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Abstract

Designing optimal auctions has major real-world impact, but remains notoriously1

difficult to solve analytically, often intractable in strategic or high-dimensional2

settings. Neural networks have recently approximated optimal mechanisms in3

multi-item auctions, yet extending them to combinatorial auctions (CAs) is harder.4

The main challenge is enforcing combinatorial feasibility, as bundle allocations5

involve non-convex, binary, and overlapping constraints beyond standard neural6

architectures. This paper introduces a novel combinatorial constraint enforcement7

technique for deep learning, applied to a fully connected network (CANet) and8

a transformer-based network (CAFormer). We also present CAGraph, a graph9

attention network (GAT) model that formulates the winner determination problem10

as set packing and captures interdependencies between bidders and bundles. Our11

approach yields three key results. First, our models consistently outperform heuris-12

tic baselines and prior learning-based methods—including RegretNet—across13

diverse synthetic combinatorial auction settings. Second, in real-world airport slot14

auctions, they maintain low regret while flexibly balancing welfare and revenue.15

Third, in a cyber defense case study, a defensive agent uses the auction’s output to16

allocate limited resources to vulnerable network hosts, demonstrating the practical17

versatility of our framework. Together, these results demonstrate the flexibility,18

scalability, and effectiveness of differentiable, constraint-aware neural architectures19

for combinatorial mechanism design.20

1 Introduction21

Mechanism design, a field of economics, focuses on creating incentives and interaction rules among22

self-interested agents to achieve specific objectives for the group. It differs from traditional game23

theory by starting with a desired outcome and designing the rules so that agents acting in their self-24

interest naturally lead to that outcome. A key application of mechanism design is to create auction25

rules, which play a significant role in economic activities such as the fine art market, advertising on26

search engines or e-commerce platforms [6, 21].27

The Vickrey-Clarke-Groves (VCG) mechanism is optimal and strategy-proof when the goal is to28

maximize total bidder welfare [47, 11, 25]. However, revenue maximization poses a greater challenge.29

[33] resolved the revenue-maximizing strategy-proof auction for a single item, later extended by30

[32] to multiple copies of a single item. The general revenue-maximizing auction for multiple items31

remains unsolved decades later, with only specific two-item cases addressed [4, 5].32

The lack of theoretical progress in revenue-maximizing multi-item auctions inspired the develop-33

ment of Automated Mechanism Design (AMD) [42]. AMD uses computational methods to tailor34

mechanisms to specific problem instances, with the use of heuristic approaches [41, 43], but suffers35

from the curse of dimensionality in large-scale settings. More recently, leveraging the power of deep36
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learning, differentiable economics uses deep neural networks as function approximators to learn37

optimal auctions. This approach, introduced with RegretNet [20], offers a scalable alternative to38

traditional AMD methods.39

Since its introduction, RegretNet has inspired a variety of extensions and improvements [35, 34,40

26]. The complexity of multi-item auctions is further amplified in combinatorial auctions, where41

bidders express valuations for bundles rather than individual items, capturing complementarities or42

substitutabilities. Unlike traditional auctions, the interdependencies between items in combinatorial43

auctions introduce additional challenges. One such challenge is winner determination, a problem that44

is well known to be NP-hard, which involves allocating bundles to agents while ensuring that none of45

the bundles overlap. Although the later part of the RegretNet study discusses the 2-item, 2-bidder46

auction in a combinatorial setting [20], the problem is still wide open, primarily due to the lack of47

methodologies to effectively constrain the allocation space to satisfy combinatorial feasibility.48

This paper builds on recent advances in auction theory and machine learning to design combinatorial49

revenue-optimal auctions. It makes the following contributions:50

1. It provides an empirical method to find near-optimal solutions to revenue-maximizing51

CA, addressing problems where analytical solutions are not available. This method is not52

limited by assumptions about allowable bundle structures or bidder valuations. Similar to the53

previous work in differentiable economics [20], the method is approximately strategy-proof.54

2. Unlike previous CA studies, [43, 45, 27], our models identify randomized (lottery) mecha-55

nisms, extending the RegretNet family to CA problems. It is well known that randomization56

can increase revenue in CAs. Our empirical experiments show substantially higher perfor-57

mance than deterministic mechanisms.58

3. It introduces new architectures: CANet and CAFormer, extending prior designs from59

non-combinatorial auctions to a CA setting, and CAGraph, a novel GAT-based model60

learning from both valuation and the relational structures of bundles. While CANet is61

sensitive to the order and structure of the input, CAFormer is permutation-equivariant,62

offering better generalization in scenarios with varying input configurations. CAGraph,63

our new architecture, however, consistently outperformed the benchmarks, demonstrating64

the potential of using GNNs to handle combinatorial combinatorial problems. In addition,65

it implements several techniques to improve stability in training and tackle the vanishing66

gradient problem.67

4. It provides an example of successful use of gradient based methods for constrained68

optimization problems, which are known to be challenging. In our particular case, the69

constraints are related to combinatorial feasibility. This approach can be extended to other70

differentiable combinatorial optimization problems.71

5. To our knowledge, this is the first work to evaluate differentiable auction mechanisms in72

real-world case studies, including airport slot allocation and cyber defense, demonstrating73

their practical versatility and policy relevance.74

2 Problem Statement75

We study a combinatorial auction (CA) with one seller, n bidders, and m items. Each bidder i ∈ N76

has a private valuation vi over bundles S ⊆ M , with K = 2m − 1 possible non-empty bundles.77

Valuations vi are drawn from distributions Fi, which may be symmetric (Fi = F ) or asymmetric,78

and utilities are quasi-linear:79

ui(vi; b) = vi(gi(b))− pi(b),

where gi is the allocation and pi the payment.80

A mechanism is DSIC if truth-telling is optimal:81

ui(vi; (vi, b−i)) ≥ ui(vi; (bi, b−i)) ∀i, bi, (1)
and ex-post IR if82

ui(vi; (vi, b−i)) ≥ 0 ∀i. (2)
Violations of DSIC are measured via expected ex-post regret:83

rgti = E
[
max
v′
i

ui(vi; (v
′
i, v−i))− ui(vi; (vi, v−i))

]
.
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Figure 1: Mechanism overview. Bids flow through one of three architecture modules CANet,
CAFormer or CAGraph, then a shared constraint-enforcement block yields a feasible allocation Z
and a pricing network ensures IR, producing (g, p). Detailed schematics for each architecture appear
in Appendix D.1–D.3.

Combinatorial feasibility. Let ziS indicate whether bidder i receives bundle S. We require84 ∑
i∈N

∑
S⊆M : j∈S

ziS ≤ 1 ∀j ∈M,
∑
S∈K

ziS ≤ 1 ∀i ∈ N, (3)

with the integrality constraint ziS ∈ {0, 1} in the discrete problem. For learning, we use the standard85

LP relaxation ziS ∈ [0, 1] and interpret z as ex-ante allocation probabilities. (Exact Birkhoff–von86

Neumann decompositions apply only in assignment or disjoint-bundle settings; implementability for87

general CAs is discussed in Appendix H.)88

The auctioneer’s goal is to maximize expected revenue,89

rev =
∑
i∈N

pi(v),

subject to DSIC, IR, and feasibility.90

We build on RegretNet [20], which encodes allocation and payment rules within neural networks and91

optimizes revenue subject to low regret. While the original work extends to combinatorial auctions, it92

is limited to a two-bidder, two-item setting. We specifically introduce a computational technique to93

enforce hard combinatorial constraints in broader combinatorial auction environments.94

3 Proposed Method95

After formulating CAs as a learning problem, we will propose models that facilitate end-to-end96

learning through gradient-based optimization techniques.97

To ensure feasibility, we factorize the allocation matrix Z ∈ Rn×k as98

Z = Bbundle ·Aagent-bundle,

corresponding to a two-step process: (i) items are assigned to bundles, and (ii) bundles are assigned99

to bidders.100

The item-to-bundle matrix Bbundle is constructed from network outputs and the item–bundle incidence101

matrix, using per-item softmax normalization followed by a minimum operator to ensure that each102

bundle’s probability respects item capacities. The bundle-to-agent matrix Aagent-bundle is obtained by103

combining agent- and bundle-wise softmax outputs:104

Aagent-bundle = min(softmaxN (A), softmaxK(A′)) .
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The final allocation is then105

ziS = BS ·Aagent-bundle
iS ,

which satisfies the allocation constraints from Section 2.106

A full derivation of Bbundle and the proof of combinatorially feasibility are provided in Appendix C.107

