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ABSTRACT

Tensor decomposition is a fundamental method used in various areas to deal with
high-dimensional data. Among the widely recognized techniques for tensor de-
composition is the Canonical/Polyadic (CP) decomposition, which breaks down
a tensor into a combination of rank-1 components. In this paper, we specifically
focus on CP decomposition and present a novel faster robust tensor power method
(TPM) for decomposing arbitrary order tensors. Our approach overcomes the lim-
itations of existing methods that are often restricted to lower-order (≤ 3) tensors
or require strong assumptions about the underlying data structure. By applying the
sketching method, we achieve a running time of Õ(np−1) per iteration of TPM on
a tensor of order p and dimension n. Furthermore, we provide a detailed analysis
applicable to any p-th order tensor, addressing a gap in previous works. Our pro-
posed method offers robustness and efficiency, expanding the applicability of CP
decomposition to a broader class of high-dimensional data problems.

1 INTRODUCTION

In the era of data-driven science and technology, high-dimensional data has become ubiquitous
across domains such as computational neuroscience (Bentzur et al., 2022), image processing (Bou-
veyron et al., 2007), and machine learning (Muja & Lowe, 2014). Higher-order (> 3) tensors
have become a powerful paradigm for handling this high-dimensional data. Unlike matrices, these
higher-order tensors provide a natural framework for representing multi-modal relationships in data,
but they can be computationally expensive and challenging to analyze. To address this issue, tensor
decomposition is introduced to reduce the dimensionality while preserving the essential structure of
the data.

Tensor decomposition has become a fundamental tool in many fields (Kolda & Bader, 2009), in-
cluding supervised and unsupervised learning (Anandkumar et al., 2014; Janzamin et al., 2015),
reinforcement learning (Azizzadenesheli et al., 2016), statistics, and computer vision (Shashua &
Hazan, 2005). Moreover, with the rapid outbreak of COVID-19 and the emergence of new vari-
ants driven by a large infectious population, recent research has applied tensor models to analyze
pandemic data (Dulal et al., 2022) and used tensor decomposition to study gene expression related
to COVID-19 (Taguchi & Turki, 2021). Since gene expression is typically highly complex, ten-
sor decomposition can efficiently help researchers uncover connections between various variables,
thereby enhancing the understanding of complex systems. This, in turn, may foster advancements
in biological and medical research, ultimately benefiting public health.

A well-known decomposition method is the Candecomp/Parafac (CP) decomposition (Harshman,
1970; Carroll & Chang, 1970). In CP decomposition, the input tensor is decomposed into a set of
rank-1 components. Although decomposing arbitrary tensors is NP-hard (Hillar & Lim, 2013), it
becomes feasible for tensors with linearly independent components by applying a whitening proce-
dure to transform them into orthogonally decomposable tensors. The tensor power method (TPM) is
a straightforward and effective technique for decomposing an orthogonal tensor and serves as an ex-
tension of the matrix power method. To be more specific, TPM requires calculating the inner product
of two vectors: one derived from a rank-1 matrix and the other from a segment of a tensor. This
type of inner product can be estimated much more efficiently because sketch vectors have signifi-
cantly lower dimensions, making it more convenient to compute their inner product. Additionally,
sketching can be replaced with sampling to approximate inner products (Song et al., 2016).
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When there is no noise in the data, the TPM, through random initialization followed by deflation,
can effectively recover the components correctly. However, due to the NP-hard nature of arbitrary
tensor decomposition, the perturbation analysis of this method is more complex compared to the
matrix case. When large amounts of arbitrary noise are added to an orthogonal tensor, its decom-
position becomes intractable. Previous research has demonstrated guaranteed component recovery
under bounded noise conditions (Anandkumar et al., 2014), with further improvements outlined in
(Anandkumar et al., 2017). More recent work (Wang & Anandkumar, 2016) has further refined the
noise requirements.

Since real-world datasets are inherently noisy and high-order, existing methods for CP decompo-
sition face significant challenges when applied to such data. Traditional approaches often rely on
restrictive assumptions about tensor structure or are limited to low-order tensors (≤ 3), thereby con-
straining their applicability to many real-world scenarios. Moreover, many of these methods suffer
from high computational complexity, making them impractical for large-scale or high-dimensional
datasets. These limitations underscore the pressing need for a robust and scalable solution capable
of handling tensors of arbitrary orders with efficiency and accuracy.

1.1 OUR RESULT

Motivated by these challenges, we propose an algorithm that not only relies on milder assumptions
but also is suitable for a broader range of tensor choices. Specifically, we generalize the previous
robust TPM algorithm for third-order tensors (Wang & Anandkumar, 2016) to tensors of arbitrary
orders. Our proposed algorithm, given any arbitrary-order tensor A ∈ Rnp

, outputs the estimated
eigenvector/eigenvalue pair along with the deflated tensor. We present our main result as follows:

Theorem 1.1 (Informal version of Theorem D.2). There is a robust TPM (Algorithm 1) that takes
any p-th order and dimension n tensor as input, uses Õ(np) space and Õ(np) time in initialization,
and in each iteration, it takes Õ(np−1) time.

Notation. For any matrix A ∈ Rn×k, we use ∥A∥ := maxx∈Rk\{0}k ∥Ax∥2/∥x∥2 to denote the
spectral norm of A. We use ∥x∥2 := (

∑n
i=1 x

2
i )

1/2 to denote the ℓ2 norm of vector x. For two
vectors u ∈ Rn and v ∈ Rn, we use ⟨u, v⟩ to denote inner product, i.e., ⟨u, v⟩ =

∑n
i=1 uivi.

Let p ≥ 1 denote some integer. We say E ∈ Rn×···×n (where there are p of n), if E is a
p-th order tensor and every dimension is n. For simplicity, we write E ∈ Rnp

. If p = 1,
then E is a vector. If p = 2, then E ∈ Rn×n is a matrix. If p = 3, then E ∈ Rn×n×n

is a 3rd-order tensor. For any two unit vectors x, y, we define cos θ(x, y) = ⟨x, y⟩. For a
3rd-order tensor E ∈ Rn×n×n, we have E(a, b, c) =

∑n
i=1

∑n
j=1

∑n
k=1 Ei,j,kaibjck ∈ Rn,

∥E∥ := maxx:∥x∥2=1 |E(x, x, x)|, E(I, b, c)i =
∑n

j=1

∑n
k=1 Ei,j,kbjck ∈ Rn,∀i ∈ [n], and

E(I, I, c)i,j =
∑n

k=1 Ei,j,kck ∈ Rn×n,∀i, j ∈ [n]× [n].

The notation of tensor for p = 3 can be generalized to any p-th order tensor for p > 3. For
a, b, c ∈ Rn and E = a ⊗ b ⊗ c ∈ Rn×n×n, we have Ei,j,k = aibjck,∀i ∈ [n], j ∈ [n], k ∈ [n].
For E = a ⊗ a ⊗ a = a⊗3 ∈ Rn×n×n, we have Ei,j,k = aiajak,∀i ∈ [n], j ∈ [n], k ∈ [n]. For
E =

∑m
i=1 u

⊗3
i , we have E(a, b, c) =

∑m
i=1(u

⊗3
i (a, b, c)) =

∑m
i=1⟨ui, a⟩⟨ui, b⟩⟨ui, c⟩ ∈ R.

For µ ∈ Rd and Σ ∈ Rn×n, we use N (µ,Σ) to denote a Gaussian distribution with mean µ and
covariance Σ. For x ∼ N (µ,Σ), we denote x as a Gaussian vector.

For all, a ∈ Rn, we use maxi∈[n] ai to denote a value b over sets {a1, a2, · · · , an}. For any vector
a ∈ Rn, we use argmaxi∈[n] ai to denote the index j such that aj = maxi∈[n] ai.

Roadmap. In Section 2, we present the related work. In Section 3, we introduce the techniques
used in this paper. In Section 4, we present our main result. In Section 5, we summarize this paper
and provide some future research directions in this field.
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2 RELATED WORK

Tensor decomposition. (Hitchcock, 1927) is the first work that proposed the CP decomposi-
tion.Several works have focused on the efficient and fast decomposition of tensors (Tsourakakis,
2010; Phan et al., 2013; Choi & Vishwanathan, 2014; Huang et al., 2013; Kang et al., 2012; Wang
et al., 2014; Bhojanapalli & Sanghavi, 2015). Later work (Wang et al., 2015) provided a method
based on the random linear sketching technique to enable fast decomposition for orthogonal tensors.
(Robeva, 2016) studies the properties of symmetric orthogonally decomposable tensors. (Robeva &
Seigal, 2017) incorporate the spectral theory into these orthogonally decomposable tensors. Addi-
tionally, (Song et al., 2016) provided another approach to importance sampling, with a faster running
time. The canonical polyadic decomposition is a very famous and popular technique of decompo-
sition, which is the CANDECOMP / PARAFAC (CP) decomposition (Song et al., 2016). In CP
decomposition, a tensor can be broken down into a combination of rank-1 tensors that add up to it
(Harshman, 1970), and this combination is the only possible one up to some minor variations, such
as scaling and reordering of the tensors. In other words, there is only one way to decompose the
tensor, and any other arrangement of the rank-1 tensors that add up to the same tensor is not pos-
sible. This property of tensor decomposition is more restrictive than that of matrices, and it holds
for a broader range of tensors. Therefore, tensor decomposition is considered to be more rigid than
matrix decomposition. In (Wang et al., 2015), multiple applications, including computational neuro-
science, data mining, and statistical learning, of tensor decomposition are mentioned. (Kileel et al.,
2021; Wang et al., 2025; Kileel & Pereira, 2025) present a power method for CP decomposition for
both symmetric and asymmetric tensors of arbitrary order. The works also guarantees SS-HOPM
converges with thorough analysis. In contrast, our work focuses on using sketching techniques to
obtain a faster TPM for arbitrary order p in the orthogonal tensor setting

Unique tensor decomposition. Previous research in algebraic statistics has already linked tensor
decompositions to the development of probabilistic models. By breaking down specific moment
tensors using low-rank decompositions, researchers could decide the extent of the identifiability
of latent variable models (Allman et al., 2009a;b; Rhodes & Sullivant, 2012). The utilization of
Kruskal’s theorem in (Kruskal, 1977) was crucial in establishing the accuracy of identifying the
model parameters. Nevertheless, this method assumes that people can use an infinite number of
samples and cannot provide any information on what is the minimum sample size required to learn
the model parameters in these given error bounds. Relying solely on Kruskal’s theorem does not
suffice to determine the bounds of sample complexity, since by using it, we can only get that the low-
rank decompositions of actual moment tensors are unique, but we cannot get enough information
about the decomposition of empirical moment tensors. Considering the necessary sample size to
learn the parameters of the model, we need to get a uniqueness guarantee which is more robust.
We need this guarantee satisfying the requirement that whenever T ′, which is an empirical moment
tensor, closely approximates T , which is a moment tensor, a low-rank decomposition of T ′ would
also closely resemble a low-rank decomposition of T .

Due to space constraints, we move related works of Canonical/Polydic decomposition, Tucker de-
composition and Power Method to Appendix A.1, Sketching techniques to Appendix A.2 and Ap-
pendix A.3.

3 TECHNIQUE OVERVIEW

In this section, we present a summary of the methods used in our analysis. Since our formal proofs
presented in the appendix are very long, we use this section to present the sketch of proofs for the
important lemmas and theorems. Specifically, in paragraphs “recoverability of eigenvectors im-
plied by bounded noise” and “analysis of the recoverability”, we present the techniques for proving
Theorem 4.9. In paragraph “bounding the recovery error”, we present the techniques for proving
Lemma 3.1 (or equivalently Theorem D.1). Finally, in the paragraph “sketching technique”, we
present how we use the sketching method to generate the (1 ± ϵ) approximation, which supports
Lemma 4.2.

Loosened assumption. Our main breakthrough is that we generalize the robust tensor power
method to support any order tensors. It efficiently resolves the drawback of the earlier method

3
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in (Wang & Anandkumar, 2016) that is limited in the tensor of order below 3 and requires very strict
assumptions. Moreover, we have created a strong and adaptable algorithm that can handle a variety
of tensor data: natural language corpora, images, videos, etc. Then, we explain how we generalize
this in detail.

Recoverability of eigenvectors implied by bounded noise. Starting from the construction of
the input tensor A = A∗ + Ẽ ∈ Rnp

where it consists of a part of decomposable tensor A∗ and a
noise term Ẽ, we show that, for ut ∈ Rn being a unit vector and c0 ≥ 1 and ϵ > 0, if the norm is
bounded, in the form of ∥Ẽ(I, ut, · · · , ut)∥2 ≤ 6ϵ/c0 and |Ẽ(v, ut, · · · , ut)| ≤ 6ϵ/(c0

√
n), where

ut is the approximate eigenvector at iteration t of our algorithm (see Algorithm 1), vj is one of
the orthonormal eigenvectors of the original, unperturbed tensor A∗. Then the compositions of A∗

is able to be recovered from A (see details in Appendix D). In this paper, we focus on symmetric
tensors. The results can be directly extended to asymmetric tensors because these tensors can first be
symmetrized using simple matrix operations (Anandkumar et al., 2012). Formally, the eigenvectors
have the following properties:

Part 1. The difference of the tangent from an eigenvector to the two unit vectors is bounded by a
term 18ϵ/(c0λ1) of the corresponding eigenvalue (see definition of tan θ in Def. 4.3):

tan θ(v1, ut+1) ≤ 0.8 tan θ(v1, ut) + 18ϵ/(c0λ1).

Part 2. Tail components are bounded by the top component, in the power of p− 2:

max
j∈[k]\{1}

λj |v⊤j ut|p−2 ≤ (1/4)λ1|v⊤1 ut|p−2.

Part 3. With all j being an arbitrary element in {2, · · · , k},

|v⊤j ut+1|/|v⊤1 ut+1| ≤ 0.8|v⊤j ut|/|v⊤1 ut|+ 18ϵ/(c0λ1

√
n).

As these are generalized statements from previous results (Wang & Anandkumar, 2016; Anandku-
mar et al., 2014) from bounded order (p ≤ 3) to general order p, the proof requires a much different
analysis. We described the details of our approach in the following paragraph.

Analysis of the recoverability. To show part 1 (see the details in Appendix C), we have to
find the upper bound of tan θ(v1, ut+1). We first turn the tangent into terms of sine and cosine,
which can be represented by the norm of the tensors. Then by simply using Cauchy-Schwarz, we

can find the upper bound of the term by tan θ(v1, ut+1) ≤
∥V ⊤A∗(I,ut,··· ,ut)∥2+∥V ⊤Ẽut∥2

|v⊤
1 A∗(I,ut,··· ,ut)|−|v⊤

1 Ẽut |
, where

V = (v2, · · · , vk, · · · , vn) ∈ Rn×(n−1) is an orthonormal basis and is the complement of v1. A
tensor is said to be orthogonally decomposable if in the above decomposition ⟨vi, vj⟩ = 0 for all
i ̸= j. Using a property for orthogonal tensor that, for A∗ =

∑k
j=1 λjv

⊗p
j ∈ Rnp

, it holds that
for any j ∈ [k], |v⊤j A∗(I, u, · · · , u)| = λj |v⊤j u|p−1, we are able to upper bound tan θ(v1, ut+1)

with tan θ(v1, ut) in the form of tan θ(v1, ut+1) ≤ tan θ(v1, ut) · 1
4 · B1 + B1 · B2, where B1

and B2 are two simplified terms defined as B1 := 1

1−|v⊤
1 Ẽut |/(λ1|v⊤

1 ut|p−1)
and B2 :=

∥V ⊤Ẽut∥2

λ1|v⊤
1 ut|p−1 .

