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Abstract

Learning safe policies has presented a longstanding challenge for the reinforcement
learning (RL) community. Various formulations of safe RL have been proposed;
however, fundamentally, tabula rasa RL must learn safety constraints through ex-
perience, which is problematic for real-world applications. Imitation learning, alter-
natively, is often preferred in real-world settings because the experts’ safety prefer-
ences are embedded in the data the agent imitates. However, imitation learning is
limited in its extensibility to new tasks, which can only be learned by providing the
agent with expert trajectories. For safety-critical applications with sub-optimal or
inexact expert data, it would be preferable to learn only the safety aspects of the
policy through imitation, while still allowing for task learning with RL. The field
of inverse constraint learning, which seeks to infer constraints from expert data, is
a promising step in this direction. However, prior work in this area has relied on
complex tri-level optimizations in order to infer safe behavior (constraints). This
challenging optimization landscape leads to sub-optimal performance on several
benchmark tasks. In this work, we present a simplified version of constraint infer-
ence that performs as well or better than prior work across benchmarks. Moreover,
besides improving performance, this simplified framework more readily lends itself
to various extensions of interest, such as offline constraint inference.

1 Introduction

Reinforcement learning (RL) has made significant advances in recent years, yet real-world applica-
tions of RL remain limited due to various challenges, including particularly safety concerns (Dulac-
Arnold et al., 2021). One common setting where RL holds promise for real-world deployments is
replacing existing, possibly sub-optimal, human-managed control policies. For example, in the field
of power network control, decisions are often made by a combination of automatic control policies
combined with careful human monitoring and intervention (Marot et al., 2022). However, concerns
regarding the deployment of autonomous systems on safety-critical tasks have hindered the adoption
of RL for replacing legacy control systems. This is particularly true for deep RL, which functions
largely as a black box controller.

In the setting of replacing legacy controllers, however, the challenge is simplified due to access to data
produced by the current control system. While existing control policies may be sub-optimal, they
are nonetheless “safe” in the sense that they obey some explicitly or implicitly defined constraints
corresponding to a human understanding of safety. Ideally, we would like to be able to learn an RL
policy that can outperform the current system, in terms of optimizing the reward, while continuing
to respect these constraints. When these constraints are unknown (i.e. defined implicitly through
human actions), the implicit safety procedures that are being followed may not be explicitly known
or have an obvious encoding. Thus, it would be beneficial to infer the constraints directly from
trajectories produced by the existing control policy.
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Typically, in settings with large-scale offline data, imitation learning (Schaal, 1996) or offline RL
(Kumar et al., 2020; Kostrikov et al., 2022) might be used. However, these methods only extract a
single policy that satisfies constraints and optimizes a reward function. Moreover, imitation learning
generally cannot outperform the expert, which is prohibiting in cases where we wish to improve over
current control policies. Offline RL can learn policies that outperform the demonstration (Kumar
et al., 2020), however, offline RL cannot ensure that safety constraints remain satisfied without
access to the constraint function or constraint violation annotations in the dataset.

Ideally, we would like to extract safety constraints from the data based on the expert behavior,
which can then be used downstream to constrain task-specific learning. Learning constraints from
expert trajectories is the purview of the field of constraint inference. Various methods have been
proposed in this domain, with early work focusing on simple settings such as tabular MDPs (Scobee
& Sastry, 2020). More generally, inverse constraint learning can infer constraints in continuous
settings using parameterized constraint functions and adapting IRL methods such as maximum
entropy IRL (Ziebart et al., 2008) to the constrained setting by solving a constrained MDP in the
inner optimization. However, this tri-level optimization creates a challenging learning landscape.

In this work, we demonstrate that the constrained MDP inner loop is an unnecessary complication
and that regular IRL techniques can recover as good and sometimes better solutions to constraint
inference problems than more complicated methods. This result is significant because it allows
simpler training dynamics for constraint inference and implies that advances in sub-domains of IRL
can be directly applied to the constraint inference case. For example, recent progress in offline IRL
(Yue et al., 2023; Kim et al., 2023) can be readily adapted to the constraint inference case to infer
constraints entirely offline, significantly increasing the scope of applicability in real-world settings.

