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Abstract

Designing optimal auctions has major real-world impact, but remains notoriously
difficult to solve analytically, often intractable in strategic or high-dimensional
settings. Neural networks have recently approximated optimal mechanisms in
multi-item auctions, yet extending them to combinatorial auctions (CAs) is harder.
The main challenge is enforcing combinatorial feasibility, as bundle allocations
involve non-convex, binary, and overlapping constraints beyond standard neural
architectures. This paper introduces a novel combinatorial constraint enforcement
technique for deep learning, applied to a fully connected network (CANet) and
a transformer-based network (CAFormer). We also present CAGraph, a graph
attention network (GAT) model that formulates the winner determination problem
as set packing and captures interdependencies between bidders and bundles. Our
approach yields three key results. First, our models consistently outperform heuris-
tic baselines and prior learning-based methods—including RegretNet—across
diverse synthetic combinatorial auction settings. Second, in real-world airport slot
auctions, they maintain low regret while flexibly balancing welfare and revenue.
Third, in a cyber defense case study, a defensive agent uses the auction’s output to
allocate limited resources to vulnerable network hosts, demonstrating the practical
versatility of our framework. Together, these results demonstrate the flexibility,
scalability, and effectiveness of differentiable, constraint-aware neural architectures
for combinatorial mechanism design.

1 Introduction

Mechanism design, a field of economics, focuses on creating incentives and interaction rules among
self-interested agents to achieve specific objectives for the group. It differs from traditional game
theory by starting with a desired outcome and designing the rules so that agents acting in their self-
interest naturally lead to that outcome. A key application of mechanism design is to create auction
rules, which play a significant role in economic activities such as the fine art market, advertising on
search engines or e-commerce platforms [6} 21]].

The Vickrey-Clarke-Groves (VCG) mechanism is optimal and strategy-proof when the goal is to
maximize total bidder welfare [47, 111} [25]. However, revenue maximization poses a greater challenge.
[33] resolved the revenue-maximizing strategy-proof auction for a single item, later extended by
[32] to multiple copies of a single item. The general revenue-maximizing auction for multiple items
remains unsolved decades later, with only specific two-item cases addressed [4} 15]].

The lack of theoretical progress in revenue-maximizing multi-item auctions inspired the develop-
ment of Automated Mechanism Design (AMD) [42]]. AMD uses computational methods to tailor
mechanisms to specific problem instances, with the use of heuristic approaches [41},43]], but suffers
from the curse of dimensionality in large-scale settings. More recently, leveraging the power of deep
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learning, differentiable economics uses deep neural networks as function approximators to learn
optimal auctions. This approach, introduced with RegretNet [20], offers a scalable alternative to
traditional AMD methods.

Since its introduction, RegretNet has inspired a variety of extensions and improvements [35} 34,
26]. The complexity of multi-item auctions is further amplified in combinatorial auctions, where
bidders express valuations for bundles rather than individual items, capturing complementarities or
substitutabilities. Unlike traditional auctions, the interdependencies between items in combinatorial
auctions introduce additional challenges. One such challenge is winner determination, a problem that
is well known to be NP-hard, which involves allocating bundles to agents while ensuring that none of
the bundles overlap. Although the later part of the RegretNet study discusses the 2-item, 2-bidder
auction in a combinatorial setting [20]], the problem is still wide open, primarily due to the lack of
methodologies to effectively constrain the allocation space to satisfy combinatorial feasibility.

This paper builds on recent advances in auction theory and machine learning to design combinatorial
revenue-optimal auctions. It makes the following contributions:

1. It provides an empirical method to find near-optimal solutions to revenue-maximizing
CA, addressing problems where analytical solutions are not available. This method is not
limited by assumptions about allowable bundle structures or bidder valuations. Similar to the
previous work in differentiable economics [20]], the method is approximately strategy-proof.

2. Unlike previous CA studies, [43} 45| 27], our models identify randomized (lottery) mecha-
nisms, extending the RegretNet family to CA problems. It is well known that randomization
can increase revenue in CAs. Our empirical experiments show substantially higher perfor-
mance than deterministic mechanisms.

3. It introduces new architectures: CANet and CAFormer, extending prior designs from
non-combinatorial auctions to a CA setting, and CAGraph, a novel GAT-based model
learning from both valuation and the relational structures of bundles. While CANet is
sensitive to the order and structure of the input, CAFormer is permutation-equivariant,
offering better generalization in scenarios with varying input configurations. CAGraph,
our new architecture, however, consistently outperformed the benchmarks, demonstrating
the potential of using GNNs to handle combinatorial combinatorial problems. In addition,
it implements several techniques to improve stability in training and tackle the vanishing
gradient problem.

4. Tt provides an example of successful use of gradient based methods for constrained
optimization problems, which are known to be challenging. In our particular case, the
constraints are related to combinatorial feasibility. This approach can be extended to other
differentiable combinatorial optimization problems.

5. To our knowledge, this is the first work to evaluate differentiable auction mechanisms in
real-world case studies, including airport slot allocation and cyber defense, demonstrating
their practical versatility and policy relevance.

2 Problem Statement

We study a combinatorial auction (CA) with one seller, n bidders, and m items. Each bidder i € N
has a private valuation v; over bundles S C M, with K = 2™ — 1 possible non-empty bundles.
Valuations v; are drawn from distributions F;, which may be symmetric (F; = F') or asymmetric,

and utilities are quasi-linear:
u;(vi; b) = vi(gi(b)) — pi(b),

where g; is the allocation and p; the payment.
A mechanism is DSIC if truth-telling is optimal:
ui(vi; (Vi b—3)) > wi(vis (bs, b—i)) Vi, by, )]
and ex-post IR if
u;(vis (vi,0-3)) >0 Vi (2)
Violations of DSIC are measured via expected ex-post regret:

rgt; = B [max u;(v; (vf, v_4)) — wi(vi; (vi, v_4))

i



84

85
86
87
88

89

90

91
92
93
94

95

96
97

98

99
100

101
102
103
104

Allocation
heads

o-m non-

zeroes Bpunaie

CANet
(fully connected
network)

Aggent bundle
oD -0

Y106

(transformer-based

ne twork) Feasible

allocation | 7
matrix

CAGraph
(GAT-based

network)

Payment

head :’ Payment
e
1
]
'

1
i
|
|

1
|
|
|
|
|
|
1
|
|
|
|
I
|
|
i
|
CAFormer |
i
I
|
1
|
|
|
|
|
1
|
1
|
v
|
I

Figure 1: Mechanism overview. Bids flow through one of three architecture modules CANet,
CAFormer or CAGraph, then a shared constraint-enforcement block yields a feasible allocation Z
and a pricing network ensures IR, producing (g, p). Detailed schematics for each architecture appear

in Appendix D.3

Combinatorial feasibility. Let z;g indicate whether bidder 7 receives bundle S. We require

Z Z zs <1 VjeM, Zzisg Vi € N, (3)

i€EN SCM: jeSs SeK

with the integrality constraint z;5 € {0, 1} in the discrete problem. For learning, we use the standard
LP relaxation z;s € [0, 1] and interpret z as ex-ante allocation probabilities. (Exact Birkhoff—von
Neumann decompositions apply only in assignment or disjoint-bundle settings; implementability for
general CAs is discussed in Appendix [H])

The auctioneer’s goal is to maximize expected revenue,
rev = Z pi(v),
iEN
subject to DSIC, IR, and feasibility.

We build on RegretNet [20], which encodes allocation and payment rules within neural networks and
optimizes revenue subject to low regret. While the original work extends to combinatorial auctions, it
is limited to a two-bidder, two-item setting. We specifically introduce a computational technique to
enforce hard combinatorial constraints in broader combinatorial auction environments.