Using the constraint on Ẽ in Theorem 4.9 and Corollary C.12, we further show that B1 ≤ 1.1 and
B2 ≤ 18ϵ/(c0λ1). Combining all these, we complete the proof of the first property.

Regarding the second part, using the property for orthogonal tensor, we lower bound the term
|v⊤

1 ut+1|
v⊤
j ut+1

≥
9
10 |v

⊤
1 ut|

1
4 |v

⊤
j ut|+ 1

10 |v
⊤
1 ut|

. We then divide the proof into two conditions. First, if |v⊤j ut| <
|v⊤1 ut|, then the proportion of the top component over other rest components can be easily lower

bounded by λ1|v⊤
1 ut+1|p−2

λj |v⊤
j ut+1|p−2 ≥ λ1

λj
· 2p−2. For the opposite condition that |v⊤j ut| ≥ |v⊤1 ut|, we give a

more comprehensive analysis than previous work (see (Wang & Anandkumar, 2016)’s Lemma C.2).
We show that for all p being greater than or equal to 3, it holds that λ1|v⊤

1 ut+1|p−2

λj |v⊤
j ut+1|p−2 ≥ 4 · 2p−2.

The final property is also proved in a similar way. For simplicity, we first define two terms

B3 := 1

1−|v⊤
1 Ẽut |/(λ1|v⊤

1 ut|p−1)
and B4 :=

|v⊤
j Ẽut |

λ1|v⊤
1 ut|p−1 . Similarly, we find the upper bound

4
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|v⊤
j ut+1|

|v⊤
1 ut+1|

≤ |v⊤
j ut|

|v⊤
1 ut|
· 14B3+B3·B4. B3 can be easily bounded by a similar proof if |v⊤1 ut| ≥ 1− 1

c20p
2k2 .

For B4, we divide it into two case: |v⊤1 ut| ≤ 1 − 1
c20p

2k2 and |v⊤1 ut| > 1 − 1
c20p

2k2 . By a different
discussion, we can show that B4 ≤ 18ϵ/(c0λ1

√
n).

Bounding the recovery error We now step to the final technical lemma which shows the bound
of the approximation error of the output of our algorithm:

Lemma 3.1 (Informal version of Theorem D.1). Let p ≥ 3, k ≥ 1, and A = A∗ + E ∈ Rnp

be
an arbitrary tensor satisfying A∗ =

∑k
i=1 λiv

⊗p
i . Suppose that λ1 is the greatest values in {λi}ki=1

and λk is the smallest values in {λi}ki=1. The outputs obtained from the robust tensor power method
are {λ̂i, v̂i}ki=1. Let E satisfy that ∥E∥ ≤ ϵ/(c0

√
n). Then, there exists a permutation π : [k]→ [k],

such that ∀i ∈ [k], |λi − λ̂π(i)| ≤ ϵ and ∥vi − v̂π(i)∥2 ≤ ϵ/λi.

This Lemma is the key component of our main Theorem (Theorem 1.1). We use mathematical
induction to prove this Lemma (Section D). To show the base case, we need to bound three different
terms, namely |v̂1 − v1|, |λ̂1 − λ1|, and |v̂⊤1 vj |.
To bound |v̂1 − v1|, we need to utilize the properties of angle and apply the definitions and Lemmas
we develop in Section 4. First, we can show tan θ(u0, v1) ≤

√
n. By using the fact that |u⊤

t∗v1| =
1 − 1

c20p
2k2 together with some respective properties of u⊤

t∗ and v1, we can get ∥ut∗ − v1∥22 =

2/(c20p
2k2). Finally, we can bound |v̂1 − v1| using this information and recursively applying Part 1

of Theorem 4.9.

For the second term |λ̂1 − λ1|, we simplify it and split that into three parts, namely B5, B6, and B7

which are defined as follows

• B5 := |Ẽ(v̂1, · · · , v̂1)|,

• B6 := |λ1|v⊤1 v̂1|p − λ1|, and

• B7 :=
∑k

j=2 λj |v⊤j v̂1|p..

It suffices to bound these three terms. Using the properties of tensor spectral norm and various
inequalities we develop in Section D, we prove that B5 ≤ ϵ/12, B6 ≤ ϵ/12, and B7 ≤ ϵ/4. By
putting these together, we get that |λ̂1−λ1| ≤ ϵ/12+ϵ/12+ϵ/4 ≤ ϵ. Moreover, we need to give ϵ a
proper value. If ϵ is too big, we might not get our desired result. On the other hand, if ϵ is too small,
the result might be meaningless. Finally, by setting ϵ < 1

4k
1/(p−1)λk, we get the desired result.

What is left out is the third term |v̂⊤1 vj |. We need to recursively apply the third part of Theorem 4.9.
We show that |v⊤j ut∗ |/|v⊤1 ut∗ | ≤ 0.8t

∗ ·1/(1/
√
n). In the end, by choosing proper T and t∗ values,

we can get our desired bound.

In the inductive case, the arrangement of the proof is just like the ones in the base case: we also need
to bound these three terms. Moreover, for i being larger, we also need to consider the noise, namely
Ẽ = E +

∑r
i=1 Ei + E ∈ Rnp

, which adds more complexity to the condition we encounter.

Sketching technique. Inspired by a recent sketching technique (Cherapanamjeri & Nelson, 2020),
we apply a similar sketching operation to develop a distance estimation data structure to apply in
our tensor power method. Our data structure uses the Randomized Hadamard Transform (RHT)
to generate the sketching matrix. The data structure stores the sketches of a set of maintained
tensors {Ai}i∈[n] ⊆ Rnp−1

. Let A∗ =
∑k

i=1 λiv
⊗p
i , then Ai is the order-(p − 1) slice of A∗, i.e.,∑k

j=1 αi,jx
⊗(p−1)
j . Now, when a query tensor of the form q = u⊗(p−1) comes, our data structure

can read {xj}j∈[k], α ∈ Rn×k, u ∈ Rn, and return an (1 ± ϵ) estimated product v ∈ Rn such it
approximates ⟨Ai −

∑k
j=1 αi,jx

⊗(p−1)
j , u⊗(p−1)⟩. This procedure runs fast in time Õ(ϵ−2np−1 +

n2k). Applying this data structure when computing the error, we are able to achieve our final fast
TPM algorithm.

5
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4 ROBUST TENSOR POWER METHOD ANALYSIS FOR GENERAL ORDER
p ≥ 3

The goal of this section is to give a sketch of the proof of our main result (see Theorem 1.1).
Comparing with Section 3, which present the techniques for proving the important components of
our main result, namely Lemma 3.1 and Theorem 4.9, in this section, we move on to the high level
picture where how these important components may support Theorem 1.1 and Algorithm 1. In
Section 4.1, we give an overview of our main algorithm and present the meaning of the important
data structures being used in this algorithm, where this main algorithm is paired with our main
theorem, Theorem 1.1. In Section 4.2, we analyze the properties of the p-th order tensor, where p
is an arbitrary positive integer greater than or equal to 3. These properties are generalized from the
third and the fourth order tensors. In Section 4.3, we generalize the properties of the existing robust
tensor power method from the third order to any arbitrary order greater than or equal to three.

In short, our main theorem can be proved by combining the efficient implementation of the key
operations needed in the tensor power method (Lemma 4.2) and the theoretical guarantees for the
robust tensor power method (Lemma 3.1).

4.1 AN OVERVIEW OF OUR MAIN ALGORITHM

Algorithm 1 Our main algorithm

1: procedure FASTTENSOR(A)
2: ds.INIT(A)
3: for ℓ = 1→ L do
4: for t = 1→ T do
5: u(ℓ) ← ds.QUERY(u(ℓ)) ▷ Lemma 4.2
6: u(ℓ) ← u(ℓ)/∥u(ℓ)∥2
7: end for
8: λ(ℓ) ← ds.QUERYVALUE(u(ℓ)) ▷ Lemma 4.2
9: end for

10: ℓ∗ ← argmaxℓ∈[L] λ
(ℓ)

11: u∗ ← u(ℓ∗)

12: for t = 1→ T do
13: u∗ ← ds.QUERY(u∗)
14: u∗ ← u∗/∥u∗∥2
15: end for
16: λ∗ ← ds.QUERYVALUE(u∗)
17: return λ∗, u∗

18: end procedure

In our main algorithm (Algorithm 1), we use ds.INIT(A) to initialize the data structure. INIT can
take n tensors, A1, A2, A3, . . . , An ∈ Rnp−1

. We use ds.QUERY(u(ℓ)), which takes u(ℓ) ∈ Rn as
an input, to output a vector vℓ ∈ Rn, where each entry of v(ℓ) is an approximation of ⟨Ai, u

⊗(p−1)⟩,
for all i ∈ [n]. Finally, ds.QUERYVALUE(u(ℓ)) is similar to ds.QUERY(u(ℓ)): it takes u(ℓ) ∈ Rn as
an input and output a real number λ(ℓ) ∈ R, which is an approximation of ⟨A, u⊗p⟩.
Below, we present the efficient implementation of the data structure we need.
Definition 4.1 (Finding the top eigenvector and top-k eigenvectors). Given a collection of n tensors
A1, A2, · · · , An ∈ Rnp−1

, the goal is to design a structure that supports the following operations

• INIT (A1, · · · , An ∈ Rnp−1

). It takes n tensors as inputs and creates a data structure.

• QUERY (u ∈ Rn), the goal is to output a vector v ∈ Rn such that vi ≈
⟨Ai, u

⊗(p−1)⟩, ∀i ∈ [n]

• QUERY({xi}i∈[k] ∈ Rn, α ∈ Rn×k, u ∈ Rn). the goal is to output a vector v ∈ Rn such

that vi ≈ ⟨Ai −
∑k

j=1 αi,jx
⊗(p−1)
j , u⊗(p−1)⟩, ∀i ∈ [n]
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We state our data structure as follows:

Lemma 4.2 (Data Structure). Given n tensors A1, A2, · · ·An ∈ Rnp−1

where ∥Ai∥F ≤ Di, ∀i ∈
[n], we let ∥A∥F ≤ D. Let ϵ, δ ∈ (0, 1/2). Then, there exists a randomized data structure with the
following operations:

• INIT(A1, · · · , An ∈ Rnp−1

): It preprocesses n tensors, in time Õ(ϵ−2np log(1/δ)).

• QUERY(u ∈ Rn). It takes a unit vector u ∈ Rn as input. The goal is to output a vector
v ∈ Rn such that for all i ∈ [n], (1 − ϵ) · ⟨Ai, u

⊗(p−1)⟩ − Di · ϵ ≤ vi ≤ (1 + ϵ) ·
⟨Ai, u

⊗(p−1)⟩+Di · ϵ. This can be done in time Õ(ϵ−2n(p−1) log(1/δ)).

• QUERYVALUE(u ∈ Rn). The goal is to output a number v ∈ R such that (1−ϵ)⟨A, u⊗p⟩−
D · ϵ ≤ v ≤ (1 + ϵ)⟨A, u⊗p⟩+D · ϵ. This can be done in time Õ(ϵ−2n(p−1) log(1/δ)).

• QUERYRES({xj}j∈[k] ∈ Rn, α ∈ Rn×k, u ∈ Rn). The goal is to output a vector v ∈ Rn

such that for all i ∈ [n],

(1− ϵ) · ⟨Ai −
k∑

j=1

αi,jx
⊗(p−1)
j , u⊗(p−1)⟩ −Di · ϵ ≤ vi

≤ (1 + ϵ) · ⟨Ai −
k∑

j=1

αi,jx
⊗(p−1)
j , u⊗(p−1)⟩+Di · ϵ.

This can be done in time Õ(ϵ−2n(p−1) log(1/δ) + n2k).

All the queries are robust to adversary type queries.

Proof. The correctness of INIT and QUERY directly follows from (Cherapanamjeri & Nelson, 2020).

For the QUERYRESIDUAL, the running time only need to pay an extra term is computing
⟨
∑k

j=1 αi,jx
⊗(p−1)
j , u⊗(p−1)⟩ which is sufficient just to compute

∑k
j=1 αi,j⟨xj , u⟩p−1. The above

step takes O(kn) time. Since there are n different indices i. So overall extra time is O(n2k).

4.2 USEFUL FACTS

We finish presenting the efficient implementation of the key operations. Now, we move on to the
sketch of proof for the theoretical guarantees for the robust tensor power method (Lemma 3.1).
Proving this is not trivial, as we presented in the technique overview (see Section 3). We need to
first prove some important facts, where these facts are frequently used in the proof of Theorem 4.9,
and then generalize Theorem 4.9 to obtain Lemma 3.1. First, we give the formal definitions of sin,
cos, and tan.

Definition 4.3. For u, v be unit vectors, we define cos θ(u, v) := ⟨u, v⟩, sin θ(u, v) :=√
1− cos2 θ(u, v) and tan θ(u, v) := sin θ(u, v)/ cos θ(u, v).

We use the following facts to support the analysis of recoverability.

Fact 4.4 (Informal version of Fact B.7). Let p ≥ 3. Let A∗ =
∑k

j=1 λjv
⊗p
j ∈ Rnp

be the orthogonal
tensor. Then, for all j ∈ [k], given a vector u ∈ Rn, we can get |v⊤j A∗(I, u, · · · , u)| = λj |v⊤j u|p−1.

The following fact provides the upper bound for E(u, v, · · · , v) and ∥E(I, v, . . . , v)∥2, which is
used for the norm bounding analysis (see details in Section C and D).

Fact 4.5. Let E ∈ Rnp

is an arbitrary orthogonal tensor and u, v ∈ Rn are two arbitrary unit
vectors. Then, we have |E(u, v, · · · , v)| ≤ ∥E∥ and ∥E(I, v, . . . , v)∥2 ≤

√
n∥E∥.

Proof. Part 1 follows trivially from the definition of ∥E∥.
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For part 2, we define a unit vector w ∈ Rn to be (1/
√
n, · · · , 1/

√
n),

∥E(I, v, . . . , v)∥22 =

n∑
i1=1

 n∑
i2=1

· · ·
n∑

ip=1

Ei1,i2,··· ,ipvi2 · · · vip

2

= n

n∑
i1=1

 n∑
i2=1

· · ·
n∑

ip=1

Ei1,i2,··· ,ipwi1vi2 · · · vip

2

≤ n∥E∥2,

where the first step follows from the definition of E(I, v, . . . , v), the second step follows from our
definition for w, and the last step follows from n ≥ 1 . This result implies ∥E(I, v, · · · , v)∥2 ≤√
n∥E∥.

