
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TENSOR POWER METHODS: FASTER AND ROBUST
FOR ARBITRARY ORDER

Anonymous authors
Paper under double-blind review

ABSTRACT

Tensor decomposition is a fundamental method used in various areas to deal with
high-dimensional data. Among the widely recognized techniques for tensor de-
composition is the Canonical/Polyadic (CP) decomposition, which breaks down
a tensor into a combination of rank-1 components. In this paper, we specifically
focus on CP decomposition and present a novel faster robust tensor power method
(TPM) for decomposing arbitrary order tensors. Our approach overcomes the lim-
itations of existing methods that are often restricted to lower-order (≤ 3) tensors
or require strong assumptions about the underlying data structure. By applying the
sketching method, we achieve a running time of Õ(np−1) per iteration of TPM on
a tensor of order p and dimension n. Furthermore, we provide a detailed analysis
applicable to any p-th order tensor, addressing a gap in previous works. Our pro-
posed method offers robustness and efficiency, expanding the applicability of CP
decomposition to a broader class of high-dimensional data problems.

1 INTRODUCTION

In the era of data-driven science and technology, high-dimensional data has become ubiquitous
across domains such as computational neuroscience (Bentzur et al., 2022), image processing (Bou-
veyron et al., 2007), and machine learning (Muja & Lowe, 2014). Higher-order (> 3) tensors
have become a powerful paradigm for handling this high-dimensional data. Unlike matrices, these
higher-order tensors provide a natural framework for representing multi-modal relationships in data,
but they can be computationally expensive and challenging to analyze. To address this issue, tensor
decomposition is introduced to reduce the dimensionality while preserving the essential structure of
the data.

Tensor decomposition has become a fundamental tool in many fields (Kolda & Bader, 2009), in-
cluding supervised and unsupervised learning (Anandkumar et al., 2014; Janzamin et al., 2015),
reinforcement learning (Azizzadenesheli et al., 2016), statistics, and computer vision (Shashua &
Hazan, 2005). Moreover, with the rapid outbreak of COVID-19 and the emergence of new vari-
ants driven by a large infectious population, recent research has applied tensor models to analyze
pandemic data (Dulal et al., 2022) and used tensor decomposition to study gene expression related
to COVID-19 (Taguchi & Turki, 2021). Since gene expression is typically highly complex, ten-
sor decomposition can efficiently help researchers uncover connections between various variables,
thereby enhancing the understanding of complex systems. This, in turn, may foster advancements
in biological and medical research, ultimately benefiting public health.

A well-known decomposition method is the Candecomp/Parafac (CP) decomposition (Harshman,
1970; Carroll & Chang, 1970). In CP decomposition, the input tensor is decomposed into a set of
rank-1 components. Although decomposing arbitrary tensors is NP-hard (Hillar & Lim, 2013), it
becomes feasible for tensors with linearly independent components by applying a whitening proce-
dure to transform them into orthogonally decomposable tensors. The tensor power method (TPM) is
a straightforward and effective technique for decomposing an orthogonal tensor and serves as an ex-
tension of the matrix power method. To be more specific, TPM requires calculating the inner product
of two vectors: one derived from a rank-1 matrix and the other from a segment of a tensor. This
type of inner product can be estimated much more efficiently because sketch vectors have signifi-
cantly lower dimensions, making it more convenient to compute their inner product. Additionally,
sketching can be replaced with sampling to approximate inner products (Song et al., 2016).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

When there is no noise in the data, the TPM, through random initialization followed by deflation,
can effectively recover the components correctly. However, due to the NP-hard nature of arbitrary
tensor decomposition, the perturbation analysis of this method is more complex compared to the
matrix case. When large amounts of arbitrary noise are added to an orthogonal tensor, its decom-
position becomes intractable. Previous research has demonstrated guaranteed component recovery
under bounded noise conditions (Anandkumar et al., 2014), with further improvements outlined in
(Anandkumar et al., 2017). More recent work (Wang & Anandkumar, 2016) has further refined the
noise requirements.

Since real-world datasets are inherently noisy and high-order, existing methods for CP decompo-
sition face significant challenges when applied to such data. Traditional approaches often rely on
restrictive assumptions about tensor structure or are limited to low-order tensors (≤ 3), thereby con-
straining their applicability to many real-world scenarios. Moreover, many of these methods suffer
from high computational complexity, making them impractical for large-scale or high-dimensional
datasets. These limitations underscore the pressing need for a robust and scalable solution capable
of handling tensors of arbitrary orders with efficiency and accuracy.

1.1 OUR RESULT

Motivated by these challenges, we propose an algorithm that not only relies on milder assumptions
but also is suitable for a broader range of tensor choices. Specifically, we generalize the previous
robust TPM algorithm for third-order tensors (Wang & Anandkumar, 2016) to tensors of arbitrary
orders. Our proposed algorithm, given any arbitrary-order tensor A ∈ Rnp

, outputs the estimated
eigenvector/eigenvalue pair along with the deflated tensor. We present our main result as follows:

Theorem 1.1 (Informal version of Theorem D.2). There is a robust TPM (Algorithm 1) that takes
any p-th order and dimension n tensor as input, uses Õ(np) space and Õ(np) time in initialization,
and in each iteration, it takes Õ(np−1) time.

Notation. For any matrix A ∈ Rn×k, we use ∥A∥ := maxx∈Rk\{0}k ∥Ax∥2/∥x∥2 to denote the
spectral norm of A. We use ∥x∥2 := (

∑n
i=1 x

2
i)

1/2 to denote the ℓ2 norm of vector x. For two
vectors u ∈ Rn and v ∈ Rn, we use ⟨u, v⟩ to denote inner product, i.e., ⟨u, v⟩ =

∑n
i=1 uivi.

Let p ≥ 1 denote some integer. We say E ∈ Rn×···×n (where there are p of n), if E is a
p-th order tensor and every dimension is n. For simplicity, we write E ∈ Rnp

. If p = 1,
then E is a vector. If p = 2, then E ∈ Rn×n is a matrix. If p = 3, then E ∈ Rn×n×n

is a 3rd-order tensor. For any two unit vectors x, y, we define cos θ(x, y) = ⟨x, y⟩. For a
3rd-order tensor E ∈ Rn×n×n, we have E(a, b, c) =

∑n
i=1

∑n
j=1

∑n
k=1 Ei,j,kaibjck ∈ Rn,

∥E∥ := maxx:∥x∥2=1 |E(x, x, x)|, E(I, b, c)i =
∑n

j=1

∑n
k=1 Ei,j,kbjck ∈ Rn,∀i ∈ [n], and

E(I, I, c)i,j =
∑n

k=1 Ei,j,kck ∈ Rn×n,∀i, j ∈ [n]× [n].

The notation of tensor for p = 3 can be generalized to any p-th order tensor for p > 3. For
a, b, c ∈ Rn and E = a ⊗ b ⊗ c ∈ Rn×n×n, we have Ei,j,k = aibjck,∀i ∈ [n], j ∈ [n], k ∈ [n].
For E = a ⊗ a ⊗ a = a⊗3 ∈ Rn×n×n, we have Ei,j,k = aiajak,∀i ∈ [n], j ∈ [n], k ∈ [n]. For
E =

∑m
i=1 u

⊗3
i , we have E(a, b, c) =

∑m
i=1(u

⊗3
i (a, b, c)) =

∑m
i=1⟨ui, a⟩⟨ui, b⟩⟨ui, c⟩ ∈ R.

For µ ∈ Rd and Σ ∈ Rn×n, we use N (µ,Σ) to denote a Gaussian distribution with mean µ and
covariance Σ. For x ∼ N (µ,Σ), we denote x as a Gaussian vector.

For all, a ∈ Rn, we use maxi∈[n] ai to denote a value b over sets {a1, a2, · · · , an}. For any vector
a ∈ Rn, we use argmaxi∈[n] ai to denote the index j such that aj = maxi∈[n] ai.

Roadmap. In Section 2, we present the related work. In Section 3, we introduce the techniques
used in this paper. In Section 4, we present our main result. In Section 5, we summarize this paper
and provide some future research directions in this field.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

Tensor decomposition. Several works have focused on the efficient and fast decomposition of ten-
sors (Tsourakakis, 2010; Phan et al., 2013; Choi & Vishwanathan, 2014; Huang et al., 2013; Kang
et al., 2012; Wang et al., 2014; Bhojanapalli & Sanghavi, 2015). Later work (Wang et al., 2015)
provided a method based on the random linear sketching technique to enable fast decomposition
for orthogonal tensors. (Robeva, 2016) studies the properties of symmetric orthogonally decom-
posable tensors. (Robeva & Seigal, 2017) incorporate the spectral theory into these orthogonally
decomposable tensors. Additionally, (Song et al., 2016) provided another approach to importance
sampling, with a faster running time. The canonical polyadic decomposition is a very famous and
popular technique of decomposition, which is the CANDECOMP / PARAFAC (CP) decomposition
(Song et al., 2016). In CP decomposition, a tensor can be broken down into a combination of rank-1
tensors that add up to it (Harshman, 1970), and this combination is the only possible one up to some
minor variations, such as scaling and reordering of the tensors. In other words, there is only one
way to decompose the tensor, and any other arrangement of the rank-1 tensors that add up to the
same tensor is not possible. This property of tensor decomposition is more restrictive than that of
matrices, and it holds for a broader range of tensors. Therefore, tensor decomposition is considered
to be more rigid than matrix decomposition. In (Wang et al., 2015), multiple applications, includ-
ing computational neuroscience, data mining, and statistical learning, of tensor decomposition are
mentioned.

Unique tensor decomposition. Previous research in algebraic statistics has already linked tensor
decompositions to the development of probabilistic models. By breaking down specific moment
tensors using low-rank decompositions, researchers could decide the extent of the identifiability
of latent variable models (Allman et al., 2009a;b; Rhodes & Sullivant, 2012). The utilization of
Kruskal’s theorem in (Kruskal, 1977) was crucial in establishing the accuracy of identifying the
model parameters. Nevertheless, this method assumes that people can use an infinite number of
samples and cannot provide any information on what is the minimum sample size required to learn
the model parameters in these given error bounds. Relying solely on Kruskal’s theorem does not
suffice to determine the bounds of sample complexity, since by using it, we can only get that the low-
rank decompositions of actual moment tensors are unique, but we cannot get enough information
about the decomposition of empirical moment tensors. Considering the necessary sample size to
learn the parameters of the model, we need to get a uniqueness guarantee which is more robust.
We need this guarantee satisfying the requirement that whenever T ′, which is an empirical moment
tensor, closely approximates T , which is a moment tensor, a low-rank decomposition of T ′ would
also closely resemble a low-rank decomposition of T .

Power method. The power method is a popular iterative algorithm for computing the dominant
eigenvector and eigenvalue of a tensor. In recent years, there is a series of works (Chang et al.,
2008; Ng et al., 2010; Wang et al., 2009) that focused on this topic. The work of (Kolda & Mayo,
2011) provides the result to compute real symmetric-tensor eigenpairs, which is closely related to
the optimal rank-1 approximation of a symmetric tensor. Moreover, their method is based on the
shifted symmetric higher-order power method (SS-HOPM), which can be viewed as a generalization
of the power iteration method for matrices. (Anandkumar et al., 2014) considers the relation between
tensor decomposition and learning latent variable models, where they also provide a detailed analysis
of a robust TPM. More recent work by (Anandkumar et al., 2017) offers a new approach to analyzing
the behavior of tensor power iterations in the overcomplete scenario, in which the tensor’s CP rank
surpasses the input dimension.

Due to space constraints, we move the related works of Canonical/Polydic decomposition and
Tucker decomposition to Appendix A.1 and Sketching techniques to Appendix A.2.

3 TECHNIQUE OVERVIEW

In this section, we present a summary of the methods used in our analysis. Since our formal proofs
presented in the appendix are very long, we use this section to present the sketch of proofs for the
important lemmas and theorems. Specifically, in paragraphs “recoverability of eigenvectors im-
plied by bounded noise” and “analysis of the recoverability”, we present the techniques for proving

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Theorem 4.9. In paragraph “bounding the recovery error”, we present the techniques for proving
Lemma 3.1 (or equivalently Theorem D.1). Finally, in the paragraph “sketching technique”, we
present how we use the sketching method to generate the (1 ± ϵ) approximation, which supports
Lemma 4.2.

Loosened assumption. Our main breakthrough is that we generalize the robust tensor power
method to support any order tensors. It efficiently resolves the drawback of the earlier method
in (Wang & Anandkumar, 2016) that is limited in the tensor of order below 3 and requires very strict
assumptions. Moreover, we have created a strong and adaptable algorithm that can handle a variety
of tensor data: natural language corpora, images, videos, etc. Then, we explain how we generalize
this in detail.

Recoverability of eigenvectors implied by bounded noise. Starting from the construction of
the input tensor A = A∗ + Ẽ ∈ Rnp

where it consists of a part of decomposable tensor A∗ and a
noise term Ẽ, we show that, for ut ∈ Rn being a unit vector and c0 ≥ 1 and ϵ > 0, if the norm is
bounded, in the form of ∥Ẽ(I, ut, · · · , ut)∥2 ≤ 6ϵ/c0 and |Ẽ(v, ut, · · · , ut)| ≤ 6ϵ/(c0

√
n), where

ut is the approximate eigenvector at iteration t of our algorithm (see Algorithm 1), vj is one of the
orthonormal eigenvectors of the original, unperturbed tensor A∗, then the compositions of A∗ is able
to be recovered from A (see details in Appendix D). Formally, the eigenvectors have the following
properties:

1. The difference of the tangent from an eigenvector to the two unit vectors is bounded by a
term 18ϵ/(c0λ1) of the corresponding eigenvalue (see definition of tan θ in Def. 4.3):

tan θ(v1, ut+1) ≤ 0.8 tan θ(v1, ut) + 18ϵ/(c0λ1).

2. Tail components are bounded by the top component, in the power of p− 2:

max
j∈[k]\{1}

λj |v⊤j ut|p−2 ≤ (1/4)λ1|v⊤1 ut|p−2.

3. With all j being an arbitrary element in {2, · · · , k},

|v⊤j ut+1|/|v⊤1 ut+1| ≤ 0.8|v⊤j ut|/|v⊤1 ut|+ 18ϵ/(c0λ1

√
n).

As these are generalized statements from previous results (Wang & Anandkumar, 2016; Anandku-
mar et al., 2014) from bounded order (p ≤ 3) to general order p, the proof requires a much different
analysis. We described the details of our approach in the following paragraph.

Analysis of the recoverability. To show part 1 (see the details in Appendix C), we have to
find the upper bound of tan θ(v1, ut+1). We first turn the tangent into terms of sine and cosine,
which can be represented by the norm of the tensors. Then by simply using Cauchy-Schwarz, we

can find the upper bound of the term by tan θ(v1, ut+1) ≤
∥V ⊤A∗(I,ut,··· ,ut)∥2+∥V ⊤Ẽut∥2

|v⊤
1 A∗(I,ut,··· ,ut)|−|v⊤

1 Ẽut |
. Using

a property for orthogonal tensor that, for A∗ =
∑k

j=1 λjv
⊗p
j ∈ Rnp

, it holds that for any j ∈ [k],
|v⊤j A∗(I, u, · · · , u)| = λj |v⊤j u|p−1, we are able to upper bound tan θ(v1, ut+1) with tan θ(v1, ut)

in the form of tan θ(v1, ut+1) ≤ tan θ(v1, ut) · 14 ·B1+B1 ·B2, where B1 and B2 are two simplified

terms defined as B1 := 1

1−|v⊤
1 Ẽut |/(λ1|v⊤

1 ut|p−1)
and B2 :=

∥V ⊤Ẽut∥2

λ1|v⊤
1 ut|p−1 . Using the constraint on

Ẽ in Theorem 4.9 and Corollary C.12, we further show that B1 ≤ 1.1 and B2 ≤ 18ϵ/(c0λ1).
Combining all these, we complete the proof of the first property.