3 Proposed Method

After formulating CAs as a learning problem, we will propose models that facilitate end-to-end
learning through gradient-based optimization techniques.

To ensure feasibility, we factorize the allocation matrix Z € R"** as
bundl agent-bundl
7, — pBbundle | Adgem un e7

corresponding to a two-step process: (i) items are assigned to bundles, and (ii) bundles are assigned
to bidders.

The item-to-bundle matrix B™"!® is constructed from network outputs and the item—bundle incidence
matrix, using per-item softmax normalization followed by a minimum operator to ensure that each
bundle’s probability respects item capacities. The bundle-to-agent matrix A2eentbundle jg ghtained by
combining agent- and bundle-wise softmax outputs:

Asreentbundle _ i (softmax v (A ), softmax g (A')) .
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The final allocation is then |
Zig = BS . Aj%em—bunde

which satisfies the allocation constraints from Section[2]

)

A full derivation of B™'® and the proof of combinatorially feasibility are provided in Appendix

To instantiate our approach, we design three architectures. CANet, motivated by RegretNet, is a fully
connected network with two modules: a deep allocation network that enforces feasibility constraints
and a deep pricing network that ensures individual rationality. Together, these map bids to feasible
allocations and corresponding payments (details in Appendix [D.I). To enhance expressivity and
capture permutation-equivariant structure in auctions, CAFormer combines exchangeable layers
with self-attention blocks, enabling context-aware allocation decisions while remaining robust to
bidder and bundle permutations (Appendix [D.2). Finally, CAGraph frames winner determination
as a set-packing task over a conflict graph; through graph attention layers, it learns bidder—bundle
dependencies and suppresses overlapping allocations (Appendix [D.3)).

Our training follows the adversarial setup of [20], with an inner utility maximization (6)) and an
outer objective balancing revenue and regret (3). To stabilize this process, which is often sensitive
to hyperparameters, we normalize task weights so that wy.e, + wrg¢ = 1 and apply a logarithmic
transformation to the revenue term to prevent unbounded growth. The resulting outer loss is

Lovier = —Wrew log(l + I'GV) + Wy gy 18t 4)

where Wyey, wrge € [0,1] balance the trade-off. Following [26], we also employ a regret budget,
gradually reducing tolerated violations of DSIC during training. Weight updates for w,4; are adapted
dynamically based on current regret and revenue, using an Adam-style rule. Full update formulas and
pseudocode are provided in Appendix [E] For the revenue-welfare trade-off scenario in Section ] we
scalarize the performance term with a weight A, using obj, = Arev + (1 — X\) wel and substituting
obj, for rev in Loyer (the regret term is unchanged).

4 Experimental Results

4.1 Synthetic Data

Set up Our framework is implemented in PyTorch and trained for 50,000 or 100,000 outer opti-
mization iterations, depending on the problem size. All networks used Glorot uniform initialization
[23]] and tanh activations. We sampled 640,000 valuation profiles offline for training and 10,000
profiles online for testing. Each outer optimization update included 50 inner steps during training and
1,000 during validation. Typical hyperparameters include: tanh scaler p = 2, softmax temperature
0 € {10,15, 25}, network learning rates {0.0004, 0.0007}, regret learning rate v € {0.01,0.02} and
the target regret-revenue adjustment factor o € {0.5,1}. CANet’s allocation and pricing networks
use {3, 6} layers with 100 hidden nodes each, while CAFormer has a single attention layer with 2
heads and 64 hidden features. We initialized wyg = 1, exponentially annealling regret targets from
gt = 0.05 to rgt,,q € {0.0008,0.001,0.002,0.003} in 2/3 of the training iterationw. Experi-
ments are conducted on three scales: 2 bidders, 2 items (3 bundles); 2 bidders, 3 items (7 bundles);
and 2 bidders, 5 items (31 bundles).

Baselines We compare against the VCG mechanism [47, [11] 25]], with allocation found with an
Interger Programming (IP) solver, RegretNet, Affine Maximizer Auction trained via grid search (AMA
and VVCA), and local search methods (BLAMA, ABAMA, BBBVVCA) [43]. We re-implement
VCG mechanism and the search algorithms [43]]. The search algorithms are trained on 100 samples
for 10 different random seeds, and evaluated on 1,000,000 samples.

Performance in combinatorial setting We compare the results in combinatorial setting. Let vie™
be the valuation of of bidder ¢ for item j, individually. The valuation of bidder ¢ for bundle S is drawn
as v;g = Zjes vii‘]‘?m+cis with ¢;s ~ U[—1, 1]. For symmetric settings (B), v?]f’m ~ UJ1,2],¥i € N.
For asymmetric settings (C), vi€™ ~ U[1, 2] and vi2‘§m ~ U[1,5]. Results are averaged over three
runs; standard deviations are typically < 0.1 for revenue, < 0.001 for regret.

The results in Table[I]show that our models outperform heuristic benchmarks and RegretNet in all
settings. As we specify the regret target as a proportion of revenue, the regret is higher in larger-scale
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Symmetric (B) Asymmetric (C)

Method 2%X2 2x3 2%x5H 2%X2 2x3 2%x5H

VCG 2.405/0 3.537/0 5.838/0 2.847/0 4.239/0 6.987/0
AMA 2.760/0 —/— —/— 4.240/0 —/— —/—
VVCA 2.770/0 —/— —/— 4.240/0 —/— —/—

BLAMA 2.630/0 4.125/0 7.280/0 4.080/0 4.812/0 8.164/0
ABAMA 2.630/0 4.166/0 7.145/0 4.010/0 5916/0 11.140/0
BBBVVCA  2.620/0 4.105/0 7.156/0 4.010/0 5.898/0 11.135/0
RegretNet  2.871/ 1e-3 —/— —/— 4270/ 1e-3 —/— —/—
CANet 2904/ 1e-3 4.369/2e-3 7.304/7e-3 4.285/1e-3 6.556/1e-3 11.393/2e-3
CAFormer 2919/ 1e-3 4.388/2e-3 7.318/3e-3 4.403/2e-3 6.693/1e-3 11.534/4e-3
CAGraph  3.202/1e-3 4.710/1e-3 7.774/5e-3 4.844/3e-3 7.204/3e-3 12.123/ 6e-3

Table 1: Combinatorial results (per cell: Revenue / Regret). Grid search methods (AMA and VVCA)
become computationally infeasible in higher dimensions. RegretNet results are limited to 2 x 2
cases. CANet and CAFormer beat the benchmarks in all settings. All CANet, CAFormer and
CAGraph achieve negligible regret. But CAGraph consistently outperforms the others in revenue. As
a revenue upper bound for these instances (not a target for a truthful revenue mechanism), the optimal
welfare-maximizing first-price outcome-computed via an IP solver for maximum independent set and
pay bids-yields revenues of 3.548, 5.467, and 9.243 in the symmetric settings (2 X 2,2 X 3,2 X 5),
and 6.184, 9.296, and 15.573 in the asymmetric settings, respectively.

settings. Both CAFormer and CANet achieve negligible regret in all experiments. However, CAGraph,
with a greater expressivity especially when incorporating interdependencies, consistently outperforms
CANet and CAFormer in revenue.