Fact 4.6 (Informal version of Fact B.8). Let p is greater than or equal to 3, x, y, u, v ∈ Rn be any
arbitrary unit vectors, and j ∈ {0, 1, · · · , p− 2}. Then, we have

∥[x⊗ v⊗(p−1)](I, u, · · · , u)− [y ⊗ v⊗(p−1)](I, u, · · · , u)∥2 = |⟨u, v⟩|p−1 · ∥x− y∥2 (1)

and

∥[v⊗(1+j) ⊗ x⊗ v⊗(p−2−j)](I, u, · · · , u)− [v⊗(1+j) ⊗ y ⊗ v⊗(p−2−j)](I, u, · · · , u)∥2
≤ |⟨u, v⟩|p−2 · ∥x− y∥2. (2)

The following fact transforms the ℓ2 norm into the form of the sum of a list of real numbers, which
helps us with simplifying ∥V ⊤A∗(I, u, · · · , u)∥22 to support the analysis of the recoverability (see
Section C for details).

Fact 4.7. Let v1, v2, · · · , vn be an orthonormal basis. Let V = (v2, · · · , vn) ∈ Rn×(n−1).
Let A∗ =

∑k
i=1 λiv

⊗p
i . Let u ∈ Rn be a vector. Then, we have ∥V ⊤A∗(I, u, · · · , u)∥22 =∑k

j=2 λ
2
j |v⊤j u|2(p−1).

Proof. We have

∥V ⊤A∗(I, u, · · · , u)∥22 =

k∑
j=2

|v⊤j A∗(I, u, · · · , u)|2 =

k∑
j=2

(λj |v⊤j u|p−1)2 =

k∑
j=2

λ2
j |v⊤j u|2(p−1),

where the first step follows from the definition of ℓ2 norm, the second step follows from Fact B.7,
and the last step follows from simple algebra.

4.3 CONVERGENCE GUARANTEE AND DEFLATION

Consequently, in this section, with the help of these technical facts, we are ready to present the
second component necessary to support our main theorem (Theorem 1.1), specifically Lemma 3.1.
We generalize the robust tensor power method to all cases where p ≥ 3.

Lemma 4.8. Let t ∈ [k]. Let η ∈ (0, 1/2). In Rn, U represents a set of random Gaussian vectors.
Let |U| = Ω(k log(1/η)). Then, there is a probability of at least 1 − η that there exists a vector
u ∈ U satisfying the following condition: max

j∈[k]\{t}
|v⊤j u| ≤ 1

4 |v
⊤
t u| and |v⊤t u| ≥ 1/

√
n.

We analyze (Wang & Anandkumar, 2016)’s Lemma C.2 and generalize it from p being equal to 3 to
any p being greater than or equal to 3.

In the following Theorem, intuitively, we treat A∗ as the ground-truth tensor. We treat Ẽ as the noise
tensor. In reality, we can not access the A∗ directly. We can only access A∗ with some noise which
is Ẽ. But whenever Ẽ (the noise) is small compared to ground-truth A∗, then we should be able to
recover A∗.
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Theorem 4.9. Let Ẽ ∈ Rnp

denote some tensor representing the noise. Let c > 0 is an arbitrarily
small number and c0 ≥ 1. Let p be greater than or equal to 3. A = A∗ + Ẽ ∈ Rnp

is an arbitrary
tensor satisfying A∗ =

∑k
i=1 λiv

⊗p
i , where A∗ is orthogonal decomposable.

Let

ut+1 =
A(I, ut, · · · , ut)

∥A(I, ut, · · · , ut)∥2
,

where ut ∈ Rn is an unit vector.

We define Event ξ to be

|v⊤1 ut| ≤ 1− 1/(c20p
2k2).

Let 0 < ϵ ≤ cλ1

(c0p2kn(p−2)/2)
. Let T = Ω(log(λ1n/ϵ)). Let t ∈ [T ].

Suppose

∥Ẽ(I, ut, · · · , ut)∥2 ≤
{
4pϵ, if ξ

6ϵ/c0, ow.

and |Ẽ(v, ut, · · · , ut)| ≤
{
4ϵ/
√
n if ξ

6ϵ/(c0
√
n) ow

Then,

1. We have

tan θ(v1, ut+1) ≤

{
0.8 tan θ(v1, ut) if ξ

0.8 tan θ(v1, ut) + 18 ϵ
c0λ1

ow
(3)

2. We have

max
j∈[k]\{1}

λj |v⊤j ut|p−2 ≤ (1/4)λ1|v⊤1 ut|p−2. (4)

3. For any j ∈ {2, · · · , k}, we have

|v⊤j ut+1|
|v⊤1 ut+1|

≤
{
0.8|v⊤j ut|/|v⊤1 ut| if ξ

0.8|v⊤j ut|/|v⊤1 ut|+ 18ϵ/(c0λ1
√
n) ow

(5)

Because of the space limit, the formal proof is deferred to Appendix C. Theorem 4.9 provides key
properties of the tensor power method for a single iteration. It shows how the algorithm converges
towards the dominant eigenvector and how errors are controlled in each step. Finally, using Theo-
rem 4.9, we can prove Lemma 3.1 that our algorithm recovers the tensor components (eigenvectors
and eigenvalues) up to a specified error bound using mathematical induction. Combining this with
our fast sketching technique (Lemma 4.2), we finally prove our main Theorem (Theorem 1.1).

5 CONCLUSION

We present a robust tensor power method that supports arbitrary order tensors. Our method over-
comes the limitations of existing approaches, which are often restricted to lower-order tensors or
require strong assumptions about the underlying data structure. This requires non-trivial mathemat-
ical tools to handle the added complexity. We develop new properties of higher-order tensors and
analyze the convergence and error bounds. By leveraging advanced techniques from optimization
and linear algebra, we have developed a powerful and flexible algorithm that can handle a wide range
of tensor data, from images and videos to multivariate time series and natural language corpora. We
believe that our result has some insights into various tasks, including tensor decomposition, low-
rank tensor approximation, and independent component analysis. We believe that our contribution
will significantly advance the field of tensor analysis and provide new opportunities for handling
high-dimensional data in various domains. We here propose some future directions. We encourage
extending our method to more challenging scenarios, such as noisy data analysis, and exploring its
applications in emerging areas, such as neural networks and machine learning.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHIC STATEMENT

This paper does not involve human subjects, personally identifiable data, or sensitive applications.
We do not foresee direct ethical risks. We follow the ICLR Code of Ethics and affirm that all aspects
of this research comply with the principles of fairness, transparency, and integrity.

REPRODUCIBILITY STATEMENT

We ensure reproducibility of our theoretical results by including all formal assumptions, definitions,
and complete proofs in the appendix. The main text states each theorem clearly and refers to the
detailed proofs. No external data or software is required.

REFERENCES

Elizabeth S. Allman, Catherine Matias, and John A. Rhodes. Identifiability of parameters in latent
structure models with many observed variables. The Annals of Statistics, 37(6A), dec 2009a. doi:
10.1214/09-aos689. URL https://doi.org/10.1214%2F09-aos689.
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Charles Bouveyron, Stéphane Girard, and Cordelia Schmid. High-dimensional data clustering. Com-
putational statistics & data analysis, 52(1):502–519, 2007.

J Douglas Carroll and Jih-Jie Chang. Anaylsis of individual differences in multidimensional scal-
ing via an n-way generalization of eckart-young decomposition. Psychometrika, 35(3):283–319,
1970.

Kung-Ching Chang, Kelly Pearson, and Tan Zhang. Perron-frobenius theorem for nonnegative
tensors. Communications in Mathematical Sciences, 6(2):507–520, 2008.

Yeshwanth Cherapanamjeri and Jelani Nelson. On adaptive distance estimation. In Advances in
Neural Information Processing Systems, 2020.

10

https://doi.org/10.1214%2F09-aos689
https://arxiv.org/abs/0909.1854
https://arxiv.org/abs/1210.7559
https://arxiv.org/pdf/1210.7559
https://arxiv.org/pdf/1602.07764
https://www.sciencedirect.com/science/article/pii/S2214785321007732
https://www.sciencedirect.com/science/article/pii/S2214785321007732
https://arxiv.org/pdf/1502.05023


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Joon Hee Choi and S. Vishwanathan. Dfacto: Distributed factorization of tensors. In NIPS, pp.
1296–1304, 2014.

Yichuan Deng, Wenyu Jin, Zhao Song, Xiaorui Sun, and Omri Weinstein. Dynamic kernel sparsi-
fiers. arXiv preprint arXiv:2211.14825, 2022a.

Yichuan Deng, Zhao Song, Omri Weinstein, and Ruizhe Zhang. Fast distance oracles for any sym-
metric norm. arXiv preprint arXiv:2205.14816, 2022b.

Yichuan Deng, Yeqi Gao, and Zhao Song. Solving tensor low cycle rank approximation. arXiv
preprint arXiv:2304.06594, 2023.

Dipak Dulal, Ramin Goudarzi Karim, and Carmeliza Navasca. Covid-19 analysis using tensor
methods, 2022. URL https://arxiv.org/abs/2212.14558.

Matthew Fahrbach, Gang Fu, and Mehrdad Ghadiri. Subquadratic kronecker regression with ap-
plications to tensor decomposition. Advances in Neural Information Processing Systems, 35:
28776–28789, 2022.

Yeqi Gao, Lianke Qin, Zhao Song, and Yitan Wang. A sublinear adversarial training algorithm.
arXiv preprint arXiv:2208.05395, 2022.

Yuzhou Gu, Zhao Song, Junze Yin, and Lichen Zhang. Low rank matrix completion via robust
alternating minimization in nearly linear time. arXiv preprint arXiv:2302.11068, 2023.

Richard A Harshman. Foundations of the parafac procedure: Models and conditions for an” ex-
planatory” multimodal factor analysis. 1970.

Qiang Heng, Eric C. Chi, and Yufeng Liu. Tucker-L2E: Robust low-rank tensor decomposition with
the L2 criterion, 2022. URL https://arxiv.org/abs/2208.11806.

Christopher J Hillar and Lek-Heng Lim. Most tensor problems are np-hard. In Journal of the ACM
(JACM), volume 60(6), pp. 45. https://arxiv.org/pdf/0911.1393, 2013.

Frank L. Hitchcock. The expression of a tensor or a polyadic as a sum of products. Journal of
Mathematics and Physics, 1927.

Furong Huang, Niranjan U. N, Mohammad Umar Hakeem, Prateek Verma, and Animashree Anand-
kumar. Fast detection of overlapping communities via online tensor methods on gpus. CoRR,
abs/1309.0787, 2013.

Majid Janzamin, Hanie Sedghi, and Anima Anandkumar. Beating the perils of non-convexity:
Guaranteed training of neural networks using tensor methods. In arXiv preprint. https:
//arxiv.org/pdf/1506.08473, 2015.

U. Kang, Evangelos E. Papalexakis, Abhay Harpale, and Christos Faloutsos. Gigatensor: scaling
tensor analysis up by 100 times - algorithms and discoveries. In KDD, pp. 316–324, 2012.

Joe Kileel and João M Pereira. Subspace power method for symmetric tensor decomposition. Nu-
merical Algorithms, 2025.

Joe Kileel, Timo Klock, and João M Pereira. Landscape analysis of an improved power method for
tensor decomposition. Advances in Neural Information Processing Systems, 2021.
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Appendix
Roadmap. In Section A, we present our additional related works. In Section B, we introduce
the background concepts (definitions and properties) that we use in the Appendix. In Section C,
we provide more details and explanations to support the properties we developed in this paper. In
Section D, we present our important Theorems (Theorem D.1 and Theorem D.2) and their proofs.

A ADDITIONAL RELATED WORKS

In Section A.1, we introduce Canonical/Polydic decomposition and Tucker decomposition. In Sec-
tion A.2, we present some sketching techniques. In Section A.3, we show previous works about
power method.

A.1 CANONICAL/POLYDIC DECOMPOSITION AND TUCKER DECOMPOSITION

The most commonly employed techniques for breaking down tensors are CP (Canonical/Polydic)
decomposition and Tucker factorization. CP decomposes a tensor that has higher order into a collec-
tion of fixed-rank individual tensors that are summed together, while Tucker factorization reduces
a tensor that has higher order to a smaller core tensor and a matrix product of each of its modes.
Non-negative tensor factorization is the extension of non-negative matrix factorization to multiple
dimensions (Bhatt et al., 2021). Recent research in Tucker decomposition has focused on develop-
ing more efficient algorithms for computing the decomposition (Zhou et al., 2015; Kim & Candan,
2016; Fahrbach et al., 2022), improving its accuracy and robustness (Zhang & Ding, 2013; Heng
et al., 2022), and applying it to various new domains, such as image representation (Zhang & Ding,
2013).

A.2 SKETCHING TECHNIQUES

Sketching methods have emerged as a powerful paradigm in numerical linear algebra, serving as a
fundamental approach to dimension reduction while preserving essential mathematical properties.
These techniques, which originated from the theoretical computer science community, provide a
way to project high-dimensional data into lower-dimensional spaces while maintaining important
structural information and computational guarantees. They have become increasingly important in
machine learning, data science, and scientific computing due to their ability to reduce computational
complexity while maintaining accuracy guarantees.

It has played an important role in tensor approximation (Song et al., 2019; Mahankali et al., 2022;
Deng et al., 2023), matrix completion (Gu et al., 2023), submodular function maximization (Qin
et al., 2023), dynamic sparsifier (Deng et al., 2022a), dynamic tensor produce regression (Reddy
et al., 2022), semi-definite programming (Song et al., 2022b), sparsification problems involving an
iterative process (Song et al., 2022a), adversarial training (Gao et al., 2022), kernel density estima-
tion (Qin et al., 2022), and distance oracle problem (Deng et al., 2022b).

A.3 POWER METHOD

The power method is a popular iterative algorithm for computing the dominant eigenvector and
eigenvalue of a tensor. In recent years, there is a series of works (Chang et al., 2008; Ng et al.,
2010; Wang et al., 2009) that focused on this topic. The work of (Kolda & Mayo, 2011) provides the
result to compute real symmetric-tensor eigenpairs, which is closely related to the optimal rank-1
approximation of a symmetric tensor. Moreover, their method is based on the shifted symmetric
higher-order power method (SS-HOPM), which can be viewed as a generalization of the power
iteration method for matrices. (Anandkumar et al., 2014) considers the relation between tensor
decomposition and learning latent variable models, where they also provide a detailed analysis of
a robust TPM. More recent work by (Anandkumar et al., 2017) offers a new approach to analyzing
the behavior of tensor power iterations in the overcomplete scenario, in which the tensor’s CP rank
surpasses the input dimension.
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B PRELIMINARY

In Section B.1, we define several basic notations. In Section B.2, we state several basic facts. In
Section B.3, we present facts and tools for tensors.

B.1 NOTATIONS

In this section, we start to introduce the fundamental concepts we use.

For any function f , we use Õ(f) to denote f · poly(log f).
R denotes the set that contains all real numbers.

