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Summary
The goal of this paper is to present a finite-time analysis of minimax Q-learning and its

smooth variant for two-player zero-sum Markov games, where the smooth variant is derived
by using the Boltzmann operator. To the best of the authors’ knowledge, this is the first work in
the literature to provide such results. To facilitate the analysis, we introduce lower and upper
comparison systems and employ switching system models. The proposed approach can not
only offer a simpler and more intuitive framework for analyzing convergence but also provide
deeper insights into the behavior of minimax Q-learning and its smooth variant. These novel
perspectives have the potential to reveal new relationships and foster synergy between ideas in
control theory and reinforcement learning.

Contribution(s)
1. This paper presents a finite-time analysis of minimax Q-learning and its smooth variant with

the Boltzmann operator, which is the first work to provide such results, as far as the authors
are aware.
Context: Most of the existing literature addresses its asymptotic convergence (Littman,
2001; Zhu & Zhao, 2020) or the convergence of the modified algorithms (Diddigi et al.,
2022; Fan et al., 2019). Compared to others, our method can provide stronger convergence
results through the finite-time analysis. Moreover, this paper addresses the vanilla minimax
Q-learning and its smooth variant, which are based on the independently and identically
distributed observations and the constant step-size in the tabular domain. Although we
utilize these settings to simplify the analysis, our approach can be expanded to include more
complex Markovian observation models by employing the methods described in Srikant &
Ying (2019) and Bhandari et al. (2018).

2. By employing the switching system model for the convergence analysis, this paper con-
tributes new insights into the convergence analysis of minimax Q-learning and the recently
developed switching system framework for the finite-time analysis of Q-learning (Lee et al.,
2022).
Context: It is noteworthy to highlight that while the switching system model introduced
in Lee et al. (2022) has been used as a basis, the main analysis and proof in this work signif-
icantly differed from those in Lee et al. (2022). In addition, we present a simulation result
to empirically validate our method for the convergence analysis of the minimax Q-learning
and its smooth variant that makes use of the switching system model.

3. This paper suggests the theoretically straightforward convergence analysis based on the
control-theoretic concepts.
Context: On the basis of the simple analytical approach, our analysis will help to reveal
new relationships and promote mutual understanding between the control theory and RL.
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Abstract

The goal of this paper is to present a finite-time analysis of minimax Q-learning and
its smooth variant for two-player zero-sum Markov games, where the smooth variant is
derived by using the Boltzmann operator. To the best of the authors’ knowledge, this
is the first work in the literature to provide such results. To facilitate the analysis, we
introduce lower and upper comparison systems and employ switching system models.
The proposed approach can not only offer a simpler and more intuitive framework for
analyzing convergence but also provide deeper insights into the behavior of minimax
Q-learning and its smooth variant. These novel perspectives have the potential to reveal
new relationships and foster synergy between ideas in control theory and reinforcement
learning.

1 Introduction

Reinforcement learning (RL) can solve sequential decision-making problems in Markov decision
processes (Sutton & Barto, 1998). Both the theoretical and practical sides of RL algorithms have
seen a rise in interest recently due to their ability to outperform humans in a variety of difficult
tasks (Mnih et al., 2015; Wang et al., 2016; Lillicrap et al., 2016; Heess et al., 2015; Hasselt et al.,
2015; Bellemare et al., 2017; Schulman et al., 2015; 2017). One of the most fundamental and widely
used RL algorithms, Q-learning (Watkins & Dayan, 1992), has been extensively studied for its con-
vergence over decades. The primary focus of the convergence analysis has been on the asymptotic
convergence (Tsitsiklis, 1994; Jaakkola et al., 1994; Borkar & Meyn, 2000; Hasselt, 2010; Melo
et al., 2008; Lee & He, 2020b; Devraj & Meyn, 2017); however, recent research has concentrated on
the finite-time convergence analysis (Szepesvári, 1998; Kearns & Singh, 1999; Even-Dar & Man-
sour, 2003; Azar et al., 2011; Beck & Srikant, 2012; Wainwright, 2019; Qu & Wierman, 2020; Li
et al., 2020; Chen et al., 2021; Lee & He, 2020a), which measures how quickly the iterations ap-
proach an optimal solution. In most previous works, Q-learning dynamics was treated as nonlinear
stochastic approximations (Kushner & Yin, 2003), and the contraction mapping of the Bellman op-
erator was used for the convergence analysis (Beck & Srikant, 2012; Qu & Wierman, 2020; Chen
et al., 2021; Lee & He, 2020a). Meanwhile, Lee & He (2020b) and Lee et al. (2022) presented a
new viewpoint on Q-learning convergence based on the switching system models (Liberzon, 2003).
This perspective captures distinctive features of Q-learning dynamics, and it served as a motivation
for the development of this paper. The main results of Lee & He (2020b) and Lee et al. (2022) were
reached by converting the finite-time convergence analysis into the stability analysis of the dynamic
control systems.

In this paper, the Q-learning algorithm is examined for a more general Markov decision process: a
two-player zero-sum Markov game (Shapley, 1953) in which two decision-making agents compete
against one another. More precisely, this paper aims to provide the finite-time analysis of the min-
imax Q-learning (MQL) (Littman, 1994) and its smooth form with the Boltzmann operator (Sutton
& Barto, 1998). In order to analyze the convergence of the MQL, the switching system models pre-
sented in Lee et al. (2022) are utilized. By establishing the upper and lower comparison systems of
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the original MQL, the finite-time error bound of MQL can be examined using the control-theoretic
concepts.

The main contributions of this paper can be summarized as follows:

• This paper presents a finite-time analysis of MQL and its smooth variant with the Boltzmann
operator. To the authors’ knowledge, this is the first work to provide such results. Note that
most of the existing literature addresses its asymptotic convergence (Littman, 2001; Zhu &
Zhao, 2020) or the convergence of the modified algorithms (Diddigi et al., 2022; Fan et al.,
2019). Compared to others, our method can provide a stronger convergence result of the
vanilla MQL through the finite-time analysis.

• By employing the switching system model for the convergence analysis, this paper con-
tributes new insights into the convergence analysis of minimax Q-learning and the recently
developed switching system framework for the finite-time analysis of Q-learning (Lee et al.,
2022).

• This paper suggests the theoretically straightforward convergence analysis based on the
control-theoretic concepts. Our approach will help to reveal new relationships and promote
mutual understanding between the control theory and RL.

2 Preliminaries and problem formulation

Two-player zero-sum Markov game. In this paper, a two-player zero-sum Markov game (Shapley,
1953) is considered in which two agents choose actions to compete with each other. These two
agents will be referred to as a user and an adversary, where the user aims to maximize the return
while the adversary attempts to impede the user by minimizing the return. Here, the state-space can
be denoted as S := {1, 2, . . . , |S|}, the action-space of the user as A := {1, 2, . . . , |A|}, and the
action-space of the adversary as B := {1, 2, . . . , |B|}. Moreover, |S| is the number of states, |A| is
the number of user’s actions, and |B| is the number of adversary’s actions. For the alternating two-
player Markov games at the k-th iteration, the user chooses an action ak ∈ A at the state sk ∈ S
using the user’s policy π without having access to the adversary’s action. Then, the adversary selects
an action bk ∈ B by utilizing the user’s action ak ∈ A and the adversary’s policy µ. For both agents,
the state sk moves to the next state s′k with the state transition probability P (s′k|sk, ak, bk), and
this transition results in a reward r(sk, ak, bk, s

′
k). For convenience, we assume a deterministic

reward function r(sk, ak, bk, s
′
k) =: rk. After that, they take turns choosing actions with the goal of

maximizing and minimizing the cumulative discounted rewards, respectively.

It is well known that there exists an optimal policy (Littman, 1994) for both the user and the adver-
sary. The goal of the Markov game is to discover the user’s optimal policy π∗ and the adversary’s
optimal policy µ∗:

(π∗, µ∗) := argmax
π∈Θ

min
µ∈Ω

E

[ ∞∑
k=0

γkrk

∣∣∣∣∣π, µ
]
,

where Θ is the set of all admissible policies of the user, Ω is the set of all admissible policies of the
adversary, E[·|π, µ] is an expectation subject to the policies π and µ, and γ ∈ [0, 1) is the discount
factor. Moreover, the optimal Q-function in two-player Markov games can be defined as

Q∗(s, a, b) := max
π∈Θ

min
µ∈Ω

E

[ ∞∑
k=0

γkrk

∣∣∣∣∣ s0 = s, a0 = a, b0 = b, π, µ

]
,

which satisfies the optimal Q-Bellman equation Q∗(s, a, b) = R(s, a, b) + γ
∑

s′∈S P (s′|s, a, b)
maxa′∈A minb′∈B Q∗(s′, a′, b′) with the expected reward R(s, a, b). Then the user’s optimal policy
can be obtained as

π∗(s) = argmax
a∈A

min
b∈B

Q∗(s, a, b)
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and the adversary’s optimal policy as

µ∗(s, a) = argmin
b∈B

Q∗(s, a, b).

While the user and adversary can both learn their optimal policies, this study will solely take the
role of the user into account.

Switching system. A switching system (Liberzon, 2003) is a specific type of nonlinear sys-
tem (Khalil, 2002) that functions across several subsystems via switching signals. Although there
are various kinds of switching systems, we employ affine switching system in this paper:

xk+1 = Aσk
xk + bσk

,

where σk ∈ M := {1, 2, . . . ,M} is the switching signal, Aσk
∈ Rn×n is the subsystem matrix,

and bσk
∈ Rn is the subsystem vector. Aσk

and bσk
are altered according to σk, and σk can be

chosen either arbitrarily or by policy. With the extra vector bσk
, it becomes challenging to make the

switching system stable.

