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Abstract

High-dynamic-range (HDR) images, with their rich tone and detail reproduction,
hold significant potential to enhance computer vision systems, particularly in au-
tonomous driving. However, most neural networks for embedded systems are
trained on low-dynamic-range (LDR) inputs and suffer substantial performance
degradation when handling high-bit-depth HDR images due to the challenges
posed by extreme dynamic ranges. In this paper, we propose a novel tone mapping
method that not only bridges the gap between HDR RAW inputs and the LDR
sRGB requirements of detection networks but also achieves end-to-end optimiza-
tion with downstream tasks. Instead of relying on the traditional image signal
processing (ISP) pipeline, we introduce neural photometric calibration to regularize
dynamic ranges and a scaling-invariant local tone mapping model to preserve image
details. In addition, our architecture also supports performance transfer finetuning,
enabling efficient adaptation from the LDR sRGB images to the HDR RAW images
with minimal cost. The proposed method outperforms traditional tone mapping
algorithms and advanced AI-ISP methods in challenging automotive HDR scenes.
Moreover, our pipeline achieves real-time processing of 4K high-bit-depth HDR
inputs on NVIDIA Jetson platforms.

1 Introduction
Real-world scenes can exhibit an immense dynamic range, reaching approximately 280 dB [1].
HDR cameras, by capturing a broader range of luminance, not only enrich visual content but also
substantially enhance visual perception and decision-making—ultimately improving navigation safety
[2]. State-of-the-art HDR sensors, such as the SONY IMX490 [3], deliver HDR RAW streams with
an impressive dynamic range of up to 140 dB and preserve unparalleled levels of unprocessed detail.
As a result, computer vision systems must handle challenging high-bit-depth HDR (e.g., 24-bit)
scenes and rapidly changing lighting conditions in real-time, such as transitions when entering or
exiting a tunnel.

Existing computer vision methods, particularly DNN-based object detection networks [4, 5, 6,
7, 8], are designed for low-dynamic-range (LDR) inputs processed through the traditional image
signal processor (ISP). When applied directly to high-bit-depth HDR imagery, these systems suffer
significant performance degradation 3.1 due to extreme luminance contrasts, leading to the collapse
of feature extraction in neural networks. A common solution to this problem is to utilize professional
HDR ISP, such as those described in [9, 10, 11], to convert HDR RAW images into LDR sRGB
equivalents through a series of image processing steps. A critical component of these ISP is tone
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mapping [12, 13, 14], which compresses the dynamic range while preserving as much detail as
possible.

Handcrafted tone mapping approaches remain fundamentally optimized for human visual perception
rather than machine vision tasks, often resulting in suboptimal performance when integrated with
modern computer vision architectures. This mismatch also extends to traditional ISP pipelines,
which inherit similar perceptual optimization constraints. Recent DNN-based AI-ISP methods
[15, 16, 17, 18, 19, 20] largely follow traditional ISP pipelines for processing HDR RAW inputs.
Some works [15, 16] implement neural approximations of key modules (e.g., AWB, Tone Mapping,
CCM) for task-specific optimization, while others employ simplified tone curve parameterizations
[21, 22] or proxy-based ISP tuning [18, 19, 17] guided by the downstream task. However, these
methods remain constrained by ISP pipelines, which include redundant components and limit their
adaptability to diverse HDR scenes in computer vision applications.
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Figure 1: Comparison of detection performance and
model complexity on the RoD dataset using Faster
R-CNN (1280× 1280 resolution). The symbol ★ indi-
cates the performance of our Ours (Lite) model with 4K
resolution input, achieving 45 FPS on NVIDIA Jetson
platforms (16-bit float precision).

Modern edge computing platforms (e.g.,
NVIDIA Jetson) and neural network in-
ference engines are exclusively optimized
for LDR sRGB inputs. However, the ex-
treme 24-bit dynamic range of HDR RAW
images presents significant challenges for
hardware-friendly operators, such as piece-
wise linear functions [23] or perceptual tone
curves [13], which fail to represent the
full dynamic range adequately. This intro-
duces a gap between the HDR RAW inputs
and these engines, necessitating innovative
bridging solutions that can be effectively
run on embedded systems.

To bridge the gap between high-bit-depth
HDR RAW inputs and LDR sRGB re-
quirements of neural networks, we propose
a lightweight and efficient tone mapping
framework specifically optimized for HDR
RAW object detection. The proposed archi-
tecture enables efficient computation and
low latency, making it well-suited for edge
platforms. To address changing lighting conditions in real-world environments, we propose neural
HDR photometric calibration to dynamically regularize extreme dynamic ranges, normalize diverse
radiance distributions into a unified scale, and enhance cross-scene generalization and detection
performance. Our method outperforms both handcrafted tone mapping algorithms and modern AI-ISP
baselines in autonomous driving datasets. Comprehensive ablation experiments demonstrate that
our method significantly improves the detection performance on HDR RAW inputs. Furthermore,
we show that our approach can process large-resolution HDR RAW data in real-time, achieving a
balance between detection performance and inference latency. In summary, we make the following
contributions:

• We propose a novel tone mapping framework for vision tasks to bridge the gap between high-
bit-depth HDR RAW data and LDR sRGB input requirements for HDR object detection,
specifically tailored for embedded platforms.

• We introduce a neural HDR photometric calibration method that dynamically regularizes
extreme dynamic ranges through radiance-space unification.

• We design a lightweight local tone mapping model based on a scaling-invariant principle,
enhancing detection performance while reducing runtime.

• We validate our method on an end-to-end object detection task, demonstrating its ability to
efficiently process HDR RAW data while balancing detection performance and computa-
tional efficiency. Experimental results show that our method enables real-time processing of
4K HDR RAW videos.
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Conventional HDR Imaging and Detection

Figure 2: Conventional HDR RAW processing and detection are typically treated as separate tasks
and optimized independently. We propose an alternative pipeline for HDR object detection, where
tone mapping is optimized specifically for detection. The proposed pipeline regularizes the dynamic
range and utilizes a scaling-invariant tone mapper to process both tasks simultaneously.