For a scalar a, i.e. a ∈ R, |a| represents the absolute value of a.

For any A ∈ Rn×k being a matrix and x ∈ Rk being a vector, we use ∥A∥ :=
maxx∈Rk ∥Ax∥2/∥x∥2 to denote the spectral norm of A.

We use ∥x∥2 := (
∑n

i=1 x
2
i )

1/2 to denote the ℓ2 norm of the vector x.

For two vectors u ∈ Rn and v ∈ Rn, we use ⟨u, v⟩ to denote the inner product, i.e. ⟨u, v⟩ =∑n
i=1 uivi.

Let p ≥ 1 denote some integer. We say E ∈ Rn×···×n (where there are p of n), if E is a p-th order
tensor and every dimension is n. For simplicity, we write E ∈ Rnp

. If p = 1, then E is a vector. If
p = 2, E ∈ Rn×n is a matrix. If p = 3, then E ∈ Rn×n×n is a 3rd order tensor.

For any two vectors x, y, we define θ(x, y) to be cos θ(x, y) = ⟨x, y⟩.
For a 3rd tensor E ∈ Rn×n×n, we have E(a, b, c) ∈ R

E(a, b, c) =

n∑
i=1

n∑
j=1

n∑
k=1

Ei,j,kaibjck.

Similarly, the definition can be generalized to p-th order tensor.

For a 3rd order tensor E ∈ Rn×n×n, we have E(I, b, c) ∈ Rn,

E(I, b, c)i =

n∑
j=1

n∑
k=1

Ei,j,kbjck, ∀i ∈ [n]

For a 3rd order tensor E ∈ Rn×n×n, we have E(I, I, c) ∈ Rn×n

E(I, I, c)i,j =

n∑
k=1

Ei,j,kck, ∀i, j ∈ [n]× [n].

Let a, b, c ∈ Rn. Let E = a⊗ b⊗ c ∈ Rn×n×n. We have
Ei,j,k = aibjck, ∀i ∈ [n],∀j ∈ [n], k ∈ [n]

Let a ∈ Rn, let E = a⊗ a⊗ a = a⊗3 ∈ Rn×n×n. We have
Ei,j,k = aiajak, ∀i ∈ [n],∀j ∈ [n], k ∈ [n]

Let E =
∑m

i=1 u
⊗3
i . Then we have E(a, b, c) ∈ R

E(a, b, c) =

m∑
i=1

(u⊗3
i (a, b, c)) =

m∑
i=1

⟨ui, a⟩⟨ui, b⟩⟨ui, c⟩.

For µ ∈ Rd and Σ ∈ Rn×n. We use N (µ,Σ) to denote a Gaussian distribution with mean µ and
covariance Σ. For x ∼ N (µ,Σ), we denote x as a Gaussian vector.

For any vector a ∈ Rn, we use maxi∈[n] ai to denote a value b over sets {a1, a2, · · · , an}.
For any vector a ∈ Rn, we use argmaxi∈[n] ai to denote the index j such that aj = maxi∈[n] ai.

Let N denote non-negative integers.
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B.2 BASIC FACTS

In this section, we introduce some basic facts.

Fact B.1. We have

• Part 1. For any x ∈ (0, 1) and integer p ≥ 1, we have |1− (1− x)p| ≤ p · x.

• Part 2. (a+ b)p ≤ 2p−1ap + 2p−1bp.

Fact B.2 (Geometric series). If the following conditions hold

• Let a ∈ R.

• Let k ∈ N.

• Let r ∈ R and 0 < r < 1.

Then, for all k, the series which can be expressed in the form of

k∑
i=0

ari

is called the geometric series.

Let a0 denote the value of this series when k = 0, namely a0 = ar0 = a.

This series is equal to

1.

Sk =

k∑
i=0

ari = a0
(1− rn)

1− r
,

when k ̸=∞, or

2.

Sk =

k∑
i=0

ari =
a0

1− r
,

when k =∞.

Fact B.3. If the following conditions hold

• Let
∑∞

n=1 bn be a series.

• Let k ∈ N.

• Let a ∈ R.

• Let r ∈ R and 0 < r < 1.

• Let
∑k

i=0 ar
i be a geometric series.

• Suppose
∑∞

n=1 bn ≤
∑k

i=0 ar
i.

Then,
∑∞

n=1 bn is convergent and is bounded by

a0
1− r

.

Proof. By Fact B.2, we get that the geometric series is convergent, for all k ∈ N.

Then,
∑∞

n=1 bn is convergent by the comparison test.
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We have

a0
(1− rn)

1− r
≤ a0

1− r
(6)

because for all 0 < r < 1, we have (1− rn) < 1.

Therefore, we get
∞∑

n=1

bn ≤
k∑

i=0

ari

≤ a0
1− r

,

where the first step follows from the assumption in the Fact statement and the second step follows
from Eq. (6).

Fact B.4. If the following conditions hold

• u, v, w ∈ Rn are three arbitrary unit vectors.

• For all x satisfying 0 ≤ x ≤ 1.

• Suppose 1− x ≤ ⟨u,w⟩.

• Suppose ⟨v, w⟩ = 0.

Then ⟨u, v⟩ ≤
√
2x− x2.

Proof. First, we want to show that

| sin θ(u,w)| =
√
1− cos2 θ(u,w)

=
√
1− ⟨u,w⟩2

≤
√
1− (1− x)2, (7)

where the first step follows from the definition of sin θ(u,w) (see Definition 4.3), the second step
follows from the definition of cos θ(u,w) (see Definition 4.3), and the last step follows from the
assumption of this fact.

Then, we have

⟨u, v⟩ = cos θ(u, v)

= | cos θ(u,w) cos θ(v, w)− sin θ(u,w) sin θ(v, w)|
≤ | cos θ(u,w) cos θ(v, w) + sin θ(u,w) sin θ(v, w)|
≤ | cos θ(u,w) cos θ(v, w)|+ | sin θ(u,w) sin θ(v, w)|
= 0 + | sin θ(u,w) sin θ(v, w)|
≤ | sin θ(u,w)| · | sin θ(v, w)|
≤ | sin θ(u,w)|

≤
√

1− (1− x)2

=
√
2x− x2,

where the first step follows from the definition of cos θ(u, v) (see Definition 4.3), the second
step follows from cos (a+ b) = cos (a) cos (b) − sin (a) sin (b), the third step follows from
simple algebra, the fourth step follows from the triangle inequality, the fifth step follows from
cos θ(v, w) = 0, the sixth step follows from the Cauchy–Schwarz inequality, the seventh step fol-
lows from | sin θ(w, v)| ≤ 1, the eighth step follows from Eq. (7), and the last step follows from
simple algebra.

Fact B.5. If the following conditions hold
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• Let E ∈ Rnp

.

• Let u, v ∈ Rn be two vectors.

Then

• |E(v, u, · · · , u)| = |v⊤E(I, u, · · · , u)|.

• |v⊤E(I, I, u, · · · , u)w| = |E(v, w, u, · · · , u)|

Proof. It follows

|v⊤E(I, u, · · · , u)| =

∣∣∣∣∣∣
n∑

i1=1

vi1 ·

 n∑
i2=1

· · ·
n∑

ip=1

Ei1,i2,··· ,ipui2 · · ·uip

∣∣∣∣∣∣
=

∣∣∣∣∣∣
n∑

i1=1

n∑
i2=1

· · ·
n∑

ip=1

Ei1,i2,··· ,ipvi1ui2 · · ·uip

∣∣∣∣∣∣
= |E(v, u, · · · , u)|,

where the first step follows from the definition of E(I, u, · · · , u), the second step follows from the
property of summation, and the last step follows from the definition of E(v, u, · · · , u).

Fact B.6. If the following conditions hold

• u, v are two arbitrary unit vectors.

• Suppose θ(u, v) is in the interval (0, π/2).

Then ∥u− v∥2 ≤ tan θ(u, v).

Proof. Suppose θ(u, v) is in the interval (0, π/2), so we have

cos θ(u, v)

is in the interval (0, 1).

Let x = ⟨u, v⟩.
Therefore, by the definition of cos θ(u, v) (see Definition 4.3), we have

cos θ(u, v) = ⟨u, v⟩
= x. (8)

Accordingly, we have

sin θ(u, v) =
√

1− cos2 θ(u, v)

=
√
1− x2, (9)

where the first step follows from the definition of sin θ(u, v) (see Definition 4.3) and the second step
follows from Eq. (8). Moreover,

∥u− v∥22 = ∥u∥22 + ∥v∥22 − 2⟨u, v⟩
= 1 + 1− 2x

= 2− 2x, (10)

where the first step follows from simple algebra, the second step follows from the fact that u and v
are unit vectors, and the last step follows from simple algebra. We want to show

∥u− v∥22 ≤ tan2 θ(u, v).

It suffices to show

2− 2x ≤ tan2 θ(u, v)
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= sin2 θ(u, v)/ cos2 θ(u, v)

≤ (1− x2)/x2, (11)

where the first step follows from Eq. (10), the second step follows from the definition of tan θ(u, v)
(see Definition 4.3), and the last step follows from combining Eq. (8) and Eq. (9).

Therefore, it suffices to show

(1− x2)/x2 − (2− 2x) ≥ 0

when x ∈ (0, 1).

Let f : (0,∞)→ R be defined as

f(x) = (1− x2)/x2 − (2− 2x).

Then, the derivative of f(x) is denoted as f ′(x), which is as follows

f ′(x) =
2x3 − 2

x3
.

Therefore, when x = 1, we have f ′(x) = 0.

The second derivative of f is

f ′′(x) =
6

x4
.

Therefore,

f ′′(1) = 6 > 0.

Thus, f(1) is a local minimum. In other words, when x ∈ (0, 1),

f(x) = (1− x2)/x2 − (2− 2x) ≥ f(1) = 0,

so Eq. (11) is shown to be true.

Thus, we complete the proof.

B.3 MORE TENSOR FACTS

In this section, we present more tensor properties.
Fact B.7 (Formal version of Fact 4.4). If the following conditions hold

• Let p be greater than or equal to 3.

• Let A∗ =
∑k

j=1 λjv
⊗p
j ∈ Rnp

be an orthogonal tensor.

• Let u ∈ Rn be a vector.

• Let j ∈ [k].

Then, we can get

|v⊤j A∗(I, u, · · · , u)| = λj |v⊤j u|p−1.

Proof. For any j ∈ [k], we have

|v⊤j A∗(I, u, · · · , u)| =

∣∣∣∣∣
n∑

i=1

vj,iA
∗(I, u, · · · , u)i

∣∣∣∣∣
=

∣∣∣∣∣∣
n∑

i=1

vj,i

n∑
i2=1

· · ·
n∑

ip=1

A∗
i,i2,··· ,ipui2 · · ·uip

∣∣∣∣∣∣
19
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=

∣∣∣∣∣∣
n∑

i=1

vj,i

n∑
i2=1

· · ·
n∑

ip=1

(

n∑
ℓ=1

λℓvℓ,ivℓ,i2 · · · vℓ,ip)ui2 · · ·uip

∣∣∣∣∣∣
=

∣∣∣∣∣∣
k∑

ℓ=1

λℓ

n∑
i=1

vj,ivℓ,i

n∑
i2=1

· · ·
n∑

ip=1

(vℓ,i2 · · · vℓ,ip)ui2 · · ·uip

∣∣∣∣∣∣
=

∣∣∣∣∣∣λj

n∑
i2=1

· · ·
n∑

ip=1

(vj,i2 · · · vj,ip)ui2 · · ·uip

∣∣∣∣∣∣
= λj |v⊤j u|p−1,

where the first step follows from the definition of vector norm, the second step follows from the
decomposition of A∗ by its definition, the third step follows from the definition of A∗, the fourth
step follows from reordering the summations, the fifth step follows from taking summations over ℓ,
and the sixth step follows from simple algebra.

Fact B.8 (Formal version of Fact 4.6). If the following conditions hold

• Let p ≥ 3.

• x, y, u, v ∈ Rn are four arbitrary unit vectors.

• Let j ∈ {0, 1, · · · , p− 2}.

Then, we can get

∥[x⊗ v⊗(p−1)](I, u, · · · , u)− [y ⊗ v⊗(p−1)](I, u, · · · , u)∥2 = |⟨u, v⟩|p−1 · ∥x− y∥2 (12)

and

∥[v⊗(1+j) ⊗ x⊗ v⊗(p−2−j)](I, u, · · · , u)− [v⊗(1+j) ⊗ y ⊗ v⊗(p−2−j)](I, u, · · · , u)∥2
≤ |⟨u, v⟩|p−2 · ∥x− y∥2. (13)

Proof. To show Eq. (12), let’s analyze the i-th entry of the vector

[x⊗ v⊗(p−1)](I, u, · · · , u) ∈ Rn,

which can be written as

xi

n∑
i2=1

· · ·
n∑

ip=1

vi2 · · · vipui2 · · ·uip = xi

n∑
i2=1

vi2ui2 · · ·
n∑

ip=1

vipuip

= xi⟨v, u⟩p−1, (14)

where the first step follows from the property of summation and the second step follows from the
definition of the inner product.

In this part, for simplicity, we define

LHS := ∥[x⊗ v⊗(p−1)](I, u, · · · , u)− [y ⊗ v⊗(p−1)](I, u, · · · , u)∥2.

By Eq. (14), we have

LHS = ∥xi⟨v, u⟩p−1 − yi⟨v, u⟩p−1∥2.

Thus, we get

LHS2 =

n∑
i=1

(xi⟨v, u⟩p−1 − yi⟨v, u⟩p−1)2

=

n∑
i=1

((xi − yi)(⟨v, u⟩p−1))2
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=

n∑
i=1

(xi − yi)
2(⟨v, u⟩p−1)2

= ⟨v, u⟩2(p−1)
n∑

i=1

(xi − yi)
2

= ∥x− y∥22 · |⟨v, u⟩|2(p−1),

where the first step follows from the definition of ∥·∥2, the second step follows from simple algebra,
the third step follows from simple algebra, the fourth step follows from the fact that i is not contained
in ⟨v, u⟩2(p−1), and the last step follows from the definition of ∥ · ∥2.

To show Eq. (13), first, we want to show

|⟨x− y, u⟩| ≤ ∥x− y∥2∥u∥2
≤ ∥x− y∥2, (15)

where the first step follows from the Cauchy–Schwarz inequality and the second step follows from
the fact that u is a unit vector so that ∥u∥2 = 1.

Then, we analyze the i-th entry of the vector

[v⊗(1+j) ⊗ x⊗ v⊗(p−2−j)](I, u, · · · , u) ∈ Rn,

which is equivalent to

vi⟨x, u⟩ · ⟨v, u⟩p−2. (16)

In this part, we define

LHS := ∥[v⊗(1+j) ⊗ x⊗ v⊗(p−2−j)](I, u, · · · , u)− [v⊗(1+j) ⊗ y ⊗ v⊗(p−2−j)](I, u, · · · , u)∥2.