Minimax Q-learning and its smooth variant. MQL (Littman, 1994) was introduced to solve
two-player zero-sum Markov games. We utilize

Qk+1(sk, ak, bk) = Qk(sk, ak, bk) + α

{
rk + γmax

a∈A
min
b∈B

Qk (s
′
k, a, b)−Qk(sk, ak, bk)

}
(1)

as the MQL update equation, where Q(s, a, b) is the Q-function of MQL and α is the step-size.
Moreover, the smooth version of MQL with the Boltzmann operator (Sutton & Barto, 1998), which
will be called Boltzmann MQL, can be represented as

Qbz
k+1(sk, ak, bk) =Qbz

k (sk, ak, bk)

+ α
{
rk + γhω

a∈A
(
h−ω
b∈B

(
Qbz

k (s′k, a, b)
))

−Qbz
k (sk, ak, bk)

} (2)

with the Q-function of the Boltzmann MQL Qbz(s, a, b),

hω
u∈U (v) :=

∑
u∈U v(u) exp(v(u)ω)∑

u∈U exp(v(u)ω)
and h−ω

u∈U (v) :=

∑
u∈U v(u) exp(−v(u)ω)∑

u∈U exp(−v(u)ω)
(3)

for every v ∈ R|U|. Here, hω
u∈U (v) is a smooth approximation of the max operator, whereas

h−ω
u∈U (v) is a smooth approximation of the min operator. The smooth variations have been shown to

enhance the exploration and performance of the algorithm while also mitigating Q-learning’s over-
estimation bias (Song et al., 2019; Pan et al., 2019). Furthermore, the parameter ω > 0 determines
the sharpness of the Boltzmann operators. A larger ω produces a sharper approximation of the max
operator in hω

u∈U and a sharper approximation of the min operator in h−ω
u∈U .

Assumption 1. The following conditions are assumed in this paper:

(i) The state-action distribution, defined as d(s, a, b) = p(s)β(a|s)ϕ(b|s) with the stationary
state distribution p and the behavior policies β and ϕ, is strictly positive d(s, a, b) > 0 for
every s ∈ S, a ∈ A, and b ∈ B.

(ii) We use the constant step-size: α ∈ (0, 1).

(iii) The reward is unit-bounded: max(s,a,b,s′)∈S×A×B×S |r(s, a, b, s′)| ≤ 1.

(iv) Q-functions have unit-bounded initial values: ∥Q0∥∞ ≤ 1 and
∥∥Qbz

0

∥∥
∞ ≤ 1.

In Assumption 1, the positive value of d(s, a, b) guarantees that every state-action pair can be visited
an infinite number of times, allowing the adequate exploration. Furthermore, a constant value of α
eliminates the need for further assumptions in the convergence proof. Unit-bounded reward and
initial values of the Q-functions are introduced to simplify the analysis without losing generality.
Other general assumptions used in this paper are described in Appendix B.
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Definition 1. The following quantities are defined for convenience, which will be used often through-
out this paper:

(i) Maximum state-action distribution: dmax := max(s,a,b)∈S×A×B d(s, a, b) ∈ (0, 1).

(ii) Minimum state-action distribution: dmin := min(s,a,b)∈S×A×B d(s, a, b) ∈ (0, 1).

(iii) Exponential decay rate: ρ := 1− αdmin(1− γ) ∈ (0, 1).

(iv) Q-function vector:

Q :=

 Q1,1

...
Q|A|,|B|

 ∈ R|S×A×B|,

where Qa,b ∈ R|S| is a vector that lists the Q-function for the action a ∈ A and b ∈ B.

From the definition of the Q-function vector, the single Q(s, a, b) value can be retrieved by
Q(s, a, b) = (ea ⊗ eb ⊗ es)

TQ, where es ∈ R|S|, ea ∈ R|A|, and eb ∈ R|B| are the s-th, a-th,
and b-th basis vector, respectively. The k-th basis vector has a value of 1 in the k-th component,
whereas the remaining values are 0.

3 Finite-time analysis of minimax Q-learning

3.1 Overview of the proposed analysis for minimax Q-learning

In Lee & He (2020b) and Lee et al. (2022), the convergence analysis of Q-learning was transformed
into the stability analysis of the switching system for simplicity. Based on this, our approach also
uses a similar strategy, which reduces the convergence of the MQL problem to analyzing the stability
of the affine switching system. However, the existence of the affine factors makes it difficult to verify
its stability. Therefore, two more straightforward comparison iterations are used, which are easier
to analyze: the upper iteration sets upper bounds on the MQL trajectories, while the lower iteration
sets lower bounds. Once two comparison iterations are established, the findings suggested in Lee
(2024) are utilized to determine the convergence of each comparison iteration, which yields the
MQL’s finite-time error bound.

3.2 Upper and lower iterations of minimax Q-learning

Based on (1), the upper iteration of MQL can be represented as

QU
k+1(sk, ak, bk) = QU

k (sk, ak, bk) + α

{
rk + γmax

a∈A
QU

k (s′k, a, µ
∗ (s′k, a))−QU

k (sk, ak, bk)

}
and the lower iteration of MQL as

QL
k+1(sk, ak, bk) = QL

k (sk, ak, bk) + α

{
rk + γmin

b∈B
QL

k (s′k, π
∗ (s′k) , b)−QL

k (sk, ak, bk)

}
,

which can be proved by the following propositions:

Proposition 1. Assume that QU
0 (s, a, b) ≥ Q0(s, a, b) for every (s, a, b). Then, QU

k (s, a, b) ≥
Qk(s, a, b) for every (s, a, b) and k ≥ 0.

Proposition 2. Assume that QL
0 (s, a, b) ≤ Q0(s, a, b) for every (s, a, b). Then, QL

k (s, a, b) ≤
Qk(s, a, b) for every (s, a, b) and k ≥ 0.

Proposition 1 and Proposition 2 can be proven by using an induction argument. The complete proofs
can be found in Appendix C.
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3.3 Finite-time error bound for the minimax Q-learning

From examining two comparison iterations, it is clear that both upper and lower iterations of MQL
resemble the Q-learning iterates. In this case, the following lemma can be utilized, which shows the
convergence of Q-learning by using the switching system approach.
Lemma 1 (Lee (2024)). Assuming that k ≥ 0 and Qq

k ∈ R|S×A| is the Q-function of Q-learning
with ∥Qq

0∥∞ ≤ 1. Then,

E
[
∥Qq

k −Q∗∥∞
]
≤ 9α

1
2 dmax|S × A|

d
3
2

min(1− γ)
5
2

+
2|S × A| 32

1− γ
ρk +

4αγdmax|S × A| 23
1− γ

kρk−1.

With that, we can demonstrate the convergence of MQL as follows:
Theorem 1. For all k ≥ 0,

E [∥Qk −Q∗∥2] ≤
27α

1
2 dmax|S × A × B|

d
3
2

min(1− γ)
5
2

+
6|S × A × B| 32

1− γ
ρk

+
12αγdmax|S × A × B| 23

1− γ
kρk−1.

(4)

Proof sketch. Using Definition 1 and the symmetric property, the finite-time error bound for the
upper and lower iterations of MQL can be derived from Lemma 1. Afterward, the final conclusion
can be obtained by using the relation E [∥Qk −Q∗∥2] ≤ 2E

[∥∥QL
k −Q∗

∥∥
2

]
+ E

[∥∥QU
k −Q∗

∥∥
2

]
.

A detailed proof is provided in Appendix D.

By examining the right side of (4), it is apparent that the first term is a constant error that can be
reduced by the smaller α. Additionally, the second and last terms diminish as k goes to infinity with
ρ ∈ (0, 1) in Definition 1.

4 Finite-time analysis of Boltzmann MQL

4.1 Overview of the proposed analysis for Boltzmann MQL

In order to determine the convergence of Boltzmann MQL, we once again transfer this problem
into the stability analysis of the affine switching system. To adjust the upper and lower comparison
systems, the dynamical system representations of the upper and lower iterates are established first.
After that, the finite-time error bounds of the upper and lower comparison systems are demonstrated,
respectively. Then, the final convergence result of the Boltzmann MQL is obtained.

4.2 Upper and lower iterations of Boltzmann MQL

Based on (2), the upper iteration of Boltzmann MQL can be established as

QU,bz
k+1 (sk, ak, bk) =QU,bz

k (sk, ak, bk) + α

{
rk

+ γmax
a∈A

QU,bz
k (s′k, a, µ

∗ (s′k, a))−QU,bz
k (sk, ak, bk) + γ

ln(|B|)
ω

} (5)

and the lower iteration of Boltzmann MQL as

QL,bz
k+1 (sk, ak, bk) =QL,bz

k (sk, ak, bk) + α

{
rk

+ γmin
b∈B

QL,bz
k (s′k, π

∗ (s′k) , b)−QL,bz
k (sk, ak, bk)− γ

ln(|A|)
ω

}
,

(6)

which can be proved by the following propositions:
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Proposition 3. Assume that QU,bz
0 (s, a, b) ≥ Qbz

0 (s, a, b) for every (s, a, b). Then, QU,bz
k (s, a, b) ≥

Qbz
k (s, a, b) for every (s, a, b) and k ≥ 0.

Proposition 4. Assume that QL,bz
0 (s, a, b) ≤ Qbz

0 (s, a, b) for every (s, a, b). Then, QL,bz
k (s, a, b) ≤

Qbz
k (s, a, b) for every (s, a, b) and k ≥ 0.

Propositions 3 and 4 can be demonstrated in a similar manner to Propositions 1 and 2, with detailed
proofs available in Appendix E.

4.3 Upper and lower comparison systems

The convergence proof of the Boltzmann MQL differs slightly from the previous section due to
the additional terms αγ ln(|B|)

ω and −αγ ln(|A|)
ω in the two comparison iterations (5) and (6). For

the dynamical system representations of the upper and lower iterates of the Boltzmann MQL, the
following notations are provided first:

Definition 2. Throughout the paper, we will use the following notations:

Ra,b :=


R(1, a, b)
R(2, a, b)

...
R(|S|, a, b)

 , R :=

 R1,1

...
R|A|,|B|

 ,

Pa,b :=


P (1|1, a, b) P (2|1, a, b) · · · P (|S||1, a, b)
P (1|2, a, b) P (2|2, a, b) · · · P (|S||2, a, b)

...
...

. . .
...