In particular, we make the following contributions. First, we show that inverse constrained RL and
inverse RL are equivalent under certain classes of reward functions. Next, we experimentally validate
this claim. Finally, we conduct ablations over various methods for regularizing deep RL to improve
the stability and performance of constraint inference.

2 Related Work

Imitation learning and inverse reinforcement learning The problem of imitation learning
(IL) is primarily concerned with learning a policy that produces similar behavior to a class of
reference policies. Specifically, given transition data from “experts”, the goal is to produce a new
policy that, in a sense, generates a similar transition distribution. IL methods as discussed above
can generally learn performant imitation policies, but provide no insight about the reward function
that the expert is implicitly optimizing; this is the focus of inverse reinforcement learning, which
will be useful for the purpose of learning transferable constraint functions. Inverse reinforcement
learning (IRL) learns a policy that can mimic expert trajectories and also aims to infer a reward
function that explains the expert behavior (Ng et al., 2006). The IRL problem is considerably more
difficult than the IL problem; in particular, there is no unique reward function that maximally
explains the expert behavior. The work of Abbeel & Ng (2004) alleviates this issue with a maximum
margin constraint in the optimization. The work of Ziebart et al. (2008) resolves this problem by
inferring the most likely reward function under a particular probabilistic model; this approach is
widely known as maximum entropy IRL (MaxEnt IRL).

Inverse constrained reinforcement learning Early work in constraint inference focused pri-
marily on particular settings such as convex constraints (Menner et al., 2019; Miryoosefi et al.,
2019), or tabular RL (Scobee & Sastry, 2020; McPherson et al., 2021; Chou et al., 2020). More re-
cent methods have integrated the power of deep learning within the constraint inference framework
through adaptions of MaxEnt IRL to the constrained setting through inverse constrained reinforce-
ment learning (ICRL) (Malik et al., 2021; Liu et al., 2023a; Kim et al., 2023). These methods
essentially replace the forward RL inner loop of IRL with a constrained version of the problem by
casting it as a constrained MDP (CMDP) and solving by Lagrangian or other methods. This adds
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additional complexity to the IRL problem which is already difficult due to the bi-level optimization
and identifiability issues (Gleave & Toyer, 2022). Though these prior works have sometimes consid-
ered simple IRL baselines (Malik et al., 2021; Liu et al., 2023a), none have specifically outlined the
connections between IRL and ICRL, nor have they optimized IRL for constraint inference.

3 Background

Maximum Entropy IRL As discussed in Section 2 there are several formulations of IRL. Here
we describe maximum entropy IRL (Ziebart et al., 2008; Ziebart, 2010). Given a set of expert
trajectories De = {τ (i)

e }Ni=0, which follow a policy πE , a policy π can be trained to produce similar
trajectories by solving the min-max problem:

min
r∈R

max
π

(
Eπ

[
T∑
t=0

r(st, at)
]

+H(π) − EπE

[
T∑
t=0

r(st, at)
])

(1)

where r is a learned reward function and H(π) is a causal entropy term. Hence, IRL is searching
for a reward function r that is high for the expert πE and low for other policies.

Constrained RL One way to formulate constrained MDPs (CMDPs) is through trajectory-level
constraints. In this formulation, the agent must solve the following objective:

max
π

Eπ

[
T∑
t=0

r(st, at)
]

s.t. Eπ

[
T∑
t=0

c(st, at)
]

≤ δi ∀ i ∈ {1, ..., I} (2)

The most common method for solving this problem is Lagrangian variations of RL methods, such as
SAC-Lag (Ha et al., 2020), where Equation (2) is converted to a min-max problem (See Equation (4)).

Inverse constrained RL Inverse constrained reinforcement learning (ICRL) is a class of methods
used to infer constraints from expert trajectories. As in imitation learning and IRL, it is assumed
that we have access to a set of expert trajectories De = {τ (i)

e }Ni=0, which follow a policy πE , however,
it is now assumed that the expert policy is optimal under a CMDP instead of an MDP. It is generally
assumed that the agent has access to the unconstrained (nominal) MDP with which to interact, and
in particular that the reward is observed by the agent when interacting with the environment.