To instantiate our approach, we design three architectures. CANet, motivated by RegretNet, is a fully108

connected network with two modules: a deep allocation network that enforces feasibility constraints109

and a deep pricing network that ensures individual rationality. Together, these map bids to feasible110

allocations and corresponding payments (details in Appendix D.1). To enhance expressivity and111

capture permutation-equivariant structure in auctions, CAFormer combines exchangeable layers112

with self-attention blocks, enabling context-aware allocation decisions while remaining robust to113

bidder and bundle permutations (Appendix D.2). Finally, CAGraph frames winner determination114

as a set-packing task over a conflict graph; through graph attention layers, it learns bidder–bundle115

dependencies and suppresses overlapping allocations (Appendix D.3).116

Our training follows the adversarial setup of [20], with an inner utility maximization (6) and an117

outer objective balancing revenue and regret (5). To stabilize this process, which is often sensitive118

to hyperparameters, we normalize task weights so that wrev + wrgt = 1 and apply a logarithmic119

transformation to the revenue term to prevent unbounded growth. The resulting outer loss is120

Louter = −wrev log(1 + rev) + wrgt rgt (4)

where wrev, wrgt ∈ [0, 1] balance the trade-off. Following [26], we also employ a regret budget,121

gradually reducing tolerated violations of DSIC during training. Weight updates for wrgt are adapted122

dynamically based on current regret and revenue, using an Adam-style rule. Full update formulas and123

pseudocode are provided in Appendix E. For the revenue–welfare trade-off scenario in Section 4, we124

scalarize the performance term with a weight λ, using objλ = λ rev + (1− λ) wel and substituting125

objλ for rev in Louter (the regret term is unchanged).126

4 Experimental Results127

4.1 Synthetic Data128

Set up Our framework is implemented in PyTorch and trained for 50,000 or 100,000 outer opti-129

mization iterations, depending on the problem size. All networks used Glorot uniform initialization130

[23] and tanh activations. We sampled 640,000 valuation profiles offline for training and 10,000131

profiles online for testing. Each outer optimization update included 50 inner steps during training and132

1,000 during validation. Typical hyperparameters include: tanh scaler ρ = 2, softmax temperature133

θ ∈ {10, 15, 25}, network learning rates {0.0004, 0.0007}, regret learning rate γ ∈ {0.01, 0.02} and134

the target regret-revenue adjustment factor α ∈ {0.5, 1}. CANet’s allocation and pricing networks135

use {3, 6} layers with 100 hidden nodes each, while CAFormer has a single attention layer with 2136

heads and 64 hidden features. We initialized wrgt = 1, exponentially annealling regret targets from137

¯rgtstart = 0.05 to ¯rgtend ∈ {0.0008, 0.001, 0.002, 0.003} in 2/3 of the training iterationw. Experi-138

ments are conducted on three scales: 2 bidders, 2 items (3 bundles); 2 bidders, 3 items (7 bundles);139

and 2 bidders, 5 items (31 bundles).140

Baselines We compare against the VCG mechanism [47, 11, 25], with allocation found with an141

Interger Programming (IP) solver, RegretNet, Affine Maximizer Auction trained via grid search (AMA142

and VVCA), and local search methods (BLAMA, ABAMA, BBBVVCA) [43]. We re-implement143

VCG mechanism and the search algorithms [43]. The search algorithms are trained on 100 samples144

for 10 different random seeds, and evaluated on 1,000,000 samples.145

Performance in combinatorial setting We compare the results in combinatorial setting. Let vitem
ij146

be the valuation of of bidder i for item j, individually. The valuation of bidder i for bundle S is drawn147

as viS =
∑

j∈S vitem
ij +ciS with ciS ∼ U [−1, 1]. For symmetric settings (B), vitem

ij ∼ U [1, 2],∀i ∈ N .148

For asymmetric settings (C), vitem
1j ∼ U [1, 2] and vitem

2j ∼ U [1, 5]. Results are averaged over three149

runs; standard deviations are typically ≤ 0.1 for revenue, ≤ 0.001 for regret.150

The results in Table 1 show that our models outperform heuristic benchmarks and RegretNet in all151

settings. As we specify the regret target as a proportion of revenue, the regret is higher in larger-scale152
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Symmetric (B) Asymmetric (C)
Method 2×2 2×3 2×5 2×2 2×3 2×5
VCG 2.405 / 0 3.537 / 0 5.838 / 0 2.847 / 0 4.239 / 0 6.987 / 0
AMA 2.760 / 0 — / — — / — 4.240 / 0 — / — — / —
VVCA 2.770 / 0 — / — — / — 4.240 / 0 — / — — / —
BLAMA 2.630 / 0 4.125 / 0 7.280 / 0 4.080 / 0 4.812 / 0 8.164 / 0
ABAMA 2.630 / 0 4.166 / 0 7.145 / 0 4.010 / 0 5.916 / 0 11.140 / 0
BBBVVCA 2.620 / 0 4.105 / 0 7.156 / 0 4.010 / 0 5.898 / 0 11.135 / 0
RegretNet 2.871 / 1e-3 — / — — / — 4.270 / 1e-3 — / — — / —
CANet 2.904 / 1e-3 4.369 / 2e-3 7.304 / 7e-3 4.285 / 1e-3 6.556 / 1e-3 11.393 / 2e-3
CAFormer 2.919 / 1e-3 4.388 / 2e-3 7.318 / 3e-3 4.403 / 2e-3 6.693 / 1e-3 11.534 / 4e-3
CAGraph 3.202 / 1e-3 4.710 / 1e-3 7.774 / 5e-3 4.844 / 3e-3 7.204 / 3e-3 12.123 / 6e-3

Table 1: Combinatorial results (per cell: Revenue / Regret). Grid search methods (AMA and VVCA)
become computationally infeasible in higher dimensions. RegretNet results are limited to 2 × 2
cases. CANet and CAFormer beat the benchmarks in all settings. All CANet, CAFormer and
CAGraph achieve negligible regret. But CAGraph consistently outperforms the others in revenue. As
a revenue upper bound for these instances (not a target for a truthful revenue mechanism), the optimal
welfare-maximizing first-price outcome-computed via an IP solver for maximum independent set and
pay bids-yields revenues of 3.548, 5.467, and 9.243 in the symmetric settings (2× 2, 2× 3, 2× 5),
and 6.184, 9.296, and 15.573 in the asymmetric settings, respectively.

settings. Both CAFormer and CANet achieve negligible regret in all experiments. However, CAGraph,153

with a greater expressivity especially when incorporating interdependencies, consistently outperforms154

CANet and CAFormer in revenue.155

Performance in non-combinatorial settings. For completeness, we also evaluate additive valuation156

settings, where bundle values equal the sum of item values. CANet and CAFormer achieve comparable157

revenue to RegretNet and RegretFormer, both of which outperform heuristic designs, while CAGraph158

outperform the others. Full results are reported in Appendix G.1.159

4.2 Case Study 1: Airport Slot Allocation160

Airport slot divestitures (e.g., during mergers or under the 80% rule) are a natural application161

of combinatorial auctions: airlines derive value from bundles of slots that support schedules and162

connectivity. Currently, these slots are reallocated by Random Serial Dictatorship (RSD). We model163

slot allocation as a sealed-bid CA where valuations are derived from profit-maximizing schedules.164

This framework allows us to study explicit trade-offs between welfare and revenue, an important165

policy concern since efficiency ensures fair access while revenue compensates divesting airlines.166

We ground our analysis in the 2011 FAA auction at Reagan National Airport (DCA). Details of the167

scheduling formulation, datasets, and regulatory context are deferred to Appendix F.1.168

Our mechanism exposes a revenue–welfare trade-off via a weight λ in the outer objective (4): λ=0169

targets welfare, λ=1 targets revenue, and λ=0.5 balances both. Note that we report ex-ante welfare170

and revenue under the fractional allocation Z ∈ [0, 1]n×k (i.e., expectations under the randomized171

allocation), by contrast, VCG is deterministic and welfare-optimal among DSIC mechanisms; our172

learned mechanisms are approximately truthful (low regret) and optimize the λ-scalarized objective.173

4.3 Case Study 2: Cyber Network Defense Auction Design174

We illustrate the versatility of our framework in a cybersecurity setting, where defenders must allocate175

limited actions (e.g., Analyze, Remove, Restore) across vulnerable hosts. This problem is inherently176

combinatorial, as the value of actions depends on host type and synergies between defenses.177

We ground our study in the CAGE Challenge 2 (CC2) environment, a high-fidelity cyber operations178

simulator. To construct valuations, we extract Q-values from trained reinforcement learning agents,179

interpreting them as empirical utilities over bundles of actions. These valuations feed into our180

combinatorial auction mechanism, enabling strategic planning under resource constraints.181
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RSD VCG λ=0 λ=0.5 λ=1

Revenue 0 350,789 310,071 327,239 360,507
Welfare 300,009 422,768 619,106 607,864 582,730

Table 2: Case Study 1: Airport slot auction results. RSD yields baseline welfare but zero revenue,
while VCG achieves higher welfare at the cost of low revenue. Our multi-objective mechanism outper-
forms both benchmarks, achieving substantial welfare improvements while maintaining competitive
revenue, and regrets remain ≤ 5,000. Increasing λ shifts the balance toward revenue maximization,
with λ = 1 surpassing VCG’s revenue without sacrificing efficiency.

