vectors is bounded by a
 178 term $18\epsilon/(c_0\lambda_1)$ of the corresponding eigenvalue (see definition of $\tan \theta$ in Def. 4.3):
 179

$$\tan \theta(v_1, u_{t+1}) \leq 0.8 \tan \theta(v_1, u_t) + 18\epsilon/(c_0\lambda_1).$$

181 **Part 2.** Tail components are bounded by the top component, in the power of $p - 2$:
 182

$$\max_{j \in [k] \setminus \{1\}} \lambda_j |v_j^\top u_t|^{p-2} \leq (1/4)\lambda_1 |v_1^\top u_t|^{p-2}.$$

185 **Part 3.** With all j being an arbitrary element in $\{2, \dots, k\}$,
 186

$$|v_j^\top u_{t+1}| / |v_1^\top u_{t+1}| \leq 0.8 |v_j^\top u_t| / |v_1^\top u_t| + 18\epsilon/(c_0\lambda_1\sqrt{n}).$$

187 As these are generalized statements from previous results (Wang & Anandkumar, 2016; Anandku-
 188 mar et al., 2014) from bounded order ($p \leq 3$) to general order p , the proof requires a much different
 189 analysis. We described the details of our approach in the following paragraph.
 190

192 **Analysis of the recoverability.** To show part 1 (see the details in Appendix C), we have to
 193 find the upper bound of $\tan \theta(v_1, u_{t+1})$. We first turn the tangent into terms of sine and cosine,
 194 which can be represented by the norm of the tensors. Then by simply using Cauchy-Schwarz, we
 195 can find the upper bound of the term by $\tan \theta(v_1, u_{t+1}) \leq \frac{\|V^\top A^*(I, u_t, \dots, u_t)\|_2 + \|V^\top \tilde{E}_{u_t}\|_2}{|v_1^\top A^*(I, u_t, \dots, u_t)| - |v_1^\top \tilde{E}_{u_t}|}$, where
 196

197 $V = (v_2, \dots, v_k, \dots, v_n) \in \mathbb{R}^{n \times (n-1)}$ is an orthonormal basis and is the complement of v_1 . A
 198 tensor is said to be orthogonally decomposable if in the above decomposition $\langle v_i, v_j \rangle = 0$ for all
 199 $i \neq j$. Using a property for orthogonal tensor that, for $A^* = \sum_{j=1}^k \lambda_j v_j^{\otimes p} \in \mathbb{R}^{n^p}$, it holds that
 200 for any $j \in [k]$, $|v_j^\top A^*(I, u, \dots, u)| = \lambda_j |v_j^\top u|^{p-1}$, we are able to upper bound $\tan \theta(v_1, u_{t+1})$
 201 with $\tan \theta(v_1, u_t)$ in the form of $\tan \theta(v_1, u_{t+1}) \leq \tan \theta(v_1, u_t) \cdot \frac{1}{4} \cdot B_1 + B_1 \cdot B_2$, where B_1
 202 and B_2 are two simplified terms defined as $B_1 := \frac{1}{1 - |v_1^\top \tilde{E}_{u_t}| / (\lambda_1 |v_1^\top u_t|^{p-1})}$ and $B_2 := \frac{\|V^\top \tilde{E}_{u_t}\|_2}{\lambda_1 |v_1^\top u_t|^{p-1}}$.
 203 Using the constraint on \tilde{E} in Theorem 4.9 and Corollary C.12, we further show that $B_1 \leq 1.1$ and
 204 $B_2 \leq 18\epsilon/(c_0\lambda_1)$. Combining all these, we complete the proof of the first property.
 205

206 Regarding the second part, using the property for orthogonal tensor, we lower bound the term
 207 $\frac{|v_1^\top u_{t+1}|}{|v_j^\top u_{t+1}|} \geq \frac{\frac{9}{10} |v_1^\top u_t|}{\frac{1}{4} |v_j^\top u_t| + \frac{1}{10} |v_1^\top u_t|}$. We then divide the proof into two conditions. First, if $|v_j^\top u_t| <$
 208 $|v_1^\top u_t|$, then the proportion of the top component over other rest components can be easily lower
 209 bounded by $\frac{\lambda_1 |v_1^\top u_{t+1}|^{p-2}}{\lambda_j |v_j^\top u_{t+1}|^{p-2}} \geq \frac{\lambda_1}{\lambda_j} \cdot 2^{p-2}$. For the opposite condition that $|v_j^\top u_t| \geq |v_1^\top u_t|$, we give a
 210 more comprehensive analysis than previous work (see (Wang & Anandkumar, 2016)'s Lemma C.2).
 211 We show that for all p being greater than or equal to 3, it holds that $\frac{\lambda_1 |v_1^\top u_{t+1}|^{p-2}}{\lambda_j |v_j^\top u_{t+1}|^{p-2}} \geq 4 \cdot 2^{p-2}$.
 212 The final property is also proved in a similar way. For simplicity, we first define two terms
 213 $B_3 := \frac{1}{1 - |v_1^\top \tilde{E}_{u_t}| / (\lambda_1 |v_1^\top u_t|^{p-1})}$ and $B_4 := \frac{|v_j^\top \tilde{E}_{u_t}|}{\lambda_1 |v_1^\top u_t|^{p-1}}$. Similarly, we find the upper bound
 214

216 $\frac{|v_j^\top u_{t+1}|}{|v_1^\top u_{t+1}|} \leq \frac{|v_j^\top u_t|}{|v_1^\top u_t|} \cdot \frac{1}{4} B_3 + B_3 \cdot B_4$. B_3 can be easily bounded by a similar proof if $|v_1^\top u_t| \geq 1 - \frac{1}{c_0^2 p^2 k^2}$.
 217 For B_4 , we divide it into two case: $|v_1^\top u_t| \leq 1 - \frac{1}{c_0^2 p^2 k^2}$ and $|v_1^\top u_t| > 1 - \frac{1}{c_0^2 p^2 k^2}$. By a different
 218 discussion, we can show that $B_4 \leq 18\epsilon/(c_0 \lambda_1 \sqrt{n})$.
 219

221 **Bounding the recovery error** We now step to the final technical lemma which shows the bound
 222 of the approximation error of the output of our algorithm:
 223

224 **Lemma 3.1** (Informal version of Theorem D.1). *Let $p \geq 3$, $k \geq 1$, and $A = A^* + E \in \mathbb{R}^{n^p}$ be
 225 an arbitrary tensor satisfying $A^* = \sum_{i=1}^k \lambda_i v_i^{\otimes p}$. Suppose that λ_1 is the greatest values in $\{\lambda_i\}_{i=1}^k$
 226 and λ_k is the smallest values in $\{\lambda_i\}_{i=1}^k$. The outputs obtained from the robust tensor power method
 227 are $\{\hat{\lambda}_i, \hat{v}_i\}_{i=1}^k$. Let E satisfy that $\|E\| \leq \epsilon/(c_0 \sqrt{n})$. Then, there exists a permutation $\pi : [k] \rightarrow [k]$,
 228 such that $\forall i \in [k]$, $|\lambda_i - \hat{\lambda}_{\pi(i)}| \leq \epsilon$ and $\|v_i - \hat{v}_{\pi(i)}\|_2 \leq \epsilon/\lambda_i$.*
 229

230 This Lemma is the key component of our main Theorem (Theorem 1.1). We use mathematical
 231 induction to prove this Lemma (Section D). To show the base case, we need to bound three different
 232 terms, namely $|\hat{v}_1 - v_1|$, $|\hat{\lambda}_1 - \lambda_1|$, and $|\hat{v}_1^\top v_j|$.
 233

234 To bound $|\hat{v}_1 - v_1|$, we need to utilize the properties of angle and apply the definitions and Lemmas
 235 we develop in Section 4. First, we can show $\tan \theta(u_0, v_1) \leq \sqrt{n}$. By using the fact that $|u_{t^*}^\top v_1| =$
 236 $1 - \frac{1}{c_0^2 p^2 k^2}$ together with some respective properties of $u_{t^*}^\top$ and v_1 , we can get $\|u_{t^*} - v_1\|_2^2 =$
 237 $2/(c_0^2 p^2 k^2)$. Finally, we can bound $|\hat{v}_1 - v_1|$ using this information and recursively applying Part 1
 238 of Theorem 4.9.
 239

240 For the second term $|\hat{\lambda}_1 - \lambda_1|$, we simplify it and split that into three parts, namely B_5 , B_6 , and B_7
 241 which are defined as follows

- 242 • $B_5 := |\tilde{E}(\hat{v}_1, \dots, \hat{v}_1)|$,
- 243 • $B_6 := |\lambda_1| |v_1^\top \hat{v}_1|^p - \lambda_1|$, and
- 244 • $B_7 := \sum_{j=2}^k \lambda_j |v_j^\top \hat{v}_1|^p$..

245 It suffices to bound these three terms. Using the properties of tensor spectral norm and various
 246 inequalities we develop in Section D, we prove that $B_5 \leq \epsilon/12$, $B_6 \leq \epsilon/12$, and $B_7 \leq \epsilon/4$. By
 247 putting these together, we get that $|\hat{\lambda}_1 - \lambda_1| \leq \epsilon/12 + \epsilon/12 + \epsilon/4 \leq \epsilon$. Moreover, we need to give ϵ a
 248 proper value. If ϵ is too big, we might not get our desired result. On the other hand, if ϵ is too small,
 249 the result might be meaningless. Finally, by setting $\epsilon < \frac{1}{4} k^{1/(p-1)} \lambda_k$, we get the desired result.
 250

251 What is left out is the third term $|\hat{v}_1^\top v_j|$. We need to recursively apply the third part of Theorem 4.9.
 252 We show that $|v_j^\top u_{t^*}| / |v_1^\top u_{t^*}| \leq 0.8^{t^*} \cdot 1/(1/\sqrt{n})$. In the end, by choosing proper T and t^* values,
 253 we can get our desired bound.
 254

255 In the inductive case, the arrangement of the proof is just like the ones in the base case: we also need
 256 to bound these three terms. Moreover, for i being larger, we also need to consider the noise, namely
 257 $\tilde{E} = E + \sum_{i=1}^r E_i + \bar{E} \in \mathbb{R}^{n^p}$, which adds more complexity to the condition we encounter.
 258

259 **Sketching technique.** Inspired by a recent sketching technique (Cherapanamjeri & Nelson, 2020),
 260 we apply a similar sketching operation to develop a distance estimation data structure to apply in
 261 our tensor power method. Our data structure uses the Randomized Hadamard Transform (RHT)
 262 to generate the sketching matrix. The data structure stores the sketches of a set of maintained
 263 tensors $\{A_i\}_{i \in [n]} \subseteq \mathbb{R}^{n^{p-1}}$. Let $A^* = \sum_{i=1}^k \lambda_i v_i^{\otimes p}$, then A_i is the order-($p-1$) slice of A^* , i.e.,
 264 $\sum_{j=1}^k \alpha_{i,j} x_j^{\otimes (p-1)}$. Now, when a query tensor of the form $q = u^{\otimes (p-1)}$ comes, our data structure
 265 can read $\{x_j\}_{j \in [k]}$, $\alpha \in \mathbb{R}^{n \times k}$, $u \in \mathbb{R}^n$, and return an $(1 \pm \epsilon)$ estimated product $v \in \mathbb{R}^n$ such it
 266 approximates $\langle A_i - \sum_{j=1}^k \alpha_{i,j} x_j^{\otimes (p-1)}, u^{\otimes (p-1)} \rangle$. This procedure runs fast in time $\tilde{O}(\epsilon^{-2} n^{p-1} +$
 267 $n^2 k)$. Applying this data structure when computing the error, we are able to achieve our final fast
 268 TPM algorithm.
 269

270 **4 ROBUST TENSOR POWER METHOD ANALYSIS FOR GENERAL ORDER**
 271 $p \geq 3$
 272

273 The goal of this section is to give a sketch of the proof of our main result (see Theorem 1.1).
 274 Comparing with Section 3, which present the techniques for proving the important components of
 275 our main result, namely Lemma 3.1 and Theorem 4.9, in this section, we move on to the high level
 276 picture where how these important components may support Theorem 1.1 and Algorithm 1. In
 277 Section 4.1, we give an overview of our main algorithm and present the meaning of the important
 278 data structures being used in this algorithm, where this main algorithm is paired with our main
 279 theorem, Theorem 1.1. In Section 4.2, we analyze the properties of the p -th order tensor, where p
 280 is an arbitrary positive integer greater than or equal to 3. These properties are generalized from the
 281 third and the fourth order tensors. In Section 4.3, we generalize the properties of the existing robust
 282 tensor power method from the third order to any arbitrary order greater than or equal to three.

283 In short, our main theorem can be proved by combining the efficient implementation of the key
 284 operations needed in the tensor power method (Lemma 4.2) and the theoretical guarantees for the
 285 robust tensor power method (Lemma 3.1).

287 **4.1 AN OVERVIEW OF OUR MAIN ALGORITHM**
 288

289 **Algorithm 1** Our main algorithm

290 1: **procedure** FASTTENSOR(A)
 291 2: ds.INIT(A)
 292 3: **for** $\ell = 1 \rightarrow L$ **do**
 293 4: **for** $t = 1 \rightarrow T$ **do**
 294 5: $u^{(\ell)} \leftarrow \text{ds.QUERY}(u^{(\ell)})$ ▷ Lemma 4.2
 295 6: $u^{(\ell)} \leftarrow u^{(\ell)} / \|u^{(\ell)}\|_2$
 296 7: **end for**
 297 8: $\lambda^{(\ell)} \leftarrow \text{ds.QUERYVALUE}(u^{(\ell)})$ ▷ Lemma 4.2
 298 9: **end for**
 299 10: $\ell^* \leftarrow \arg \max_{\ell \in [L]} \lambda^{(\ell)}$
 300 11: $u^* \leftarrow u^{(\ell^*)}$
 301 12: **for** $t = 1 \rightarrow T$ **do**
 302 13: $u^* \leftarrow \text{ds.QUERY}(u^*)$
 303 14: $u^* \leftarrow u^* / \|u^*\|_2$
 304 15: **end for**
 305 16: $\lambda^* \leftarrow \text{ds.QUERYVALUE}(u^*)$
 306 17: **return** λ^*, u^*
 307 18: **end procedure**

308 In our main algorithm (Algorithm 1), we use $\text{ds.INIT}(A)$ to initialize the data structure. INIT can
 309 take n tensors, $A_1, A_2, A_3, \dots, A_n \in \mathbb{R}^{n^{p-1}}$. We use $\text{ds.QUERY}(u^{(\ell)})$, which takes $u^{(\ell)} \in \mathbb{R}^n$ as
 310 an input, to output a vector $v^{(\ell)} \in \mathbb{R}^n$, where each entry of $v^{(\ell)}$ is an approximation of $\langle A_i, u^{\otimes(p-1)} \rangle$,
 311 for all $i \in [n]$. Finally, $\text{ds.QUERYVALUE}(u^{(\ell)})$ is similar to $\text{ds.QUERY}(u^{(\ell)})$: it takes $u^{(\ell)} \in \mathbb{R}^n$ as
 312 an input and output a real number $\lambda^{(\ell)} \in \mathbb{R}$, which is an approximation of $\langle A, u^{\otimes p} \rangle$.

314 Below, we present the efficient implementation of the data structure we need.

315 **Definition 4.1** (Finding the top eigenvector and top- k eigenvectors). *Given a collection of n tensors*
 316 $A_1, A_2, \dots, A_n \in \mathbb{R}^{n^{p-1}}$, *the goal is to design a structure that supports the following operations*

318 • INIT ($A_1, \dots, A_n \in \mathbb{R}^{n^{p-1}}$). *It takes n tensors as inputs and creates a data structure.*
 319
 320 • QUERY ($u \in \mathbb{R}^n$), *the goal is to output a vector $v \in \mathbb{R}^n$ such that $v_i \approx \langle A_i, u^{\otimes(p-1)} \rangle$, $\forall i \in [n]$*
 321
 322 • QUERY($\{x_i\}_{i \in [k]} \in \mathbb{R}^n, \alpha \in \mathbb{R}^{n \times k}, u \in \mathbb{R}^n$). *the goal is to output a vector $v \in \mathbb{R}^n$ such*
 323 *that $v_i \approx \langle A_i - \sum_{j=1}^k \alpha_{i,j} x_j^{\otimes(p-1)}, u^{\otimes(p-1)} \rangle$, $\forall i \in [n]$*

324 We state our data structure as follows:

325
 326 **Lemma 4.2** (Data Structure). *Given n tensors $A_1, A_2, \dots, A_n \in \mathbb{R}^{n^{p-1}}$ where $\|A_i\|_F \leq D_i, \forall i \in [n]$, we let $\|A\|_F \leq D$. Let $\epsilon, \delta \in (0, 1/2)$. Then, there exists a randomized data structure with the following operations:*

- 327 • $\text{INIT}(A_1, \dots, A_n \in \mathbb{R}^{n^{p-1}})$: It preprocesses n tensors, in time $\tilde{O}(\epsilon^{-2}n^p \log(1/\delta))$.
- 328 • $\text{QUERY}(u \in \mathbb{R}^n)$. It takes a unit vector $u \in \mathbb{R}^n$ as input. The goal is to output a vector $v \in \mathbb{R}^n$ such that for all $i \in [n]$, $(1 - \epsilon) \cdot \langle A_i, u^{\otimes(p-1)} \rangle - D_i \cdot \epsilon \leq v_i \leq (1 + \epsilon) \cdot \langle A_i, u^{\otimes(p-1)} \rangle + D_i \cdot \epsilon$. This can be done in time $\tilde{O}(\epsilon^{-2}n^{(p-1)} \log(1/\delta))$.
- 329 • $\text{QUERYVALUE}(u \in \mathbb{R}^n)$. The goal is to output a number $v \in \mathbb{R}$ such that $(1 - \epsilon) \langle A, u^{\otimes p} \rangle - D \cdot \epsilon \leq v \leq (1 + \epsilon) \langle A, u^{\otimes p} \rangle + D \cdot \epsilon$. This can be done in time $\tilde{O}(\epsilon^{-2}n^{(p-1)} \log(1/\delta))$.
- 330 • $\text{QUERYRES}(\{x_j\}_{j \in [k]} \in \mathbb{R}^n, \alpha \in \mathbb{R}^{n \times k}, u \in \mathbb{R}^n)$. The goal is to output a vector $v \in \mathbb{R}^n$ such that for all $i \in [n]$,

$$\begin{aligned} 340 \quad & (1 - \epsilon) \cdot \langle A_i - \sum_{j=1}^k \alpha_{i,j} x_j^{\otimes(p-1)}, u^{\otimes(p-1)} \rangle - D_i \cdot \epsilon \leq v_i \\ 341 \quad & \leq (1 + \epsilon) \cdot \langle A_i - \sum_{j=1}^k \alpha_{i,j} x_j^{\otimes(p-1)}, u^{\otimes(p-1)} \rangle + D_i \cdot \epsilon. \end{aligned}$$

342 This can be done in time $\tilde{O}(\epsilon^{-2}n^{(p-1)} \log(1/\delta) + n^2k)$.

343 All the queries are robust to adversary type queries.

344 *Proof.* The correctness of INIT and QUERY directly follows from (Cherapanamjeri & Nelson, 2020).

345 For the QUERYRESIDUAL, the running time only need to pay an extra term is computing $\langle \sum_{j=1}^k \alpha_{i,j} x_j^{\otimes(p-1)}, u^{\otimes(p-1)} \rangle$ which is sufficient just to compute $\sum_{j=1}^k \alpha_{i,j} \langle x_j, u \rangle^{p-1}$. The above 346 step takes $O(kn)$ time. Since there are n different indices i . So overall extra time is $O(n^2k)$. \square

347 4.2 USEFUL FACTS

348 We finish presenting the efficient implementation of the key operations. Now, we move on to the sketch of proof for the theoretical guarantees for the robust tensor power method (Lemma 3.1). Proving this is not trivial, as we presented in the technique overview (see Section 3). We need to first prove some important facts, where these facts are frequently used in the proof of Theorem 4.9, and then generalize Theorem 4.9 to obtain Lemma 3.1. First, we give the formal definitions of sin, cos, and tan.