Performance in non-combinatorial settings. For completeness, we also evaluate additive valuation
settings, where bundle values equal the sum of item values. CANet and CAFormer achieve comparable
revenue to RegretNet and RegretFormer, both of which outperform heuristic designs, while CAGraph
outperform the others. Full results are reported in Appendix [G.1]

4.2 Case Study 1: Airport Slot Allocation

Airport slot divestitures (e.g., during mergers or under the 80% rule) are a natural application
of combinatorial auctions: airlines derive value from bundles of slots that support schedules and
connectivity. Currently, these slots are reallocated by Random Serial Dictatorship (RSD). We model
slot allocation as a sealed-bid CA where valuations are derived from profit-maximizing schedules.
This framework allows us to study explicit trade-offs between welfare and revenue, an important
policy concern since efficiency ensures fair access while revenue compensates divesting airlines.
We ground our analysis in the 2011 FAA auction at Reagan National Airport (DCA). Details of the
scheduling formulation, datasets, and regulatory context are deferred to Appendix [F.1]

Our mechanism exposes a revenue—welfare trade-off via a weight X in the outer objective {@): A=0
targets welfare, A=1 targets revenue, and A=0.5 balances both. Note that we report ex-ante welfare
and revenue under the fractional allocation Z € [0, 1]"*¥ (i.e., expectations under the randomized
allocation), by contrast, VCG is deterministic and welfare-optimal among DSIC mechanisms; our
learned mechanisms are approximately truthful (low regret) and optimize the A-scalarized objective.

4.3 Case Study 2: Cyber Network Defense Auction Design

We illustrate the versatility of our framework in a cybersecurity setting, where defenders must allocate
limited actions (e.g., Analyze, Remove, Restore) across vulnerable hosts. This problem is inherently
combinatorial, as the value of actions depends on host type and synergies between defenses.

We ground our study in the CAGE Challenge 2 (CC2) environment, a high-fidelity cyber operations
simulator. To construct valuations, we extract Q-values from trained reinforcement learning agents,
interpreting them as empirical utilities over bundles of actions. These valuations feed into our
combinatorial auction mechanism, enabling strategic planning under resource constraints.
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RSD VCG A=0 A=0.5 A=1

Revenue 0 350,789 310,071 327,239 360,507
Welfare 300,009 422,768 619,106 607,864 582,730

Table 2: Case Study 1: Airport slot auction results. RSD yields baseline welfare but zero revenue,
while VCG achieves higher welfare at the cost of low revenue. Our multi-objective mechanism outper-
forms both benchmarks, achieving substantial welfare improvements while maintaining competitive
revenue, and regrets remain < 5,000. Increasing A shifts the balance toward revenue maximization,
with A = 1 surpassing VCG’s revenue without sacrificing efficiency.

Agent AUC (Reward vs. Steps)  t-stat p-value

Original —27,219.5 - -
Shaped —25,266.5 3.37  7.5x107%

Table 3: Case Study 2 (Cyber). Using the auction’s allocation as a distributional reward-shaping
target improves convergence and final performance (higher AUC is better); gains are statistically
significant. Full setup and episodic curves are in the Appendix [F.2]

Our analysis highlights three findings. First, under truthful reporting, the mechanism concentrates
on aggressive defenses (Remove, {Analyze, Remove}), while misreporting diffuses allocations but
preserves host-level priorities, which is the evidence for robustness. Second, learned allocations
align strongly with Blue-team activity in CC2, indicating robustness to underlying mission relevance.
Third, using auction outputs as a reward-shaping signal improves RL training stability and conver-
gence (statistically reported in Table [3), suggesting auctions can guide tactical agents toward more
effective long-term strategies. Further details on environment setup, valuation construction, allocation
comparisons, and statistical analyses are in Appendix [F2}

5 Discussion and Future Work

This work takes a first step toward extending differentiable economics to combinatorial auctions
(CAs). We enforce combinatorial feasibility within end-to-end neural mechanisms and show that
the approach can be instantiated with three architectures (CANet, CAFormer, CAGraph). While our
methods deliver strong empirical revenue subject to low regret, it remains an open question whether
they can represent the theoretically optimal mechanism in full generality.

Expressivity, scale, and training stability. Among our variants, CAGraph attains the highest revenue
and benefits from graph inductive bias (permutation equivariance on the conflict graph, variable
input size, and contextual features). Our scalarized training supports explicit revenue—welfare trade-
offs. Nonetheless, min—max training is non-convex and lacks convergence guarantees; performance
degrades if the inner adversary under-optimizes regret. Moreover, our experiments enumerate all
bundles, which scales as 2™ and limits very large instances. Performance can degrade with weak
inner optimization (underestimated misreports), in large bundle spaces (vanishing gradients, slow
convergence), or with distribution shift. CAFormer may overfit at small scales; CAGraph can be
sensitive to graph sparsity.

Outlook. The same recipe—parameterize a feasible region, differentiate the objective, and train with
regret penalties—should extend to other combinatorial problems (e.g., routing, matching, partitioning)
when constraints admit differentiable parameterizations. Promising directions include (i) alternative
bidding languages and column generation, (ii) stronger inner optimizers and certified regret bounds,
and (iii) tighter integration of graph structure and attention.

Reproducibility. Experiments were run on a local GPU server with 2x NVIDIA Quadro RTX 8000
(48 GB) and 6 x NVIDIA Quadro RTX 5000 (16 GB). All scripts, data and configurations are provided.

Societal impact. Airport slot allocation affects competition and consumer access; our multi-objective
training surfaces explicit welfare—revenue trade-offs that can be aligned with policy goals. The cyber
experiments use simulated environments; no real user data are involved. Risks include mis-specifying
objectives and unequal access to algorithmic advantages.
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A Preliminary

RegretNet [20]] provides a deep learning framework for optimal auction design, addressing multi-
bidder, multi-item scenarios where analytical solutions are unknown. It encodes auction allocation
and payment rules within neural network weights.

The architecture comprises two networks: the allocation network A™" and the payment network

P, Both process a bid vector b™™ through fully-connected layers. The Allocation Network maps

bids to allocation probabilities A" (b™"™) = Z"™, where z;; = ﬁ and allows an item to
i=1 )

remain unallocated by introducing a dummy participant. The payment network maps bids to payment

allocations P"™!(b™™) = p™, where p; is scaled using sigmoid, and p; = p; Z;"Zl 2;5bi;, adhering

to IR constraints (2).
RegretNet minimizes empirical negative revenue plus the regret penalty over profiles V':

min < Z E[P;(v; w)] + A;rgt; + prg@) (5)

WP\ N 2

where regret rgt, (v}, v; w) = max, (u(v;, (v}, v—_;); W) — u(v;, v; w)). Regret is iteratively mini-
mized using augmented Lagrangian and gradient descent:

»Cinner(vg) - —U(Um ('Uga Ufi); W) (6)
and the Lagrange multipliers \; and p are updated as \; < \; + pRi, p < p + pA.

The results of RegretNet are further extended to address combinatorial auctions in a two-item,
two-bidder setting by adding the constraint:
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To accommodate this constraint, two softmax layers are used; one outputs a set of bidder scores, and

the other a set of item scores, denoted by 5; 5 and Egj s) The set of item scores is then used to compute

a normalized set of scores for all ¢ and .S, given by

- [sY S = {1},{2}
"5 T Yminfs®) 5= (1,2}
S )

and the final allocation z; s is determined by the minimum of the bidder score and normalized item
score.

zis = min (5, 5is)
B Related Work

The seminal works of [47] introduced auction mechanisms for single items, which were later extended
to multi-item settings by developing the Vickrey-Clarke-Groves (VCG) mechanism [47, [11} [25]].
Although VCG achieves efficiency in dominant strategies, it often fails to maximize revenue. [33]
laid the theoretical foundation for revenue-maximizing auctions.