2 Related Works

2.1 High-Dynamic Range Imaging

HDR imaging techniques aim to capture a broader dynamic range of luminance. However, con-
ventional CMOS sensors are limited in their luminance coverage, driving the development of HDR
imaging solutions. Multi-exposure fusion (MEF) [24, 25] is a widely adopted approach in the industry,
leveraging weight fusion strategies to recover the dynamic range from multiple exposures. While
effective for photography, MEF methods are unsuitable for machine vision due to exposure latency
and motion artifacts. For safety-critical applications like autonomous driving, researchers have
explored single-shot HDR imaging solutions, including neural exposure control [26, 25], spatially
varying pixel exposure [27, 28], and lighting modulation devices [29, 30], which extend dynamic
range while avoiding motion artifacts.

While HDR imaging offers a broader dynamic range and richer tone reproduction, it necessitates
novel methods to fully leverage its potential. Recently, [15] introduced a 24-bit HDR RAW image
dataset captured using the IMX490 sensor, which employs advanced Split Pixel architecture [3] to
capture an impressive dynamic range of 140 dB (approximately 24 stops). This extreme dynamic
range significantly surpasses that of existing datasets, such as LoD [31] (14-bit), PASCAL RAW [32]
(14-bit), and RhoVision [33] (12-bit), presenting a considerable challenge to current computer vision
systems.

2.2 Post-Captured Tone Mapping Algorithms

Traditional computer vision networks are typically tailored for LDR images processed by the Camera
ISP pipelines [10, 11, 34]. Tone mapping algorithms [12, 14, 13] are a critical component of camera
ISP, compressing dynamic range and equalizing luminance to render HDR content into visually
pleasing LDR images. However, these algorithms and ISP systems are primarily designed for human
perception, often including unnecessary steps and being computationally expensive. While effective
for visual aesthetics, they are suboptimal for machine vision tasks such as object detection. To address
these limitations, DNN-based AI-ISP approaches [15, 16, 17] introduce learnable ISP pipelines that
leverage neural networks for HDR tone mapping. These methods can be jointly optimized with
downstream neural networks via gradient propagation, outperforming traditional ISP systems in
vision tasks. Additionally, differentiable approximations [19, 18, 17] model hardware ISP using
techniques such as neural architecture search [19] or parameter mapping [18] to simulate real ISP
systems. Unsupervised low-light enhancement methods [21, 22] also act as independent tone mappers,
equalizing luminance through tone curves. While these methods reduce computational costs, their
reliance on specific models limits generalization under varying illumination conditions. In contrast,
our method employs HDR photometric calibration and an efficient tone mapping network tailored
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Figure 3: Visual comparison of different methods on HDR RAW images. The first row illustrates
daytime scenes, while the second row showcases night scenes. Our method demonstrates superior
performance compared to the other methods. Zoom in to see details.

for HDR perception, eliminating dependence on ISP meta-architectures and avoiding the need for
complex design.

2.3 Perception Networks on Embedded Systems

Practical vision applications, such as those in automotive and robotics, are often deployed on embed-
ded systems (e.g., NVIDIA Jetson, ARM Core) with limited computational resources, necessitating
optimized neural network inference. Lightweight architectures [5, 35] are specifically tailored for AI
edge platforms, enabling efficient inference under resource constraints. To further enhance perfor-
mance, quantization techniques convert floating-point weights into low-precision integers [36, 37],
while pruning methods [38, 39] eliminate redundant layers to reduce memory and computation
overhead. These optimizations make neural networks more suitable for embedded systems, but often
overlook the challenges posed by HDR RAW inputs.

Most deployed models are trained on LDR sRGB images (e.g., 8-bit), making them incompatible
with HDR RAW data (e.g., 24-bit). This mismatch can result in ineffective feature extraction and
degraded performance for HDR perception tasks [15, 40, 33]. To address this issue, we propose a
novel tone mapping method that is jointly optimized with the detector, enabling efficient and accurate
processing of HDR RAW data on embedded systems. Our method bridges the gap between HDR
imaging and embedded perception, enabling resource-constrained platforms to handle HDR tasks
effectively.

3 Method

In this section, we first analyze the impact of dynamic range on detection performance and propose a
neural photometric calibration method to regularize it. Additionally, we present a scale-invariant tone
mapping approach designed to optimize image details, guided by the requirements of the downstream
detector. An overview of the proposed method is illustrated in Fig. 2.

3.1 Dynamic Range Regularization

Dynamic Range and Detection Performance Analysis. Although 24-bit HDR RAW images
retain rich details that could theoretically enhance detection performance, experiments reveal a
counterintuitive issue: directly applying detectors to HDR images causes gradient instability (see
Table 1). We explore the relationship between image dynamic range and gradient propagation in neural
networks. Specifically, we model pixel distributions of an HDR image using a Gaussian Mixture
Model (GMM) [41] to approximate the histogram across the entire dynamic range. The distribution
p(x) of an image x is explicitly expressed as a weighted mixture of N Gaussian component densities
N (µi, σi), designed to approximate the pixel histogram of the HDR input:

p(x) ≈
N∑
i=1

ωi · N (µi, σi) (1)
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where ωi are the weights, and µi and σi are the mean and standard deviation of the i-th Gaussian
component. N is the number of components. Next, we propose a minimal model consisting of a
single-layer CNN with MSE loss to analyze the effects of dynamic range on gradient propagation
dynamics. This simplified model allows for the theoretical derivation of the gradient relationship:

∂L
∂ω

=
∂

∂ω
(ω ∗ x+ c− ŷ)2 ≈ E(x) + E(x2) ≈

N∑
i

ωi(µ
2
i + σ2

i + µi) # di =
µi + σi

µi − σi

≈
N∑
i=1

πi

[
σ2
i +

(
σi ·

di + 1

di − 1

)2

+ σi ·
di + 1

di − 1

]
∝

N∑
i=1

πi

(
di + 1

di − 1

)2
(2)