349 **Definition 4.3.** For u, v be unit vectors, we define $\cos \theta(u, v) := \langle u, v \rangle$, $\sin \theta(u, v) := \sqrt{1 - \cos^2 \theta(u, v)}$ and $\tan \theta(u, v) := \sin \theta(u, v) / \cos \theta(u, v)$.

350 We use the following facts to support the analysis of recoverability.

351 **Fact 4.4** (Informal version of Fact B.7). Let $p \geq 3$. Let $A^* = \sum_{j=1}^k \lambda_j v_j^{\otimes p} \in \mathbb{R}^{n^p}$ be the orthogonal 352 tensor. Then, for all $j \in [k]$, given a vector $u \in \mathbb{R}^n$, we can get $|v_j^\top A^*(I, u, \dots, u)| = \lambda_j |v_j^\top u|^{p-1}$.

353 The following fact provides the upper bound for $E(u, v, \dots, v)$ and $\|E(I, v, \dots, v)\|_2$, which is 354 used for the norm bounding analysis (see details in Section C and D).

355 **Fact 4.5.** Let $E \in \mathbb{R}^{n^p}$ is an arbitrary orthogonal tensor and $u, v \in \mathbb{R}^n$ are two arbitrary unit 356 vectors. Then, we have $|E(u, v, \dots, v)| \leq \|E\|$ and $\|E(I, v, \dots, v)\|_2 \leq \sqrt{n} \|E\|$.

357 *Proof.* Part 1 follows trivially from the definition of $\|E\|$.

378 For part 2, we define a unit vector $w \in \mathbb{R}^n$ to be $(1/\sqrt{n}, \dots, 1/\sqrt{n})$,
 379

$$\begin{aligned} 380 \quad \|E(I, v, \dots, v)\|_2^2 &= \sum_{i_1=1}^n \left(\sum_{i_2=1}^n \cdots \sum_{i_p=1}^n E_{i_1, i_2, \dots, i_p} v_{i_2} \cdots v_{i_p} \right)^2 \\ 381 \quad &= n \sum_{i_1=1}^n \left(\sum_{i_2=1}^n \cdots \sum_{i_p=1}^n E_{i_1, i_2, \dots, i_p} w_{i_1} v_{i_2} \cdots v_{i_p} \right)^2 \\ 382 \quad &\leq n \|E\|^2, \\ 383 \end{aligned}$$

384 where the first step follows from the definition of $E(I, v, \dots, v)$, the second step follows from our
 385 definition for w , and the last step follows from $n \geq 1$. This result implies $\|E(I, v, \dots, v)\|_2 \leq$
 386 $\sqrt{n} \|E\|$. \square
 387

388 **Fact 4.6** (Informal version of Fact B.8). *Let p is greater than or equal to 3, $x, y, u, v \in \mathbb{R}^n$ be any
 389 arbitrary unit vectors, and $j \in \{0, 1, \dots, p-2\}$. Then, we have*
 390

$$391 \quad \| [x \otimes v^{\otimes(p-1)}](I, u, \dots, u) - [y \otimes v^{\otimes(p-1)}](I, u, \dots, u) \|_2 = |\langle u, v \rangle|^{p-1} \cdot \|x - y\|_2 \quad (1)$$

392 and
 393

$$\begin{aligned} 394 \quad &\| [v^{\otimes(1+j)} \otimes x \otimes v^{\otimes(p-2-j)}](I, u, \dots, u) - [v^{\otimes(1+j)} \otimes y \otimes v^{\otimes(p-2-j)}](I, u, \dots, u) \|_2 \\ 395 \quad &\leq |\langle u, v \rangle|^{p-2} \cdot \|x - y\|_2. \end{aligned} \quad (2)$$

401 The following fact transforms the ℓ_2 norm into the form of the sum of a list of real numbers, which
 402 helps us with simplifying $\|V^\top A^*(I, u, \dots, u)\|_2^2$ to support the analysis of the recoverability (see
 403 Section C for details).

404 **Fact 4.7.** *Let v_1, v_2, \dots, v_n be an orthonormal basis. Let $V = (v_2, \dots, v_n) \in \mathbb{R}^{n \times (n-1)}$.
 405 Let $A^* = \sum_{i=1}^k \lambda_i v_i^{\otimes p}$. Let $u \in \mathbb{R}^n$ be a vector. Then, we have $\|V^\top A^*(I, u, \dots, u)\|_2^2 =$
 406 $\sum_{j=2}^k \lambda_j^2 |v_j^\top u|^{2(p-1)}$.*
 407

408 *Proof.* We have

$$409 \quad \|V^\top A^*(I, u, \dots, u)\|_2^2 = \sum_{j=2}^k |v_j^\top A^*(I, u, \dots, u)|^2 = \sum_{j=2}^k (\lambda_j |v_j^\top u|^{p-1})^2 = \sum_{j=2}^k \lambda_j^2 |v_j^\top u|^{2(p-1)},$$

414 where the first step follows from the definition of ℓ_2 norm, the second step follows from Fact B.7,
 415 and the last step follows from simple algebra. \square
 416

4.3 CONVERGENCE GUARANTEE AND DEFLECTION

419 Consequently, in this section, with the help of these technical facts, we are ready to present the
 420 second component necessary to support our main theorem (Theorem 1.1), specifically Lemma 3.1.
 421 We generalize the robust tensor power method to all cases where $p \geq 3$.

422 **Lemma 4.8.** *Let $t \in [k]$. Let $\eta \in (0, 1/2)$. In \mathbb{R}^n , \mathcal{U} represents a set of random Gaussian vectors.
 423 Let $|\mathcal{U}| = \Omega(k \log(1/\eta))$. Then, there is a probability of at least $1 - \eta$ that there exists a vector
 424 $u \in \mathcal{U}$ satisfying the following condition: $\max_{j \in [k] \setminus \{t\}} |v_j^\top u| \leq \frac{1}{4} |v_t^\top u|$ and $|v_t^\top u| \geq 1/\sqrt{n}$.*
 425

426 We analyze (Wang & Anandkumar, 2016)'s Lemma C.2 and generalize it from p being equal to 3 to
 427 any p being greater than or equal to 3.
 428

429 In the following Theorem, intuitively, we treat A^* as the ground-truth tensor. We treat \tilde{E} as the noise
 430 tensor. In reality, we can not access the A^* directly. We can only access A^* with some noise which
 431 is \tilde{E} . But whenever \tilde{E} (the noise) is small compared to ground-truth A^* , then we should be able to
 432 recover A^* .

432 **Theorem 4.9.** Let $\tilde{E} \in \mathbb{R}^{n^p}$ denote some tensor representing the noise. Let $c > 0$ is an arbitrarily
 433 small number and $c_0 \geq 1$. Let p be greater than or equal to 3. $A = A^* + \tilde{E} \in \mathbb{R}^{n^p}$ is an arbitrary
 434 tensor satisfying $A^* = \sum_{i=1}^k \lambda_i v_i^{\otimes p}$, where A^* is orthogonal decomposable.
 435

436 Let

$$437 \quad 438 \quad u_{t+1} = \frac{A(I, u_t, \dots, u_t)}{\|A(I, u_t, \dots, u_t)\|_2},$$

439 where $u_t \in \mathbb{R}^n$ is an unit vector.
 440

441 We define Event ξ to be

$$442 \quad |v_1^\top u_t| \leq 1 - 1/(c_0^2 p^2 k^2).$$

443 Let $0 < \epsilon \leq \frac{c\lambda_1}{(c_0 p^2 k n^{(p-2)/2})}$. Let $T = \Omega(\log(\lambda_1 n / \epsilon))$. Let $t \in [T]$.
 444

445 Suppose

$$446 \quad 447 \quad \|\tilde{E}(I, u_t, \dots, u_t)\|_2 \leq \begin{cases} 4p\epsilon, & \text{if } \xi \\ 6\epsilon/c_0, & \text{ow.} \end{cases}$$

448 and $|\tilde{E}(v, u_t, \dots, u_t)| \leq \begin{cases} 4\epsilon/\sqrt{n} & \text{if } \xi \\ 6\epsilon/(c_0 \sqrt{n}) & \text{ow} \end{cases}$

449 Then,
 450

451 1. We have

$$452 \quad 453 \quad \tan \theta(v_1, u_{t+1}) \leq \begin{cases} 0.8 \tan \theta(v_1, u_t) & \text{if } \xi \\ 0.8 \tan \theta(v_1, u_t) + 18\frac{\epsilon}{c_0 \lambda_1} & \text{ow} \end{cases} \quad (3)$$

454 2. We have

$$455 \quad \max_{j \in [k] \setminus \{1\}} \lambda_j |v_j^\top u_t|^{p-2} \leq (1/4) \lambda_1 |v_1^\top u_t|^{p-2}. \quad (4)$$

456 3. For any $j \in \{2, \dots, k\}$, we have

$$457 \quad 458 \quad \frac{|v_j^\top u_{t+1}|}{|v_1^\top u_{t+1}|} \leq \begin{cases} 0.8 |v_j^\top u_t| / |v_1^\top u_t| & \text{if } \xi \\ 0.8 |v_j^\top u_t| / |v_1^\top u_t| + 18\epsilon / (c_0 \lambda_1 \sqrt{n}) & \text{ow} \end{cases} \quad (5)$$

459 Because of the space limit, the formal proof is deferred to Appendix C. Theorem 4.9 provides key
 460 properties of the tensor power method for a single iteration. It shows how the algorithm converges
 461 towards the dominant eigenvector and how errors are controlled in each step. Finally, using The-
 462 orem 4.9, we can prove Lemma 3.1 that our algorithm recovers the tensor components (eigenvectors
 463 and eigenvalues) up to a specified error bound using mathematical induction. Combining this with
 464 our fast sketching technique (Lemma 4.2), we finally prove our main Theorem (Theorem 1.1).
 465

466 5 CONCLUSION

467 We present a robust tensor power method that supports arbitrary order tensors. Our method over-
 468 comes the limitations of existing approaches, which are often restricted to lower-order tensors or
 469 require strong assumptions about the underlying data structure. This requires non-trivial mathem-
 470 atical tools to handle the added complexity. We develop new properties of higher-order tensors and
 471 analyze the convergence and error bounds. By leveraging advanced techniques from optimization
 472 and linear algebra, we have developed a powerful and flexible algorithm that can handle a wide range
 473 of tensor data, from images and videos to multivariate time series and natural language corpora. We
 474 believe that our result has some insights into various tasks, including tensor decomposition, low-
 475 rank tensor approximation, and independent component analysis. We believe that our contribution
 476 will significantly advance the field of tensor analysis and provide new opportunities for handling
 477 high-dimensional data in various domains. We here propose some future directions. We encourage
 478 extending our method to more challenging scenarios, such as noisy data analysis, and exploring its
 479 applications in emerging areas, such as neural networks and machine learning.
 480

486
487
ETHIC STATEMENT488
489
490
491
492
493
494
495
496
497
498
499
This paper does not involve human subjects, personally identifiable data, or sensitive applications.
We do not foresee direct ethical risks. We follow the ICLR Code of Ethics and affirm that all aspects
of this research comply with the principles of fairness, transparency, and integrity.500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
REPRODUCIBILITY STATEMENT500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
We ensure reproducibility of our theoretical results by including all formal assumptions, definitions,
and complete proofs in the appendix. The main text states each theorem clearly and refers to the
detailed proofs. No external data or software is required.500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
REFERENCES500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
Elizabeth S. Allman, Catherine Matias, and John A. Rhodes. Identifiability of parameters in latent
structure models with many observed variables. *The Annals of Statistics*, 37(6A), dec 2009a. doi:
10.1214/09-aos689. URL <https://doi.org/10.1214%2F09-aos689>.500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
Elizabeth S. Allman, Sonja Petrović, John A. Rhodes, and Seth Sullivant. Identifiability of 2-tree
mixtures for group-based models, 2009b. URL <https://arxiv.org/abs/0909.1854>.500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
Anima Anandkumar, Rong Ge, Daniel Hsu, Sham M. Kakade, and Matus Telgarsky. Tensor de-
compositions for learning latent variable models. 2012. doi: 10.48550/ARXIV.1210.7559. URL
<https://arxiv.org/abs/1210.7559>.500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
Animashree Anandkumar, Rong Ge, Daniel J. Hsu, Sham M. Kakade, and Matus Telgarsky. Tensor
decompositions for learning latent variable models. In *Journal of Machine Learning Research*,
volume 15(1), pp. 2773–2832. <https://arxiv.org/pdf/1210.7559>, 2014.500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
Animashree Anandkumar, Rong Ge, and Majid Janzamin. Analyzing tensor power method dynam-
ics in overcomplete regime. *Journal of Machine Learning Research*, 18(22):1–40, 2017.500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
Kamyar Azizzadenesheli, Alessandro Lazaric, and Animashree Anandkumar. Reinforcement learn-
ing of POMDPs using spectral methods. In *29th Annual Conference on Learning Theory (COLT)*,
pp. 193–256. <https://arxiv.org/pdf/1602.07764>, 2016.500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
Assa Bentzur, Shahar Alon, and Galit Shohat-Ophir. Behavioral neuroscience in the era of genomics:
tools and lessons for analyzing high-dimensional datasets. *International Journal of Molecular
Sciences*, 23(7):3811, 2022.500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
Vineet Bhatt, Sunil Kumar, and Seema Saini. Tucker decomposition and applications. *Materials
Today: Proceedings*, 46:10787–10792, 2021. ISSN 2214-7853. doi: <https://doi.org/10.1016/j.matpr.2021.01.676>. URL <https://www.sciencedirect.com/science/article/pii/S2214785321007732>. International Conference on Technological Advancements in
Materials Science and Manufacturing.500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
Srinadh Bhojanapalli and Sujay Sanghavi. A new sampling technique for tensors. In *arXiv preprint*.
<https://arxiv.org/pdf/1502.05023>, 2015.500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
Charles Bouveyron, Stéphane Girard, and Cordelia Schmid. High-dimensional data clustering. *Com-
putational statistics & data analysis*, 52(1):502–519, 2007.500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
J Douglas Carroll and Jih-Jie Chang. Anaylsis of individual differences in multidimensional scal-
ing via an n-way generalization of eckart-young decomposition. *Psychometrika*, 35(3):283–319,
1970.500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
Kung-Ching Chang, Kelly Pearson, and Tan Zhang. Perron-frobenius theorem for nonnegative
tensors. *Communications in Mathematical Sciences*, 6(2):507–520, 2008.500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
Yeshwanth Cherapanamjeri and Jelani Nelson. On adaptive distance estimation. In *Advances in
Neural Information Processing Systems*, 2020.

540 Joon Hee Choi and S. Vishwanathan. Dfacto: Distributed factorization of tensors. In *NIPS*, pp.
 541 1296–1304, 2014.

542

543 Yichuan Deng, Wenyu Jin, Zhao Song, Xiaorui Sun, and Omri Weinstein. Dynamic kernel sparsi-
 544 fiers. *arXiv preprint arXiv:2211.14825*, 2022a.

545 Yichuan Deng, Zhao Song, Omri Weinstein, and Ruizhe Zhang. Fast distance oracles for any sym-
 546 metric norm. *arXiv preprint arXiv:2205.14816*, 2022b.

547

548 Yichuan Deng, Yeqi Gao, and Zhao Song. Solving tensor low cycle rank approximation. *arXiv*
 549 *preprint arXiv:2304.06594*, 2023.

550

551 Dipak Dulal, Ramin Goudarzi Karim, and Carmeliza Navasca. Covid-19 analysis using tensor
 552 methods, 2022. URL <https://arxiv.org/abs/2212.14558>.

553 Matthew Fahrbach, Gang Fu, and Mehrdad Ghadiri. Subquadratic kronecker regression with ap-
 554 plications to tensor decomposition. *Advances in Neural Information Processing Systems*, 35:
 555 28776–28789, 2022.

556

557 Yeqi Gao, Lianke Qin, Zhao Song, and Yitan Wang. A sublinear adversarial training algorithm.
 558 *arXiv preprint arXiv:2208.05395*, 2022.

559

560 Yuzhou Gu, Zhao Song, Junze Yin, and Lichen Zhang. Low rank matrix completion via robust
 561 alternating minimization in nearly linear time. *arXiv preprint arXiv:2302.11068*, 2023.

562

563 Richard A Harshman. Foundations of the parafac procedure: Models and conditions for an "ex-
 564 planatory" multimodal factor analysis. 1970.

565

566 Qiang Heng, Eric C. Chi, and Yufeng Liu. Tucker-L₂E: Robust low-rank tensor decomposition with
 567 the L₂ criterion, 2022. URL <https://arxiv.org/abs/2208.11806>.

568

569 Christopher J Hillar and Lek-Heng Lim. Most tensor problems are np-hard. In *Journal of the ACM*
 570 (*JACM*), volume 60(6), pp. 45. <https://arxiv.org/pdf/0911.1393.pdf>, 2013.

571

572 Frank L. Hitchcock. The expression of a tensor or a polyadic as a sum of products. *Journal of*
 573 *Mathematics and Physics*, 1927.

574

575 Furong Huang, Niranjan U. N, Mohammad Umar Hakeem, Prateek Verma, and Animashree Anand-
 576 kumar. Fast detection of overlapping communities via online tensor methods on gpus. *CoRR*,
 577 [abs/1309.0787](https://arxiv.org/abs/1309.0787), 2013.

578

579 Majid Janzamin, Hanie Sedghi, and Anima Anandkumar. Beating the perils of non-convexity:
 580 Guaranteed training of neural networks using tensor methods. In *arXiv preprint*. <https://arxiv.org/pdf/1506.08473.pdf>, 2015.

581

582 U. Kang, Evangelos E. Papalexakis, Abhay Harpale, and Christos Faloutsos. Gigatensor: scaling
 583 tensor analysis up by 100 times - algorithms and discoveries. In *KDD*, pp. 316–324, 2012.

584

585 Joe Kileel and João M Pereira. Subspace power method for symmetric tensor decomposition. *Nu-
 586 matical Algorithms*, 2025.

587

588 Joe Kileel, Timo Klock, and João M Pereira. Landscape analysis of an improved power method for
 589 tensor decomposition. *Advances in Neural Information Processing Systems*, 2021.

590

591 Mijung Kim and K. Selçuk Candan. Decomposition-by-normalization (dbn): leveraging approxi-
 592 mate functional dependencies for efficient cp and tucker decompositions. 30(1):1–46, 2016. ISSN
 593 1384-5810.

594

595 Tamara G. Kolda and Brett W. Bader. Tensor decompositions and applications. *SIAM Review*, 51
 596 (3):455–500, 2009.

597

598 Tamara G Kolda and Jackson R Mayo. Shifted power method for computing tensor eigenpairs.
 599 *SIAM Journal on Matrix Analysis and Applications*, 32(4):1095–1124, 2011.

594 Joseph B. Kruskal. Three-way arrays: rank and uniqueness of trilinear decompositions, with appli-
 595 cation to arithmetic complexity and statistics. *Linear Algebra and its Applications*, 18(2):95–138,
 596 1977. ISSN 0024-3795. doi: [https://doi.org/10.1016/0024-3795\(77\)90069-6](https://doi.org/10.1016/0024-3795(77)90069-6). URL <https://www.sciencedirect.com/science/article/pii/0024379577900696>.