Regarding the second part, using the property for orthogonal tensor, we lower bound the term
|v⊤

1 ut+1|
v⊤
j ut+1

≥
9
10 |v

⊤
1 ut|

1
4 |v

⊤
j ut|+ 1

10 |v
⊤
1 ut|

. We then divide the proof into two conditions. First, if |v⊤j ut| <
|v⊤1 ut|, then the proportion of the top component over other rest components can be easily lower

bounded by λ1|v⊤
1 ut+1|p−2

λj |v⊤
j ut+1|p−2 ≥ λ1

λj
· 2p−2. For the opposite condition that |v⊤j ut| ≥ |v⊤1 ut|, we give a

more comprehensive analysis than previous work (see (Wang & Anandkumar, 2016)’s Lemma C.2).
We show that for all p being greater than or equal to 3, it holds that λ1|v⊤

1 ut+1|p−2

λj |v⊤
j ut+1|p−2 ≥ 4 · 2p−2.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

The final property is also proved in a similar way. For simplicity, we first define two terms

B3 := 1

1−|v⊤
1 Ẽut |/(λ1|v⊤

1 ut|p−1)
and B4 :=

|v⊤
j Ẽut |

λ1|v⊤
1 ut|p−1 . Similarly, we find the upper bound

|v⊤
j ut+1|

|v⊤
1 ut+1|

≤ |v⊤
j ut|

|v⊤
1 ut|
· 14B3+B3·B4. B3 can be easily bounded by a similar proof if |v⊤1 ut| ≥ 1− 1

c20p
2k2 .

For B4, we divide it into two case: |v⊤1 ut| ≤ 1 − 1
c20p

2k2 and |v⊤1 ut| > 1 − 1
c20p

2k2 . By a different
discussion, we can show that B4 ≤ 18ϵ/(c0λ1

√
n).

Bounding the recovery error We now step to the final technical lemma which shows the bound
of the approximation error of the output of our algorithm:

Lemma 3.1 (Informal version of Theorem D.1). Let p ≥ 3, k ≥ 1, and A = A∗ + E ∈ Rnp

be
an arbitrary tensor satisfying A∗ =

∑k
i=1 λiv

⊗p
i . Suppose that λ1 is the greatest values in {λi}ki=1

and λk is the smallest values in {λi}ki=1. The outputs obtained from the robust tensor power method
are {λ̂i, v̂i}ki=1. Let E satisfy that ∥E∥ ≤ ϵ/(c0

√
n). Then, there exists a permutation π : [k]→ [k],

such that ∀i ∈ [k], |λi − λ̂π(i)| ≤ ϵ and ∥vi − v̂π(i)∥2 ≤ ϵ/λi.

This Lemma is the key component of our main Theorem (Theorem 1.1). We use mathematical
induction to prove this Lemma (Section D). To show the base case, we need to bound three different
terms, namely |v̂1 − v1|, |λ̂1 − λ1|, and |v̂⊤1 vj |.
To bound |v̂1 − v1|, we need to utilize the properties of angle and apply the definitions and Lemmas
we develop in Section 4. First, we can show tan θ(u0, v1) ≤

√
n. By using the fact that |u⊤

t∗v1| =
1 − 1

c20p
2k2 together with some respective properties of u⊤

t∗ and v1, we can get ∥ut∗ − v1∥22 =

2/(c20p
2k2). Finally, we can bound |v̂1 − v1| using this information and recursively applying Part 1

of Theorem 4.9.

For the second term |λ̂1 − λ1|, we simplify it and split that into three parts, namely B5, B6, and B7

which are defined as follows

• B5 := |Ẽ(v̂1, · · · , v̂1)|,
• B6 := |λ1|v⊤1 v̂1|p − λ1|, and

• B7 :=
∑k

j=2 λj |v⊤j v̂1|p..

It suffices to bound these three terms. Using the properties of tensor spectral norm and various
inequalities we develop in Section D, we prove that B5 ≤ ϵ/12, B6 ≤ ϵ/12, and B7 ≤ ϵ/4. By
putting these together, we get that |λ̂1−λ1| ≤ ϵ/12+ϵ/12+ϵ/4 ≤ ϵ. Moreover, we need to give ϵ a
proper value. If ϵ is too big, we might not get our desired result. On the other hand, if ϵ is too small,
the result might be meaningless. Finally, by setting ϵ < 1

4k
1/(p−1)λk, we get the desired result.

What is left out is the third term |v̂⊤1 vj |. We need to recursively apply the third part of Theorem 4.9.
We show that |v⊤j ut∗ |/|v⊤1 ut∗ | ≤ 0.8t

∗ ·1/(1/
√
n). In the end, by choosing proper T and t∗ values,

we can get our desired bound.

In the inductive case, the arrangement of the proof is just like the ones in the base case: we also need
to bound these three terms. Moreover, for i being larger, we also need to consider the noise, namely
Ẽ = E +

∑r
i=1 Ei + E ∈ Rnp

, which adds more complexity to the condition we encounter.

Sketching technique. Inspired by a recent sketching technique (Cherapanamjeri & Nelson, 2022),
we apply a similar sketching operation to develop a distance estimation data structure to apply in
our tensor power method. Our data structure uses the Randomized Hadamard Transform (RHT) to
generate the sketching matrix. The data structure stores the sketches of a set of maintained tensors
{Ai}i∈[n] ⊆ Rnp−1

. Suppose that we have already known the decomposition of a tensor Ai, i.e.,∑k
j=1 αi,jx

⊗(p−1)
j . Now, when a query tensor of the form q = u⊗(p−1) comes, our data structure

can read {xj}j∈[k], α ∈ Rn×k, u ∈ Rn, and return an (1 ± ϵ) estimated product v ∈ Rn such it
approximates ⟨Ai −

∑k
j=1 αi,jx

⊗(p−1)
j , u⊗(p−1)⟩. This procedure runs fast in time Õ(ϵ−2np−1 +

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

n2k). Applying this data structure when computing the error, we are able to achieve our final fast
TPM algorithm.

4 ROBUST TENSOR POWER METHOD ANALYSIS FOR GENERAL ORDER
p ≥ 3

The goal of this section is to give a sketch of the proof of our main result (see Theorem 1.1).
Comparing with Section 3, which present the techniques for proving the important components of
our main result, namely Lemma 3.1 and Theorem 4.9, in this section, we move on to the high level
picture where how these important components may support Theorem 1.1 and Algorithm 1. In
Section 4.1, we give an overview of our main algorithm and present the meaning of the important
data structures being used in this algorithm, where this main algorithm is paired with our main
theorem, Theorem 1.1. In Section 4.2, we analyze the properties of the p-th order tensor, where p
is an arbitrary positive integer greater than or equal to 3. These properties are generalized from the
third and the fourth order tensors. In Section 4.3, we generalize the properties of the existing robust
tensor power method from the third order to any arbitrary order greater than or equal to three.

In short, our main theorem can be proved by combining the efficient implementation of the key
operations needed in the tensor power method (Lemma 4.2) and the theoretical guarantees for the
robust tensor power method (Lemma 3.1).

4.1 AN OVERVIEW OF OUR MAIN ALGORITHM

Algorithm 1 Our main algorithm

1: procedure FASTTENSOR(A)
2: ds.INIT(A)
3: for ℓ = 1→ L do
4: for t = 1→ T do
5: u(ℓ) ← ds.QUERY(u(ℓ)) ▷ Lemma 4.2
6: u(ℓ) ← u(ℓ)/∥u(ℓ)∥2
7: end for
8: λ(ℓ) ← ds.QUERYVALUE(u(ℓ)) ▷ Lemma 4.2
9: end for

10: ℓ∗ ← argmaxℓ∈[L] λ
(ℓ)

11: u∗ ← u(ℓ∗)

12: for t = 1→ T do
13: u∗ ← ds.QUERY(u∗)
14: u∗ ← u∗/∥u∗∥2
15: end for
16: λ∗ ← ds.QUERYVALUE(u∗)
17: return λ∗, u∗

18: end procedure

In our main algorithm (Algorithm 1), we use ds.INIT(A) to initialize the data structure. INIT can
take n tensors, A1, A2, A3, . . . , An ∈ Rnp−1

. We use ds.QUERY(u(ℓ)), which takes u(ℓ) ∈ Rn as
an input, to output a vector vℓ ∈ Rn, where each entry of v(ℓ) is an approximation of ⟨Ai, u

⊗(p−1)⟩,
for all i ∈ [n]. Finally, ds.QUERYVALUE(u(ℓ)) is similar to ds.QUERY(u(ℓ)): it takes u(ℓ) ∈ Rn as
an input and output a real number λ(ℓ) ∈ R, which is an approximation of ⟨A, u⊗p⟩.
Below, we present the efficient implementation of the data structure we need.

Definition 4.1 (Finding the top eigenvector and top-k eigenvectors). Given a collection of n tensors
A1, A2, · · · , An ∈ Rnp−1

, the goal is to design a structure that supports the following operations

• INIT (A1, · · · , An ∈ Rnp−1

). It takes n tensors as inputs and creates a data structure.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

• QUERY (u ∈ Rn), the goal is to output a vector v ∈ Rn such that vi ≈
⟨Ai, u

⊗(p−1)⟩, ∀i ∈ [n]

• QUERY({xi}i∈[k] ∈ Rn, α ∈ Rn×k, u ∈ Rn). the goal is to output a vector v ∈ Rn such

that vi ≈ ⟨Ai −
∑k

j=1 αi,jx
⊗(p−1)
j , u⊗(p−1)⟩, ∀i ∈ [n]

We state our data structure as follows:
Lemma 4.2 (Data Structure). Given n tensors A1, A2, · · ·An ∈ Rnp−1

where ∥Ai∥F ≤ Di, ∀i ∈
[n], we let ∥A∥F ≤ D. Then, there exists a randomized data structure with the following operations:

• INIT(A1, · · · , An ∈ Rnp−1

): It preprocesses n tensors, in time Õ(ϵ−2np log(1/δ)).

• QUERY(u ∈ Rn). It takes a unit vector u ∈ Rn as input. The goal is to output a vector
v ∈ Rn such that for all i ∈ [n], (1 − ϵ) · ⟨Ai, u

⊗(p−1)⟩ − Di · ϵ ≤ vi ≤ (1 + ϵ) ·
⟨Ai, u

⊗(p−1)⟩+Di · ϵ. This can be done in time Õ(ϵ−2n(p−1) log(1/δ)).

• QUERYVALUE(u ∈ Rn). The goal is to output a number v ∈ R such that (1−ϵ)⟨A, u⊗p⟩−
D · ϵ ≤ v ≤ (1 + ϵ)⟨A, u⊗p⟩+D · ϵ. This can be done in time Õ(ϵ−2n(p−1) log(1/δ)).

• QUERYRES({xj}j∈[k] ∈ Rn, α ∈ Rn×k, u ∈ Rn). The goal is to output a vector v ∈ Rn

such that for all i ∈ [n],

(1− ϵ) · ⟨Ai −
k∑

j=1

αi,jx
⊗(p−1)
j , u⊗(p−1)⟩ −Di · ϵ ≤ vi

≤ (1 + ϵ) · ⟨Ai −
k∑

j=1

αi,jx
⊗(p−1)
j , u⊗(p−1)⟩+Di · ϵ.

This can be done in time Õ(ϵ−2n(p−1) log(1/δ) + n2k).

All the queries are robust to adversary type queries.

Proof. The correctness of INIT and QUERY directly follows from (Cherapanamjeri & Nelson, 2022).

For the QUERYRESIDUAL, the running time only need to pay an extra term is computing
⟨
∑k

j=1 αi,jx
⊗(p−1)
j , u⊗(p−1)⟩ which is sufficient just to compute

∑k
j=1 αi,j⟨xj , u⟩p−1. The above

step takes O(kn) time. Since there are n different indices i. So overall extra time is O(n2k).

4.2 USEFUL FACTS

We finish presenting the efficient implementation of the key operations. Now, we move on to the
sketch of proof for the theoretical guarantees for the robust tensor power method (Lemma 3.1).
Proving this is not trivial, as we presented in the technique overview (see Section 3). We need to
first prove some important facts, where these facts are frequently used in the proof of Theorem 4.9,
and then generalize Theorem 4.9 to obtain Lemma 3.1. First, we give the formal definitions of sin,
cos, and tan.
Definition 4.3. For u, v be unit vectors, we define cos θ(u, v) := ⟨u, v⟩, sin θ(u, v) :=√

1− cos2 θ(u, v) and tan θ(u, v) := sin θ(u, v)/ cos θ(u, v).

We use the following facts to support the analysis of recoverability.

Fact 4.4 (Informal version of Fact B.7). Let p ≥ 3. Let A∗ =
∑k

j=1 λjv
⊗p
j ∈ Rnp

be the orthogonal
tensor. Then, for all j ∈ [k], given a vector u ∈ Rn, we can get |v⊤j A∗(I, u, · · · , u)| = λj |v⊤j u|p−1.

The following fact provides the upper bound for E(u, v, · · · , v) and ∥E(I, v, . . . , v)∥2, which is
used for the norm bounding analysis (see details in Section C and D).
Fact 4.5. Let E ∈ Rnp

is an arbitrary orthogonal tensor and u, v ∈ Rn are two arbitrary unit
vectors. Then, we have |E(u, v, · · · , v)| ≤ ∥E∥ and ∥E(I, v, . . . , v)∥2 ≤

√
n∥E∥.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Proof. Part 1 follows trivially from the definition of ∥E∥.
For part 2, we define a unit vector w ∈ Rn to be (1/

√
n, · · · , 1/

√
n),

∥E(I, v, . . . , v)∥22 =

n∑
i1=1

 n∑
i2=1

· · ·
n∑

ip=1

Ei1,i2,··· ,ipvi2 · · · vip

2

= n

n∑
i1=1

 n∑
i2=1

· · ·
n∑

ip=1

Ei1,i2,··· ,ipwi1vi2 · · · vip

2

≤ n∥E∥2,

where the first step follows from the definition of E(I, v, . . . , v), the second step follows from our
definition for w, and the last step follows from n ≥ 1 . This result implies ∥E(I, v, · · · , v)∥2 ≤√
n∥E∥.

Fact 4.6 (Informal version of Fact B.8). Let p is greater than or equal to 3, x, y, u, v ∈ Rn be any
arbitrary unit vectors, and j ∈ {0, 1, · · · , p− 2}. Then, we have

∥[x⊗ v⊗(p−1)](I, u, · · · , u)− [y ⊗ v⊗(p−1)](I, u, · · · , u)∥2 = |⟨u, v⟩|p−1 · ∥x− y∥2 (1)

and

∥[v⊗(1+j) ⊗ x⊗ v⊗(p−2−j)](I, u, · · · , u)− [v⊗(1+j) ⊗ y ⊗ v⊗(p−2−j)](I, u, · · · , u)∥2
≤ |⟨u, v⟩|p−2 · ∥x− y∥2. (2)

The following fact transforms the ℓ2 norm into the form of the sum of a list of real numbers, which
helps us with simplifying ∥V ⊤A∗(I, u, · · · , u)∥22 to support the analysis of the recoverability (see
Section C for details).
Fact 4.7. Let v1, v2, · · · , vn be an orthonormal basis. Let V = (v2, · · · , vn) ∈ Rn×(n−1).
Let A∗ =

∑k
i=1 λiv

⊗p
i . Let u ∈ Rn be a vector. Then, we have ∥V ⊤A∗(I, u, · · · , u)∥22 =∑k

j=2 λ
2
j |v⊤j u|2(p−1).

Proof. We have

∥V ⊤A∗(I, u, · · · , u)∥22 =

k∑
j=2

|v⊤j A∗(I, u, · · · , u)|2 =

k∑
j=2

(λj |v⊤j u|p−1)2 =

k∑
j=2

λ2
j |v⊤j u|2(p−1),

where the first step follows from the definition of ℓ2 norm, the second step follows from Fact B.7,
and the last step follows from (ab)2 = a2b2.