Here, the single-layer CNN is expressed as ω ∗ x+ c, where ω represents kernel weights, x is the
input, c is bias, ∗ denotes the convolution operator. L is the MSE loss and ŷ denotes the ground
truth label. di represents the ratio of the maximum value to the minimum value in a single Gaussian
component, approximating the dynamic range. As shown in Eq. (2), the gradient is proportional to
the square of the dynamic range, indicating that HDR images lead to higher gradient fluctuations
compared to LDR images. This fluctuation makes it challenging for neural networks to extract
effective features, leading to instability in gradient propagation [15, 42, 33]. Detailed proofs are
provided in the supplemental material.
HDR Photometric Calibration. The gradient fluctuations in HDR images motivate us to regularize
their dynamic range to stabilize training. HDR photometric calibration is commonly used to normalize
pixel values to the irradiance of the real-world scene, projecting HDR images into a unified radiance
space while preserving fine details. Previous studies [43, 44, 45] have shown that HDR photometric
calibration enhances detail reproduction and improves visual perception. The HDR photometric
calibration process can be expressed as:

Ī = V ·R, (3)

where Ī represents the calibrated image, R denotes the scene radiance, and V models the optical
effects. This calibration is typically modeled as a linear transformation.

3.2 Neural Photometric Calibration

In practice, measuring real photometry for HDR image calibration is challenging. To address
this issue and adapt to different lighting conditions, we need to make educated guesses about the
minimum and maximum radiance values in the original scene. Hence, we propose Neural Photometric
Calibration, a novel method designed to approximate Eq. (3) and estimate its adaptive parameters
through end-to-end optimization. Specifically, we define a learnable transformation function as:

Ī = (K− b) ·R+ b (4)

where Ī is calibrated HDR RAW image, R is captured scene radiance. K is the scale map, and
b is bias term. To handle complex scene illumination, we introduce a linear interpolation-based
modification to adaptively predict the scale map:

K = ααα ·RDay + (E−ααα) ·RNight (5)

Here, K is controlled by scene key radiance [13] for both day and night scenes (e.g. RDay and
RNight), ensuring compatibility across different lighting scenes. E is identity matrix, and ααα is a
weight map constrained by a sigmoid function:

ααα = sigmoid (FE (R↓)) (6)

where the uncalibrated image R is first downsampled (↓) to low resolution (LR) and then passed
through a feature extractor FE to generate the weight map ααα.

The radiance in sunlight can be as much as a million times more intense than at night (RDay ≫
RNight). This numerical disparity introduces instability when directly predicting K using the convo-
lution layer in Eq. (5). Thus, we enforce the convolution layer to predict log scale S := logK:

K = {10s}↑, S = ααα · logRDay + (E−ααα) · logRNight (7)

The logarithmic mapping allows us to regress compact values, where 10S is resolved to the radiance
scale, then the scale map is upsampled (↑) to the original size. In this paper, we set RDay and RNight

approximately at 107cd/m2 and 104cd/m2, respectively, as cited from [1], and the bias term b = 10
in our experiments.
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(a) Linear least squares fitting of pixel intensities between 

LDR and HDR images.
(b) Visual Comparison between TMSI and TM.

Figure 4: (a) Linear least squares fitting on pixel intensity from processed LDR image and input
HDR images. TM exhibits a large bias gain, while TMSI only introduces a scale gain. (b) The
comparison of the LDR images shows that TMSI produces smooth regions and effectively enhances
object visibility, while TM often results in background noise.

3.3 Scaling-Invariant Tone Mapper

We propose a lightweight and effective local tone mapper that leverages the scale-invariance property
of neural networks. We first prove that a bias-free neural network [46, 47] (i.e. , no additive bias terms)
with L layers, composed of convolution weights {K}Li , ReLU activation, and Batch Normalization,
is scaling-invariant:

fSI(αx) = RELU ◦ BNL ◦KL ∗ · · · ◦ RELU ◦ BN1 ◦K1 ∗ (αx)

= RELU ◦ BNL ◦KL ∗ · · · ◦ RELU
(
α · γ1 ·

·K1 ∗ x− µ1

σ1

)
= RELU ◦ BNL ◦KL ∗ · · · ◦ α · RELU

(
γ1 ·

K1 ∗ x− µ1

σ1

)
= α · RELU ◦ BNL ◦KL ∗ · · · ◦ RELU ◦ BN1 ◦K1 ∗ x
= α · fSI(x).

(8)

where ◦ denotes the cascading of network layers, ∗ is a convolution operator, and BN denotes batch
normalization, defined as BN(x) = γ · (x− µ)/σ, where γ, µ, σ are statistic parameters. Since
convolution layers rely on local dependencies, this property inherently preserves local relationships.
This design ensures that the scaling-invariant network functions as a local tone mapper without
requiring additional modifications. Scale-invariance is a critical property for tone mapping, as it
ensures consistent reproduction across varying dynamic ranges.
The input HDR RAW image is processed using a scale-invariant tone mapper (TMSI), and the
resulting LDR image is fed into the object detector (OD) to obtain object information. This operation
is formally expressed as:

(d, c, s) = OD(TMSI(Ī)) (9)
where the d are the detected bounding boxes and c and s the corresponding inferred classes and
confidence scores. And in the following text, we will refer to the scaling-invariant tone mapper as
TMSI and the scaling-variant tone mapper as TM.
Architecture Details. The detailed implementation is illustrated in Fig. 2. The neural photometric
calibration module consists of 3-layers of Conv-ReLU followed by a sigmoid activation. The tone
mapping model TMSI consists of 4 layers of Conv-BN-ReLU, each with 32 channels. To preserve the
scaling-invariant property, all bias terms are removed from the network. Additionally, we introduce
a lightweight variant with 16 channels, referred to as Ours (Lite), to enable efficient inference for
large-resolution inputs on edge devices.