The study of combinatorial auctions originated from the need to allocate resources among bidders
with complex preferences over bundles of items. [14] provide a detailed review of combinatorial
auctions. Optimal combinatorial auctions are NP-hard because of the exponential number of possible
bundles and the Incentive Compatibility (IC) and IR constraints. Heuristic and exact methods have
been studied to solve the winner determination problem as a combinatorial optimization problem
[41,149,139]. In the early work, both the winner determination and pricing problems were tackled using
integer programming and approximation algorithms. [30] developed polynomial-time algorithms for
approximately optimizing VCG-based mechanisms in certain structured settings. Another direction,
extending the results of [40], is known as Affine Maximizer Auctions (AMAs). These are variations
of the VCG mechanism that adjust the allocation process by assigning positive weights to each
bidder’s welfare and incorporating boosts for different allocations, potentially leading to higher
revenue than the VCG mechanism [43] [16]].

Recent advances in differentiable economics have extended its applications to various domains,
reflecting the growing synergy between machine learning and economic theory. These works lever-
age neural architectures and differentiable approaches to address classical and emerging problems
in auction design and beyond. Several papers have extended the ideas introduced in RegretNet.
EquivariantNet [34] enhances generalization in symmetric auctions by enforcing permutation equiv-
ariance in its network structure, improving performance in settings with indistinguishable bidders and
items. ALGnet [35]] replaces RegretNet’s augmented Lagrangian optimization with a GAN-based
approach, framing the auctioneer-misreporter interaction as a two-player game to improve training
efficiency. RegretFormer [26]] introduces self-attention layers, leveraging permutation-equivariant
representations and incorporating a regret budget to balance incentive compatibility violations and
revenue. AMenuNet 18] restricts the search space to affine maximizer auctions, ensuring dominant
strategy incentive compatibility (DSIC) and individual rationality (IR) while employing permutation-
equivariant neural networks for improved generalization. CITransNet [19] extends RegretNet to
contextual auctions by integrating public context information through transformer-based architectures,
maintaining permutation equivariance without being limited to symmetric auctions. GemNet [48]
further broadens this space by introducing a menu-based, strategy-proof auction framework for
multi-bidder settings, achieving exact DSIC through menu compatibility constraints enforced during
training and post-training price transformations via MILP optimization. [15] propose a differentiable
framework for randomized affine maximizer auctions that achieves exact strategyproofness in multi-
item, multi-bidder settings with additive valuations. While some existing studies refer to their setting
as “combinatorial” due to its discrete structure, their work does not address the core challenge of
bundle-based preferences in combinatorial auctions—where feasibility constraints are inherently non-
convex and allocations must account for overlapping item bundles. These advancements demonstrate
diverse extensions of RegretNet, each enhancing scalability, efficiency, or incentive properties in

10



404

414

415
416

417
418
419
420
421

422

423
424
425

426
427

428
429

430
431

432
433

434

435

auction design. Others have applied this framework to auctions with fairness or budget constraints
[29, 22]], or adapted similar methods to tackle broader mechanism design challenges [24,|37]]. Several
papers leverage machine learning-based approaches in combinatorial auctions. [[§] used a machine
learning-based elicitation algorithm to identify which values to query from the bidders. [45] propose
a network architecture to learn Groves payment rules in combinatorial auctions with certain bidding
languages. [27] present a machine learning-powered combinatorial auction based on the principles of
differential privacy. [9] present a machine learning-powered iterative combinatorial auction. [38] use
deep Reinforcement Learning for sequential combinatorial auctions.

In parallel, several works have explored constraint-aware neural networks. There is a line of work
that embeds optimization problems as differentiable layers, such as OptNet [3] and DiffOpt [1].
[[L3] combines a standard prediction network with a “safety” component trained via decision rules
to guarantee feasibility across all inputs. Our work builds on this line by proposing a constraint
enforcement framework specifically tailored to combinatorial auctions, capable of being integrated
with various neural architectures—including GNN-based approaches like CAGraphNet.

C Constraint Enforcement

Recall from Section [2]that the allocation must satisfy constraints in (3). We decompose the allocation
matrix Z € R™*¥ into the product of two matrices:

__ pbundle agent-bundle
7 = Bhundle . A2 ,

Aagent»bundle Bbundle

where and are defined below. This approach is motivated by a two-step allocation
process: first, the allocation of items to the bundles, satisfying the item-wise constraint, and then
the allocation of the bundles to the bidders, satisfying the other constraints. Each entry in the final
allocation matrix represents the probability of allocating a bundle to a bidder, which is calculated by
the product of the probability that the bundle is allocated B2 and the probability that the bidder

receives the bundle, given that the bundle is allocated A;%em’bundle.
The item-to-bundle allocation matrix B is derived from the output of the Allocation Network,
normalized to represent item-wise probabilities. To construct B®"4, we define the incident matrix
I e R™*k where:
[ 1 ifitem ¢ is included in bundle S,
T {O otherwise.

The initial bundle allocation matrix B € R™** is adjusted by mapping bundles to items with a
softmax function across m items:

Badsted — softmax (B - T).

To ensure valid item-to-bundle allocations, non-positive values in Badjusted

constant M:

are replaced with a large

adjusted : adjusted
Bmasked — B* ) if B*Y > 07
M, otherwise.

For each item ¢, we compute the minimum value across all bundles and reshape B, to include the

agent dimension:

B — Unsqueeze(min B™**d),
S

The bundle-to-agent allocation matrix A sgeni-bundic 1S computed from the allocation network outputs
A and A’ using the softmax function along the agent and the bundle dimension.
A% — softmaxy(A), AP — softmaxx(A’)
then taking element-wise minimum of the two matrices
agent-bundl : : bundl
Adgent undle __ mln(Adgent’ A bun e)

The final allocation matrix Z is given by:

__ ypbundle agent-bundle
7 = Bhundle | pe ,
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where each entry z;5 represents the probability of allocating bundle S to agent 7.
We will now prove Matrix Z is combinatorially feasible.

The matrix A2eent-bundle represents the bundle-to-agent allocation. Each entry A?gent'bu“dle

as:
is/0 alis/0
agent-bundle . e%is/ e%is/
AiS = min ag/0’ a /0
§ g €78 E g €78’

is computed

This ensures that

ZA?gem-bundle < 1,VS cK (7)
Aagenl—bundle <1.Vi
> AE <LVieN ®)
S

From the definition of z;g, the allocation of any bundle S is limited by its least-available item:

Z Z zig < Z Z min {BadJUSled} Aagent bundle

i S3j i S3 ]
Since B4ued j5 normalized with softmax along item-wise dimension to ensure that no item j is

allocated more than once:

Zml {Badjusted} < Z m1 {dejusted} < 17 V] c M.
SBJ SeK

Z Z Zig < Z Z Aagent bundle
)

i S3j i S3j

Thus,

For a fixed item j, we can write:

agent-bundle agent-bundle

i S3j S35 i

Z Z Aagent -bundle < Z 1.

i S35 FEY)

From (7)), we have:

From (8)), the number of bundles .S containing j is at most the total number of bundles k, constraint

(@) is satisfied:
Z Z Adgent bundle 1 )
i S35

Thus, Z is combinatorially feasible.

D Model Architectures

D.1 CANet Architecture

Motivated by RegretNet [20], we present CANet, a deep neural network architecture designed for
combinatorial auction mechanisms. The CANet architecture, visualized in Figure[2] comprises two
modules: the Deep Allocation Network and the Deep Pricing Network. The input to CANet, denoted
by b, is a vector b € R™*, where b;g ~ Fj is the bid submitted by agent i for bundle S.

The Deep Allocation Network computes a feasible allocation matrix Z € R™** ensuring that both
individual item constraints and global allocation constraints are satisfied. The input b is passed
through fully connected layers with non-linear activations. The network produces three output vectors
A € R™* and A’ € R"** representing an unnormalized agent-bundle allocation; and B € R™*¥

'In all of our implementations, the softmax function incorporates a temperature parameter 6 € R, inspired
by the Boltzmann distribution in statistical mechanics, which controls the concentration of probability mass
around the highest logit.

