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ABSTRACT

Chatbot Arena is a popular platform for evaluating LLMs by pairwise battles, where
users vote for their preferred response from two randomly sampled anonymous
models. While Chatbot Arena is widely regarded as a reliable LLM ranking
leaderboard, we show that crowdsourced voting can be rigged to improve (or
decrease) the ranking of a target model mt. We first introduce a straightforward
target-only rigging strategy that focuses on new battles involving mt, identifying
it via watermarking or a binary classifier, and exclusively voting for mt wins.
However, this strategy is practically inefficient because there are over 190 models
on Chatbot Arena and on average only about 1% of new battles will involve mt.
To overcome this, we propose omnipresent rigging strategies, exploiting the Elo
rating mechanism of Chatbot Arena that any new vote on a battle can influence the
ranking of the target model mt, even if mt is not directly involved in the battle.
We conduct experiments on around 1.7 million historical votes from the Chatbot
Arena Notebook, showing that omnipresent rigging strategies can improve model
rankings by rigging only hundreds of new votes. While we have evaluated several
defense mechanisms, our findings highlight the importance of continued efforts to
prevent vote rigging.

1 INTRODUCTION Chatbot Arena
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Figure 1: We simulate rigging on new votes beyond the
∼ 1.7 million historical votes from the Chatbot Arena
Notebook. In this demo, we set the target model mt

as Phi-3-small-8k-Instruct. Under the normal voting
distribution (w/o rigging), the ranking remains steady,
showing only a single rank increase despite the addition
of approximately 27,000 new votes. In contrast, vote
rigging significantly boosts mt’s ranking. Using the om-
nipresent strategy, we achieve a 15-rank improvement
while being more efficient compared to the target-only
strategy.

A variety of large language models
(LLMs), both closed-source and open-
source (OpenAI, 2024; Dubey et al., 2024),
are now available to the community. Eval-
uating their alignment with human prefer-
ences is crucial for selecting suitable mod-
els in downstream applications (Ouyang
et al., 2022). To meet this need, Chatbot
Arena (Zheng et al., 2023a; Chiang et al.,
2024) provides an open platform for con-
ducting pairwise battles between LLMs,
where users vote for their preferred re-
sponse from two randomly selected anony-
mous models. These votes are used to
compute Elo ratings for LLMs, with higher
rankings on Chatbot Arena’s leaderboard
offering substantial promotional benefits.

Chatbot Arena is widely popular, but it re-
lies on millions of user votes collected in
the wild, which can be noisy and biased. Several strategies have been implemented to enhance the
leaderboard’s reliability and reduce potential gameability, including controlling for output length and
style (Dubois et al., 2024; Li et al., 2024a), detecting anomalous voting patterns and bot activity (Chi-
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ang et al., 2024), categorizing prompts for data curation (Li et al., 2024b;c), and invalidating votes if
anonymous model identities are revealed in the responses (Chiang et al., 2024).

Although these strategies have significantly reduced (mostly unintentional) voting biases and noise,
this paper demonstrates that crowdsourced votes in Chatbot Arena can still be maliciously rigged to
manipulate the ranking of a target model mt, either improving or decreasing it. We first introduce
a straightforward target-only rigging strategy that focuses solely on new battles involving mt,
identifying it via watermarking (Zhao et al., 2024) or a binary classifier (Huang et al., 2025), and
exclusively voting for mt wins. However, this strategy is practically inefficient because there are
over 190 models on Chatbot Arena and on average only about 1% of new battles will involve mt.
Improving a single ranking position for a target model may require more than 10,000 rigged votes
or interactions on Chatbot Arena, a scenario that could be effectively mitigated by imposing daily
voting limits per IP address (Chiang et al., 2024).

To solve this inefficiency, we observe that the Elo rating system in Chatbot Arena calculates Bradley-
Terry (BT) scores (Bradley & Terry, 1952) by fitting pairwise logistic relationships on all collected
votes (Eq. (1)). This implies that when a sufficient number of votes have been collected, all models’
BT scores become mutually connected through these pairwise logistic relationships. Consequently,
any new vote for a battle can influence the ranking of a target model mt, even if mt is not directly
involved in the battle. Based on this observation, we propose omnipresent rigging strategies, which
first de-anonymize all models by a multi-class classifier and actively manipulate every new vote,
regardless of whether mt is involved in the battle.

To prevent contaminating the actual voting records on the Chatbot Arena platform, we establish a
reproducible voting environment using the publicly available historical votes from Chatbot Arena
Notebook. This dataset contains around 1.7 million voting records across 129 models. In the
experiments, we thoroughly examine voting scenarios under various threat models, and empirical
results show that our omnipresent rigging strategies can improve model rankings by manipulating
only hundreds of new votes. These omnipresent strategies are far more efficient than target-only
strategies and other baselines, as illustrated in Figure 1. Additionally, we evaluate several defense
mechanisms; however, our findings underscore the need for ongoing efforts to develop stronger
protections against vote rigging.

2 PRELIMINARIES

We first formalize the basic operations of Chatbot Arena in Section 2.1, including the mechanism for
collecting pairwise human-annotated votes and calculating rating scores. Next, in Section 2.2, we
introduce various threat models of vote rigging based on the adversary’s accessibility.

2.1 CHATBOT ARENA

The Chatbot Arena leaderboard comprises K models, denoted as {m1, . . . ,mK}, with their rating
scores calculated on a collection of user votes V. To collect a new vote, a pair of model indices a
and b is sampled from the joint distribution PV, where the subscript V indicates that the distribution
depends on previously collected votes. The user can query both sampled models ma and mb with any
prompt string s ∈ S, where S denotes the natural language space, and cast a vote for their preferred
response between ma(s) and mb(s). Then the vote set V will be updated according to the selected
voting option:

i. a wins: Va>b = V ∪ {ea − eb}, V← Va>b;
ii. b wins: Va<b = V ∪ {eb − ea}, V← Va<b;

iii. Tie: Va=b = V ∪ {ea − eb} ∪ {eb − ea}, V← Va=b;
iv. Abstain: V is unchanged,

where ek ∈ RK is the k-th basis unit vector and we slightly abuse the notation of ∪ to denote the
appending operation.1

Calculation of rating scores. Chatbot Arena applies the Elo rating system to benchmark models.
According to Chiang et al. (2024), Chatbot Arena initially used online Elo scores to calculate model
ratings, but later switched to Bradley-Terry (BT) scores (Bradley & Terry, 1952) for better statistical

1In our notation, we use mk and its index k interchangeably to refer to the k-th model without causing
ambiguity.
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estimation. Given a collected vote set V, we can calculate BT scores for the K models on the
leaderboard, denoted in a vectorized form as rBT

V ∈ RK , where rBT
V [k] is the BT score of the k-th

model. The BT scores are derived from fitting the logistic relationships on V, formulated as

rBT
V = argmin

r
Ev∈V[LBCE(v, r)], (1)

where LBCE(v, r) = − log(σ(v⊤r)) is the binary cross-entropy (BCE) loss, and σ(·) is the Sigmoid
function.

2.2 THREAT MODEL

Throughout this paper, our adversarial rigging goal is to promote the ranking of a target model mt

on Chatbot Arena through vote rigging. This is achieved by submitting new votes, where each voting
option is strategically selected to promote the target model’s ranking.

Based on the adversary’s accessibility, we pinpoint the key elements in our threat model as described
below:

• Historical votes (VH or rBT
VH

): whether the adversary has access to the historical voting data VH

or can only access to the BT scores rBT
VH

from the public leaderboard;

• Model identities (Real-name or Anonymous): whether the adversary can directly access the
identities of the sampled models ma and mb in each new battle;

• Sampling distribution (PV or Unknown): whether the adversary can know the sampling distri-
bution PV or not;

• Other users’ votes (∅ or VO): when the adversary submits (malicious) new votes, other users
may also submit new votes simultaneously, denoted as VO.