P (1||S|, a, b) P (2||S|, a, b) · · · P (|S|||S|, a, b)

 , P :=

 P1,1

...
P|A|,|B|

 ,

Da,b :=

 d(1, a, b)
. . .

d(|S|, a, b)

 , D :=

 D1,1

. . .
D|A|,|B|

 ,

where Ra,b ∈ R|S| indicates the expected reward vector, Pa,b ∈ R|S|×|S| represents the state tran-
sition probability matrix, and Da,b ∈ R|S|×|S| shows the nonsingular diagonal state-action distri-
bution matrix. Note that Ra,b, Pa,b, and Da,b depend on the action pair (a, b) ∈ A × B. Moreover,
R ∈ R|S×A×B|, P ∈ R|S×A×B|×|S|, and D ∈ R|S×A×B|×|S×A×B|.

Definition 3. Let us define the greedy policies with regard to Q ∈ R|S×A×B| as i(s) :=
argmaxa∈A Q(s, a, µ∗(s, a)) ∈ A and j(s) := argminb∈B Q(s, π∗(s), b) ∈ B. The action transi-
tion matrix for i(s) is denoted as ΠQ and for j(s) as ΓQ, where

ΠQ :=


eTi(1) ⊗ eTµ∗(1,i(1)) ⊗ eT1
eTi(2) ⊗ eTµ∗(2,i(2)) ⊗ eT2

...
eTi(|S|) ⊗ eTµ∗(|S|,i(|S|)) ⊗ eT|S|

 ,ΓQ :=


eTπ∗(1) ⊗ eTj(1) ⊗ eT1
eTπ∗(2) ⊗ eTj(2) ⊗ eT2

...
eTπ∗(|S|) ⊗ eTj(|S|) ⊗ eT|S|

 ,

with ei(s), eπ∗(s) ∈ R|A| and eµ∗(s,i(s)), ej(s) ∈ R|B|. Then, we can express the max and min
operators in vector form using the Q-function vector from Definition 1 as

ΠQQ :=


maxa∈A Q(1, a, µ∗(1, a))
maxa∈A Q(2, a, µ∗(2, a))

...
maxa∈A Q(|S|, a, µ∗(|S|, a))

 , ΓQQ :=


minb∈B Q(1, π∗(1), b)
minb∈B Q(2, π∗(2), b)

...
minb∈B Q(|S|, π∗(|S|), b)

 .
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Note that ΠQ,ΓQ ∈ R|S|×|S×A×B| and ΠQQ,ΓQQ ∈ R|S|. An important characteristic of Def-
initions 2 and 3 is that PΠQ and PΓQ ∈ R|S||A||B|×|S||A||B| are the transition probability matrix
under the policy with the max and min operators, respectively.

Using Definitions 2 and 3, the upper comparison system of Boltzmann MQL can be written as

QU,bz
k+1 −Q∗ = AQU,bz

k

(
QU,bz

k −Q∗
)
+ bQU,bz

k
+ αwU

k + αγD
ln(|B|)

ω
1 (7)

with
AQ := I + α (γDPΠQ −D) , (8)

bQ := αγDP (ΠQ −ΠQ∗)Q∗,

and

wU
k =(eak

⊗ ebk ⊗ esk)rk + γ(eak
⊗ ebk ⊗ esk)

(
es′k

)T
ΠQU,bz

k
QU,bz

k

− (eak
⊗ ebk ⊗ esk)(eak

⊗ ebk ⊗ esk)
TQU,bz

k + γ(eak
⊗ ebk ⊗ esk)

ln(|B|)
ω

−
(
DR+ γDPΠQU,bz

k
QU,bz

k −DQU,bz
k + γD

ln(|B|)
ω

1
)
,

(9)

where 1 is a column vector in which all the values are 1. Moreover, the lower comparison system of
Boltzmann MQL can be written as

QL,bz
k+1 −Q∗ = A′

QL,bz
k

(
QL,bz

k −Q∗
)
+ b′

QL,bz
k

+ αwL
k − αγD

ln(|A|)
ω

1 (10)

with
A′

Q := I + α (γDPΓQ −D) ,

b′Q := αγDP (ΓQ − ΓQ∗)Q∗,

and

wL
k =(eak

⊗ ebk ⊗ esk)rk + γ(eak
⊗ ebk ⊗ esk)

(
es′k

)T
ΓQL,bz

k
QL,bz

k

− (eak
⊗ ebk ⊗ esk)(eak

⊗ ebk ⊗ esk)
TQL,bz

k − γ(eak
⊗ ebk ⊗ esk)

ln(|A|)
ω

−
(
DR+ γDPΓQL,bz

k
QL,bz

k −DQL,bz
k − γD

ln(|A|)
ω

1
)
.

The steps taken to construct (7) and (10) are described in Appendix F. At this point, (7) and (10) can
be seen as stochastic affine switching systems with an additional affine vector bQU,bz

k
or b′

QL,bz
k

and a

stochastic noise wU
k or wL

k . Moreover, the greedy policy changes the values of AQ, bQ, A
′
Q, and b′Q.

4.4 Finite-time error bound for the Boltzmann MQL

Using (7) and (10), the following theorems can be utilized to demonstrate the finite-time error bound
of the upper and lower comparison systems:

Theorem 2. For every k ≥ 0,

E
[∥∥∥QU,bz

k −Q∗
∥∥∥
∞

]
≤4αγdmax|S × A × B|

1− γ
kρk−1

+
6
√
2α

1
2 dmax(ln(|B|) + ω)|S × A × B| 12

ωd
3
2
min(1− γ)

5
2

+
3γd2max ln(|B|)|S × A × B| 12

ωd2min(1− γ)2
+

2|S × A × B|
1− γ

ρk.
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Theorem 3. For every k ≥ 0,

E
[∥∥∥QL,bz

k −Q∗
∥∥∥
∞

]
≤4αγdmax|S × A × B|

1− γ
kρk−1 +

6
√
2α

1
2 dmax(ln(|A|) + ω)|S × A × B| 12

ωd
3
2
min(1− γ)

5
2

+
3γd2max ln(|A|)|S × A × B| 12

ωd2min(1− γ)2
+

2|S × A × B|
1− γ

ρk.

The whole proofs are accessible in Appendix G. Then, the convergence of Boltzmann MQL can be
demonstrated as follows:

Theorem 4. For every k ≥ 0,

E
[∥∥Qbz

k −Q∗∥∥
2

]
≤12αγdmax|S × A × B|

1− γ
kρk−1

+
18
√
2α

1
2 dmax (max (ln(|A|), ln(|B|)) + ω) |S × A× B| 12

ωd
3
2
min(1− γ)

5
2

+
9γd2max max (ln(|A|), ln(|B|)) |S × A × B| 12

ωd2min(1− γ)2
+

6|S × A × B|
1− γ

ρk.

(11)

Proof sketch. It employs a similar idea to Theorem 1 and applies Theorems 2 and 3. The whole
proof is accessible in Appendix N.

As k → ∞, the first term O(kρk−1) and the last term O(ρk) on the right side of (11) decrease
exponentially. Furthermore, choosing a lower value of α and a bigger value of ω can minimize the
second and third constant error terms.

5 Numerical simulation

A simulation study is provided to show the convergence of MQL and Boltzmann MQL, with the con-
struction of their comparison systems. We consider a simple Markov game as given in Appendix O.

Figure 1 shows the simulated trajectories of the MQL and its upper and lower iterations. Further-
more, Figure 2 depicts the simulated trajectories of the Boltzmann MQL with its upper and lower
comparison systems. These results empirically validate the bounding concepts for the convergence
analysis of MQL and its smooth variant. Note that the trajectories of the MQL and the Boltzmann
MQL do not necessarily converge to the optimal Q-function value since both the user’s and the
adversary’s actions have an impact on them.

6 Related work

MQL was first presented by Littman (1994), which is a kind of Q-learning developed for two-player
zero-sum Markov games. Based on this, Hu et al. (1998) introduced Nash Q-learning by extending
MQL into multi-agent environments, and Lagoudakis & Parr (2002) investigated a value iteration
of MQL and suggested least-squared policy iteration algorithm for solving the two-player Markov
games. Additionally, Littman & Szepesvári (1996) demonstrated the asymptotic convergence of
MQL using game theory, Bowling (2000) studied its convergence conditions, and Hu & Wellman
(2003) analyzed its convergence behavior and emphasized the restrictions of the convergence as-
sumptions. Littman et al. (2001) presented friend-or-foe Q-learning for general-sum Markov games,
which outperformed Nash Q-learning in terms of convergence, and Littman (2001) examined Nash
Q-learning convergence and behavior.

Although not specifically focusing on MQL, a number of noteworthy studies on Markov games
provided significant insights. An approximate dynamic programming framework for two-player
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Figure 1: Trajectories of MQL and its comparison iterations
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Figure 2: Trajectories of the Boltzmann MQL and its comparison systems

zero-sum Markov games was provided by Perolat et al. (2015), theoretical analyses of several gen-
eralized non-stationary RL algorithms were conducted by Pérolat et al. (2016), and the online re-
inforcement learning method in average-reward two-player Markov games was investigated by Wei
et al. (2017). Furthermore, actor-critic algorithms designed for multi-agent Markov games were
examined by Srinivasan et al. (2018) and Perolat et al. (2018), a thorough overview of the multi-
agent Markov game and multi-agent RL was offered by Zhang et al. (2021), and the last-iterate
convergence rate for two-player zero-sum Markov games was proposed by Cai et al. (2023) with an
uncoupled, convergent, and rational algorithm.
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Regarding the MQL convergence, recent research such as Fan et al. (2019) improved MQL by in-
tegrating deep Q-learning techniques and determined a finite-time error bound under mild assump-
tions. Zhu & Zhao (2020) also used deep Q-learning in MQL and showed asymptotic convergence
in tabular settings. Diddigi et al. (2022) introduced a new generalized MQL and demonstrated its
asymptotic convergence using stochastic approximation approaches. Lee (2023) developed a finite-
time analysis of MQL and its value iteration by employing the switching system model.