Kim et al. (2023) present a general formulation of ICRL as game-solving, though we note that their
formulation was preceded by that of Malik et al. (2021), and, though motivated differently, generally
matches it, up to some implementation details.

As shown in prior work (Swamy et al., 2021; Kim et al., 2023), the inverse RL problem can be cast
as a two-player zero-sum game

OptIRL(Π,F) = min
π∈Π

sup
f∈F

J(π, f) − J(πE , f) (3)

where F is convex and compact and J(π, f) = Eπ
[∑T

t=0 f(st, at)
]

Similarly, the constrained RL problem in Equation (2) with a single constraint can also be cast as
a two-player zero-sum game:

min
π∈Π

max
λ>0

−J(π, r) + λ(J(π, c) − δ) (4)

Finally, Kim et al. (2023) show that for inverse constraint learning, these two games can be combined
into a three-player game of the following form (where r is a given reward function in a class Fr).
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OptICRL(Π,Fr,Fc) = sup
c∈Fc

max
λ>0

min
π∈Π

J(πE , r − λc) − J(π, r − λc), (5)

Practically speaking, solving this game involves running IRL where the inner loop optimization
solves a constrained MDP using a Lagrangian version of RL, such as SAC-Lag (Ha et al., 2020).

4 Method

Starting from Equation (5), we now demonstrate that this tri-level optimization is equivalent to
a simpler bi-level optimization under certain classes of constraint functions and that this bi-level
optimization is equivalent to the IRL game-solving formulation in Equation (3).

4.1 Inverse constraint learning as IRL

Note that there are two outer maximizations in Equation (5), the first over constraints in the class
Fc and the second over λ > 0. Our key insight is that, under a broad class of constraint functions
Fc, this tri-level optimization can be cast as a bi-level optimization, reducing ICRL to IRL.

Theorem 4.1 Let πE ∈ Π and a reward function r ∈ Fr be given. Consider the objective

OptS−ICRL(Π,Fr,Fc) = max
c∈Fc

min
π∈Π

J(πE , r − c) − J(π, r − c). (6)

Then, if Fc is a convex cone (that is, c ∈ Fc =⇒ λc ∈ Fc for any λ ≥ 0), it holds that
OptICRL(Π,Fr,Fc) = OptS−ICRL(Π,Fr,Fc).

Moreover, suppose Π is compact and Fr = Fc = F is a vector space with elements f : (s, a) 7→
⟨ϕ(s, a), wf ⟩, where ϕ : S × A → [0, 1]d is a fixed (not necessarily known) feature map and
wf ∈ Rd identifies the elements of F . Then any solution to OptIRL(Π,F − r)1 is a solution to
OptICRL(Π,F ,F)—that is, the ICRL problem is simply an instance of IRL.

Proof. See Appendix B. □

The intuition for this is the following. The only difference between solving a constrained MDP with
Lagrange multiplier λ and solving an unconstrained MDP with a cost penalty term weighted by
λ is that, in the former case λ is optimized to ensure constraint satisfaction. Indeed, given the
correct λ a priori, constrained MDPs can be solved exactly by optimizing the later problem. This
distinction is generally important when the cost function is fixed and unknown, however in the case
of inverse learning where we learn the cost function from a class closed to scalar multiplication, it is
possible to learn a cost that directly ensures constraint satisfaction, without scaling by the Lagrange
multiplier. Note that optimizing over a convex cone Fc can pose challenges when exact optimization
is required—for instance, convex cones violate a compactness condition required to prove regret
bounds for inverse constrained RL given by Kim et al. (2023). However, in large scale applications
that approximately optimize a constraint model represented by a deep neural network, one is often
already in the setting where these regret bounds do not hold. Hence, when employing parameterized
constraint inference through deep learning, it is sufficient to select an appropriate class as the output
activation of our neural network and use a bi-level optimization to learn the scaled constraint.