For example, when the adversary aims to manipulate the real-world Chatbot Arena platform, the
threat model can be written as {rBT

VH
,Anonymous,Unknown,VO}.

Remark. We initially contacted Chatbot Arena and disclosed the potential threat in September 2024.
In our experiments, to avoid contaminating the actual voting records on the Chatbot Arena platform,
we set up a reproducible voting environment using the latest historical votes (as of January 2025)
that are publicly available in the Chatbot Arena Notebook. This dataset contains around 1.7 million
voting records across 129 models. Within this environment, we divide 90% of the complete historical
vote records as VH and the remainder as VO throughout all simulations.

3 VOTE RIGGING STRATEGIES

In this section, we discuss various vote-rigging strategies aimed at promoting the ranking of the
target model mt. Generally, under a given threat model (where model identities are Anonymous), a
rigging strategy manipulates new votes and consists of two key components:

• The de-anonymizing function A(s,mk(s)) = k̃ takes the user prompt s and the model response
mk(s) as inputs, aiming to de-anonymize the true identity of mk (or its index k) through the
predicted identity mk̃ (or the index k̃). This function is typically trained or designed to maximize
the probability P (k̃ = k);

• For each new vote between the sampled models ma and mb, the vote manipulation function
M(ã, b̃) takes the identities ã and b̃ predicted by A as inputs and returns one of four voting
options: ã/a wins, b̃/b wins, Tie, or Abstain. Note thatMmay also depend on additional
information, such as historical votes or ranks, as described in our omnipresent rigging strategy.

In the following, we elaborate on a vanilla target-only rigging strategy and our proposed omnipresent
rigging strategy.

3.1 TARGET-ONLY RIGGING

To promote the ranking of the target model mt, a straightforward approach is to rig votes only for
new battles predicted to involve mt (specifically, when t ∈ {ã, b̃}). In this case, the de-anonymizing
function focuses exclusively on identifying mt, formulated as At-only (s,mk(s)) ∈ {t,¬t}, where ¬t
represents all other model indices.
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Two concurrent works (Zhao et al., 2024; Huang et al., 2025) have explored similar target-only
rigging strategies. These works implement the de-anonymizing function At-only using either water-
marking/attribution techniques or a binary classifier. Based on the implemented At-only, they further
define the vote manipulation functionMt-only as

Mt-only(ã, b̃) =


a wins if ã = t,
b wins if b̃ = t,
Passive otherwise,

(2)

where the Passive option can be set to Tie (T-Tie), Abstain (T-Abstain), a random selection
(T-Random), or aligned with the normal user voting distribution (T-Normal). In our following
experiments, we treat these target-only rigging strategies as our baselines.

3.2 OMNIPRESENT RIGGING

While target-only rigging strategies are straightforward, they are inefficient in practice, as they
manipulate only the new votes predicted to involve mt. For example, with over 190 models on the
Chatbot Arena platform and a uniform model sampling distribution, the probability of a specific target
model being involved in a battle is only about 1%. Consequently, target-only rigging strategies may
passively select the voting options for approximately 99% of new battles. As reported in Huang et al.
(2025), improving a single ranking position for a target model (e.g., from rank 129 to 128 or rank 5
to 4) requires over 10,000 votes for low-ranked models and more than 20,000 votes for high-ranked
models.2

To enhance rigging efficiency, we draw inspiration from the following observation on Chatbot Arena’s
rating mechanism (an informal proof is provided in Appendix A.1):

Observation (omni-property): when the BT scores rBT
V are calculated on a sufficient number of

votes in V (by Eq. (1)), any new vote on a battle between ma and mb can influence the ranking of
the target model mt, even if mt is not directly involved in the battle (i.e., t /∈ {a, b}).

Based on this, we propose omnipresent rigging strategies, which actively manipulate every new
vote, regardless of whether mt is involved in the battle. We implement the de-anonymizing function
Aomni (s,mk(s)) ∈ {1, . . . ,K} as a multi-class classifier (detailed in Appendix B). For the vote on
each new battle, Aomni predicts the identities of the sampled models as ã and b̃. The design of the
vote manipulation functionMomni then depends on the adversary’s accessibility to historical votes,
as described below.

BT-based omni rigging (Omni-BT). When the adversary has direct access to the historical voting
data VH , it can combine its manipulated votes VM to form V = VH ∪VM. For a new battle between
ma and mb, the Omni-BT manipulation function can be expressed compactly as:

MBT
omni = argmax

V′
RBT(rBT

V′ ), (3)

where V′ ∈ {Vã<b̃,Vã>b̃,Vã=b̃,V} represents the four voting options: ã/a wins, b̃/b wins,
Tie, and Abstain, as introduced in Section 2.1. Here, RBT(·) denotes the rigging objective of
Omni-BT. Throughout our experiments, we adopt the relative rating increase between mt and mt̂

that ranks one position ahead of it with RBT(rBT
V′ ) = rBT

V′ [t] − rBT
V′ [t̂] as our rigging objective. We

identify it through ablation studies and defer detailed comparisons in Appendix A.2. Note that since
the adversary selects voting options based on the predicted ã and b̃, these predictions may deviate
from the ground truth updates {rBT

Va>b
, rBT

Va<b
, rBT

Va=b
, rBT

V }.

Online-based omni rigging (Omni-On). When the adversary has access only to the up-to-date
BT scores rBT

VH
from the public leaderboard and not to VH , directly optimizing Eq. (3) in Omni-BT

becomes intractable. To address this, we propose using online Elo scores (Elo, 1967) to approximate
updates to the BT scores. This approach relies exclusively on rBT

VH
, eliminating the need for access

2Our measure of “votes” corresponds to the “interactions” defined in Huang et al. (2025), where they use
“votes” to count only the battles predicted to involve mt.
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Figure 2: Ranking improvements under the idealized rigging scenario with different target models
mt. Our omnipresent rigging strategies (Omni-BT and Omni-On) result in approximately double the
ranking promotions compared to target-only strategies.

to VH . Formally, after a new battle between ma and mb, the online Elo scores for ma and mb are
calculated as

rOn
a (γ, µ) = rBT

VH
[a] + µ · (γ −W(rBT

VH
[a], rBT

VH
[b]));

rOn
b (γ, µ) = rBT

VH
[b] + µ · (1− γ −W(rBT

VH
[b], rBT

VH
[a])),

where µ is the step size,W(x, y) =
(
1 + 10(y−x)/400

)−1
is a logistic function, and the base 10 and

scaling factor 400 are adopted following Zheng et al. (2023b). The parameter γ depends on the voting
option: γ = 1 for a wins, γ = 0 for b wins, and γ = 0.5 for Tie. When selecting the Abstain
option, there is µ = 0.

Then the Omni-On manipulation function selects the voting option for the battle between ma and mb

as:
MOn

omni = argmax
γ,µ
ROn (rBT

VH
[t], rOn

a (γ, µ), rOn
b (γ, µ)

)
, (4)

where γ, µ are constrained to the values corresponding to the four voting options described above, and
ROn(·) represents the rigging objective of Omni-On. A simple design forROn(·) is a differentiable
surrogate of the ranking function. Specifically, the ranking of mt is calculated as Rank(mt) =
1 +

∑
∀k ̸=t[I(rBT

VH
[k] > rBT

VH
[t])], where I(·) is the indicator function. This ranking function can be

reformulated as Rank(mt) = 1 +
∑

∀k ̸=t[I(W
(
rBT
VH

[t], rBT
VH

[k]
)
< 0.5)], from which we can define

ROn in terms ofW , capturing the pairwise win rates. Consequently,MOn
omni can be defined as

MOn
omni =argmax

γ,µ
W

(
rBT
VH

[t], rOn
a (γ, µ)

)
+W

(
rBT
VH

[t], rOn
b (γ, µ)

)
.