3.4 End-to-End Optimization

Tone Mapper Pretraining. In our method, the input HDR RAW images are processed to compress
the dynamic range before passing them to the detector, making effective weight initialization critical
for end-to-end optimization. To pretrain the tone mapper, we use the Normalized Laplacian Pyramid
Distance (NLPD), a self-supervised loss function commonly applied in perceptual image quality
optimization [53, 43]. The NLPD loss compresses the dynamic range while preserving tone details
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Table 1: Quantitative comparison of basic detectors (Faster R-CNN and YOLOv3) on the ROD
dataset, evaluated using mAP, mAR, AP50, and AP75 metrics. The best results are highlighted in
bold, while the second-best results are indicated with an underline. NAN indicates that the results do
not converge.

Methods Method Group Faster R-CNN [4] YOLOv3 [5] Latency(ms) FLOPs(G)
mAP AP50 AP75 mAR mAP AP50 AP75 mAR

HDR RAW Direct Input —NAN— —NAN— - -

HDR ISP [9] Handcrafted ISP 45.7 69.5 50.1 54.9 42.2 68.1 45.6 50.5 - -

Mantiuk08 [12] Handcrafted
Tone Mapping

45.6 69.1 49.7 53.3 44.8 71.0 49.1 52.8 - -
CLAHE94 [14] 44.2 68.2 49.1 53.0 43.0 69.2 46.5 51.4 - -

ReconfigISP21 [19] End-to-End ISP 41.4 63.2 45.6 49.7 40.9 60.0 44.0 48.4 92.7 455.14

Zero-DCE++21 [21] Low-Light
Enhance

28.6 47.4 30.2 38.5 27.5 49.0 27.5 36.3 29.8 16.51
SCI22 [22] 26.1 43.7 27.0 35.6 25.1 45.6 25.1 33.5 64.3 283.14

AnscombeNet21 [18]

AI-ISPNet

26.8 43.6 27.5 37.8 22.0 41.5 23.1 30.4 123.3 382.04
IANet22 [16] 37.6 59.5 40.1 47.0 33.1 56.4 34.4 41.9 31.3 0.96

RAODNet23 [15] 46.1 69.4 50.6 55.4 42.9 65.8 46.5 50.9 41.2 0.81
RawOrCooked23 [42] 34.8 55.3 34.4 44.4 28.2 46.3 28.4 32.9 55.1 12.89

Ours (Lite) End-to-End
Tone Mapping

47.8 71.7 52.9 56.9 42.6 68.5 46.6 51.3 8.8 23.40
Ours 49.8 73.3 55.6 58.7 45.1 71.4 50.2 53.0 25.4 62.11

Table 2: Performance comparison using per-
formance transfer strategy on RoD dataset.

Pretrained
Weights Methods mAP mAR

COCO[48]
RAWAdapter24 [49] 12.6 25.5
AdaptiveISP24 [17] 22.5 33.5

Ours 30.6 47.5

Object365[50]
RAWAdapter24 [49] 15.7 28.9
AdaptiveISP24 [17] 24.7 36.1

Ours 38.8 50.7

Table 3: Impact of image texture metric and detec-
tion results.

Methods Image [51]
Contrast(↑)

Entropy [52]
of GLCM(↑) mAP

HDR RAW 0.00 0.00 -NAN-
SCI22 [22] 0.18 19.17 26.1

Zero-DCE++21 [21] 0.18 20.07 28.6
IANet22 [16] 0.19 21.92 37.6

RAODNet23 [15] 0.22 24.32 46.1
Ours 0.41 24.63 49.8

and effectively enhances local contrast, which we observed to be beneficial for improving object
detection performance.
Performance Transfer Strategy. Our method can also act as a domain adapter [49, 17] to transfer
performance from the LDR sRGB domain to the HDR RAW domain. Through the performance
transfer strategy, we can achieve high performance with only a few training sources by utilizing
pretrained weights on LDR sRGB. In this setting, we optimize only the tone mapper and the detection
head, while keeping the remaining components frozen.
Loss Function. In our experiments, training is guided by detection losses commonly used in object
detection pipelines [4, 5]:

Ltotal = Lobj. + Lclass. (10)

Here, the total loss Ltotal consists of a location regression loss (Lobj.) and a classification loss
(Lclass.), both of which are widely applicable in detection tasks.

4 Experiments

4.1 Experimental Setups

Dataset. We evaluate our method on the RoD dataset [15], which contains 20,089 24-bit HDR
RAW images. Unlike RAODNet [15], we test our proposed method on mixed scenes to validate its
effectiveness and generality. Note that the published dataset is more challenging than in the paper.
Implementation Details. We employ two widely used object detectors: Faster R-CNN (ResNet50)
[4] and YOLOv3 (DarkNet53) [5]. Our implementation is based on the MMDetection [54] codebase.
Following the setup in [15], HDR RAW images are processed with linear demosaicing [55, 56] to
restore color channels and resized to 1280× 1280 size. During training, we apply random flipping
for data augmentation, use a batch size of 8, and train for 14 epochs with an initial learning rate of
1e-2. The learning rate is decayed by a factor of 10 at epochs 8 and 11. And we use Faster R-CNN
[4] as the main detector for the following ablation studies. To accelerate adaptation to the HDR RAW
domain, we initialize the model with COCO [48] pretrained weights.
Evaluation. We evaluate performance using mean Average Precision (mAP) and mean Average
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Table 4: Performance comparison under different scenes of Faster R-CNN.

Scenes HDR ISP
[10]

IANet21
[16]

RAODNet23
[15]

Neural Calibration
w/o

Neural Calibration
w

Day 32.0 43.4 35.9 36.7 40.3
Night 37.9 31.6 45.6 38.5 45.8

Mixed Scene 45.7 37.6 46.1 40.7 49.8

Table 5: Performance comparison using per-
formance transfer strategy on RoD dataset.