4.2 Techniques for stabilizing constraint learning

Given that IRL and ICRL are mathematically equivalent under the class of constraint functions
described above, the question of how best to perform constraint inference through inverse learning
becomes largely a practical one. Is the optimization landscape smoother if we explicitly optimize
for λ as a Lagrange multiplier or implicitly as part of the constraint function? Does optimizing

1The notation F − r refers to the set {f − r : f ∈ F}.
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the Lagrangian implicitly add additional algorithmic components that could explain the improved
performance of ICRL over IRL in prior work? Moreover, are there other regularizations or modifi-
cations that we could consider? In this regard, we suggest the following practical modifications to
IRL for the constraint learning case, which we will test in Section 5.

IRL with separate critics One component of prior methods for constraint inference that is
implicitly added when utilizing a Lagrangian method for forward RL, is the use of separate critics
for the reward and constraint functions. Separate critics may potentially be beneficial for learning,
since separating the critics disentangles the value function learning of the reward (which is not
changing during training) with the constraint function (which changes as the constraint is learnt).
It is straightforward to implement separate critics in any IRL implementation without the additional
Lagrangian optimization (please see Algorithm 1 in Appendix A.1).

Positive rewards and batch normalization One advantage of prior methods’ use of a binary
classifier for constraint representations is that it restricts costs to positive values (Malik et al.,
2021). In practice, it is advantageous for interpretability and transferability to restrict the constraint
function to be strictly positive, so that the learned constraint can only discourage the agent from
visiting certain states not visited by the expert. Hence, in our experiments, we restrict values to the
positive range by clipping the output of the constraint network. However, restricting the output of
a neural network to positive values can be challenging due to the potential for vanishing gradients.
Normalization layers such as batch normalization can be used to help prevent vanishing gradients
(Ioffe & Szegedy, 2015). Hence, we test if adding batch normalization improves the convergence of
IRL for constraint learning with output clipped to positive values.

Last-layer policy resetting Recent work has demonstrated that the primacy bias caused by
plasticity loss can be a significant challenge for training deep RL agents (Nikishin et al., 2022). This
challenge is exacerbated in the case of IRL and particularly ICRL since the learned cost function
changes constantly during training while the true rewards are provided from the environment, po-
tentially biasing early policy training towards learning the unconstrained policy. To combat this
plasticity loss issue, we adopt the recommendations from Lyle et al. (2023) for MLPs, which advises
periodically resetting the final layer of the network during training.

Reward scaling Finally, one potential practical advantage of the Lagrangian constraint inference
methods is that the constraint function is learned independently of the reward scale and may be
more robust to varying scales. To evaluate this, we consider normalizing the rewards using the
rolling mean and variance, so that rewards are scaled to zero mean and unit variance.

5 Experiments

In this section, we conduct a series of experiments across several environments in order to answer
the following questions: (1) How does IRL, without additional modifications, perform on constraint
inference tasks compared to Lagrangian methods? and (2) How do various modifications or regular-
izations over vanilla IRL improve performance on constraint inference tasks?

Environments For our experiments, we consider the virtual environments for benchmarking in-
verse constraint learning, introduced by Liu et al. (2023a) since these were specially designed to test
the performance of constraint inference tasks and also provide a recent baseline for Lagrangian-based
constraint inference methods, including expert data. The environments include five Mujoco envi-
ronments, modified to include constraints, which are primarily binary restrictions on the x-position
of the agent. For more details, see Liu et al. (2023a).

Evaluation metrics Evaluating constrained RL is challenging due to the dual objectives of opti-
mizing rewards and satisfying constraints, which are typically in conflict with one another. Hence,
in our evaluation, we report two metrics, following Liu et al. (2023a), feasible rewards and violation
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Figure 1: Heatmap of difference in feasible rewards over vanilla IRL, averaged over the last 100
testing episodes, normalized per environment (column-wise) by the range of values. Cases where
the violation rate increased by more than 10% over vanilla IRL are indicated with a star. Positive
values indicate a better result over vanilla IRL and negative values indicate a worse result.

rate. Feasible rewards are calculated as the total returns for an episode up to the point of the first
constraint violation. The violation rate is the percentage of episodes with one or more constraint
violations. Using these metrics allows us to compare the baselines along the same axis as prior work.