(5)

In our experiments, we perform additional ablation studies on alternative design choices for ROn

in Appendix A.3. After each vote manipulation, we can optionally update the local BT scores as
rBT
VH

[a]← rOn
a (γ, µ) and rBT

VH
[b]← rOn

b (γ, µ). However, our empirical results in Appendix A.4 show
that it would be better to keep rBT

VH
unchanged during each Omni-On manipulation.

4 SANITY CHECK WITH IDEALIZED RIGGING

We start by rigging against the idealized scenario using the threat model {VH ,Real-name,PV, ∅}.
Results from this sanity check indicate our optimal rigging performance and serve as an upper
bound for the capability analysis in Section 5. Without specific assumptions on the sampling
distribution PV, we use uniform sampling with the marginal probability of a sampling mk being
Pk = 2

K . Additionally, to understand how effective vote rigging performs, we include the w/o
rigging case in which votes are sampled using the normal user voting distribution as comparisons.
We report our initial results by rigging 20,000 new votes and defer results with larger numbers of
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votes to Appendix C.1. We demonstrate the ranking changes of diverse target models mt including
Llama-2-13B-Chat (Touvron et al., 2023), Mistral-7B-Instruct-v0.2 (Jiang et al., 2023), Qwen1.5-
14B-Chat (Bai et al., 2023), Vicuna-7B (Chiang et al., 2023b), Gemma-2-9B-it (Gemma et al., 2024b),
and Phi-3-small-8k-Instruct (Abdin et al., 2024) and defer rigging results with 22 extra models (used
in Huang et al. (2025)) to Appendix C.2.

As shown in Figure 2, all rigging strategies effectively improve mt’s ranking compared to the
scenarios without rigging, achieving an average of 6-rank improvement. Besides, our omnipresent
strategies demonstrate significantly higher rigging efficiency against target-only strategies. For
example, when rigging 20,000 new votes, the target-only rigging achieves only an average increase of
4, whereas both omnipresent rigging strategies notably outperform it, resulting in an approximately
10-rank promotion.

5 ON EXPLORING THE RIGGING CAPABILITY

However, practical vote rigging is typically conducted with limited adversary’s accessibility, poten-
tially reducing the manipulation effectiveness. Here, we conduct a series of stress tests to explore
whether our strategies remain effective against these more demanding rigging scenarios. Specifically,
in Section 5.1 we conduct rigging under the threat model {VH ,Anonymous,PV, ∅} to explore the
impact of inaccurate de-anonymization with predicted probability P (k̃ = k) < 1, then in Section 5.2
we conduct rigging under the threat model {VH ,Real-name,Unknown, ∅} to simulate the influ-
ence of Unknown sampling distribution, and finally in Section 5.3, we conduct rigging under the
threat model {VH ,Real-name,PV,VO} to incorporate the influence of concurrent user voting.

5.1 RIGGING WITH INACCURATE DE-ANONYMIZATION

Table 1: Results of rigging performance against different
proportion of Anonymous battles.

Method Ranking↓ (Ranking Increase↑)

10% 20% 30% 40% 50%

T-Tie 90 (+2) 91 (+1) 91 (+1) 92 (+0) 92 (+0)
T-Abstain 87 (+5) 88 (+4) 89 (+3) 89 (+3) 90 (+2)
T-Random 90 (+2) 90 (+2) 90 (+2) 91 (+1) 92 (+0)
T-Normal 87 (+5) 88 (+4) 88 (+4) 88 (+4) 89 (+3)
Omni-BT 84 (+8) 84 (+8) 86 (+6) 87 (+5) 88 (+4)
Omni-On 84 (+8) 84 (+8) 85 (+7) 86 (+6) 86 (+6)

Since our rigging strategies rely on mk̃
predicted by the de-anonymizing func-
tion A(·) to select voting options, its
predicted probability P (k̃ = k) thus
directly impacts the rigging effective-
ness. To examine whether vote rig-
ging remains effective against inaccu-
rate de-anonymization, i.e., P (k̃ =
k) < 1, we set a proportion of bat-
tles to Anonymous model identities.
As shown in Table 1, all rigging strate-
gies exhibit decreased ranking promo-
tion as expected, with both T-Tie and
T-Random achieving no manipulation effect when half of the battles have Anonymous model
identities. Besides, we observe that the Omni-On exhibits more resistance against inaccurate de-
anonymization than other strategies. These results can be attributed to the usage of initial rBT

VH
for

Omni-On without updating with manipulated votes VM, which makes it more resistant to the impact
of previously misclassified model identities.

5.2 RIGGING WITH UNKNOWN SAMPLING DISTRIBUTION

Table 2: Vote rigging under various marginal probability
Pt = β · 2

K . When β = 0, it indicates that no mt will be
sampled.

Method Ranking↓ (Ranking Increase↑)

β = 0.0 β = 0.3 β = 0.5 β = 0.7 β = 0.9

T-Tie 95 (-3) 94 (-2) 93 (-1) 92 (+0) 90 (+2)
T-Abstain 92 (+0) 91 (+1) 89 (+3) 89 (+3) 87 (+5)
T-Random 95 (-3) 92 (+0) 92 (+0) 91 (+1) 90 (+2)
T-Normal 92 (+0) 90 (+2) 89 (+3) 88 (+4) 87 (+5)
Omni-BT 87 (+5) 86 (+6) 84 (+8) 84 (+8) 83 (+9)
Omni-On 86 (+6) 85 (+7) 84 (+8) 84 (+8) 83 (+9)

Practical sampling distributions could
be Unknown to users, for example,
newly released models might acquire
a higher sampling probability to collect
enough votes (Zhao et al., 2024). As
a result, these non-uniform sampling
strategies might potentially reduce
Pt, i.e., the marginal probability of
sampling mt, thereby decreasing the
number of sampled battles containing
mt. In this section, we sample new bat-
tles using Pt = β · 2

K , where β ∈ [0, 1]
controls the degree of probability
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reduction. When β = 0, it indicates that no mt will be sampled for new battles. As shown in Table 2,
decreasing Pt significantly reduces the effectiveness of target-only rigging, with most strategies
failing completely at β = 0.3. In contrast, omnipresent strategies show effective manipulation
performance with over 5-rank improvement even when mt is not directly involved in battles.

5.3 RIGGING WITH CONCURRENT USER VOTING

Table 3: Rigging results against various scales of VO.

Method Ranking↓ (Ranking Increase↑)

2× 104 4× 104 6× 104 8× 104 105

T-Tie 90 (+2) 90 (+2) 90 (+2) 90 (+2) 90 (+2)
T-Abstain 87 (+5) 87 (+5) 87 (+5) 87 (+5) 88 (+4)
T-Random 89 (+3) 89 (+3) 90 (+2) 90 (+2) 90 (+2)
T-Normal 87 (+5) 87 (+5) 87 (+5) 87 (+5) 88 (+4)
Omni-BT 82 (+10) 82 (+10) 82 (+10) 82 (+10) 82 (+10)
Omni-On 83 (+9) 83 (+9) 83 (+9) 83 (+9) 84 (+8)

In addition to manipulated votes VM,
concurrent votes VO from other users
remain unknown to the adversary, which
could affect the rigging effectiveness.
For instance, they would lead to an
inaccurate calculation of omnipresent
rigging objectives RBT(·) and ROn(·),
thereby impacting the subsequent vote
selection of their respective manipula-
tion functions MBT

omni(·) and MOn
omni(·).