Scaling
Invariant

RoD[15] RoD → RhoVision [33]

mAP AP75 AP50 mAP AP75 AP50

é 49.0 72.5 52.4 14.3 24.5 13.5
Ë 49.8 73.3 55.6 26.5 55.9 27.9

Table 6: Impact of texture metric and detec-
tion results on RoD dataset.

Detectors Methods mAP AP50 AP75 mAR

Sparse
RCNN [7]

HDR ISP [10] 45.0 68.7 49.0 61.0
Ours 51.3 (+6.3) 74.7 57.1 66.4

Deformable
DETR[8]

HDR ISP [10] 50.2 73.6 57.5 64.7
Ours 55.0 (+4.8) 78.4 63.4 68.2

Recall (mAR) across all Intersection over Union (IoU) thresholds, along with Average Precision (AP)
at IoU thresholds of 0.5 (AP50) and 0.75 (AP75). Additionally, we test model complexity in terms
of the parameters (K), computational complexity (FLOPs), and inference latency (ms) on NVIDIA
Jetson platforms.

4.2 Comparison Experiments

Quantitative Comparison. We compare the proposed method with state-of-the-art (SOTA) methods
for HDR object detection; the quantitative results are presented in Table 1. We categorize these
comparison methods into five groups: Handcrafted ISP [10], Handcrafted Tone Mapping [12, 14],
End-to-End ISP [19], Low-Light Enhancement [21, 22], AI-ISPNet [18, 16, 15, 42], and End-to-
End Tone Mapping (our methods). The HDR ISP pipeline is adapted from the post-processing of
HDRPlus [9, 10], a professional ISP pipeline designed for HDR image rendering. Directly using
HDR RAW images as input for object detectors results in NaN outcomes due to their extreme
dynamic range, where most pixels tend toward small values. This prevents the neural network
from extracting sufficient features, highlighting the current models’ inability to effectively capture
meaningful information. In contrast, tone mapping algorithms such as Mantiuk08 [12] and CLAHE94
[14] compress the dynamic range while preserving image details, resulting in performance that is
comparable to SOTA and significantly benefits the detection task. Differentiable ISP methods, such
as AnscombeNet21 [18], model ISP transformations in latent space but lack specific tone mapping
operations, resulting in lower performance. ReconfigISP21 [19] employs proxy optimization to
fine-tune a simple ISP system, achieving results comparable to HDR ISP pipelines. Unsupervised
low-light enhancement [21, 22] achieves lower performance because it cannot effectively handle high
dynamic range scenes, and the processed image is still dark. As for AI-ISP methods [16, 15, 42],
IANet22 [16] employs a piece-wise linear curve as a tone mapper, which is only suitable for
monotone lighting scenes, resulting in low performance. RAODNet23 [15] uses both global and
local tone curves to compress the dynamic range, achieving results comparable to state-of-the-
art methods. RAWorCooked23 [42] introduces a learnable contrast correction function, but it
struggles with handling extreme dynamic ranges. Our method outperforms all comparison methods,
achieving improvements of 3.7% in Faster R-CNN and 1.6% in YOLOv3 compared to the second-
best performance, respectively. Additionally, it shows a 4.1% improvement compared to the HDR
ISP pipeline. These comparison results demonstrate that our proposed method effectively explores
potential information in HDR RAW images, leading to improved detection performance.
Qualitative Comparison. In Fig. 3, we compare our method with the baseline by visualizing
detection results across both day and night scenes in the RoD dataset. For daytime scenes, our method
enhances regional dynamics and highlights potential objects, making detection easier. In night scenes,
it adjusts the contrast across regions, making candidate areas more prominent. Our method can handle
varying lighting conditions, thanks to neural photometric calibration. This process normalizes the
radiance space and optimizes tone mapping for the downstream detector, offering an optimal solution
for machine vision perception. More visual comparisons are provided in the supplemental material.
Inference Latency Comparison. We evaluate the parameters and inference latency of comparison
methods in Fig. 1. Our method utilizes a plain feedforward architecture, where each layer takes the
output of its preceding layer as input and passes its output to the following layer. This design ensures
a favorable accuracy-speed trade-off, even though it does not use the fewest number of parameters.
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IMX490  HDR Camera

Nvidia Jetson Platform

Ours (Lite)

HDR ISP

Figure 5: Left: Performance comparison on NVIDIA Jetson platforms. Right: Illustration of our
hardware prototype, integrating HDR cameras and the NVIDIA Jetson platform for real-world
evaluation.

Although methods such as [16, 15, 22] reduce FLOPs by downsampling the input resolution, they
also lead to a loss of image details, which can potentially harm performance. In comparison, our
approach strikes the optimal balance between efficiency and performance.

4.3 Ablation Study and Discussion.

Ablations on Performance Transfer Strategy. We evaluate the performance transfer strategy as
described in Sec. 3.4. Specifically, we initialize the object detector with publicly pretrained weights
[48, 50] and fine-tune only the tone mapper and detection head for 5 epochs. We also evaluate the
RAW domain adapter methods [49, 17], with the results shown in Table 2. Our approach optimizes
only 33.6% of the total parameters of Faster R-CNN (tone mapper: 0.10% + detection head: 33.6%),
yet achieves state-of-the-art performance compared to other methods. Our method stands out with its
simple yet effective architecture, avoiding ad-hoc designs while achieving strong performance.
Ablations on Scene Generalization. To evaluate cross-scene generalization, we divided the RoD
dataset [15] into two subsets based on scene lighting. HDR ISP [9] is introduced as a baseline due to
its ability to generate consistent LDR images, and we also introduce AI-ISP methods [16, 15]. The
results, shown in Table 4, indicate that IANet22 [16] and RAODNet23 [15] outperform HDR ISP in
a single scene. However, neither method matches HDR ISP performance across other test scenes.
These limitations arise because they rely on the PWL curve as a tone mapping module, which is only
effective for monotonous lighting scenes. We also conduct an ablation study on neural photometric
calibration. This module improves performance across all test scenes, demonstrating its effectiveness
in radiance normalization.
Ablations on Advanced Detector. We also evaluate advanced detectors (Sparse-RCNN [7] and