Prior methods for comparison We compare our results against two baselines from Liu et al.
(2023a). The first is their implementation of MaxEnt ICRL (Malik et al., 2021) (denoted MECL),
which is the canonical method for Lagrangian-based constraint inference that provides the primary
baseline for our method. The second is their implementation of GAIL for constraint inference
(denoted GACL), introduced as a baseline for MECL in Malik et al. (2021). This is a basic version
of IRL for constraint inference, which uses the GAIL algorithm (Ho & Ermon, 2016) with an additive
log constraint term. For our implementation of the maximum entropy IRL method, we use SAC as
the forward RL algorithm, similar to Kim et al. (2023), whereas Malik et al. (2021) and Liu et al.
(2023a) use PPO with an entropy regularization term. Though we have attempted to reimplement
Malik et al. (2021) using SAC, our performance is low compared to Liu et al. (2023a). To compensate
we instead include the reported results from Liu et al. (2023a) directly in the figures 2 and include
full results of our SAC implementation in Appendix C.1.

Experimental Setup As mentioned, we use SAC for policy optimization. As the IRL algorithm,
we utilize a version of maximum entropy IRL as implemented in Zeng et al. (2022). The learnt
constraint function is parameterized as an MLP with a linear output activation clipped to the
positive range. To provide the most fair assessment of our method, we do not tune hyperparameters
specifically for each environment. Instead, we adopt the hyperparameters for SAC as used in Achiam
(2018), except that we use automatic α-tuning (Haarnoja et al., 2018). All the hyperparameters for
IRL were set to those used in Zeng et al. (2022). We train all variations in all environments for 5M
environment steps across three seeds. Full configuration details are included in Appendix A.2.

5.1 IRL versus ICRL

First, we compare our IRL implementation to the baseline methods. In Figure 1 we present a
summary of our findings across environments, showing a heatmap of the difference in feasible rewards
versus vanilla IRL for various configurations, normalized by the within-environment range. The
modifications proposed in Section 4.2 are labeled as SC for separate critics, PR for policy reset,
BN for batch normalization, and RN for reward normalization.

Notably, vanilla IRL (IRL) performs quite favorably versus MECL. While MECL does perform
slightly better on Walker2d, the effect is marginal and comes at the expense of a greater than 10%

2We take the results directly from the tables provided in Liu et al. (2023a) when available or make a best estimate
based on figures when not. Notably, we double the reported performance on the Half Cheetah environment in all our
comparisons, as it appears to us, based on the expert performance, that the authors used episodes of only 500 steps
rather than the 1000 steps they report.
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increase in the violation rate. Only in the Ant environment does MECL significantly outperform
vanilla IRL, though we note that including the best modification for the Ant environment (SC,
see Section 5.2) increases the performance of IRL to slightly exceed MECL. The base IRL method
performs similarly to the previous IRL baseline method GACL, though it outperforms in Inverted
Pendulum and underperforms in Ant. Including the best overall modifications across environments
SC+PR, we see considerable improvement over MECL in Half Cheetah, Inverted Pendulum and
Walker2d. Considering the best modifications in each environment, we see considerable improvement
over MECL in all environments.

5.1.1 Sub-optimal Expert Trajectories

Previous work has found that constraint inference with a Lagrangian inner loop is more robust
to suboptimal expert trajectories whereas simple IRL methods cannot learn effectively (Liu et al.,
2023a). We conduct experiments on the suboptimal dataset for Half Cheetah provided in Liu et al.
(2023a) to test whether this remains true with the added modifications. For these experiments,
we use the best modification found in the Half Cheetah environment (see Section 5.2 for further
discussion), which is separate critics with policy reset and reward normalization (SC+PR+RN).
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Figure 2: Training curves for Half Cheetah with suboptimal trajectories. The suboptimal datasets
are constructed to contain 20%, 50% and 80% unsafe expert trajectories, i.e. expert trajectories
with one or more constraint violations. Error bands show standard deviation across three seeds and
a smoothing window of 200 testing episodes.