Agent AUC (Reward vs. Steps) t-stat p-value

Original −27,219.5 – –
Shaped −25,266.5 3.37 7.5×10−4

Table 3: Case Study 2 (Cyber). Using the auction’s allocation as a distributional reward-shaping
target improves convergence and final performance (higher AUC is better); gains are statistically
significant. Full setup and episodic curves are in the Appendix F.2

Our analysis highlights three findings. First, under truthful reporting, the mechanism concentrates182

on aggressive defenses (Remove, {Analyze, Remove}), while misreporting diffuses allocations but183

preserves host-level priorities, which is the evidence for robustness. Second, learned allocations184

align strongly with Blue-team activity in CC2, indicating robustness to underlying mission relevance.185

Third, using auction outputs as a reward-shaping signal improves RL training stability and conver-186

gence (statistically reported in Table 3), suggesting auctions can guide tactical agents toward more187

effective long-term strategies. Further details on environment setup, valuation construction, allocation188

comparisons, and statistical analyses are in Appendix F.2.189

5 Discussion and Future Work190

This work takes a first step toward extending differentiable economics to combinatorial auctions191

(CAs). We enforce combinatorial feasibility within end-to-end neural mechanisms and show that192

the approach can be instantiated with three architectures (CANet, CAFormer, CAGraph). While our193

methods deliver strong empirical revenue subject to low regret, it remains an open question whether194

they can represent the theoretically optimal mechanism in full generality.195

Expressivity, scale, and training stability. Among our variants, CAGraph attains the highest revenue196

and benefits from graph inductive bias (permutation equivariance on the conflict graph, variable197

input size, and contextual features). Our scalarized training supports explicit revenue–welfare trade-198

offs. Nonetheless, min–max training is non-convex and lacks convergence guarantees; performance199

degrades if the inner adversary under-optimizes regret. Moreover, our experiments enumerate all200

bundles, which scales as 2m and limits very large instances. Performance can degrade with weak201

inner optimization (underestimated misreports), in large bundle spaces (vanishing gradients, slow202

convergence), or with distribution shift. CAFormer may overfit at small scales; CAGraph can be203

sensitive to graph sparsity.204

Outlook. The same recipe—parameterize a feasible region, differentiate the objective, and train with205

regret penalties—should extend to other combinatorial problems (e.g., routing, matching, partitioning)206

when constraints admit differentiable parameterizations. Promising directions include (i) alternative207

bidding languages and column generation, (ii) stronger inner optimizers and certified regret bounds,208

and (iii) tighter integration of graph structure and attention.209

Reproducibility. Experiments were run on a local GPU server with 2× NVIDIA Quadro RTX 8000210

(48 GB) and 6× NVIDIA Quadro RTX 5000 (16 GB). All scripts, data and configurations are provided.211

Societal impact. Airport slot allocation affects competition and consumer access; our multi-objective212

training surfaces explicit welfare–revenue trade-offs that can be aligned with policy goals. The cyber213

experiments use simulated environments; no real user data are involved. Risks include mis-specifying214

objectives and unequal access to algorithmic advantages.215
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A Preliminary338

RegretNet [20] provides a deep learning framework for optimal auction design, addressing multi-339

bidder, multi-item scenarios where analytical solutions are unknown. It encodes auction allocation340

and payment rules within neural network weights.341

The architecture comprises two networks: the allocation network Anet and the payment network342

Pnet. Both process a bid vector bnm through fully-connected layers. The Allocation Network maps343

bids to allocation probabilities Anet(bnm) = Znm, where zij = ez̃ij∑n+1
i=1 ez̃ij

and allows an item to344

remain unallocated by introducing a dummy participant. The payment network maps bids to payment345

allocations Pnet(bnm) = p̃n, where p̃i is scaled using sigmoid, and pi = p̃i
∑m

j=1 zijbij , adhering346

to IR constraints (2).347

RegretNet minimizes empirical negative revenue plus the regret penalty over profiles V :348

min
w,λ,ρ

(
−
∑
i∈N

E[Pi(v;w)] + λirgti +
ρ

2
rgt2i

)
(5)

where regret rgti(v
′
i, v;w) = maxv′

i
(u(vi, (v

′
i, v−i);w) − u(vi, v;w)). Regret is iteratively mini-349

mized using augmented Lagrangian and gradient descent:350

Linner(v
′
i) = −u(vi, (v′i, v−i);w) (6)

and the Lagrange multipliers λi and ρ are updated as λi ← λi + ρR̃i, ρ← ρ+ ρ∆.351

The results of RegretNet are further extended to address combinatorial auctions in a two-item,352

two-bidder setting by adding the constraint:353
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∀i, zi,{1} + zi,{2} ≤ 1−
n∑

i=1

zi,{1,2}

To accommodate this constraint, two softmax layers are used; one outputs a set of bidder scores, and354

the other a set of item scores, denoted by s̄i,S and s̄
(j)
i,S . The set of item scores is then used to compute355

a normalized set of scores for all i and S, given by356

¯̃siS =

{
s̄
(i)
iS S = {1}, {2}
min{s̄(k)iS } S = {1, 2}

and the final allocation zi,S is determined by the minimum of the bidder score and normalized item357

score.358

ziS = min (s̄iS , ¯̃siS)

B Related Work359

The seminal works of [47] introduced auction mechanisms for single items, which were later extended360

to multi-item settings by developing the Vickrey-Clarke-Groves (VCG) mechanism [47, 11, 25].361

Although VCG achieves efficiency in dominant strategies, it often fails to maximize revenue. [33]362

laid the theoretical foundation for revenue-maximizing auctions.363

The study of combinatorial auctions originated from the need to allocate resources among bidders364

with complex preferences over bundles of items. [14] provide a detailed review of combinatorial365

auctions. Optimal combinatorial auctions are NP-hard because of the exponential number of possible366

bundles and the Incentive Compatibility (IC) and IR constraints. Heuristic and exact methods have367

been studied to solve the winner determination problem as a combinatorial optimization problem368

[41, 49, 39]. In the early work, both the winner determination and pricing problems were tackled using369

integer programming and approximation algorithms. [30] developed polynomial-time algorithms for370

approximately optimizing VCG-based mechanisms in certain structured settings. Another direction,371

extending the results of [40], is known as Affine Maximizer Auctions (AMAs). These are variations372

of the VCG mechanism that adjust the allocation process by assigning positive weights to each373

bidder’s welfare and incorporating boosts for different allocations, potentially leading to higher374

revenue than the VCG mechanism [43, 16].375

Recent advances in differentiable economics have extended its applications to various domains,376

reflecting the growing synergy between machine learning and economic theory. These works lever-377

age neural architectures and differentiable approaches to address classical and emerging problems378

in auction design and beyond. Several papers have extended the ideas introduced in RegretNet.379

EquivariantNet [34] enhances generalization in symmetric auctions by enforcing permutation equiv-380

ariance in its network structure, improving performance in settings with indistinguishable bidders and381

items. ALGnet [35] replaces RegretNet’s augmented Lagrangian optimization with a GAN-based382

approach, framing the auctioneer-misreporter interaction as a two-player game to improve training383

efficiency. RegretFormer [26] introduces self-attention layers, leveraging permutation-equivariant384

representations and incorporating a regret budget to balance incentive compatibility violations and385

revenue. AMenuNet [18] restricts the search space to affine maximizer auctions, ensuring dominant386

strategy incentive compatibility (DSIC) and individual rationality (IR) while employing permutation-387

equivariant neural networks for improved generalization. CITransNet [19] extends RegretNet to388

contextual auctions by integrating public context information through transformer-based architectures,389

maintaining permutation equivariance without being limited to symmetric auctions. GemNet [48]390

further broadens this space by introducing a menu-based, strategy-proof auction framework for391

multi-bidder settings, achieving exact DSIC through menu compatibility constraints enforced during392

training and post-training price transformations via MILP optimization. [15] propose a differentiable393

framework for randomized affine maximizer auctions that achieves exact strategyproofness in multi-394

item, multi-bidder settings with additive valuations. While some existing studies refer to their setting395

as “combinatorial” due to its discrete structure, their work does not address the core challenge of396

bundle-based preferences in combinatorial auctions—where feasibility constraints are inherently non-397

convex and allocations must account for overlapping item bundles. These advancements demonstrate398

diverse extensions of RegretNet, each enhancing scalability, efficiency, or incentive properties in399
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auction design. Others have applied this framework to auctions with fairness or budget constraints400

[29, 22], or adapted similar methods to tackle broader mechanism design challenges [24, 37]. Several401

papers leverage machine learning-based approaches in combinatorial auctions. [8] used a machine402

learning-based elicitation algorithm to identify which values to query from the bidders. [45] propose403

a network architecture to learn Groves payment rules in combinatorial auctions with certain bidding404

languages. [27] present a machine learning-powered combinatorial auction based on the principles of405

differential privacy. [9] present a machine learning-powered iterative combinatorial auction. [38] use406

deep Reinforcement Learning for sequential combinatorial auctions.407

In parallel, several works have explored constraint-aware neural networks. There is a line of work408

that embeds optimization problems as differentiable layers, such as OptNet [3] and DiffOpt [1].409