Deformable DETR [8]) in our method. The experimental results in Table 6 show that our method
significantly improves detection performance on HDR RAW images, outperforming HDR ISP by 6.3%
and 4.8%, respectively. These results demonstrate that our method exhibits improved generalization
across various downstream detectors.
Analysis of Scaling-Invariant Tone Mapper. To evaluate the generalization ability of our proposed
scaling-invariant tone mapper, we train the model on the RoD dataset [15] and test it on the RhoVision
dataset [33], which contains HDR RAW images captured by the same sensor in different scenes.
The results in Table 5 show that the scaling-invariant tone mapper achieves superior generalization
performance on the test dataset. Additionally, we evaluate the relationship between pixel intensities
in the processed LDR image and the input HDR image using linear least squares fitting. As shown
in Fig. 4 (left), the TM introduces a large bias gain, with the magnitude being much larger than
that of the scale gain. This generates more noise and reduces the contrast between objects and the
background, which may negatively affect generalizability.

From another perspective, tone mapping is necessary to map the HDR image onto the LDR image
space. This space must encompass all possible rescalings of those images, including the origin.
This implies that TM(α · x) = α · TM(x), ∀x > 0. To achieve this, we design a bias-free CNN,
which ensures that any negative entries in the input are set to zero. Multiplying by a nonnegative
constant does not change the sign of the entries in a vector. Therefore, the bias-free network remains
scale-invariant and can rescale the image without introducing any bias.
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Analysis of Image Texture. We evaluate image texture metrics using image contrast [51] and the
entropy of the Gray-Level Co-occurrence Matrix (GLCM) [52]. As shown in Table 3, our method
enhances image contrast and highlights object regions, leading to improved detection performance.
These results underscore the importance of texture information for detection tasks.

4.4 Real World Evaluation.

We evaluate the latency and mAP performance of YOLOv3 [5] on the NVIDIA Jetson AGX Orin
(16-bit float precision), with the results shown in Fig. 5 (left). Our method (Lite) achieves a runtime of
22 ms (45 FPS) for 4K resolution (4096× 2160), striking an excellent balance between performance
and real-time inference. Additionally, we collect an HDR RAW video dataset from real-world driving
scenes to validate the proposed method. Fig. 5 (right) shows our hardware prototype for real-world
evaluation, while the right side provides an example dataset used in this study.

5 Conclusion and Limitation

Real-world scenes present significant challenges for computer vision due to their wide dynamic range
of luminance. Instead of relying on conventional ISP pipelines, we propose a real-time, scene-adaptive
tone mapping method that optimizes image details for HDR detection. Our approach introduces
neural photometric calibration to regularize the dynamic range, ensuring generalization across diverse
lighting scenes. Additionally, a scaling-invariant tone mapping module is integrated into an end-
to-end trainable vision pipeline, optimizing image details through joint training. With its efficient
architecture, our method supports a low-cost performance transfer strategy, enabling adaptation from
the LDR sRGB domain to the HDR RAW domain by finetuning only a few parameters. Experiments
demonstrate that the proposed method outperforms SOTA methods in both detection performance
and inference latency, while also achieving real-time processing of 4K HDR RAW inputs.

Although our proposed method effectively handling a variety of lighting conditions and significantly
outperforming comparison methods, it still requires cascading with detectors for joint processing of
HDR RAW input. We believe that a well-designed detector can directly handle HDR data by fine-
tuning certain parameters to adapt to HDR RAW data without any additional processing, thus further
exploiting the information from sensor data and improving both the efficiency and effectiveness of
detection. This is the direction of our future work.
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Supplementary Material

In this file, we provide the following supplementary studies:

• Details of Implemented HDR ISP pipeline appendix A.
• The proof of approximation to Dynamic Range appendix B.
• The proof of scaling-invariant Tone Mapping appendix C.
• More Comparison Experiments.
• More Ablation Studies. appendix D.
• More Vision Comparison. appendix E.
• Real World Evaluation. appendix F.

A HDR ISP Details

In this section, we describe the HDR ISP pipeline used in the comparison method [9]. This pipeline
consists of a series of operations, as illustrated in Fig. 6. We follow the implementation described
in [9, 10], with modifications applied to the modules preceding the tone-mapping algorithms. The
intermediate results of key components (indicated by the red dashed lines in Fig. 6) are shown in
Fig. 7, which demonstrate how the HDR data is transformed into a visually appealing LDR image
after undergoing several nonlinear operations. Next, we introduce the key steps in this process.
Black-level Correction: We should subtract an offset from all pixels so that pixels receiving no light
have a value of zero. This offset is obtained from optically shielded pixels on the sensor.

Iblc = I − Ibl (11)

where Ibl is the black level.
Anti-Aliasing filter: An anti-aliasing filter is a type of low-pass filter that prevents aliasing
components from being sampled.

Iaaf = I ∗ kaaf (12)
where kaaf is 5× 5 filter kernel, having non-zero elements only at the corners and center. The kernel

is defined as: kaaf = 1/16 ·

[
1 ... 1
... 8 ...
1 ... 1

]
.

Auto White Balance: The AWB (Auto White Balance) module is responsible for adjusting the image
to ensure that the four (RGGB) channels are linearly scaled, so that grays in the scene correspond
to grays in the image. These scaling factors are calculated using the Gray-World white balance
algorithm, which adjusts the pixel values based on the gray-world assumption. This assumption
posits that the average of all color channels should produce a neutral gray image. IR′

IGr′

IGb′

IB′

 =

gR 0 0 0
0 gGr 0 0
0 0 gGb 0
0 0 0 gB


 IR
IGr

IGb

IB

 (13)

where the parameters gR, gGr, gGb, gB are color gain, which can be derived by the gray world
algorithm.
Demosaic: Demosaicing converts a Bayer raw image into a full-resolution linear RGB image,
preserving texture details. We use a combination of techniques from the Malvar algorithm [55].