Therefore, based on Eq. (16), we get

LHS = ∥vi⟨x, u⟩ · ⟨v, u⟩p−2 − vi⟨y, u⟩ · ⟨v, u⟩p−2∥2
Thus, we have

LHS2 =

n∑
i=1

(vi⟨x, u⟩ · ⟨v, u⟩p−2 − vi⟨y, u⟩ · ⟨v, u⟩p−2)2

=

n∑
i=1

((vi⟨x, u⟩ − vi⟨y, u⟩) · ⟨v, u⟩p−2)2

=

n∑
i=1

((vi⟨x, u⟩ − vi⟨y, u⟩)2 · ⟨v, u⟩2(p−2))

= ⟨v, u⟩2(p−2) ·
n∑

i=1

(vi⟨x, u⟩ − vi⟨y, u⟩)2

= ⟨v, u⟩2(p−2) ·
n∑

i=1

(vi(⟨x, u⟩ − ⟨y, u⟩))2

= ⟨v, u⟩2(p−2) ·
n∑

i=1

(vi⟨x− y, u⟩)2

= ⟨v, u⟩2(p−2) ·
n∑

i=1

((v2i )(⟨x− y, u⟩2))

= ⟨x− y, u⟩2 · ⟨v, u⟩2(p−2)
n∑

i=1

(vi)
2

= ⟨x− y, u⟩2 · ⟨v, u⟩2(p−2)
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≤ ∥x− y∥22 · ⟨v, u⟩2(p−2),

where the first step follows from the definition of ∥·∥2, the second step follows from simple algebra,
the third step follows from (ab)2 = a2b2, the fourth step follows from the fact that i is not contained
in ⟨v, u⟩2(p−2), the fifth step follows from simple algebra, the sixth step follows from the linearity
property of the inner product, the seventh step follows from (ab)2 = a2b2, the eighth step follows
from the fact that i is not contained in ⟨x−y, u⟩2, the ninth step follows from the fact that v is a unit
vector, and the last step follows from Eq. (15).

C MORE ANALYSIS

In Section C.1, we give the proof to the first part of Theorem 4.9. In Section C.2, we give the proof
to the second part of Theorem 4.9. In Section C.3, we give the proof to the third part of Theorem 4.9.
In Section C.4, we prove that a few terms are upper-bounded.

C.1 PART 1 OF THEOREM 4.9

In this section, we present the proof of the first part of Theorem 4.9.

For convenient, we first create some definitions for this section
Definition C.1. We define B1 ∈ R and B2 ∈ R as follows

B1 :=
1

1− |v⊤1 Ẽut
|/(λ1|v⊤1 ut|p−1)

We define

B2 :=
∥V ⊤Ẽut

∥2
λ1|v⊤1 ut|p−1

Lemma C.2 (Part 1 of Theorem 4.9). If the following conditions hold

• Let everything be defined as in Theorem 4.9.

• Suppose that all of the assumptions in Theorem 4.9 hold.

Then, Eq. (3) hold.

Proof. Proof of Part 1.

V = (v2, · · · , vk, · · · , vn) ∈ Rn×(n−1) is an orthonormal basis and is the complement of v1.

Also, Ẽut = Ẽ(I, ut, · · · , ut) ∈ Rn.

tan θ(v1, ut+1)’s upper bound is provided as follows:

tan θ(v1, ut+1) = tan θ

(
v1,

A(I, ut, · · · , ut)

∥A(I, ut, · · · , ut)∥2

)
= tan θ(v1, A(I, ut, · · · , ut))

= tan θ(v1, A
∗(I, ut, · · · , ut) + Ẽ(I, ut, · · · , ut))

= tan θ(v1, A
∗(I, ut, · · · , ut) + Ẽut

)

=
sin θ(v1, A

∗(I, ut, · · · , ut) + Ẽut
)

cos θ(v1, A∗(I, ut, · · · , ut) + Ẽut)

=
∥V ⊤[A∗(I, ut, · · · , ut) + Ẽut

]∥2
|v⊤1 [A∗(I, ut, · · · , ut) + Ẽut

]|

≤ ∥V
⊤A∗(I, ut, · · · , ut)∥2 + ∥V ⊤Ẽut∥2
|v⊤1 A∗(I, ut, · · · , ut)| − |v⊤1 Ẽut

|
, (17)
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where the first step follows from the definition of ut+1, the second step follows from the definition
of angle, the third step follows from A = A∗ + Ẽ ∈ Rnp

, the fourth step follows from Ẽut
:=

Ẽ(I, ut, · · · , ut) ∈ Rn, the fifth step follows from the definition of tan θ, the sixth step follows
from sin and cos, and the seventh step follows from the triangle inequality.

Using Fact 4.7, we can get

∥V ⊤A∗(I, ut, · · · , ut)∥22 =

k∑
j=2

λ2
j |v⊤j ut|2(p−1)

≤
(

max
j∈[k]\{1}

|λj |2|v⊤j ut|2(p−2)

)
·

 k∑
j=2

|v⊤j ut|2
 , (18)

where the second step follows from
∑

i aibi ≤ (maxi ai) ·
∑

i bi for all a, b ∈ Rn
≥0.

Putting it all together, we have

tan θ(v1, ut+1) ≤
∥V ⊤A∗(I, ut, · · · , ut)∥2 + ∥V ⊤Ẽut

∥2
|v⊤1 A∗(I, ut, · · · , ut)| − |v⊤1 Ẽut |

≤ tan θ(v1, ut) ·
(∥V ⊤A∗(I, ut, · · · , ut)∥2 + ∥V ⊤Ẽut

∥2)/∥V ⊤ut∥2
|v⊤1 A∗(I, ut, · · · , ut)|/|v⊤1 ut| − |v⊤1 Ẽut

|/|v⊤1 ut|

≤ tan θ(v1, ut) ·
max

j∈[k]\{1}
λj |v⊤j ut|p−2 + ∥V ⊤Ẽut∥2/∥V ⊤ut∥2

|v⊤1 A∗(I, ut, · · · , ut)|/|v⊤1 ut| − |v⊤1 Ẽut
|/|v⊤1 ut|

≤ tan θ(v1, ut) ·
max

j∈[k]\{1}
λj |v⊤j ut|p−2 + ∥V ⊤Ẽut

∥2/∥V ⊤ut∥2

λ1|v⊤1 ut|p−2 − |v⊤1 Ẽut
|/|v⊤1 ut|

≤ tan θ(v1, ut) ·
(1/4)λ1|v⊤1 ut|p−2 + ∥V ⊤Ẽut

∥2/∥V ⊤ut∥2
λ1|v⊤1 ut|p−2 − |v⊤1 Ẽut |/|v⊤1 ut|

≤ tan θ(v1, ut) · (1/4) ·
1

1− |v⊤1 Ẽut
|/(λ1|v⊤1 ut|p−1)︸ ︷︷ ︸
B1

+
1

1− |v⊤1 Ẽut
|/(λ1|v⊤1 ut|p−1)︸ ︷︷ ︸
B1

· ∥V
⊤Ẽut∥2

λ1|v⊤1 ut|p−1︸ ︷︷ ︸
B2

= tan θ(v1, ut) · (1/4) ·B1 +B1 ·B2,

where the 1st step comes from Eq. (17), the 2nd step is by tan θ(v1, ut) =
∥V ⊤ut∥2

|v⊤
1 ut|

, the 3rd step is
because of Equation (18), the 4th step follows from Fact B.7, the 5th step follows from Part 2 of The-
orem 4.9, the 6th step follows from simple algebra, and the 7th step follows from the definition of
B1 and B2.

We show

Claim C.3. For any t ∈ [T ], we have

|v⊤1 u0| ≤ |v⊤1 ut|.

Proof. Based on the assumption from the induction hypothesis, we consider the existence of a suf-
ficiently small constant c being greater than 0 satisfying

tan θ(v1, ut) ≤ 0.8 tan θ(v1, ut−1) + c. (19)

Therefore, we can get

tan θ(v1, ut) ≤ 0.8 · (0.8 tan θ(v1, ut−1) + c) + c
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≤ 0.8t · tan θ(v1, u0) + c

t−1∑
j=0

0.8j

≤ 0.8t · tan θ(v1, u0) + 5c

≤ tan θ(v1, u0),

where the first step follows from applying Eq. (19) recursively twice, the second step follows from
applying Eq. (19) recursively for t + 1 times, the third step follows from

∑∞
j=0 0.8

j ≤ 5, and the
last step follows from tan θ(v1, u0) = Ω(1).

This result shows

θ(v1, ut) ≤ θ(v1, u0),

so

|v⊤1 ut| = cos θ(v1, ut) ≥ cos θ(v1, u0) = |v⊤1 u0|.

Therefore, B1 and B2 has upper bounds.

Claim C.4. B1 is smaller than or equal to 1.1.

Proof. Let’s consider

|Ẽ(vj , ut, · · · , ut)| = |v⊤j Ẽ(I, ut, · · · , ut)|

= |v⊤j Ẽut
|.

Since

|Ẽ(vj , ut, · · · , ut)| ≤ 4ϵ/
√
n

≤ 4cλ1/n
(p−1)/2

≤ 4cλ1|v⊤1 u0|p−1,

where the first step follows from the constraint on Ẽ in Theorem 4.9, the second step follows from
ϵ ≤ cλ1/n

(p−2)/2, and the third step follows from |v⊤1 u0| ≥ 1/
√
n.

Correspondingly, if c can be chosen to be small enough, i.e., c is smaller than 1
40 , using

|v⊤1 Ẽut | ≤ λ1|v⊤1 u0|p−1/10

and

|v⊤1 u0| ≤ |v⊤1 ut|,

then

|v⊤1 Ẽut
| ≤ λ1|v⊤1 u0|p−1/10

≤ λ1|v⊤1 ut|p−1/10. (20)

As a result,

B1 ≤
1

1− 1/11
= 1.1.
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Next, we bound B2. Let’s consider two different cases. The first one is

|v⊤1 ut| ≤ 1− 1

c20p
2k2

and the other is

|v⊤1 ut| > 1− 1

c20p
2k2

.

If

|v⊤1 ut| ≤ (1− 1

c20p
2k2

),

we have

B2 =
∥V ⊤Ẽut∥2
λ1|v⊤1 ut|p−1

=

√
1− |v⊤1 ut|2
|v⊤1 ut|

· ∥V ⊤Ẽut
∥2

λ1|v⊤1 ut|p−2
√

1− |v⊤1 ut|2

= tan θ(v1, ut) ·
∥V ⊤Ẽut

∥2
λ1|v⊤1 ut|p−2

√
1− |v⊤1 ut|2

≤ tan θ(v1, ut) ·
∥Ẽut∥2

λ1|v⊤1 ut|p−2
√
1− |v⊤1 ut|2

≤ tan θ(v1, ut) ·
c0pk∥Ẽut

∥2
λ1|v⊤1 ut|p−2

,

where the first step comes from the definition of B2 (see Definition C.1), the second step follows

from splitting the term, the third step follows from tan θ(v1, ut) =

√
1−|v⊤

1 ut|2
|v⊤

1 ut|
, the fourth step

follows that ∥V ⊤Ẽut∥2 ≤ ∥Ẽut∥2, and the last step follows from 1/
√
1− |v⊤1 ut|2 ≤ c0pk.

We need to bound

c0pk∥Ẽut∥2
λ1|v⊤1 ut|p−2

.

Here, we can get

λ1|v⊤1 ut|p−2 ≥ λ1/(n
(p−2)/2).

On the other hand, utilizing Part 1 of Lemma C.11 and the given assumptions about E and E, we
obtain ∥Ẽut∥2

c0pk∥Ẽut
∥2 ≤ c0pk · 4pϵ.

Consequently, whenever we have small enough ϵ satisfying

ϵ ≤ λ1/(n
(p−2)/2 · 40 · c0p2k),

then

B2 ≤ 0.1 tan θ(v1, ut).

If

|v⊤1 ut| > 1− 1

c20k
2p2

,

then we have

B2 =
∥V ⊤Ẽut

∥2
λ1|v⊤1 ut|p−1
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≤ ∥V ⊤Ẽut
∥2

λ1(1− 1
c20p

2k2 )p−1

≤ 3∥V ⊤Ẽut
∥2/λ1

≤ 3∥Ẽut
∥2/λ1

where the first step follows from the definition of B2, the second step follows from |v⊤1 ut| > 1 −
1

c20p
2k2 , the third step follows from

1/(1− 1

c20p
2k2

)p−1 ≤ 3,∀p ≥ 3, k ≥ 1, c0 ≥ 1,

and the last step follows from ∥V ⊤Ẽut
∥2 ≤ ∥Ẽut

∥2.

By Part 1 of Corollary C.12, we have ∥Êut
∥2 ≤ 4ϵ/c0. By what we have assumed on E and E,

∥Eut
∥2 ≤ ϵ/c0 and ∥Eut

∥2 ≤ ϵ/c0, which completes the proof of B2 ≤ 18ϵ/(c0λ1).

C.2 PART 2 OF THEOREM 4.9

In this section, we present the proof of the second part of Theorem 4.9.
Lemma C.5 (Part 2 of Theorem 4.9). If the following conditions hold

• Let everything be defined as in Theorem 4.9.

• Suppose that all of the assumptions in Theorem 4.9 hold.

Then, Eq. (4) hold.

Proof. Proof of Part 2.

Let j be an arbitrary element in [k]\{1}.

Then, there exists an lower bound for |v⊤
1 ut+1|

|v⊤
j ut+1|

,

|v⊤1 ut+1|
|v⊤j ut+1|

=
|v⊤1 [A∗(I, ut, · · · , ut) + Ẽut ]|
|v⊤j [A∗(I, ut, · · · , ut) + Ẽut

]|

≥ |v
⊤
1 A

∗(I, ut, · · · , ut)| − |v⊤1 Ẽut |
|v⊤j A∗(I, ut, · · · , ut)|+ |v⊤j Ẽut

|

≥ λ1|v⊤1 ut|p−1 − |v⊤1 Ẽut |
λj |v⊤j ut|p−1 + |v⊤j Ẽut

|

≥
λ1|v⊤1 ut|p−1 − 1

10λ1|v⊤1 ut|p−1

λj |v⊤j ut|p−1 + 1
10λ1|v⊤1 ut|p−1

≥
λ1|v⊤1 ut|p−1 − 1

10λ1|v⊤1 ut|p−1

1
4λ1|v⊤1 ut|p−2|v⊤j ut|+ 1

10λ1|v⊤1 ut|p−1

=
9
10 |v

⊤
1 ut|

1
4 |v

⊤
j ut|+ 1

10 |v
⊤
1 ut|

(21)

where the first step follows from the definition of ut+1 (see the statement in Theorem 4.9), the
second step follows from the triangle inequality, the third step follows from Fact B.7, the fourth step
follows from Eq. (20), the fifth step follows from Part 1 λj |v⊤j ut|p−2 ≤ 1

4λ1|v⊤1 ut|p−2, and the last
step follows from simple algebra.