To incorporate the influence of VO, we
use the combined votes V = VH ∪
VM ∪ VO to calculate the final rating. Our results in Table 3 demonstrate that the influence of
VO remains minor, which only introduces an average 1-rank decrease even with a VO containing
100,000 votes. These findings suggest the resilience of vote rigging against concurrent user voting.

6 CASE STUDY: RIGGING CHATBOT ARENA

6.1 TOWARDS SIMULATING REAL-WORLD VOTE RIGGING

To demonstrate how to improve target model mt’s ranking in the realistic leaderboard, we simulate
against the practical scenario with the threat model being {rBT

VH
,Anonymous,Unknown,VO}.

Through this case study, our preliminary findings would serve as a proof-of-concept that exposes
the real-world rigging risks within the Chatbot Arena. Specifically, we extract 25 models with
around 23,000 English-specific votes from the complete historical records to set up the simulation
environment. We present ranking improvements of the target model mt, which is set to be one of
the four models including Llama-2-13B-Chat, Mistral-7B-Instruct-v0.2, Qwen1.5-14B-Chat, and
Vicuna-7B. Details on the overall model selection can be found in Appendix B.2.

Table 4: Rigging with prompts from the Quora (Q)
and HC3 (H) datasets. We denote Target-Only∗ as the
idealized T-Abstain.

Method Ranking↓ (Ranking Increase↑)

Llama Mistral Qwen Vicuna

w/o Rigging 15 (+1) 13 (+0) 12 (-1) 21 (+0)

Target-Only∗ 15 (+1) 11 (+2) 10 (+1) 18 (+3)

Omni-BT (H) 11 (+5) 9 (+4) 8 (+3) 12 (+9)
Omni-On (H) 14 (+2) 10 (+3) 9 (+2) 17 (+4)
Omni-BT (Q) 10 (+6) 9 (+4) 9 (+2) 12 (+9)
Omni-On (Q) 14 (+2) 10 (+3) 10 (+1) 17 (+4)

Setup for target-only rigging. We em-
ploy the idealized rigging with P (t̃ =
t) = 1 since the de-anonymizing function
At-only(·) in Zhao et al. (2024); Huang et al.
(2025) achieves a high prediction perfor-
mance. Besides, we adopt T-Abstain as it
yields a more stable ranking improvement.

Setup for omnipresent rigging. We fine-
tune RoBERTa-based classifiers (Liu et al.,
2019) to classify all 25 models with two
datasets respectively, including the HC3
and Quora datasets. We generate the train-
ing corpus by querying each model with
4,000 training prompts. The fine-tuning process includes 20 epochs with a batch size of 64 which
takes a few hours on 2× NVIDIA A100 GPUs. When simulating the vote rigging, we reuse the
training prompts to query model pairs within each sampled battle. We defer more details of the
training corpus to Appendix B.3.

Vote rigging can be effective in practice. Table 4 demonstrates that both of our omnipresent
strategies outperform the target-only strategy. Our Omni-BT and Omni-On strategies achieve an
average of 5-rank and 3-rank promotion, respectively, yielding more than 50% ranking improvement
compared to the optimal performance of T-Abstain rigging.
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6.2 ABLATION STUDIES ON OMNIPRESENT RIGGING

What if unseen prompts are employed for vote rigging? While our initial results use training
prompts for rigging, reusing these limited prompts could be easily detected by the quality control in
Chatbot Arena such as the simple prompt-deduplication strategy Chiang et al. (2024). As a result,
we aim to investigate whether unseen prompts are effective for rigging, especially without classifier
retraining. Our results in Figure 3 (a) show that both omnipresent strategies still effective ranking
improvement even rigging with unseen prompts. These preliminary findings indicate the potential
scalability of using the multi-class classifier for de-anonymizing.

(a) (b)

Figure 3: The left figure depicts the rigging results
simulated with unseen prompts, while the right
figure shows rigging under the impact of unrec-
ognized models. The dashed lines represent the
performance of idealized T-Abstain rigging.

Explore the effectiveness of omni rigging
with unrecognized models. Since the Chat-
bot Arena may constantly introduce new mod-
els to the leaderboard, which become unrecog-
nized by our trained classifier. To investigate
how these models will affect the rigging per-
formance, we include 5 additional models (de-
scribed in Appendix B.2) that are outside the
classification range and conduct rigging within
these 30 models. Figure 3 (b) shows that both
omnipresent strategies outperform target-only
rigging, demonstrating a degree of resilience
against unrecognized models.

Table 5: Rigging results against the length-control
leaderboard.

Method Ranking↓ (Ranking Increase↑)
Llama Mistral Qwen Vicuna

Omni-BT (H) 13 (+3) 11 (+2) 9 (+2) 8 (+13)
Omni-On (H) 15 (+1) 10 (+3) 9 (+2) 15 (+6)
Omni-BT (Q) 13 (+3) 11 (+2) 9 (+2) 10 (+11)
Omni-On (Q) 14 (+2) 11 (+2) 9 (+2) 10 (+11)

Rigging the length-control leaderboard. In
addition to the original leaderboard, the Chatbot
Arean offers the length-control version, which
explicitly disentangles the effect of response
length in rating calculation. Here we aim to
investigate the effectiveness of our vote rigging
on the length-control leaderboard. As illustrated
in Table 5, our omnipresent rigging still main-
tains an effective rigging effect achieving an
average of 4-rank improvement. Furthermore,
we observe an intriguing phenomenon in which Vicuna-7B’s ranking is significantly boosted com-
pared to rigging the original leaderboard. While our initial strategies are not specifically designed
to achieve this, our findings highlight another vulnerability within the length-control mechanism,
where adversaries could optimize prompts to reduce length discrepancies between responses, thereby
increasing the importance of rigged votes in updating the length-control leaderboard.

Table 6: The proportion of correctly classified re-
sponses obtained from the realistic Chatbot Arena
platform (side by side).

Dataset Llama3 GPT-4o Gemma

Train Unseen Train Unseen Train Unseen

HC3 30/30 30/30 30/30 30/30 25/30 22/30
Quora 25/30 25/30 28/30 27/30 29/30 27/30

De-anonymizing responses from the Chat-
bot Arena. While previous simulations use lo-
cally generated responses for de-anonymizing,
it remains unclear whether our classifier per-
forms effectively on realistic responses from
Chatbot Arena. To investigate it, we use the
first 30 training and unseen prompts to generate
responses from three models including Llama-3-
8B-Instruct (Dubey et al., 2024), GPT-4o-mini-
2024-07-18 (Achiam et al., 2023), and Gemma-2-9B-it (Gemma et al., 2024b) through Chatbot
Arena’s APIs. We provide response examples from the HC3 in Appendix D. As shown in Table 6,
our classifier still effectively distinguishes these responses, highlighting the practical effectiveness of
our classifier-based de-anonymizing function.

Table 7: The Top-1 and Top-5 accuracy
against various scales of the training corpus.

Accuracy
Training Prompts per Model

2000 2500 3000 3500 4000

Top-1 76.92% 78.34% 79.09% 79.96% 79.23%
Top-5 96.34% 97.08% 97.28% 97.72% 97.32%

Efficiency analysis of classifier training. In this
section, we leverage various scales of training corpus
for classifier training to demonstrate the efficiency of
classifier training in practice. For evaluation, we gen-
erate 1,000 responses for each model using unseen
prompts and report their average accuracy. Results in
Table 7 show that the classifier maintains comparable
performance even when the training dataset is reduced to half of its original size.
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7 DEFENSE AGAINST VOTE RIGGING

To mitigate the risks of ranking manipulation, we discuss several methods to defend against vote
rigging, including detecting malicious users and filtering anomalous votes.