IR,G,B = Demosaic(I(R,Gr,Gb,B)) (14)
where I(R,Gr,Gb,B) denote the single channel bayer array, IR,G,B denote the complete 3-channels
RGB image.
Local Tone Mapping: The LTM (Local Tone-Mapping) block simulates the exposure fusion algo-
rithm [10, 24] by brightening darker areas while ensuring that brighter content remains unsaturated.

Iltm =

n∑
i

Ii · wi (15)
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Figure 6: The key components of the HDR ISP pipeline, see text for details. We visualize the results
for the modules marked with a red dotted line.

where Ii is the synthetic exposure image, and w represents the corresponding weights calculated
based on image content.
Global Tone Mapping: The GTM (Global Tone-Mapping) block follows the LTM, enhancing the

overall luminance. An S-shaped contrast-enhancing tone curve [13] is applied to the linear sRGB
image. This curve is then concatenated with the sRGB color component transfer function, which
transforms the image from linear sRGB to nonlinear sRGB. The Reinhard tone curves [13] can be
expressed as follows:

Īw =
1

N
exp

(∑
log (δ + I)

)
(16)

Igtm =
I ·

(
1 + I

Ī2
w

)
1 + I

(17)

where δ is a small value to avoid numerical overflow.
Gamma Correction: The GAC (gamma correction) is used to match the non-linear characteristics of
a display device or human perception. We adopt the correction function Eq. (18) recommended in
ITU-R BT. 709 standard [57], which is widely used in commodity cameras today.

Igamma =

{
12.92 · I, I ≤ 0.00304,

1.055 · I1/2.4 − 0.055, I > 0.00304.
(18)

Edge Enhancement: The EEH (Edge Enhancement) module enhances image details and edges,
improving image clarity and visual appeal. It is particularly useful for accentuating finer image
structures. The module can be expressed as follows:

Isharpen = ps · I + (1− ps) · Iblurred, (19)

In the ISP pipelines, these modules are combined in series and executed sequentially on the HDR
RAW image to stably generate pleasing and consistent LDR sRGB images.

B The Proof of the Approximation to Dynamic Range

1. Dynamic Range Ratio for a Single Gaussian Component. For a Gaussian component with mean µ
and standard deviation σ, define the dynamic range:

d =
µ+ σ

µ− σ
, µ > σ. (20)

This dynamic range measures the distance of the component relative to its mean.
2. Relating d to µ and σ. Solve for µ in terms of d and σ:

µ = σ · d+ 1

d− 1
. (21)

3. Second Moment and Mean of a Single Component For a Gaussian component:

E(x2) = σ2 + µ2, E(x) = µ.

Thus:
E(x2) + E(x) = σ2 + µ2 + µ.

Substitute µ = σ · d+1
d−1 :

E(x2) + E(x) = σ2 + (σ · d+ 1

d− 1
)2 + σ · d+ 1

d− 1
. (22)
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Figure 7: Visual comparison of key steps in the HDR ISP pipeline.

Simplify:

E(x2) + E(x) = σ2

[
1 +

(d+ 1)2

(d− 1)2

]
+ σ · d+ 1

d− 1
. (23)

4. Bounding E(x2) + E(x) using R Expand the squared term

(d+ 1)2

(d− 1)2
=

d2 + 2d+ 1

d2 − 2d+ 1
= 1 +

4d

(d− 1)2
. (24)

Substitute back

E(x2) + E(x) = σ2

[
2 +

4d

(d− 1)2

]
+ σ · d+ 1

d− 1
(25)

5. Inequality Analysis Using the AM-GM (Arithmetic and Geometric Means) Inequality:

µ+ σ

2
≥ √

µσ =⇒ µ+ σ ≥ 2
√
µσ. (26)

For the dynamic range d:

d =
µ+ σ

µ− σ
≥

2
√
µσ

µ− σ
. (27)

This implies that d grows as the overlap between µ and σ increases, amplifying E(x2) + E(x).
6. For a GMM with K components:

E(x2) + E(x) =
K∑
i=1

πi(σ
2
i + µ2

i + µi). (28)

Expressing each µi in terms of di = µi+σi

µi−σi
:

E(x2) + E(x) =
K∑
i=1

πi

[
σ2
i +

(
σi ·

di + 1

di − 1

)2

+ σi ·
di + 1

di − 1

]
. (29)

Ignoring first-order terms and constants and focusing on the dominant components, we obtain the
final expression:

E(x2) + E(x) ∝
K∑
i=1

πi

(
di + 1

di − 1

)2

, di =
µi + σi

µi − σi
(30)

C Detailed Proof of Scaling-Invariant Tone Mapping

We construct the tone mapper TMSI by a neural network composed of {Conv-BN-ReLU} with L
layers and remove all bias terms within this network. Then we start proving the TM is functionally
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Table 7: Performance comparison with the radiance range of neural photometric on RoD Dataset.
Bold denotes the default setting.

Radiance Range [1e3, 1e6] [1e3, 1e7] [1e3, 1e8] [1e4, 1e7] [1e4, 1e8] [1e5, 1e7] [1e5, 1e8]
mAP 49.7 49.8 49.9 49.8 49.7 49.6 49.6
mAR 58.6 58.7 58.7 58.7 58.7 58.6 58.5

Table 8: Quantitative comparison of different pretraining losses.