While these prior works have made significant achievements over the years, it is important to note
that most of the current literature concentrated on the asymptotic convergence (Littman, 2001; Zhu
& Zhao, 2020) or the convergence of improved algorithms (Diddigi et al., 2022; Fan et al., 2019). To
the best of the authors’ knowledge, the finite-time convergence analysis has not yet been performed
on the vanilla MQL and its smooth variant at the same time. Moreover, compared to Lee (2023), our
approach can provide more intuitive and easier proofs by utilizing the switching system. Therefore,
this paper can offer finite-time analysis of the MQL and its smooth variant by utilizing the switching
system and the control-theoretic ideas in a more comprehensible and direct manner.

7 Conclusion

In this paper, the finite-time analysis of the MQL and its associated smooth variant for two-player
zero-sum Markov games has been studied. The switching system models are used for both MQL
and its smooth variant in order to conduct the analysis. By establishing upper and lower comparison
systems, the finite-time analysis results for two MQL algorithms can be obtained. This method can
offer more comprehensive insights into MQL and a more straightforward convergence analysis ap-
proach. Furthermore, this new perspective will reveal new relationships and encourage cooperation
between ideas in the domains of control theory and reinforcement learning. For further steps in the
future, it will be beneficial to get the stricter error bounds for both algorithms.

Acknowledgments

The work was supported by the Institute of Information Communications Technology Planning Eval-
uation (IITP) funded by the Korea government under Grant 2022-0-00469.

References
Mohammad Gheshlaghi Azar, Remi Munos, Mohammad Ghavamzadeh, and Hilbert J Kappen.

Speedy Q-learning. In Proceedings of the 24th International Conference on Neural Information
Processing Systems, pp. 2411–2419, 2011.

Carolyn L Beck and Rayadurgam Srikant. Error bounds for constant step-size Q-learning. Systems
& Control letters, 61(12):1203–1208, 2012.

Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement
learning. In International Conference on Machine Learning, pp. 449–458, 2017.

Jalaj Bhandari, Daniel Russo, and Raghav Singal. A finite time analysis of temporal difference
learning with linear function approximation. In Conference on learning theory, pp. 1691–1692,
2018.

Vivek S Borkar and Sean P Meyn. The ODE method for convergence of stochastic approximation
and reinforcement learning. SIAM Journal on Control and Optimization, 38(2):447–469, 2000.

Michael Bowling. Convergence problems of general-sum multiagent reinforcement learning. In
ICML, pp. 89–94, 2000.

Yang Cai, Haipeng Luo, Chen-Yu Wei, and Weiqiang Zheng. Uncoupled and convergent learning
in two-player zero-sum markov games. In ICML 2023 Workshop The Many Facets of Preference-
Based Learning, 2023.



Finite-Time Analysis of Minimax Q-Learning

Zaiwei Chen, Siva Theja Maguluri, Sanjay Shakkottai, and Karthikeyan Shanmugam. A Lyapunov
theory for finite-sample guarantees of asynchronous Q-learning and TD-learning variants. arXiv
preprint arXiv:2102.01567, 2021.

Adithya M Devraj and Sean P Meyn. Zap Q-learning. In Proceedings of the 31st International
Conference on Neural Information Processing Systems, pp. 2232–2241, 2017.

Raghuram Bharadwaj Diddigi, Chandramouli Kamanchi, and Shalabh Bhatnagar. A generalized
minimax Q-learning algorithm for two-player zero-sum stochastic games. IEEE Transactions on
Automatic Control, 67(9):4816–4823, 2022.

Eyal Even-Dar and Yishay Mansour. Learning rates for Q-learning. Journal of machine learning
Research, 5(Dec):1–25, 2003.

Jianqing Fan, Zhaoran Wang, Yuchen Xie, and Zhuoran Yang. A theoretical analysis of deep Q-
learning. arXiv preprint arXiv:1901.00137, 2019.

Abhijit Gosavi. Boundedness of iterates in Q-learning. Systems & Control letters, 55(4):347–349,
2006.

H. V. Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. In AAAI Conference on Artificial Intelligence, 2015. URL https://api.
semanticscholar.org/CorpusID:6208256.

Hado V Hasselt. Double Q-learning. In Advances in Neural Information Processing Systems, pp.
2613–2621, 2010.

Nicolas Heess, Jonathan J Hunt, Timothy P Lillicrap, and David Silver. Memory-based control with
recurrent neural networks. arXiv preprint arXiv:1512.04455, 2015.

Junling Hu and Michael P Wellman. Nash Q-learning for general-sum stochastic games. Journal of
machine learning research, 4(Nov):1039–1069, 2003.

Junling Hu, Michael P Wellman, et al. Multiagent reinforcement learning: theoretical framework
and an algorithm. In ICML, pp. 242–250, 1998.

Tommi Jaakkola, Michael I Jordan, and Satinder P Singh. Convergence of stochastic iterative dy-
namic programming algorithms. In Advances in neural information processing systems, pp. 703–
710, 1994.

Narim Jeong and Donghwan Lee. Finite-time error analysis of soft q-learning: Switching system
approach. https://arxiv.org/abs/2403.06366, 2024.

Michael J Kearns and Satinder P Singh. Finite-sample convergence rates for Q-learning and indirect
algorithms. In Advances in neural information processing systems, pp. 996–1002, 1999.

Hassan K Khalil. Nonlinear systems third edition (2002), 2002.

Harold Kushner and G. George Yin. Stochastic approximation and recursive algorithms and appli-
cations, volume 35. Springer Science & Business Media, 2003.

Michail G Lagoudakis and Ronald Parr. Value function approximation in zero-sum markov games.
In Proceedings of the Eighteenth conference on Uncertainty in artificial intelligence, pp. 283–292,
2002.

Donghwan Lee. Finite-time analysis of minimax q-learning for two-player zero-sum markov games:
Switching system approach. arXiv preprint arXiv:2306.05700, 2023.

Donghwan Lee. Final iteration convergence bound of q-learning: Switching system approach. IEEE
Transactions on Automatic Control, 2024.

https://api.semanticscholar.org/CorpusID:6208256
https://api.semanticscholar.org/CorpusID:6208256
https://arxiv.org/abs/2403.06366


Reinforcement Learning Journal 2025

Donghwan Lee and Niao He. Periodic Q-learning. In Learning for dynamics and control, pp.
582–598, 2020a.

Donghwan Lee and Niao He. A unified switching system perspective and convergence analysis of
Q-learning algorithms. In 34th Conference on Neural Information Processing Systems, NeurIPS
2020, 2020b.

Donghwan Lee, Jianghai Hu, and Niao He. A discrete-time switching system analysis of Q-learning.
SIAM Journal on Control and Optimization (accepted), 2022.

Donghwan Lee, Jianghai Hu, and Niao He. A discrete-time switching system analysis of Q-learning.
SIAM Journal on Control and Optimization, 61(3):1861–1880, 2023.

Gen Li, Yuting Wei, Yuejie Chi, Yuantao Gu, and Yuxin Chen. Sample complexity of asynchronous
Q-learning: sharper analysis and variance reduction. arXiv preprint arXiv:2006.03041, 2020.

Daniel Liberzon. Switching in systems and control. Springer Science & Business Media, 2003.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In Inter-
national Conference on learning representations, 2016.

Michael L. Littman. Markov games as a framework for multi-agent reinforcement learning. In
Proceedings of the Eleventh International Conference on International Conference on Machine
Learning, ICML’94, pp. 157–163, San Francisco, CA, USA, 1994. Morgan Kaufmann Publishers
Inc. ISBN 1558603352.

Michael L Littman. Value-function reinforcement learning in Markov games. Cognitive systems
research, 2(1):55–66, 2001.

Michael L Littman and Csaba Szepesvári. A generalized reinforcement-learning model: conver-
gence and applications. In ICML, volume 96, pp. 310–318, 1996.

Michael L Littman et al. Friend-or-foe Q-learning in general-sum games. In ICML, volume 1, pp.
322–328, 2001.

Francisco S Melo, Sean P Meyn, and M Isabel Ribeiro. An analysis of reinforcement learning
with function approximation. In Proceedings of the 25th international conference on Machine
learning, pp. 664–671, 2008.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 518(7540):529, 2015.

Ling Pan, Qingpeng Cai, Qi Meng, Wei Chen, Longbo Huang, and Tie-Yan Liu. Reinforcement
learning with dynamic boltzmann softmax updates. arXiv preprint arXiv:1903.05926, 2019.

Julien Perolat, Bruno Scherrer, Bilal Piot, and Olivier Pietquin. Approximate dynamic programming
for two-player zero-sum Markov games. In International Conference on Machine Learning, pp.
1321–1329, 2015.

Julien Pérolat, Bilal Piot, Bruno Scherrer, and Olivier Pietquin. On the use of non-stationary strate-
gies for solving two-player zero-sum markov games. In Artificial Intelligence and Statistics, pp.
893–901, 2016.

Julien Perolat, Bilal Piot, and Olivier Pietquin. Actor-critic fictitious play in simultaneous move
multistage games. In International Conference on Artificial Intelligence and Statistics, pp. 919–
928, 2018.



Finite-Time Analysis of Minimax Q-Learning

Guannan Qu and Adam Wierman. Finite-time analysis of asynchronous stochastic approximation
and Q-learning. arXiv preprint arXiv:2002.00260, 2020.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pp. 1889–1897, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Lloyd S Shapley. Stochastic games. Proceedings of the national academy of sciences, 39(10):
1095–1100, 1953.

Zhao Song, Ron Parr, and Lawrence Carin. Revisiting the softmax bellman operator: New benefits
and new perspective. In International conference on machine learning, pp. 5916–5925. PMLR,
2019.

Rayadurgam Srikant and Lei Ying. Finite-time error bounds for linear stochastic approximation
andtd learning. In Conference on Learning Theory, pp. 2803–2830, 2019.

Sriram Srinivasan, Marc Lanctot, Vinicius Zambaldi, Julien Pérolat, Karl Tuyls, Rémi Munos, and
Michael Bowling. Actor-critic policy optimization in partially observable multiagent environ-
ments. Advances in neural information processing systems, 2018.

Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An introduction. MIT Press,
1998.

Csaba Szepesvári. The asymptotic convergence-rate of Q-learning. In Advances in Neural Informa-
tion Processing Systems, pp. 1064–1070, 1998.

John N Tsitsiklis. Asynchronous stochastic approximation and Q-learning. Machine learning, 16
(3):185–202, 1994.

Martin J Wainwright. Stochastic approximation with cone-contractive operators: sharp ℓ∞-bounds
for Q-learning. arXiv preprint arXiv:1905.06265, 2019.

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and Nando Freitas. Dueling
network architectures for deep reinforcement learning. In International conference on machine
learning, pp. 1995–2003, 2016.

Christopher J. C. H. Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):279–292,
1992.

Chen-Yu Wei, Yi-Te Hong, and Chi-Jen Lu. Online reinforcement learning in stochastic games.
Advances in Neural Information Processing Systems, 2017.
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A Additional discussions

Contributions. It is noteworthy to highlight that while the switching system model introduced
in Lee et al. (2022) has been used as a basis, the main analysis and proof in this work significantly
differed from those in Lee et al. (2022). It is also important to note that this paper only deals with
the independently and identically distributed observations and the constant step-size in the tabular
domain to make the analysis easier. Nevertheless, our analysis can be expanded to include more
complex Markovian observation models by employing the methods described in Srikant & Ying
(2019) and Bhandari et al. (2018).

Two-player Markov games. There are two types of two-player Markov games (Shapley, 1953):
alternating two-player Markov games and simultaneous two-player Markov games. Since the al-
ternating two-player Markov games streamline the basic ideas and related procedures, this study
mainly focuses on it. Note that all of the results in this paper can also be applied to the simultaneous
two-player Markov games without difficulty.

Minimax Q-learning and its smooth variant. Algorithm 1 shows the MQL algorithm that is
used in this study, which differs somewhat from the original MQL in Littman (1994). The MQL
in Algorithm 1 uses the max operator that choose an action a in the restricted set A, not in the set
of all stochastic policies. Nevertheless, it is noteworthy that all of the analyses in this paper are still
relevant to the original MQL.

Algorithm 2 describes the Boltzmann MQL algorithm, with the definition of hω
a∈A and h−ω

b∈B in (3).

Algorithm 1 MQL

1: Initialize Q0 ∈ R|S×A×B| randomly such that ∥Q0∥∞ ≤ 1.
2: for iteration k = 0, 1, . . . do
3: Sample ak ∼ β(·|sk). bk ∼ ϕ(·|sk) and sk ∼ p(·)
4: Sample s′k ∼ P (·|sk, ak, bk) and rk = r(sk, ak, bk, s

′
k)

5: Update

Qk+1(sk, ak, bk) =Qk(sk, ak, bk)

+ α

{
rk + γmax

a∈A
min
b∈B

Qk(s
′
k, a, b)−Qk(sk, ak, bk)

}
6: end for

Algorithm 2 Boltzmann MQL

1: Initialize Qbz
0 ∈ R|S×A×B| randomly such that

∥∥Qbz
0

∥∥
∞ ≤ 1.

2: for iteration k = 0, 1, . . . do
3: Sample ak ∼ β(·|sk). bk ∼ ϕ(·|sk) and sk ∼ p(·)
4: Sample s′k ∼ P (·|sk, ak, bk) and rk = r(sk, ak, bk, s

′
k)

5: Update

Qbz
k+1(sk, ak, bk) =Qbz

k (sk, ak, bk)

+ α
{
rk + γhω

a∈A
(
h−ω
b∈B

(
Qbz

k (s′k, a, b)
))

−Qbz
k (sk, ak, bk)

}
6: end for
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B Additional assumptions

Assumption 2. The following general assumptions are used in this paper:

(i) Given the behavior policies β and ϕ that agents actually use to acquire experiences,
{(sk, ak, bk, s′k)}∞k=0 are independent and identically distributed samples.

(ii) Assuming that the state is generated from the stationary state distribution p at each iteration,
the state-action distribution can be derived as

d(s, a, b) = p(s)β(a|s)ϕ(b|s)

with (s, a, b) ∈ S ×A× B.

C Proof of Proposition 1 and Proposition 2

Propositions 1 and 2 can be proven by using an induction argument.

Proof of Proposition 1. Suppose the result is valid for some k ≥ 0. Then,

Qk+1(sk, ak, bk) =(1− α)Qk(sk, ak, bk) + α

{
rk + γmax

a∈A
min
b∈B

Qk (s
′
k, a, b)

}
≤(1− α)Qk(sk, ak, bk) + α

{
rk + γmax

a∈A
Qk (s

′
k, a, µ

∗ (s′k, a))

}
≤(1− α)QU

k (sk, ak, bk) + α

{
rk + γmax

a∈A
QU

k (s′k, a, µ
∗ (s′k, a))

}
=QU

k+1(sk, ak, bk),

where the second inequality is based on the assumption QU
k (s, a, b) ≥ Qk(s, a, b). By induction,

the proof is completed.

Proof of Proposition 2. Suppose the result is valid for some k ≥ 0. Then,

Qk+1(sk, ak, bk) =(1− α)Qk(sk, ak, bk) + α

{
rk + γmax

a∈A
min
b∈B

Qk (s
′
k, a, b)

}
≥(1− α)Qk(sk, ak, bk) + α

{
rk + γmin

b∈B
Qk (s

′
k, π

∗ (s′k) , b)

}
≥(1− α)QL

k (sk, ak, bk) + α

{
rk + γmin

b∈B
QL

k (s′k, π
∗ (s′k) , b)

}
=QL

k+1(sk, ak, bk),

where the second inequality is based on the assumption QL
k (s, a, b) ≤ Qk(s, a, b). By induction,

the proof is completed.

D Proof of Theorem 1

Proof. For every k ≥ 0,

E
[∥∥QU

k −Q∗∥∥
∞

]
≤9α

1
2 dmax|S × A × B|

d
3
2

min(1− γ)
5
2

+
2|S × A × B| 32

1− γ
ρk

+
4αγdmax|S × A × B| 23

1− γ
kρk−1

(12)
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can be derived from Lemma 1 with the Q-function vector in Definition 1. Similarly, one can also
provide a finite-time error bound for the lower iteration of MQL because it is symmetric with respect
to the upper iteration. The lower iteration of MQL shares the same bound with the right side of (12).

Then, by using the relation

E [∥Qk −Q∗∥2] =E
[∥∥Qk −QL

k +QL
k −Q∗∥∥

2

]
≤E

[∥∥QL
k −Q∗∥∥

2

]
+ E

[∥∥Qk −QL
k

∥∥
2

]
≤E

[∥∥QL
k −Q∗∥∥

2

]
+ E

[∥∥QU
k −QL

k

∥∥
2

]
≤E

[∥∥QL
k −Q∗∥∥

2

]
+ E

[∥∥QU
k −Q∗ +Q∗ −QL

k

∥∥
2

]
≤E

[∥∥QL
k −Q∗∥∥

2

]
+ E

[∥∥QU
k −Q∗∥∥

2

]
+ E

[∥∥Q∗ −QL
k

∥∥
2

]
=2E

[∥∥QL
k −Q∗∥∥

2

]
+ E

[∥∥QU
k −Q∗∥∥

2

]
,

where the triangle inequality accounts for the first and fourth inequalities and the fact that QU
k −

QL
k ≥ Qk − QL

k ≥ 0 provides the second inequality, the final conclusion can be obtained by
combining (12) and the error bound for the lower iteration of MQL.

E Proof of Proposition 3 and Proposition 4

To get the upper and lower comparison system of the Boltzmann MQL, the following proposition is
utilized:

Proposition 5 (Jeong & Lee (2024)). For any v ∈ R|U|,

max
u∈U

v(u)− ln(|U|)
ω

≤ hω
u∈U (v) ≤ max

u∈U
v(u) and min

u∈U
v(u) ≤ h−ω

u∈U (v) ≤ min
u∈U

v(u) +
ln(|U|)

ω
,

where “≤” represents the element-wise inequality.

Then, Propositions 3 and 4 can be proven by using an induction argument.

Proof of Proposition 3. Suppose the result is valid for some k ≥ 0. Then,

Qbz
k+1(sk, ak, bk)

=(1− α)Qbz
k (sk, ak, bk) + α

{
rk + γhω

a∈A
(
h−ω
b∈B

(
Qbz

k (s′k, a, b)
))}

≤(1− α)Qbz
k (sk, ak, bk) + α

{
rk + γmax

a∈A
h−ω
b∈B

(
Qbz

k (s′k, a, b)
)}

≤(1− α)Qbz
k (sk, ak, bk) + α

{
rk + γmax

a∈A
min
b∈B

Qbz
k (s′k, a, b) + γ

ln(|B|)
ω

}
≤(1− α)Qbz

k (sk, ak, bk) + α

{
rk + γmax

a∈A
Qbz

k (s′k, a, µ
∗(s′k, a)) + γ

ln(|B|)
ω

}
≤(1− α)QU,bz

k (sk, ak, bk) + α

{
rk + γmax

a∈A
QU,bz

k (s′k, a, µ
∗(s′k, a)) + γ

ln(|B|)
ω

}
=QU,bz

k+1 (sk, ak, bk),

where the first and second inequalities utilize Proposition 5, and the last inequality is based on the
assumption QU,bz

k (s, a, b) ≥ Qbz
k (s, a, b). By induction, the proof is completed.