598 Arvind V Mahankali, David P Woodruff, and Ziyu Zhang. Near-linear time and fixed-parameter
 599 tractable algorithms for tensor decompositions. *arXiv preprint arXiv:2207.07417*, 2022.

600 Marius Muja and David G Lowe. Scalable nearest neighbor algorithms for high dimensional data.
 601 *IEEE transactions on pattern analysis and machine intelligence*, 36(11):2227–2240, 2014.

603 Michael Ng, Liqun Qi, and Guanglu Zhou. Finding the largest eigenvalue of a nonnegative tensor.
 604 *SIAM Journal on Matrix Analysis and Applications*, 31(3):1090–1099, 2010.

606 Anh-Huy Phan, Petr Tichavsky, and Andrzej Cichocki. Low complexity damped gauss–newton
 607 algorithms for candecomp/parafac. *SIAM Journal on Matrix Analysis and Applications*, 34(1):
 608 126–147, 2013.

609 Lianke Qin, Aravind Reddy, Zhao Song, Zhaozhuo Xu, and Danyang Zhuo. Adaptive and dynamic
 610 multi-resolution hashing for pairwise summations. *arXiv preprint arXiv:2212.11408*, 2022.

611 Lianke Qin, Zhao Song, and Yitan Wang. Fast submodular function maximization. *arXiv preprint
 612 arXiv:2305.08367*, 2023.

614 Aravind Reddy, Zhao Song, and Lichen Zhang. Dynamic tensor product regression. *arXiv preprint
 615 arXiv:2210.03961*, 2022.

617 John A Rhodes and Seth Sullivant. Identifiability of large phylogenetic mixture models. *Bulletin of
 618 mathematical biology*, 74:212–231, 2012.

619 Elina Robeva. Orthogonal decomposition of symmetric tensors. *SIAM Journal on Matrix Analysis
 620 and Applications*, 37(1):86–102, 2016.

622 Elina Robeva and Anna Seigal. Singular vectors of orthogonally decomposable tensors. *Linear and
 623 Multilinear Algebra*, 65(12):2457–2471, 2017.

624 Amnon Shashua and Tamir Hazan. Non-negative tensor factorization with applications to statistics
 625 and computer vision. In *Proceedings of the 22nd international conference on Machine learn-
 626 ing (ICML)*, pp. 792–799. ACM, 2005.

627 Zhao Song, David P. Woodruff, and Huan Zhang. Sublinear time orthogonal tensor decomposition.
 628 In *Advances in Neural Information Processing Systems 29: Annual Conference on Neural Infor-
 629 mation Processing Systems (NIPS) 2016, December 5-10, 2016, Barcelona, Spain*, pp. 793–801,
 630 2016.

631 Zhao Song, David P Woodruff, and Peilin Zhong. Relative error tensor low rank approximation. In
 632 *SODA*. arXiv preprint arXiv:1704.08246, 2019.

634 Zhao Song, Zhaozhuo Xu, and Lichen Zhang. Speeding up sparsification using inner product search
 635 data structures. *arXiv preprint arXiv:2204.03209*, 2022a.

636 Zhao Song, Xin Yang, Yuanyuan Yang, and Lichen Zhang. Sketching meets differential privacy:
 637 Fast algorithm for dynamic kronecker projection maintenance. *arXiv preprint arXiv:2210.11542*,
 638 2022b.

640 Y-H. Taguchi and Turki Turki. Application of tensor decomposition to gene expression of infection
 641 of mouse hepatitis virus can identify critical human genes and effective drugs for sars-cov-2
 642 infection. *IEEE Journal of Selected Topics in Signal Processing*, 15(3):746–758, 2021. doi:
 643 10.1109/JSTSP.2021.3061251.

644 Charalampos E. Tsourakakis. MACH: fast randomized tensor decompositions. In *SDM*, pp. 689–
 645 700, 2010.

646 Chi Wang, Xueqing Liu, Yanglei Song, and Jiawei Han. Scalable moment-based inference for latent
 647 dirichlet allocation. In *ECML-PKDD*, pp. 290–305, 2014.

648 Kexin Wang, João M Pereira, Joe Kileel, and Anna Seigal. Multi-subspace power method for de-
649 composing all tensors. *arXiv preprint arXiv:2510.18627*, 2025.
650

651 Yiju Wang, Liqun Qi, and Xinzhen Zhang. A practical method for computing the largest m-
652 eigenvalue of a fourth-order partially symmetric tensor. *Numerical Linear Algebra with Applica-*
653 *tions*, 16(7):589–601, 2009.

654 Yining Wang and Animashree Anandkumar. Online and differentially-private tensor decomposi-
655 tion. In *Advances in Neural Information Processing Systems 29: Annual Conference on Neu-*
656 *ral Information Processing Systems (NIPS) 2016, December 5-10, 2016, Barcelona, Spain*.
657 <https://arxiv.org/pdf/1606.06237.pdf>, 2016.

658 Yining Wang, Hsiao-Yu Tung, Alexander J Smola, and Anima Anandkumar. Fast and guaran-
659 teed tensor decomposition via sketching. In *Advances in Neural Information Processing Systems*
660 (*NIPS*), pp. 991–999. <https://arxiv.org/pdf/1506.04448.pdf>, 2015.

661 Miao Zhang and Chris Ding. Robust tucker tensor decomposition for effective image representation.
662 In *2013 IEEE International Conference on Computer Vision*, pp. 2448–2455, 2013. doi: 10.1109/
663 ICCV.2013.304.

664 Guoxu Zhou, Andrzej Cichocki, Qibin Zhao, and Shengli Xie. Efficient nonnegative tucker de-
665 compositions: Algorithms and uniqueness. *IEEE Transactions on Image Processing*, 24(12):
666 4990–5003, dec 2015. doi: 10.1109/tip.2015.2478396. URL <https://doi.org/10.1109/tip.2015.2478396>.

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 Appendix

705 **Roadmap.** In Section A, we present our additional related works. In Section B, we introduce
 706 the background concepts (definitions and properties) that we use in the Appendix. In Section C,
 707 we provide more details and explanations to support the properties we developed in this paper. In
 708 Section D, we present our important Theorems (Theorem D.1 and Theorem D.2) and their proofs.

710 A ADDITIONAL RELATED WORKS

712 In Section A.1, we introduce Canonical/Polydic decomposition and Tucker decomposition. In Sec-
 713 tion A.2, we present some sketching techniques. In Section A.3, we show previous works about
 714 power method.

716 A.1 CANONICAL/POLYDIC DECOMPOSITION AND TUCKER DECOMPOSITION

718 The most commonly employed techniques for breaking down tensors are CP (Canonical/Polydic)
 719 decomposition and Tucker factorization. CP decomposes a tensor that has higher order into a collec-
 720 tion of fixed-rank individual tensors that are summed together, while Tucker factorization reduces
 721 a tensor that has higher order to a smaller core tensor and a matrix product of each of its modes.
 722 Non-negative tensor factorization is the extension of non-negative matrix factorization to multiple
 723 dimensions (Bhatt et al., 2021). Recent research in Tucker decomposition has focused on develop-
 724 ing more efficient algorithms for computing the decomposition (Zhou et al., 2015; Kim & Candan,
 725 2016; Fahrbach et al., 2022), improving its accuracy and robustness (Zhang & Ding, 2013; Heng
 726 et al., 2022), and applying it to various new domains, such as image representation (Zhang & Ding,
 727 2013).

729 A.2 SKETCHING TECHNIQUES

731 Sketching methods have emerged as a powerful paradigm in numerical linear algebra, serving as a
 732 fundamental approach to dimension reduction while preserving essential mathematical properties.
 733 These techniques, which originated from the theoretical computer science community, provide a
 734 way to project high-dimensional data into lower-dimensional spaces while maintaining important
 735 structural information and computational guarantees. They have become increasingly important in
 736 machine learning, data science, and scientific computing due to their ability to reduce computational
 737 complexity while maintaining accuracy guarantees.

738 It has played an important role in tensor approximation (Song et al., 2019; Mahankali et al., 2022;
 739 Deng et al., 2023), matrix completion (Gu et al., 2023), submodular function maximization (Qin
 740 et al., 2023), dynamic sparsifier (Deng et al., 2022a), dynamic tensor produce regression (Reddy
 741 et al., 2022), semi-definite programming (Song et al., 2022b), sparsification problems involving an
 742 iterative process (Song et al., 2022a), adversarial training (Gao et al., 2022), kernel density estima-
 743 tion (Qin et al., 2022), and distance oracle problem (Deng et al., 2022b).

744 A.3 POWER METHOD

746 The power method is a popular iterative algorithm for computing the dominant eigenvector and
 747 eigenvalue of a tensor. In recent years, there is a series of works (Chang et al., 2008; Ng et al.,
 748 2010; Wang et al., 2009) that focused on this topic. The work of (Kolda & Mayo, 2011) provides the
 749 result to compute real symmetric-tensor eigenpairs, which is closely related to the optimal rank-1
 750 approximation of a symmetric tensor. Moreover, their method is based on the shifted symmetric
 751 higher-order power method (SS-HOPM), which can be viewed as a generalization of the power
 752 iteration method for matrices. (Anandkumar et al., 2014) considers the relation between tensor
 753 decomposition and learning latent variable models, where they also provide a detailed analysis of
 754 a robust TPM. More recent work by (Anandkumar et al., 2017) offers a new approach to analyzing
 755 the behavior of tensor power iterations in the overcomplete scenario, in which the tensor’s CP rank
 surpasses the input dimension.

756 **B PRELIMINARY**
 757

758 In Section B.1, we define several basic notations. In Section B.2, we state several basic facts. In
 759 Section B.3, we present facts and tools for tensors.
 760

761 **B.1 NOTATIONS**
 762

763 In this section, we start to introduce the fundamental concepts we use.
 764

765 For any function f , we use $\tilde{O}(f)$ to denote $f \cdot \text{poly}(\log f)$.
 766

767 \mathbb{R} denotes the set that contains all real numbers.
 768

769 For a scalar a , i.e. $a \in \mathbb{R}$, $|a|$ represents the absolute value of a .
 770

771 For any $A \in \mathbb{R}^{n \times k}$ being a matrix and $x \in \mathbb{R}^k$ being a vector, we use $\|A\| :=$
 772 $\max_{x \in \mathbb{R}^k} \|Ax\|_2 / \|x\|_2$ to denote the spectral norm of A .
 773

774 We use $\|x\|_2 := (\sum_{i=1}^n x_i^2)^{1/2}$ to denote the ℓ_2 norm of the vector x .
 775

776 For two vectors $u \in \mathbb{R}^n$ and $v \in \mathbb{R}^n$, we use $\langle u, v \rangle$ to denote the inner product, i.e. $\langle u, v \rangle =$
 777 $\sum_{i=1}^n u_i v_i$.
 778

779 Let $p \geq 1$ denote some integer. We say $E \in \mathbb{R}^{n \times \dots \times n}$ (where there are p of n), if E is a p -th order
 780 tensor and every dimension is n . For simplicity, we write $E \in \mathbb{R}^{n^p}$. If $p = 1$, then E is a vector. If
 781 $p = 2$, $E \in \mathbb{R}^{n \times n}$ is a matrix. If $p = 3$, then $E \in \mathbb{R}^{n \times n \times n}$ is a 3rd order tensor.
 782

783 For any two vectors x, y , we define $\theta(x, y)$ to be $\cos \theta(x, y) = \langle x, y \rangle$.
 784

785 For a 3rd tensor $E \in \mathbb{R}^{n \times n \times n}$, we have $E(a, b, c) \in \mathbb{R}$
 786

$$787 E(a, b, c) = \sum_{i=1}^n \sum_{j=1}^n \sum_{k=1}^n E_{i,j,k} a_i b_j c_k. \\ 788$$

789 Similarly, the definition can be generalized to p -th order tensor.
 790

791 For a 3rd order tensor $E \in \mathbb{R}^{n \times n \times n}$, we have $E(I, b, c) \in \mathbb{R}^n$,
 792

$$793 E(I, b, c)_i = \sum_{j=1}^n \sum_{k=1}^n E_{i,j,k} b_j c_k, \quad \forall i \in [n]$$

794 For a 3rd order tensor $E \in \mathbb{R}^{n \times n \times n}$, we have $E(I, I, c) \in \mathbb{R}^{n \times n}$
 795

$$796 E(I, I, c)_{i,j} = \sum_{k=1}^n E_{i,j,k} c_k, \quad \forall i, j \in [n] \times [n]. \\ 797$$

798 Let $a, b, c \in \mathbb{R}^n$. Let $E = a \otimes b \otimes c \in \mathbb{R}^{n \times n \times n}$. We have
 799

$$E_{i,j,k} = a_i b_j c_k, \quad \forall i \in [n], \forall j \in [n], \forall k \in [n]$$

800 Let $a \in \mathbb{R}^n$, let $E = a \otimes a \otimes a = a^{\otimes 3} \in \mathbb{R}^{n \times n \times n}$. We have
 801

$$E_{i,j,k} = a_i a_j a_k, \quad \forall i \in [n], \forall j \in [n], \forall k \in [n]$$

802 Let $E = \sum_{i=1}^m u_i^{\otimes 3}$. Then we have $E(a, b, c) \in \mathbb{R}$
 803

$$E(a, b, c) = \sum_{i=1}^m (u_i^{\otimes 3}(a, b, c)) = \sum_{i=1}^m \langle u_i, a \rangle \langle u_i, b \rangle \langle u_i, c \rangle.$$

804 For $\mu \in \mathbb{R}^d$ and $\Sigma \in \mathbb{R}^{n \times n}$. We use $\mathcal{N}(\mu, \Sigma)$ to denote a Gaussian distribution with mean μ and
 805 covariance Σ . For $x \sim \mathcal{N}(\mu, \Sigma)$, we denote x as a Gaussian vector.
 806

807 For any vector $a \in \mathbb{R}^n$, we use $\max_{i \in [n]} a_i$ to denote a value b over sets $\{a_1, a_2, \dots, a_n\}$.
 808

809 For any vector $a \in \mathbb{R}^n$, we use $\arg \max_{i \in [n]} a_i$ to denote the index j such that $a_j = \max_{i \in [n]} a_i$.
 810

811 Let \mathbb{N} denote non-negative integers.
 812

810 B.2 BASIC FACTS
811812 In this section, we introduce some basic facts.
813**Fact B.1.** *We have*
814

- 815 • *Part 1. For any $x \in (0, 1)$ and integer $p \geq 1$, we have $|1 - (1 - x)^p| \leq p \cdot x$.*
- 816 • *Part 2. $(a + b)^p \leq 2^{p-1}a^p + 2^{p-1}b^p$.*

817 **Fact B.2** (Geometric series). *If the following conditions hold*
818

- 819 • *Let $a \in \mathbb{R}$.*
- 820 • *Let $k \in \mathbb{N}$.*
- 821 • *Let $r \in \mathbb{R}$ and $0 < r < 1$.*

822 Then, for all k , the series which can be expressed in the form of
823

$$824 \sum_{i=0}^k ar^i$$

825 is called the geometric series.
826827 Let a_0 denote the value of this series when $k = 0$, namely $a_0 = ar^0 = a$.
828829 This series is equal to
830831 1.
832

$$833 S_k = \sum_{i=0}^k ar^i = a_0 \frac{(1 - r^n)}{1 - r},$$

834 when $k \neq \infty$, or
835836 2.
837

$$838 S_k = \sum_{i=0}^k ar^i = \frac{a_0}{1 - r},$$

839 when $k = \infty$.
840841 **Fact B.3.** *If the following conditions hold*
842

- 843 • *Let $\sum_{n=1}^{\infty} b_n$ be a series.*
- 844 • *Let $k \in \mathbb{N}$.*
- 845 • *Let $a \in \mathbb{R}$.*
- 846 • *Let $r \in \mathbb{R}$ and $0 < r < 1$.*
- 847 • *Let $\sum_{i=0}^k ar^i$ be a geometric series.*
- 848 • *Suppose $\sum_{n=1}^{\infty} b_n \leq \sum_{i=0}^k ar^i$.*

849 Then, $\sum_{n=1}^{\infty} b_n$ is convergent and is bounded by
850

$$851 \frac{a_0}{1 - r}.$$

852 *Proof.* By Fact B.2, we get that the geometric series is convergent, for all $k \in \mathbb{N}$.
853854 Then, $\sum_{n=1}^{\infty} b_n$ is convergent by the comparison test.
855

864 We have

$$866 \quad a_0 \frac{(1 - r^n)}{1 - r} \leq \frac{a_0}{1 - r} \quad (6)$$

868 because for all $0 < r < 1$, we have $(1 - r^n) < 1$.

869 Therefore, we get

$$871 \quad \sum_{n=1}^{\infty} b_n \leq \sum_{i=0}^k ar^i \\ 872 \quad \leq \frac{a_0}{1 - r},$$

876 where the first step follows from the assumption in the Fact statement and the second step follows
877 from Eq. (6). \square

879 **Fact B.4.** *If the following conditions hold*

- 881 • $u, v, w \in \mathbb{R}^n$ are three arbitrary unit vectors.
- 882 • For all x satisfying $0 \leq x \leq 1$.
- 883 • Suppose $1 - x \leq \langle u, w \rangle$.
- 884 • Suppose $\langle v, w \rangle = 0$.

887 Then $\langle u, v \rangle \leq \sqrt{2x - x^2}$.

889 *Proof.* First, we want to show that

$$891 \quad |\sin \theta(u, w)| = \sqrt{1 - \cos^2 \theta(u, w)} \\ 892 \quad = \sqrt{1 - \langle u, w \rangle^2} \\ 893 \quad \leq \sqrt{1 - (1 - x)^2}, \quad (7)$$

895 where the first step follows from the definition of $\sin \theta(u, w)$ (see Definition 4.3), the second step
896 follows from the definition of $\cos \theta(u, w)$ (see Definition 4.3), and the last step follows from the
897 assumption of this fact.

898 Then, we have

$$900 \quad \langle u, v \rangle = \cos \theta(u, v) \\ 901 \quad = |\cos \theta(u, w) \cos \theta(v, w) - \sin \theta(u, w) \sin \theta(v, w)| \\ 902 \quad \leq |\cos \theta(u, w) \cos \theta(v, w)| + |\sin \theta(u, w) \sin \theta(v, w)| \\ 903 \quad \leq |\cos \theta(u, w)| + |\sin \theta(u, w)| \sin \theta(v, w)| \\ 904 \quad = 0 + |\sin \theta(u, w)| \sin \theta(v, w)| \\ 905 \quad \leq |\sin \theta(u, w)| \cdot |\sin \theta(v, w)| \\ 906 \quad \leq |\sin \theta(u, w)| \\ 907 \quad \leq \sqrt{1 - (1 - x)^2} \\ 908 \quad = \sqrt{2x - x^2},$$

912 where the first step follows from the definition of $\cos \theta(u, v)$ (see Definition 4.3), the second
913 step follows from $\cos(a + b) = \cos(a)\cos(b) - \sin(a)\sin(b)$, the third step follows from
914 simple algebra, the fourth step follows from the triangle inequality, the fifth step follows from
915 $\cos \theta(v, w) = 0$, the sixth step follows from the Cauchy–Schwarz inequality, the seventh step fol-
916 lows from $|\sin \theta(w, v)| \leq 1$, the eighth step follows from Eq. (7), and the last step follows from
917 simple algebra. \square

918 **Fact B.5.** *If the following conditions hold*

918 • Let $E \in \mathbb{R}^{n^p}$.
 919 • Let $u, v \in \mathbb{R}^n$ be two vectors.