[13] combines a standard prediction network with a “safety” component trained via decision rules410

to guarantee feasibility across all inputs. Our work builds on this line by proposing a constraint411

enforcement framework specifically tailored to combinatorial auctions, capable of being integrated412

with various neural architectures—including GNN-based approaches like CAGraphNet.413

C Constraint Enforcement414

Recall from Section 2 that the allocation must satisfy constraints in (3). We decompose the allocation415

matrix Z ∈ Rn×k into the product of two matrices:416

Z = Bbundle ·Aagent-bundle,

where Aagent-bundle and Bbundle are defined below. This approach is motivated by a two-step allocation417

process: first, the allocation of items to the bundles, satisfying the item-wise constraint, and then418

the allocation of the bundles to the bidders, satisfying the other constraints. Each entry in the final419

allocation matrix represents the probability of allocating a bundle to a bidder, which is calculated by420

the product of the probability that the bundle is allocated Bbundle
S and the probability that the bidder421

receives the bundle, given that the bundle is allocated Aagent-bundle
iS .422

The item-to-bundle allocation matrix Bbundle is derived from the output of the Allocation Network,423

normalized to represent item-wise probabilities. To construct Bbundle, we define the incident matrix424

I ∈ Rm×k, where:425

IiS =

{
1 if item i is included in bundle S,

0 otherwise.

The initial bundle allocation matrix B ∈ Rm×k is adjusted by mapping bundles to items with a426

softmax function across m items:427

Badjusted = softmaxM (B · I).

To ensure valid item-to-bundle allocations, non-positive values in Badjusted are replaced with a large428

constant M :429

Bmasked =

{
Badjusted, if Badjusted > 0,

M, otherwise.

For each item i, we compute the minimum value across all bundles and reshape Bmin to include the430

agent dimension:431

Bbundle = Unsqueeze(min
S

Bmasked),

The bundle-to-agent allocation matrix Aagent-bundle is computed from the allocation network outputs432

A and A′ using the softmax function along the agent and the bundle dimension.433

Aagent = softmaxN (A), Abundle = softmaxK(A′)

then taking element-wise minimum of the two matrices434

Aagent-bundle = min(Aagent,Abundle)

The final allocation matrix Z is given by:435

Z = Bbundle ·Aagent-bundle,
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where each entry ziS represents the probability of allocating bundle S to agent i.436

We will now prove Matrix Z is combinatorially feasible.437

The matrix Aagent-bundle represents the bundle-to-agent allocation. Each entry Aagent-bundle
iS is computed438

as:439

Aagent-bundle
iS = min

(
eaiS/θ∑
i′ e

ai′S/θ
,

ea
′
jS/θ∑

S′ e
a′
iS′/θ

)
.1

This ensures that440 ∑
i

Aagent-bundle
iS ≤ 1,∀S ∈ K (7)

441 ∑
S

Aagent-bundle
iS ≤ 1,∀i ∈ N (8)

From the definition of ziS , the allocation of any bundle S is limited by its least-available item:442 ∑
i

∑
S∋j

ziS ≤
∑
i

∑
S∋j

min
j∈S
{Badjusted

jS } ·Aagent-bundle
iS .

Since Badjusted is normalized with softmax along item-wise dimension to ensure that no item j is443

allocated more than once:444 ∑
S∋j

min
j∈S
{Badjusted

jS } ≤
∑
S∈K

min
j∈S
{Badjusted

jS } ≤ 1, ∀j ∈M.

Thus,445 ∑
i

∑
S∋j

ziS ≤
∑
i

∑
S∋j

Aagent-bundle
iS .

For a fixed item j, we can write:446 ∑
i

∑
S∋j

Aagent-bundle
iS ≤

∑
S∋j

∑
i

Aagent-bundle
iS .

From (7), we have:447 ∑
i

∑
S∋j

Aagent-bundle
iS ≤

∑
S∋j

1.

From (8), the number of bundles S containing j is at most the total number of bundles k, constraint448

(3) is satisfied:449 ∑
i

∑
S∋j

Aagent-bundle
iS ≤ 1.

Thus, Z is combinatorially feasible.450

D Model Architectures451

D.1 CANet Architecture452

Motivated by RegretNet [20], we present CANet, a deep neural network architecture designed for453

combinatorial auction mechanisms. The CANet architecture, visualized in Figure 2, comprises two454

modules: the Deep Allocation Network and the Deep Pricing Network. The input to CANet, denoted455

by b, is a vector b ∈ Rn·k, where biS ∼ Fi is the bid submitted by agent i for bundle S.456

The Deep Allocation Network computes a feasible allocation matrix Z ∈ Rn×k ensuring that both457

individual item constraints and global allocation constraints are satisfied. The input b is passed458

through fully connected layers with non-linear activations. The network produces three output vectors459

A ∈ Rn×k and A′ ∈ Rn×k representing an unnormalized agent-bundle allocation; and B ∈ Rm×k460

1In all of our implementations, the softmax function incorporates a temperature parameter θ ∈ R+, inspired
by the Boltzmann distribution in statistical mechanics, which controls the concentration of probability mass
around the highest logit.
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Figure 2: CANet Architecture

Figure 3: CAFormer Architectures.

representing an unnormalized bundle-item allocation. These outputs are combined following the461

process described in section C to form a feasible allocation matrix Z.462

The Deep Pricing Network computes the pricing vector p̃ ∈ Rn, which represents a discount applied463

to the bids. The input b is processed through fully connected layers with sigmoid transformation, to464

ensure p̃i ∈ [0, 1]. The final price is vector p with pi = p̃i
∑k

S=1 ziSbiS .465

D.2 CAFormer Architecture466

To enhance expressivity and ensure permutation-equivariance and context-awareness, we introduce467

CAFormer. This architecture combines exchangeable layers (proposed in [50] and used in Equiv-468

ariantNet [34]) with stacked attention layers [46], as seen in RegretFormer [26]. The architecture469

is illustrated in Figure D. The attention mechanism is permutation-invariant, while exchangeable470

layers ensure permutation-equivariance—properties particularly desirable in symmetric auctions. For471

asymmetric settings or preserving input order across the bundle dimension, we apply agent-wise and472

bundle-wise positional encoding as presented in [46] after the exchangeable layers.473

The input to CAFormer is a two-dimensional matrix b ∈ Rn×k. Unlike CANet that can output an474

item-bundle allocation at the last layer, CAFormer must be designed properly to maintain insensitivity475

to the size of the problem. We achieve it by transforming the bid matrix into a representation of476

item-bundle allocation b′ ∈ Rm×k through matrix multiplication with the individual item bid matrix477

bitem ∈ Rn×m.478

b′ = MatMul(b⊤,bitem)⊤,
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Figure 4: CAGraph Architecture

where ⊤ denotes the transpose operation. Both b and b′ are then expanded in a feature dimension479

that contain global information of bids with exchangeable layers, a key building block in architectures480

like EquivariantNet [34] and RegretFormer [26] which ensures permutation-equivariance. This layer481

processes a tensor X ∈ Rn×k×1, into an output tensor Xex ∈ Rn×k×d. The exchangeable layer482

computes the element of the output channels by aggregating input tensor B over elements, rows,483

columns, and globally, weighted by learnable parameters, and applies a non-linear activation σ.484

Details can be found in Deep Sets [50].485

bex = Exchangeable(b), b′
ex = Exchangeable(b′)

After each exchangeable layer, we apply sequential attention-based blocks to the tensors bex and b′
ex.486

Each block consists of multi-head self-attention layers with residual connections.487

For each layer, the input tensor is reshaped to enable item-wise, bundle-wise, or agent-wise self-488

attention. Item-wise attention operates on reshaped input b′
item ∈ Rm×d, bundle-wise attention489

operates on bbundle and b′
bundle ∈ Rk×d, and agent-wise attention operates on bagent ∈ Rn×d, where490

d is the feature dimensionality of the input. The outputs are concatenated, forming b′
concat ∈491

Rm×k×d′
concat and bconcat ∈ Rn×k×dconcat , where dconcat and d′concat are the combined attended features.492

After the attention-blocks, we use fully-connected layers f item
fc , f bundle

fc , andf agent
fc to map the features493

back to the original dimensionality 1:494

B = f item
fc (b′

concat),
495

A = f agent
fc (bconcat), A′ = f bundle

fc (bconcat)

Again, following the procedure outlined in Section C, we derive a feasible allocation matrix Z. The496

pricing vector p̃ ∈ Rn is derived by applying a fully connected layer with sigmoid activation to the497

agent-wise attention output bagent, reducing its dimensionality to 1. The final prices are computed498

using the same method as in CANet.499

D.3 CAGraph Architecture500

Given that the winner determination problem in combinatorial auctions (CAs) is inherently a com-501

binatorial optimization problem, and can be mapped to well-studied structures in graph theory, we502

propose a novel graph-based approach. In this section, we introduce CAGraph, a graph neural network503

architecture designed to approximate optimal allocation and payment rules in CAs. The architecture504

exploits the relational structure among bundles to reason over complex feasibility constraints and505

revenue objectives in a scalable and expressive way.506

D.3.1 Set-packing Representation507

We adopt a set-packing formulation of the winner determination problem, which is a classical repre-508

sentation in combinatorial optimization. In this representation, each node in the graph corresponds to509

a bidder-bundle pair (i, S), where i ∈ N is a bidder and S ⊆M is a bundle of items. Each node is510

associated with a weight representing the bidder’s valuation vi(S) for that bundle.511
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An edge exists between two nodes if their corresponding bundles have any item overlap, i.e., if512

S ∩ S′ ̸= ∅, indicating that both allocations cannot simultaneously be part of a feasible solution.513

The goal of the winner determination problem is then to select a subset of non-conflicting nodes (i.e.,514

an independent set in the conflict graph) such that the total valuation (weight) of the selected nodes is515

maximized. Formally, this is equivalent to solving a differentiable relaxation of maximum weighted516

independent set problem over the constructed graph:517

max
z∈[0,1]n×k

∑
(i,S)

vi(S)ziS subject to: ziS + zjS′ ≤ 1 if S ∩ S′ ̸= ∅ ∀i ∈ N, j ∈M.