Detect users with duplicate vote submission. Given that both the T-Abstain/T-Tie rigging strategies
consistently vote Abstain/Tie for the Passive options, a straightforward defense involves
detecting and preventing such duplicate voting behavior. For instance, if a continuous voting
duplication is detected over η battles, the user will be suspended from voting for a period (e.g., we
discard the following 200 new votes from the violating user in our demo). A larger η implies weaker
detection but less impact on normal voting, with η = inf indicating no detection of duplicate votes.
Our defense results against T-Abstain in Figure 4 (a) show that our simple mechanism can effectively
eliminate the ranking increase by 80%, even with a large η = 100.

(a) (b)

Figure 4: We present two strategies to detect
anomalous voting behavior. The left figure detects
and prevents users from submitting duplicate votes
while the right figure identifies malicious voting
behavior that deviates from the normal user voting
distribution.

Identify malicious users. While detecting du-
plicate votes is effective against T-Abstain/T-
Tie, practical adversaries may submit random
Passive options (T-Random) to simply by-
pass the detection. To overcome the chal-
lenge, Chiang et al. (2024); Huang et al. (2025)
have discussed an identification mechanism,
which detects anomalous voting behavior that
deviates from the normal user voting distri-
bution. Here we follow the implementation
of Huang et al. (2025), which leverages a likeli-
hood test against the null hypothesis where votes
are from normal users. Results in Figure 4 (b)
demonstrate its effectiveness in detecting the T-
Random and Omni-BT rigging. However, as suggested by Huang et al. (2025), the adversary could
bypass it by casting normal votes with the public ranking (T-Normal). For Omni-BT, when casting
around 20% of normal votes, we successfully reduce the detection accuracy to 20% despite a less
than 15% decrease in ranking promotion. Additionally, our original Omni-On is challenging to detect
without adaption, indicating its stealthier rigging behavior in practice.

Table 8: The mitigation results of vote filtering strategy.

Method Ranking↓ (Ranking Increase↑)

τ = 0.7 τ = 0.75 τ = 0.8 τ = 0.85 τ = 0.9

T-Tie 91 (+1) 90 (+2) 89 (+3) 89 (+3) 89 (+3)
T-Abstain 89 (+3) 88 (+4) 87 (+5) 87 (+5) 87 (+5)
T-Random 90 (+2) 89 (+3) 89 (+3) 89 (+3) 89 (+3)
T-Normal 88 (+4) 88 (+4) 87 (+5) 87 (+5) 87 (+5)
Omni-BT 86 (+6) 85 (+7) 84 (+8) 83 (+9) 82 (+10)
Omni-On 85 (+7) 84 (+8) 83 (+9) 83 (+9) 83 (+9)

Vote filtering with pairwise win
rates. Since practical adversaries may
have multiple accounts to rig which
reduces the effectiveness of anomaly
user detections. To address this is-
sue, we propose a simple vote filtering
designed to remove anomalous votes
that deviate from the historical win
rate: For each collected vote, if it sat-
isfies W(rBT

VH
[a], rBT

VH
[b]) > τ with

mb wins or W(rBT
VH

[b], rBT
VH

[a]) >
τ with ma wins, we then discard it for leaderboard updating. The τ controls the filtering proportion
and the basic intuition here is to reduce unlikely voting results calibrated by pairwise win rates. We
provide a detailed implementation in Appendix E. As shown in Table 8, while vote filtering reduces
the overall ranking improvement, it still suffers from completely eliminating the rigging effect, where
our omnipresent strategies still achieve over 6-rank improvement even with τ = 0.7. In conclusion,
our findings demonstrate the difficulty of thoroughly defending against vote rigging, implying that
more effective defenses should be developed to improve Chtabot Arena’s integrity.
8 CONCLUSION

In this paper, we expose the vulnerability within Chatbot Arena where rankings of target model mt

can be improved through a simple target-only rigging strategy. However, given the large number of
models on Chatbot Arena, this strategy could be practically inefficient. To tackle this, we propose
the omnipresent rigging strategy by redesigning rigging objectives with omni-property, which
significantly improves the rigging efficiency and is effective even without directly rigging mt. While
our study primarily presents proof-of-concept experiments, practical adversaries could simply use the
multi-class classifier or more advanced de-anonymizing functionsAomni(·) to predict model identities
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and cast malicious votes to boost mt’s ranking with substantial promotional benefits. In sum, our
findings highlight the challenges of providing a faithful LLM evaluation with human-annotated votes.
Furthermore, devising effective anti-rigging defenses would be critical in future research to preserve
the integrity of not only the Chatbot Arena but also emerging voting-based evaluation systems.
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A ABLATION STUDIES OF DIFFERENT RIGGING OBJECTIVES FOR
OMNIPRESENT RIGGING

A.1 AN INFORMAL PROOF OF OMNI-PROPERTY

Given a collected voting set V and the target model mt, we assume, without loss of generality, that a
(malicious or normal) user votes for a wins in a new battle between ma and mb, where t /∈ {a, b}.
After this new vote, the voting set is updated to Va>b as described in Section 2.1.

It is directly evident by Eq. (1) that the BT scores on ma and mb will change, i.e., rBT
V [a] ̸= rBT

Va>b
[a]

and rBT
V [b] ̸= rBT

Va>b
[b]. Then since the sampling distribution P is always non-zero on all battle pairs

and the collected voting set V is assumed to be sufficiently large, it is reasonable to conclude that at
least one vote on the battle between mt and ma or mt and mb is included in V. Consequently, the
value of rBT

V [t] depends on rBT
V [a] and/or rBT

V [b], and rBT
Va>b

[t] depends on rBT
Va>b

[a] and/or rBT
Va>b

[b].
Thus, we can conclude that rBT

V [t] ̸= rBT
Va>b

[t], indicating that a new vote on the battle between ma

and mb will influence the BT score of the target model mt.

A.2 DOES IMPROVING RELATIVE RATING INCREASE BETTER THAN IMPROVING ABSOLUTE
RATING INCREASE FOR OMNI-BT

In this section, we illustrate why we chooseRBT(rBT
V′ ) = rBT

V′ [t]− rBT
V′ [t̂] that measures the relative

rating increase between mt and mt̂, i.e., the model that ranks one position ahead of mt as our rigging
objective. For comparison, we implement a straightforward objectiveRBT(rBT

V′ ) = rBT
V′ [t] that directly

maximizes the absolute rating increase. We reconduct experiments under the setting in Section 4 and
present comparison results of their average ranking increase across all manipulated votes in Figure 5.
It is observed that by maximizing the relative rating increase, we achieve a more stable and efficient
ranking promotion. In practice, the adversary may explore more effective rigging objectives, which is
worth discussing in future studies.
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Figure 5: We show the average ranking improvement across all new votes for two rigging objectives,
where Relative Increase indicates the rigging objectiveRBT(rBT

V′ ) = rBT
V′ [t]− rBT

V′ [t̂] that maximizes
mt’s relative rating increase between mt and mt̂ and Absolute Increase indicates the rigging objective
RBT(rBT

V′ ) = rBT
V′ [t] that maximizes the absolute rating increase of mt.

A.3 WHAT IF MAXIMIZING THE WIN RATE OF ONE MODEL FOR OMNI-ON

Our original Omni-On strategy in Eq. (5) aims to maximize the average pairwise win rates over ma

and mb. Here, we investigate an intriguing question: what if we only consider maximizing the win
rate of one model (either ma or mb)? We formulate our problem into two straightforward rigging
objectives: the first involves maximizing the win rate over the model with a higher ranking, with the
objective as

ROn-Min (rBT
VH

[t], rOn
a (γ, µ), rOn

b (γ, µ)
)
= min(W

(
rBT
VH

[t], rOn
a (γ, µ)

)
,W

(
rBT
VH

[t], rOn
b (γ, µ)

)
),
(6)
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Table 9: Rigging results against various numbers of votes.