920 Then

921 • $|E(v, u, \dots, u)| = |v^\top E(I, u, \dots, u)|$.
 922 • $|v^\top E(I, I, u, \dots, u)w| = |E(v, w, u, \dots, u)|$

923 *Proof.* It follows

$$\begin{aligned} 924 \quad |v^\top E(I, u, \dots, u)| &= \left| \sum_{i_1=1}^n v_{i_1} \cdot \left(\sum_{i_2=1}^n \dots \sum_{i_p=1}^n E_{i_1, i_2, \dots, i_p} u_{i_2} \dots u_{i_p} \right) \right| \\ 925 \quad &= \left| \sum_{i_1=1}^n \sum_{i_2=1}^n \dots \sum_{i_p=1}^n E_{i_1, i_2, \dots, i_p} v_{i_1} u_{i_2} \dots u_{i_p} \right| \\ 926 \quad &= |E(v, u, \dots, u)|, \end{aligned}$$

927 where the first step follows from the definition of $E(I, u, \dots, u)$, the second step follows from the
 928 property of summation, and the last step follows from the definition of $E(v, u, \dots, u)$. \square

929 **Fact B.6.** If the following conditions hold

930 • u, v are two arbitrary unit vectors.
 931 • Suppose $\theta(u, v)$ is in the interval $(0, \pi/2)$.

932 Then $\|u - v\|_2 \leq \tan \theta(u, v)$.

933 *Proof.* Suppose $\theta(u, v)$ is in the interval $(0, \pi/2)$, so we have

$$\cos \theta(u, v)$$

934 is in the interval $(0, 1)$.

935 Let $x = \langle u, v \rangle$.

936 Therefore, by the definition of $\cos \theta(u, v)$ (see Definition 4.3), we have

$$\begin{aligned} 937 \quad \cos \theta(u, v) &= \langle u, v \rangle \\ 938 \quad &= x. \end{aligned} \tag{8}$$

939 Accordingly, we have

$$\begin{aligned} 940 \quad \sin \theta(u, v) &= \sqrt{1 - \cos^2 \theta(u, v)} \\ 941 \quad &= \sqrt{1 - x^2}, \end{aligned} \tag{9}$$

942 where the first step follows from the definition of $\sin \theta(u, v)$ (see Definition 4.3) and the second step
 943 follows from Eq. (8). Moreover,

$$\begin{aligned} 944 \quad \|u - v\|_2^2 &= \|u\|_2^2 + \|v\|_2^2 - 2\langle u, v \rangle \\ 945 \quad &= 1 + 1 - 2x \\ 946 \quad &= 2 - 2x, \end{aligned} \tag{10}$$

947 where the first step follows from simple algebra, the second step follows from the fact that u and v
 948 are unit vectors, and the last step follows from simple algebra. We want to show

$$\|u - v\|_2^2 \leq \tan^2 \theta(u, v).$$

950 It suffices to show

$$2 - 2x \leq \tan^2 \theta(u, v)$$

$$\begin{aligned}
&= \sin^2 \theta(u, v) / \cos^2 \theta(u, v) \\
&\leq (1 - x^2) / x^2,
\end{aligned} \tag{11}$$

where the first step follows from Eq. (10), the second step follows from the definition of $\tan \theta(u, v)$ (see Definition 4.3), and the last step follows from combining Eq. (8) and Eq. (9).

Therefore, it suffices to show

$$(1 - x^2) / x^2 - (2 - 2x) \geq 0$$

when $x \in (0, 1)$.

Let $f : (0, \infty) \rightarrow \mathbb{R}$ be defined as

$$f(x) = (1 - x^2) / x^2 - (2 - 2x).$$

Then, the derivative of $f(x)$ is denoted as $f'(x)$, which is as follows

$$f'(x) = \frac{2x^3 - 2}{x^3}.$$

Therefore, when $x = 1$, we have $f'(x) = 0$.

The second derivative of f is

$$f''(x) = \frac{6}{x^4}.$$

Therefore,

$$f''(1) = 6 > 0.$$

Thus, $f(1)$ is a local minimum. In other words, when $x \in (0, 1)$,

$$f(x) = (1 - x^2) / x^2 - (2 - 2x) \geq f(1) = 0,$$

so Eq. (11) is shown to be true.

Thus, we complete the proof. \square

B.3 MORE TENSOR FACTS

In this section, we present more tensor properties.

Fact B.7 (Formal version of Fact 4.4). *If the following conditions hold*

- Let p be greater than or equal to 3.
- Let $A^* = \sum_{j=1}^k \lambda_j v_j^{\otimes p} \in \mathbb{R}^{n^p}$ be an orthogonal tensor.
- Let $u \in \mathbb{R}^n$ be a vector.
- Let $j \in [k]$.

Then, we can get

$$|v_j^\top A^*(I, u, \dots, u)| = \lambda_j |v_j^\top u|^{p-1}.$$

Proof. For any $j \in [k]$, we have

$$\begin{aligned}
|v_j^\top A^*(I, u, \dots, u)| &= \left| \sum_{i=1}^n v_{j,i} A^*(I, u, \dots, u)_i \right| \\
&= \left| \sum_{i=1}^n v_{j,i} \sum_{i_2=1}^n \dots \sum_{i_p=1}^n A_{i,i_2,\dots,i_p}^* u_{i_2} \dots u_{i_p} \right|
\end{aligned}$$

$$\begin{aligned}
&= \left| \sum_{i=1}^n v_{j,i} \sum_{i_2=1}^n \cdots \sum_{i_p=1}^n \left(\sum_{\ell=1}^n \lambda_{\ell} v_{\ell,i} v_{\ell,i_2} \cdots v_{\ell,i_p} \right) u_{i_2} \cdots u_{i_p} \right| \\
&= \left| \sum_{\ell=1}^k \lambda_{\ell} \sum_{i=1}^n v_{j,i} v_{\ell,i} \sum_{i_2=1}^n \cdots \sum_{i_p=1}^n (v_{\ell,i_2} \cdots v_{\ell,i_p}) u_{i_2} \cdots u_{i_p} \right| \\
&= \left| \lambda_j \sum_{i_2=1}^n \cdots \sum_{i_p=1}^n (v_{j,i_2} \cdots v_{j,i_p}) u_{i_2} \cdots u_{i_p} \right| \\
&= \lambda_j |v_j^\top u|^{p-1},
\end{aligned}$$

where the first step follows from the definition of vector norm, the second step follows from the decomposition of A^* by its definition, the third step follows from the definition of A^* , the fourth step follows from reordering the summations, the fifth step follows from taking summations over ℓ , and the sixth step follows from simple algebra. \square

Fact B.8 (Formal version of Fact 4.6). *If the following conditions hold*

- Let $p \geq 3$.
- $x, y, u, v \in \mathbb{R}^n$ are four arbitrary unit vectors.
- Let $j \in \{0, 1, \dots, p-2\}$.

Then, we can get

$$\|[x \otimes v^{\otimes(p-1)}](I, u, \dots, u) - [y \otimes v^{\otimes(p-1)}](I, u, \dots, u)\|_2 = |\langle u, v \rangle|^{p-1} \cdot \|x - y\|_2 \quad (12)$$

and

$$\begin{aligned}
&\|[v^{\otimes(1+j)} \otimes x \otimes v^{\otimes(p-2-j)}](I, u, \dots, u) - [v^{\otimes(1+j)} \otimes y \otimes v^{\otimes(p-2-j)}](I, u, \dots, u)\|_2 \\
&\leq |\langle u, v \rangle|^{p-2} \cdot \|x - y\|_2.
\end{aligned} \quad (13)$$

Proof. To show Eq. (12), let's analyze the i -th entry of the vector

$$[x \otimes v^{\otimes(p-1)}](I, u, \dots, u) \in \mathbb{R}^n,$$

which can be written as

$$\begin{aligned}
x_i \sum_{i_2=1}^n \cdots \sum_{i_p=1}^n v_{i_2} \cdots v_{i_p} u_{i_2} \cdots u_{i_p} &= x_i \sum_{i_2=1}^n v_{i_2} u_{i_2} \cdots \sum_{i_p=1}^n v_{i_p} u_{i_p} \\
&= x_i \langle v, u \rangle^{p-1},
\end{aligned} \quad (14)$$

where the first step follows from the property of summation and the second step follows from the definition of the inner product.

In this part, for simplicity, we define

$$\text{LHS} := \|[x \otimes v^{\otimes(p-1)}](I, u, \dots, u) - [y \otimes v^{\otimes(p-1)}](I, u, \dots, u)\|_2.$$

By Eq. (14), we have

$$\text{LHS} = \|x_i \langle v, u \rangle^{p-1} - y_i \langle v, u \rangle^{p-1}\|_2.$$

Thus, we get

$$\begin{aligned}
\text{LHS}^2 &= \sum_{i=1}^n (x_i \langle v, u \rangle^{p-1} - y_i \langle v, u \rangle^{p-1})^2 \\
&= \sum_{i=1}^n ((x_i - y_i) (\langle v, u \rangle^{p-1}))^2
\end{aligned}$$

$$\begin{aligned}
&= \sum_{i=1}^n (x_i - y_i)^2 (\langle v, u \rangle^{p-1})^2 \\
&= \langle v, u \rangle^{2(p-1)} \sum_{i=1}^n (x_i - y_i)^2 \\
&= \|x - y\|_2^2 \cdot |\langle v, u \rangle|^{2(p-1)},
\end{aligned}$$

where the first step follows from the definition of $\|\cdot\|_2$, the second step follows from simple algebra, the third step follows from simple algebra, the fourth step follows from the fact that i is not contained in $\langle v, u \rangle^{2(p-1)}$, and the last step follows from the definition of $\|\cdot\|_2$.

To show Eq. (13), first, we want to show

$$\begin{aligned}
|\langle x - y, u \rangle| &\leq \|x - y\|_2 \|u\|_2 \\
&\leq \|x - y\|_2,
\end{aligned} \tag{15}$$

where the first step follows from the Cauchy–Schwarz inequality and the second step follows from the fact that u is a unit vector so that $\|u\|_2 = 1$.

Then, we analyze the i -th entry of the vector

$$[v^{\otimes(1+j)} \otimes x \otimes v^{\otimes(p-2-j)}](I, u, \dots, u) \in \mathbb{R}^n,$$

which is equivalent to

$$v_i \langle x, u \rangle \cdot \langle v, u \rangle^{p-2}. \tag{16}$$

In this part, we define

$$\text{LHS} := \| [v^{\otimes(1+j)} \otimes x \otimes v^{\otimes(p-2-j)}](I, u, \dots, u) - [v^{\otimes(1+j)} \otimes y \otimes v^{\otimes(p-2-j)}](I, u, \dots, u) \|_2.$$

Therefore, based on Eq. (16), we get

$$\text{LHS} = \|v_i \langle x, u \rangle \cdot \langle v, u \rangle^{p-2} - v_i \langle y, u \rangle \cdot \langle v, u \rangle^{p-2}\|_2$$

Thus, we have

$$\begin{aligned}
\text{LHS}^2 &= \sum_{i=1}^n (v_i \langle x, u \rangle \cdot \langle v, u \rangle^{p-2} - v_i \langle y, u \rangle \cdot \langle v, u \rangle^{p-2})^2 \\
&= \sum_{i=1}^n ((v_i \langle x, u \rangle - v_i \langle y, u \rangle) \cdot \langle v, u \rangle^{p-2})^2 \\
&= \sum_{i=1}^n ((v_i \langle x, u \rangle - v_i \langle y, u \rangle)^2 \cdot \langle v, u \rangle^{2(p-2)}) \\
&= \langle v, u \rangle^{2(p-2)} \cdot \sum_{i=1}^n (v_i \langle x, u \rangle - v_i \langle y, u \rangle)^2 \\
&= \langle v, u \rangle^{2(p-2)} \cdot \sum_{i=1}^n (v_i (\langle x, u \rangle - \langle y, u \rangle))^2 \\
&= \langle v, u \rangle^{2(p-2)} \cdot \sum_{i=1}^n (v_i \langle x - y, u \rangle)^2 \\
&= \langle v, u \rangle^{2(p-2)} \cdot \sum_{i=1}^n ((v_i^2) (\langle x - y, u \rangle^2)) \\
&= \langle x - y, u \rangle^2 \cdot \langle v, u \rangle^{2(p-2)} \sum_{i=1}^n (v_i)^2 \\
&= \langle x - y, u \rangle^2 \cdot \langle v, u \rangle^{2(p-2)}
\end{aligned}$$

$$1134 \leq \|x - y\|_2^2 \cdot \langle v, u \rangle^{2(p-2)},$$

1135 where the first step follows from the definition of $\|\cdot\|_2$, the second step follows from simple algebra,
 1136 the third step follows from $(ab)^2 = a^2b^2$, the fourth step follows from the fact that i is not contained
 1137 in $\langle v, u \rangle^{2(p-2)}$, the fifth step follows from simple algebra, the sixth step follows from the linearity
 1138 property of the inner product, the seventh step follows from $(ab)^2 = a^2b^2$, the eighth step follows
 1139 from the fact that i is not contained in $\langle x - y, u \rangle^2$, the ninth step follows from the fact that v is a unit
 1140 vector, and the last step follows from Eq. (15). \square
 1141

C MORE ANALYSIS

1145 In Section C.1, we give the proof to the first part of Theorem 4.9. In Section C.2, we give the proof
 1146 to the second part of Theorem 4.9. In Section C.3, we give the proof to the third part of Theorem 4.9.
 1147 In Section C.4, we prove that a few terms are upper-bounded.

C.1 PART 1 OF THEOREM 4.9

1150 In this section, we present the proof of the first part of Theorem 4.9.
 1151

1152 For convenient, we first create some definitions for this section

1153 **Definition C.1.** *We define $B_1 \in \mathbb{R}$ and $B_2 \in \mathbb{R}$ as follows*

$$1154 B_1 := \frac{1}{1 - |v_1^\top \tilde{E}_{u_t}| / (\lambda_1 |v_1^\top u_t|^{p-1})}$$

1155 *We define*

$$1156 B_2 := \frac{\|V^\top \tilde{E}_{u_t}\|_2}{\lambda_1 |v_1^\top u_t|^{p-1}}$$

1157 **Lemma C.2** (Part 1 of Theorem 4.9). *If the following conditions hold*

- 1163 • Let everything be defined as in Theorem 4.9.
- 1164 • Suppose that all of the assumptions in Theorem 4.9 hold.

1165 *Then, Eq. (3) hold.*

1166 **Proof. Proof of Part 1.**

1167 $V = (v_2, \dots, v_k, \dots, v_n) \in \mathbb{R}^{n \times (n-1)}$ is an orthonormal basis and is the complement of v_1 .

1168 Also, $\tilde{E}_{u_t} = \tilde{E}(I, u_t, \dots, u_t) \in \mathbb{R}^n$.

1169 $\tan \theta(v_1, u_{t+1})$ ’s upper bound is provided as follows:

$$\begin{aligned} 1170 \tan \theta(v_1, u_{t+1}) &= \tan \theta\left(v_1, \frac{A(I, u_t, \dots, u_t)}{\|A(I, u_t, \dots, u_t)\|_2}\right) \\ 1171 &= \tan \theta(v_1, A(I, u_t, \dots, u_t)) \\ 1172 &= \tan \theta(v_1, A^*(I, u_t, \dots, u_t) + \tilde{E}(I, u_t, \dots, u_t)) \\ 1173 &= \tan \theta(v_1, A^*(I, u_t, \dots, u_t) + \tilde{E}_{u_t}) \\ 1174 &= \frac{\sin \theta(v_1, A^*(I, u_t, \dots, u_t) + \tilde{E}_{u_t})}{\cos \theta(v_1, A^*(I, u_t, \dots, u_t) + \tilde{E}_{u_t})} \\ 1175 &= \frac{\|V^\top [A^*(I, u_t, \dots, u_t) + \tilde{E}_{u_t}]\|_2}{|v_1^\top [A^*(I, u_t, \dots, u_t) + \tilde{E}_{u_t}]|} \\ 1176 &= \frac{\|V^\top A^*(I, u_t, \dots, u_t)\|_2 + \|V^\top \tilde{E}_{u_t}\|_2}{|v_1^\top A^*(I, u_t, \dots, u_t)| - |v_1^\top \tilde{E}_{u_t}|}, \end{aligned} \tag{17}$$

1188 where the first step follows from the definition of u_{t+1} , the second step follows from the definition
 1189 of angle, the third step follows from $A = A^* + \tilde{E} \in \mathbb{R}^{n^p}$, the fourth step follows from $\tilde{E}_{u_t} :=$
 1190 $\tilde{E}(I, u_t, \dots, u_t) \in \mathbb{R}^n$, the fifth step follows from the definition of $\tan \theta$, the sixth step follows
 1191 from sin and cos, and the seventh step follows from the triangle inequality.
 1192

1193 Using Fact 4.7, we can get

$$\begin{aligned} 1194 \quad \|V^\top A^*(I, u_t, \dots, u_t)\|_2^2 &= \sum_{j=2}^k \lambda_j^2 |v_j^\top u_t|^{2(p-1)} \\ 1195 \quad &\leq \left(\max_{j \in [k] \setminus \{1\}} |\lambda_j|^2 |v_j^\top u_t|^{2(p-2)} \right) \cdot \left(\sum_{j=2}^k |v_j^\top u_t|^2 \right), \end{aligned} \quad (18)$$

1200 where the second step follows from $\sum_i a_i b_i \leq (\max_i a_i) \cdot \sum_i b_i$ for all $a, b \in \mathbb{R}_{\geq 0}^n$.
 1201

1202 Putting it all together, we have

$$\begin{aligned} 1203 \quad \tan \theta(v_1, u_{t+1}) &\leq \frac{\|V^\top A^*(I, u_t, \dots, u_t)\|_2 + \|V^\top \tilde{E}_{u_t}\|_2}{|v_1^\top A^*(I, u_t, \dots, u_t)| - |v_1^\top \tilde{E}_{u_t}|} \\ 1204 \quad &\leq \tan \theta(v_1, u_t) \cdot \frac{(\|V^\top A^*(I, u_t, \dots, u_t)\|_2 + \|V^\top \tilde{E}_{u_t}\|_2) / \|V^\top u_t\|_2}{|v_1^\top A^*(I, u_t, \dots, u_t)| / |v_1^\top u_t| - |v_1^\top \tilde{E}_{u_t}| / |v_1^\top u_t|} \\ 1205 \quad &\leq \tan \theta(v_1, u_t) \cdot \frac{\max_{j \in [k] \setminus \{1\}} \lambda_j |v_j^\top u_t|^{p-2} + \|V^\top \tilde{E}_{u_t}\|_2 / \|V^\top u_t\|_2}{|v_1^\top A^*(I, u_t, \dots, u_t)| / |v_1^\top u_t| - |v_1^\top \tilde{E}_{u_t}| / |v_1^\top u_t|} \\ 1206 \quad &\leq \tan \theta(v_1, u_t) \cdot \frac{\max_{j \in [k] \setminus \{1\}} \lambda_j |v_j^\top u_t|^{p-2} + \|V^\top \tilde{E}_{u_t}\|_2 / \|V^\top u_t\|_2}{\lambda_1 |v_1^\top u_t|^{p-2} - |v_1^\top \tilde{E}_{u_t}| / |v_1^\top u_t|} \\ 1207 \quad &\leq \tan \theta(v_1, u_t) \cdot \frac{(1/4) \lambda_1 |v_1^\top u_t|^{p-2} + \|V^\top \tilde{E}_{u_t}\|_2 / \|V^\top u_t\|_2}{\lambda_1 |v_1^\top u_t|^{p-2} - |v_1^\top \tilde{E}_{u_t}| / |v_1^\top u_t|} \\ 1208 \quad &\leq \tan \theta(v_1, u_t) \cdot (1/4) \cdot \underbrace{\frac{1}{1 - |v_1^\top \tilde{E}_{u_t}| / (\lambda_1 |v_1^\top u_t|^{p-1})}}_{B_1} \\ 1209 \quad &\quad + \underbrace{\frac{1}{1 - |v_1^\top \tilde{E}_{u_t}| / (\lambda_1 |v_1^\top u_t|^{p-1})}}_{B_1} \cdot \underbrace{\frac{\|V^\top \tilde{E}_{u_t}\|_2}{\lambda_1 |v_1^\top u_t|^{p-1}}}_{B_2} \\ 1210 \quad &= \tan \theta(v_1, u_t) \cdot (1/4) \cdot B_1 + B_1 \cdot B_2, \end{aligned}$$

1211 where the 1st step comes from Eq. (17), the 2nd step is by $\tan \theta(v_1, u_t) = \frac{\|V^\top u_t\|_2}{|v_1^\top u_t|}$, the 3rd step is
 1212 because of Equation (18), the 4th step follows from Fact B.7, the 5th step follows from Part 2 of The-
 1213 orems 4.9, the 6th step follows from simple algebra, and the 7th step follows from the definition of
 1214 B_1 and B_2 .
 1215

1216 We show

1217 **Claim C.3.** For any $t \in [T]$, we have

$$1218 \quad |v_1^\top u_0| \leq |v_1^\top u_t|. \\ 1219$$

1220 *Proof.* Based on the assumption from the induction hypothesis, we consider the existence of a suf-
 1221 ficiently small constant c being greater than 0 satisfying
 1222

$$1223 \quad \tan \theta(v_1, u_t) \leq 0.8 \tan \theta(v_1, u_{t-1}) + c. \quad (19)$$

1224 Therefore, we can get
 1225

$$1226 \quad \tan \theta(v_1, u_t) \leq 0.8 \cdot (0.8 \tan \theta(v_1, u_{t-1}) + c) + c$$

$$\begin{aligned}
&\leq 0.8^t \cdot \tan \theta(v_1, u_0) + c \sum_{j=0}^{t-1} 0.8^j \\
&\leq 0.8^t \cdot \tan \theta(v_1, u_0) + 5c \\
&\leq \tan \theta(v_1, u_0),
\end{aligned}$$

where the first step follows from applying Eq. (19) recursively twice, the second step follows from applying Eq. (19) recursively for $t + 1$ times, the third step follows from $\sum_{j=0}^{\infty} 0.8^j \leq 5$, and the last step follows from $\tan \theta(v_1, u_0) = \Omega(1)$.