4.3 CONVERGENCE GUARANTEE AND DEFLATION

Consequently, in this section, with the help of these technical facts, we are ready to present the
second component necessary to support our main theorem (Theorem 1.1), specifically Lemma 3.1.
We generalize the robust tensor power method to all cases where p ≥ 3.
Lemma 4.8. Let t ∈ [k]. Let η ∈ (0, 1/2). In Rn, U represents a set of random Gaussian vectors.
Let |U| = Ω(k log(1/η)). Then, there is a probability of at least 1 − η that there exists a vector
u ∈ U satisfying the following condition: max

j∈[k]\{t}
|v⊤j u| ≤ 1

4 |v
⊤
t u| and |v⊤t u| ≥ 1/

√
n.

We analyze (Wang & Anandkumar, 2016)’s Lemma C.2 and generalize it from p being equal to 3 to
any p being greater than or equal to 3.

In the following Theorem, intuitively, we treat A∗ as the ground-truth tensor. We treat Ẽ as the noise
tensor. In reality, we can not access the A∗ directly. We can only access A∗ with some noise which
is Ẽ. But whenever Ẽ (the noise) is small compared to ground-truth A∗, then we should be able to
recover A∗.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Theorem 4.9. Let Ẽ ∈ Rnp

denote some tensor representing the noise. Let c > 0 is an arbitrarily
small number and c0 ≥ 1. Let p be greater than or equal to 3. A = A∗ + Ẽ ∈ Rnp

is an arbitrary
tensor satisfying A∗ =

∑k
i=1 λiv

⊗p
i . Let

ut+1 =
A(I, ut, · · · , ut)

∥A(I, ut, · · · , ut)∥2
,

where ut ∈ Rn is an unit vector.

We define Event ξ to be

|v⊤1 ut| ≤ 1− 1/(c20p
2k2).

Let 0 < ϵ ≤ cλ1

(c0p2kn(p−2)/2)
. Let T = Ω(log(λ1n/ϵ)). Let t ∈ [T].

Suppose

∥Ẽ(I, ut, · · · , ut)∥2 ≤
{
4pϵ, if ξ

6ϵ/c0, ow.

and |Ẽ(v, ut, · · · , ut)| ≤
{
4ϵ/
√
n if ξ

6ϵ/(c0
√
n) ow

Then,

1. We have

tan θ(v1, ut+1) ≤

{
0.8 tan θ(v1, ut) if ξ

0.8 tan θ(v1, ut) + 18 ϵ
c0λ1

ow
(3)

2. We have

max
j∈[k]\{1}

λj |v⊤j ut|p−2 ≤ (1/4)λ1|v⊤1 ut|p−2. (4)

3. For any j ∈ {2, · · · , k}, we have

|v⊤j ut+1|
|v⊤1 ut+1|

≤
{
0.8|v⊤j ut|/|v⊤1 ut| if ξ

0.8|v⊤j ut|/|v⊤1 ut|+ 18ϵ/(c0λ1
√
n) ow

(5)

Because of the space limit, the formal proof is deferred to Appendix C. Theorem 4.9 provides key
properties of the tensor power method for a single iteration. It shows how the algorithm converges
towards the dominant eigenvector and how errors are controlled in each step. Finally, using Theo-
rem 4.9, we can prove Lemma 3.1 that our algorithm recovers the tensor components (eigenvectors
and eigenvalues) up to a specified error bound using mathematical induction. Combining this with
our fast sketching technique (Lemma 4.2), we finally prove our main Theorem (Theorem 1.1).

5 CONCLUSION

We present a robust tensor power method that supports arbitrary order tensors. Our method over-
comes the limitations of existing approaches, which are often restricted to lower-order tensors or
require strong assumptions about the underlying data structure. This requires non-trivial mathemat-
ical tools to handle the added complexity. We develop new properties of higher-order tensors and
analyze the convergence and error bounds. By leveraging advanced techniques from optimization
and linear algebra, we have developed a powerful and flexible algorithm that can handle a wide range
of tensor data, from images and videos to multivariate time series and natural language corpora. We
believe that our result has some insights into various tasks, including tensor decomposition, low-
rank tensor approximation, and independent component analysis. We believe that our contribution
will significantly advance the field of tensor analysis and provide new opportunities for handling
high-dimensional data in various domains. We here propose some future directions. We encourage
extending our method to more challenging scenarios, such as noisy data analysis, and exploring its
applications in emerging areas, such as neural networks and machine learning.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHIC STATEMENT

This paper does not involve human subjects, personally identifiable data, or sensitive applications.
We do not foresee direct ethical risks. We follow the ICLR Code of Ethics and affirm that all aspects
of this research comply with the principles of fairness, transparency, and integrity.

REPRODUCIBILITY STATEMENT

We ensure reproducibility of our theoretical results by including all formal assumptions, definitions,
and complete proofs in the appendix. The main text states each theorem clearly and refers to the
detailed proofs. No external data or software is required.

REFERENCES

Elizabeth S. Allman, Catherine Matias, and John A. Rhodes. Identifiability of parameters in latent
structure models with many observed variables. The Annals of Statistics, 37(6A), dec 2009a. doi:
10.1214/09-aos689. URL https://doi.org/10.1214%2F09-aos689.

Elizabeth S. Allman, Sonja Petrović, John A. Rhodes, and Seth Sullivant. Identifiability of 2-tree
mixtures for group-based models, 2009b. URL https://arxiv.org/abs/0909.1854.

Animashree Anandkumar, Rong Ge, Daniel J. Hsu, Sham M. Kakade, and Matus Telgarsky. Tensor
decompositions for learning latent variable models. In Journal of Machine Learning Research,
volume 15(1), pp. 2773–2832. https://arxiv.org/pdf/1210.7559, 2014.

Animashree Anandkumar, Rong Ge, and Majid Janzamin. Analyzing tensor power method dynam-
ics in overcomplete regime. Journal of Machine Learning Research, 18(22):1–40, 2017.

Kamyar Azizzadenesheli, Alessandro Lazaric, and Animashree Anandkumar. Reinforcement learn-
ing of POMDPs using spectral methods. In 29th Annual Conference on Learning Theory (COLT),
pp. 193–256. https://arxiv.org/pdf/1602.07764, 2016.

Assa Bentzur, Shahar Alon, and Galit Shohat-Ophir. Behavioral neuroscience in the era of genomics:
tools and lessons for analyzing high-dimensional datasets. International Journal of Molecular
Sciences, 23(7):3811, 2022.

Vineet Bhatt, Sunil Kumar, and Seema Saini. Tucker decomposition and applications. Materials
Today: Proceedings, 46:10787–10792, 2021. ISSN 2214-7853. doi: https://doi.org/10.1016/
j.matpr.2021.01.676. URL https://www.sciencedirect.com/science/article/
pii/S2214785321007732. International Conference on Technological Advancements in
Materials Science and Manufacturing.

Srinadh Bhojanapalli and Sujay Sanghavi. A new sampling technique for tensors. In arXiv preprint.
https://arxiv.org/pdf/1502.05023, 2015.

Charles Bouveyron, Stéphane Girard, and Cordelia Schmid. High-dimensional data clustering. Com-
putational statistics & data analysis, 52(1):502–519, 2007.

J Douglas Carroll and Jih-Jie Chang. Anaylsis of individual differences in multidimensional scal-
ing via an n-way generalization of eckart-young decomposition. Psychometrika, 35(3):283–319,
1970.

Kung-Ching Chang, Kelly Pearson, and Tan Zhang. Perron-frobenius theorem for nonnegative
tensors. Communications in Mathematical Sciences, 6(2):507–520, 2008.

Yeshwanth Cherapanamjeri and Jelani Nelson. Uniform approximations for randomized hadamard
transforms with applications. arXiv preprint arXiv:2203.01599, 2022.

Joon Hee Choi and S. Vishwanathan. Dfacto: Distributed factorization of tensors. In NIPS, pp.
1296–1304, 2014.

10

https://doi.org/10.1214%2F09-aos689
https://arxiv.org/abs/0909.1854
https://arxiv.org/pdf/1210.7559
https://arxiv.org/pdf/1602.07764
https://www.sciencedirect.com/science/article/pii/S2214785321007732
https://www.sciencedirect.com/science/article/pii/S2214785321007732
https://arxiv.org/pdf/1502.05023

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yichuan Deng, Wenyu Jin, Zhao Song, Xiaorui Sun, and Omri Weinstein. Dynamic kernel sparsi-
fiers. arXiv preprint arXiv:2211.14825, 2022a.

Yichuan Deng, Zhao Song, Omri Weinstein, and Ruizhe Zhang. Fast distance oracles for any sym-
metric norm. arXiv preprint arXiv:2205.14816, 2022b.

Yichuan Deng, Yeqi Gao, and Zhao Song. Solving tensor low cycle rank approximation. arXiv
preprint arXiv:2304.06594, 2023.

Dipak Dulal, Ramin Goudarzi Karim, and Carmeliza Navasca. Covid-19 analysis using tensor
methods, 2022. URL https://arxiv.org/abs/2212.14558.

Matthew Fahrbach, Gang Fu, and Mehrdad Ghadiri. Subquadratic kronecker regression with ap-
plications to tensor decomposition. Advances in Neural Information Processing Systems, 35:
28776–28789, 2022.

Yeqi Gao, Lianke Qin, Zhao Song, and Yitan Wang. A sublinear adversarial training algorithm.
arXiv preprint arXiv:2208.05395, 2022.

Yuzhou Gu, Zhao Song, Junze Yin, and Lichen Zhang. Low rank matrix completion via robust
alternating minimization in nearly linear time. arXiv preprint arXiv:2302.11068, 2023.

Richard A Harshman. Foundations of the parafac procedure: Models and conditions for an” ex-
planatory” multimodal factor analysis. 1970.

Qiang Heng, Eric C. Chi, and Yufeng Liu. Tucker-L2E: Robust low-rank tensor decomposition with
the L2 criterion, 2022. URL https://arxiv.org/abs/2208.11806.

Christopher J Hillar and Lek-Heng Lim. Most tensor problems are np-hard. In Journal of the ACM
(JACM), volume 60(6), pp. 45. https://arxiv.org/pdf/0911.1393, 2013.

Furong Huang, Niranjan U. N, Mohammad Umar Hakeem, Prateek Verma, and Animashree Anand-
kumar. Fast detection of overlapping communities via online tensor methods on gpus. CoRR,
abs/1309.0787, 2013.

Majid Janzamin, Hanie Sedghi, and Anima Anandkumar. Beating the perils of non-convexity:
Guaranteed training of neural networks using tensor methods. In arXiv preprint. https:
//arxiv.org/pdf/1506.08473, 2015.

U. Kang, Evangelos E. Papalexakis, Abhay Harpale, and Christos Faloutsos. Gigatensor: scaling
tensor analysis up by 100 times - algorithms and discoveries. In KDD, pp. 316–324, 2012.

Mijung Kim and K. Selçuk Candan. Decomposition-by-normalization (dbn): leveraging approxi-
mate functional dependencies for efficient cp and tucker decompositions. 30(1):1–46, 2016. ISSN
1384-5810.

Tamara G. Kolda and Brett W. Bader. Tensor decompositions and applications. SIAM Review, 51
(3):455–500, 2009.

Tamara G Kolda and Jackson R Mayo. Shifted power method for computing tensor eigenpairs.
SIAM Journal on Matrix Analysis and Applications, 32(4):1095–1124, 2011.

Joseph B. Kruskal. Three-way arrays: rank and uniqueness of trilinear decompositions, with appli-
cation to arithmetic complexity and statistics. Linear Algebra and its Applications, 18(2):95–138,
1977. ISSN 0024-3795. doi: https://doi.org/10.1016/0024-3795(77)90069-6. URL https:
//www.sciencedirect.com/science/article/pii/0024379577900696.

Arvind V Mahankali, David P Woodruff, and Ziyu Zhang. Near-linear time and fixed-parameter
tractable algorithms for tensor decompositions. arXiv preprint arXiv:2207.07417, 2022.

Marius Muja and David G Lowe. Scalable nearest neighbor algorithms for high dimensional data.
IEEE transactions on pattern analysis and machine intelligence, 36(11):2227–2240, 2014.

Michael Ng, Liqun Qi, and Guanglu Zhou. Finding the largest eigenvalue of a nonnegative tensor.
SIAM Journal on Matrix Analysis and Applications, 31(3):1090–1099, 2010.

11

https://arxiv.org/abs/2212.14558
https://arxiv.org/abs/2208.11806
https://arxiv.org/pdf/0911.1393
https://arxiv.org/pdf/1506.08473
https://arxiv.org/pdf/1506.08473
https://www.sciencedirect.com/science/article/pii/0024379577900696
https://www.sciencedirect.com/science/article/pii/0024379577900696

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Anh-Huy Phan, Petr Tichavsky, and Andrzej Cichocki. Low complexity damped gauss–newton
algorithms for candecomp/parafac. SIAM Journal on Matrix Analysis and Applications, 34(1):
126–147, 2013.

Lianke Qin, Aravind Reddy, Zhao Song, Zhaozhuo Xu, and Danyang Zhuo. Adaptive and dynamic
multi-resolution hashing for pairwise summations. arXiv preprint arXiv:2212.11408, 2022.

Lianke Qin, Zhao Song, and Yitan Wang. Fast submodular function maximization. arXiv preprint
arXiv:2305.08367, 2023.

Aravind Reddy, Zhao Song, and Lichen Zhang. Dynamic tensor product regression. arXiv preprint
arXiv:2210.03961, 2022.

John A Rhodes and Seth Sullivant. Identifiability of large phylogenetic mixture models. Bulletin of
mathematical biology, 74:212–231, 2012.

Elina Robeva. Orthogonal decomposition of symmetric tensors. SIAM Journal on Matrix Analysis
and Applications, 37(1):86–102, 2016.

Elina Robeva and Anna Seigal. Singular vectors of orthogonally decomposable tensors. Linear and
Multilinear Algebra, 65(12):2457–2471, 2017.

Amnon Shashua and Tamir Hazan. Non-negative tensor factorization with applications to statistics
and computer vision. In Proceedings of the 22nd international conference on Machine learn-
ing(ICML), pp. 792–799. ACM, 2005.

Zhao Song, David P. Woodruff, and Huan Zhang. Sublinear time orthogonal tensor decomposition.
In Advances in Neural Information Processing Systems 29: Annual Conference on Neural Infor-
mation Processing Systems (NIPS) 2016, December 5-10, 2016, Barcelona, Spain, pp. 793–801,
2016.

Zhao Song, David P Woodruff, and Peilin Zhong. Relative error tensor low rank approximation. In
SODA. arXiv preprint arXiv:1704.08246, 2019.

Zhao Song, Zhaozhuo Xu, and Lichen Zhang. Speeding up sparsification using inner product search
data structures. arXiv preprint arXiv:2204.03209, 2022a.

Zhao Song, Xin Yang, Yuanyuan Yang, and Lichen Zhang. Sketching meets differential privacy:
Fast algorithm for dynamic kronecker projection maintenance. arXiv preprint arXiv:2210.11542,
2022b.

Y-H. Taguchi and Turki Turki. Application of tensor decomposition to gene expression of infection
of mouse hepatitis virus can identify critical human genes and efffective drugs for sars-cov-2
infection. IEEE Journal of Selected Topics in Signal Processing, 15(3):746–758, 2021. doi:
10.1109/JSTSP.2021.3061251.

Charalampos E. Tsourakakis. MACH: fast randomized tensor decompositions. In SDM, pp. 689–
700, 2010.

Chi Wang, Xueqing Liu, Yanglei Song, and Jiawei Han. Scalable moment-based inference for latent
dirichlet allocation. In ECML-PKDD, pp. 290–305, 2014.

Yiju Wang, Liqun Qi, and Xinzhen Zhang. A practical method for computing the largest m-
eigenvalue of a fourth-order partially symmetric tensor. Numerical Linear Algebra with Applica-
tions, 16(7):589–601, 2009.