In all cases, our method performs much better than the simple IRL baseline GACL, which does not
achieve any feasible rewards. Our method also outperforms MECL by a wide margin in two of the
three variations and achieves similar performance in the third, though with notably high variance.

5.2 Impact of Modifications

Here, we more closely examine the impact of the proposed modifications (Section 4.2) on constraint
inference with IRL. Overall, the impact of the modifications varies considerably across environments,
with each environment achieving maximum rewards under different modifications. However, certain
trends emerge from this analysis that indicate which modifications may be most useful in general.

Policy reset and separate critics Overall, the most consistent modification across environments
is separate critics combined with last-layer policy reset (SC+PR). This modification increases fea-
sible rewards over the base case IRL in all but one environment (Swimmer). Moreover, it is the best
or second best modification by feasible reward improvement in three of the five environments (Half
Cheetah, Ant, Inverted Pendulum). And in Walker2d, it still improves feasible reward performance
versus IRL and decreases the violation rate. Even though it decreases performance in Swimmer, it
still learns a reasonable policy as can be seen in the Figure 3.

Interestingly, neither the separate critics modification nor the policy reset modification alone pro-
duces good results, suggesting it is the interaction of these two modifications that are beneficial. For
example, policy reset alone hurts performance in four of the five environments, but when combined
with separate critics increases performance in four of the five environments. Notably, using separate
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Figure 3: Comparison of training curves of (1) Vanilla IRL (2) IRL with policy reset and separate
critics, and (3) Best modifications on a per-environment basis. See Appendix C.2 for full results.
Error bands show standard deviation across three seeds and a smoothing window of 200 test episodes.

critics allows us to reset the last layer of only the constraint critic and not the reward critic, which
may contribute to the improved performance of policy reset when combined with separate critics.

Batch normalization and reward normalization Selecting the SC+PR modification as the
base case, we then add batch normalization (BN) and reward normalization (RN) to test for
further improvements. However, overall, we find these modifications are generally more harmful
than beneficial. Including batch normalization, reward normalization, or both, on top of separate
critics and policy reset hurt performance over basic IRL in a majority of environments. However, we
note that in certain environments, such as Walker2d and Half Cheetah, adding these modifications
results in the highest feasible rewards of all combinations, suggesting that these modifications may
be helpful on an environment-specific basis.

6 Discussion and Conclusions

Overall, we find that Lagrangian-based methods for constraint inference do not confer significant
performance benefits over vanilla IRL and the simple modification of separate critics and policy reset
can improve the performance of IRL over previous Lagrangian-based ICRL methods. Moreover,
certain combinations of additional simple regularization such as batch normalization and reward
normalization can produce significantly better results in several environments, though the necessary
modifications need to be tuned on an environment level.

Advantages of IRL over ICRL Besides some modest performance improvements, using IRL
for constraint inference confers several benefits to the field. Primarily, this could facilitate applying
IRL to several extensions of constraint inference that have not yet been fully explored, such as the
offline constraint inference using offline IRL techniques (Yue et al., 2023). We also highlight that we
did not have to perform any hyperparameter tuning to achieve decent results in all environments.

Limitations and Future Work While we show the feasibility of IRL for constraint inference as
an alternative to ICRL, we note that there is substantial variance in the solutions produced by IRL
as can be observed in Figures 2, 3 and 5. Reducing this variance should be a priority of future work.
Moroever, ongoing work is still needed to improve the performance of constraint inference across
more challenging environments such as Inverted Pendulum. An exciting extension for future work
would be to explore various subdomains of IRL in the context of constraint inference, particularly
the offline IRL case, and to apply these techniques to real datasets.
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A Algorithm and Experiment Details

A.1 Algorithm

Here we provide an algorithm for IRL with separate critics for the constraint and reward functions
when the reward signal rt is observed in the environment and the constraint function Rϕ is inferred.