12
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representing an unnormalized bundle-item allocation. These outputs are combined following the
process described in section[C|to form a feasible allocation matrix Z.

The Deep Pricing Network computes the pricing vector p € R™, which represents a discount applied
to the bids. The input b is processed through fully connected layers with sigmoid transformation, to

ensure p; € [0, 1]. The final price is vector p with p; = p; 22:1 2isbis.

D.2 CAFormer Architecture

To enhance expressivity and ensure permutation-equivariance and context-awareness, we introduce
CAFormer. This architecture combines exchangeable layers (proposed in [S0] and used in Equiv-
ariantNet [34]]) with stacked attention layers [46], as seen in RegretFormer [26]. The architecture
is illustrated in Figure D] The attention mechanism is permutation-invariant, while exchangeable
layers ensure permutation-equivariance—properties particularly desirable in symmetric auctions. For
asymmetric settings or preserving input order across the bundle dimension, we apply agent-wise and
bundle-wise positional encoding as presented in [46] after the exchangeable layers.

The input to CAFormer is a two-dimensional matrix b € R”**. Unlike CANet that can output an
item-bundle allocation at the last layer, CAFormer must be designed properly to maintain insensitivity
to the size of the problem. We achieve it by transforming the bid matrix into a representation of
item-bundle allocation b’ € R™** through matrix multiplication with the individual item bid matrix
bitem c Rnxm,

b’ = MatMul(b ", bi*™) T
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where T denotes the transpose operation. Both b and b’ are then expanded in a feature dimension
that contain global information of bids with exchangeable layers, a key building block in architectures
like EquivariantNet [34] and RegretFormer [26] which ensures permutation-equivariance. This layer
processes a tensor X € R™***1! into an output tensor Xox € R™"** X4 The exchangeable layer
computes the element of the output channels by aggregating input tensor B over elements, rows,
columns, and globally, weighted by learnable parameters, and applies a non-linear activation o.
Details can be found in Deep Sets [50].

bex = Exchangeable(b), bl = Exchangeable(b’)

After each exchangeable layer, we apply sequential attention-based blocks to the tensors by and bl,.
Each block consists of multi-head self-attention layers with residual connections.

For each layer, the input tensor is reshaped to enable item-wise, bundle-wise, or agent-wise self-
attention. Item-wise attention operates on reshaped input bl,,,, € R™*< bundle-wise attention
operates on byynaie and by, 4. € Rk*4_and agent-wise attention operates on bagent € R™*4 where
d is the feature dimensionality of the input. The outputs are concatenated, forming bl ... €
R™**Xdeonca and boopear € R K> deonat | where doopear and fonca are the combined attended features.
After the attention-blocks, we use fully-connected layers ficm, fhundle and 2" to map the features
back to the original dimensionality 1:

B = fie™ (b

concal) ?

A= f&gent(bconcat>7 A = flzundle(bconcat)

Again, following the procedure outlined in Section[C] we derive a feasible allocation matrix Z. The
pricing vector p € R"™ is derived by applying a fully connected layer with sigmoid activation to the
agent-wise attention output by, reducing its dimensionality to 1. The final prices are computed
using the same method as in CANet.

D.3 CAGraph Architecture

Given that the winner determination problem in combinatorial auctions (CAs) is inherently a com-
binatorial optimization problem, and can be mapped to well-studied structures in graph theory, we
propose a novel graph-based approach. In this section, we introduce CAGraph, a graph neural network
architecture designed to approximate optimal allocation and payment rules in CAs. The architecture
exploits the relational structure among bundles to reason over complex feasibility constraints and
revenue objectives in a scalable and expressive way.

D.3.1 Set-packing Representation

We adopt a set-packing formulation of the winner determination problem, which is a classical repre-
sentation in combinatorial optimization. In this representation, each node in the graph corresponds to
a bidder-bundle pair (¢, .S), where ¢ € N is a bidder and S C M is a bundle of items. Each node is
associated with a weight representing the bidder’s valuation v;(.S) for that bundle.
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An edge exists between two nodes if their corresponding bundles have any item overlap, i.e., if
S N.S" # (), indicating that both allocations cannot simultaneously be part of a feasible solution.

The goal of the winner determination problem is then to select a subset of non-conflicting nodes (i.e.,
an independent set in the conflict graph) such that the total valuation (weight) of the selected nodes is
maximized. Formally, this is equivalent to solving a differentiable relaxation of maximum weighted
independent set problem over the constructed graph:

[ma]x . Z v;(S)zis subjectto: zis + z;r < 1ifSNS #0 Vie N,je M.
z€[0,1]mX -
(4,5)

Here, z;5 € [0, 1] is a variable indicating the probability that bundle S is allocated to bidder .

This formulation naturally lends itself to GNN-based approximation, where node embeddings are
learned through message passing over the conflict graph. The learned embeddings capture global auc-
tion structure and local conflicts, and are passed through a final scoring layer to estimate probabilities
for each node.

D.3.2 CAGraph Details

Input and Embedding Dimensions. Recall that each node in the conflict graph corresponds to a
bidder-bundle pair (7, .S), and is represented by a feature vector that combines the bid value b;g, a
learnable embedding of the bidder 7, and a learnable embedding of the bundle S. These embeddings
are dense vectors of dimension D, initialized randomly and trained jointly with the rest of the network.
The purpose of these embeddings is to encode semantic and structural information about bidders
and bundles that may not be directly observable from bids alone. Unlike handcrafted features or
static encodings, these embeddings are learned end-to-end through gradient descent, thus finding
representations that are useful for allocation and pricing decisions. The final node feature vector is
constructed by concatenating the scalar bid and the two embedding vectors, resulting in an input
dimension of

input_dim =1+ 2D.

These node features are then passed through a linear projection layer followed by two graph con-
volution layers, which propagate and refine local information through the conflict edges between
overlapping bundles.

Graph Attention Convolution. Following the input projection layer, CAGraph applies two stacked
Graph Attention Network (GAT) layers to propagate structural information across the conflict graph.
These layers enable nodes—each representing a bidder-bundle pair—to exchange information with
their neighbors, which correspond to other conflicting pairs.

Given node features X € RY ¥4 each GAT layer performs neighborhood aggregation with learned
attention weights. For each node i, the updated feature vector is computed as:

X; =0 OéijWXj + RCS(Xi),
JEN ()
where W € Rdudn jg 3 shared linear projection, (i) denotes the set of neighbors of node 4, and &

is an activation function (ELU). The attention weights o;; quantify the influence of node j on node 4,
and are computed as:

B exp (LeakyReLU(a' [WX;||WX,]))
" Ykenrti) ©xp (LeakyReLU(a " [WX; [WX,]))’

Q5

where a € R2%u s a learnable attention vector, and || denotes vector concatenation. The concatenated
input to the attention mechanism has dimension 2d,,, matching the parameterization of a. These
scores are normalized via softmax across each node’s neighborhood.
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This mechanism allows the network to assign greater weight to more relevant neighbors when aggre-
gating information, effectively learning which conflicts are more important in determining feasible
and high-value allocations. A residual connection Res(-) ensures stable optimization, mitigates
over-smoothing in graph propagation and is implemented as linear projection.

By stacking two GAT layers, the model captures second-order interactions in the conflict graph.
This enables bidder-bundle nodes to reason not just about direct conflicts, but also about indirect
competitive effects, improving its ability to model allocation feasibility. The learned attention
structure acts as a soft constraint mechanism, allowing the network to suppress overlapping bundles
and prioritize mutually compatible ones during allocation inference.