Yining Wang and Animashree Anandkumar. Online and differentially-private tensor decomposi-
tion. In Advances in Neural Information Processing Systems 29: Annual Conference on Neu-
ral Information Processing Systems (NIPS) 2016, December 5-10, 2016, Barcelona, Spain.
https://arxiv.org/pdf/1606.06237, 2016.

Yining Wang, Hsiao-Yu Tung, Alexander J Smola, and Anima Anandkumar. Fast and guaran-
teed tensor decomposition via sketching. In Advances in Neural Information Processing Systems
(NIPS), pp. 991–999. https://arxiv.org/pdf/1506.04448, 2015.

12

https://arxiv.org/pdf/1606.06237
https://arxiv.org/pdf/1506.04448

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Miao Zhang and Chris Ding. Robust tucker tensor decomposition for effective image representation.
In 2013 IEEE International Conference on Computer Vision, pp. 2448–2455, 2013. doi: 10.1109/
ICCV.2013.304.

Guoxu Zhou, Andrzej Cichocki, Qibin Zhao, and Shengli Xie. Efficient nonnegative tucker de-
compositions: Algorithms and uniqueness. IEEE Transactions on Image Processing, 24(12):
4990–5003, dec 2015. doi: 10.1109/tip.2015.2478396. URL https://doi.org/10.1109%
2Ftip.2015.2478396.

13

https://doi.org/10.1109%2Ftip.2015.2478396
https://doi.org/10.1109%2Ftip.2015.2478396

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Appendix
Roadmap. In Section A, we present our additional related works. In Section B, we introduce
the background concepts (definitions and properties) that we use in the Appendix. In Section C,
we provide more details and explanations to support the properties we developed in this paper. In
Section D, we present our important Theorems (Theorem D.1 and Theorem D.2) and their proofs.

A ADDITIONAL RELATED WORKS

In Section A.1, we introduce Canonical/Polydic decomposition and Tucker decomposition. In Sec-
tion A.2, we present some sketching techniques.

A.1 CANONICAL/POLYDIC DECOMPOSITION AND TUCKER DECOMPOSITION

The most commonly employed techniques for breaking down tensors are CP (Canonical/Polydic)
decomposition and Tucker factorization. CP decomposes a tensor that has higher order into a collec-
tion of fixed-rank individual tensors that are summed together, while Tucker factorization reduces
a tensor that has higher order to a smaller core tensor and a matrix product of each of its modes.
Non-negative tensor factorization is the extension of non-negative matrix factorization to multiple
dimensions (Bhatt et al., 2021). Recent research in Tucker decomposition has focused on develop-
ing more efficient algorithms for computing the decomposition (Zhou et al., 2015; Kim & Candan,
2016; Fahrbach et al., 2022), improving its accuracy and robustness (Zhang & Ding, 2013; Heng
et al., 2022), and applying it to various new domains, such as image representation (Zhang & Ding,
2013).

A.2 SKETCHING TECHNIQUES

Sketching methods have emerged as a powerful paradigm in numerical linear algebra, serving as a
fundamental approach to dimension reduction while preserving essential mathematical properties.
These techniques, which originated from the theoretical computer science community, provide a
way to project high-dimensional data into lower-dimensional spaces while maintaining important
structural information and computational guarantees. They have become increasingly important in
machine learning, data science, and scientific computing due to their ability to reduce computational
complexity while maintaining accuracy guarantees.

It has played an important role in tensor approximation (Song et al., 2019; Mahankali et al., 2022;
Deng et al., 2023), matrix completion (Gu et al., 2023), submodular function maximization (Qin
et al., 2023), dynamic sparsifier (Deng et al., 2022a), dynamic tensor produce regression (Reddy
et al., 2022), semi-definite programming (Song et al., 2022b), sparsification problems involving an
iterative process (Song et al., 2022a), adversarial training (Gao et al., 2022), kernel density estima-
tion (Qin et al., 2022), and distance oracle problem (Deng et al., 2022b).

B PRELIMINARY

In Section B.1, we define several basic notations. In Section B.2, we state several basic facts. In
Section B.3, we present facts and tools for tensors.

B.1 NOTATIONS

In this section, we start to introduce the fundamental concepts we use.

For any function f , we use Õ(f) to denote f · poly(log f).
R denotes the set that contains all real numbers.

For a scalar a, i.e. a ∈ R, |a| represents the absolute value of a.

For any A ∈ Rn×k being a matrix and x ∈ Rk being a vector, we use ∥A∥ :=
maxx∈Rk ∥Ax∥2/∥x∥2 to denote the spectral norm of A.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

We use ∥x∥2 := (
∑n

i=1 x
2
i)

1/2 to denote the ℓ2 norm of the vector x.

For two vectors u ∈ Rn and v ∈ Rn, we use ⟨u, v⟩ to denote the inner product, i.e. ⟨u, v⟩ =∑n
i=1 uivi.

Let p ≥ 1 denote some integer. We say E ∈ Rn×···×n (where there are p of n), if E is a p-th order
tensor and every dimension is n. For simplicity, we write E ∈ Rnp

. If p = 1, then E is a vector. If
p = 2, E ∈ Rn×n is a matrix. If p = 3, then E ∈ Rn×n×n is a 3rd order tensor.

For any two vectors x, y, we define θ(x, y) to be cos θ(x, y) = ⟨x, y⟩.
For a 3rd tensor E ∈ Rn×n×n, we have E(a, b, c) ∈ R

E(a, b, c) =

n∑
i=1

n∑
j=1

n∑
k=1

Ei,j,kaibjck.

Similarly, the definition can be generalized to p-th order tensor.

For a 3rd order tensor E ∈ Rn×n×n, we have E(I, b, c) ∈ Rn,

E(I, b, c)i =

n∑
j=1

n∑
k=1

Ei,j,kbjck, ∀i ∈ [n]

For a 3rd order tensor E ∈ Rn×n×n, we have E(I, I, c) ∈ Rn×n

E(I, I, c)i,j =

n∑
k=1

Ei,j,kck, ∀i, j ∈ [n]× [n].

Let a, b, c ∈ Rn. Let E = a⊗ b⊗ c ∈ Rn×n×n. We have

Ei,j,k = aibjck, ∀i ∈ [n],∀j ∈ [n], k ∈ [n]

Let a ∈ Rn, let E = a⊗ a⊗ a = a⊗3 ∈ Rn×n×n. We have

Ei,j,k = aiajak, ∀i ∈ [n],∀j ∈ [n], k ∈ [n]

Let E =
∑m

i=1 u
⊗3
i . Then we have E(a, b, c) ∈ R

E(a, b, c) =

m∑
i=1

(u⊗3
i (a, b, c)) =

m∑
i=1

⟨ui, a⟩⟨ui, b⟩⟨ui, c⟩.

For µ ∈ Rd and Σ ∈ Rn×n. We use N (µ,Σ) to denote a Gaussian distribution with mean µ and
covariance Σ. For x ∼ N (µ,Σ), we denote x as a Gaussian vector.

For any vector a ∈ Rn, we use maxi∈[n] ai to denote a value b over sets {a1, a2, · · · , an}.
For any vector a ∈ Rn, we use argmaxi∈[n] ai to denote the index j such that aj = maxi∈[n] ai.

Let N denote non-negative integers.

B.2 BASIC FACTS

In this section, we introduce some basic facts.
Fact B.1. We have

• Part 1. For any x ∈ (0, 1) and integer p ≥ 1, we have |1− (1− x)p| ≤ p · x.

• Part 2. (a+ b)p ≤ 2p−1ap + 2p−1bp.
Fact B.2 (Geometric series). If the following conditions hold

• Let a ∈ R.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

• Let k ∈ N.

• Let r ∈ R and 0 < r < 1.

Then, for all k, the series which can be expressed in the form of
k∑

i=0

ari

is called the geometric series.

Let a0 denote the value of this series when k = 0, namely a0 = ar0 = a.

This series is equal to

1.

Sk =

k∑
i=0

ari = a0
(1− rn)

1− r
,

when k ̸=∞, or

2.

Sk =

k∑
i=0

ari =
a0

1− r
,

when k =∞.
Fact B.3. If the following conditions hold

• Let
∑∞

n=1 bn be a series.

• Let k ∈ N.

• Let a ∈ R.

• Let r ∈ R and 0 < r < 1.

• Let
∑k

i=0 ar
i be a geometric series.

• Suppose
∑∞

n=1 bn ≤
∑k

i=0 ar
i.

Then,
∑∞

n=1 bn is convergent and is bounded by
a0

1− r
.

Proof. By Fact B.2, we get that the geometric series is convergent, for all k ∈ N.

Then,
∑∞

n=1 bn is convergent by the comparison test.

We have

a0
(1− rn)

1− r
≤ a0

1− r
(6)

because for all 0 < r < 1, we have (1− rn) < 1.

Therefore, we get
∞∑

n=1

bn ≤
k∑

i=0

ari

≤ a0
1− r

,

where the first step follows from the assumption in the Fact statement and the second step follows
from Eq. (6).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Fact B.4. If the following conditions hold

• u, v, w ∈ Rn are three arbitrary unit vectors.

• For all x satisfying 0 ≤ x ≤ 1.

• Suppose 1− x ≤ ⟨u,w⟩.

• Suppose ⟨v, w⟩ = 0.

Then ⟨u, v⟩ ≤
√
2x− x2.

Proof. First, we want to show that

| sin θ(u,w)| =
√
1− cos2 θ(u,w)

=
√
1− ⟨u,w⟩2

≤
√
1− (1− x)2, (7)

where the first step follows from the definition of sin θ(u,w) (see Definition 4.3), the second step
follows from the definition of cos θ(u,w) (see Definition 4.3), and the last step follows from the
assumption of this fact.

Then, we have

⟨u, v⟩ = cos θ(u, v)

= | cos θ(u,w) cos θ(v, w)− sin θ(u,w) sin θ(v, w)|
≤ | cos θ(u,w) cos θ(v, w) + sin θ(u,w) sin θ(v, w)|
≤ | cos θ(u,w) cos θ(v, w)|+ | sin θ(u,w) sin θ(v, w)|
= 0 + | sin θ(u,w) sin θ(v, w)|
≤ | sin θ(u,w)| · | sin θ(v, w)|
≤ | sin θ(u,w)|

≤
√

1− (1− x)2

=
√
2x− x2,

where the first step follows from the definition of cos θ(u, v) (see Definition 4.3), the second
step follows from cos (a+ b) = cos (a) cos (b) − sin (a) sin (b), the third step follows from
simple algebra, the fourth step follows from the triangle inequality, the fifth step follows from
cos θ(v, w) = 0, the sixth step follows from the Cauchy–Schwarz inequality, the seventh step fol-
lows from | sin θ(w, v)| ≤ 1, the eighth step follows from Eq. (7), and the last step follows from
simple algebra.

Fact B.5. If the following conditions hold

• Let E ∈ Rnp

.

• Let u, v ∈ Rn be two vectors.

Then

• |E(v, u, · · · , u)| = |v⊤E(I, u, · · · , u)|.

• |v⊤E(I, I, u, · · · , u)w| = |E(v, w, u, · · · , u)|

Proof. It follows

|v⊤E(I, u, · · · , u)| =

∣∣∣∣∣∣
n∑

i1=1

vi1 ·

 n∑
i2=1

· · ·
n∑

ip=1

Ei1,i2,··· ,ipui2 · · ·uip

∣∣∣∣∣∣
17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

=

∣∣∣∣∣∣
n∑

i1=1

n∑
i2=1

· · ·
n∑

ip=1

Ei1,i2,··· ,ipvi1ui2 · · ·uip

∣∣∣∣∣∣
= |E(v, u, · · · , u)|,

where the first step follows from the definition of E(I, u, · · · , u), the second step follows from the
property of summation, and the last step follows from the definition of E(v, u, · · · , u).

Fact B.6. If the following conditions hold

• u, v are two arbitrary unit vectors.

• Suppose θ(u, v) is in the interval (0, π/2).

Then ∥u− v∥2 ≤ tan θ(u, v).

Proof. Suppose θ(u, v) is in the interval (0, π/2), so we have

cos θ(u, v)

is in the interval (0, 1).

Let x = ⟨u, v⟩.
Therefore, by the definition of cos θ(u, v) (see Definition 4.3), we have

cos θ(u, v) = ⟨u, v⟩
= x. (8)

Accordingly, we have

sin θ(u, v) =
√

1− cos2 θ(u, v)

=
√
1− x2, (9)

where the first step follows from the definition of sin θ(u, v) (see Definition 4.3) and the second step
follows from Eq. (8). Moreover,

∥u− v∥22 = ∥u∥22 + ∥v∥22 − 2⟨u, v⟩
= 1 + 1− 2x

= 2− 2x, (10)

where the first step follows from simple algebra, the second step follows from the fact that u and v
are unit vectors, and the last step follows from simple algebra. We want to show

∥u− v∥22 ≤ tan2 θ(u, v).

It suffices to show

2− 2x ≤ tan2 θ(u, v)

= sin2 θ(u, v)/ cos2 θ(u, v)

≤ (1− x2)/x2, (11)

where the first step follows from Eq. (10), the second step follows from the definition of tan θ(u, v)
(see Definition 4.3), and the last step follows from combining Eq. (8) and Eq. (9).

Therefore, it suffices to show

(1− x2)/x2 − (2− 2x) ≥ 0

when x ∈ (0, 1).

Let f : (0,∞)→ R be defined as

f(x) = (1− x2)/x2 − (2− 2x).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Then, the derivative of f(x) is denoted as f ′(x), which is as follows

f ′(x) =
2x3 − 2

x3
.

Therefore, when x = 1, we have f ′(x) = 0.

The second derivative of f is

f ′′(x) =
6

x4
.

Therefore,
f ′′(1) = 6 > 0.

Thus, f(1) is a local minimum. In other words, when x ∈ (0, 1),

f(x) = (1− x2)/x2 − (2− 2x) ≥ f(1) = 0,

so Eq. (11) is shown to be true.

Thus, we complete the proof.

B.3 MORE TENSOR FACTS

In this section, we present more tensor properties.
Fact B.7 (Formal version of Fact 4.4). If the following conditions hold

• Let p be greater than or equal to 3.

• Let A∗ =
∑k

j=1 λjv
⊗p
j ∈ Rnp

be an orthogonal tensor.

• Let u ∈ Rn be a vector.

• Let j ∈ [k].

Then, we can get

|v⊤j A∗(I, u, · · · , u)| = λj |v⊤j u|p−1.

Proof. For any j ∈ [k], we have

|v⊤j A∗(I, u, · · · , u)| =

∣∣∣∣∣
n∑

i=1

vj,iA
∗(I, u, · · · , u)i

∣∣∣∣∣
=

∣∣∣∣∣∣
n∑

i=1

vj,i

n∑
i2=1

· · ·
n∑

ip=1

A∗
i,i2,··· ,ipui2 · · ·uip

∣∣∣∣∣∣
=

∣∣∣∣∣∣
n∑

i=1

vj,i

n∑
i2=1

· · ·
n∑

ip=1

(

n∑
ℓ=1

λℓvℓ,ivℓ,i2 · · · vℓ,ip)ui2 · · ·uip

∣∣∣∣∣∣
=

∣∣∣∣∣∣
k∑

ℓ=1

λℓ

n∑
i=1

vj,ivℓ,i

n∑
i2=1

· · ·
n∑

ip=1

(vℓ,i2 · · · vℓ,ip)ui2 · · ·uip

∣∣∣∣∣∣
=

∣∣∣∣∣∣λj

n∑
i2=1

· · ·
n∑

ip=1

(vj,i2 · · · vj,ip)ui2 · · ·uip

∣∣∣∣∣∣
= λj |v⊤j u|p−1,

where the first step follows from the definition of vector norm, the second step follows from the
decomposition of A∗ by its definition, the third step follows from the definition of A∗, the fourth
step follows from reordering the summations, the fifth step follows from taking summations over ℓ,
and the sixth step follows from simple algebra.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Fact B.8 (Formal version of Fact 4.6). If the following conditions hold

• Let p ≥ 3.