If

|v⊤j ut| < |v⊤1 ut|, (22)
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then

λ1|v⊤1 ut+1|p−2

λj |v⊤j ut+1|p−2
=

λ1

λj

(
|v⊤1 ut+1|
|v⊤j ut+1|

)p−2

≥ λ1

λj

(
9
10 |v

⊤
1 ut|

1
4 |v

⊤
j ut|+ 1

10 |v
⊤
1 ut|

)p−2

≥ λ1

λj

(
9
10 |v

⊤
j ut|

1
4 |v

⊤
j ut|+ 1

10 |v
⊤
j ut|

)p−2

=
λ1

λj

( 9
10

1
4 + 1

10

)p−2

≥ λ1

λj
2p−2, (23)

where the first step follows from ax

bx =
(
a
b

)x
, the second step follows from Eq. (21), the third step

follows from Eq. (22), the fourth step follows from simple algebra, the last step follows from simple
algebra.

The final step is a consequence of the fact that p is greater than or equal to 4. For the case of p
being equal to 3, we utilize a better analysis which is similar to the proof of (Wang & Anandkumar,
2016)’s Lemma C.2. Therefore, this approach is applicable for any p ≥ 3.

If

|v⊤j ut| ≥ |v⊤1 ut|, (24)

then

λ1|v⊤1 ut+1|p−2

λj |v⊤j ut+1|p−2
≥ λ1

λj

(
9
10 |v

⊤
1 ut|

1
4 |v

⊤
j ut|+ 1

10 |v
⊤
1 ut|

)p−2

=
λ1

λj

(
9
10 |v

⊤
1 ut||v⊤j ut|(

1
4 |v

⊤
j ut|+ 1

10 |v
⊤
1 ut|

)
|v⊤1 ut|

|v⊤1 ut|
|v⊤j ut|

)p−2

=
λ1

λj

(
9
10 |v

⊤
1 ut||v⊤j ut|(

1
4 |v

⊤
j ut|+ 1

10 |v
⊤
1 ut|

)
|v⊤1 ut|

)p−2(
|v⊤1 ut|
|v⊤j ut|

)p−2

=
λ1

λj

(
9
10 |v

⊤
j ut|

1
4 |v

⊤
j ut|+ 1

10 |v
⊤
1 ut|

)p−2(
|v⊤1 ut|
|v⊤j ut|

)p−2

≥ λ1

λj

(
9
10 |v

⊤
j ut|

1
4 |v

⊤
j ut|+ 1

10 |v
⊤
j ut|

)p−2(
|v⊤1 ut|
|v⊤j ut|

)p−2

≥ λ1

λj

|v⊤1 ut|p−2

|v⊤j ut|p−2
·

(
9
10 |v

⊤
j ut|

1
4 |v

⊤
j ut|+ 1

10 |v
⊤
j ut|

)p−2

≥ λ1

λj

|v⊤1 ut|p−2

|v⊤j ut|p−2
· 2p−2

≥ 4 · 2p−2,

where the first step follows from the second step of Eq. (23), the second step follows from simple
algebra, the third step follows from (ab)2 = a2b2, the fourth step follows from simple algebra, the
fifth step follows from Eq. (24), the sixth step follows from

(
a
b

)2
= a2

b2 , the seventh step follows
from the relationship between the third step and the last step of Eq. (23), and the last step follows
from Part 1.
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C.3 PART 3 OF THEOREM 4.9

In this section, we present the proof of the third part of Theorem 4.9.

Definition C.6. We define B3 ∈ R and B4 ∈ R as follows

B3 :=
1

1− |v⊤1 Ẽut
|/(λ1|v⊤1 ut|p−1)

and

B4 :=
|v⊤j Ẽut |

λ1|v⊤1 ut|p−1

Lemma C.7 (Part 3 of Theorem 4.9). If the following conditions hold:

• Let everything be defined as in Theorem 4.9.

• Suppose that all of the assumptions in Theorem 4.9 hold.

Then, Eq. (5) hold.

Proof. Proof of Part 3.

Just like Eq. (21) and Part 2,
|v⊤

j ut+1|
|v⊤

1 ut+1|
can also be upper bounded,

|v⊤j ut+1|
|v⊤1 ut+1|

≤
λj |v⊤j ut|p−1 + |v⊤j Ẽut

|
λ1|v⊤1 ut|p−1 − |v⊤1 Ẽut

|

=
|v⊤j ut|
|v⊤1 ut|

·
λj |v⊤j ut|p−2 + |v⊤j Ẽut |/|v⊤j ut|
λ1|v⊤1 ut|p−2 − |v⊤1 Ẽut |/|v⊤1 ut|

=
|v⊤j ut|
|v⊤1 ut|

·
λj |v⊤j ut|p−2

λ1|v⊤1 ut|p−2 − |v⊤1 Ẽut
|/|v⊤1 ut|

+
|v⊤j Ẽut

|
λ1|v⊤1 ut|p−1 − |v⊤1 Ẽut

|

=
|v⊤j ut|
|v⊤1 ut|

·
λj |v⊤j ut|p−2

λ1|v⊤1 ut|p−2 − |v⊤1 Ẽut |/|v⊤1 ut|
+

1

1− |v⊤1 Ẽut |/(λ1|v⊤1 ut|p−1)
·
|v⊤j Ẽut

|
λ1|v⊤1 ut|p−1

≤
|v⊤j ut|
|v⊤1 ut|

· 1
4
· λ1|v⊤1 ut|p−2

λ1|v⊤1 ut|p−2 − |v⊤1 Ẽut
|/|v⊤1 ut|

+
1

1− |v⊤1 Ẽut
|/(λ1|v⊤1 ut|p−1)

·
|v⊤j Ẽut |

λ1|v⊤1 ut|p−1

=
|v⊤j ut|
|v⊤1 ut|

· 1
4
· 1

1− |v⊤1 Ẽut
|/(λ1|v⊤1 ut|p−1)︸ ︷︷ ︸
B3

+
1

1− |v⊤1 Ẽut
|/(λ1|v⊤1 ut|p−1)︸ ︷︷ ︸
B3

·
|v⊤j Ẽut

|
λ1|v⊤1 ut|p−1︸ ︷︷ ︸

B4

,

where the first step follows from the relationship between the first step and the third step of
Eq. (21), the second step follows from simple algebra, the third step follows from simple algebra,
the fourth step follows from simple algebra, and the fifth step follows from Part 1 λj |v⊤j ut|p−2 ≤
1
4λ1|v⊤1 ut|p−2, and the last step follows from simple algebra.

Similar to Part 1, we can show B3 ≤ 1.1 if

|v⊤1 ut| ≥ 1− 1

c20p
2k2

.

Then, we consider the bound for B4.

There are two different situations, namely,
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• Case 1. |v⊤1 ut| ≤ 1− 1
c20p

2k2

• Case 2. |v⊤1 ut| > 1− 1
c20p

2k2 .

If

|v⊤1 ut| ≤ (1− 1

c20p
2k2

),

we have

B4 =
|v⊤j Ẽut |

λ1|v⊤1 ut|p−1

=

√
1− |v⊤1 ut|2
|v⊤1 ut|

·
|v⊤j Ẽut

|
λ1|v⊤1 ut|p−2

√
1− |v⊤1 ut|2

= tan θ(v1, ut) ·
|v⊤j Ẽut

|
λ1|v⊤1 ut|p−2

√
1− |v⊤1 ut|2

≤ tan θ(v1, ut) ·
c0pk|v⊤j Ẽut

|
λ1|v⊤1 ut|p−2

,

where the 1st step is from the definition of B4, the 2nd step comes from simple algebra, the 3rd step
is due to the definition of tan θ(v1, ut), and the last step follows from 1/

√
1− |v⊤1 ut|2 ≤ c0pk.

We want to find the bound for

c0pk∥Ẽut∥2
λ1|v⊤1 ut|p−2

.

We can get that

λ1|v⊤1 ut|p−2 ≥ λ1/(n
(p−2)/2).

Additionally, based on Part 2 of Lemma C.11 and what we assumed about E and E,

c0pk|v⊤j Ẽut
| ≤ c0pk · 4ϵ/

√
n.

Therefore, whenever there is a small enough ϵ satisfying

ϵ ≤ λ1

√
n/(n(p−2)/2 · 40 · c0pk),

then

B4 ≤ 0.1 tan θ(v1, ut).

If

|v⊤1 ut| > 1− 1

c20k
2p2

,

then we have

B4 =
|v⊤j Ẽut |

λ1|v⊤1 ut|p−1

≤
|v⊤j Ẽut

|
λ1(1− 1

c20p
2k2 )p−1

≤ 3|v⊤j Ẽut |/λ1,

where the first step follows from the definition of B4, the second step follows from |v⊤1 ut| > 1 −
1

c20p
2k2 , the third step follows from ∀p ≥ 3, k ≥ 1, c0 ≥ 1, we have

1/(1− 1

c20p
2k2

)p−1 ≤ 3.
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By Part 1 of Corollary C.12, we have

|v⊤j Êut
| ≤ 4ϵ/(c0

√
n).

Based on what we have assumed about E and E,

|v⊤j Eut
| ≤ ϵ/(c0

√
n)

and

|v⊤j Eut
| ≤ ϵ/(c0

√
n).

Therefore, the proof of B4 ≤ 18ϵ/(c0λ1
√
n) is completed.

C.4 ϵ-CLOSE

In this section, we upper bound some terms.

Definition C.8. For any ϵ > 0, we say {λ̂i, v̂i}ki=1 is ϵ-close to {λi, vi}ki=1 if for all i ∈ [k],

1. |λ̂i − λi| ≤ ϵ.

2. ∥v̂i − vi∥2 ≤ tan θ(v̂i, vi) ≤ min(
√
2, ϵ/(λi)).

3. |v̂⊤i vj | ≤ ϵ/(
√
nλi), ∀j ∈ [k]\[i].

Definition C.9 (Ai and Bi). We define

Ai := λia
p−1
i vi − λ̂i(aici + ∥v̂⊥i ∥2bi)p−1ci

and

Bi := λ̂i(aici + ∥v̂⊥i ∥2bi)p−1∥v̂⊥i ∥2.
Assumption C.10. We assume that ϵ is a real number that satisfies

ϵ < 10−5 λk

p2k
.

Lemma C.11. If the following conditions hold

• For all i ∈ [k], Êi = λiv
⊗p
i − λ̂iv̂

⊗p
i ∈ Rnp

.

• Let ϵ > 0.

• {λ̂i, v̂i}ki=1 is ϵ-close to {λi, vi}ki=1.

• Let r ∈ [k].

• Let u ∈ Rn be an unit vector.

Then, we have

1.
∥∥∥∥ r∑
i=1

Êi(I, u, · · · , u)
∥∥∥∥
2

≤ 2pϵκ1/2 + 2ϕϵ.

2. For all [k]\[i],
∣∣∣∣ r∑
i=1

Êj(vj , u, · · · , u)
∣∣∣∣ ≤ (2κϵ+ ϕϵ)/

√
n.

where

κ = 2

r∑
i=1

|u⊤vi|2 (25)

and

ϕ = 2k(ϵ/λk)
p−1. (26)

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Proof. Proof of Part 1.

Let i be an arbitrary element in [r].

We have that Êi is the error and it satisfies

Êi(I, u, · · · , u) = λi(u
⊤vi)

p−1vi − λ̂i(u
⊤v̂i)

p−1v̂i, (27)

which is in the span of {vi, v̂i}.
Also, the span of {vi, v̂i} is identical to the span of {vi, v̂⊥i }, where

v̂⊥i = v̂i − (v⊤i v̂i)vi.

is the projection of v̂i onto the subspace orthogonal to vi.

Note

∥v̂i − v∥22 = 2(1− v⊤i v̂i). (28)

For convenient, we define

ci = ⟨vi, v̂i⟩.

We can rewrite ci as follows

ci = v⊤i v̂i

= 1− ∥v̂i − vi∥22/2
≥ 0, (29)

the first step follows from definition of ci, the second step follows from Eq. (28), and the last step is
because of the assumption that ∥v̂i − vi∥2 ≤

√
2, and it implies that 0 ≤ ci ≤ 1.

We can also get

∥v̂⊥i ∥22 = 1− c2i

≤ ∥v̂i − vi∥22, (30)

which follows from Eq. (29) and the Pythagorean theorem.

For all p being greater than or equal to 3, the following bound can be obtained:

|1− cpi | = |1− (1− ∥v̂i − vi∥22/2)p|

≤ p

2
∥v̂i − vi∥22,

where the 1st step is due to Eq. (29) and the 2nd step is supported by Fact B.1.

We present the definition of ai ∈ Rn and bi ∈ Rn:

ai = u⊤vi

and

bi = u⊤(v̂⊥i /∥v̂⊥i ∥2).

Êi(I, u, · · · , u) can be expressed by the coordinate system of v̂⊥i and vi:

Êi(I, u, · · · , u)

= λi(u
⊤vi)

p−1vi − λ̂i(u
⊤v̂i)

p−1v̂i

= λia
p−1
i vi − λ̂i(aici + ∥v̂⊥i bi∥2)p−1(civi + v̂⊥i )

= (λia
p−1
i vi − λ̂i(aici + ∥v̂⊥i ∥2bi)p−1ci)︸ ︷︷ ︸

Ai

·vi − λ̂i(aici + ∥v̂⊥i ∥2bi)p−1∥v̂⊥i ∥2︸ ︷︷ ︸
Bi

·v̂⊥i /∥v̂⊥i ∥2

=Ai · vi −Bi · (v̂⊥i /∥v̂⊥i ∥2), (31)
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where the first step follows from Eq. (27), the second step follows from the definition of ai and bi,
the third step follows from simple algebra, and the last step follows from the definition of Ai and Bi

(see Definition C.9).

We can express the overall error by:∥∥∥∥∥
r∑

i=1

Êi(I, u, · · · , u)

∥∥∥∥∥
2

2

=

∥∥∥∥∥
r∑

i=1

Aivi −
t∑

i=1

Bi(v̂
⊥
i /∥v̂⊥i ∥2)

∥∥∥∥∥
2

2

≤ 2

∥∥∥∥∥
r∑

i=1

Aivi

∥∥∥∥∥
2

2

+ 2

∥∥∥∥∥
r∑

i=1

Bi(v̂
⊥
i /∥v̂⊥i ∥2)

∥∥∥∥∥
2

2

≤ 2

r∑
i=1

A2
i + 2

(
r∑

i=1

|Bi|

)2

, (32)

where the first step follows from Eq. (31), the second step follows from triangle inequality, and the
third step comes from the definition of the ℓ2 norm.

We have

∥v̂⊥i ∥22 ≤ ∥v̂i − vi∥22
≤ ϵ/λi, (33)

where the first step follows from Eq. (30) and the second step follows from Definition C.8.