Output Layers. After the GAT layers, the model compute final allocation outputs through a series
of fully connected layers. These output layers handle bidder-bundle and item-level decisions and
integrate with the constraint enforcement framework described in section [C]

E Training Procedure

Similarly to RegretNet, our training process also includes an inner utility maximization (6) and an
outer revenue maximization and regret minimization (5). For brevity, we refer the reader to the
original paper by [20] for details of the adversarial training. Previous works [20 |34} 26] relies heavily
on gradient-based Lagrangian optimization (see Section[2)). This method is known to be sensitive to
the choice of hyper-parameters. An example is in the outer loss (3)), when \; becomes excessively
large, the model disproportionately focuses on minimizing regret, and gradients for regret become
negligible due to a scaling effect or poor numerical conditioning. To ensure a stable tradeoff, we
constrain the loss weights such that their sum is 1. This simple balancing mechanism does not
directly tackle the overemphasis on regret, but it ensures regret gradient does not shrink due to the
excessive weight )\;. Additionally, we apply a logarithmic transformation to the revenue term to
avoid unbounded growth. This is in the spirit of multi-task learning, which seeks to optimize both
objectives in the present of trade-offs. Our outer loss function is defined as:

Louter = —Wrep 10g(1 + 1) + w,gi18t,
where w;.., and w,4; are task weights that represent the emphasis on revenue and regret, respectively.

Following [26], we also set a regret budget, allowing controlled violations of DSIC by gradually
decreasing the budget during training. The update for w;.4; is explicitly computed as:

g+ = log(rgt) — log(rgt) — log(1 + arev) )

where rgt is a target regret value. The parameter « is optional and adjusts the ratio between the target
regret and revenue.

We provide the Adam-style update for wyg With coupling wyey = 1 — Wy in algorithmm

F Case Study Details

F.1 Case Study 1: Airport Slot Allocation
F.1.1 Motivation and Setup

Airport congestion, particularly at high-traffic hubs, poses a complex resource allocation challenge that
is inherently combinatorial in nature. Airlines derive value not from individual takeoff or landing slots
in isolation, but from bundles of slots that support network connectivity, fleet rotation, and coordinated
passenger itineraries. Traditional models—such as those developed by [10] and [[17]—focused on
congestion pricing as an economic tool to regulate demand and allocate runway capacity efficiently.
Subsequent work introduced market-based mechanisms, most notably combinatorial auctions for slot
allocation [36], with further policy refinements by [[7]]. While these approaches improve allocative
efficiency by prioritizing agents with the highest valuations, they often neglect strategic behavior, and
the possibility that airlines may misreport preferences to manipulate outcomes in their favor.

While earlier studies proposed large-scale auctions to alleviate congestion, this study focuses on the
design of slot auctions for small-scale divestiture scenarios, such as those arising from regulatory
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Algorithm 1: Adam-style update for wyg with coupling wrey = 1 — Wy

Input: gradient g, from Eq. (9), step size v.,, 1, B2 € (0,1), € > 0, scale p > 0
Input: ¢ < 0, m < 0, v < 0, initialize wyy € [0, 1]

while training do

t—1t+1

// First/second moments

m < fim+ (11— 1) g

’U(—ﬁg?}—F(l—,Bg)th
// Bias correction

m <« m/(1 - BY)

o v/(1-p5)

// Adam step on Wygt

Wrgt 4= Wrgt + Yuw rh/(\/?) + 6)

// Normalize to [0,1] and couple with wWyey

wig - 5 (14 tanh (“2))

p

Wrey < 1- wrgt
end
return Wrey, Wy

interventions during airline mergers, or underutilization under 80% rule. Our mechanism is proposed
to substitute Random Serial Dictatorship, the random lottery of the order of slot selection, as
formalized in |14 CFR §93.225| These settings are characterized by a limited number of bidders and
discrete bundles of slots, which makes them tractable for strategic auction design and evaluation.

A welfare-maximizing mechanism, such as VCG auction, allocates slots to those who value them most
— promoting efficient use of capacity and better outcomes for passengers and the network. However,
VCG may yield low or zero revenue [33}14], particularly in thin markets or when bidders’ valuations
are highly correlated. In contrast, revenue-maximizing mechanisms—such as first-price auctions
or neural networks trained to optimize payments—can ensure that sellers (e.g., divesting airlines or
regulatory agencies) are compensated. This is particularly important in divestiture settings, where
the seller may be giving up valuable operational rights as part of a merger remedy. In such cases,
generating sufficient revenue from the auction can help: offset financial losses to the divesting party,
encourage participation in reallocation mechanisms, and reduce political resistance to mandatory slot
redistribution. Yet revenue alone is not a sufficient design goal. Allocative efficiency remains central
to the long-term effectiveness of slot policy, especially in regulated markets where public interest,
competition, and consumer access are key concerns. For this reason, in the spirit of multi-objective
optimization in section[E| we propose and evaluate mechanisms that allow explicit trade-offs between
revenue and welfare, adapting to policy priorities. Our mechanism provides a flexible framework
for balancing these objectives: by adjusting the training loss, we can interpolate between welfare,
revenue, or hybrid targets. This allows policymakers to weigh short-term fiscal outcomes (e.g.,
compensating a divesting airline) against long-term system performance and fairness. To evaluate
these trade-offs under realistic airline behavior, we model the slot allocation problem as a sealed-bid
combinatorial auction. We ground our case study in a real-world event: the 2011 FAA slot auction at
Reagan National airports (DCA), in which 8 slot pairs were divested by Delta and US Airways under
a DOT-imposed remedy. We simulate airline preferences by solving a profit-maximizing scheduling
optimization for each carrier. Details about the slot allocation process at U.S. coordinated airports
and historical precedent for slot auctions are provided in the Appendix.

F.1.2 Valuation Model

We aim to estimate the value (i.e., expected profit) that each airline assigns to specific airport
slot bundles. These valuations are not directly observed but are inferred by solving a scheduling
optimization problem for each airline-bundle pair. Itinerary-level fares and route information are
derived from the Airline Origin and Destination Survey (DB1B) dataset. The seat capacities are
obtained from the T-100 Domestic Segment (U.S. Carriers) dataset. All data are downloaded from
[https://www.transtats.bts.govl The profit-maximizing assignment of flights to the available slots
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determines the airline’s valuation for the bundle. These values are later used as input to an auction
solver, which assumes known bidder valuations.

We assume that all slots are at a hub airport (e.g., LGA or DCA), and each slot may be used either
for an arrival or a departure, but not both. We model the assignment of directional flights to slots
subject to feasibility and flow balance (i.e., aircraft arriving = aircraft departing).

The problem is formulated as follows

Given:

» F': set of feasible flights for the airline (each flight has a direction)

e T set of time slots in the slot bundle

V(f,t): profit from assigning flight f to slot ¢
dir(f) € {+1, —1}: direction of flight f, where 41 indicates a departure and —1 an arrival

Decision Variables:

* 2y € {0,1}: equals 1 if flight f is assigned to slot ¢
» wy € {0,1}: equals 1 if flight f is not operated

Objective:
max Z Z V(f.t) - zp (10)
= fEFteT
Subject to:
>z <1, VEET an
feF
> zptwp=1, VfeF (12)
teT

> dir(f) 2 =0 (13)

fEFteT

2 €{0,1}, wre{0,1}, VfeFteT (14)

Constraint (F.1.2) ensures that each slot is assigned to at most one flight. Constraint (F.1.2) ensures
that each flight is either operated in exactly one slot or canceled. Constraint (F.1.2)) enforces that
the total number of arrivals equals the total number of departures at the hub airport. The objective
function computes total profit, which defines the valuation of the slot bundle for the airline.