This result shows

$$\theta(v_1, u_t) \leq \theta(v_1, u_0),$$

so

$$|v_1^\top u_t| = \cos \theta(v_1, u_t) \geq \cos \theta(v_1, u_0) = |v_1^\top u_0|.$$

□

Therefore, B_1 and B_2 has upper bounds.

Claim C.4. B_1 is smaller than or equal to 1.1.

Proof. Let's consider

$$\begin{aligned}
|\tilde{E}(v_j, u_t, \dots, u_t)| &= |v_j^\top \tilde{E}(I, u_t, \dots, u_t)| \\
&= |v_j^\top \tilde{E}_{u_t}|.
\end{aligned}$$

Since

$$\begin{aligned}
|\tilde{E}(v_j, u_t, \dots, u_t)| &\leq 4\epsilon/\sqrt{n} \\
&\leq 4c\lambda_1/n^{(p-1)/2} \\
&\leq 4c\lambda_1|v_1^\top u_0|^{p-1},
\end{aligned}$$

where the first step follows from the constraint on \tilde{E} in Theorem 4.9, the second step follows from $\epsilon \leq c\lambda_1/n^{(p-2)/2}$, and the third step follows from $|v_1^\top u_0| \geq 1/\sqrt{n}$.

Correspondingly, if c can be chosen to be small enough, i.e., c is smaller than $\frac{1}{40}$, using

$$|v_1^\top \tilde{E}_{u_t}| \leq \lambda_1|v_1^\top u_0|^{p-1}/10$$

and

$$|v_1^\top u_0| \leq |v_1^\top u_t|,$$

then

$$\begin{aligned}
|v_1^\top \tilde{E}_{u_t}| &\leq \lambda_1|v_1^\top u_0|^{p-1}/10 \\
&\leq \lambda_1|v_1^\top u_t|^{p-1}/10.
\end{aligned} \tag{20}$$

As a result,

$$B_1 \leq \frac{1}{1 - 1/11} = 1.1.$$

□

1296 Next, we bound B_2 . Let's consider two different cases. The first one is
 1297

$$1298 |v_1^\top u_t| \leq 1 - \frac{1}{c_0^2 p^2 k^2}$$

1300 and the other is
 1301

$$1302 |v_1^\top u_t| > 1 - \frac{1}{c_0^2 p^2 k^2}.$$

1304 If

$$1305 |v_1^\top u_t| \leq (1 - \frac{1}{c_0^2 p^2 k^2}),$$

1308 we have

$$\begin{aligned} 1309 B_2 &= \frac{\|V^\top \tilde{E}_{u_t}\|_2}{\lambda_1 |v_1^\top u_t|^{p-1}} \\ 1310 &= \frac{\sqrt{1 - |v_1^\top u_t|^2}}{|v_1^\top u_t|} \cdot \frac{\|V^\top \tilde{E}_{u_t}\|_2}{\lambda_1 |v_1^\top u_t|^{p-2} \sqrt{1 - |v_1^\top u_t|^2}} \\ 1311 &= \tan \theta(v_1, u_t) \cdot \frac{\|V^\top \tilde{E}_{u_t}\|_2}{\lambda_1 |v_1^\top u_t|^{p-2} \sqrt{1 - |v_1^\top u_t|^2}} \\ 1312 &\leq \tan \theta(v_1, u_t) \cdot \frac{\|\tilde{E}_{u_t}\|_2}{\lambda_1 |v_1^\top u_t|^{p-2} \sqrt{1 - |v_1^\top u_t|^2}} \\ 1313 &\leq \tan \theta(v_1, u_t) \cdot \frac{c_0 p k \|\tilde{E}_{u_t}\|_2}{\lambda_1 |v_1^\top u_t|^{p-2}}, \\ 1314 \end{aligned}$$

1315 where the first step comes from the definition of B_2 (see Definition C.1), the second step follows
 1316 from splitting the term, the third step follows from $\tan \theta(v_1, u_t) = \frac{\sqrt{1 - |v_1^\top u_t|^2}}{|v_1^\top u_t|}$, the fourth step
 1317 follows that $\|V^\top \tilde{E}_{u_t}\|_2 \leq \|\tilde{E}_{u_t}\|_2$, and the last step follows from $1/\sqrt{1 - |v_1^\top u_t|^2} \leq c_0 p k$.
 1318

1319 We need to bound

$$1320 \frac{c_0 p k \|\tilde{E}_{u_t}\|_2}{\lambda_1 |v_1^\top u_t|^{p-2}}.$$

1321 Here, we can get

$$1322 \lambda_1 |v_1^\top u_t|^{p-2} \geq \lambda_1 / (n^{(p-2)/2}).$$

1323 On the other hand, utilizing Part 1 of Lemma C.11 and the given assumptions about \bar{E} and E , we
 1324 obtain $\|\tilde{E}_{u_t}\|_2$

$$1325 c_0 p k \|\tilde{E}_{u_t}\|_2 \leq c_0 p k \cdot 4 p \epsilon.$$

1326 Consequently, whenever we have small enough ϵ satisfying

$$1327 \epsilon \leq \lambda_1 / (n^{(p-2)/2} \cdot 40 \cdot c_0 p^2 k),$$

1328 then

$$1329 B_2 \leq 0.1 \tan \theta(v_1, u_t).$$

1330 If

$$1331 |v_1^\top u_t| > 1 - \frac{1}{c_0^2 k^2 p^2},$$

1332 then we have

$$1333 B_2 = \frac{\|V^\top \tilde{E}_{u_t}\|_2}{\lambda_1 |v_1^\top u_t|^{p-1}}$$

$$\begin{aligned}
&\leq \frac{\|V^\top \tilde{E}_{u_t}\|_2}{\lambda_1(1 - \frac{1}{c_0^2 p^2 k^2})^{p-1}} \\
&\leq 3\|V^\top \tilde{E}_{u_t}\|_2 / \lambda_1 \\
&\leq 3\|\tilde{E}_{u_t}\|_2 / \lambda_1
\end{aligned}$$

where the first step follows from the definition of B_2 , the second step follows from $|v_1^\top u_t| > 1 - \frac{1}{c_0^2 p^2 k^2}$, the third step follows from

$$1/(1 - \frac{1}{c_0^2 p^2 k^2})^{p-1} \leq 3, \forall p \geq 3, k \geq 1, c_0 \geq 1,$$

and the last step follows from $\|V^\top \tilde{E}_{u_t}\|_2 \leq \|\tilde{E}_{u_t}\|_2$.

By Part 1 of Corollary C.12, we have $\|\hat{E}_{u_t}\|_2 \leq 4\epsilon/c_0$. By what we have assumed on E and \bar{E} , $\|E_{u_t}\|_2 \leq \epsilon/c_0$ and $\|\bar{E}_{u_t}\|_2 \leq \epsilon/c_0$, which completes the proof of $B_2 \leq 18\epsilon/(c_0\lambda_1)$.

□

C.2 PART 2 OF THEOREM 4.9

In this section, we present the proof of the second part of Theorem 4.9.

Lemma C.5 (Part 2 of Theorem 4.9). *If the following conditions hold*

- *Let everything be defined as in Theorem 4.9.*
- *Suppose that all of the assumptions in Theorem 4.9 hold.*

Then, Eq. (4) hold.

Proof. Proof of Part 2.

Let j be an arbitrary element in $[k] \setminus \{1\}$.

Then, there exists an lower bound for $\frac{|v_1^\top u_{t+1}|}{|v_j^\top u_{t+1}|}$,

$$\begin{aligned}
\frac{|v_1^\top u_{t+1}|}{|v_j^\top u_{t+1}|} &= \frac{|v_1^\top [A^*(I, u_t, \dots, u_t) + \tilde{E}_{u_t}]|}{|v_j^\top [A^*(I, u_t, \dots, u_t) + \tilde{E}_{u_t}]|} \\
&\geq \frac{|v_1^\top A^*(I, u_t, \dots, u_t)| - |v_1^\top \tilde{E}_{u_t}|}{|v_j^\top A^*(I, u_t, \dots, u_t)| + |v_j^\top \tilde{E}_{u_t}|} \\
&\geq \frac{\lambda_1 |v_1^\top u_t|^{p-1} - |v_1^\top \tilde{E}_{u_t}|}{\lambda_j |v_j^\top u_t|^{p-1} + |v_j^\top \tilde{E}_{u_t}|} \\
&\geq \frac{\lambda_1 |v_1^\top u_t|^{p-1} - \frac{1}{10}\lambda_1 |v_1^\top u_t|^{p-1}}{\lambda_j |v_j^\top u_t|^{p-1} + \frac{1}{10}\lambda_1 |v_1^\top u_t|^{p-1}} \\
&\geq \frac{\frac{1}{4}\lambda_1 |v_1^\top u_t|^{p-2} |v_j^\top u_t| + \frac{1}{10}\lambda_1 |v_1^\top u_t|^{p-1}}{\frac{1}{4}\lambda_1 |v_1^\top u_t|^{p-2} |v_j^\top u_t| + \frac{1}{10}\lambda_1 |v_1^\top u_t|^{p-1}} \\
&= \frac{\frac{9}{10} |v_1^\top u_t|}{\frac{1}{4} |v_j^\top u_t| + \frac{1}{10} |v_1^\top u_t|} \tag{21}
\end{aligned}$$

where the first step follows from the definition of u_{t+1} (see the statement in Theorem 4.9), the second step follows from the triangle inequality, the third step follows from Fact B.7, the fourth step follows from Eq. (20), the fifth step follows from Part 1 $\lambda_j |v_j^\top u_t|^{p-2} \leq \frac{1}{4}\lambda_1 |v_1^\top u_t|^{p-2}$, and the last step follows from simple algebra.

If

$$|v_j^\top u_t| < |v_1^\top u_t|, \tag{22}$$

1404 then

$$\begin{aligned}
\frac{\lambda_1 |v_1^\top u_{t+1}|^{p-2}}{\lambda_j |v_j^\top u_{t+1}|^{p-2}} &= \frac{\lambda_1}{\lambda_j} \left(\frac{|v_1^\top u_{t+1}|}{|v_j^\top u_{t+1}|} \right)^{p-2} \\
&\geq \frac{\lambda_1}{\lambda_j} \left(\frac{\frac{9}{10} |v_1^\top u_t|}{\frac{1}{4} |v_j^\top u_t| + \frac{1}{10} |v_1^\top u_t|} \right)^{p-2} \\
&\geq \frac{\lambda_1}{\lambda_j} \left(\frac{\frac{9}{10} |v_j^\top u_t|}{\frac{1}{4} |v_j^\top u_t| + \frac{1}{10} |v_j^\top u_t|} \right)^{p-2} \\
&= \frac{\lambda_1}{\lambda_j} \left(\frac{\frac{9}{10}}{\frac{1}{4} + \frac{1}{10}} \right)^{p-2} \\
&\geq \frac{\lambda_1}{\lambda_j} 2^{p-2}, \tag{23}
\end{aligned}$$

1420 where the first step follows from $\frac{a^x}{b^x} = \left(\frac{a}{b}\right)^x$, the second step follows from Eq. (21), the third step
1421 follows from Eq. (22), the fourth step follows from simple algebra, the last step follows from simple
1422 algebra.

1423 The final step is a consequence of the fact that p is greater than or equal to 4. For the case of p
1424 being equal to 3, we utilize a better analysis which is similar to the proof of (Wang & Anandkumar,
1425 2016)'s Lemma C.2. Therefore, this approach is applicable for any $p \geq 3$.

1426 If

$$|v_j^\top u_t| \geq |v_1^\top u_t|, \tag{24}$$

1429 then

$$\begin{aligned}
\frac{\lambda_1 |v_1^\top u_{t+1}|^{p-2}}{\lambda_j |v_j^\top u_{t+1}|^{p-2}} &\geq \frac{\lambda_1}{\lambda_j} \left(\frac{\frac{9}{10} |v_1^\top u_t|}{\frac{1}{4} |v_j^\top u_t| + \frac{1}{10} |v_1^\top u_t|} \right)^{p-2} \\
&= \frac{\lambda_1}{\lambda_j} \left(\frac{\frac{9}{10} |v_1^\top u_t| |v_j^\top u_t|}{\left(\frac{1}{4} |v_j^\top u_t| + \frac{1}{10} |v_1^\top u_t| \right) |v_1^\top u_t| |v_j^\top u_t|} \right)^{p-2} \\
&= \frac{\lambda_1}{\lambda_j} \left(\frac{\frac{9}{10} |v_1^\top u_t| |v_j^\top u_t|}{\left(\frac{1}{4} |v_j^\top u_t| + \frac{1}{10} |v_1^\top u_t| \right) |v_1^\top u_t|} \right)^{p-2} \left(\frac{|v_1^\top u_t|}{|v_j^\top u_t|} \right)^{p-2} \\
&= \frac{\lambda_1}{\lambda_j} \left(\frac{\frac{9}{10} |v_j^\top u_t|}{\frac{1}{4} |v_j^\top u_t| + \frac{1}{10} |v_1^\top u_t|} \right)^{p-2} \left(\frac{|v_1^\top u_t|}{|v_j^\top u_t|} \right)^{p-2} \\
&\geq \frac{\lambda_1}{\lambda_j} \left(\frac{\frac{9}{10} |v_j^\top u_t|}{\frac{1}{4} |v_j^\top u_t| + \frac{1}{10} |v_j^\top u_t|} \right)^{p-2} \left(\frac{|v_1^\top u_t|}{|v_j^\top u_t|} \right)^{p-2} \\
&\geq \frac{\lambda_1}{\lambda_j} \frac{|v_1^\top u_t|^{p-2}}{|v_j^\top u_t|^{p-2}} \cdot \left(\frac{\frac{9}{10} |v_j^\top u_t|}{\frac{1}{4} |v_j^\top u_t| + \frac{1}{10} |v_j^\top u_t|} \right)^{p-2} \\
&\geq \frac{\lambda_1}{\lambda_j} \frac{|v_1^\top u_t|^{p-2}}{|v_j^\top u_t|^{p-2}} \cdot 2^{p-2} \\
&\geq 4 \cdot 2^{p-2},
\end{aligned}$$

1452 where the first step follows from the second step of Eq. (23), the second step follows from simple
1453 algebra, the third step follows from $(ab)^2 = a^2 b^2$, the fourth step follows from simple algebra, the
1454 fifth step follows from Eq. (24), the sixth step follows from $\left(\frac{a}{b}\right)^2 = \frac{a^2}{b^2}$, the seventh step follows
1455 from the relationship between the third step and the last step of Eq. (23), and the last step follows
1456 from Part 1.

1457

□

1458 C.3 PART 3 OF THEOREM 4.9
1459

1460 In this section, we present the proof of the third part of Theorem 4.9.

1461 **Definition C.6.** We define $B_3 \in \mathbb{R}$ and $B_4 \in \mathbb{R}$ as follows
1462

1463
$$B_3 := \frac{1}{1 - |v_1^\top \tilde{E}_{u_t}| / (\lambda_1 |v_1^\top u_t|^{p-1})}$$

1464

1465 and
1466

1467
$$B_4 := \frac{|v_j^\top \tilde{E}_{u_t}|}{\lambda_1 |v_1^\top u_t|^{p-1}}$$

1468

1469 **Lemma C.7** (Part 3 of Theorem 4.9). If the following conditions hold:
14701471

- Let everything be defined as in Theorem 4.9.

1472 - Suppose that all of the assumptions in Theorem 4.9 hold.