Method Vote Numbers

5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

w/o Rigging 92 (+0) 92 (+0) 92 (+0) 92 (+0) 92 (+0) 92 (+0) 92 (+0) 92 (+0) 92 (+0) 92 (+0)
T-Tie 92 (+0) 91 (+1) 90 (+2) 90 (+2) 89 (+3) 88 (+4) 86 (+6) 83 (+9) 82 (+10) 79 (+13)
T-Abstain 91 (+1) 89 (+3) 88 (+4) 87 (+5) 86 (+6) 85 (+7) 83 (+9) 81 (+11) 80 (+12) 79 (+13)
T-Random 92 (+0) 90 (+2) 90 (+2) 89 (+3) 88 (+4) 86 (+6) 84 (+8) 83 (+9) 80 (+12) 79 (+13)
T-Normal 91 (+1) 89 (+3) 88 (+4) 87 (+5) 86 (+6) 86 (+6) 84 (+8) 82 (+10) 81 (+11) 80 (+12)
Omni-BT 87 (+5) 86 (+6) 84 (+8) 82 (+10) 80 (+12) 78 (+14) 75 (+17) 73 (+19) 72 (+20) 70 (+22)
Omni-On 87 (+5) 86 (+6) 84 (+8) 82 (+10) 81 (+11) 78 (+14) 76 (+16) 74 (+18) 72 (+20) 71 (+21)
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Figure 6: The results show that updating rBT
VH

leads to significantly inferior rigging performance,
which explains why we do not update with online Elo scores in our Omni-On rigging strategy.

and the other one focuses on maximizing the win rate over the lower-ranking models, with the
following objective

ROn-Max (rBT
VH

[t], rOn
a (γ, µ), rOn

b (γ, µ)
)
= max(W

(
rBT
VH

[t], rOn
a (γ, µ)

)
,W

(
rBT
VH

[t], rOn
b (γ, µ)

)
).
(7)

We experiment against six models used in Section 4 and observe that applying ROn-Max results in
an average of 7 ranking increase. However, switching toROn-Min yields much inferior and unstable
rigging results, even lowering the average ranking by 4. These findings validate the effectiveness of
using the average win rate as our objective for a more stable rigging performance.

A.4 EXPLANATION OF WHY WE DO NOT UPDATE rBT
VH

WHEN USING THE OMNI-ON
STRATEGY

In Figure 6, we compare the results of updating (Update) and not updating (w/o Update) the rBT
VH

when using the Omni-On strategy. It is observed that updating rBT
VH

results in significantly inferior
rigging performance, even when compared to the T-Abstain. This is due to the instability of the online
Elo updating which is also discussed in Chiang et al. (2023a), leading to an inaccurate calculation of
pair-wise win rates and thus affecting the vote selection of Omni-On.

B OMNIPRESENT RIGGING BASED ON MULTI-CLASS CLASSIFIER

B.1 MECHANISMS OF DE-ANONYMIZING FUNCTIONS AOMNI(·)

We train a classifier to acquire LLM identities based on their individual responses. Formally, let
fθ(·) : S → RN denote the classifier parameterized by θ, where N ≤ K indicates the number of
models being classified. We construct the training dataset D by prompting each considered model mn

with a set of prompts and labeling their responses with corresponding indexes n ∈ {1, . . . , N}. These
labeled corpus d := (mn(s), n) can then be utilized to optimize θ by minimizing the Cross-Entropy
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Table 10: Rigging results against additional target models.

Model Rigging Strategies

w/o Rigging T-Abstain T-Random T-Tie T-Normal Omni-BT Omni-On

claude-3-5-sonnet-20240620 5 (+0) 5 (+0) 5 (+0) 4 (+1) 5 (+0) 4 (+1) 4 (+1)
claude-3-haiku-20240307 39 (+0) 38 (+1) 38 (+1) 38 (+1) 38 (+1) 38 (+1) 34 (+5)
gemini-1.5-flash-api-0514 19 (+0) 19 (+0) 19 (+0) 19 (+0) 19 (+0) 19 (+0) 18 (+1)
gemini-1.5-pro-api-0514 9 (+0) 9 (+0) 7 (+2) 7 (+2) 9 (+0) 7 (+2) 8 (+1)
gemma-2-2b-it 56 (+0) 54 (+2) 55 (+1) 56 (+0) 54 (+2) 50 (+6) 54 (+2)
gemma-2-9b-it 33 (+0) 32 (+1) 32 (+1) 34 (-1) 32 (+1) 32 (+1) 33 (+0)
gemma-2-27b-it 23 (-1) 21 (+1) 21 (+1) 20 (+2) 21 (+1) 20 (+2) 21 (+1)
gpt-3.5-turbo-0613 63 (+0) 61 (+2) 59 (+4) 59 (+4) 61 (+2) 57 (+6) 57 (+6)
gpt-4-0125-preview 17 (+0) 16 (+1) 14 (+3) 14 (+3) 16 (+1) 15 (+2) 11 (+6)
gpt-4-1106-preview 12 (+0) 12 (+0) 12 (+0) 11 (+1) 12 (+0) 12 (+0) 5 (+7)
gpt-4-turbo-2024-04-09 11 (+0) 10 (+1) 10 (+1) 8 (+3) 10 (+1) 7 (+4) 9 (+2)
gpt-4o-2024-05-13 3 (+0) 3 (+0) 3 (+0) 3 (+0) 3 (+0) 3 (+0) 2 (+1)
gpt-4o-2024-08-06 8 (+0) 6 (+2) 7 (+1) 7 (+1) 6 (+2) 5 (+3) 6 (+2)
gpt-4o-mini-2024-07-18 4 (+0) 4 (+0) 4 (+0) 4 (+0) 4 (+0) 4 (+0) 4 (+0)
llama-3-8b-instruct 47 (+0) 47 (+0) 48 (-1) 48 (-1) 47 (+0) 46 (+1) 47 (+0)
llama-3-70b-instruct 27 (+0) 27 (+0) 26 (+1) 25 (+2) 27 (+0) 25 (+2) 21 (+6)
llama-3.1-8b-instruct 40 (+0) 40 (+0) 40 (+0) 40 (+0) 40 (+0) 40 (+0) 40 (+0)
llama-3.1-70b-instruct 16 (+0) 12 (+4) 13 (+3) 13 (+3) 12 (+4) 12 (+4) 14 (+2)
llama-3.1-405b-instruct 7 (+0) 7 (+0) 7 (+0) 7 (+0) 7 (+0) 5 (+2) 7 (+0)
mixtral-8x7b-instruct-v0.1 64 (+0) 64 (+0) 66 (-2) 64 (+0) 62 (+2) 62 (+2) 64 (+0)
mixtral-8x22b-instruct-v0.1 53 (-1) 48 (+4) 51 (+1) 48 (+4) 48 (+4) 48 (+4) 50 (+2)
qwen2-72b-instruct 34 (+0) 33 (+1) 34 (+0) 34 (+0) 33 (+1) 32 (+2) 33 (+1)

Average Ranking Improvement -0.1 +0.9 +0.8 +1.1 +1.0 +2.0 +2.1

(CE) Loss:

θ∗ = argmin
θ

Ed∈D[− log(
exp(fθ(mn(s))[n])∑N
j=1 exp(fθ(mj(s))[j])

)], (8)

where fθ(·)[n] indicates its n-th logit. Then the omnipresent de-anonymizing mechanism can be
formulated as Aomni(s,mk(s)) = argmaxn fθ∗(mk(s))[n].