By using

|λi − λ̂i| ≤ ϵ, (34)

we first try to bound Ai for |bi| being smaller than 1 and ci ∈ [0, 1],

|Ai| = |λia
p−1
i − λ̂i(aici + ∥v̂⊥i ∥2bi)p−1ci|

≤ |λia
p−1
i − λ̂ic

p
i a

p−1
i |+

p−1∑
j=1

λ̂ici

(
(p− 1)

j

)
|aici|(p−1)−j∥v̂⊥i ∥

j
2

= |λia
p−1
i − λ̂ic

p
i a

p−1
i + λ̂ia

p−1
i − λ̂ia

p−1
i |+

p−1∑
j=1

λ̂ici

(
(p− 1)

j

)
|aici|(p−1)−j∥v̂⊥i ∥

j
2

≤ |λia
p−1
i − λ̂ia

p−1
i |+ |λ̂ia

p−1
i − λ̂ic

p
i a

p−1
i |+

p−1∑
j=1

λ̂ici

(
(p− 1)

j

)
|aici|(p−1)−j∥v̂⊥i ∥

j
2

≤ |λia
p−1
i − λ̂ia

p−1
i |+ |(1− cpi )λ̂ia

p−1
i |+

p−1∑
j=1

λ̂ici

(
(p− 1)

j

)
|aici|(p−1)−j∥v̂⊥i ∥

j
2

≤ |λia
p−1
i − λ̂ia

p−1
i |+ |(1− cpi )λ̂ia

p−1
i |+

p−1∑
j=1

λ̂ici

(
(p− 1)

j

)
|aici|(p−1)−j(ϵ/λi)

j

≤ ϵ|ai|p−1 +
p

2
(ϵ/λi)

2λ̂i|ai|p−1 +

p−1∑
j=1

λ̂i

(
(p− 1)

j

)
|ai|(p−1)−j(ϵ/λi)

j , (35)

where the first step follows from the definition of Ai (see Definition C.9), the second step follows
from binomial theorem and |bi| < 1, the third step follows from adding and subtracting the same
thing, the fourth step follows from triangle inequality, the fifth step follows from simple algebra, the
sixth step follows from Eq. (33), and the last step follows from Eq. (34).

Note that the second term of Eq. (35) can be bounded as

p

2
(ϵ/λi)

2λ̂i|ai|p−1 ≤ p

2
(ϵ/λi)

2(|λ̂i − λi|+ |λi|)|ai|p−1

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

=
p

2
(ϵ/λi)

2|λ̂i − λi||ai|p−1 +
p

2
(ϵ/λi)

2|λi||ai|p−1

≤ p

2
(ϵ/λi)

2ϵ|ai|p−1 +
p

2
(ϵ/λi)

2|λi||ai|p−1

≤ p

2
(ϵ/λi)

2ϵ|ai|p−1 +
p

2
(ϵ/λi) · ϵ|ai|p−1

≤ 1

100k
ϵ|ai|p−1, (36)

where the first step follows from triangle inequality, the second step follows from simple algebra,
the third step follows from Eq. (34), the fourth step follows from Eq. (33), and the last step follows
from Assumption C.10.

We can separate the third term of Eq. (35) into two components

1. j ∈ {1, · · · , (p− 1)/2} and

2. j ∈ {(p− 1)/2, · · · , (p− 1)}.

Consider the first component:

(p−1)/2∑
j=1

λ̂i

(
(p− 1)

j

)
|ai|(p−1)−j(ϵ/λi)

j

= λ̂i(p− 1)|ai|p−2ϵ/λi +

(p−1)/2∑
j=2

λ̂i(p− 1)j |ai|(p−1)/2(ϵ/λi)
j

≤ 2(p− 1)ϵ|ai|p−2 +

(p−1)/2∑
j=2

λ̂i(p− 1)j |ai|(p−1)/2(ϵ/λi)
j

= 2(p− 1)ϵ|ai|p−2 + λ̂i|ai|(p−1)/2

(p−1)/2∑
j=2

(p− 1)j(ϵ/λi)
j

≤ 2(p− 1)ϵ|ai|p−2 + λ̂i|ai|(p−1)/2
∞∑
j=0

(
1

2

)j

≤ 2(p− 1)ϵ|ai|p−2 + λ̂iϵ
ϵ(p− 1)2

λ2
i

· 2 · |ai|(p−1)/2

≤ 2(p− 1)ϵ|ai|p−2 +
1

100k
ϵ|ai|(p−1)/2,

where the first step is by expanding the summation term, the second step is because of the fact that
λ̂i ≤ 2λi, the third step is supported by

∑
i cai = c

∑
i ai, the fourth step follows from the fact that

each term of
∑(p−1)/2

j=2 (p − 1)j(ϵ/λi)
j is bounded by the corresponding term of

∑∞
j=0

(
1
2

)j
, the

fifth step follows from Fact B.2, the sixth step follows from Assumption C.10 and λ̂i ≤ 2λi.

Similarly, we can bound the second component,

(p−1)/2∑
j=(p−1)

λ̂i

(
(p− 1)

j

)
|ai|(p−1)−j(ϵ/λi)

j

= λ̂i · 1 · 1 · (ϵ/λi)
p−1 +

(p−1)/2∑
j=p

λ̂i

(
(p− 1)

j

)
|ai|(p−1)−j(ϵ/λi)

j

= 2ϵp−1/λp−2
i +

(p−1)/2∑
j=p

λ̂i

(
(p− 1)

j

)
|ai|(p−1)−j(ϵ/λi)

j
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≤ 2ϵp−1/λp−2
i +

(
(p− 1)

(p− 1)/2

) (p−1)/2∑
j=p

λ̂i|ai|(p−1)−j(ϵ/λi)
j

≤ 2ϵp−1/λp−2
i +

(
(p− 1)

(p− 1)/2

)
λ̂i|ai|(p−1)/2

(p−1)/2∑
j=p

(ϵ/λi)
j

≤ 1

100k
ϵ+

(
(p− 1)

(p− 1)/2

)
λ̂i|ai|(p−1)/2

(p−1)/2∑
j=p

(ϵ/λi)
j

≤ 1

100k
ϵ+

(
(p− 1)

(p− 1)/2

)
λ̂i|ai|(p−1)/2(ϵ/λi)

(p−1)/2

(p−1)/2∑
j=p

(ϵ/λi)
j−(p−1)/2

≤ 1

100k
ϵ+ 2

(
(p− 1)

(p− 1)/2

)
λ̂i|ai|(p−1)/2(ϵ/λi)

(p−1)/2

≤ 1

100k
ϵ+ 4

(
(p− 1)

(p− 1)/2

)
λi|ai|(p−1)/2(ϵ/λi)

(p−1)/2

≤ 1

100k
ϵ+

1

100k
ϵ|ai|

where the first step comes from expanding the summation term, the second step can be gotten from
λ̂i ≤ 2λi, the third step can be supported by maxj{

(
(p−1)

j

)
} =

(
(p−1)

(p−1)/2

)
, the fourth step follows

from
∑

i cai = c
∑

i ai, the fifth step follows from Assumption C.10, the sixth step follows from
simple algebra, the seventh step follows from the Fact B.3, the eighth step follows from λ̂i ≤ 2λi,
and the last step follows from Assumption C.10.

Thus, putting it all together, we get

|Ai| ≤ ϵ|ai|+
1

10k
ϵ|ai|+ (p− 1)ϵ|ai|+

1

100k
ϵ

which implies that

|Ai|2 ≤ 2

(
(ϵ|ai|)2 + (

1

10k
ϵ|ai|)2 + ((p− 1)ϵ|ai|)2 + (

1

100k
ϵ)2
)

(37)

Next, we need to find the bound of Bi,

|Bi| = |λ̂i∥v̂⊥i ∥2(aici + ∥v̂⊥i ∥2bi)p−1|

≤ λ̂i∥v̂⊥i ∥2
p−1∑
j=0

(
(p− 1)

j

)
|aici|p−1−j∥v̂⊥i ∥

j
2

≤ λ̂i(ϵ/λi)

p−1∑
j=0

(
(p− 1)

j

)
|ai|p−1−j(ϵ/λi)

j

= λ̂i(ϵ/λi)|ai|p−1 + λ̂i(ϵ/λi)

p−1∑
j=1

(
(p− 1)

j

)
|ai|p−1−j(ϵ/λi)

j , (38)

where the first step follows from the definition of Bi (see Definition C.9), the second step follows
from binomial theorem and |bi| < 1, the third step follows from ∥v̂⊥i ∥2 ≤ ϵ/λi, and the last step
follows from extracting the first term from the summation.

Note that the first term of Eq. (38) is

λ̂i(ϵ/λi)|ai|p−1,

which can be bounded as

λ̂i(ϵ/λi)|ai|p−1 ≤ (ϵ+ λi)(ϵ/λi)|ai|p−1
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= ϵ|ai|p−1 + (ϵ2/λi)|ai|p−1

≤ ϵ|ai|p−1 +
1

100k
ϵ|ai|p−1

where the first step follows from simple algebra, and the second step follows from Eq. (36).

The second term of Eq. (38) is

λ̂i(ϵ/λi)

p−1∑
j=1

(
(p− 1)

j

)
|ai|p−1−j(ϵ/λi)

j ,

We can separate this into two components

1. j ∈ {1, · · · , (p− 1)/2} and

2. j ∈ {(p− 1)/2, · · · , (p− 1)}.

The first component is:

(ϵ/λi)

(p−1)/2∑
j=1

λ̂i

(
(p− 1)

j

)
|ai|(p−1)−j(ϵ/λi)

j

= (ϵ/λi)λ̂i(p− 1)|ai|p−2ϵ/λi + (ϵ/λi)

(p−1)/2∑
j=2

λ̂i(p− 1)j |ai|(p−1)/2(ϵ/λi)
j

≤ 1

100k
ϵ|ai|p−2 +

1

100k
ϵ|ai|(p−1)/2

where the first step comes from expanding the summation term and the second step is by Assump-
tion C.10.

The second component is:

(ϵ/λi)

(p−1)/2∑
j=(p−1)

λ̂i

(
(p− 1)

j

)
|ai|(p−1)−j(ϵ/λi)

j

= (ϵ/λi)λ̂i · 1 · 1 · (ϵ/λi)
p−1 + (ϵ/λi)

(p−1)/2∑
j=p

λ̂i

(
(p− 1)

j

)
|ai|(p−1)−j(ϵ/λi)

j

≤ ϕ

k
ϵ+

1

100k
ϵ|ai|

where the first step follows from expanding the summation term, and the second step follows from
ϕ = 2k(ϵ/λk)

p−1 and Assumption C.10.

Putting it all together, we have

|Bi| ≤ ϵ|ai|2 +
1

100k2
ϵ|ai|+

ϕ

k
ϵ

Taking the summation over all the r terms on both sides, we obtain

r∑
i=1

|Bi| ≤ ϵκ+
1

100k2
ϵ

t∑
i=1

|ai|+ ϕϵ.

Using

(x+ y + z)2 ≤ 3(x2 + y2 + z2),
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we have

(

r∑
i=1

|Bi|)2 ≤ 3

(
(ϵκ)2 + (

1

100k
ϵ

t∑
i=1

|ai|)2 + (ϕϵ)2

)

≤ 3

(
(ϵκ)2 + (

1

100k
ϵ)2κk + (ϕϵ)2

)
, (39)

where the last step follows from (
∑t

i=1 |ai|)2 ≤ κk.

Recall that

κ =

t∑
i=1

|ai|2 ≤ 1.

In general, we can get∥∥∥∥∥
r∑

i=1

Êi(I, u, · · · , u)

∥∥∥∥∥
2

2

= 2

r∑
i=1

|Ai|2 + 2(

r∑
i=1

|Bi|)2

≤ 4

(
ϵ2 · κ+ (

1

10k
ϵ)2κ+ (p− 1)2ϵ2κ+ (

1

100
√
k
ϵ)2
)

+ 2(

r∑
i=1

|Bi|)2

≤ 4

(
ϵ2 · κ+ (

1

10k
ϵ)2κ+ (p− 1)2ϵ2κ+ (

1

100
√
k
ϵ)2
)

+ 4

(
(ϵκ)2 + (

1

100k
ϵ)2κk + (ϕϵ)2

)
≤ 4p2ϵ2κ+ 4ϕ2ϵ2

where the first step follows from Eq. (32), the second step follows from Eq. (37), the third step
follows from Eq. (39), and the last step follows from simple algebra.

The desired bound is given by this equation.

Proof of Part 2.

Let j be an arbitrary element of [k]\[i].
Now, we can get ∣∣∣∣∣

r∑
i=1

Êi(vj , u, · · · , u)

∣∣∣∣∣ ≤
r∑

i=1

|Êi(vj , u, · · · , u)|

=

r∑
i=1

λ̂i|v̂⊤i u|p−1|v̂⊤i vj |

≤
t∑

i=1

λ̂i|v̂⊤i u|p−1 ϵ√
nλi

,

for the 1st step, we use the triangle inequality, for the 2nd step, we utilize the fact that ⟨vj , vi⟩ =
0,∀i ̸= j, and for the last step, we employ the third part of the definition of ϵ-close.

Now, we analyze the bound for
∑r

i=1
λ̂i

λi
|v̂⊤i u|p−1:

r∑
i=1

λ̂i

λi
|v̂⊤i u|p−1 ≤

r∑
i=1

λ̂i

λi
(|v⊤i u|+ |(vi − v̂i)

⊤u|)p−1

≤
r∑

i=1

λ̂i

λi
(|v⊤i u|+ ∥vi − v̂i∥2)p−1
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≤
r∑

i=1

(1 + ϵ/λi) · (|v⊤i u|+ ϵ/λi)
p−1

≤ 2

r∑
i=1

(|v⊤i u|+ ϵ/λi)
p−1

≤ 2

r∑
i=1

2p−2 · |v⊤i u|p−1 + 2p−2 · (ϵ/λi)
p−1

≤ 2

r∑
i=1

2|v⊤i u|2 + (2ϵ/λi)
p−1

≤ 2

r∑
i=1

2|v⊤i u|2 + 2k(2ϵ/λk)
p−1

= 2κ+ ϕ.

where the first step follows from the triangle inequality, the second step follows from Cauchy-
Scharwz inequality and ∥u∥2 ≤ 1, the third step follows from Eq. (33), the fourth step follows from
ϵ/λi ≤ 2, the fifth step follows from Fact B.1, the sixth step follows from |v⊤i u| < 1/4 and p ≥ 3,
the seventh step follows from λk ≤ λi, and the last step follows from the definition of ϕ and κ (see
Eq. (26) and Eq. (25)).

Then, we complete the proof with the desired bound (2κ+ ϕ)ϵ/
√
n.

Corollary C.12. If the following conditions hold:

• For all i ∈ [k], let Êi = λiv
⊗p
i − λ̂iv̂

⊗p
i ∈ Rnp

.

• Let c0 ≥ 1.

• Let r ∈ [k].

• Let ϵ ≤ λk/(2c0k).

• Suppose that {λ̂i, v̂i}ki=1 is ϵ-close to {λi, vi}ki=1.

• u ∈ Rn is an unit vector.

• Suppose |u⊤vr+1| ≥ 1− 1
c20p

2k
.

• Let κ =
r∑

i=1

|u⊤vi|2.

• Let ϕ = 2k(ϵ/λk)
p−1.

Then,

1.
∥∥∥∥ r∑
i=1

Êi(I, u, · · · , u)
∥∥∥∥
2

≤ 2pϵκ1/2 + 2ϕϵ ≤ 4ϵ/c0.