14731474 Then, Eq. (5) hold.
14751476 **Proof. Proof of Part 3.**1477 Just like Eq. (21) and Part 2, $\frac{|v_j^\top u_{t+1}|}{|v_1^\top u_{t+1}|}$ can also be upper bounded,
1478

1479
$$\begin{aligned} & \frac{|v_j^\top u_{t+1}|}{|v_1^\top u_{t+1}|} \\ & \leq \frac{\lambda_j |v_j^\top u_t|^{p-1} + |v_j^\top \tilde{E}_{u_t}|}{\lambda_1 |v_1^\top u_t|^{p-1} - |v_1^\top \tilde{E}_{u_t}|} \\ & = \frac{|v_j^\top u_t|}{|v_1^\top u_t|} \cdot \frac{\lambda_j |v_j^\top u_t|^{p-2} + |v_j^\top \tilde{E}_{u_t}| / |v_j^\top u_t|}{\lambda_1 |v_1^\top u_t|^{p-2} - |v_1^\top \tilde{E}_{u_t}| / |v_1^\top u_t|} \\ & = \frac{|v_j^\top u_t|}{|v_1^\top u_t|} \cdot \frac{\lambda_j |v_j^\top u_t|^{p-2}}{\lambda_1 |v_1^\top u_t|^{p-2} - |v_1^\top \tilde{E}_{u_t}| / |v_1^\top u_t|} + \frac{|v_j^\top \tilde{E}_{u_t}|}{\lambda_1 |v_1^\top u_t|^{p-1} - |v_1^\top \tilde{E}_{u_t}|} \\ & = \frac{|v_j^\top u_t|}{|v_1^\top u_t|} \cdot \frac{\lambda_j |v_j^\top u_t|^{p-2}}{\lambda_1 |v_1^\top u_t|^{p-2} - |v_1^\top \tilde{E}_{u_t}| / |v_1^\top u_t|} + \frac{1}{1 - |v_1^\top \tilde{E}_{u_t}| / (\lambda_1 |v_1^\top u_t|^{p-1})} \cdot \frac{|v_j^\top \tilde{E}_{u_t}|}{\lambda_1 |v_1^\top u_t|^{p-1}} \\ & \leq \frac{|v_j^\top u_t|}{|v_1^\top u_t|} \cdot \frac{1}{4} \cdot \frac{\lambda_1 |v_1^\top u_t|^{p-2}}{\lambda_1 |v_1^\top u_t|^{p-2} - |v_1^\top \tilde{E}_{u_t}| / |v_1^\top u_t|} + \frac{1}{1 - |v_1^\top \tilde{E}_{u_t}| / (\lambda_1 |v_1^\top u_t|^{p-1})} \cdot \frac{|v_j^\top \tilde{E}_{u_t}|}{\lambda_1 |v_1^\top u_t|^{p-1}} \\ & = \frac{|v_j^\top u_t|}{|v_1^\top u_t|} \cdot \frac{1}{4} \cdot \underbrace{\frac{1}{1 - |v_1^\top \tilde{E}_{u_t}| / (\lambda_1 |v_1^\top u_t|^{p-1})}}_{B_3} + \underbrace{\frac{1}{1 - |v_1^\top \tilde{E}_{u_t}| / (\lambda_1 |v_1^\top u_t|^{p-1})}}_{B_3} \cdot \underbrace{\frac{|v_j^\top \tilde{E}_{u_t}|}{\lambda_1 |v_1^\top u_t|^{p-1}}}_{B_4}, \end{aligned}$$

1480

1501 where the first step follows from the relationship between the first step and the third step of
1502 Eq. (21), the second step follows from simple algebra, the third step follows from simple algebra,
1503 the fourth step follows from simple algebra, and the fifth step follows from Part 1 $\lambda_j |v_j^\top u_t|^{p-2} \leq$
1504 $\frac{1}{4} \lambda_1 |v_1^\top u_t|^{p-2}$, and the last step follows from simple algebra.
15051506 Similar to Part 1, we can show $B_3 \leq 1.1$ if
1507

1508
$$|v_1^\top u_t| \geq 1 - \frac{1}{c_0^2 p^2 k^2}.$$

1509

1510 Then, we consider the bound for B_4 .
1511

There are two different situations, namely,

1512 • Case 1. $|v_1^\top u_t| \leq 1 - \frac{1}{c_0^2 p^2 k^2}$
 1513
 1514 • Case 2. $|v_1^\top u_t| > 1 - \frac{1}{c_0^2 p^2 k^2}$.
 1515

1516 If
 1517

$$1518 \quad |v_1^\top u_t| \leq (1 - \frac{1}{c_0^2 p^2 k^2}),
 1519$$

1520 we have

$$\begin{aligned} 1521 \quad B_4 &= \frac{|v_j^\top \tilde{E}_{u_t}|}{\lambda_1 |v_1^\top u_t|^{p-1}} \\ 1522 &= \frac{\sqrt{1 - |v_1^\top u_t|^2}}{|v_1^\top u_t|} \cdot \frac{|v_j^\top \tilde{E}_{u_t}|}{\lambda_1 |v_1^\top u_t|^{p-2} \sqrt{1 - |v_1^\top u_t|^2}} \\ 1524 &= \tan \theta(v_1, u_t) \cdot \frac{|v_j^\top \tilde{E}_{u_t}|}{\lambda_1 |v_1^\top u_t|^{p-2} \sqrt{1 - |v_1^\top u_t|^2}} \\ 1525 &\leq \tan \theta(v_1, u_t) \cdot \frac{c_0 p k |v_j^\top \tilde{E}_{u_t}|}{\lambda_1 |v_1^\top u_t|^{p-2}}, \\ 1526 & \end{aligned}$$

1527 where the 1st step is from the definition of B_4 , the 2nd step comes from simple algebra, the 3rd step
 1528 is due to the definition of $\tan \theta(v_1, u_t)$, and the last step follows from $1/\sqrt{1 - |v_1^\top u_t|^2} \leq c_0 p k$.
 1529

1530 We want to find the bound for
 1531

$$\frac{c_0 p k \|\tilde{E}_{u_t}\|_2}{\lambda_1 |v_1^\top u_t|^{p-2}}.$$

1532 We can get that
 1533

$$1534 \quad \lambda_1 |v_1^\top u_t|^{p-2} \geq \lambda_1 / (n^{(p-2)/2}).$$

1535 Additionally, based on Part 2 of Lemma C.11 and what we assumed about \bar{E} and E ,
 1536

$$1537 \quad c_0 p k |v_j^\top \tilde{E}_{u_t}| \leq c_0 p k \cdot 4\epsilon / \sqrt{n}.$$

1538 Therefore, whenever there is a small enough ϵ satisfying
 1539

$$1540 \quad \epsilon \leq \lambda_1 \sqrt{n} / (n^{(p-2)/2} \cdot 40 \cdot c_0 p k),$$

1541 then
 1542

$$1543 \quad B_4 \leq 0.1 \tan \theta(v_1, u_t).$$

1544 If
 1545

$$1546 \quad |v_1^\top u_t| > 1 - \frac{1}{c_0^2 p^2 k^2},$$

1547 then we have
 1548

$$\begin{aligned} 1549 \quad B_4 &= \frac{|v_j^\top \tilde{E}_{u_t}|}{\lambda_1 |v_1^\top u_t|^{p-1}} \\ 1550 &\leq \frac{|v_j^\top \tilde{E}_{u_t}|}{\lambda_1 (1 - \frac{1}{c_0^2 p^2 k^2})^{p-1}} \\ 1551 &\leq 3 |v_j^\top \tilde{E}_{u_t}| / \lambda_1, \\ 1552 & \end{aligned}$$

1553 where the first step follows from the definition of B_4 , the second step follows from $|v_1^\top u_t| > 1 - \frac{1}{c_0^2 p^2 k^2}$, the third step follows from $\forall p \geq 3, k \geq 1, c_0 \geq 1$, we have
 1554

$$1555 \quad 1 / (1 - \frac{1}{c_0^2 p^2 k^2})^{p-1} \leq 3.$$

1566 By Part 1 of Corollary C.12, we have
 1567

$$1568 |v_j^\top \widehat{E}_{u_t}| \leq 4\epsilon/(c_0\sqrt{n}).$$

1569
 1570 Based on what we have assumed about E and \overline{E} ,

$$1571 |v_j^\top E_{u_t}| \leq \epsilon/(c_0\sqrt{n})$$

1572 and
 1573

$$1574 |v_j^\top \overline{E}_{u_t}| \leq \epsilon/(c_0\sqrt{n}).$$

1575
 1576 Therefore, the proof of $B_4 \leq 18\epsilon/(c_0\lambda_1\sqrt{n})$ is completed. \square
 1577

1578 C.4 ϵ -CLOSE

1579
 1580 In this section, we upper bound some terms.

1581 **Definition C.8.** For any $\epsilon > 0$, we say $\{\widehat{\lambda}_i, \widehat{v}_i\}_{i=1}^k$ is ϵ -close to $\{\lambda_i, v_i\}_{i=1}^k$ if for all $i \in [k]$,

- 1583 1. $|\widehat{\lambda}_i - \lambda_i| \leq \epsilon$.
- 1584 2. $\|\widehat{v}_i - v_i\|_2 \leq \tan \theta(\widehat{v}_i, v_i) \leq \min(\sqrt{2}, \epsilon/(\lambda_i))$.
- 1585 3. $|\widehat{v}_i^\top v_j| \leq \epsilon/(\sqrt{n}\lambda_i)$, $\forall j \in [k] \setminus [i]$.

1586 **Definition C.9** (A_i and B_i). We define
 1587

$$1588 A_i := \lambda_i a_i^{p-1} v_i - \widehat{\lambda}_i (a_i c_i + \|\widehat{v}_i^\perp\|_2 b_i)^{p-1} c_i$$

1589 and
 1590

$$1591 B_i := \widehat{\lambda}_i (a_i c_i + \|\widehat{v}_i^\perp\|_2 b_i)^{p-1} \|\widehat{v}_i^\perp\|_2.$$

1592 **Assumption C.10.** We assume that ϵ is a real number that satisfies
 1593

$$1594 \epsilon < 10^{-5} \frac{\lambda_k}{p^2 k}.$$

1595 **Lemma C.11.** If the following conditions hold
 1596

- 1597 1. For all $i \in [k]$, $\widehat{E}_i = \lambda_i v_i^{\otimes p} - \widehat{\lambda}_i \widehat{v}_i^{\otimes p} \in \mathbb{R}^{n^p}$.
- 1598 2. Let $\epsilon > 0$.
- 1599 3. $\{\widehat{\lambda}_i, \widehat{v}_i\}_{i=1}^k$ is ϵ -close to $\{\lambda_i, v_i\}_{i=1}^k$.
- 1600 4. Let $r \in [k]$.
- 1601 5. Let $u \in \mathbb{R}^n$ be an unit vector.

1602 Then, we have
 1603

- 1604 1. $\left\| \sum_{i=1}^r \widehat{E}_i(I, u, \dots, u) \right\|_2 \leq 2p\epsilon\kappa^{1/2} + 2\phi\epsilon$.
- 1605 2. For all $[k] \setminus [i]$, $\left| \sum_{i=1}^r \widehat{E}_j(v_j, u, \dots, u) \right| \leq (2\kappa\epsilon + \phi\epsilon)/\sqrt{n}$.

1606 where
 1607

$$1608 \kappa = 2 \sum_{i=1}^r |u^\top v_i|^2 \tag{25}$$

1609 and
 1610

$$1611 \phi = 2k(\epsilon/\lambda_k)^{p-1}. \tag{26}$$

1620 *Proof. Proof of Part 1.*

1621 Let i be an arbitrary element in $[r]$.

1623 We have that \widehat{E}_i is the error and it satisfies

$$1625 \quad \widehat{E}_i(I, u, \dots, u) = \lambda_i(u^\top v_i)^{p-1} v_i - \widehat{\lambda}_i(u^\top \widehat{v}_i)^{p-1} \widehat{v}_i, \quad (27)$$

1626 which is in the span of $\{v_i, \widehat{v}_i\}$.

1628 Also, the span of $\{v_i, \widehat{v}_i\}$ is identical to the span of $\{v_i, \widehat{v}_i^\perp\}$, where

$$1629 \quad \widehat{v}_i^\perp = \widehat{v}_i - (v_i^\top \widehat{v}_i) v_i.$$

1631 is the projection of \widehat{v}_i onto the subspace orthogonal to v_i .

1632 Note

$$1633 \quad \|\widehat{v}_i - v_i\|_2^2 = 2(1 - v_i^\top \widehat{v}_i). \quad (28)$$

1635 For convenient, we define

$$1637 \quad c_i = \langle v_i, \widehat{v}_i \rangle.$$

1639 We can rewrite c_i as follows

$$1640 \quad \begin{aligned} c_i &= v_i^\top \widehat{v}_i \\ 1641 &= 1 - \|\widehat{v}_i - v_i\|_2^2 / 2 \\ 1642 &\geq 0, \end{aligned} \quad (29)$$

1644 the first step follows from definition of c_i , the second step follows from Eq. (28), and the last step is
1645 because of the assumption that $\|\widehat{v}_i - v_i\|_2 \leq \sqrt{2}$, and it implies that $0 \leq c_i \leq 1$.

1646 We can also get

$$1648 \quad \begin{aligned} \|\widehat{v}_i^\perp\|_2^2 &= 1 - c_i^2 \\ 1649 &\leq \|\widehat{v}_i - v_i\|_2^2, \end{aligned} \quad (30)$$

1651 which follows from Eq. (29) and the Pythagorean theorem.

1652 For all p being greater than or equal to 3, the following bound can be obtained:

$$1654 \quad \begin{aligned} |1 - c_i^p| &= |1 - (1 - \|\widehat{v}_i - v_i\|_2^2 / 2)^p| \\ 1655 &\leq \frac{p}{2} \|\widehat{v}_i - v_i\|_2^2, \end{aligned}$$

1657 where the 1st step is due to Eq. (29) and the 2nd step is supported by Fact B.1.

1658 We present the definition of $a_i \in \mathbb{R}^n$ and $b_i \in \mathbb{R}^n$:

$$1660 \quad a_i = u^\top v_i$$

1661 and

$$1663 \quad b_i = u^\top (\widehat{v}_i^\perp / \|\widehat{v}_i^\perp\|_2).$$

1665 $\widehat{E}_i(I, u, \dots, u)$ can be expressed by the coordinate system of \widehat{v}_i^\perp and v_i :

$$1667 \quad \begin{aligned} \widehat{E}_i(I, u, \dots, u) &= \lambda_i(u^\top v_i)^{p-1} v_i - \widehat{\lambda}_i(u^\top \widehat{v}_i)^{p-1} \widehat{v}_i \\ 1668 &= \lambda_i a_i^{p-1} v_i - \widehat{\lambda}_i(a_i c_i + \|\widehat{v}_i^\perp b_i\|_2) v_i \\ 1669 &= \underbrace{\lambda_i a_i^{p-1} v_i - \widehat{\lambda}_i(a_i c_i + \|\widehat{v}_i^\perp\|_2 b_i)^{p-1} c_i}_{A_i} \cdot v_i - \underbrace{\widehat{\lambda}_i(a_i c_i + \|\widehat{v}_i^\perp\|_2 b_i)^{p-1} \|\widehat{v}_i^\perp\|_2 \cdot \widehat{v}_i^\perp / \|\widehat{v}_i^\perp\|_2}_{B_i} \\ 1670 &= A_i \cdot v_i - B_i \cdot (\widehat{v}_i^\perp / \|\widehat{v}_i^\perp\|_2), \end{aligned} \quad (31)$$

1674 where the first step follows from Eq. (27), the second step follows from the definition of a_i and b_i ,
 1675 the third step follows from simple algebra, and the last step follows from the definition of A_i and B_i
 1676 (see Definition C.9).

1677 We can express the overall error by:
 1678

$$\begin{aligned}
 \left\| \sum_{i=1}^r \widehat{E}_i(I, u, \dots, u) \right\|_2^2 &= \left\| \sum_{i=1}^r A_i v_i - \sum_{i=1}^t B_i (\widehat{v}_i^\perp / \|\widehat{v}_i^\perp\|_2) \right\|_2^2 \\
 &\leq 2 \left\| \sum_{i=1}^r A_i v_i \right\|_2^2 + 2 \left\| \sum_{i=1}^t B_i (\widehat{v}_i^\perp / \|\widehat{v}_i^\perp\|_2) \right\|_2^2 \\
 &\leq 2 \sum_{i=1}^r A_i^2 + 2 \left(\sum_{i=1}^t |B_i| \right)^2,
 \end{aligned} \tag{32}$$

1688 where the first step follows from Eq. (31), the second step follows from triangle inequality, and the
 1689 third step comes from the definition of the ℓ_2 norm.
 1690

1691 We have

$$\begin{aligned}
 \|\widehat{v}_i^\perp\|_2^2 &\leq \|\widehat{v}_i - v_i\|_2^2 \\
 &\leq \epsilon / \lambda_i,
 \end{aligned} \tag{33}$$

1695 where the first step follows from Eq. (30) and the second step follows from Definition C.8.
 1696

1697 By using

$$|\lambda_i - \widehat{\lambda}_i| \leq \epsilon, \tag{34}$$

1700 we first try to bound A_i for $|b_i|$ being smaller than 1 and $c_i \in [0, 1]$,

$$\begin{aligned}
 |A_i| &= |\lambda_i a_i^{p-1} - \widehat{\lambda}_i (a_i c_i + \|\widehat{v}_i^\perp\|_2 b_i)^{p-1} c_i| \\
 &\leq |\lambda_i a_i^{p-1} - \widehat{\lambda}_i c_i^p a_i^{p-1}| + \sum_{j=1}^{p-1} \widehat{\lambda}_i c_i \binom{(p-1)}{j} |a_i c_i|^{(p-1)-j} \|\widehat{v}_i^\perp\|_2^j \\
 &= |\lambda_i a_i^{p-1} - \widehat{\lambda}_i c_i^p a_i^{p-1} + \widehat{\lambda}_i a_i^{p-1} - \widehat{\lambda}_i a_i^{p-1}| + \sum_{j=1}^{p-1} \widehat{\lambda}_i c_i \binom{(p-1)}{j} |a_i c_i|^{(p-1)-j} \|\widehat{v}_i^\perp\|_2^j \\
 &\leq |\lambda_i a_i^{p-1} - \widehat{\lambda}_i a_i^{p-1}| + |\widehat{\lambda}_i a_i^{p-1} - \widehat{\lambda}_i c_i^p a_i^{p-1}| + \sum_{j=1}^{p-1} \widehat{\lambda}_i c_i \binom{(p-1)}{j} |a_i c_i|^{(p-1)-j} \|\widehat{v}_i^\perp\|_2^j \\
 &\leq |\lambda_i a_i^{p-1} - \widehat{\lambda}_i a_i^{p-1}| + |(1 - c_i^p) \widehat{\lambda}_i a_i^{p-1}| + \sum_{j=1}^{p-1} \widehat{\lambda}_i c_i \binom{(p-1)}{j} |a_i c_i|^{(p-1)-j} \|\widehat{v}_i^\perp\|_2^j \\
 &\leq |\lambda_i a_i^{p-1} - \widehat{\lambda}_i a_i^{p-1}| + |(1 - c_i^p) \widehat{\lambda}_i a_i^{p-1}| + \sum_{j=1}^{p-1} \widehat{\lambda}_i c_i \binom{(p-1)}{j} |a_i c_i|^{(p-1)-j} (\epsilon / \lambda_i)^j \\
 &\leq \epsilon |a_i|^{p-1} + \frac{p}{2} (\epsilon / \lambda_i)^2 \widehat{\lambda}_i |a_i|^{p-1} + \sum_{j=1}^{p-1} \widehat{\lambda}_i \binom{(p-1)}{j} |a_i|^{(p-1)-j} (\epsilon / \lambda_i)^j,
 \end{aligned} \tag{35}$$

1721 where the first step follows from the definition of A_i (see Definition C.9), the second step follows
 1722 from binomial theorem and $|b_i| < 1$, the third step follows from adding and subtracting the same
 1723 thing, the fourth step follows from triangle inequality, the fifth step follows from simple algebra, the
 1724 sixth step follows from Eq. (33), and the last step follows from Eq. (34).
 1725

1726 Note that the second term of Eq. (35) can be bounded as

$$\frac{p}{2} (\epsilon / \lambda_i)^2 \widehat{\lambda}_i |a_i|^{p-1} \leq \frac{p}{2} (\epsilon / \lambda_i)^2 (|\widehat{\lambda}_i - \lambda_i| + |\lambda_i|) |a_i|^{p-1}$$

$$\begin{aligned}
&= \frac{p}{2}(\epsilon/\lambda_i)^2 |\hat{\lambda}_i - \lambda_i| |a_i|^{p-1} + \frac{p}{2}(\epsilon/\lambda_i)^2 |\lambda_i| |a_i|^{p-1} \\
&\leq \frac{p}{2}(\epsilon/\lambda_i)^2 \epsilon |a_i|^{p-1} + \frac{p}{2}(\epsilon/\lambda_i)^2 |\lambda_i| |a_i|^{p-1} \\
&\leq \frac{p}{2}(\epsilon/\lambda_i)^2 \epsilon |a_i|^{p-1} + \frac{p}{2}(\epsilon/\lambda_i) \cdot \epsilon |a_i|^{p-1} \\
&\leq \frac{1}{100k} \epsilon |a_i|^{p-1},
\end{aligned} \tag{36}$$

where the first step follows from triangle inequality, the second step follows from simple algebra, the third step follows from Eq. (34), the fourth step follows from Eq. (33), and the last step follows from Assumption C.10.