• x, y, u, v ∈ Rn are four arbitrary unit vectors.

• Let j ∈ {0, 1, · · · , p− 2}.

Then, we can get

∥[x⊗ v⊗(p−1)](I, u, · · · , u)− [y ⊗ v⊗(p−1)](I, u, · · · , u)∥2 = |⟨u, v⟩|p−1 · ∥x− y∥2 (12)

and

∥[v⊗(1+j) ⊗ x⊗ v⊗(p−2−j)](I, u, · · · , u)− [v⊗(1+j) ⊗ y ⊗ v⊗(p−2−j)](I, u, · · · , u)∥2
≤ |⟨u, v⟩|p−2 · ∥x− y∥2. (13)

Proof. To show Eq. (12), let’s analyze the i-th entry of the vector

[x⊗ v⊗(p−1)](I, u, · · · , u) ∈ Rn,

which can be written as

xi

n∑
i2=1

· · ·
n∑

ip=1

vi2 · · · vipui2 · · ·uip = xi

n∑
i2=1

vi2ui2 · · ·
n∑

ip=1

vipuip

= xi⟨v, u⟩p−1, (14)

where the first step follows from the property of summation and the second step follows from the
definition of the inner product.

In this part, for simplicity, we define

LHS := ∥[x⊗ v⊗(p−1)](I, u, · · · , u)− [y ⊗ v⊗(p−1)](I, u, · · · , u)∥2.
By Eq. (14), we have

LHS = ∥xi⟨v, u⟩p−1 − yi⟨v, u⟩p−1∥2.
Thus, we get

LHS2 =

n∑
i=1

(xi⟨v, u⟩p−1 − yi⟨v, u⟩p−1)2

=

n∑
i=1

((xi − yi)(⟨v, u⟩p−1))2

=

n∑
i=1

(xi − yi)
2(⟨v, u⟩p−1)2

= ⟨v, u⟩2(p−1)
n∑

i=1

(xi − yi)
2

= ∥x− y∥22 · |⟨v, u⟩|2(p−1),

where the first step follows from the definition of ∥·∥2, the second step follows from simple algebra,
the third step follows from simple algebra, the fourth step follows from the fact that i is not contained
in ⟨v, u⟩2(p−1), and the last step follows from the definition of ∥ · ∥2.

To show Eq. (13), first, we want to show

|⟨x− y, u⟩| ≤ ∥x− y∥2∥u∥2
≤ ∥x− y∥2, (15)

where the first step follows from the Cauchy–Schwarz inequality and the second step follows from
the fact that u is a unit vector so that ∥u∥2 = 1.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Then, we analyze the i-th entry of the vector

[v⊗(1+j) ⊗ x⊗ v⊗(p−2−j)](I, u, · · · , u) ∈ Rn,

which is equivalent to

vi⟨x, u⟩ · ⟨v, u⟩p−2. (16)

In this part, we define

LHS := ∥[v⊗(1+j) ⊗ x⊗ v⊗(p−2−j)](I, u, · · · , u)− [v⊗(1+j) ⊗ y ⊗ v⊗(p−2−j)](I, u, · · · , u)∥2.
Therefore, based on Eq. (16), we get

LHS = ∥vi⟨x, u⟩ · ⟨v, u⟩p−2 − vi⟨y, u⟩ · ⟨v, u⟩p−2∥2
Thus, we have

LHS2 =

n∑
i=1

(vi⟨x, u⟩ · ⟨v, u⟩p−2 − vi⟨y, u⟩ · ⟨v, u⟩p−2)2

=

n∑
i=1

((vi⟨x, u⟩ − vi⟨y, u⟩) · ⟨v, u⟩p−2)2

=

n∑
i=1

((vi⟨x, u⟩ − vi⟨y, u⟩)2 · ⟨v, u⟩2(p−2))

= ⟨v, u⟩2(p−2) ·
n∑

i=1

(vi⟨x, u⟩ − vi⟨y, u⟩)2

= ⟨v, u⟩2(p−2) ·
n∑

i=1

(vi(⟨x, u⟩ − ⟨y, u⟩))2

= ⟨v, u⟩2(p−2) ·
n∑

i=1

(vi⟨x− y, u⟩)2

= ⟨v, u⟩2(p−2) ·
n∑

i=1

((v2i)(⟨x− y, u⟩2))

= ⟨x− y, u⟩2 · ⟨v, u⟩2(p−2)
n∑

i=1

(vi)
2

= ⟨x− y, u⟩2 · ⟨v, u⟩2(p−2)

≤ ∥x− y∥22 · ⟨v, u⟩2(p−2),

where the first step follows from the definition of ∥·∥2, the second step follows from simple algebra,
the third step follows from (ab)2 = a2b2, the fourth step follows from the fact that i is not contained
in ⟨v, u⟩2(p−2), the fifth step follows from simple algebra, the sixth step follows from the linearity
property of the inner product, the seventh step follows from (ab)2 = a2b2, the eighth step follows
from the fact that i is not contained in ⟨x−y, u⟩2, the ninth step follows from the fact that v is a unit
vector, and the last step follows from Eq. (15).

C MORE ANALYSIS

In Section C.1, we give the proof to the first part of Theorem 4.9. In Section C.2, we give the proof
to the second part of Theorem 4.9. In Section C.3, we give the proof to the third part of Theorem 4.9.
In Section C.4, we prove that a few terms are upper-bounded.

C.1 PART 1 OF THEOREM 4.9

In this section, we present the proof of the first part of Theorem 4.9.

For convenient, we first create some definitions for this section

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Definition C.1. We define B1 ∈ R and B2 ∈ R as follows

B1 :=
1

1− |v⊤1 Ẽut |/(λ1|v⊤1 ut|p−1)

We define

B2 :=
∥V ⊤Ẽut

∥2
λ1|v⊤1 ut|p−1

Lemma C.2 (Part 1 of Theorem 4.9). If the following conditions hold

• Let everything be defined as in Theorem 4.9.

• Suppose that all of the assumptions in Theorem 4.9 hold.

Then, Eq. (3) hold.

Proof. Proof of Part 1.

V = (v2, · · · , vk, · · · , vn) ∈ Rn×(n−1) is an orthonormal basis and is the complement of v1.

Also, Ẽut
= Ẽ(I, ut, · · · , ut) ∈ Rn.

tan θ(v1, ut+1)’s upper bound is provided as follows:

tan θ(v1, ut+1) = tan θ

(
v1,

A(I, ut, · · · , ut)

∥A(I, ut, · · · , ut)∥2

)
= tan θ(v1, A(I, ut, · · · , ut))

= tan θ(v1, A
∗(I, ut, · · · , ut) + Ẽ(I, ut, · · · , ut))

= tan θ(v1, A
∗(I, ut, · · · , ut) + Ẽut

)

=
sin θ(v1, A

∗(I, ut, · · · , ut) + Ẽut
)

cos θ(v1, A∗(I, ut, · · · , ut) + Ẽut)

=
∥V ⊤[A∗(I, ut, · · · , ut) + Ẽut

]∥2
|v⊤1 [A∗(I, ut, · · · , ut) + Ẽut

]|

≤ ∥V
⊤A∗(I, ut, · · · , ut)∥2 + ∥V ⊤Ẽut∥2
|v⊤1 A∗(I, ut, · · · , ut)| − |v⊤1 Ẽut

|
, (17)

where the first step follows from the definition of ut+1, the second step follows from the definition
of angle, the third step follows from A = A∗ + Ẽ ∈ Rnp

, the fourth step follows from Ẽut
:=

Ẽ(I, ut, · · · , ut) ∈ Rn, the fifth step follows from the definition of tan θ, the sixth step follows
from sin and cos, and the seventh step follows from the triangle inequality.

Using Fact 4.7, we can get

∥V ⊤A∗(I, ut, · · · , ut)∥22 =

k∑
j=2

λ2
j |v⊤j ut|2(p−1)

≤
(

max
j∈[k]\{1}

|λj |2|v⊤j ut|2(p−2)

)
·

 k∑
j=2

|v⊤j ut|2
 , (18)

where the second step follows from
∑

i aibi ≤ (maxi ai) ·
∑

i bi for all a, b ∈ Rn
≥0.

Putting it all together, we have

tan θ(v1, ut+1) ≤
∥V ⊤A∗(I, ut, · · · , ut)∥2 + ∥V ⊤Ẽut

∥2
|v⊤1 A∗(I, ut, · · · , ut)| − |v⊤1 Ẽut

|

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

≤ tan θ(v1, ut) ·
(∥V ⊤A∗(I, ut, · · · , ut)∥2 + ∥V ⊤Ẽut

∥2)/∥V ⊤ut∥2
|v⊤1 A∗(I, ut, · · · , ut)|/|v⊤1 ut| − |v⊤1 Ẽut |/|v⊤1 ut|

≤ tan θ(v1, ut) ·
max

j∈[k]\{1}
λj |v⊤j ut|p−2 + ∥V ⊤Ẽut

∥2/∥V ⊤ut∥2

|v⊤1 A∗(I, ut, · · · , ut)|/|v⊤1 ut| − |v⊤1 Ẽut |/|v⊤1 ut|

≤ tan θ(v1, ut) ·
max

j∈[k]\{1}
λj |v⊤j ut|p−2 + ∥V ⊤Ẽut

∥2/∥V ⊤ut∥2

λ1|v⊤1 ut|p−2 − |v⊤1 Ẽut
|/|v⊤1 ut|

≤ tan θ(v1, ut) ·
(1/4)λ1|v⊤1 ut|p−2 + ∥V ⊤Ẽut∥2/∥V ⊤ut∥2

λ1|v⊤1 ut|p−2 − |v⊤1 Ẽut
|/|v⊤1 ut|

≤ tan θ(v1, ut) · (1/4) ·
1

1− |v⊤1 Ẽut
|/(λ1|v⊤1 ut|p−1)︸ ︷︷ ︸
B1

+
1

1− |v⊤1 Ẽut |/(λ1|v⊤1 ut|p−1)︸ ︷︷ ︸
B1

· ∥V
⊤Ẽut

∥2
λ1|v⊤1 ut|p−1︸ ︷︷ ︸

B2

= tan θ(v1, ut) · (1/4) ·B1 +B1 ·B2,

where the 1st step comes from Eq. (17), the 2nd step is by tan θ(v1, ut) =
∥V ⊤ut∥2

|v⊤
1 ut|

, the 3rd step is
because of Equation (18), the 4th step follows from Fact B.7, the 5th step follows from Part 2 of The-
orem 4.9, the 6th step follows from simple algebra, and the 7th step follows from the definition of
B1 and B2.

We show

Claim C.3. For any t ∈ [T], we have

|v⊤1 u0| ≤ |v⊤1 ut|.

Proof. Based on the assumption from the induction hypothesis, we consider the existence of a suf-
ficiently small constant c being greater than 0 satisfying

tan θ(v1, ut) ≤ 0.8 tan θ(v1, ut−1) + c. (19)

Therefore, we can get

tan θ(v1, ut) ≤ 0.8 · (0.8 tan θ(v1, ut−1) + c) + c

≤ 0.8t · tan θ(v1, u0) + c

t−1∑
j=0

0.8j

≤ 0.8t · tan θ(v1, u0) + 5c

≤ tan θ(v1, u0),

where the first step follows from applying Eq. (19) recursively twice, the second step follows from
applying Eq. (19) recursively for t + 1 times, the third step follows from

∑∞
j=0 0.8

j ≤ 5, and the
last step follows from tan θ(v1, u0) = Ω(1).

This result shows

θ(v1, ut) ≤ θ(v1, u0),

so

|v⊤1 ut| = cos θ(v1, ut) ≥ cos θ(v1, u0) = |v⊤1 u0|.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Therefore, B1 and B2 has upper bounds.

Claim C.4. B1 is smaller than or equal to 1.1.

Proof. Let’s consider

|Ẽ(vj , ut, · · · , ut)| = |v⊤j Ẽ(I, ut, · · · , ut)|

= |v⊤j Ẽut |.

Since

|Ẽ(vj , ut, · · · , ut)| ≤ 4ϵ/
√
n

≤ 4cλ1/n
(p−1)/2

≤ 4cλ1|v⊤1 u0|p−1,

where the first step follows from the constraint on Ẽ in Theorem 4.9, the second step follows from
ϵ ≤ cλ1/n

(p−2)/2, and the third step follows from |v⊤1 u0| ≥ 1/
√
n.

Correspondingly, if c can be chosen to be small enough, i.e., c is smaller than 1
40 , using

|v⊤1 Ẽut
| ≤ λ1|v⊤1 u0|p−1/10

and

|v⊤1 u0| ≤ |v⊤1 ut|,

then

|v⊤1 Ẽut
| ≤ λ1|v⊤1 u0|p−1/10

≤ λ1|v⊤1 ut|p−1/10. (20)

As a result,

B1 ≤
1

1− 1/11
= 1.1.

Next, we bound B2. Let’s consider two different cases. The first one is

|v⊤1 ut| ≤ 1− 1

c20p
2k2

and the other is

|v⊤1 ut| > 1− 1

c20p
2k2

.

If

|v⊤1 ut| ≤ (1− 1

c20p
2k2

),

we have

B2 =
∥V ⊤Ẽut∥2
λ1|v⊤1 ut|p−1

=

√
1− |v⊤1 ut|2
|v⊤1 ut|

· ∥V ⊤Ẽut
∥2

λ1|v⊤1 ut|p−2
√

1− |v⊤1 ut|2

= tan θ(v1, ut) ·
∥V ⊤Ẽut

∥2
λ1|v⊤1 ut|p−2

√
1− |v⊤1 ut|2

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

≤ tan θ(v1, ut) ·
∥Ẽut

∥2
λ1|v⊤1 ut|p−2

√
1− |v⊤1 ut|2

≤ tan θ(v1, ut) ·
c0pk∥Ẽut∥2
λ1|v⊤1 ut|p−2

,

where the first step comes from the definition of B2 (see Definition C.1), the second step follows

from splitting the term, the third step follows from tan θ(v1, ut) =

√
1−|v⊤

1 ut|2
|v⊤

1 ut|
, the fourth step

follows that ∥V ⊤Ẽut
∥2 ≤ ∥Ẽut

∥2, and the last step follows from 1/
√
1− |v⊤1 ut|2 ≤ c0pk.

We need to bound

c0pk∥Ẽut
∥2

λ1|v⊤1 ut|p−2
.

Here, we can get

λ1|v⊤1 ut|p−2 ≥ λ1/(n
(p−2)/2).

On the other hand, utilizing Part 1 of Lemma C.11 and the given assumptions about E and E, we
obtain ∥Ẽut∥2

c0pk∥Ẽut
∥2 ≤ c0pk · 4pϵ.

Consequently, whenever we have small enough ϵ satisfying

ϵ ≤ λ1/(n
(p−2)/2 · 40 · c0p2k),

then

B2 ≤ 0.1 tan θ(v1, ut).

If

|v⊤1 ut| > 1− 1

c20k
2p2

,

then we have

B2 =
∥V ⊤Ẽut∥2
λ1|v⊤1 ut|p−1

≤ ∥V ⊤Ẽut
∥2

λ1(1− 1
c20p

2k2)p−1

≤ 3∥V ⊤Ẽut∥2/λ1

≤ 3∥Ẽut
∥2/λ1

where the first step follows from the definition of B2, the second step follows from |v⊤1 ut| > 1 −
1

c20p
2k2 , the third step follows from

1/(1− 1

c20p
2k2

)p−1 ≤ 3,∀p ≥ 3, k ≥ 1, c0 ≥ 1,

and the last step follows from ∥V ⊤Ẽut
∥2 ≤ ∥Ẽut

∥2.

By Part 1 of Corollary C.12, we have ∥Êut
∥2 ≤ 4ϵ/c0. By what we have assumed on E and E,

∥Eut
∥2 ≤ ϵ/c0 and ∥Eut

∥2 ≤ ϵ/c0, which completes the proof of B2 ≤ 18ϵ/(c0λ1).