Proof of Proposition 4. Suppose the result is valid for some k ≥ 0. Then,

Qbz
k+1(sk, ak, bk) =(1− α)Qbz

k (sk, ak, bk) + α
{
rk + γhω

a∈A
(
h−ω
b∈B

(
Qbz

k (s′k, a, b)
))}

≥(1− α)Qbz
k (sk, ak, bk) + α

{
rk + γhω

a∈A

(
min
b∈B

Qbz
k (s′k, a, b)

)}
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≥(1− α)Qbz
k (sk, ak, bk) + α

{
rk + γmax

a∈A
min
b∈B

Qbz
k (s′k, a, b)− γ

ln(|A|)
ω

}
≥(1− α)Qbz

k (sk, ak, bk) + α

{
rk + γmin

b∈B
Qbz

k (s′k, π
∗(s′k), b)− γ

ln(|A|)
ω

}
≥(1− α)QL,bz

k (sk, ak, bk) + α

{
rk + γmin

b∈B
QL,bz

k (s′k, π
∗(s′k), b)− γ

ln(|A|)
ω

}
=QL,bz

k+1 (sk, ak, bk),

where the first and second inequalities utilize Proposition 5, and the last inequality is based on the
assumption QL,bz

k (s, a, b) ≤ Qbz
k (s, a, b). By induction, the proof is completed.

F Construction of the upper and lower comparison systems (7) and (10)

For the upper comparison system of Boltzmann MQL (7), we first modify the upper iteration of
Boltzmann MQL (5) in a vector form as

QU,bz
k+1 =QU,bz

k + α

{
(eak

⊗ ebk ⊗ esk)rk + γ(eak
⊗ ebk ⊗ esk)

(
es′k

)T
ΠQU,bz

k
QU,bz

k

− (eak
⊗ ebk ⊗ esk)(eak

⊗ ebk ⊗ esk)
TQU,bz

k + γ(eak
⊗ ebk ⊗ esk)

ln(|B|)
ω

}
.

(13)

Then, taking the conditional expectation of (13) based on QU,bz
k yields

E
[
QU,bz

k+1

∣∣∣QU,bz
k

]
= QU,bz

k + α

(
DR+ γDPΠQU,bz

k
QU,bz

k −DQU,bz
k + γD

ln(|B|)
ω

1
)
, (14)

where
D = E

[
(eak

⊗ ebk ⊗ esk)(eak
⊗ ebk ⊗ esk)

T | QU,bz
k

]
,

DP = E
[
(eak

⊗ ebk ⊗ esk)
(
es′k

)T
| QU,bz

k

]
,

and 1 is a column vector with all values of 1.

Through the calculation of (13) - (14) + (14), one gets

QU,bz
k+1 = QU,bz

k + α
(
DR+ γDPΠQU,bz

k
QU,bz

k −DQU,bz
k

)
+ αwU

k + αγD
ln(|B|)

ω
1 (15)

with

wU
k =(eak

⊗ ebk ⊗ esk)rk + γ(eak
⊗ ebk ⊗ esk)

(
es′k

)T
ΠQU,bz

k
QU,bz

k

− (eak
⊗ ebk ⊗ esk)(eak

⊗ ebk ⊗ esk)
TQU,bz

k + γ(eak
⊗ ebk ⊗ esk)

ln(|B|)
ω

−
(
DR+ γDPΠQU,bz

k
QU,bz

k −DQU,bz
k + γD

ln(|B|)
ω

1
)
.

By reformulating (15), the result of (7) can be obtained as follows:

QU,bz
k+1 −Q∗ =QU,bz

k −Q∗ + α
(
DR+ γDPΠQU,bz

k
QU,bz

k −DQU,bz
k

)
+ αwU

k + αγD
ln(|B|)

ω
1

=QU,bz
k −Q∗ + α

(
−γDPΠQ∗Q∗ +DQ∗ + γDPΠQU,bz

k
QU,bz

k −DQU,bz
k

)
+ αwU

k + αγD
ln(|B|)

ω
1 + αγDP

(
ΠQU,bz

k
Q∗ −ΠQU,bz

k
Q∗
)
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=
{
I + α

(
γDPΠQU,bz

k
−D

)}(
QU,bz

k −Q∗
)
+ αγDP

(
ΠQU,bz

k
−ΠQ∗

)
Q∗

+ αwU
k + αγD

ln(|B|)
ω

1

=AQU,bz
k

(
QU,bz

k −Q∗
)
+ bQU,bz

k
+ αwU

k + αγD
ln(|B|)

ω
1

with
AQ := I + α (γDPΠQ −D) and bQ := αγDP (ΠQ −ΠQ∗)Q∗,

where the second equality uses the optimal Bellman equation Q∗(s, a, b) = R(s, a, b) + γ
∑

s′∈S

P (s′|s, a, b)maxa′∈A minb′∈B Q∗(s′, a′, b′) and the fact that maxa∈A minb∈B Q∗(s, a, b) =
maxa∈A Q∗(s, a, µ∗(s, a)).

Using a similar technique, we can also get (10).

G Finite-time error bound for the upper and lower comparison systems

In order to determine the convergence of Boltzmann MQL, we once again transfer this problem into
the stability analysis of the affine switching system and adjust the upper and lower comparison sys-
tems. However, since (7) and (10) contain extra affine vectors and stochastic noises compared to the
MQL scenario, it is necessary to apply further comparison systems. The upper comparison system
is supplemented by the additional comparison systems referred to as the upper-upper comparison
system and the upper-lower comparison system. By demonstrating the convergence of the upper-
upper and upper-lower comparison systems, the convergence of the upper comparison system can
be proved. After doing the same procedure for the lower comparison system, the finite-time error
bound of the Boltzmann MQL can eventually be found.

G.1 Finite-time error bound for the upper comparison system

In this subsection, the new comparison systems that effectively bound the upper comparison sys-
tem (7) are proposed. The upper-lower comparison system, which gives the upper comparison
system’s lower bound, is taken into consideration as

QUL,bz
k+1 −Q∗ = AQ∗

(
QUL,bz

k −Q∗
)
+ αwU

k + αγD
ln(|B|)

ω
1. (16)

Moreover, the upper-upper comparison system, which gives the upper comparison system’s upper
bound, is taken into consideration as

QUU,bz
k+1 −Q∗ = AQU,bz

k

(
QUU,bz

k −Q∗
)
+ αwU

k + αγD
ln(|B|)

ω
1. (17)

These two additional comparison systems (16) and (17) can be proved by the following propositions:

Proposition 6. Assume that QUL,bz
0 (s, a, b) ≤ QU,bz

0 (s, a, b) for every (s, a, b). Then,
QUL,bz

k (s, a, b) ≤ QU,bz
k (s, a, b) for every (s, a, b) and k ≥ 0.

Proposition 7. Assume that QUU,bz
0 (s, a, b) ≥ QU,bz

0 (s, a, b) for every (s, a, b). Then,
QUU,bz

k (s, a, b) ≥ QU,bz
k (s, a, b) for every (s, a, b) and k ≥ 0.

The entire proofs are presented in Appendix H. Then, the convergence of the upper comparison sys-
tem can be established by proving the convergence of the upper-lower and upper-upper comparison
systems.

First, the convergence of the upper-lower comparison system can be shown by the following theo-
rem, with the entire proof available in Appendix I:
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Theorem 5. For every k ≥ 0,

E
[∥∥∥QUL,bz

k −Q∗
∥∥∥
2

]
≤|S × A× B| 12

∥∥∥QUL,bz
0 −Q∗

∥∥∥
2
ρk

+
2
√
2α

1
2 (ln(|B|) + ω)|S × A × B| 12

ωd
1
2
min(1− γ)

3
2

+
γdmax ln(|B|)|S × A × B| 12

ωdmin(1− γ)
.

Once the convergence of the upper-lower comparison system (16) has been established, it is also
possible to confirm the convergence of the upper-upper comparison system (17). However, the
dependency of the subsystem matrix on the Q-function makes it difficult to directly show the con-
vergence of (17). In other words, in contrast to (16), the subsystem matrix AQU,bz

k
and the state

QUU,bz
k −Q∗ in (17) cannot be isolated if the expectation of (17) is considered. To avoid this prob-

lem, an error system is alternatively investigated, which can be made by subtracting the upper-lower
system (16) from the upper-upper comparison system (17):

QUU,bz
k+1 −QUL,bz

k+1 = AQU,bz
k

(
QUU,bz

k −QUL,bz
k

)
+BQU,bz

k

(
QUL,bz

k −Q∗
)

(18)

with
BQ := AQ −AQ∗ = αγDP (ΠQ −ΠQ∗) . (19)

In the error system (18), the stochastic noise (9) is eliminated, which relieves the statistical depen-
dency problem. Moreover, QUL,bz

k −Q∗ can be interpreted as an external disturbance in (18).

Then, the error bound of the error system (18) can be verified by the following theorem:

Theorem 6. For every k ≥ 0,

E
[∥∥∥QUU,bz

k −QUL,bz
k

∥∥∥
∞

]
≤4αγdmax|S × A × B|

1− γ
kρk−1

+
4
√
2α

1
2 γdmax(ln(|B|) + ω)|S × A × B| 12

ωd
3
2
min(1− γ)

5
2

+
2γ2d2max ln(|B|)|S × A × B| 12

ωd2min(1− γ)2
.

(20)

The complete proof is provided in Appendix L.

The main idea used to illustrate the convergence of the upper comparison system (7) is as follows:

E
[∥∥∥QU,bz

k −Q∗
∥∥∥
∞

]
=E

[∥∥∥QU,bz
k −QUL,bz

k +QUL,bz
k −Q∗

∥∥∥
∞

]
≤E

[∥∥∥QU,bz
k −QUL,bz

k

∥∥∥
∞

]
+ E

[∥∥∥QUL,bz
k −Q∗

∥∥∥
∞

]
≤E

[∥∥∥QUU,bz
k −QUL,bz

k

∥∥∥
∞

]
+ E

[∥∥∥QUL,bz
k −Q∗

∥∥∥
∞

]
.

(21)

As QUL,bz
k −Q∗ → 0 and QUU,bz

k −QUL,bz
k → 0 with k → ∞ are shown by Theorems 5 and 6, it

is also possible to have QU,bz
k → Q∗, where the bound on the expected error E

[∥∥∥QU,bz
k −Q∗

∥∥∥
∞

]
can be established by the following theorem:

Theorem 2 Restated. For every k ≥ 0,

E
[∥∥∥QU,bz

k −Q∗
∥∥∥
∞

]
≤4αγdmax|S × A × B|

1− γ
kρk−1

+
6
√
2α

1
2 dmax(ln(|B|) + ω)|S × A × B| 12

ωd
3
2
min(1− γ)

5
2
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+
3γd2max ln(|B|)|S × A× B| 12

ωd2min(1− γ)2
+

2|S × A × B|
1− γ

ρk.