We can separate the third term of Eq. (35) into two components

1. $j \in \{1, \dots, (p-1)/2\}$ and
2. $j \in \{(p-1)/2, \dots, (p-1)\}$.

Consider the first component:

$$\begin{aligned}
&\sum_{j=1}^{(p-1)/2} \hat{\lambda}_i \binom{(p-1)}{j} |a_i|^{(p-1)-j} (\epsilon/\lambda_i)^j \\
&= \hat{\lambda}_i (p-1) |a_i|^{p-2} \epsilon/\lambda_i + \sum_{j=2}^{(p-1)/2} \hat{\lambda}_i (p-1)^j |a_i|^{(p-1)/2} (\epsilon/\lambda_i)^j \\
&\leq 2(p-1) \epsilon |a_i|^{p-2} + \sum_{j=2}^{(p-1)/2} \hat{\lambda}_i (p-1)^j |a_i|^{(p-1)/2} (\epsilon/\lambda_i)^j \\
&= 2(p-1) \epsilon |a_i|^{p-2} + \hat{\lambda}_i |a_i|^{(p-1)/2} \sum_{j=2}^{(p-1)/2} (p-1)^j (\epsilon/\lambda_i)^j \\
&\leq 2(p-1) \epsilon |a_i|^{p-2} + \hat{\lambda}_i |a_i|^{(p-1)/2} \sum_{j=0}^{\infty} \left(\frac{1}{2}\right)^j \\
&\leq 2(p-1) \epsilon |a_i|^{p-2} + \hat{\lambda}_i \epsilon \frac{(p-1)^2}{\lambda_i^2} \cdot 2 \cdot |a_i|^{(p-1)/2} \\
&\leq 2(p-1) \epsilon |a_i|^{p-2} + \frac{1}{100k} \epsilon |a_i|^{(p-1)/2},
\end{aligned}$$

where the first step is by expanding the summation term, the second step is because of the fact that $\hat{\lambda}_i \leq 2\lambda_i$, the third step is supported by $\sum_i c a_i = c \sum_i a_i$, the fourth step follows from the fact that each term of $\sum_{j=2}^{(p-1)/2} (p-1)^j (\epsilon/\lambda_i)^j$ is bounded by the corresponding term of $\sum_{j=0}^{\infty} \left(\frac{1}{2}\right)^j$, the fifth step follows from Fact B.2, the sixth step follows from Assumption C.10 and $\hat{\lambda}_i \leq 2\lambda_i$.

Similarly, we can bound the second component,

$$\begin{aligned}
&\sum_{j=(p-1)}^{(p-1)/2} \hat{\lambda}_i \binom{(p-1)}{j} |a_i|^{(p-1)-j} (\epsilon/\lambda_i)^j \\
&= \hat{\lambda}_i \cdot 1 \cdot 1 \cdot (\epsilon/\lambda_i)^{p-1} + \sum_{j=p}^{(p-1)/2} \hat{\lambda}_i \binom{(p-1)}{j} |a_i|^{(p-1)-j} (\epsilon/\lambda_i)^j \\
&= 2\epsilon^{p-1}/\lambda_i^{p-2} + \sum_{j=p}^{(p-1)/2} \hat{\lambda}_i \binom{(p-1)}{j} |a_i|^{(p-1)-j} (\epsilon/\lambda_i)^j
\end{aligned}$$

$$\begin{aligned}
& \leq 2\epsilon^{p-1}/\lambda_i^{p-2} + \binom{(p-1)}{(p-1)/2} \sum_{j=p}^{(p-1)/2} \widehat{\lambda}_i |a_i|^{(p-1)-j} (\epsilon/\lambda_i)^j \\
& \leq 2\epsilon^{p-1}/\lambda_i^{p-2} + \binom{(p-1)}{(p-1)/2} \widehat{\lambda}_i |a_i|^{(p-1)/2} \sum_{j=p}^{(p-1)/2} (\epsilon/\lambda_i)^j \\
& \leq \frac{1}{100k} \epsilon + \binom{(p-1)}{(p-1)/2} \widehat{\lambda}_i |a_i|^{(p-1)/2} \sum_{j=p}^{(p-1)/2} (\epsilon/\lambda_i)^j \\
& \leq \frac{1}{100k} \epsilon + \binom{(p-1)}{(p-1)/2} \widehat{\lambda}_i |a_i|^{(p-1)/2} (\epsilon/\lambda_i)^{(p-1)/2} \sum_{j=p}^{(p-1)/2} (\epsilon/\lambda_i)^{j-(p-1)/2} \\
& \leq \frac{1}{100k} \epsilon + 2 \binom{(p-1)}{(p-1)/2} \widehat{\lambda}_i |a_i|^{(p-1)/2} (\epsilon/\lambda_i)^{(p-1)/2} \\
& \leq \frac{1}{100k} \epsilon + 4 \binom{(p-1)}{(p-1)/2} \lambda_i |a_i|^{(p-1)/2} (\epsilon/\lambda_i)^{(p-1)/2} \\
& \leq \frac{1}{100k} \epsilon + \frac{1}{100k} \epsilon |a_i|
\end{aligned}$$

where the first step comes from expanding the summation term, the second step can be gotten from $\widehat{\lambda}_i \leq 2\lambda_i$, the third step can be supported by $\max_j \{\binom{(p-1)}{j}\} = \binom{(p-1)}{(p-1)/2}$, the fourth step follows from $\sum_i c_i = c \sum_i a_i$, the fifth step follows from Assumption C.10, the sixth step follows from simple algebra, the seventh step follows from the Fact B.3, the eighth step follows from $\widehat{\lambda}_i \leq 2\lambda_i$, and the last step follows from Assumption C.10.

Thus, putting it all together, we get

$$|A_i| \leq \epsilon |a_i| + \frac{1}{10k} \epsilon |a_i| + (p-1) \epsilon |a_i| + \frac{1}{100k} \epsilon$$

which implies that

$$|A_i|^2 \leq 2 \left((\epsilon |a_i|)^2 + \left(\frac{1}{10k} \epsilon |a_i| \right)^2 + ((p-1) \epsilon |a_i|)^2 + \left(\frac{1}{100k} \epsilon \right)^2 \right) \quad (37)$$

Next, we need to find the bound of B_i ,

$$\begin{aligned}
|B_i| &= |\widehat{\lambda}_i \|\widehat{v}_i^\perp\|_2 (a_i c_i + \|\widehat{v}_i^\perp\|_2 b_i)^{p-1}| \\
&\leq \widehat{\lambda}_i \|\widehat{v}_i^\perp\|_2 \sum_{j=0}^{p-1} \binom{(p-1)}{j} |a_i c_i|^{p-1-j} \|\widehat{v}_i^\perp\|_2^j \\
&\leq \widehat{\lambda}_i (\epsilon/\lambda_i) \sum_{j=0}^{p-1} \binom{(p-1)}{j} |a_i|^{p-1-j} (\epsilon/\lambda_i)^j \\
&= \widehat{\lambda}_i (\epsilon/\lambda_i) |a_i|^{p-1} + \widehat{\lambda}_i (\epsilon/\lambda_i) \sum_{j=1}^{p-1} \binom{(p-1)}{j} |a_i|^{p-1-j} (\epsilon/\lambda_i)^j,
\end{aligned} \quad (38)$$

where the first step follows from the definition of B_i (see Definition C.9), the second step follows from binomial theorem and $|b_i| < 1$, the third step follows from $\|\widehat{v}_i^\perp\|_2 \leq \epsilon/\lambda_i$, and the last step follows from extracting the first term from the summation.

Note that the first term of Eq. (38) is

$$\widehat{\lambda}_i (\epsilon/\lambda_i) |a_i|^{p-1},$$

which can be bounded as

$$\widehat{\lambda}_i (\epsilon/\lambda_i) |a_i|^{p-1} \leq (\epsilon + \lambda_i) (\epsilon/\lambda_i) |a_i|^{p-1}$$

$$\begin{aligned}
&= \epsilon |a_i|^{p-1} + (\epsilon^2 / \lambda_i) |a_i|^{p-1} \\
&\leq \epsilon |a_i|^{p-1} + \frac{1}{100k} \epsilon |a_i|^{p-1}
\end{aligned}$$

where the first step follows from simple algebra, and the second step follows from Eq. (36).

The second term of Eq. (38) is

$$\widehat{\lambda}_i(\epsilon / \lambda_i) \sum_{j=1}^{p-1} \binom{(p-1)}{j} |a_i|^{p-1-j} (\epsilon / \lambda_i)^j,$$

We can separate this into two components

1. $j \in \{1, \dots, (p-1)/2\}$ and
2. $j \in \{(p-1)/2, \dots, (p-1)\}$.

The first component is:

$$\begin{aligned}
&(\epsilon / \lambda_i) \sum_{j=1}^{(p-1)/2} \widehat{\lambda}_i \binom{(p-1)}{j} |a_i|^{(p-1)-j} (\epsilon / \lambda_i)^j \\
&= (\epsilon / \lambda_i) \widehat{\lambda}_i (p-1) |a_i|^{p-2} \epsilon / \lambda_i + (\epsilon / \lambda_i) \sum_{j=2}^{(p-1)/2} \widehat{\lambda}_i (p-1)^j |a_i|^{(p-1)/2} (\epsilon / \lambda_i)^j \\
&\leq \frac{1}{100k} \epsilon |a_i|^{p-2} + \frac{1}{100k} \epsilon |a_i|^{(p-1)/2}
\end{aligned}$$

where the first step comes from expanding the summation term and the second step is by Assumption C.10.

The second component is:

$$\begin{aligned}
&(\epsilon / \lambda_i) \sum_{j=(p-1)}^{(p-1)/2} \widehat{\lambda}_i \binom{(p-1)}{j} |a_i|^{(p-1)-j} (\epsilon / \lambda_i)^j \\
&= (\epsilon / \lambda_i) \widehat{\lambda}_i \cdot 1 \cdot 1 \cdot (\epsilon / \lambda_i)^{p-1} + (\epsilon / \lambda_i) \sum_{j=p}^{(p-1)/2} \widehat{\lambda}_i \binom{(p-1)}{j} |a_i|^{(p-1)-j} (\epsilon / \lambda_i)^j \\
&\leq \frac{\phi}{k} \epsilon + \frac{1}{100k} \epsilon |a_i|
\end{aligned}$$

where the first step follows from expanding the summation term, and the second step follows from $\phi = 2k(\epsilon / \lambda_k)^{p-1}$ and Assumption C.10.

Putting it all together, we have

$$|B_i| \leq \epsilon |a_i|^2 + \frac{1}{100k^2} \epsilon |a_i| + \frac{\phi}{k} \epsilon$$

Taking the summation over all the r terms on both sides, we obtain

$$\sum_{i=1}^r |B_i| \leq \epsilon \kappa + \frac{1}{100k^2} \epsilon \sum_{i=1}^r |a_i| + \phi \epsilon.$$

Using

$$(x + y + z)^2 \leq 3(x^2 + y^2 + z^2),$$

1890 we have

$$\begin{aligned}
\left(\sum_{i=1}^r |B_i|\right)^2 &\leq 3 \left((\epsilon\kappa)^2 + \left(\frac{1}{100k}\epsilon \sum_{i=1}^t |a_i|\right)^2 + (\phi\epsilon)^2 \right) \\
&\leq 3 \left((\epsilon\kappa)^2 + \left(\frac{1}{100k}\epsilon\right)^2 \kappa k + (\phi\epsilon)^2 \right), \tag{39}
\end{aligned}$$

where the last step follows from $(\sum_{i=1}^t |a_i|)^2 \leq \kappa k$.

Recall that

$$\kappa = \sum_{i=1}^t |a_i|^2 \leq 1.$$

In general, we can get

$$\begin{aligned}
\left\| \sum_{i=1}^r \widehat{E}_i(I, u, \dots, u) \right\|_2^2 &= 2 \sum_{i=1}^r |A_i|^2 + 2 \left(\sum_{i=1}^r |B_i| \right)^2 \\
&\leq 4 \left(\epsilon^2 \cdot \kappa + \left(\frac{1}{10k} \epsilon \right)^2 \kappa + (p-1)^2 \epsilon^2 \kappa + \left(\frac{1}{100\sqrt{k}} \epsilon \right)^2 \right) \\
&\quad + 2 \left(\sum_{i=1}^r |B_i| \right)^2 \\
&\leq 4 \left(\epsilon^2 \cdot \kappa + \left(\frac{1}{10k} \epsilon \right)^2 \kappa + (p-1)^2 \epsilon^2 \kappa + \left(\frac{1}{100\sqrt{k}} \epsilon \right)^2 \right) \\
&\quad + 4 \left((\epsilon \kappa)^2 + \left(\frac{1}{100k} \epsilon \right)^2 \kappa k + (\phi \epsilon)^2 \right) \\
&< 4p^2 \epsilon^2 \kappa + 4\phi^2 \epsilon^2
\end{aligned}$$

where the first step follows from Eq. (32), the second step follows from Eq. (37), the third step follows from Eq. (39), and the last step follows from simple algebra.

The desired bound is given by this equation.

Proof of Part 2.

Let i be an arbitrary element of $[k] \setminus [j]$.

Now, we can get

$$\begin{aligned} \left| \sum_{i=1}^r \widehat{E}_i(v_j, u, \dots, u) \right| &\leq \sum_{i=1}^r |\widehat{E}_i(v_j, u, \dots, u)| \\ &= \sum_{i=1}^r \widehat{\lambda}_i |\widehat{v}_i^\top u|^{p-1} |\widehat{v}_i^\top v_j| \\ &\leq \sum_{i=1}^t \widehat{\lambda}_i |\widehat{v}_i^\top u|^{p-1} \frac{\epsilon}{\sqrt{n} \lambda_i}, \end{aligned}$$

for the 1st step, we use the triangle inequality, for the 2nd step, we utilize the fact that $\langle v_j, v_i \rangle = 0, \forall i \neq j$, and for the last step, we employ the third part of the definition of ϵ -close.

Now, we analyze the bound for $\sum_{i=1}^r \frac{\hat{\lambda}_i}{\lambda_i} |\hat{v}_i^\top u|^{p-1}$:

$$\begin{aligned} \sum_{i=1}^r \frac{\widehat{\lambda}_i}{\lambda_i} |\widehat{v}_i^\top u|^{p-1} &\leq \sum_{i=1}^r \frac{\widehat{\lambda}_i}{\lambda_i} (|v_i^\top u| + |(v_i - \widehat{v}_i)^\top u|)^{p-1} \\ &\leq \sum_{i=1}^r \frac{\widehat{\lambda}_i}{\lambda_i} (|v_i^\top u| + \|v_i - \widehat{v}_i\|_2)^{p-1} \end{aligned}$$

$$\begin{aligned}
1944 & \leq \sum_{i=1}^r (1 + \epsilon/\lambda_i) \cdot (|v_i^\top u| + \epsilon/\lambda_i)^{p-1} \\
1945 & \leq 2 \sum_{i=1}^r (|v_i^\top u| + \epsilon/\lambda_i)^{p-1} \\
1946 & \leq 2 \sum_{i=1}^r 2^{p-2} \cdot |v_i^\top u|^{p-1} + 2^{p-2} \cdot (\epsilon/\lambda_i)^{p-1} \\
1947 & \leq 2 \sum_{i=1}^r 2|v_i^\top u|^2 + (2\epsilon/\lambda_i)^{p-1} \\
1948 & \leq 2 \sum_{i=1}^r 2|v_i^\top u|^2 + 2k(2\epsilon/\lambda_k)^{p-1} \\
1949 & = 2\kappa + \phi.
\end{aligned}$$

where the first step follows from the triangle inequality, the second step follows from Cauchy-Scharwz inequality and $\|u\|_2 \leq 1$, the third step follows from Eq. (33), the fourth step follows from $\epsilon/\lambda_i \leq 2$, the fifth step follows from Fact B.1, the sixth step follows from $|v_i^\top u| < 1/4$ and $p \geq 3$, the seventh step follows from $\lambda_k \leq \lambda_i$, and the last step follows from the definition of ϕ and κ (see Eq. (26) and Eq. (25)).

Then, we complete the proof with the desired bound $(2\kappa + \phi)\epsilon/\sqrt{n}$.

□

Corollary C.12. *If the following conditions hold:*

- For all $i \in [k]$, let $\widehat{E}_i = \lambda_i v_i^{\otimes p} - \widehat{\lambda}_i \widehat{v}_i^{\otimes p} \in \mathbb{R}^{n^p}$.
- Let $c_0 \geq 1$.
- Let $r \in [k]$.
- Let $\epsilon \leq \lambda_k/(2c_0k)$.
- Suppose that $\{\widehat{\lambda}_i, \widehat{v}_i\}_{i=1}^k$ is ϵ -close to $\{\lambda_i, v_i\}_{i=1}^k$.
- $u \in \mathbb{R}^n$ is an unit vector.
- Suppose $|u^\top v_{r+1}| \geq 1 - \frac{1}{c_0^2 p^2 k}$.
- Let $\kappa = \sum_{i=1}^r |u^\top v_i|^2$.
- Let $\phi = 2k(\epsilon/\lambda_k)^{p-1}$.

Then,

1. $\left\| \sum_{i=1}^r \widehat{E}_i(I, u, \dots, u) \right\|_2 \leq 2p\epsilon\kappa^{1/2} + 2\phi\epsilon \leq 4\epsilon/c_0$.
2. $\forall j \in [k] \setminus [i], \left| \sum_{i=1}^r \widehat{E}_j(v_j, u, \dots, u) \right| \leq (2\kappa\epsilon + \phi\epsilon)/\sqrt{n} \leq 4\epsilon/(c_0\sqrt{n})$.

Proof. Based on Fact B.4, we can get that for any arbitrary i in $[r]$,

$$\begin{aligned}
1995 & \kappa = \sum_{i=1}^r |u^\top v_i|^2 \\
1996 & \leq k \cdot 1/(c_0^2 p^2 k)
\end{aligned}$$

1998 $= 1/c_0^2 p^2,$
 1999

2000 where the first step follows from definition of κ , the second step follows from $r \leq k$ and
 2001 $\max_i |u^\top v_i|^2 \leq 1/(c_0^2 p^2 k)$, and the last step follows from simple algebra.

2002 This implies

2003 $2p\epsilon\sqrt{\kappa} \leq 2/c_0.$

2005 We can also bound ϕ ,

2007
$$\begin{aligned} \phi &= 2k(\epsilon/\lambda_k)^{p-1} \\ 2008 &\leq 2k(1/2c_0k)^{p-1} \\ 2009 &\leq 2k(1/(2c_0k))^2 \\ 2010 &\leq 1/c_0. \end{aligned}$$

2012 where the 1st step can be gotten from the definition of ϕ , the 2nd step is because of $\epsilon \leq \lambda_k/(2c_0k)$
 2013 (from Corollary statement), the 3rd step is due to $p \geq 2$, and the 4th step can be seen from $2k \geq 1$.

2014 Therefore, we complete our proof. \square

D COMBINE

2019 In this section, we present Theorem D.1 and Theorem D.2 and prove them.

2020 **Theorem D.1** (Arbitrary order robust tensor power method, formal version of Lemma 3.1). *If the*
 2021 *following conditions hold*

- 2023 • Let p be greater than or equal to 3.
- 2024 • Let k be greater than or equal to 1.
- 2025 • Let $\lambda_i > 0$.
- 2026 • With $n \geq k$, $\{v_1, \dots, v_k\} \subseteq \mathbb{R}^n$ is an orthonormal basis vectors.
- 2027 • Let $A = A^* + E \in \mathbb{R}^{n^p}$ be an arbitrary tensor satisfying $A^* = \sum_{i=1}^k \lambda_i v_i^{\otimes p}$.
- 2028 • Suppose that λ_1 is the greatest values in $\{\lambda_i\}_{i=1}^k$.
- 2029 • Suppose that λ_k is the smallest values in $\{\lambda_i\}_{i=1}^k$.
- 2030 • The outputs obtained from the robust tensor power method are $\{\hat{\lambda}_i, \hat{v}_i\}_{i=1}^k$.
- 2031 • E satisfies that $\|E\| \leq \epsilon/(c_0\sqrt{n})$.
- 2032 • $T = \Omega(\log(\lambda_1 n/\epsilon))$.
- 2033 • $L = \Omega(k \log(k))$.
- 2034 • $c_0 \geq 100$ and $c > 0$
- 2035 • For all ϵ satisfying $\epsilon \in (0, c\lambda_k/(c_0 p^2 k n^{(p-2)/2}))$.