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

C.2 PART 2 OF THEOREM 4.9

In this section, we present the proof of the second part of Theorem 4.9.

Lemma C.5 (Part 2 of Theorem 4.9). If the following conditions hold

• Let everything be defined as in Theorem 4.9.

• Suppose that all of the assumptions in Theorem 4.9 hold.

Then, Eq. (4) hold.

Proof. Proof of Part 2.

Let j be an arbitrary element in [k]\{1}.

Then, there exists an lower bound for |v⊤
1 ut+1|

|v⊤
j ut+1|

,

|v⊤1 ut+1|
|v⊤j ut+1|

=
|v⊤1 [A∗(I, ut, · · · , ut) + Ẽut

]|
|v⊤j [A∗(I, ut, · · · , ut) + Ẽut]|

≥ |v
⊤
1 A

∗(I, ut, · · · , ut)| − |v⊤1 Ẽut
|

|v⊤j A∗(I, ut, · · · , ut)|+ |v⊤j Ẽut |

≥ λ1|v⊤1 ut|p−1 − |v⊤1 Ẽut
|

λj |v⊤j ut|p−1 + |v⊤j Ẽut |

≥
λ1|v⊤1 ut|p−1 − 1

10λ1|v⊤1 ut|p−1

λj |v⊤j ut|p−1 + 1
10λ1|v⊤1 ut|p−1

≥
λ1|v⊤1 ut|p−1 − 1

10λ1|v⊤1 ut|p−1

1
4λ1|v⊤1 ut|p−2|v⊤j ut|+ 1

10λ1|v⊤1 ut|p−1

=
9
10 |v

⊤
1 ut|

1
4 |v

⊤
j ut|+ 1

10 |v
⊤
1 ut|

(21)

where the first step follows from the definition of ut+1 (see the statement in Theorem 4.9), the
second step follows from the triangle inequality, the third step follows from Fact B.7, the fourth step
follows from Eq. (20), the fifth step follows from Part 1 λj |v⊤j ut|p−2 ≤ 1

4λ1|v⊤1 ut|p−2, and the last
step follows from simple algebra.

If

|v⊤j ut| < |v⊤1 ut|, (22)

then

λ1|v⊤1 ut+1|p−2

λj |v⊤j ut+1|p−2
=

λ1

λj

(
|v⊤1 ut+1|
|v⊤j ut+1|

)p−2

≥ λ1

λj

(
9
10 |v

⊤
1 ut|

1
4 |v

⊤
j ut|+ 1

10 |v
⊤
1 ut|

)p−2

≥ λ1

λj

(
9
10 |v

⊤
j ut|

1
4 |v

⊤
j ut|+ 1

10 |v
⊤
j ut|

)p−2

=
λ1

λj

(9
10

1
4 + 1

10

)p−2

≥ λ1

λj
2p−2, (23)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

where the first step follows from ax

bx =
(
a
b

)x
, the second step follows from Eq. (21), the third step

follows from Eq. (22), the fourth step follows from simple algebra, the last step follows from simple
algebra.

The final step is a consequence of the fact that p is greater than or equal to 4. For the case of p
being equal to 3, we utilize a better analysis which is similar to the proof of (Wang & Anandkumar,
2016)’s Lemma C.2. Therefore, this approach is applicable for any p ≥ 3.

If

|v⊤j ut| ≥ |v⊤1 ut|, (24)

then

λ1|v⊤1 ut+1|p−2

λj |v⊤j ut+1|p−2
≥ λ1

λj

(
9
10 |v

⊤
1 ut|

1
4 |v

⊤
j ut|+ 1

10 |v
⊤
1 ut|

)p−2

=
λ1

λj

(
9
10 |v

⊤
1 ut||v⊤j ut|(

1
4 |v

⊤
j ut|+ 1

10 |v
⊤
1 ut|

)
|v⊤1 ut|

|v⊤1 ut|
|v⊤j ut|

)p−2

=
λ1

λj

(
9
10 |v

⊤
1 ut||v⊤j ut|(

1
4 |v

⊤
j ut|+ 1

10 |v
⊤
1 ut|

)
|v⊤1 ut|

)p−2(
|v⊤1 ut|
|v⊤j ut|

)p−2

=
λ1

λj

(
9
10 |v

⊤
j ut|

1
4 |v

⊤
j ut|+ 1

10 |v
⊤
1 ut|

)p−2(
|v⊤1 ut|
|v⊤j ut|

)p−2

≥ λ1

λj

(
9
10 |v

⊤
j ut|

1
4 |v

⊤
j ut|+ 1

10 |v
⊤
j ut|

)p−2(
|v⊤1 ut|
|v⊤j ut|

)p−2

≥ λ1

λj

|v⊤1 ut|p−2

|v⊤j ut|p−2
·

(
9
10 |v

⊤
j ut|

1
4 |v

⊤
j ut|+ 1

10 |v
⊤
j ut|

)p−2

≥ λ1

λj

|v⊤1 ut|p−2

|v⊤j ut|p−2
· 2p−2

≥ 4 · 2p−2,

where the first step follows from the second step of Eq. (23), the second step follows from simple
algebra, the third step follows from (ab)2 = a2b2, the fourth step follows from simple algebra, the
fifth step follows from Eq. (24), the sixth step follows from

(
a
b

)2
= a2

b2 , the seventh step follows
from the relationship between the third step and the last step of Eq. (23), and the last step follows
from Part 1.

C.3 PART 3 OF THEOREM 4.9

In this section, we present the proof of the third part of Theorem 4.9.
Definition C.6. We define B3 ∈ R and B4 ∈ R as follows

B3 :=
1

1− |v⊤1 Ẽut
|/(λ1|v⊤1 ut|p−1)

and

B4 :=
|v⊤j Ẽut

|
λ1|v⊤1 ut|p−1

Lemma C.7 (Part 3 of Theorem 4.9). If the following conditions hold:

• Let everything be defined as in Theorem 4.9.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

• Suppose that all of the assumptions in Theorem 4.9 hold.

Then, Eq. (5) hold.

Proof. Proof of Part 3.

Just like Eq. (21) and Part 2,
|v⊤

j ut+1|
|v⊤

1 ut+1|
can also be upper bounded,

|v⊤j ut+1|
|v⊤1 ut+1|

≤
λj |v⊤j ut|p−1 + |v⊤j Ẽut |
λ1|v⊤1 ut|p−1 − |v⊤1 Ẽut

|

=
|v⊤j ut|
|v⊤1 ut|

·
λj |v⊤j ut|p−2 + |v⊤j Ẽut

|/|v⊤j ut|
λ1|v⊤1 ut|p−2 − |v⊤1 Ẽut

|/|v⊤1 ut|

=
|v⊤j ut|
|v⊤1 ut|

·
λj |v⊤j ut|p−2

λ1|v⊤1 ut|p−2 − |v⊤1 Ẽut |/|v⊤1 ut|
+

|v⊤j Ẽut |
λ1|v⊤1 ut|p−1 − |v⊤1 Ẽut |

=
|v⊤j ut|
|v⊤1 ut|

·
λj |v⊤j ut|p−2

λ1|v⊤1 ut|p−2 − |v⊤1 Ẽut
|/|v⊤1 ut|

+
1

1− |v⊤1 Ẽut
|/(λ1|v⊤1 ut|p−1)

·
|v⊤j Ẽut

|
λ1|v⊤1 ut|p−1

≤
|v⊤j ut|
|v⊤1 ut|

· 1
4
· λ1|v⊤1 ut|p−2

λ1|v⊤1 ut|p−2 − |v⊤1 Ẽut |/|v⊤1 ut|
+

1

1− |v⊤1 Ẽut |/(λ1|v⊤1 ut|p−1)
·
|v⊤j Ẽut |

λ1|v⊤1 ut|p−1

=
|v⊤j ut|
|v⊤1 ut|

· 1
4
· 1

1− |v⊤1 Ẽut
|/(λ1|v⊤1 ut|p−1)︸ ︷︷ ︸
B3

+
1

1− |v⊤1 Ẽut
|/(λ1|v⊤1 ut|p−1)︸ ︷︷ ︸
B3

·
|v⊤j Ẽut

|
λ1|v⊤1 ut|p−1︸ ︷︷ ︸

B4

,

where the first step follows from the relationship between the first step and the third step of
Eq. (21), the second step follows from simple algebra, the third step follows from simple algebra,
the fourth step follows from simple algebra, and the fifth step follows from Part 1 λj |v⊤j ut|p−2 ≤
1
4λ1|v⊤1 ut|p−2, and the last step follows from simple algebra.

Similar to Part 1, we can show B3 ≤ 1.1 if

|v⊤1 ut| ≥ 1− 1

c20p
2k2

.

Then, we consider the bound for B4.

There are two different situations, namely,

• Case 1. |v⊤1 ut| ≤ 1− 1
c20p

2k2

• Case 2. |v⊤1 ut| > 1− 1
c20p

2k2 .

If

|v⊤1 ut| ≤ (1− 1

c20p
2k2

),

we have

B4 =
|v⊤j Ẽut

|
λ1|v⊤1 ut|p−1

=

√
1− |v⊤1 ut|2
|v⊤1 ut|

·
|v⊤j Ẽut |

λ1|v⊤1 ut|p−2
√

1− |v⊤1 ut|2

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

= tan θ(v1, ut) ·
|v⊤j Ẽut

|
λ1|v⊤1 ut|p−2

√
1− |v⊤1 ut|2

≤ tan θ(v1, ut) ·
c0pk|v⊤j Ẽut

|
λ1|v⊤1 ut|p−2

,

where the 1st step is from the definition of B4, the 2nd step comes from simple algebra, the 3rd step
is due to the definition of tan θ(v1, ut), and the last step follows from 1/

√
1− |v⊤1 ut|2 ≤ c0pk.

We want to find the bound for

c0pk∥Ẽut
∥2

λ1|v⊤1 ut|p−2
.

We can get that

λ1|v⊤1 ut|p−2 ≥ λ1/(n
(p−2)/2).

Additionally, based on Part 2 of Lemma C.11 and what we assumed about E and E,

c0pk|v⊤j Ẽut | ≤ c0pk · 4ϵ/
√
n.

Therefore, whenever there is a small enough ϵ satisfying

ϵ ≤ λ1

√
n/(n(p−2)/2 · 40 · c0pk),

then

B4 ≤ 0.1 tan θ(v1, ut).

If

|v⊤1 ut| > 1− 1

c20k
2p2

,

then we have

B4 =
|v⊤j Ẽut

|
λ1|v⊤1 ut|p−1

≤
|v⊤j Ẽut

|
λ1(1− 1

c20p
2k2)p−1

≤ 3|v⊤j Ẽut |/λ1,

where the first step follows from the definition of B4, the second step follows from |v⊤1 ut| > 1 −
1

c20p
2k2 , the third step follows from ∀p ≥ 3, k ≥ 1, c0 ≥ 1, we have

1/(1− 1

c20p
2k2

)p−1 ≤ 3.

By Part 1 of Corollary C.12, we have

|v⊤j Êut
| ≤ 4ϵ/(c0

√
n).

Based on what we have assumed about E and E,

|v⊤j Eut | ≤ ϵ/(c0
√
n)

and

|v⊤j Eut
| ≤ ϵ/(c0

√
n).

Therefore, the proof of B4 ≤ 18ϵ/(c0λ1
√
n) is completed.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

C.4 ϵ-CLOSE

In this section, we upper bound some terms.

Definition C.8. For any ϵ > 0, we say {λ̂i, v̂i}ki=1 is ϵ-close to {λi, vi}ki=1 if for all i ∈ [k],

1. |λ̂i − λi| ≤ ϵ.

2. ∥v̂i − vi∥2 ≤ tan θ(v̂i, vi) ≤ min(
√
2, ϵ/(λi)).

3. |v̂⊤i vj | ≤ ϵ/(
√
nλi), ∀j ∈ [k]\[i].

Definition C.9 (Ai and Bi). We define

Ai := λia
p−1
i vi − λ̂i(aici + ∥v̂⊥i ∥2bi)p−1ci

and

Bi := λ̂i(aici + ∥v̂⊥i ∥2bi)p−1∥v̂⊥i ∥2.

Assumption C.10. We assume that ϵ is a real number that satisfies

ϵ < 10−5 λk

p2k
.

Lemma C.11. If the following conditions hold

• For all i ∈ [k], Êi = λiv
⊗p
i − λ̂iv̂

⊗p
i ∈ Rnp

.

• Let ϵ > 0.

• {λ̂i, v̂i}ki=1 is ϵ-close to {λi, vi}ki=1.

• Let r ∈ [k].

• Let u ∈ Rn be an unit vector.

Then, we have

1.
∥∥∥∥ r∑
i=1

Êi(I, u, · · · , u)
∥∥∥∥
2

≤ 2pϵκ1/2 + 2ϕϵ.

2. For all [k]\[i],
∣∣∣∣ r∑
i=1

Êj(vj , u, · · · , u)
∣∣∣∣ ≤ (2κϵ+ ϕϵ)/

√
n.

where

κ = 2

r∑
i=1

|u⊤vi|2 (25)

and

ϕ = 2k(ϵ/λk)
p−1. (26)

Proof. Proof of Part 1.

Let i be an arbitrary element in [r].

We have that Êi is the error and it satisfies

Êi(I, u, · · · , u) = λi(u
⊤vi)

p−1vi − λ̂i(u
⊤v̂i)

p−1v̂i, (27)

which is in the span of {vi, v̂i}.
Also, the span of {vi, v̂i} is identical to the span of {vi, v̂⊥i }, where

v̂⊥i = v̂i − (v⊤i v̂i)vi.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

is the projection of v̂i onto the subspace orthogonal to vi.

Note

∥v̂i − v∥22 = 2(1− v⊤i v̂i). (28)

For convenient, we define

ci = ⟨vi, v̂i⟩.

We can rewrite ci as follows

ci = v⊤i v̂i

= 1− ∥v̂i − vi∥22/2
≥ 0, (29)

the first step follows from definition of ci, the second step follows from Eq. (28), and the last step is
because of the assumption that ∥v̂i − vi∥2 ≤

√
2, and it implies that 0 ≤ ci ≤ 1.

We can also get

∥v̂⊥i ∥22 = 1− c2i

≤ ∥v̂i − vi∥22, (30)

which follows from Eq. (29) and the Pythagorean theorem.

For all p being greater than or equal to 3, the following bound can be obtained:

|1− cpi | = |1− (1− ∥v̂i − vi∥22/2)p|

≤ p

2
∥v̂i − vi∥22,

where the 1st step is due to Eq. (29) and the 2nd step is supported by Fact B.1.

We present the definition of ai ∈ Rn and bi ∈ Rn:

ai = u⊤vi

and

bi = u⊤(v̂⊥i /∥v̂⊥i ∥2).

Êi(I, u, · · · , u) can be expressed by the coordinate system of v̂⊥i and vi:

Êi(I, u, · · · , u)

= λi(u
⊤vi)

p−1vi − λ̂i(u
⊤v̂i)

p−1v̂i

= λia
p−1
i vi − λ̂i(aici + ∥v̂⊥i bi∥2)p−1(civi + v̂⊥i)

= (λia
p−1
i vi − λ̂i(aici + ∥v̂⊥i ∥2bi)p−1ci)︸ ︷︷ ︸

Ai

·vi − λ̂i(aici + ∥v̂⊥i ∥2bi)p−1∥v̂⊥i ∥2︸ ︷︷ ︸
Bi

·v̂⊥i /∥v̂⊥i ∥2

=Ai · vi −Bi · (v̂⊥i /∥v̂⊥i ∥2), (31)

where the first step follows from Eq. (27), the second step follows from the definition of ai and bi,
the third step follows from simple algebra, and the last step follows from the definition of Ai and Bi

(see Definition C.9).