Discussions on strategies to identify LLM through model responses. Identifying the source of
LLM through model responses has been widely researched. Active identification methods such as
LLM watermarking (Kirchenbauer et al., 2023; Yoo et al., 2023; Fernandez et al., 2023; Christ et al.,
2024; Kirchenbauer et al., 2024) and LLM backdoor (Shu et al., 2023; Li et al., 2024d; Hubinger
et al., 2024; Yan et al., 2024; Xu et al., 2024; Rando & Tramèr, 2023) embed traceable information
into LLM responses, facilitating further detection through predefined statistical metrics. On the other
hand, passive strategies (Dou et al., 2022; Guo et al., 2023; Chen et al., 2023a; Ghosal et al., 2023;
Chen et al., 2023b; Verma et al., 2024) analyzes hidden text style without altering the generation
process. For instance, Guo et al. (2023) fine-tuned a RoBERTa-based model (Liu et al., 2019) to
distinguish between output preference for LLM-generated responses and human-written documents.

B.2 DETAILS OF MODEL SELECTION IN THE CASE STUDY

Here we elaborate on the models utilized in our case study in Section 6. For classifier training, we use
a total of 25 models, including Llama-3-8B-Instruct (Dubey et al., 2024), Llama-2-7B-Chat, Llama-
2-13B-Chat (Touvron et al., 2023), Mistral-7B-Instruct, Mistral-7B-Instruct-v0.2 (Jiang et al., 2023),
Command-r (Cohere, 2024), Gemma-2B-it (Gemma et al., 2024a), Gemma-2-9B-it, Gemma-2-27B-
it (Gemma et al., 2024b), Phi-3-small-8k-Instruct, Yi-34B-Chat, Yi-1.5-34B-Chat (Young et al., 2024),
Qwen1.5-7B-Chat, Qwen1.5-14B-Chat (Bai et al., 2023), Starling-LM-7B-alpha, Starling-LM-7B-
beta (Zhu et al., 2024), Chatglm3-6B (GLM et al., 2024), Zephyr-7B-alpha, Zephyr-7B-beta (Tunstall
et al., 2023), Openchat-3.5 (Wang et al., 2023), Vicuna-7B-v1.3 (Chiang et al., 2023b), Mpt-7B-
Chat (Mosaic, 2023), Wizardlm-13B (Xu et al., 2023), Solar-10.7B-instruct-v1.0 (Kim et al., 2023),
and GPT-4o-mini-2024-07-18 (Chen et al., 2023a). Additionally, we involve five extra models to
simulate newly added models that fall outside our initial classification range including GPT-3.5-turbo-
0613 (Brown et al., 2020), Vicuna-13B-v1.3 (Chiang et al., 2023b), Phi-3-medium-4k-Instruct (Abdin
et al., 2024), Dolphin-2.2.1-Mistral-7B (Hartford, 2023), and Openhermes-2.5-Mistral-7B (Teknium,
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2023). In Figure 7, we demonstrate the classification performance against responses generated with
unseen prompts from the HC3 and Quora datasets respectively. We evaluate each model using 1,000
responses generated from unseen prompts.
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Figure 7: Classification accuracy of the text classifier against the HC3 and the Quora dataset. Our
evaluation results are evaluated with responses generated with unseen prompts, which are not used
for training corpus generation.
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B.3 DETAILS OF TRAINING DATASET CONSTRUCTION

In our experiments, both the HC33 and Quora4 datasets are sourced from the Hugging Face. For HC3,
we utilize the prompts from the reddit eli5 dataset split for response generation. We use two simple
data-cleansing strategies in our training corpus: discarding responses with fewer than 100 tokens, as
these responses show less promotion for classifier training, and removing three markdown symbols
from the text responses including markdown header, markdown bold, and markdown list symbols
followed by (Li et al., 2024a) to make our classifier less biased towards these potentially spurious
features.

C ADDITIONAL RIGGING RESULTS

C.1 RIGGING RESULTS WITH VARIOUS NUMBERS OF VOTES

We provide the average rigging performance against various numbers of new votes in Table 9. Our
omnipresent strategies remain effective across different numbers of votes compared to target-only
rigging strategies.

C.2 RIGGING RESULTS WITH ADDITIONAL TARGET MODELS

We provide additional comparisons of rigging performance between the target-only and omnipresent
rigging strategies on target model mt, which is set to be one of the 22 diverse models used in Huang
et al. (2025). Our experimental results in Table 10 demonstrate the effectiveness of our omnipresent
rigging strategies, which achieve over double the ranking promotion compared to the target-only
rigging strategies.

Algorithm 1 Vote-filtering Strategy

Input: Collected voting records V; Historical voting records VH ; Threshold τ .
Output: Filtered voting records VF .

1: Initialize VF = ∅
2: for v in V do
3: Extract ma and mb from v
4: CalculateW(rBT

VH
[a], rBT

VH
[b])

5: CalculateW(rBT
VH

[b], rBT
VH

[a])

6: ifW(rBT
VH

[a], rBT
VH

[b]) > τ and mb wins then
7: continue
8: else ifW(rBT

VH
[b], rBT

VH
[a]) > τ and ma wins then

9: continue
10: else
11: VF ← VF ∪ v;
12: end if
13: end for

D EXAMPLE OF DIFFERENT MODEL RESPONSES

We provide examples of prompts from the HC3 dataset, as well as corresponding responses generated
by querying model APIs on the Chatbot Arena (side by side). We show the model responses of Llama-
3-8B-Instruct in Figure 8, GPT-4o-mini-2024-07-18 in Figure 9 and Gemma-2-9B-it in Figure 10
respectively.

E DETAILS OF VOTE FILTERING

We provide a detailed description of our vote-filtering strategy in Algorithm 1.
3https://huggingface.co/datasets/Hello-SimpleAI/HC3
4https://huggingface.co/datasets/quora-competitions/quora
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F RELATED WORK

LLM evaluation. Developing LLMs benchmarking is a crucial task for measuring their intrinsic
capabilities. Conventional benchmarks like GLUE (Wang et al., 2018), HumanEval (Chen et al.,
2021), MMLU (Hendrycks et al., 2020), and GSM-8K (Cobbe et al., 2021) assess LLMs in a static
manner, where they typically rely on predefined test cases. Although convenient, these benchmarks
are difficult to comprehensively capture the open-ended generation capabilities (Liang et al., 2023;
Peng et al., 2022) of emerging advanced models, and are typically associated with concerns such as
dataset contamination (Yang et al., 2023; Sainz et al., 2023) and Out-Of-Distribution robustness (Yuan
et al., 2023). To address these challenges, recent progresses (Zheng et al., 2023a; Li et al., 2023;
Dubois et al., 2024) employ LLM-as-a-Judge where a strong language model such as GPT-4 (Achiam
et al., 2023) serves as a referee for model assessment. While reducing the need for human annotation,
these automatic evaluators might suffer from spurious features, such as verbosity and position
bias (Dubois et al., 2024; Chen et al., 2024). Unlike traditional benchmarks, Chatbot Arena (Chiang
et al., 2024) devises an online platform that allows site users to vote between a pair of anonymous
models based on preferred responses. By leveraging crowdsourced voting, the leaderboard aggregates
high-diversity human-annotated votes, which features Chatbot Arena the most popular and widely
recognized LLM benchmark.

Vulnerability of LLM evaluation. Previous studies (Raina et al., 2024; Shi et al., 2024; Zheng
et al., 2024) have exposed the vulnerability of the LLM-as-a-Judge by adversarially cheating the
LLM evaluator. While these studies primarily concentrate on identifying vulnerabilities in automatic
evaluation paradigms, our paper distinguishes them with a focus on rigging the human-voted Chatbot
Arena. In concurrent with our work, Zhao et al. (2024); Huang et al. (2025) leverage strategies
such as watermarking and binary-classifier to identify and exclusively vote for the target model mt,
which can be absorbed within our general target-only rigging strategy. Additionally, we provide a
more unified rigging framework along with an in-depth analysis of rigging capability. Our proposed
omnipresent rigging strategy significantly improves the rigging efficiency and is effective even if
mt is not directly involved in battles.