Method Pretrained
Loss mAP AP50 AP75 contrast

Faster R-CNN [4] L1 41.3 67.1 48.2 0.08
NLPD [53] 49.8 73.3 55.6 0.411

equivalent to a local tone mapping operator.
1. Convolution: For input x and kernel Ki:

convi(αx) = α · convi(x), where convi(x) = Ki ∗ x. (31)

2. Batch Normalization: For input x and kernel Ki:

BNi(x) = γi ·
x− µi(x)

σi(x)
, (32)

where µi(αx) = α · µi(x) and σi(αx) = α · σi(x).
3. ReLU: For input x:

RELU(x) = max(x, 0). (33)
Then we start proving this bias-free network is scaling-invariant:

TMSI(α · x) = RELU ◦ BNL ◦KL ∗ · · · ◦ RELU ◦ BN1 ◦K1 ∗ (αy)
= RELU ◦ BNL ◦KL ∗ · · · ◦ RELU ◦ BN1 ◦ (α ·K · y) #Convolution Linearity

= RELU ◦ BNL ◦KL ∗ · · · ◦ RELU
(
γ1 ·

α ·K1 ∗ x− α · µ1

α · σ1

)
#BN statistic scaling

= RELU ◦ BNL ◦KL ∗ · · · ◦ RELU
(
γ1 · α · K1 ∗ x− µ1

σ1

)
= RELU ◦ BNL ◦KL ∗ · · · ◦ α · RELU

(
γ1 ·

K1 ∗ x− µ1

σ1

)
#Homogeneity

= α · RELU ◦ BNL ◦KL ∗ · · · ◦ RELU ◦ BN1 ◦K1 ∗ x
= α · TMSI(x).

(34)

where ◦ denotes the cascading of network layers. In the scaling-invariant transformation, all operators
apply a linear transformation on local neighborhoods. Here, BNi adaptively adjusts gains using local
statistics (µi, σi), and the cascade of BNi and ReLU activation mimics tone curves that compress
highlights and shadows while preserving tones. Since all these linear transformations are applied
within a local window, they effectively function as local tone mapping.

D More Ablation Studies

Ablation of Radiance Range. In the proposed neural photometric calibration, we set the radiance
range as a hyperparameter. We conduct an ablation study on radiance and detection performance,
with the results shown in Table 7. The findings demonstrate that our neural photometric calibration is
not sensitive to the radiance range, highlighting the method’s robustness in handling varying lighting
conditions.
Ablation of Pretraining Loss. We conduct an ablation study on pretraining loss to demonstrate
its effect on convergence performance. We compare the pretraining loss between NLPD [53] and
L1 loss, with the results shown in Table 8. The L1 loss is supervised by HDR ISP results. The
experiment shows that NLPD pretraining enables the tone mapper to enhance details, thereby
improving detection performance.
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Ours HDR ISP CLAHE94 RAODNet23 ZeroDCE++21 ReconfigISP21

Confidence: 30.3 Confidence: 0 Confidence: 0Confidence: 0Confidence: 0 Confidence: 0

Confidence: 88.2

Confidence: 36.6Confidence: 0Confidence: 73.9Confidence: 0Confidence: 0Confidence: 91.0

Confidence: 97.4 Confidence: 83.7 Confidence: 82.6 Confidence: 91.8 Confidence: 0

Figure 8: Visual comparison of different methods on HDR RAW inputs. The first row shows day
scenes, while the second row presents night scenes. Our method outperforms the comparison methods.
Please zoom in for confidence scores and class predictions.

Ours HDR ISP CLAHE94 RAODNet23 ZeroDCE++21 ReconfigISP21

Confidence: 87.1 Confidence: 0 Confidence: 89.8 Confidence: 90.6 Confidence: 0 Confidence: 72.9

Confidence: 87.6Confidence: 100.0Confidence: 75.2Confidence: 57.1Confidence: 98.9Confidence: 62.8

Figure 9: Visual comparison of different methods on HDR RAW inputs. The first row shows day
scenes, while the second row presents night scenes. Our method outperforms the comparison methods.
Please zoom in for confidence scores and class predictions.

E More Visual Comparison.

We show more visual results in Fig. 8 and Fig. 9. Specifically, we visualize the detection results of
the comparison methods with confidence scores greater than 0.3, in different scenarios of the RoD
dataset [15]. In the first row of Fig. 8, the tunnel environment is shown, where our method effectively
reduces false detections. In Fig. 9, shows a typical HDR scene, where our method detects small
objects that other methods fail to identify.

F Real World Evaluation.

HDR Video Validation. We collect HDR RAW video sequences from autonomous driving scenes
to validate the proposed method, using YOLOv3 [5] as the base detector for this validation. The
entire pipeline is evaluated on the NVIDIA Jetson AGX Orin (16-bit float) with 2K resolution
(2048× 1080) input. The HDR RAW input is initially resized to a 4K resolution (4096× 2160) for
processing. Additionally, we have created a video demo (video_demo.mp4) in the supplementary
file to showcase the detection results on the video sequences. Please refer to the attachment. We will
release the video sequences and corresponding annotations once the dataset is complete.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Guidelines: We claim our main contribution in abstract, introduction 1 and conclusion 5.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of proposed work in Ablation Studies 4.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We provide the full assumptions and proof of the proposed general distortion
model and progressive thin-plate spline model, the citation and reference are provided Sec. 3.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have fully disclosed the experimental details in Sec. 4. Since we propose a
novel image rectified model, we clearly describe the specific module architecture and we
demonstrate the processing of equipped training strategy for multi-task learning in Sec. 3.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We use opensource datasets (mentioned in Sec. 4 Implementation Details)
and the experiment details are summarized at Sec. 4 Implementation Details. Our code
will be available after submission.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We demonstrate all the experiment details in Sec. 4 Implementation Details
including the dataset settings, optimizer, training strategy, and various hyperparameters.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: We do not provide the experiment statistical significance, our performance has
a significant improvement compared to related works.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of computing workers, memory, time of execution) needed to reproduce
the experiments?
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Answer: [Yes]
Justification: We demonstrate the involved computer resources (Computational performance,
time of execution, type of devices, and code framework) in Sec. 4 Implementation Details.

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have carefully conducted NeurIPS Code of Ethics in every respect.

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of the work performed.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no such risks.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have cited the related work and assets in the paper.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research?
Answer: [NA]
Justification: This paper does not involve LLMs as important components.
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