2044 Then, with probability at least 9/10, there exists a permutation $\pi : [k] \rightarrow [k]$, such that $\forall i \in [k]$,

2046 $|\lambda_i - \hat{\lambda}_{\pi(i)}| \leq \epsilon, \quad \|v_i - \hat{v}_{\pi(i)}\|_2 \leq \epsilon/\lambda_i.$ (40)

2048 *Proof.* Let $E \in \mathbb{R}^{n^p}$ be the original noise.

2049 Let

2051 $\hat{E}_i = \lambda_i v_i^{\otimes p} - \hat{\lambda}_i \hat{v}_i^{\otimes p} \in \mathbb{R}^{n^p}$

2052 be the deflation noise.

2053 $\bar{E} \in \mathbb{R}^{n^p}$ represents the sketch noise.

2055 \tilde{E} represents the “true” noise, including all the original, deflation and sketch noises.

2056 As a result, for the $t + 1$ step, we analyze $A^* + \tilde{E}$, which is a tensor satisfying

$$2058 \quad \tilde{E} = E + \sum_{i=1}^t \hat{E}_i + \bar{E}.$$

2062 There is no need for us to consider \bar{E} , the sketch noise. However, to prove a stronger statement, we
2063 do not regard \bar{E} to be equal to 0, but only assume that it is bounded, namely

$$2064 \quad \|\bar{E}\| \leq \epsilon / (c_0 \sqrt{n}). \quad (41)$$

2066 We use mathematical induction to proof this.

2067 **Base case.**

2069 Let $i = 1$.

2070 For the 1st step, we have that $\hat{\lambda}_1 \in \mathbb{R}$ and $\hat{v}_1 \in \mathbb{R}^n$.

2072 As Part 2 of Definition C.8, we show

$$2073 \quad \|\hat{v}_1 - v_1\|_2$$

2075 is bounded.

2076 Then, as Part 1 of Definition C.8, we show

$$2078 \quad |\hat{\lambda}_1 - \lambda_1|$$

2079 is bounded.

2080 At the end, as Part 3 of Definition C.8, we show

$$2082 \quad |\hat{v}_i^\top v_j|$$

2084 is bounded.

2085 **Bounding** $|\hat{v}_1 - v_1|$.

2086 We have

$$2088 \quad \begin{aligned} \tan \theta(u_0, v_1) &= \sin \theta(u_0, v_1) / \cos \theta(u_0, v_1) \\ 2089 &= \sqrt{1 - \langle u_0, v_1 \rangle^2} / \langle u_0, v_1 \rangle \\ 2090 &= \sqrt{\frac{1 - \langle u_0, v_1 \rangle^2}{\langle u_0, v_1 \rangle^2}} \\ 2091 &= \sqrt{\frac{1}{\langle u_0, v_1 \rangle^2} - 1} \\ 2092 &\leq \sqrt{\frac{1}{\langle u_0, v_1 \rangle^2}} \\ 2093 &= \frac{1}{\langle u_0, v_1 \rangle} \\ 2094 &\leq \sqrt{n}, \end{aligned} \quad (42)$$

2103 where the first step follows from Definition 4.3, the second step follows from Definition 4.3, the
2104 third step follows from simple algebra, the fourth step follows from simple algebra, the fifth step
2105 follows from simple algebra, the sixth step follows from simple algebra, and the last step follows
from Lemma 4.8.

2106 t^* represents the condition for
 2107

$$2108 |u_{t^*}^\top v_1| = 1 - \frac{1}{c_0^2 p^2 k^2}. \quad (43)$$

2110 We know
 2111

$$\begin{aligned} 2112 \|u_{t^*} - v_1\|_2^2 &= \|u_{t^*}\|_2^2 + \|v_1\|_2^2 - 2\langle u_{t^*}, v_1 \rangle \\ 2113 &= 1 + 1 - 2\langle u_{t^*}, v_1 \rangle \\ 2114 &= 2 - 2|u_{t^*}^\top v_1| \\ 2115 &= 2 - 2(1 - \frac{1}{c_0^2 p^2 k^2}) \\ 2117 &= 2/(c_0^2 p^2 k^2), \end{aligned}$$

2119 where the first step follows from simple algebra, the second step follows from the fact that u_{t^*} and
 2120 v_1 are unit vectors, the third step is because the inner product is positive, the fourth step follows
 2121 from Eq. (43), and the last step follows from simple algebra.

2122 We can upper bound
 2123

$$\begin{aligned} 2124 \|u_{t^*} - v_1\|_2 &\leq \tan \theta(u_{t^*}, v_1) \\ 2125 &\leq 0.8 \tan \theta(u_{t^*-1}, v_1) \\ 2126 &\leq \dots \\ 2127 &\leq 0.8^{t^*} \tan \theta(u_0, v_1) \\ 2128 &\leq 0.8^{t^*} \sqrt{n}, \end{aligned}$$

2130 where the first step is due to Fact B.6, the second can be seen from Part 1 of Theorem 4.9, the second
 2131 last step can be gotten from Part 1 of Theorem 4.9, and the last step follows from Eq. (42).

2132 After that, we let
 2133

$$2134 t^* = \Omega(\log(nkpc_0)) = \Omega(\log(c_0 n)).$$

2136 For $\|u_T - v_1\|_2$, we can show
 2137

$$\begin{aligned} 2138 \|u_T - v_1\|_2 &\leq 0.8 \tan \theta(u_T, v_1) + 18\epsilon/(c_0 \lambda_1) \\ 2139 &\leq \dots \\ 2140 &\leq 0.8^{T-t^*} \tan(u_{t^*}, v_1) + 5 \cdot 18\epsilon/(c_0 \lambda_1), \end{aligned}$$

2141 where the first step follows from Part 1 of Theorem 4.9, and the last step follows from recursively
 2142 applying Part 1 of Theorem 4.9.

2143 To guarantee
 2144

$$2145 \|u_T - v_1\|_2 \leq \epsilon/\lambda_1,$$

2146 we let
 2147

$$2148 T - t^* = \Omega(n\lambda_1/\epsilon)$$

2149 and $c_0 \geq 100$.
 2150

2151 Therefore, we achieve the intended property as outlined in Part 2 of Definition C.8.

2152 **Bounding $|\hat{\lambda}_1 - \lambda_1|$.**
 2153

2154 It remains to bound $|\hat{\lambda}_1 - \lambda_1|$.
 2155

$$\begin{aligned} 2156 |\hat{\lambda}_1 - \lambda_1| &= |[A^* + \tilde{E}](\hat{v}_1, \dots, \hat{v}_1) - \lambda_1| \\ 2157 &\leq |\tilde{E}(\hat{v}_1, \dots, \hat{v}_1)| + |A^*(\hat{v}_1, \dots, \hat{v}_1) - \lambda_1| \\ 2158 &= |\tilde{E}(\hat{v}_1, \dots, \hat{v}_1)| + \left| \left[\sum_{i=1}^k \lambda_i v_i^{\otimes p} \right] (\hat{v}_1, \dots, \hat{v}_1) - \lambda_1 \right| \end{aligned}$$

$$\begin{aligned}
& \leq \underbrace{|\tilde{E}(\hat{v}_1, \dots, \hat{v}_1)|}_{B_5} + \underbrace{|\lambda_1|v_1^\top \hat{v}_1|^p - \lambda_1|}_{B_6} + \underbrace{\sum_{j=2}^k \lambda_j |v_j^\top \hat{v}_1|^p}_{B_7},
\end{aligned} \tag{44}$$

where the first step follows from the definition of $\hat{\lambda}_1$, the second step follows from the triangle inequality, the third step follows from

$$A^* = \sum_{i=1}^k \lambda_i v_i^{\otimes p},$$

and the last step follows from the triangle inequality.

For the term B_5 , we have

$$\begin{aligned}
B_5 &= |\tilde{E}(\hat{v}_1, \dots, \hat{v}_1)| \\
&\leq |E(\hat{v}_1, \dots, \hat{v}_1)| + |\bar{E}(\hat{v}_1, \dots, \hat{v}_1)| \\
&\leq \|E\| + |\bar{E}(\hat{v}_1, \dots, \hat{v}_1)| \\
&\leq \epsilon/(c_0\sqrt{n}) + \epsilon/(c_0\sqrt{n}) \\
&\leq \epsilon/12,
\end{aligned} \tag{45}$$

where the first step follows from the definition of B_5 (see Eq. (44)), the second step follows from triangle inequality, the third step follows from the definition of tensor spectral norm, the fourth step follows from Eq. (41), and the last step follows from $c_0 \geq 100$ and n is greater than or equal to 1.

We still need to find the upper bound of B_6 and B_7 .

$$\begin{aligned}
B_6 &= |\lambda_1 \cdot |v_1^\top \hat{v}_1|^p - \lambda_1| \\
&= \lambda_1 - \lambda_1 \left(1 - \frac{1}{2} \|v_1 - \hat{v}_1\|_2^2\right)^p \\
&\leq \lambda_1 p \frac{1}{2} \|v_1 - \hat{v}_1\|_2^2 \\
&\leq p\epsilon^2/(2\lambda_1) \\
&\leq \epsilon/12,
\end{aligned} \tag{46}$$

where the first step follows from the definition of B_6 (see Eq. (44)), the second step follows from $v_1^\top \hat{v}_1 = 1 - \frac{1}{2} \|v_1 - \hat{v}_1\|_2^2$, the third step comes from $\|v_1 - \hat{v}_1\|_2^2 \ll 1$, the fourth step is because of $\|v_1 - \hat{v}_1\|_2 \leq \epsilon/\lambda_1$, and the last step follows from $p\epsilon/(2\lambda_1) \leq 1/12$.

For B_7 , we have

$$\begin{aligned}
B_7 &= \sum_{j=2}^k \lambda_j |v_j^\top \hat{v}_1|^p \\
&\leq \sum_{j=2}^k \lambda_j (\epsilon/(\sqrt{n}\lambda_j))^p \\
&= \epsilon \sum_{j=2}^k (\epsilon/(\lambda_j\sqrt{n}))^{p-1} \\
&\leq \epsilon/4,
\end{aligned} \tag{47}$$

where the first step follows from the definition of B_7 (see Eq. (44)), the second step follows from Part 3 of Definition C.8, the third step follows from simple algebra, and the last step is due to $(\epsilon/\lambda_k)^{p-1} \leq 1/(4k)$.

Let

$$\epsilon < \frac{1}{4} k^{1/(p-1)} \lambda_k.$$

2214 Finally, combining everything together, we can get
 2215

$$\begin{aligned} |\hat{\lambda}_1 - \lambda_1| &\leq B_5 + B_6 + B_7 \\ &\leq \epsilon/12 + \epsilon/12 + \epsilon/4 \\ &\leq \epsilon, \end{aligned}$$

2220 where the first step follows from Eq. (44), the second step follows from combining Eq. (45), Eq. (46),
 2221 and Eq. (47), and the last step follows from simple algebra.

2222 **Bounding** $|\hat{v}_1^\top v_j|$.
 2223

2224 Let j be an arbitrary element in $\{2, \dots, k\}$.
 2225

Let t^* be the least integer satisfying

$$|v_1^\top u_{t^*}| \geq 1 - \frac{1}{c_0^2 p^2 k^2},$$

2229 which implies

$$|v_j^\top u_{t^*}| \leq \frac{1}{c_0 p k}.$$

2233 By Part 3 of Theorem 4.9, we have

$$\begin{aligned} |v_j^\top u_{t^*}| / |v_1^\top u_{t^*}| &\leq 0.8 |v_j^\top u_{t^*-1}| / |v_1^\top u_{t^*-1}| \\ &\leq \dots \\ &\leq 0.8^{t^*} \cdot |v_j^\top u_0| / |v_1^\top u_0| \\ &\leq 0.8^{t^*} \cdot |v_j^\top u_0| / (1/\sqrt{n}) \\ &\leq 0.8^{t^*} \cdot 1 / (1/\sqrt{n}), \end{aligned}$$

2241 where the third step follows from recursively applying Part 3 of Theorem 4.9, the fourth step follows
 2242 from Lemma 4.8 and the last step follows from the fact that $|v_j^\top u_0|$ is at most 1.
 2243

2244 Let

$$t^* = \Omega(\log c_0 n).$$

2247 When $T > t^*$, we have

$$|v_j^\top u_T| / |v_1^\top u_T| \leq 0.8^{T-t^*} |v_j^\top u_{t^*}| / |v_1^\top u_{t^*}| + 5 \cdot 18\epsilon / (c_0 \lambda_1 \sqrt{n}).$$

2250 Let

$$T = \Omega(\log(n \lambda_1 / \epsilon))$$

2253 and $c_0 \geq 100$ to ensure

$$|v_j^\top u_T| \leq \epsilon / (\lambda_1 \sqrt{n}).$$

2257 **Inductive case.**

2258 Let $i = r + 1$.

2259 Suppose the first r cases holds.

2261 To show the $r + 1$ case also hold, we first consider the “true” noise, which is

$$\tilde{E} = E + \sum_{i=1}^r E_i + \bar{E} \in \mathbb{R}^{n^p}.$$

2266 We explain how to bound

$$\|\hat{v}_{r+1} - v_{r+1}\|_2,$$

2268 (for Definition C.8, Part 2).

2269 Then, we show how to bound

$$2271 \quad |\hat{\lambda}_{r+1} - \lambda_{r+1}|$$

2273 as Part 1 of Definition C.8.

2274 In the end, we show how to bound

$$2276 \quad |v_{r+1}^\top v_j|$$

2277 as Part 3 of Definition C.8.

2278 **Bounding** $\|\hat{v}_{r+1} - v_{r+1}\|_2$.

2280 Except for letting

$$2282 \quad T = \Omega(\log(n\lambda_{t+1}/\epsilon)),$$

2283 other parts of the proof are the same as the ones in the base case.

2284 **Bounding** $|\hat{\lambda}_{r+1} - \lambda_{r+1}|$.

2286 Let A^* and \tilde{E} be

$$2288 \quad A^* = \sum_{i=t+1}^k \lambda_i v_i^{\otimes p}$$

2291 and

$$2293 \quad \tilde{E} = E + \bar{E} + \sum_{i=1}^t \hat{E}_i.$$

2295 Therefore, we have

$$2297 \quad |\hat{\lambda}_{t+1} - \lambda_{t+1}|$$

2299 satisfying

$$\begin{aligned} 2300 \quad |\hat{\lambda}_{r+1} - \lambda_{r+1}| &= |[A^* + \tilde{E}](\hat{v}_{r+1}, \dots, \hat{v}_{r+1}) - \lambda_{r+1}| \\ 2301 &\leq |\tilde{E}(\hat{v}_{r+1}, \dots, \hat{v}_{r+1})| + |A^*(\hat{v}_{r+1}, \dots, \hat{v}_{r+1}) - \lambda_{r+1}| \\ 2302 &= |\tilde{E}(\hat{v}_{r+1}, \dots, \hat{v}_{r+1})| + \left| \left[\sum_{i=r+1}^k \lambda_i v_i^{\otimes p} \right] (\hat{v}_{r+1}, \dots, \hat{v}_{r+1}) - \lambda_{r+1} \right| \\ 2303 &= \underbrace{|\tilde{E}(\hat{v}_{r+1}, \dots, \hat{v}_{r+1})|}_{B_8} + \underbrace{|\lambda_{r+1}| v_{r+1}^\top \hat{v}_{r+1}|^p - \lambda_{r+1}|}_{B_9} + \underbrace{\sum_{j=r+2}^k \lambda_j |v_j^\top \hat{v}_{r+1}|^p}_{B_{10}}. \end{aligned}$$

2311 where the first step follows from the definition of $\hat{\lambda}_{r+1}$, the second step follows from triangle inequality, the third step follows from $A^* = \sum_{i=r+1}^k \lambda_i v_i^{\otimes p}$, and the last step follows from the triangle inequality.

2314 We need to analyze B_8 ,

$$\begin{aligned} 2316 \quad B_8 &= |\tilde{E}(\hat{v}_{r+1}, \dots, \hat{v}_{r+1})| \\ 2317 &= |E(\hat{v}_{r+1}, \dots, \hat{v}_{r+1})| + |\bar{E}(\hat{v}_{r+1}, \dots, \hat{v}_{r+1})| + \left| \sum_{i=1}^r \hat{E}_i(\hat{v}_{r+1}, \dots, \hat{v}_{r+1}) \right| \\ 2318 &\leq \epsilon/(c_0\sqrt{n}) + \epsilon/(c_0\sqrt{n}) + 4\epsilon/(c_0\sqrt{n}) \\ 2319 &\leq \epsilon/12, \end{aligned}$$

2322 where the first step follows from the definition of B_8 , the second step follows from the triangle
 2323 inequality, the third step follows from Eq. (41), the last step follows from $c_0 \geq 100, n \geq 1$.
 2324

2325 B_9 and B_{10} can be bounded in a similar way as the base case.

2326 **Bounding** $|\hat{v}_{r+1}^\top v_j|$.

2327 Let j be an arbitrary element in $\{r+2, \dots, k\}$. Then, the proof is the same as the base case. \square
 2328

2329 **Theorem D.2** (Fast Tensor Power Method via Sketching, formal version of Theorem 1.1). *If the
 2330 following conditions hold*

- Let $A = A^* + E \in \mathbb{R}^{n^p}$ be an arbitrary tensor satisfying $A^* = \sum_{i=1}^k \lambda_i v_i^{\otimes p}$.
- Suppose that λ_1 is the greatest values in $\{\lambda_i\}_{i=1}^k$.
- Suppose that λ_k is the smallest values in $\{\lambda_i\}_{i=1}^k$.
- The outputs obtained from the robust tensor power method are $\{\hat{\lambda}_i, \hat{v}_i\}_{i=1}^k$.
- E satisfies that $\|E\| \leq \epsilon/(c_0 \sqrt{n})$.
- $T = \Omega(\log(\lambda_1 n / \epsilon))$.
- $L = \Omega(k \log(k))$.
- $c_0 \geq 100$ and $c > 0$
- For all ϵ satisfying $\epsilon \in (0, c \lambda_k / (c_0 p^2 k n^{(p-2)/2}))$.

2346 Then, our algorithm uses $\tilde{O}(n^p)$ spaces, runs in $O(TL)$ iteration, and in each iteration it takes
 2347 $\tilde{O}(n^{p-1})$ time and then with probability at least $1 - \delta$, there exists a permutation
 2348

$$2349 \pi : [k] \rightarrow [k],$$

2351 such that $\forall i \in [k]$,

$$2352 |\lambda_i - \hat{\lambda}_{\pi(i)}| \leq \epsilon, \quad \|v_i - \hat{v}_{\pi(i)}\|_2 \leq \epsilon / \lambda_i.$$

2354 *Proof.* It follows by combining Theorem D.1 and Lemma 4.2. \square
 2355

2357 LLM USAGE DISCLOSURE

2359 LLMs were used only to polish language, such as grammar and wording. These models did not
 2360 contribute to idea creation or writing, and the authors take full responsibility for this paper's content.
 2361

2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375