We can express the overall error by:∥∥∥∥∥
r∑

i=1

Êi(I, u, · · · , u)

∥∥∥∥∥
2

2

=

∥∥∥∥∥
r∑

i=1

Aivi −
t∑

i=1

Bi(v̂
⊥
i /∥v̂⊥i ∥2)

∥∥∥∥∥
2

2

≤ 2

∥∥∥∥∥
r∑

i=1

Aivi

∥∥∥∥∥
2

2

+ 2

∥∥∥∥∥
r∑

i=1

Bi(v̂
⊥
i /∥v̂⊥i ∥2)

∥∥∥∥∥
2

2

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

≤ 2

r∑
i=1

A2
i + 2

(
r∑

i=1

|Bi|

)2

, (32)

where the first step follows from Eq. (31), the second step follows from triangle inequality, and the
third step comes from the definition of the ℓ2 norm.

We have

∥v̂⊥i ∥22 ≤ ∥v̂i − vi∥22
≤ ϵ/λi, (33)

where the first step follows from Eq. (30) and the second step follows from Definition C.8.

By using

|λi − λ̂i| ≤ ϵ, (34)

we first try to bound Ai for |bi| being smaller than 1 and ci ∈ [0, 1],

|Ai| = |λia
p−1
i − λ̂i(aici + ∥v̂⊥i ∥2bi)p−1ci|

≤ |λia
p−1
i − λ̂ic

p
i a

p−1
i |+

p−1∑
j=1

λ̂ici

(
(p− 1)

j

)
|aici|(p−1)−j∥v̂⊥i ∥

j
2

= |λia
p−1
i − λ̂ic

p
i a

p−1
i + λ̂ia

p−1
i − λ̂ia

p−1
i |+

p−1∑
j=1

λ̂ici

(
(p− 1)

j

)
|aici|(p−1)−j∥v̂⊥i ∥

j
2

≤ |λia
p−1
i − λ̂ia

p−1
i |+ |λ̂ia

p−1
i − λ̂ic

p
i a

p−1
i |+

p−1∑
j=1

λ̂ici

(
(p− 1)

j

)
|aici|(p−1)−j∥v̂⊥i ∥

j
2

≤ |λia
p−1
i − λ̂ia

p−1
i |+ |(1− cpi)λ̂ia

p−1
i |+

p−1∑
j=1

λ̂ici

(
(p− 1)

j

)
|aici|(p−1)−j∥v̂⊥i ∥

j
2

≤ |λia
p−1
i − λ̂ia

p−1
i |+ |(1− cpi)λ̂ia

p−1
i |+

p−1∑
j=1

λ̂ici

(
(p− 1)

j

)
|aici|(p−1)−j(ϵ/λi)

j

≤ ϵ|ai|p−1 +
p

2
(ϵ/λi)

2λ̂i|ai|p−1 +

p−1∑
j=1

λ̂i

(
(p− 1)

j

)
|ai|(p−1)−j(ϵ/λi)

j , (35)

where the first step follows from the definition of Ai (see Definition C.9), the second step follows
from binomial theorem and |bi| < 1, the third step follows from adding and subtracting the same
thing, the fourth step follows from triangle inequality, the fifth step follows from simple algebra, the
sixth step follows from Eq. (33), and the last step follows from Eq. (34).

Note that the second term of Eq. (35) can be bounded as
p

2
(ϵ/λi)

2λ̂i|ai|p−1 ≤ p

2
(ϵ/λi)

2(|λ̂i − λi|+ |λi|)|ai|p−1

=
p

2
(ϵ/λi)

2|λ̂i − λi||ai|p−1 +
p

2
(ϵ/λi)

2|λi||ai|p−1

≤ p

2
(ϵ/λi)

2ϵ|ai|p−1 +
p

2
(ϵ/λi)

2|λi||ai|p−1

≤ p

2
(ϵ/λi)

2ϵ|ai|p−1 +
p

2
(ϵ/λi) · ϵ|ai|p−1

≤ 1

100k
ϵ|ai|p−1, (36)

where the first step follows from triangle inequality, the second step follows from simple algebra,
the third step follows from Eq. (34), the fourth step follows from Eq. (33), and the last step follows
from Assumption C.10.

We can separate the third term of Eq. (35) into two components

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

1. j ∈ {1, · · · , (p− 1)/2} and

2. j ∈ {(p− 1)/2, · · · , (p− 1)}.

Consider the first component:

(p−1)/2∑
j=1

λ̂i

(
(p− 1)

j

)
|ai|(p−1)−j(ϵ/λi)

j

= λ̂i(p− 1)|ai|p−2ϵ/λi +

(p−1)/2∑
j=2

λ̂i(p− 1)j |ai|(p−1)/2(ϵ/λi)
j

≤ 2(p− 1)ϵ|ai|p−2 +

(p−1)/2∑
j=2

λ̂i(p− 1)j |ai|(p−1)/2(ϵ/λi)
j

= 2(p− 1)ϵ|ai|p−2 + λ̂i|ai|(p−1)/2

(p−1)/2∑
j=2

(p− 1)j(ϵ/λi)
j

≤ 2(p− 1)ϵ|ai|p−2 + λ̂i|ai|(p−1)/2
∞∑
j=0

(
1

2

)j

≤ 2(p− 1)ϵ|ai|p−2 + λ̂iϵ
ϵ(p− 1)2

λ2
i

· 2 · |ai|(p−1)/2

≤ 2(p− 1)ϵ|ai|p−2 +
1

100k
ϵ|ai|(p−1)/2,

where the first step is by expanding the summation term, the second step is because of the fact that
λ̂i ≤ 2λi, the third step is supported by

∑
i cai = c

∑
i ai, the fourth step follows from the fact that

each term of
∑(p−1)/2

j=2 (p − 1)j(ϵ/λi)
j is bounded by the corresponding term of

∑∞
j=0

(
1
2

)j
, the

fifth step follows from Fact B.2, the sixth step follows from Assumption C.10 and λ̂i ≤ 2λi.

Similarly, we can bound the second component,

(p−1)/2∑
j=(p−1)

λ̂i

(
(p− 1)

j

)
|ai|(p−1)−j(ϵ/λi)

j

= λ̂i · 1 · 1 · (ϵ/λi)
p−1 +

(p−1)/2∑
j=p

λ̂i

(
(p− 1)

j

)
|ai|(p−1)−j(ϵ/λi)

j

= 2ϵp−1/λp−2
i +

(p−1)/2∑
j=p

λ̂i

(
(p− 1)

j

)
|ai|(p−1)−j(ϵ/λi)

j

≤ 2ϵp−1/λp−2
i +

(
(p− 1)

(p− 1)/2

) (p−1)/2∑
j=p

λ̂i|ai|(p−1)−j(ϵ/λi)
j

≤ 2ϵp−1/λp−2
i +

(
(p− 1)

(p− 1)/2

)
λ̂i|ai|(p−1)/2

(p−1)/2∑
j=p

(ϵ/λi)
j

≤ 1

100k
ϵ+

(
(p− 1)

(p− 1)/2

)
λ̂i|ai|(p−1)/2

(p−1)/2∑
j=p

(ϵ/λi)
j

≤ 1

100k
ϵ+

(
(p− 1)

(p− 1)/2

)
λ̂i|ai|(p−1)/2(ϵ/λi)

(p−1)/2

(p−1)/2∑
j=p

(ϵ/λi)
j−(p−1)/2

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

≤ 1

100k
ϵ+ 2

(
(p− 1)

(p− 1)/2

)
λ̂i|ai|(p−1)/2(ϵ/λi)

(p−1)/2

≤ 1

100k
ϵ+ 4

(
(p− 1)

(p− 1)/2

)
λi|ai|(p−1)/2(ϵ/λi)

(p−1)/2

≤ 1

100k
ϵ+

1

100k
ϵ|ai|

where the first step comes from expanding the summation term, the second step can be gotten from
λ̂i ≤ 2λi, the third step can be supported by maxj{

(
(p−1)

j

)
} =

(
(p−1)

(p−1)/2

)
, the fourth step follows

from
∑

i cai = c
∑

i ai, the fifth step follows from Assumption C.10, the sixth step follows from
simple algebra, the seventh step follows from the Fact B.3, the eighth step follows from λ̂i ≤ 2λi,
and the last step follows from Assumption C.10.

Thus, putting it all together, we get

|Ai| ≤ ϵ|ai|+
1

10k
ϵ|ai|+ (p− 1)ϵ|ai|+

1

100k
ϵ

which implies that

|Ai|2 ≤ 2

(
(ϵ|ai|)2 + (

1

10k
ϵ|ai|)2 + ((p− 1)ϵ|ai|)2 + (

1

100k
ϵ)2
)

(37)

Next, we need to find the bound of Bi,

|Bi| = |λ̂i∥v̂⊥i ∥2(aici + ∥v̂⊥i ∥2bi)p−1|

≤ λ̂i∥v̂⊥i ∥2
p−1∑
j=0

(
(p− 1)

j

)
|aici|p−1−j∥v̂⊥i ∥

j
2

≤ λ̂i(ϵ/λi)

p−1∑
j=0

(
(p− 1)

j

)
|ai|p−1−j(ϵ/λi)

j

= λ̂i(ϵ/λi)|ai|p−1 + λ̂i(ϵ/λi)

p−1∑
j=1

(
(p− 1)

j

)
|ai|p−1−j(ϵ/λi)

j , (38)

where the first step follows from the definition of Bi (see Definition C.9), the second step follows
from binomial theorem and |bi| < 1, the third step follows from ∥v̂⊥i ∥2 ≤ ϵ/λi, and the last step
follows from extracting the first term from the summation.

Note that the first term of Eq. (38) is

λ̂i(ϵ/λi)|ai|p−1,

which can be bounded as

λ̂i(ϵ/λi)|ai|p−1 ≤ (ϵ+ λi)(ϵ/λi)|ai|p−1

= ϵ|ai|p−1 + (ϵ2/λi)|ai|p−1

≤ ϵ|ai|p−1 +
1

100k
ϵ|ai|p−1

where the first step follows from simple algebra, and the second step follows from Eq. (36).

The second term of Eq. (38) is

λ̂i(ϵ/λi)

p−1∑
j=1

(
(p− 1)

j

)
|ai|p−1−j(ϵ/λi)

j ,

We can separate this into two components

1. j ∈ {1, · · · , (p− 1)/2} and

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

2. j ∈ {(p− 1)/2, · · · , (p− 1)}.

The first component is:

(ϵ/λi)

(p−1)/2∑
j=1

λ̂i

(
(p− 1)

j

)
|ai|(p−1)−j(ϵ/λi)

j

= (ϵ/λi)λ̂i(p− 1)|ai|p−2ϵ/λi + (ϵ/λi)

(p−1)/2∑
j=2

λ̂i(p− 1)j |ai|(p−1)/2(ϵ/λi)
j

≤ 1

100k
ϵ|ai|p−2 +

1

100k
ϵ|ai|(p−1)/2

where the first step comes from expanding the summation term and the second step is by Assump-
tion C.10.

The second component is:

(ϵ/λi)

(p−1)/2∑
j=(p−1)

λ̂i

(
(p− 1)

j

)
|ai|(p−1)−j(ϵ/λi)

j

= (ϵ/λi)λ̂i · 1 · 1 · (ϵ/λi)
p−1 + (ϵ/λi)

(p−1)/2∑
j=p

λ̂i

(
(p− 1)

j

)
|ai|(p−1)−j(ϵ/λi)

j

≤ ϕ

k
ϵ+

1

100k
ϵ|ai|

where the first step follows from expanding the summation term, and the second step follows from
ϕ = 2k(ϵ/λk)

p−1 and Assumption C.10.

Putting it all together, we have

|Bi| ≤ ϵ|ai|2 +
1

100k2
ϵ|ai|+

ϕ

k
ϵ

Taking the summation over all the r terms on both sides, we obtain
r∑

i=1

|Bi| ≤ ϵκ+
1

100k2
ϵ

t∑
i=1

|ai|+ ϕϵ.

Using

(x+ y + z)2 ≤ 3(x2 + y2 + z2),

we have

(

r∑
i=1

|Bi|)2 ≤ 3

(
(ϵκ)2 + (

1

100k
ϵ

t∑
i=1

|ai|)2 + (ϕϵ)2

)

≤ 3

(
(ϵκ)2 + (

1

100k
ϵ)2κk + (ϕϵ)2

)
, (39)

where the last step follows from (
∑t

i=1 |ai|)2 ≤ κk.

Recall that

κ =

t∑
i=1

|ai|2 ≤ 1.

In general, we can get∥∥∥∥∥
r∑

i=1

Êi(I, u, · · · , u)

∥∥∥∥∥
2

2

= 2

r∑
i=1

|Ai|2 + 2(

r∑
i=1

|Bi|)2

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

≤ 4

(
ϵ2 · κ+ (

1

10k
ϵ)2κ+ (p− 1)2ϵ2κ+ (

1

100
√
k
ϵ)2
)

+ 2(

r∑
i=1

|Bi|)2

≤ 4

(
ϵ2 · κ+ (

1

10k
ϵ)2κ+ (p− 1)2ϵ2κ+ (

1

100
√
k
ϵ)2
)

+ 4

(
(ϵκ)2 + (

1

100k
ϵ)2κk + (ϕϵ)2

)
≤ 4p2ϵ2κ+ 4ϕ2ϵ2

where the first step follows from Eq. (32), the second step follows from Eq. (37), the third step
follows from Eq. (39), and the last step follows from simple algebra.

The desired bound is given by this equation.

Proof of Part 2.

Let j be an arbitrary element of [k]\[i].
Now, we can get ∣∣∣∣∣

r∑
i=1

Êi(vj , u, · · · , u)

∣∣∣∣∣ ≤
r∑

i=1

|Êi(vj , u, · · · , u)|

=

r∑
i=1

λ̂i|v̂⊤i u|p−1|v̂⊤i vj |

≤
t∑

i=1

λ̂i|v̂⊤i u|p−1 ϵ√
nλi

,

for the 1st step, we use the triangle inequality, for the 2nd step, we utilize the fact that ⟨vj , vi⟩ =
0,∀i ̸= j, and for the last step, we employ the third part of the definition of ϵ-close.

Now, we analyze the bound for
∑r

i=1
λ̂i

λi
|v̂⊤i u|p−1:

r∑
i=1

λ̂i

λi
|v̂⊤i u|p−1 ≤

r∑
i=1

λ̂i

λi
(|v⊤i u|+ |(vi − v̂i)

⊤u|)p−1

≤
r∑

i=1

λ̂i

λi
(|v⊤i u|+ ∥vi − v̂i∥2)p−1

≤
r∑

i=1

(1 + ϵ/λi) · (|v⊤i u|+ ϵ/λi)
p−1

≤ 2

r∑
i=1

(|v⊤i u|+ ϵ/λi)
p−1

≤ 2

r∑
i=1

2p−2 · |v⊤i u|p−1 + 2p−2 · (ϵ/λi)
p−1

≤ 2

r∑
i=1

2|v⊤i u|2 + (2ϵ/λi)
p−1

≤ 2

r∑
i=1

2|v⊤i u|2 + 2k(2ϵ/λk)
p−1

= 2κ+ ϕ.

where the first step follows from the triangle inequality, the second step follows from Cauchy-
Scharwz inequality and ∥u∥2 ≤ 1, the third step follows from Eq. (33), the fourth step follows from

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

ϵ/λi ≤ 2, the fifth step follows from Fact B.1, the sixth step follows from |v⊤i u| < 1/4 and p ≥ 3,
the seventh step follows from λk ≤ λi, and the last step follows from the definition of ϕ and κ (see
Eq. (26) and Eq. (25)).

Then, we complete the proof with the desired bound (2κ+ ϕ)ϵ/
√
n.

Corollary C.12. If the following conditions hold:

• For all i ∈ [k], let Êi = λiv
⊗p
i − λ̂iv̂

⊗p
i ∈ Rnp

.

• Let c0 ≥ 1.

• Let r ∈ [k].

• Let ϵ ≤ λk/(2c0k).

• Suppose that {λ̂i, v̂i}ki=1 is ϵ-close to {λi, vi}ki=1.

• u ∈ Rn is an unit vector.

• Suppose |u⊤vr+1| ≥ 1− 1
c20p

2k
.