Proof. The result can be achieved by combining (21), Theorems 5 and 6, followed by γ ∈ [0, 1), As-
sumption 1, Definition 1, and the property of the optimal Q-function.

G.2 Finite-time error bound for the lower comparison system

Because of the symmetrical nature of the Boltzmann MQL’s lower comparison system (10), its
convergence can be easily evaluated using the findings of the previous subsection.

Similar to Appendix G.1, The lower-lower comparison system can be represented as

QLL,bz
k+1 −Q∗ = A′

QL,bz
k

(
QLL,bz

k −Q∗
)
+ αwL

k − αγD
ln(|A|)

ω
1, (22)

and the lower-upper comparison system can be represented as

QLU,bz
k+1 −Q∗ = A′

Q∗

(
QLU,bz

k −Q∗
)
+ αwL

k − αγD
ln(|A|)

ω
1, (23)

which can be proved by the following propositions:
Proposition 8. Assume that QLL,bz

0 (s, a, b) ≤ QL,bz
0 (s, a, b) for every (s, a, b). Then,

QLL,bz
k (s, a, b) ≤ QL,bz

k (s, a, b) for every (s, a, b) and k ≥ 0.

Proposition 9. Assume that QLU,bz
0 (s, a, b) ≥ QL,bz

0 (s, a, b) for every (s, a, b). Then,
QLU,bz

k (s, a, b) ≥ QL,bz
k (s, a, b) for every (s, a, b) and k ≥ 0.

The proofs of Propositions 8 and 9 are provided in Appendix M.

As can be observed, the lower-lower comparison system (22) is similar to the upper-upper com-
parison system (17), and the lower-upper comparison system (23) is similar to the upper-lower
comparison system (16). Therefore, the prior results can be used to demonstrate the convergence of
each comparison system (22) and (23). More precisely, the findings of Appendix G.1 can be applied
to demonstrate the convergence of the lower-upper comparison system (23) and the error system.
Corollary 1. For every k ≥ 0,

E
[∥∥∥QLU,bz

k −Q∗
∥∥∥
2

]
≤|S × A× B| 12

∥∥∥QLU,bz
0 −Q∗

∥∥∥
2
ρk

+
2
√
2α

1
2 (ln(|A|) + ω)|S × A × B| 12

ωd
1
2
min(1− γ)

3
2

+
γdmax ln(|A|)|S × A × B| 12

ωdmin(1− γ)
.

Corollary 1 illustrates the convergence result of the lower-upper comparison system (23), which can
be achieved by using Theorem 5. In contrast to Theorem 5, the second and third terms on the right
side of the inequality of Corollary 1 have ln(|A|) rather than ln(|B|). It is due to the difference
between the additional terms αγD ln(|B|)

ω 1 of (16) and −αγD ln(|A|)
ω 1 of (23).

If the error system is constructed by subtracting the lower-upper comparison system (23) from the
lower-lower comparison system (22), the convergence of the error system can be determined as
follows:
Corollary 2. For every k ≥ 0,

E
[∥∥∥QLL,bz

k −QLU,bz
k

∥∥∥
∞

]
≤4αγdmax|S × A× B|

1− γ
kρk−1

+
4
√
2α

1
2 γdmax(ln(|A|) + ω)|S × A × B| 12

ωd
3
2
min(1− γ)

5
2

+
2γ2d2max ln(|A|)|S × A × B| 12

ωd2min(1− γ)2
.
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Corollary 2 illustrates the convergence result of the error system, which can be achieved by us-
ing Theorem 6. Similar to Corollary 1, the second and third terms on the right side of the inequality
of Corollary 2 have ln(|A|) instead of ln(|B|) for the same reason.

Then, the finite-time error bound of the lower comparison system (10) can be proved by the follow-
ing theorem:

Theorem 3 Restated. For every k ≥ 0,

E
[∥∥∥QL,bz

k −Q∗
∥∥∥
∞

]
≤4αγdmax|S × A × B|

1− γ
kρk−1 +

6
√
2α

1
2 dmax(ln(|A|) + ω)|S × A × B| 12

ωd
3
2
min(1− γ)

5
2

+
3γd2max ln(|A|)|S × A × B| 12

ωd2min(1− γ)2
+

2|S × A × B|
1− γ

ρk.

Proof. The result can be achieved by combining the relation

E
[∥∥∥QL,bz

k −Q∗
∥∥∥
∞

]
≤E

[∥∥∥QLU,bz
k −Q∗

∥∥∥
∞

]
≤E

[∥∥∥QLU,bz
k −Q∗

∥∥∥
∞

]
+ E

[∥∥∥QLL,bz
k −QLU,bz

k

∥∥∥
∞

]
,

Corollaries 1 and 2, followed by γ ∈ [0, 1), Assumption 1, Definition 1, and the property of the
optimal Q-function.

H Proof of Proposition 6 and Proposition 7

Propositions 6 and 7 can be proven by using an induction argument.

Proof of Proposition 6. Suppose the result is valid for some k ≥ 0. Then,

QU,bz
k+1 −Q∗

=AQU,bz
k

(
QU,bz

k −Q∗
)
+ bQU,bz

k
+ αwU

k + αγD
ln(|B|)

ω
1

=AQ∗

(
QU,bz

k −Q∗
)
+
(
AQU,bz

k
−AQ∗

)(
QU,bz

k −Q∗
)
+ bQU,bz

k
+ αwU

k + αγD
ln(|B|)

ω
1

=AQ∗

(
QU,bz

k −Q∗
)
+ αγDP

(
ΠQU,bz

k
−ΠQ∗

)
QU,bz

k + αwU
k + αγD

ln(|B|)
ω

1

≥AQ∗

(
QU,bz

k −Q∗
)
+ αwU

k + αγD
ln(|B|)

ω
1

≥AQ∗

(
QUL,bz

k −Q∗
)
+ αwU

k + αγD
ln(|B|)

ω
1

=QUL,bz
k+1 −Q∗,

where the first inequality utilizes αγDP (ΠQk
−ΠQ∗)Qk ≥ αγDP (ΠQ∗ −ΠQ∗)Qk = 0, and

the last inequality is based on the assumption QUL,bz
k (s, a, b) ≤ QU,bz

k (s, a, b) and the fact that AQ∗

is a nonnegative matrix. By induction, the proof is completed.

Proof of Proposition 7. Suppose the result is valid for some k ≥ 0. Then,

QU,bz
k+1 −Q∗ =AQU,bz

k

(
QU,bz

k −Q∗
)
+ bQU,bz

k
+ αwU

k + αγDP
ln(|B|)

ω
1

≤AQU,bz
k

(
QU,bz

k −Q∗
)
+ αwU

k + αγDP
ln(|B|)

ω
1
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≤AQU,bz
k

(
QUU,bz

k −Q∗
)
+ αwU

k + αγDP
ln(|B|)

ω
1

=QUU,bz
k+1 −Q∗,

where the first inequality utilizes the property of bQU,bz
k

= αγDP
(
ΠQU,bz

k
−ΠQ∗

)
Q∗ ≤

αγDP (ΠQ∗ −ΠQ∗)Q∗ = 0, and the last inequality is based on the assumption QUU,bz
k (s, a, b) ≥

QU,bz
k (s, a, b) and the fact that AQU,bz

k
is a nonnegative matrix. By induction, the proof is com-

pleted.

I Proof of Theorem 5

In order to demonstrate the convergence of the upper-lower comparison system (16), the following
supplementary lemmas are required:

Lemma 2 (Lee et al. (2023)). For any v ∈ R|S×A|,

∥Av∥∞ ≤ ρ.

Here, Av is the subsystem matrix in the form of (8), ∥A∥∞ := max1≤i≤m

∑n
j=1 |Aij |, Aij is the

element in the ith row and jth column of A, and ρ is specified in Definition 1. This can also be
applied to every Q ∈ R|S×A×B| with AQ.

Lemma 3. For every k ≥ 0,

E
[(
wU

k

)T (
wU

k

)]
≤ 8(ln(|B|) + ω)2

ω2(1− γ)2
.

Lemma 4. For every k ≥ 0,
E
[
wU

k

]
= 0.

The proofs of Lemmas 3 and 4 are presented in Appendices J and K, respectively. Then, Theorem 5
can be proved as follows:

Proof of Theorem 5. Using (16) recursively, one obtains

QUL,bz
k −Q∗ = Ak

Q∗

(
QUL,bz

0 −Q∗
)
+ α

k−1∑
i=0

Ak−i−1
Q∗ wU

i + αγ

k−1∑
i=0

Ak−i−1
Q∗ D

ln(|B|)
ω

1.

Then, considering the norm and expectation of the preceding equality yields

E
[∥∥∥QUL,bz

k −Q∗
∥∥∥
2

]
=E

[∥∥∥∥∥Ak
Q∗

(
QUL,bz

0 −Q∗
)
+ α

k−1∑
i=0

Ak−i−1
Q∗ wU

i + αγ

k−1∑
i=0

Ak−i−1
Q∗ D

ln(|B|)
ω

1

∥∥∥∥∥
2

]

≤E

[∥∥∥∥∥Ak
Q∗

(
QUL,bz

0 −Q∗
)
+ α

k−1∑
i=0

Ak−i−1
Q∗ wU

i

∥∥∥∥∥
2

]
+ E

[∥∥∥∥∥αγ
k−1∑
i=0

Ak−i−1
Q∗ D

ln(|B|)
ω

1

∥∥∥∥∥
2

]
.