2. ∀j ∈ [k]\[i],
∣∣∣∣ r∑
i=1

Êj(vj , u, · · · , u)
∣∣∣∣ ≤ (2κϵ+ ϕϵ)/

√
n ≤ 4ϵ/(c0

√
n).

Proof. Based on Fact B.4, we can get that for any arbitrary i in [r],

κ =

r∑
i=1

|u⊤vi|2

≤ k · 1/(c20p2k)
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= 1/c20p
2,

where the first step follows from definition of κ, the second step follows from r ≤ k and
maxi |u⊤vi|2 ≤ 1/(c20p

2k), and the last step follows from simple algebra.

This implies

2pϵ
√
κ ≤ 2/c0.

We can also bound ϕ,

ϕ = 2k(ϵ/λk)
p−1

≤ 2k(1/2c0k)
p−1

≤ 2k(1/(2c0k))
2

≤ 1/c0.

where the 1st step can be gotten from the definition of ϕ, the 2nd step is because of ϵ ≤ λk/(2c0k)
(from Corollary statement), the 3rd step is due to p ≥ 2, and the 4th step can be seen from 2k ≥ 1.

Therefore, we complete our proof.

D COMBINE

In this section, we present Theorem D.1 and Theorem D.2 and prove them.
Theorem D.1 (Arbitrary order robust tensor power method, formal version of Lemma 3.1). If the
following conditions hold

• Let p be greater than or equal to 3.

• Let k be greater than or equal to 1.

• Let λi > 0.

• With n ≥ k, {v1, . . . , vk} ⊆ Rn is an orthonormal basis vectors.

• Let A = A∗ + E ∈ Rnp

be an arbitrary tensor satisfying A∗ =
∑k

i=1 λiv
⊗p
i .

• Suppose that λ1 is the greatest values in {λi}ki=1.

• Suppose that λk is the smallest values in {λi}ki=1.

• The outputs obtained from the robust tensor power method are {λ̂i, v̂i}ki=1.

• E satisfies that ∥E∥ ≤ ϵ/(c0
√
n).

• T = Ω(log(λ1n/ϵ)).

• L = Ω(k log(k)).

• c0 ≥ 100 and c > 0

• For all ϵ satisfying ϵ ∈ (0, cλk/(c0p
2kn(p−2)/2).

Then, with probability at least 9/10, there exists a permutation π : [k]→ [k], such that ∀i ∈ [k],

|λi − λ̂π(i)| ≤ ϵ, ∥vi − v̂π(i)∥2 ≤ ϵ/λi. (40)

Proof. Let E ∈ Rnp

be the original noise.

Let

Êi = λiv
⊗p
i − λ̂iv̂

⊗p
i ∈ Rnp
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be the deflation noise.

E ∈ Rnp

represents the sketch noise.

Ẽ represents the “true” noise, including all the original, deflation and sketch noises.

As a result, for the t+ 1 step, we analyze A∗ + Ẽ, which is a tensor satisfying

Ẽ = E +

t∑
i=1

Êi + E.

There is no need for us to consider E, the sketch noise. However, to prove a stronger statement, we
do not regard E to be equal to 0, but only assume that it is bounded, namely

∥E∥ ≤ ϵ/(c0
√
n). (41)

We use mathematical induction to proof this.

Base case.

Let i = 1.

For the 1st step, we have that λ̂1 ∈ R and v̂1 ∈ Rn.

As Part 2 of Definition C.8, we show

∥v̂1 − v1∥2
is bounded.

Then, as Part 1 of Definition C.8, we show

|λ̂1 − λ1|

is bounded.

At the end, as Part 3 of Definition C.8, we show

|v̂⊤i vj |

is bounded.

Bounding |v̂1 − v1|.
We have

tan θ(u0, v1) = sin θ(u0, v1)/ cos θ(u0, v1)

=
√
1− ⟨u0, v1⟩2/⟨u0, v1⟩

=

√
1− ⟨u0, v1⟩2
⟨u0, v1⟩2

=

√
1

⟨u0, v1⟩2
− 1

≤

√
1

⟨u0, v1⟩2

=
1

⟨u0, v1⟩
≤
√
n, (42)

where the first step follows from Definition 4.3, the second step follows from Definition 4.3, the
third step follows from simple algebra, the fourth step follows from simple algebra, the fifth step
follows from simple algebra, the sixth step follows from simple algebra, and the last step follows
from Lemma 4.8.
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t∗ represents the condition for

|u⊤
t∗v1| = 1− 1

c20p
2k2

. (43)

We know

∥ut∗ − v1∥22 = ∥ut∗∥22 + ∥v1∥22 − 2⟨ut∗ , v1⟩
= 1 + 1− 2⟨ut∗ , v1⟩
= 2− 2|u⊤

t∗v1|

= 2− 2(1− 1

c20p
2k2

)

= 2/(c20p
2k2),

where the first step follows from simple algebra, the second step follows from the fact that ut∗ and
v1 are unit vectors, the third step is because the inner product is positive, the fourth step follows
from Eq. (43), and the last step follows from simple algebra.

We can upper bound

∥ut∗ − v1∥2 ≤ tan θ(ut∗ , v1)

≤ 0.8 tan θ(ut∗−1, v1)

≤ · · ·
≤ 0.8t

∗
tan θ(u0, v1)

≤ 0.8t
∗√

n,

where the first step is due to Fact B.6, the second can be seen from Part 1 of Theorem 4.9, the second
last step can be gotten from Part 1 of Theorem 4.9, and the last step follows from Eq. (42).

After that, we let

t∗ = Ω(log(nkpc0)) = Ω(log(c0n)).

For ∥uT − v1∥2, we can show

∥uT − v1∥2 ≤ 0.8 tan θ(uT , v1) + 18ϵ/(c0λ1)

≤ · · ·
≤ 0.8T−t∗ tan(ut∗ , v1) + 5 · 18ϵ/(c0λ1),

where the first step follows from Part 1 of Theorem 4.9, and the last step follows from recursively
applying Part 1 of Theorem 4.9.

To guarantee

∥uT − v1∥2 ≤ ϵ/λ1,

we let

T − t∗ = Ω(nλ1/ϵ)

and c0 ≥ 100.

Therefore, we achieve the intended property as outlined in Part 2 of Definition C.8.

Bounding |λ̂1 − λ1|.

It remains to bound |λ̂1 − λ1|.

|λ̂1 − λ1| = |[A∗ + Ẽ](v̂1, · · · , v̂1)− λ1|
≤ |Ẽ(v̂1, · · · , v̂1)|+ |A∗(v̂1, · · · , v̂1)− λ1|

= |Ẽ(v̂1, · · · , v̂1)|+

∣∣∣∣∣
[

k∑
i=1

λiv
⊗p
i

]
(v̂1, · · · , v̂1)− λ1

∣∣∣∣∣
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≤ |Ẽ(v̂1, · · · , v̂1)|︸ ︷︷ ︸
B5

+ |λ1|v⊤1 v̂1|p − λ1|︸ ︷︷ ︸
B6

+

k∑
j=2

λj |v⊤j v̂1|p︸ ︷︷ ︸
B7

, (44)

where the first step follows from the definition of λ̂1, the second step follows from the triangle
inequality, the third step follows from

A∗ =

k∑
i=1

λiv
⊗p
i ,

and the last step follows from the triangle inequality.

For the term B5, we have

B5 = |Ẽ(v̂1, · · · , v̂1)|
≤ |E(v̂1, · · · , v̂1)|+ |E(v̂1, · · · , v̂1)|
≤ ∥E∥+ |E(v̂1, · · · , v̂1)|
≤ ϵ/(c0

√
n) + ϵ/(c0

√
n)

≤ ϵ/12, (45)

where the first step follows from the definition of B5 (see Eq. (44)), the second step follows from
triangle inequality, the third step follows from the definition of tensor spectral norm, the fourth step
follows from Eq. (41), and the last step follows from c0 ≥ 100 and n is greater than or equal to 1.

We still need to find the upper bound of B6 and B7.

B6 = |λ1 · |v⊤1 v̂1|p − λ1|

= λ1 − λ1(1−
1

2
∥v1 − v̂1∥22)p

≤ λ1p
1

2
∥v1 − v̂1∥22

≤ pϵ2/(2λ1)

≤ ϵ/12, (46)

where the first step follows from the definition of B6 (see Eq. (44)), the second step follows from
v⊤1 v̂1 = 1− 1

2∥v1 − v̂1∥22, the third step comes from ∥v1 − v̂1∥22 ≪ 1, the fourth step is because of
∥v1 − v̂1∥2 ≤ ϵ/λ1, and the last step follows from pϵ/(2λ1) ≤ 1/12.

For B7, we have

B7 =

k∑
j=2

λj |v⊤j v̂1|p

≤
k∑

j=2

λj(ϵ/(
√
nλj))

p

= ϵ

k∑
j=2

(ϵ/(λj

√
n))p−1

≤ ϵ/4, (47)

where the first step follows from the definition of B7 (see Eq. (44)), the second step follows from
Part 3 of Definition C.8, the third step follows from simple algebra, and the last step is due to
(ϵ/λk)

p−1 ≤ 1/(4k).

Let

ϵ <
1

4
k1/(p−1)λk.
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Finally, combining everything together, we can get

|λ̂1 − λ1| ≤ B5 +B6 +B7

≤ ϵ/12 + ϵ/12 + ϵ/4

≤ ϵ,

where the first step follows from Eq. (44), the second step follows from combining Eq. (45), Eq. (46),
and Eq. (47), and the last step follows from simple algebra.

Bounding |v̂⊤1 vj |.
Let j be an arbitrary element in {2, · · · , k}.
Let t∗ be the least integer satisfying

|v⊤1 ut∗ | ≥ 1− 1

c20p
2k2

,

which implies

|v⊤j ut∗ | ≤
1

c0pk
.

By Part 3 of Theorem 4.9, we have

|v⊤j ut∗ |/|v⊤1 ut∗ | ≤ 0.8|v⊤j ut∗−1|/|v⊤1 ut∗−1|
≤ · · ·
≤ 0.8t

∗
· |v⊤j u0|/|v⊤1 u0|

≤ 0.8t
∗
· |v⊤j u0|/(1/

√
n)

≤ 0.8t
∗
· 1/(1/

√
n),

where the third step follows from recursively applying Part 3 of Theorem 4.9, the fourth step follows
from Lemma 4.8 and the last step follows from the fact that |v⊤j u0| is at most 1.

Let

t∗ = Ω(log c0n).

When T > t∗, we have

|v⊤j uT |/|v⊤1 uT | ≤ 0.8T−t∗ |v⊤j ut∗ |/|v⊤1 ut∗ |+ 5 · 18ϵ/(c0λ1

√
n).

Let

T = Ω(log(nλ1/ϵ))

and c0 ≥ 100 to ensure

|v⊤j uT | ≤ ϵ/(λ1

√
n).

Inductive case.

Let i = r + 1.

Suppose the first r cases holds.

To show the r + 1 case also hold, we first consider the “true” noise, which is

Ẽ = E +

r∑
i=1

Ei + E ∈ Rnp

.

We explain how to bound

∥v̂r+1 − vr+1∥2,
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(for Definition C.8, Part 2).

Then, we show how to bound

|λ̂r+1 − λr+1|

as Part 1 of Definition C.8.

In the end, we show how to bound

|v⊤r+1vj |

as Part 3 of Definition C.8.

Bounding ∥v̂r+1 − vr+1∥2.

Except for letting

T = Ω(log(nλt+1/ϵ)),

other parts of the proof are the same as the ones in the base case.

Bounding |λ̂r+1 − λr+1|.

Let A∗ and Ẽ be

A∗ =

k∑
i=t+1

λiv
⊗p
i

and

Ẽ = E + E +

t∑
i=1

Êi.

Therefore, we have

|λ̂t+1 − λt+1|

satisfying

|λ̂r+1 − λr+1| = |[A∗ + Ẽ](v̂r+1, · · · , v̂r+1)− λr+1|
≤ |Ẽ(v̂r+1, · · · , v̂r+1)|+ |A∗(v̂r+1, · · · , v̂r+1)− λr+1|

= |Ẽ(v̂r+1, · · · , v̂r+1)|+

∣∣∣∣∣
[

k∑
i=r+1

λiv
⊗p
i

]
(v̂r+1, · · · , v̂r+1)− λr+1

∣∣∣∣∣
≤ |Ẽ(v̂r+1, · · · , v̂r+1)|︸ ︷︷ ︸

B8

+ |λr+1|v⊤r+1v̂r+1|p − λr+1|︸ ︷︷ ︸
B9

+

k∑
j=r+2

λj |v⊤j v̂r+1|p︸ ︷︷ ︸
B10

.

where the first step follows from the definition of λ̂r+1, the second step follows from triangle in-
equality, the third step follows from A∗ =

∑k
i=r+1 λiv

⊗p
i , and the last step follows from the triangle

inequality.

We need to analyze B8,

B8 = |Ẽ(v̂r+1, · · · , v̂r+1)|

= |E(v̂r+1, · · · , v̂r+1)|+ |E(v̂r+1, · · · , v̂r+1)|+ |
r∑

i=1

Êi(v̂r+1, · · · , v̂r+1)|

≤ ϵ/(c0
√
n) + ϵ/(c0

√
n) + 4ϵ/(c0

√
n)

≤ ϵ/12,
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where the first step follows from the definition of B8, the second step follows from the triangle
inequality, the third step follows from Eq. (41), the last step follows from c0 ≥ 100, n ≥ 1.

B9 and B10 can be bounded in a similar way as the base case.

Bounding |v̂⊤r+1vj |.
Let j be an arbitrary element in {r + 2, · · · , k}. Then, the proof is the same as the base case.

Theorem D.2 (Fast Tensor Power Method via Sketching, formal version of Theorem 1.1). If the
following conditions hold

• Let A = A∗ + E ∈ Rnp

be an arbitrary tensor satisfying A∗ =
∑k

i=1 λiv
⊗p
i .

• Suppose that λ1 is the greatest values in {λi}ki=1.

• Suppose that λk is the smallest values in {λi}ki=1.

• The outputs obtained from the robust tensor power method are {λ̂i, v̂i}ki=1.

• E satisfies that ∥E∥ ≤ ϵ/(c0
√
n).

• T = Ω(log(λ1n/ϵ)).

• L = Ω(k log(k)).

• c0 ≥ 100 and c > 0

• For all ϵ satisfying ϵ ∈ (0, cλk/(c0p
2kn(p−2)/2).

Then, our algorithm uses Õ(np) spaces, runs in O(TL) iteration, and in each iteration it takes
Õ(np−1) time and then with probability at least 1− δ, there exists a permutation

π : [k]→ [k],

such that ∀i ∈ [k],

|λi − λ̂π(i)| ≤ ϵ, ∥vi − v̂π(i)∥2 ≤ ϵ/λi.

Proof. It follows by combining Theorem D.1 and Lemma 4.2.

LLM USAGE DISCLOSURE

LLMs were used only to polish language, such as grammar and wording. These models did not
contribute to idea creation or writing, and the authors take full responsibility for this paper’s content.
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