• Let κ =
r∑

i=1

|u⊤vi|2.

• Let ϕ = 2k(ϵ/λk)
p−1.

Then,

1.
∥∥∥∥ r∑
i=1

Êi(I, u, · · · , u)
∥∥∥∥
2

≤ 2pϵκ1/2 + 2ϕϵ ≤ 4ϵ/c0.

2. ∀j ∈ [k]\[i],
∣∣∣∣ r∑
i=1

Êj(vj , u, · · · , u)
∣∣∣∣ ≤ (2κϵ+ ϕϵ)/

√
n ≤ 4ϵ/(c0

√
n).

Proof. Based on Fact B.4, we can get that for any arbitrary i in [r],

κ =

r∑
i=1

|u⊤vi|2

≤ k · 1/(c20p2k)
= 1/c20p

2,

where the first step follows from definition of κ, the second step follows from r ≤ k and
maxi |u⊤vi|2 ≤ 1/(c20p

2k), and the last step follows from simple algebra.

This implies

2pϵ
√
κ ≤ 2/c0.

We can also bound ϕ,

ϕ = 2k(ϵ/λk)
p−1

≤ 2k(1/2c0k)
p−1

≤ 2k(1/(2c0k))
2

≤ 1/c0.

where the 1st step can be gotten from the definition of ϕ, the 2nd step is because of ϵ ≤ λk/(2c0k)
(from Corollary statement), the 3rd step is due to p ≥ 2, and the 4th step can be seen from 2k ≥ 1.

Therefore, we complete our proof.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

D COMBINE

In this section, we present Theorem D.1 and Theorem D.2 and prove them.
Theorem D.1 (Arbitrary order robust tensor power method, formal version of Lemma 3.1). If the
following conditions hold

• Let p be greater than or equal to 3.

• Let k be greater than or equal to 1.

• Let λi > 0.

• With n ≥ k, {v1, . . . , vk} ⊆ Rn is an orthonormal basis vectors.

• Let A = A∗ + E ∈ Rnp

be an arbitrary tensor satisfying A∗ =
∑k

i=1 λiv
⊗p
i .

• Suppose that λ1 is the greatest values in {λi}ki=1.

• Suppose that λk is the smallest values in {λi}ki=1.

• The outputs obtained from the robust tensor power method are {λ̂i, v̂i}ki=1.

• E satisfies that ∥E∥ ≤ ϵ/(c0
√
n).

• T = Ω(log(λ1n/ϵ)).

• L = Ω(k log(k)).

• c0 ≥ 100 and c > 0

• For all ϵ satisfying ϵ ∈ (0, cλk/(c0p
2kn(p−2)/2).

Then, with probability at least 9/10, there exists a permutation π : [k]→ [k], such that ∀i ∈ [k],

|λi − λ̂π(i)| ≤ ϵ, ∥vi − v̂π(i)∥2 ≤ ϵ/λi. (40)

Proof. Let E ∈ Rnp

be the original noise.

Let

Êi = λiv
⊗p
i − λ̂iv̂

⊗p
i ∈ Rnp

be the deflation noise.

E ∈ Rnp

represents the sketch noise.

Ẽ represents the “true” noise, including all the original, deflation and sketch noises.

As a result, for the t+ 1 step, we analyze A∗ + Ẽ, which is a tensor satisfying

Ẽ = E +

t∑
i=1

Êi + E.

There is no need for us to consider E, the sketch noise. However, to prove a stronger statement, we
do not regard E to be equal to 0, but only assume that it is bounded, namely

∥E∥ ≤ ϵ/(c0
√
n). (41)

We use mathematical induction to proof this.

Base case.

Let i = 1.

For the 1st step, we have that λ̂1 ∈ R and v̂1 ∈ Rn.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

As Part 2 of Definition C.8, we show

∥v̂1 − v1∥2
is bounded.

Then, as Part 1 of Definition C.8, we show

|λ̂1 − λ1|

is bounded.

At the end, as Part 3 of Definition C.8, we show

|v̂⊤i vj |

is bounded.

Bounding |v̂1 − v1|.
We have

tan θ(u0, v1) = sin θ(u0, v1)/ cos θ(u0, v1)

=
√

1− ⟨u0, v1⟩2/⟨u0, v1⟩

=

√
1− ⟨u0, v1⟩2
⟨u0, v1⟩2

=

√
1

⟨u0, v1⟩2
− 1

≤

√
1

⟨u0, v1⟩2

=
1

⟨u0, v1⟩
≤
√
n, (42)

where the first step follows from Definition 4.3, the second step follows from Definition 4.3, the
third step follows from simple algebra, the fourth step follows from simple algebra, the fifth step
follows from simple algebra, the sixth step follows from simple algebra, and the last step follows
from Lemma 4.8.

t∗ represents the condition for

|u⊤
t∗v1| = 1− 1

c20p
2k2

. (43)

We know

∥ut∗ − v1∥22 = ∥ut∗∥22 + ∥v1∥22 − 2⟨ut∗ , v1⟩
= 1 + 1− 2⟨ut∗ , v1⟩
= 2− 2|u⊤

t∗v1|

= 2− 2(1− 1

c20p
2k2

)

= 2/(c20p
2k2),

where the first step follows from simple algebra, the second step follows from the fact that ut∗ and
v1 are unit vectors, the third step is because the inner product is positive, the fourth step follows
from Eq. (43), and the last step follows from simple algebra.

We can upper bound

∥ut∗ − v1∥2 ≤ tan θ(ut∗ , v1)

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

≤ 0.8 tan θ(ut∗−1, v1)

≤ · · ·
≤ 0.8t

∗
tan θ(u0, v1)

≤ 0.8t
∗√

n,

where the first step is due to Fact B.6, the second can be seen from Part 1 of Theorem 4.9, the second
last step can be gotten from Part 1 of Theorem 4.9, and the last step follows from Eq. (42).

After that, we let

t∗ = Ω(log(nkpc0)) = Ω(log(c0n)).

For ∥uT − v1∥2, we can show

∥uT − v1∥2 ≤ 0.8 tan θ(uT , v1) + 18ϵ/(c0λ1)

≤ · · ·
≤ 0.8T−t∗ tan(ut∗ , v1) + 5 · 18ϵ/(c0λ1),

where the first step follows from Part 1 of Theorem 4.9, and the last step follows from recursively
applying Part 1 of Theorem 4.9.

To guarantee

∥uT − v1∥2 ≤ ϵ/λ1,

we let

T − t∗ = Ω(nλ1/ϵ)

and c0 ≥ 100.

Therefore, we achieve the intended property as outlined in Part 2 of Definition C.8.

Bounding |λ̂1 − λ1|.

It remains to bound |λ̂1 − λ1|.

|λ̂1 − λ1| = |[A∗ + Ẽ](v̂1, · · · , v̂1)− λ1|
≤ |Ẽ(v̂1, · · · , v̂1)|+ |A∗(v̂1, · · · , v̂1)− λ1|

= |Ẽ(v̂1, · · · , v̂1)|+

∣∣∣∣∣
[

k∑
i=1

λiv
⊗p
i

]
(v̂1, · · · , v̂1)− λ1

∣∣∣∣∣
≤ |Ẽ(v̂1, · · · , v̂1)|︸ ︷︷ ︸

B5

+ |λ1|v⊤1 v̂1|p − λ1|︸ ︷︷ ︸
B6

+

k∑
j=2

λj |v⊤j v̂1|p︸ ︷︷ ︸
B7

, (44)

where the first step follows from the definition of λ̂1, the second step follows from the triangle
inequality, the third step follows from

A∗ =

k∑
i=1

λiv
⊗p
i ,

and the last step follows from the triangle inequality.

For the term B5, we have

B5 = |Ẽ(v̂1, · · · , v̂1)|
≤ |E(v̂1, · · · , v̂1)|+ |E(v̂1, · · · , v̂1)|
≤ ∥E∥+ |E(v̂1, · · · , v̂1)|

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

≤ ϵ/(c0
√
n) + ϵ/(c0

√
n)

≤ ϵ/12, (45)

where the first step follows from the definition of B5 (see Eq. (44)), the second step follows from
triangle inequality, the third step follows from the definition of tensor spectral norm, the fourth step
follows from Eq. (41), and the last step follows from c0 ≥ 100 and n is greater than or equal to 1.

We still need to find the upper bound of B6 and B7.

B6 = |λ1 · |v⊤1 v̂1|p − λ1|

= λ1 − λ1(1−
1

2
∥v1 − v̂1∥22)p

≤ λ1p
1

2
∥v1 − v̂1∥22

≤ pϵ2/(2λ1)

≤ ϵ/12, (46)

where the first step follows from the definition of B6 (see Eq. (44)), the second step follows from
v⊤1 v̂1 = 1− 1

2∥v1 − v̂1∥22, the third step comes from ∥v1 − v̂1∥22 ≪ 1, the fourth step is because of
∥v1 − v̂1∥2 ≤ ϵ/λ1, and the last step follows from pϵ/(2λ1) ≤ 1/12.

For B7, we have

B7 =

k∑
j=2

λj |v⊤j v̂1|p

≤
k∑

j=2

λj(ϵ/(
√
nλj))

p

= ϵ

k∑
j=2

(ϵ/(λj

√
n))p−1

≤ ϵ/4, (47)

where the first step follows from the definition of B7 (see Eq. (44)), the second step follows from
Part 3 of Definition C.8, the third step follows from simple algebra, and the last step is due to
(ϵ/λk)

p−1 ≤ 1/(4k).

Let

ϵ <
1

4
k1/(p−1)λk.

Finally, combining everything together, we can get

|λ̂1 − λ1| ≤ B5 +B6 +B7

≤ ϵ/12 + ϵ/12 + ϵ/4

≤ ϵ,

where the first step follows from Eq. (44), the second step follows from combining Eq. (45), Eq. (46),
and Eq. (47), and the last step follows from simple algebra.

Bounding |v̂⊤1 vj |.
Let j be an arbitrary element in {2, · · · , k}.
Let t∗ be the least integer satisfying

|v⊤1 ut∗ | ≥ 1− 1

c20p
2k2

,

which implies

|v⊤j ut∗ | ≤
1

c0pk
.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

By Part 3 of Theorem 4.9, we have

|v⊤j ut∗ |/|v⊤1 ut∗ | ≤ 0.8|v⊤j ut∗−1|/|v⊤1 ut∗−1|
≤ · · ·
≤ 0.8t

∗
· |v⊤j u0|/|v⊤1 u0|

≤ 0.8t
∗
· |v⊤j u0|/(1/

√
n)

≤ 0.8t
∗
· 1/(1/

√
n),

where the third step follows from recursively applying Part 3 of Theorem 4.9, the fourth step follows
from Lemma 4.8 and the last step follows from the fact that |v⊤j u0| is at most 1.

Let

t∗ = Ω(log c0n).

When T > t∗, we have

|v⊤j uT |/|v⊤1 uT | ≤ 0.8T−t∗ |v⊤j ut∗ |/|v⊤1 ut∗ |+ 5 · 18ϵ/(c0λ1

√
n).

Let

T = Ω(log(nλ1/ϵ))

and c0 ≥ 100 to ensure

|v⊤j uT | ≤ ϵ/(λ1

√
n).

Inductive case.

Let i = r + 1.

Suppose the first r cases holds.

To show the r + 1 case also hold, we first consider the “true” noise, which is

Ẽ = E +

r∑
i=1

Ei + E ∈ Rnp

.

We explain how to bound

∥v̂r+1 − vr+1∥2,

(for Definition C.8, Part 2).

Then, we show how to bound

|λ̂r+1 − λr+1|

as Part 1 of Definition C.8.

In the end, we show how to bound

|v⊤r+1vj |

as Part 3 of Definition C.8.

Bounding ∥v̂r+1 − vr+1∥2.

Except for letting

T = Ω(log(nλt+1/ϵ)),

other parts of the proof are the same as the ones in the base case.

Bounding |λ̂r+1 − λr+1|.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

Let A∗ and Ẽ be

A∗ =

k∑
i=t+1

λiv
⊗p
i

and

Ẽ = E + E +

t∑
i=1

Êi.

Therefore, we have

|λ̂t+1 − λt+1|

satisfying

|λ̂r+1 − λr+1| = |[A∗ + Ẽ](v̂r+1, · · · , v̂r+1)− λr+1|
≤ |Ẽ(v̂r+1, · · · , v̂r+1)|+ |A∗(v̂r+1, · · · , v̂r+1)− λr+1|

= |Ẽ(v̂r+1, · · · , v̂r+1)|+

∣∣∣∣∣
[

k∑
i=r+1

λiv
⊗p
i

]
(v̂r+1, · · · , v̂r+1)− λr+1

∣∣∣∣∣
≤ |Ẽ(v̂r+1, · · · , v̂r+1)|︸ ︷︷ ︸

B8

+ |λr+1|v⊤r+1v̂r+1|p − λr+1|︸ ︷︷ ︸
B9

+

k∑
j=r+2

λj |v⊤j v̂r+1|p︸ ︷︷ ︸
B10

.

where the first step follows from the definition of λ̂r+1, the second step follows from triangle in-
equality, the third step follows from A∗ =

∑k
i=r+1 λiv

⊗p
i , and the last step follows from the triangle

inequality.

We need to analyze B8,

B8 = |Ẽ(v̂r+1, · · · , v̂r+1)|

= |E(v̂r+1, · · · , v̂r+1)|+ |E(v̂r+1, · · · , v̂r+1)|+ |
r∑

i=1

Êi(v̂r+1, · · · , v̂r+1)|

≤ ϵ/(c0
√
n) + ϵ/(c0

√
n) + 4ϵ/(c0

√
n)

≤ ϵ/12,

where the first step follows from the definition of B8, the second step follows from the triangle
inequality, the third step follows from Eq. (41), the last step follows from c0 ≥ 100, n ≥ 1.

B9 and B10 can be bounded in a similar way as the base case.

Bounding |v̂⊤r+1vj |.
Let j be an arbitrary element in {r + 2, · · · , k}. Then, the proof is the same as the base case.

Theorem D.2 (Fast Tensor Power Method via Sketching, formal version of Theorem 1.1). If the
following conditions hold

• Let A = A∗ + E ∈ Rnp

be an arbitrary tensor satisfying A∗ =
∑k

i=1 λiv
⊗p
i .

• Suppose that λ1 is the greatest values in {λi}ki=1.

• Suppose that λk is the smallest values in {λi}ki=1.

• The outputs obtained from the robust tensor power method are {λ̂i, v̂i}ki=1.

• E satisfies that ∥E∥ ≤ ϵ/(c0
√
n).

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

• T = Ω(log(λ1n/ϵ)).

• L = Ω(k log(k)).

• c0 ≥ 100 and c > 0

• For all ϵ satisfying ϵ ∈ (0, cλk/(c0p
2kn(p−2)/2).

Then, our algorithm uses Õ(np) spaces, runs in O(TL) iteration, and in each iteration it takes
Õ(np−1) time and then with probability at least 1− δ, there exists a permutation

π : [k]→ [k],

such that ∀i ∈ [k],

|λi − λ̂π(i)| ≤ ϵ, ∥vi − v̂π(i)∥2 ≤ ϵ/λi.

Proof. It follows by combining Theorem D.1 and Lemma 4.2.

LLM USAGE DISCLOSURE

LLMs were used only to polish language, such as grammar and wording. These models did not
contribute to idea creation or writing, and the authors take full responsibility for this paper’s content.

44

	Introduction
	Our Result

	Related work
	Technique Overview
	Robust Tensor Power Method Analysis for General Order p3
	An Overview of Our Main Algorithm
	Useful facts
	Convergence guarantee and deflation

	Conclusion
	Additional Related Works
	Canonical/Polydic decomposition and Tucker decomposition
	Sketching Techniques

	Preliminary
	Notations
	Basic Facts
	More Tensor Facts

	More Analysis
	Part 1 of Theorem 4.9
	Part 2 of Theorem 4.9
	Part 3 of Theorem 4.9
	-close

	Combine