Algorithm 1 Simple ICRL - Separate Critics
1: Initialize cost network parameters ϕ, policy parameters ψ and cost and reward critic parameters
θ and α. Let M be the number of cost function updates and N be the number of policy updates.

2: for m = 0, 1 . . . ,M do
3: for n = 0, . . . , N do
4: Collect experience (st, at, st−1, rt) from nominal environment and add to buffer β
5: Sample batch {(si, ai, si+1, ri)}Bi=1 ∼ β.
6: Compute learned cost for batch ci = Rϕ(si, ai) ∀i ∈ B
7: Update policy parameters using critic Q(s, a) = Qα(s, a) −Qθ(s, a)
8: Update cost critic parameters from ci and reward critic parameters from ri
9: end for

10: Update cost function using loss EπE [Rϕ(s, a)] − Eπψ [Rϕ(s, a)]
11: end for

A.2 Hyperparameters

All of our code is based on the Tianshou (Weng et al., 2022) and FSRL (Liu et al., 2023b) im-
plementations of SAC and SAC-Lagrangian, respectively. Here we include all the hyperparameter
configurations for our experiments. Any hyperparameters not listed here use the default hyperpa-
rameters in their respective libraries (Tianshou version 1.0.0 and FSRL version 0.1.0).

SAC Parameters
τ 0.005
γ 0.99
α LR 0.0003
α optimizer Adam
Critic hidden layers [256, 256]
Critic optimizer Adam
Critic learning rate 0.001
Actor hidden layers [256, 256]
Actor learning rate 0.001
Actor optimizer Adam
n-step returns 1
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Constraint Learning Parameters
Output clip range [-20, 0]
Output activation Linear
Hidden layers [64, 64]
Learning rate 0.0001
Optimizer Adam
Weight decay 0.001
Batch size 5000
Gradient steps per epoch 1
Regularization coefficient 0

Training Parameters
Max epochs 1000
Batch size 128
Environment steps per epoch 5000
Gradient steps per environment step 1
Test episodes per epoch 5
Episodes between gradient updates 1
Buffer size 1000000

A.3 Computational Resources

Each run (consisting of three seeds) was trained on a node with a single GPU (varying GPU re-
sources were used), 6 CPUs and 6GB of RAM per CPU. A single run across three seeds under this
configuration took approximately 1.5 days to complete training.

B Proof of Theorem 4.1

We prove both claims individually.

B.1 Step 1: OptICRL = OptS−ICRL

We begin by proving the first claim, that OptICRL(Π,Fr,Fc) = OptS−ICRL(Π,Fr,Fc) when Fc is a
convex cone. Firstly, it is simple to show that OptICRL(Π,Fr,Fc) ≥ OptS−ICRL(Π,Fr,Fc),

OptICRL(Π,Fr,Fc) = max
c∈Fc

max
λ≥0

min
π∈Π

J(πE , r − λc) − J(π, r − λc)

≥ max
c∈Fc

min
π∈Π

J(πE , r − 1 · c) − J(π, r − 1 · c)

= OptS−ICRL(Π,Fr,Fc).

It remains to show that OptICRL(Π,Fr,Fc) ≤ OptS−ICRL(Π,Fr,Fc). We have

OptS−ICRL(Π,Fr,Fc) = max
c∈Fc

min
π∈Π

J(πE , r − c) − J(π, r − c)

≥ max
c∈Fc

min
π∈Π

J(πE , r − λc) − J(π, r − λc) ∀λ ≥ 0

≥ max
c∈Fc

max
λ≥0

min
π∈Π

J(πE , r − λc) − J(π, r − λc)

= OptICRL(Π,Fr,Fc),
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where the first inequality holds since λc ∈ Fc whenever c ∈ Fc by the hypothesis that Fc is a convex
cone. It follows that OptICRL(Π,Fr,Fc) = OptS−ICRL(Π,Fr,Fc). ■

B.2 Step 2: IRL Solves ICRL

We now prove the second claim. For any policy π, we define the successor features (Ng et al., 2000;
Ziebart et al., 2008; Barreto et al., 2017) ψπ : S → Rd according to

ψπ(s) = E

∑
t≥0

γtϕ(St, At)
∣∣∣∣S0 = s

 (7)

where At ∼ π(· | St). Then, for any initial state distribution µ0 and r ∈ F , we have J(π, r) =
Es0∼µ[⟨ψπ(s0), wr⟩], where r(x, a) = ⟨ϕ(x, a), wr⟩ — this holds by the linearity of expectation.