F.2 Case study 2: Cyber Network Defense Auction Design
F.2.1 Motivation and Setup

Modern cybersecurity operations demand both reactive defenses and strategic planning under resource
constraints. On the one hand, reactive tools like intrusion detection and incident response handle
immediate threats. On the other, strategic planning involves anticipating attacks and proactively
allocating resources, such as time, bandwidth, or analyst effort, across networked systems to minimize
long-term risk.

In this context, strategic planning refers to decisions made before attack episodes begin, targeting
hosts and services most critical to operational resilience. Meanwhile, resource constraints may stem
from human limitations (e.g., analyst bandwidth), computational budgets (e.g., action frequency
caps), or system costs (e.g., downtime from defensive interventions). Thus, defensive actions like
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Analyze, Remove, and Restore must be allocated across a distributed enterprise network in a manner
that balances operational cost and cyber risk.

Prior work has explored long-term cyber defense through game-theoretic models [2| |44]], attack
graphs [31]], and stochastic control frameworks [51]], but these often rely on centralized control and
handcrafted utility functions, limiting their adaptability to real-world constraints and adversarial
environments.

To overcome these limitations, we frame cyber defense as a decentralized resource allocation problem,
where each host in the network acts as a self-interested agent with private valuations over bundles
of defensive actions. This allows us to extend our combinatorial auction (CA) framework to reason
about resource allocation in cyber planning, accounting for action synergies, private preferences, and
dynamic threats. Note that it can also be seen as a virtual auction-based guidance mechanism to
enhance the robustness of cyber defense strategies.

We ground this framework in the CAGE Challenge 2 (CC2) simulation environment [28]], a high-
fidelity autonomous cyber operations testbed. In CC2, a Blue agent defends a 13-host enterprise
network against persistent Red-team adversaries. Defensive actions must be selected in anticipation
of potential compromises, lateral movements, or disruptions. Each episode simulates 30 timesteps
of adversarial interaction, capturing realistic operational dynamics. The CC2 environment is imple-
mented on the CybORG platform and includes diverse host types (e.g., user workstations, enterprise
services, defender nodes) with varying roles and vulnerabilities. Blue agents execute tactical decisions
during each timestep, choosing actions based on host state and past observations. Red agents follow
policy-driven strategies like BLine or Meander, simulating attacker behaviors ranging from direct
exploits to stealthy lateral movement.

F.2.2 Valuation Modeling

While prior CC2 agents (including those trained via PPO) optimize at the tactical level, we propose to
“lift” this information upstream for strategic planning. Specifically, we extract Q-values from trained
RL agents, representing long-term expected utility for each action at each host. These Q-values serve
as empirical proxies for private valuations, capturing both immediate and downstream consequences
of defense.

To handle interactions between actions, we compute valuations over bundles of actions using
curvature-based modeling (e.g., additive, submodular, supermodular forms), reflecting synergy
or redundancy between actions. These valuations form the input to our auction-based planner, which
computes strategic allocations subject to feasibility and incentive constraints.

F.2.3 Effect of Truthfulness on Allocation

We compare allocation behaviors under four conditions: truthful reporting, strategic misreporting,
oracle, and greedy heuristic (Figure [5)). The greedy allocation baseline assigns to each agent the
single action bundle that yields the highest individual valuation, selecting the action with the highest
bid per agent without considering global feasibility or incentive alignment. The oracle and greedy
allocations are averaged across the samples. Interestingly, we observe that user-type hosts are
frequently prioritized in learned allocation, often receiving aggressive actions such as Remove and
{Analyze, Remove}. This may seem counterintuitive compared to static criticality rankings, where
enterprises are often considered higher value. However, the Q-values driving our allocation reflect
long-term strategic impact, suggesting that early disruption of User hosts may significantly hinder
adversarial progress. This behavior aligns with the findings of the CC2 evaluation study [[12], which
shows that User hosts often serve as stepping stones toward more privileged targets. Thus, our
mechanism implicitly learns to act preemptively, prioritizing early-stage containment.

F.2.4 Alignment with Cyber Objectives
To further assess whether the learned allocation mechanism prioritizes hosts involved in more cyber

activity, we analyze the correlation between the aggregated allocation scores and the number of Red
and Blue actions each host receives during the simulation. Allocation scores are aggregated by adding
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Figure 5: Allocation matrices under truthful vs. perturbed agent valuations. Under truthful reports,
the learned mechanism concentrates most allocations on Remove and {Analyze, Remove} actions,
indicating a consistent preference for aggressive defense strategies. When agents misreport, this
concentration weakens—allocations become more diffused across action bundles, suggesting that the
mechanism is sensitive to manipulation. However, the relative importance of hosts (the allocation
order) remains mostly preserved, demonstrating structural robustness. The greedy baseline over-
allocates to the most comprehensive bundle {Analyze, Remove, Restore}, particularly for user hosts,
underscoring the inefficiency of naive valuation-based strategies. This confirms that while our
mechanism is not fully strategyproof, it maintains coherent allocation priorities and performs more
adaptively than naive methods. While CAFormer and Greedy tends to prefer the comprehensive
bundle, the oracle chooses bundle 1 (Remove) more often because it can isolate the marginal value of
just Remove in some contexts. It does not favor the largest bundle as strongly, because it is often not
strictly better than the sum of smaller bundles, especially in additive settings.

20



714
715

716
77
718
719
720
721
722
723

724

725
726
727
728
729
730
731
732
733
734
735
736
737

739

740
741
742
743
744
745
746
747
748
749
750

751

Correlation

Pearson r (p) Spearman p (p)

Red (all) 0.529 (0.47) 0.800 (0.20)
Blue (all) 0.964 (0.04) 0.800 (0.20)
Red (enterprises)  0.351 (0.77) 0.500 (0.67)
Blue (enterprises)  0.753 (0.46) 1.000 (0.00)
Red (users) 0.845 (0.15) 0.800 (0.20)
Blue (users) 0.769 (0.23) 0.600 (0.40)

Table 4: Correlation between allocation scores and counts of Red/Blue actions across hosts. Entries
are coefficient (p-value).

the model output in all bundles per host. We compute Pearson’s r and Spearman’s p correlation
coefficients.

As shown in Table 4] we observe a strong positive correlation between allocation scores and the
number of defensive actions by Blue in all hosts (Pearson 7 = 0.964, p = 0.0361), suggesting that the
mechanism tends to focus attention on hosts where defenders are more active. The correlation with
Red (attacker) activity is also positive, but weaker and not statistically significant. Within host-type
subsets (e.g., Users or Enterprises), correlation trends are directionally similar, though only Blue
(enterprises) reaches significance, likely due to the reduced sample sizes. These results indicate that,
while the mechanism is not explicitly aware of the underlying mission-criticality metadata, its learned
allocations align closely with observed operational activity in the environment.

F.2.5 Distributional Reward Shaping via Auction

We further explore the potential of using the auction-derived allocation output as a guiding signal for
the RL agent. The allocation is computed from the Q-values of a converged policy across multiple
episodes and 30 time steps, representing a desirable action distribution over host-action pairs. We
interpret this as a target distribution that reflects strategic prioritization of defensive responses. During
training, this pseudo-auction result is applied as a reward shaping signal—penalizing or rewarding
the agent based on its alignment with the derived allocation. This approach allows us to inject
domain knowledge into the learning process without altering the environment itself. The training
curve is visualized in figure Empirical results show measurable improvements in convergence and
overall policy performance, summarized in Table |3} The Area Under the Curve (AUC) is computed
by integrating the episodic reward over training steps, while the t-statistic and p-value result from
a two-sample t-test comparing the shaped and original reward distributions, excluding the initial
50 steps to avoid initialization bias. The shaped agent consistently outperforms the original agent
across training episodes. The statistically significant result (p < 0.001) and a gain of over 1900 in
AUC highlight the effectiveness of auction-guided reward shaping in accelerating convergence and
enhancing policy quality.