Here, ziS ∈ [0, 1] is a variable indicating the probability that bundle S is allocated to bidder i.518

This formulation naturally lends itself to GNN-based approximation, where node embeddings are519

learned through message passing over the conflict graph. The learned embeddings capture global auc-520

tion structure and local conflicts, and are passed through a final scoring layer to estimate probabilities521

for each node.522

D.3.2 CAGraph Details523

Input and Embedding Dimensions. Recall that each node in the conflict graph corresponds to a524

bidder-bundle pair (i, S), and is represented by a feature vector that combines the bid value biS , a525

learnable embedding of the bidder i, and a learnable embedding of the bundle S. These embeddings526

are dense vectors of dimension D, initialized randomly and trained jointly with the rest of the network.527

The purpose of these embeddings is to encode semantic and structural information about bidders528

and bundles that may not be directly observable from bids alone. Unlike handcrafted features or529

static encodings, these embeddings are learned end-to-end through gradient descent, thus finding530

representations that are useful for allocation and pricing decisions. The final node feature vector is531

constructed by concatenating the scalar bid and the two embedding vectors, resulting in an input532

dimension of533

input_dim = 1 + 2D.

These node features are then passed through a linear projection layer followed by two graph con-534

volution layers, which propagate and refine local information through the conflict edges between535

overlapping bundles.536

Graph Attention Convolution. Following the input projection layer, CAGraph applies two stacked537

Graph Attention Network (GAT) layers to propagate structural information across the conflict graph.538

These layers enable nodes—each representing a bidder-bundle pair—to exchange information with539

their neighbors, which correspond to other conflicting pairs.540

Given node features X ∈ RN×din , each GAT layer performs neighborhood aggregation with learned541

attention weights. For each node i, the updated feature vector is computed as:542

X′
i = σ

 ∑
j∈N (i)

αijWXj

+ Res(Xi),

where W ∈ Rdout×din is a shared linear projection,N (i) denotes the set of neighbors of node i, and σ543

is an activation function (ELU). The attention weights αij quantify the influence of node j on node i,544

and are computed as:545

αij =
exp

(
LeakyReLU(a⊤[WXi∥WXj ])

)∑
k∈N (i) exp (LeakyReLU(a⊤[WXi∥WXk]))

,

where a ∈ R2dout is a learnable attention vector, and ∥ denotes vector concatenation. The concatenated546

input to the attention mechanism has dimension 2dout, matching the parameterization of a. These547

scores are normalized via softmax across each node’s neighborhood.548
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This mechanism allows the network to assign greater weight to more relevant neighbors when aggre-549

gating information, effectively learning which conflicts are more important in determining feasible550

and high-value allocations. A residual connection Res(·) ensures stable optimization, mitigates551

over-smoothing in graph propagation and is implemented as linear projection.552

By stacking two GAT layers, the model captures second-order interactions in the conflict graph.553

This enables bidder-bundle nodes to reason not just about direct conflicts, but also about indirect554

competitive effects, improving its ability to model allocation feasibility. The learned attention555

structure acts as a soft constraint mechanism, allowing the network to suppress overlapping bundles556

and prioritize mutually compatible ones during allocation inference.557

Output Layers. After the GAT layers, the model compute final allocation outputs through a series558

of fully connected layers. These output layers handle bidder-bundle and item-level decisions and559

integrate with the constraint enforcement framework described in section C.560

E Training Procedure561

Similarly to RegretNet, our training process also includes an inner utility maximization (6) and an562

outer revenue maximization and regret minimization (5). For brevity, we refer the reader to the563

original paper by [20] for details of the adversarial training. Previous works [20, 34, 26] relies heavily564

on gradient-based Lagrangian optimization (see Section 2). This method is known to be sensitive to565

the choice of hyper-parameters. An example is in the outer loss (5), when λi becomes excessively566

large, the model disproportionately focuses on minimizing regret, and gradients for regret become567

negligible due to a scaling effect or poor numerical conditioning. To ensure a stable tradeoff, we568

constrain the loss weights such that their sum is 1. This simple balancing mechanism does not569

directly tackle the overemphasis on regret, but it ensures regret gradient does not shrink due to the570

excessive weight λi. Additionally, we apply a logarithmic transformation to the revenue term to571

avoid unbounded growth. This is in the spirit of multi-task learning, which seeks to optimize both572

objectives in the present of trade-offs. Our outer loss function is defined as:573

Louter = −wrev log(1 + rev) + wrgtrgt,
where wrev and wrgt are task weights that represent the emphasis on revenue and regret, respectively.574

Following [26], we also set a regret budget, allowing controlled violations of DSIC by gradually575

decreasing the budget during training. The update for wrgt is explicitly computed as:576

gt = log(rgt)− log( ¯rgt)− log(1 + αrev) (9)

where ¯rgt is a target regret value. The parameter α is optional and adjusts the ratio between the target577

regret and revenue.578

We provide the Adam-style update for wrgt with coupling wrev = 1− wrgt in algorithm 1579

F Case Study Details580

F.1 Case Study 1: Airport Slot Allocation581

F.1.1 Motivation and Setup582

Airport congestion, particularly at high-traffic hubs, poses a complex resource allocation challenge that583

is inherently combinatorial in nature. Airlines derive value not from individual takeoff or landing slots584

in isolation, but from bundles of slots that support network connectivity, fleet rotation, and coordinated585

passenger itineraries. Traditional models—such as those developed by [10] and [17]—focused on586

congestion pricing as an economic tool to regulate demand and allocate runway capacity efficiently.587

Subsequent work introduced market-based mechanisms, most notably combinatorial auctions for slot588

allocation [36], with further policy refinements by [7]. While these approaches improve allocative589

efficiency by prioritizing agents with the highest valuations, they often neglect strategic behavior, and590

the possibility that airlines may misreport preferences to manipulate outcomes in their favor.591

While earlier studies proposed large-scale auctions to alleviate congestion, this study focuses on the592

design of slot auctions for small-scale divestiture scenarios, such as those arising from regulatory593
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Algorithm 1: Adam-style update for wrgt with coupling wrev = 1− wrgt

Input: gradient gt from Eq. (9), step size γw, β1, β2 ∈ (0, 1), ε > 0, scale ρ > 0
Input: t← 0, m← 0, v ← 0, initialize wrgt ∈ [0, 1]
while training do

t← t+ 1
// First/second moments
m← β1m+ (1− β1) gt
v ← β2v + (1− β2) g

2
t

// Bias correction
m̂← m/(1− βt

1)
v̂ ← v/(1− βt

2)
// Adam step on wrgt

wrgt ← wrgt + γw m̂/
(√

v̂ + ε
)

// Normalize to [0, 1] and couple with wrev

wrgt ← 1
2

(
1 + tanh

(wrgt

ρ

))
wrev ← 1− wrgt

end
return wrev, wrgt

interventions during airline mergers, or underutilization under 80% rule. Our mechanism is proposed594

to substitute Random Serial Dictatorship, the random lottery of the order of slot selection, as595

formalized in 14 CFR §93.225. These settings are characterized by a limited number of bidders and596

discrete bundles of slots, which makes them tractable for strategic auction design and evaluation.597

A welfare-maximizing mechanism, such as VCG auction, allocates slots to those who value them most598

— promoting efficient use of capacity and better outcomes for passengers and the network. However,599