G IMPACT STATEMENTS

Due to Chatbot Arena’s widespread popularity in LLM evaluation, it is possible that practical
adversaries could exploit our rigging strategies to improve their own target models’ ranking for
substantial promotional benefits. These malicious behaviors would put other normal model developers’
interests at risk, and even worse, undermine the reliability and trustworthiness of Chatbot Arena. On
the other hand, while we have discussed several defense methods against vote rigging, our initial
attempts at rigging defense highlight the difficulties in completely eliminating the manipulation effect.
As a result, we encourage the community to focus on developing more robust defense mechanisms
to mitigate the rigging vulnerabilities of Chatbot Arena as well as strengthening the integrity of
emerging voting-based evaluation systems such as Copilot Areana and WebDev Arena.
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Examples from Llama-3-8B-Instruct

Prompt (Train)
Why is every book I hear about a " NY Times # 1 Best Seller " ? ELI5 : Why is every
book I hear about a " NY Times # 1 Best Seller " ? Should n’t there only be one " # 1 "
best seller ? Please explain like I’m five.

Model Response
What a great question!

Imagine you’re at a big lemonade stand with lots of different flavors. Each flavor
is a different book, and people are buying them to read.

The New York Times (NYT) is like a super-important lemonade stand that keeps track
of how many people are buying each flavor of lemonade (book) each week. They make a
special list called the "Best Sellers List" that shows which flavors (books) are the
most popular.

Now, there are many different categories of books, like fiction, non-fiction, mystery,
romance, and more. The NYT has a separate list for each category, kind of like a
different flavor of lemonade stand for each ...

Prompt (Train)
If salt is so bad for cars , why do we use it on the roads ? As the title states , why
do we use it ? is there no other option or what ? Please explain like I’m five.

Model Response
Let me explain it to you in a way that’s easy to understand!

Salt is used on roads for a really important reason: it helps keep us safe by
preventing slippery roads from causing accidents. Here’s why:

During the winter months, the ground can get really cold, and when it does, it can
make the roads super slippery. This is because the water in the air freezes and turns
into ice or frost. When we drive on these slippery roads, it’s like trying to drive on
a giant banana peel { our cars can lose traction and slide all over the place!

That’s where salt comes in. When salt is sprinkled on the roads, it does a few
important things: ...

Prompt (Unseen)
The appeal of NASCAR It ’s just one of those things I ’ve never understood ... Explain
like I’m five.

Model Response
OH BOY, LET ME TELL YOU ABOUT NASCAR!

So, you know how there are cars, right? Like the ones your parents drive you around
in

Well, NASCAR is like a big game where people drive those cars REALLY, REALLY FAST!
But instead of going to the grocery store, they go around a special track called a
"racetrack". It’s like a big oval-shaped playground!

Imagine you’re playing with your toy cars on the floor, but instead of making "vroom"
noises, these cars are actually going "VROOOOOM!" really, really fast! Some of them can
go up to 200 miles per hour! ...

Figure 8: Examples of model responses generated by querying Llama-3-8B-Instruct using HC3
dataset prompts. The upper two examples use the training prompts, whereas the bottom example uses
the unseen prompt.
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Examples from GPT-4o-mini-2024-07-18

Prompt (Train)
Why is every book I hear about a " NY Times # 1 Best Seller " ? ELI5 : Why is every
book I hear about a " NY Times # 1 Best Seller " ? Should n’t there only be one " # 1 "
best seller ? Please explain like I’m five.

Model Response
Great question! Imagine you have a big box of toys, and every time you play with a
new toy, you tell your friends how much fun it is. Now, let’s say you and your friends
have different games and ways to play with those toys. Some days, you play with blocks,
other days with dolls, and sometimes with cars.

When it comes to books, the New York Times has different lists for best sellers, just
like you have different games. There are lists for different types of books, like:

Fiction (madeup stories)
NonFiction (real stories or information)
Children’s Books
Graphic Novels
And more!

So, even if a book is ...

Prompt (Train)
If salt is so bad for cars , why do we use it on the roads ? As the title states , why
do we use it ? is there no other option or what ? Please explain like I’m five.

Model Response
Okay! Imagine it’s winter, and there’s a lot of snow and ice on the roads. When cars
drive over ice, they can slip and slide, which can be very dangerous! So, to help keep
the roads safe, people sprinkle salt on them.

Here’s why salt is used:

1. Melts Ice: Salt is like magic for ice! When you sprinkle it on ice, it makes the
ice melt. This helps to clear the roads so cars can drive safely.

2. Makes Roads Safer: If the ice melts, it’s easier for cars to stay on the road and
not slip. This means fewer accidents! ...

Prompt (Unseen)
The appeal of NASCAR It ’s just one of those things I ’ve never understood ... Explain
like I’m five.

Model Response
Okay! Imagine you have a big toy car. Now, think about a lot of those toy cars racing
super fast around a big circle, like a giant track. NASCAR is like that, but with real
cars and real drivers!

People love to watch because:

1. Speed: The cars go really, really fast, like a cheetah running!
2. Excitement: Sometimes the cars bump into each other or spin out, which is thrilling
to see!
3. Friends and Family: Many people watch NASCAR together, cheering for their favorite
drivers, just like cheering for a team in a game.
4. Cool Cars: The cars are painted in bright colors and have fun designs, making them
look super ...

Figure 9: Examples of model responses generated by querying GPT-4o-mini-2024-07-18 using HC3
dataset prompts. The upper two examples use the training prompts, whereas the bottom example uses
the unseen prompt.
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Examples from Gemma-2-9B-it

Prompt (Train)
Why is every book I hear about a " NY Times # 1 Best Seller " ? ELI5 : Why is every
book I hear about a " NY Times # 1 Best Seller " ? Should n’t there only be one " # 1 "
best seller ? Please explain like I’m five.

Model Response
Imagine there are lots of different toy stores, each with a chart showing the most
popular toys that week.

The New York Times is like a big toy store that makes a list of the most popular books
each week. They have different charts for different kinds of books, like picture books,
chapter books, and grownup books.

So, there can be many 1 bestsellers because there are many different lists!

It’s like having a 1 toy in the action figure section, a 1 toy in the doll section,
and a 1 toy in the building blocks section. They are all 1 in their own category! ...

Prompt (Train)
If salt is so bad for cars , why do we use it on the roads ? As the title states , why
do we use it ? is there no other option or what ? Please explain like I’m five.

Model Response
Imagine you’re playing outside on a snowy day. Your shoes get all icy and slippery,
right?

Roads get the same way in the winter! When it snows and freezes, the roads become
super slippery and dangerous for cars.

Salt is like magic powder that melts the ice! It makes the ice turn into water, so
cars can drive safely.

It’s not perfect though. Salt can be bad for cars because it can rust them. But it’s
much safer to have a little bit of rust than to have a car crash because of icy roads!
...

Prompt (Unseen)
The appeal of NASCAR It ’s just one of those things I ’ve never understood ... Explain
like I’m five.

Model Response
Imagine you have a bunch of toy cars, all the same, but with different colors and
numbers.

Now imagine you race them around a big, oval track.

Some people like watching these races because:

The cars are super fast! They zoom around the track really quickly, which is exciting
to watch.

The drivers are really good! They have to be super careful and skilled to drive these
cars so fast.

There’s lots of action! Sometimes the cars bump into each other, which can be a little
bit like a big, noisy game of tag.

It’s like a big party! Lots of people go to NASCAR races with their friends and family,
and they cheer for ...

Figure 10: Examples of model responses generated by querying Gemma-2-9B-it using HC3 dataset
prompts. The upper two examples use the training prompts, whereas the bottom example uses the
unseen prompt.
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