Now, we define Ψ = {Es0∼µψ
π(s0) : π ∈ Π} ⊂ Rd. Note that s 7→ ψπi (s) is equivalent to the value

function under policy π for the reward function ϕi, for any i ∈ [d]. Thus, since Π is assumed to be
compact and ϕ is bounded, Dadashi et al. (2019) shows that the set Vi = {ψπi : π ∈ Π} is convex and
compact for each i ∈ [d]. By continuity, Vi = {Es0∈µψ

π
i (s0) : π ∈ Π} is convex compact. Therefore,

it holds that as a product of convex and compact sets, Ψ =
⊗d

i=1 Vi is convex and compact.

Next, suppose (π⋆, c⋆−r) realizes OptIRL(Π,F −r). Since Ψ is compact and convex and F is convex,
we apply Sion’s minimax theorem and observe that, for ψE := Es0∼µ0ψ

πE (s0),

J(π⋆, c⋆ − r) − J(πE , c⋆ − r) = OptIRL(Π,F − r)
= min

π∈Π
sup
c∈F

J(π, c− r) − J(πE , c− r)

= min
ψ∈Ψ

sup
wc∈Rd

⟨ψ − ψE , wc − wr⟩

= min
ψ∈Ψ

sup
wc∈Rd

⟨ψE − ψ,wr − wc⟩

= sup
wc∈Rd

min
ψ∈Ψ

⟨ψE − ψ,wr − wc⟩ Sion’s minimax theorem

= sup
c∈F

min
π∈Π

J(πE , r − c) − J(π, r − c)

= OptS−ICRL(Π,F ,F)
= OptICRL(Π,F ,F) Step 1

∴ J(πE , r − c⋆) − J(π⋆, r − c⋆) = OptICRL(Π,F ,F),

where the penultimate step holds because F , as a vector space, is a convex cone. Thus, we conclude
that solving the IRL problem over the reward class F − r and policy class Π solves the inverse
constrained RL problem of interest. ■

C Additional Results

C.1 ICRL SAC Implementation Results

We attempted to reproduce the results of Liu et al. (2023a) using SAC for policy learning. We
tested six settings for the Lagrangian and reward learning rates shown in Figure 4. All other hyper-
parameters were kept the same as Appendix A.2. Due to computational constraints, we ran each
configuration for 3M timesteps. Notably, we had considerable difficulty reproducing the results of
Liu et al. (2023a) using the SAC algorithm. While Kim et al. (2023) provided a SAC implementa-
tion of a similar algorithm, we note that their implementation added various additional components
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to the algorithm to improve convergence, including in particular, interleaving reward learning with
behavior cloning. We did not use these techniques here.

reward.lr=0.0001, lambda.lr=0.0001
reward.lr=0.001, lambda.lr=0.01

reward.lr=0.001, lambda.lr=0.0001
reward.lr=0.0001, lambda.lr=0.01

reward.lr=0.0001, lambda.lr=0.001
reward.lr=0.001, lambda.lr=0.001
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Figure 4: Training curves for feasible rewards (top) and violation rate (below) for ICRL with SAC
with varying learning rates across the five test MuJoCo environments. Error bands show standard
deviation across three seeds and smoothing window of 200 testing episodes.

C.2 Results of all modifications

Here we provide the results of all combinations of modifications on the five MuJoCo environments.
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Figure 5: Training curves for feasible rewards (top) and violation rate (below) for IRL and all
variations across the five test MuJoCo environments. Error bands show standard deviation across
three seeds and a smoothing window of 200 testing episodes.