VCG may yield low or zero revenue [33, 14], particularly in thin markets or when bidders’ valuations600

are highly correlated. In contrast, revenue-maximizing mechanisms—such as first-price auctions601

or neural networks trained to optimize payments—can ensure that sellers (e.g., divesting airlines or602

regulatory agencies) are compensated. This is particularly important in divestiture settings, where603

the seller may be giving up valuable operational rights as part of a merger remedy. In such cases,604

generating sufficient revenue from the auction can help: offset financial losses to the divesting party,605

encourage participation in reallocation mechanisms, and reduce political resistance to mandatory slot606

redistribution. Yet revenue alone is not a sufficient design goal. Allocative efficiency remains central607

to the long-term effectiveness of slot policy, especially in regulated markets where public interest,608

competition, and consumer access are key concerns. For this reason, in the spirit of multi-objective609

optimization in section E, we propose and evaluate mechanisms that allow explicit trade-offs between610

revenue and welfare, adapting to policy priorities. Our mechanism provides a flexible framework611

for balancing these objectives: by adjusting the training loss, we can interpolate between welfare,612

revenue, or hybrid targets. This allows policymakers to weigh short-term fiscal outcomes (e.g.,613

compensating a divesting airline) against long-term system performance and fairness. To evaluate614

these trade-offs under realistic airline behavior, we model the slot allocation problem as a sealed-bid615

combinatorial auction. We ground our case study in a real-world event: the 2011 FAA slot auction at616

Reagan National airports (DCA), in which 8 slot pairs were divested by Delta and US Airways under617

a DOT-imposed remedy. We simulate airline preferences by solving a profit-maximizing scheduling618

optimization for each carrier. Details about the slot allocation process at U.S. coordinated airports619

and historical precedent for slot auctions are provided in the Appendix.620

F.1.2 Valuation Model621

We aim to estimate the value (i.e., expected profit) that each airline assigns to specific airport622

slot bundles. These valuations are not directly observed but are inferred by solving a scheduling623

optimization problem for each airline-bundle pair. Itinerary-level fares and route information are624

derived from the Airline Origin and Destination Survey (DB1B) dataset. The seat capacities are625

obtained from the T-100 Domestic Segment (U.S. Carriers) dataset. All data are downloaded from626

https://www.transtats.bts.gov. The profit-maximizing assignment of flights to the available slots627
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determines the airline’s valuation for the bundle. These values are later used as input to an auction628

solver, which assumes known bidder valuations.629

We assume that all slots are at a hub airport (e.g., LGA or DCA), and each slot may be used either630

for an arrival or a departure, but not both. We model the assignment of directional flights to slots631

subject to feasibility and flow balance (i.e., aircraft arriving = aircraft departing).632

The problem is formulated as follows633

Given:634

• F : set of feasible flights for the airline (each flight has a direction)635

• T : set of time slots in the slot bundle636

• V (f, t): profit from assigning flight f to slot t637

• dir(f) ∈ {+1,−1}: direction of flight f , where +1 indicates a departure and −1 an arrival638

Decision Variables:639

• zft ∈ {0, 1}: equals 1 if flight f is assigned to slot t640

• wf ∈ {0, 1}: equals 1 if flight f is not operated641

Objective:642

max
z,w

∑
f∈F

∑
t∈T

V (f, t) · zft (10)

643

Subject to:644 ∑
f∈F

zft ≤ 1, ∀t ∈ T (11)

645 ∑
t∈T

zft + wf = 1, ∀f ∈ F (12)

646 ∑
f∈F

∑
t∈T

dir(f) · zft = 0 (13)

647

zft ∈ {0, 1}, wf ∈ {0, 1}, ∀f ∈ F, t ∈ T (14)

648

Constraint (F.1.2) ensures that each slot is assigned to at most one flight. Constraint (F.1.2) ensures649

that each flight is either operated in exactly one slot or canceled. Constraint (F.1.2) enforces that650

the total number of arrivals equals the total number of departures at the hub airport. The objective651

function (F.1.2) computes total profit, which defines the valuation of the slot bundle for the airline.652

F.2 Case study 2: Cyber Network Defense Auction Design653

F.2.1 Motivation and Setup654

Modern cybersecurity operations demand both reactive defenses and strategic planning under resource655

constraints. On the one hand, reactive tools like intrusion detection and incident response handle656

immediate threats. On the other, strategic planning involves anticipating attacks and proactively657

allocating resources, such as time, bandwidth, or analyst effort, across networked systems to minimize658

long-term risk.659

In this context, strategic planning refers to decisions made before attack episodes begin, targeting660

hosts and services most critical to operational resilience. Meanwhile, resource constraints may stem661

from human limitations (e.g., analyst bandwidth), computational budgets (e.g., action frequency662

caps), or system costs (e.g., downtime from defensive interventions). Thus, defensive actions like663
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Analyze, Remove, and Restore must be allocated across a distributed enterprise network in a manner664

that balances operational cost and cyber risk.665

Prior work has explored long-term cyber defense through game-theoretic models [2, 44], attack666

graphs [31], and stochastic control frameworks [51], but these often rely on centralized control and667

handcrafted utility functions, limiting their adaptability to real-world constraints and adversarial668

environments.669

To overcome these limitations, we frame cyber defense as a decentralized resource allocation problem,670

where each host in the network acts as a self-interested agent with private valuations over bundles671

of defensive actions. This allows us to extend our combinatorial auction (CA) framework to reason672

about resource allocation in cyber planning, accounting for action synergies, private preferences, and673

dynamic threats. Note that it can also be seen as a virtual auction-based guidance mechanism to674

enhance the robustness of cyber defense strategies.675

We ground this framework in the CAGE Challenge 2 (CC2) simulation environment [28], a high-676

fidelity autonomous cyber operations testbed. In CC2, a Blue agent defends a 13-host enterprise677

network against persistent Red-team adversaries. Defensive actions must be selected in anticipation678

of potential compromises, lateral movements, or disruptions. Each episode simulates 30 timesteps679

of adversarial interaction, capturing realistic operational dynamics. The CC2 environment is imple-680

mented on the CybORG platform and includes diverse host types (e.g., user workstations, enterprise681

services, defender nodes) with varying roles and vulnerabilities. Blue agents execute tactical decisions682

during each timestep, choosing actions based on host state and past observations. Red agents follow683

policy-driven strategies like BLine or Meander, simulating attacker behaviors ranging from direct684

exploits to stealthy lateral movement.685

F.2.2 Valuation Modeling686

While prior CC2 agents (including those trained via PPO) optimize at the tactical level, we propose to687

“lift” this information upstream for strategic planning. Specifically, we extract Q-values from trained688

RL agents, representing long-term expected utility for each action at each host. These Q-values serve689

as empirical proxies for private valuations, capturing both immediate and downstream consequences690

of defense.691

To handle interactions between actions, we compute valuations over bundles of actions using692

curvature-based modeling (e.g., additive, submodular, supermodular forms), reflecting synergy693

or redundancy between actions. These valuations form the input to our auction-based planner, which694

computes strategic allocations subject to feasibility and incentive constraints.695

F.2.3 Effect of Truthfulness on Allocation696

.697

We compare allocation behaviors under four conditions: truthful reporting, strategic misreporting,698

oracle, and greedy heuristic (Figure 5). The greedy allocation baseline assigns to each agent the699

single action bundle that yields the highest individual valuation, selecting the action with the highest700

bid per agent without considering global feasibility or incentive alignment. The oracle and greedy701

allocations are averaged across the samples. Interestingly, we observe that user-type hosts are702

frequently prioritized in learned allocation, often receiving aggressive actions such as Remove and703

{Analyze, Remove}. This may seem counterintuitive compared to static criticality rankings, where704

enterprises are often considered higher value. However, the Q-values driving our allocation reflect705

long-term strategic impact, suggesting that early disruption of User hosts may significantly hinder706

adversarial progress. This behavior aligns with the findings of the CC2 evaluation study [12], which707

shows that User hosts often serve as stepping stones toward more privileged targets. Thus, our708

mechanism implicitly learns to act preemptively, prioritizing early-stage containment.709

F.2.4 Alignment with Cyber Objectives710

To further assess whether the learned allocation mechanism prioritizes hosts involved in more cyber711

activity, we analyze the correlation between the aggregated allocation scores and the number of Red712

and Blue actions each host receives during the simulation. Allocation scores are aggregated by adding713
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Figure 5: Allocation matrices under truthful vs. perturbed agent valuations. Under truthful reports,
the learned mechanism concentrates most allocations on Remove and {Analyze, Remove} actions,
indicating a consistent preference for aggressive defense strategies. When agents misreport, this
concentration weakens—allocations become more diffused across action bundles, suggesting that the
mechanism is sensitive to manipulation. However, the relative importance of hosts (the allocation
order) remains mostly preserved, demonstrating structural robustness. The greedy baseline over-
allocates to the most comprehensive bundle {Analyze, Remove, Restore}, particularly for user hosts,
underscoring the inefficiency of naive valuation-based strategies. This confirms that while our
mechanism is not fully strategyproof, it maintains coherent allocation priorities and performs more
adaptively than naive methods. While CAFormer and Greedy tends to prefer the comprehensive
bundle, the oracle chooses bundle 1 (Remove) more often because it can isolate the marginal value of
just Remove in some contexts. It does not favor the largest bundle as strongly, because it is often not
strictly better than the sum of smaller bundles, especially in additive settings.
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Correlation Pearson r (p) Spearman ρ (p)
Red (all) 0.529 (0.47) 0.800 (0.20)
Blue (all) 0.964 (0.04) 0.800 (0.20)
Red (enterprises) 0.351 (0.77) 0.500 (0.67)
Blue (enterprises) 0.753 (0.46) 1.000 (0.00)
Red (users) 0.845 (0.15) 0.800 (0.20)
Blue (users) 0.769 (0.23) 0.600 (0.40)