This initial exploration highlights the promise of using virtual auctions—derived from the Q-values
of a converged agent—as a structured reward shaping mechanism. While the current implementation
statically applies the auction allocation as a fixed target distribution, future work can explore dynamic
or online integration of this signal. Specifically, auction allocations could be periodically updated
during training (e.g., every N episodes or steps) to better align with the agent’s evolving policy
and environmental dynamics. Such adaptive shaping could bridge the gap between offline expert
policies and real-time learning. Furthermore, integrating this mechanism into a decentralized training
framework—where hosts act as independent agents sharing soft allocation guidance—might provide
scalability and robustness in complex, multi-agent environments. Investigating generalization to
unseen scenarios, especially beyond the initial 30 evaluation steps, and analyzing robustness under
non-stationary adversaries are also important directions.
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Figure 6: Total reward collected each steps with and without reward shaping, evaluated for 1,000
episodes. The agent learned with reward shaping climbs faster and collects more reward per training
step. The difference is statistically significant.

2x2(A) 2x3 (A) 2x5 (A)
VCG 0.667/0 1.000/0 1.671/0
AMA 0.860/0 —/- -/-
VVCA 0.866/0 -/- -/-
BLAMA 0.786/0 1.222/0 223170
ABAMA 0.786/0 1.255/0 2251/0
BBBVVCA 0.776 /0 1.238/0 224270
RegretNet 0.878/1e—3 1.317/ 1e—3 2.339/1e-3
RegretFormer  0.908 / 1le—3 1.416/ 1e—3 2453/ 1e-3
CANet 0.879/ 1e—3 1.317/ 1e-3 2.282/4e-3
CAFormer 0.891/1e—3 1.326/ 1e—3 2.329/5e-3
CAGraph 1.111/8e—3  1.640/14e—3  2.671/10e—3

m
Table 5: Non-combinatorial results: Our revenue performance is comparable to that of RegretNet
and RegretFormer, which outperform heuristic designs. In symmetric (B), the revenue upper bound
attains 3.548, 5.467, 9.243 for 2 x 2,2 x 3, 2 x 5; in asymmetric (C): 6.184, 9.296, 15.573.

G Additional Results

G.1 Performance in non-combinatorial setting

We compare the computational results for non-combinatorial setting, where bidders draw their value
for each item from U [0, 1] (setting A). In these experiments, we make additive valuation assumption.
The revenue performance is reported in Table[5]

Our revenue performance is comparable to the machine learning-powered models, which outperform
the heuristic designs. The slight underperformance in comparison to RegretNet and RegretFormer
is due to the complex constrained optimization space. For instance, in the 2-agent, 5-item setting,
RegretNet and RegretFormer optimize allocations at the agent-item level (2 x 5), while CANet and
CAFormer optimize at the agent-bundle level (2 x 31), which introduces excessive complexity to
non-combinatorial settings, preventing full convergence. Besides, regret estimation is less reliable in
larger-scale settings, because adversarial optimization of the inner loss (6) might be inaccurate, which
affects the convergence of optimal revenue. If the utility of the best misreport is underestimated,
the revenue might be overestimated. Future work is encouraged to evaluate this approximation’s
accuracy.
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H Implementing Randomized Allocations

From fractional Z to feasible outcomes. Our models output fractional allocations Z € [0, 1],
Unlike assignment problems—where Birkhoff—von Neumann exactly decomposes a doubly stochastic
matrix—general CA polytopes need not equal the convex hull of integral allocations, so an exact
lottery may not exist for arbitrary Z. We therefore implement randomized outcomes with lightweight
rounding or an explicit (approximate) mixture of feasible allocations.

(A) One-shot sampler with contention resolution (fast, default). For each bidder ¢, sample one
bundle (or “no bundle”) from the row distribution {z;s}scx U {1 — ¢ 2ig}; sort sampled pairs
(i,S;) by a priority key (e.g., v;(S;) or weighted random); traverse in order, accepting (i, S;) iff .S; is
disjoint from items already allocated and ¢ has no prior assignment. This yields an integral, feasible
allocation in O(nk lognk) and preserves “at-most-one-bundle-per-bidder” exactly; marginals are
matched approximately.

(B) Dependent/contention—resolution rounding (better marginals). Independently activate (¢, .S)
with probability ;5 = min{l, az;s} for a tuning o € (0, 1] that controls load, then apply a
contention—-resolution scheme: process activated pairs in random priority, accept if feasible (no
item conflict; bidder unused), otherwise discard. This maintains feasibility and improves alignment
with the row marginals.

(C) Column—generation lottery (explicit mixture). Construct a small mixture {6;, A®)} of
feasible integral allocations by iteratively solving the pricing IP (winner—determination) on the
current residual R: A* < argmaxacr(R, A), add A* as a column, and refit {6;} to minimize
|52, 0:A® — Z||, subject to 6, >0,, 6; = 1. Sampling A") with probability 6, implements an
explicit lottery; exact decomposition is achieved when Z lies in conv(F).

Payments. If payments are trained as p; = p; g Zisbis, we either (i) charge the expected
payment (aligns ex-ante revenue with training) or (ii) recompute/adjust on the realized integral
outcome (operationally natural but may shift objectives). In all cases feasibility is preserved and
truthfulness remains approximate (low regret).

What we evaluate. For each method we track (i) feasibility rate (always 100% by construction),
(ii) deviation of realized marginals from Z (row-wise TV distance), (iii) ex-ante vs. realized rev-
enue/welfare gaps, and (iv) runtime. Due to space, full quantitative comparisons are deferred; we will
report these ablations in the extended appendix/supplement.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes] , ,or [NA] .

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract/intro state that we enforce combinatorial feasibility in differen-
tiable auction mechanisms and instantiate CANet/CAFormer/CAGraph; Secs. and[4]
present the setup and experiments (synthetic + two case studies) that support these claims.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: We discuss limits due to bundle enumeration, non-convex min—max training,
randomized allocation implementation, and distribution shift; see Discussion/Conclusion.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

 The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: We do not introduce new theorems; our focus is algorithmic and empirical.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Architectures, loss, data generation, seeds, and training schedules are specified
in appendix and supplement.

Guidelines:
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The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We include an anonymized code bundle with run scripts and instructions in the
supplemental; public data sources (DB1B, T-100, CC2/CybORG) and preprocessing steps
are documented in Appx. [F.I]and

Guidelines:

The answer NA means that paper does not include experiments requiring code.

Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Training/test splits, regret budgets, temperatures, learning rates, network sizes,
and iteration counts are given in SecH](Synthetic Data/Case Studies) and Appx[E]

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Results are averaged over three runs; standard deviations are typically < 0.1
for revenue, < 0.001 for regret.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

 For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Hardware and resources are reported in Discussion/Conclusion.

Guidelines:
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* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We rely on public datasets and simulated environments, no human subjects,
and discuss potential impacts and safeguards in Discussion/Conclusion.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We analyze potential positive/negative impacts for airport slots and cy-
ber defense, including policy trade-offs and risks of mis-specified objectives, Discus-
sion/Conclusion.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards
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13.

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We use original datasets/tools and credit licenses/terms in the paper.
Guidelines:

» The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We release synthetic generators, preprocessing, and training scripts with a
README (usage, env, license); details in supplemental.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.
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* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

. Institutional review board (IRB) approvals or equivalent for research with human

subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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