Utilizing the relation E[∥ · ∥2] = E[
√

∥ · ∥22] ≤
√

E[∥ · ∥22], the last inequality becomes

E
[∥∥∥QUL,bz

k −Q∗
∥∥∥
2

]
≤

√√√√√E

∥∥∥∥∥Ak
Q∗

(
QUL,bz

0 −Q∗
)
+ α

k−1∑
i=0

Ak−i−1
Q∗ wU

i

∥∥∥∥∥
2

2





Finite-Time Analysis of Minimax Q-Learning

+ E

[∥∥∥∥∥αγ
k−1∑
i=0

Ak−i−1
Q∗ D

ln(|B|)
ω

1

∥∥∥∥∥
2

]
.

Since

E

∥∥∥∥∥Ak
Q∗

(
QUL,bz

0 −Q∗
)
+ α

k−1∑
i=0

Ak−i−1
Q∗ wU

i

∥∥∥∥∥
2

2


=E

(Ak
Q∗

(
QUL,bz

0 −Q∗
)
+ α

k−1∑
i=0

Ak−i−1
Q∗ wU

i

)T

·

(
Ak

Q∗

(
QUL,bz

0 −Q∗
)
+ α

k−1∑
i=0

Ak−i−1
Q∗ wU

i

)
=E

[(
QUL,bz

0 −Q∗
)T (

Ak
Q∗

)T
Ak

Q∗

(
QUL,bz

0 −Q∗
)]

+ E

[
α2

k−1∑
i=0

(
wU

i

)T (
Ak−i−1

Q∗

)T
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(
wU
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)T
wU
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]
is satisfied by applying Lemma 4 in the second equality and utilizing λmax, which denotes the
maximum eigenvalue, in the first inequality, one gets

E
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2
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+ E
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i=0
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ln(|B|)
ω

1

∥∥∥∥∥
2

]
.

Moreover, combining the prior inequality with ∥ · ∥2 ≤ |S ×A×B| 12 ∥ · ∥∞ and Lemma 2 produces

E
[∥∥∥QUL,bz

k −Q∗
∥∥∥
2

]
≤

√√√√|S × A × B|
∥∥∥Ak

Q∗

∥∥∥2
∞

∥∥∥QUL,bz
0 −Q∗

∥∥∥2
2
+ E

[
α2

k−1∑
i=0

|S × A × B|
∥∥∥Ak−i−1

Q∗

∥∥∥2
∞

(
wU

i

)T
wU

i

]

+
αγdmax ln(|B|)|S × A × B| 12

ω

k−1∑
i=0

∥∥∥Ak−i−1
Q∗

∥∥∥
∞

≤

√√√√|S × A × B|
∥∥∥QUL,bz

0 −Q∗
∥∥∥2
2
ρ2k + α2|S × A × B|

k−1∑
i=0

ρ2(k−i−1)E
[(
wU

i

)T
wU

i

]

+
αγdmax ln(|B|)|S × A × B| 12

ω

k−1∑
i=0

ρk−i−1.
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Applying Lemma 3 and the relation
∑k−1

i=0 ρi ≤
∞∑
i=0

ρi ≤ 1
1−ρ ,

∑k−1
i=0 ρ2i ≤

∞∑
i=0

ρ2i ≤ 1
1−ρ2 ≤ 1

1−ρ

with Definition 1 to the last inequality, one obtains

E
[∥∥∥QUL,bz

k −Q∗
∥∥∥
2

]
≤

√
|S × A × B|

∥∥∥QUL,bz
0 −Q∗

∥∥∥2
2
ρ2k +

8α(ln(|B|) + ω)2|S × A × B|
ω2dmin(1− γ)3

+
γdmax ln(|B|)|S × A × B| 12

ωdmin(1− γ)
.

The final conclusion can be reached by utilizing the subadditivity of the square root function in the
aforementioned inequality.

J Proof of Lemma 3

In order to derive Lemma 3, the following lemma is presented first:

Lemma 5. For every k ≥ 0, ∥∥∥QU,bz
k

∥∥∥
∞

≤ 1

1− γ

(
1 + γ

ln(|B|)
ω

)
.

Proof. From (5), the upper comparison system of Boltzmann MQL can be represented as

QU,bz
i+1 =QU,bz

i + α

{
(eai

⊗ ebi ⊗ esi)ri + γ(eai
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(
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)T
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k

QU,bz
k
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⊗ ebi ⊗ esi)(eai

⊗ ebi ⊗ esi)
TQU,bz

i + γ(eai
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ln(|B|)
ω

}
.

(24)

Then, taking the norm on both sides of (24) with i = 0 results in∥∥∥QU,bz
1

∥∥∥
∞

≤(1− α)
∥∥∥QU,bz

0

∥∥∥
∞

+ α

{
∥r0∥∞ + γ
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0
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∥∥∥
∞
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∞
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ln(|B|)
ω
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ln(|B|)

ω

≤(1 + γ) + γ
ln(|B|)

ω
,

from which the second and last inequalities are obtained from Assumption 1.

Next, suppose the following result is valid for some i = k− 1 ≥ 0 to utilize an induction argument:∥∥∥QU,bz
k

∥∥∥
∞

≤
(
1 + γ + · · ·+ γk

)
+
(
γ + · · ·+ γk

) ln(|B|)
ω

. (25)

Using i = k to obtain the norm on (24) yields∥∥∥QU,bz
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)
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=(1− α)

{(
1 + γ + · · ·+ γk

)
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ω

}
+ α

{(
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) ln(|B|)
ω

}
+ α

(
γk+1 + γk+1 ln(|B|)

ω
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{(
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ω
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,

with Assumption 1 and (25) in the second and last inequalities.

This leads to ∥∥∥QU,bz
k

∥∥∥
∞

≤
(
1 + γ + · · ·+ γk

)
+
(
γ + · · ·+ γk

) ln(|B|)
ω

=
(
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)
+ γ

(
1 + γ + · · ·+ γk−1
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ω
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γi + γ
ln(|B|)

ω
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1− γ

(
1 + γ

ln(|B|)
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)
,

which represents the final result.

Now, the demonstration of Lemma 3 is ready.

Proof of Lemma 3.
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where the second inequality arises from ∥a+ b+ c+d∥22 ≤ 4∥a∥22+4∥b∥22+4∥c∥22+4∥d∥22 for any
a, b, c, d by using the Cauchy-Schwarz inequality, and the third inequality derives from Assump-
tion 1 and Lemma 5.

K Proof of Lemma 4

Proof. Considering the expectation on (9), one obtains
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L Proof of Theorem 6

To prove the convergence of the error system (18), the following additional lemma is needed:

Lemma 6 (Gosavi (2006)). The value of Q∗ is bounded by

∥Q∗∥∞ ≤ 1

1− γ
.

This allows us to prove Theorem 6.

Proof of Theorem 6. Taking into account the norm of (18) with Lemma 2, one gets∥∥∥QUU,bz
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Then, considering the expectation of the prior inequality results in
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where the last inequality derives from Theorem 5.

By unrolling the aforementioned inequality from i = 0 to k − 1 and assuming QUU,bz
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0 ,
one obtains
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with Assumption 1 and Lemma 6 and
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1−ρ with Definition 1, the last
inequality becomes
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which completes the proof.

M Proof of Proposition 8 and Proposition 9

Propositions 8 and 9 can be proven using an induction argument.
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Proof of Proposition 8. Suppose the result is valid for some k ≥ 0. Then,
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is a nonnegative matrix. By induction, the proof is com-
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Proof of Proposition 9. Suppose the result is valid for some k ≥ 0. Then,
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where the first inequality utilizes αγDP (ΓQk
− ΓQ∗)Qk ≤ αγDP (ΓQ∗ − ΓQ∗)Qk = 0, and the

last inequality is based on the assumption QLU,bz
k (s, a, b) ≥ QL,bz

k (s, a, b) and the fact that A′
Q∗ is

a nonnegative matrix. By induction, the proof is completed.

N Proof of Theorem 4

Proof. The final conclusion can be obtained by using the relation
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with Theorems 2 and 3, where the triangle inequality accounts for the first and fourth inequalities
and the fact that QU,bz

k −QL,bz
k ≥ Qbz

k −QL,bz
k ≥ 0 provides the second inequality.
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O Numerical simulation settings

To show the simulation results for the convergence of MQL and Boltzmann MQL, we consider a
Markov game with S = {1, 2}, A = {1, 2}, B = {1, 2}, α = 0.1, γ = 0.9, and ω = 100. We set
the state transition probability matrices as

P1,1 =

[
0.8 0.2
0.7 0.3

]
, P1,2 =

[
0.2 0.8
0.3 0.7

]
,

P2,1 =

[
0.4 0.6
0.6 0.4

]
, P2,2 =

[
0.6 0.4
0.4 0.6

]
,

the reward function as

r(·, 1, 1, ·) =


r(1, 1, 1, 1)
r(1, 1, 1, 2)
r(2, 1, 1, 1)
r(2, 1, 1, 2)

 =


1
−1
−0.3
0.3

 , r(·, 1, 2, ·) =


r(1, 1, 2, 1)
r(1, 1, 2, 2)
r(2, 1, 2, 1)
r(2, 1, 2, 2)

 =


−0.7
0.7
0.2
−0.2

 ,

r(·, 2, 1, ·) =


r(1, 2, 1, 1)
r(1, 2, 1, 2)
r(2, 2, 1, 1)
r(2, 2, 1, 2)

 =


−1
1
0.3
−0.3

 , r(·, 2, 2, ·) =


r(1, 2, 2, 1)
r(1, 2, 2, 2)
r(2, 2, 2, 1)
r(2, 2, 2, 2)

 =


0.7
−0.7
−0.2
0.2

 ,

and the behavior policies as a uniform distribution. The graphs in Section 5 display the averages of
the three simulation runs for each algorithm with different random initializations.

P Numerical simulation of Boltzmann MQL with its entire comparison
systems

Figure 3 shows the simulated trajectories of the Boltzmann MQL with its entire comparison systems
under the same simulation settings as in Appendix O. This result also provides empirical support for
the bounding concepts used in the convergence analysis of Boltzmann MQL.
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Figure 3: Trajectories of the Boltzmann MQL and its entire comparison systems