Table 4: Correlation between allocation scores and counts of Red/Blue actions across hosts. Entries
are coefficient (p-value).

the model output in all bundles per host. We compute Pearson’s r and Spearman’s ρ correlation714

coefficients.715

As shown in Table 4, we observe a strong positive correlation between allocation scores and the716

number of defensive actions by Blue in all hosts (Pearson r = 0.964, p = 0.0361), suggesting that the717

mechanism tends to focus attention on hosts where defenders are more active. The correlation with718

Red (attacker) activity is also positive, but weaker and not statistically significant. Within host-type719

subsets (e.g., Users or Enterprises), correlation trends are directionally similar, though only Blue720

(enterprises) reaches significance, likely due to the reduced sample sizes. These results indicate that,721

while the mechanism is not explicitly aware of the underlying mission-criticality metadata, its learned722

allocations align closely with observed operational activity in the environment.723

F.2.5 Distributional Reward Shaping via Auction724

We further explore the potential of using the auction-derived allocation output as a guiding signal for725

the RL agent. The allocation is computed from the Q-values of a converged policy across multiple726

episodes and 30 time steps, representing a desirable action distribution over host-action pairs. We727

interpret this as a target distribution that reflects strategic prioritization of defensive responses. During728

training, this pseudo-auction result is applied as a reward shaping signal—penalizing or rewarding729

the agent based on its alignment with the derived allocation. This approach allows us to inject730

domain knowledge into the learning process without altering the environment itself. The training731

curve is visualized in figure Empirical results show measurable improvements in convergence and732

overall policy performance, summarized in Table 3. The Area Under the Curve (AUC) is computed733

by integrating the episodic reward over training steps, while the t-statistic and p-value result from734

a two-sample t-test comparing the shaped and original reward distributions, excluding the initial735

50 steps to avoid initialization bias. The shaped agent consistently outperforms the original agent736

across training episodes. The statistically significant result (p < 0.001) and a gain of over 1900 in737

AUC highlight the effectiveness of auction-guided reward shaping in accelerating convergence and738

enhancing policy quality.739

This initial exploration highlights the promise of using virtual auctions—derived from the Q-values740

of a converged agent—as a structured reward shaping mechanism. While the current implementation741

statically applies the auction allocation as a fixed target distribution, future work can explore dynamic742

or online integration of this signal. Specifically, auction allocations could be periodically updated743

during training (e.g., every N episodes or steps) to better align with the agent’s evolving policy744

and environmental dynamics. Such adaptive shaping could bridge the gap between offline expert745

policies and real-time learning. Furthermore, integrating this mechanism into a decentralized training746

framework—where hosts act as independent agents sharing soft allocation guidance—might provide747

scalability and robustness in complex, multi-agent environments. Investigating generalization to748

unseen scenarios, especially beyond the initial 30 evaluation steps, and analyzing robustness under749

non-stationary adversaries are also important directions.750

.751
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Figure 6: Total reward collected each steps with and without reward shaping, evaluated for 1,000
episodes. The agent learned with reward shaping climbs faster and collects more reward per training
step. The difference is statistically significant.

2×2 (A) 2×3 (A) 2×5 (A)

VCG 0.667 / 0 1.000 / 0 1.671 / 0
AMA 0.860 / 0 – / – – / –
VVCA 0.866 / 0 – / – – / –
BLAMA 0.786 / 0 1.222 / 0 2.231 / 0
ABAMA 0.786 / 0 1.255 / 0 2.251 / 0
BBBVVCA 0.776 / 0 1.238 / 0 2.242 / 0
RegretNet 0.878 / 1e−3 1.317 / 1e−3 2.339 / 1e−3
RegretFormer 0.908 / 1e−3 1.416 / 1e−3 2.453 / 1e−3
CANet 0.879 / 1e−3 1.317 / 1e−3 2.282 / 4e−3
CAFormer 0.891 / 1e−3 1.326 / 1e−3 2.329 / 5e−3
CAGraph 1.111 / 8e−3 1.640 / 14e−3 2.671 / 10e−3

m
Table 5: Non-combinatorial results: Our revenue performance is comparable to that of RegretNet
and RegretFormer, which outperform heuristic designs. In symmetric (B), the revenue upper bound
attains 3.548, 5.467, 9.243 for 2× 2 , 2× 3 , 2× 5; in asymmetric (C): 6.184, 9.296, 15.573.

G Additional Results752

G.1 Performance in non-combinatorial setting753

We compare the computational results for non-combinatorial setting, where bidders draw their value754

for each item from U [0, 1] (setting A). In these experiments, we make additive valuation assumption.755

The revenue performance is reported in Table 5.756

Our revenue performance is comparable to the machine learning-powered models, which outperform757

the heuristic designs. The slight underperformance in comparison to RegretNet and RegretFormer758

is due to the complex constrained optimization space. For instance, in the 2-agent, 5-item setting,759

RegretNet and RegretFormer optimize allocations at the agent-item level (2× 5), while CANet and760

CAFormer optimize at the agent-bundle level (2× 31), which introduces excessive complexity to761

non-combinatorial settings, preventing full convergence. Besides, regret estimation is less reliable in762

larger-scale settings, because adversarial optimization of the inner loss (6) might be inaccurate, which763

affects the convergence of optimal revenue. If the utility of the best misreport is underestimated,764

the revenue might be overestimated. Future work is encouraged to evaluate this approximation’s765

accuracy.766
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H Implementing Randomized Allocations767

From fractional Z to feasible outcomes. Our models output fractional allocations Z ∈ [0, 1]n×k.768

Unlike assignment problems—where Birkhoff–von Neumann exactly decomposes a doubly stochastic769

matrix—general CA polytopes need not equal the convex hull of integral allocations, so an exact770

lottery may not exist for arbitrary Z. We therefore implement randomized outcomes with lightweight771

rounding or an explicit (approximate) mixture of feasible allocations.772

(A) One-shot sampler with contention resolution (fast, default). For each bidder i, sample one773

bundle (or “no bundle”) from the row distribution {ziS}S∈K ∪ {1 −
∑

S ziS}; sort sampled pairs774

(i, Si) by a priority key (e.g., vi(Si) or weighted random); traverse in order, accepting (i, Si) iff Si is775

disjoint from items already allocated and i has no prior assignment. This yields an integral, feasible776

allocation in O(nk log nk) and preserves “at-most-one-bundle-per-bidder” exactly; marginals are777

matched approximately.778

(B) Dependent/contention–resolution rounding (better marginals). Independently activate (i, S)779

with probability xiS = min{1, αziS} for a tuning α ∈ (0, 1] that controls load, then apply a780

contention–resolution scheme: process activated pairs in random priority, accept if feasible (no781

item conflict; bidder unused), otherwise discard. This maintains feasibility and improves alignment782

with the row marginals.783

(C) Column–generation lottery (explicit mixture). Construct a small mixture {θt, A(t)} of784

feasible integral allocations by iteratively solving the pricing IP (winner–determination) on the785

current residual R: A⋆ ← argmaxA∈F ⟨R,A⟩, add A⋆ as a column, and refit {θt} to minimize786 ∥∥∑
t θtA

(t) − Z
∥∥
1

subject to θt≥0,
∑

t θt=1. Sampling A(t) with probability θt implements an787

explicit lottery; exact decomposition is achieved when Z lies in conv(F).788

Payments. If payments are trained as pi = p̃i
∑

S ziSbiS , we either (i) charge the expected789

payment (aligns ex-ante revenue with training) or (ii) recompute/adjust on the realized integral790

outcome (operationally natural but may shift objectives). In all cases feasibility is preserved and791

truthfulness remains approximate (low regret).792

What we evaluate. For each method we track (i) feasibility rate (always 100% by construction),793

(ii) deviation of realized marginals from Z (row-wise TV distance), (iii) ex-ante vs. realized rev-794

enue/welfare gaps, and (iv) runtime. Due to space, full quantitative comparisons are deferred; we will795

report these ablations in the extended appendix/supplement.796
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NeurIPS Paper Checklist797

The checklist is designed to encourage best practices for responsible machine learning research,798

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove799

the checklist: The papers not including the checklist will be desk rejected. The checklist should800

follow the references and follow the (optional) supplemental material. The checklist does NOT count801

towards the page limit.802

Please read the checklist guidelines carefully for information on how to answer these questions. For803

each question in the checklist:804

• You should answer [Yes] , [No] , or [NA] .805

• [NA] means either that the question is Not Applicable for that particular paper or the806

relevant information is Not Available.807

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).808

The checklist answers are an integral part of your paper submission. They are visible to the809

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it810

(after eventual revisions) with the final version of your paper, and its final version will be published811

with the paper.812

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.813

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a814

proper justification is given (e.g., "error bars are not reported because it would be too computationally815

expensive" or "we were unable to find the license for the dataset we used"). In general, answering816

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we817

acknowledge that the true answer is often more nuanced, so please just use your best judgment and818

write a justification to elaborate. All supporting evidence can appear either in the main paper or the819

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification820

please point to the section(s) where related material for the question can be found.821

IMPORTANT, please:822

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",823

• Keep the checklist subsection headings, questions/answers and guidelines below.824

• Do not modify the questions and only use the provided macros for your answers.825

1. Claims826

Question: Do the main claims made in the abstract and introduction accurately reflect the827

paper’s contributions and scope?828

Answer: [Yes]829

Justification: The abstract/intro state that we enforce combinatorial feasibility in differen-830

tiable auction mechanisms and instantiate CANet/CAFormer/CAGraph; Secs. 2, 3, and 4831

present the setup and experiments (synthetic + two case studies) that support these claims.832

Guidelines:833

• The answer NA means that the abstract and introduction do not include the claims834

made in the paper.835

• The abstract and/or introduction should clearly state the claims made, including the836

contributions made in the paper and important assumptions and limitations. A No or837

NA answer to this question will not be perceived well by the reviewers.838

• The claims made should match theoretical and experimental results, and reflect how839

much the results can be expected to generalize to other settings.840

• It is fine to include aspirational goals as motivation as long as it is clear that these goals841

are not attained by the paper.842

2. Limitations843

Question: Does the paper discuss the limitations of the work performed by the authors?844

Answer: [Yes]845
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Justification: We discuss limits due to bundle enumeration, non-convex min–max training,846

randomized allocation implementation, and distribution shift; see Discussion/Conclusion.847

Guidelines:848

• The answer NA means that the paper has no limitation while the answer No means that849

the paper has limitations, but those are not discussed in the paper.850

• The authors are encouraged to create a separate "Limitations" section in their paper.851

• The paper should point out any strong assumptions and how robust the results are to852

violations of these assumptions (e.g., independence assumptions, noiseless settings,853

model well-specification, asymptotic approximations only holding locally). The authors854

should reflect on how these assumptions might be violated in practice and what the855

implications would be.856

• The authors should reflect on the scope of the claims made, e.g., if the approach was857

only tested on a few datasets or with a few runs. In general, empirical results often858

depend on implicit assumptions, which should be articulated.859

• The authors should reflect on the factors that influence the performance of the approach.860

For example, a facial recognition algorithm may perform poorly when image resolution861

is low or images are taken in low lighting. Or a speech-to-text system might not be862

used reliably to provide closed captions for online lectures because it fails to handle863

technical jargon.864

• The authors should discuss the computational efficiency of the proposed algorithms865

and how they scale with dataset size.866

• If applicable, the authors should discuss possible limitations of their approach to867

address problems of privacy and fairness.868

• While the authors might fear that complete honesty about limitations might be used by869

reviewers as grounds for rejection, a worse outcome might be that reviewers discover870

limitations that aren’t acknowledged in the paper. The authors should use their best871

judgment and recognize that individual actions in favor of transparency play an impor-872

tant role in developing norms that preserve the integrity of the community. Reviewers873

will be specifically instructed to not penalize honesty concerning limitations.874

3. Theory assumptions and proofs875

Question: For each theoretical result, does the paper provide the full set of assumptions and876

a complete (and correct) proof?877

Answer: [NA]878

Justification: We do not introduce new theorems; our focus is algorithmic and empirical.879

Guidelines:880

• The answer NA means that the paper does not include theoretical results.881

• All the theorems, formulas, and proofs in the paper should be numbered and cross-882

referenced.883

• All assumptions should be clearly stated or referenced in the statement of any theorems.884

• The proofs can either appear in the main paper or the supplemental material, but if885

they appear in the supplemental material, the authors are encouraged to provide a short886

proof sketch to provide intuition.887

• Inversely, any informal proof provided in the core of the paper should be complemented888

by formal proofs provided in appendix or supplemental material.889

• Theorems and Lemmas that the proof relies upon should be properly referenced.890

4. Experimental result reproducibility891

Question: Does the paper fully disclose all the information needed to reproduce the main ex-892

perimental results of the paper to the extent that it affects the main claims and/or conclusions893

of the paper (regardless of whether the code and data are provided or not)?894

Answer: [Yes]895

Justification: Architectures, loss, data generation, seeds, and training schedules are specified896

in appendix and supplement.897

Guidelines:898
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• The answer NA means that the paper does not include experiments.899

• If the paper includes experiments, a No answer to this question will not be perceived900

well by the reviewers: Making the paper reproducible is important, regardless of901

whether the code and data are provided or not.902

• If the contribution is a dataset and/or model, the authors should describe the steps taken903

to make their results reproducible or verifiable.904

• Depending on the contribution, reproducibility can be accomplished in various ways.905

For example, if the contribution is a novel architecture, describing the architecture fully906

might suffice, or if the contribution is a specific model and empirical evaluation, it may907

be necessary to either make it possible for others to replicate the model with the same908

dataset, or provide access to the model. In general. releasing code and data is often909

one good way to accomplish this, but reproducibility can also be provided via detailed910

instructions for how to replicate the results, access to a hosted model (e.g., in the case911

of a large language model), releasing of a model checkpoint, or other means that are912

appropriate to the research performed.913

• While NeurIPS does not require releasing code, the conference does require all submis-914

sions to provide some reasonable avenue for reproducibility, which may depend on the915

nature of the contribution. For example916

(a) If the contribution is primarily a new algorithm, the paper should make it clear how917

to reproduce that algorithm.918

(b) If the contribution is primarily a new model architecture, the paper should describe919

the architecture clearly and fully.920

(c) If the contribution is a new model (e.g., a large language model), then there should921

either be a way to access this model for reproducing the results or a way to reproduce922

the model (e.g., with an open-source dataset or instructions for how to construct923

the dataset).924

(d) We recognize that reproducibility may be tricky in some cases, in which case925

authors are welcome to describe the particular way they provide for reproducibility.926

In the case of closed-source models, it may be that access to the model is limited in927

some way (e.g., to registered users), but it should be possible for other researchers928

to have some path to reproducing or verifying the results.929

5. Open access to data and code930

Question: Does the paper provide open access to the data and code, with sufficient instruc-931

tions to faithfully reproduce the main experimental results, as described in supplemental932

material?933

Answer: [Yes]934

Justification: We include an anonymized code bundle with run scripts and instructions in the935

supplemental; public data sources (DB1B, T-100, CC2/CybORG) and preprocessing steps936

are documented in Appx. F.1 and F.2.937

Guidelines:938

• The answer NA means that paper does not include experiments requiring code.939

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/940

public/guides/CodeSubmissionPolicy) for more details.941

• While we encourage the release of code and data, we understand that this might not be942

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not943

including code, unless this is central to the contribution (e.g., for a new open-source944

benchmark).945

• The instructions should contain the exact command and environment needed to run to946

reproduce the results. See the NeurIPS code and data submission guidelines (https:947

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.948

• The authors should provide instructions on data access and preparation, including how949

to access the raw data, preprocessed data, intermediate data, and generated data, etc.950

• The authors should provide scripts to reproduce all experimental results for the new951

proposed method and baselines. If only a subset of experiments are reproducible, they952

should state which ones are omitted from the script and why.953
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• At submission time, to preserve anonymity, the authors should release anonymized954

versions (if applicable).955

• Providing as much information as possible in supplemental material (appended to the956

paper) is recommended, but including URLs to data and code is permitted.957

6. Experimental setting/details958

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-959

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the960

results?961

Answer: [Yes]962

Justification: Training/test splits, regret budgets, temperatures, learning rates, network sizes,963

and iteration counts are given in Sec.4 (Synthetic Data/Case Studies) and Appx.E.964

Guidelines:965

• The answer NA means that the paper does not include experiments.966

• The experimental setting should be presented in the core of the paper to a level of detail967

that is necessary to appreciate the results and make sense of them.968

• The full details can be provided either with the code, in appendix, or as supplemental969

material.970

7. Experiment statistical significance971

Question: Does the paper report error bars suitably and correctly defined or other appropriate972

information about the statistical significance of the experiments?973

Answer: [Yes]974

Justification: Results are averaged over three runs; standard deviations are typically ≤ 0.1975

for revenue, ≤ 0.001 for regret.976

Guidelines:977

• The answer NA means that the paper does not include experiments.978

• The authors should answer "Yes" if the results are accompanied by error bars, confi-979

dence intervals, or statistical significance tests, at least for the experiments that support980

the main claims of the paper.981

• The factors of variability that the error bars are capturing should be clearly stated (for982
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