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Abstract

Sparse Autoencoders (SAEs) have emerged as a useful tool for interpreting the1

internal representations of neural networks. However, naively optimising SAEs for2

reconstruction loss and sparsity results in a preference for SAEs that are extremely3

wide and sparse. We present an information-theoretic framework for interpreting4

SAEs as lossy compression algorithms for communicating explanations of neural5

activations. We appeal to the Minimal Description Length (MDL) principle to6

motivate explanations of activations which are both accurate and concise. We7

further argue that interpretable SAEs require an additional property, “independent8

additivity”: features should be able to be understood separately. We demonstrate9

an example of applying our MDL-inspired framework by training SAEs on MNIST10

handwritten digits and find qualitatively more interpretable SAE features. We11

argue that using MDL rather than sparsity may avoid potential pitfalls with naively12

maximising sparsity such as undesirable feature splitting and that this framework13

naturally suggests new hierarchical SAE architectures which provide more concise14

explanations.15

1 Introduction16

Sparse Autoencoders (SAEs) (Le, 2013; Makhzani and Frey, 2013) were developed to learn a17

dictionary of sparsely activating features that describe a given dataset. They have recently become18

popular tools for interpreting the internal activations of large foundation language models, often19

finding human-understandable features (Sharkey et al., 2022; Huben et al., 2024; Bricken et al.,20

2023b). Researchers often use sparsity, the number of nonzero feature activations as measured by the21

L0 norm, as a proxy for interpretability. SAEs are typically trained with an additional L1 penalty in22

their loss function to promote sparsity.23

We adopt an information theoretic view of SAEs, inspired by Grünwald (2007), which views SAEs24

as explanatory tools that compress neural activations into communicable explanations. This view25

suggests that sparsity may appear as a special case of a larger objective: minimising the description26

length of the explanations. This operationalises Occam’s razor for selecting explanations: all else27

equal, prefer the more concise explanation.28

2 SAEs are communicable explanations29

SAEs aim to provide explanations of neural activations in terms of "features"1. Here we reformulate30

SAEs as solving a communication problem: suppose that we would like to transmit the neural31

activations x to a friend with some tolerance ε, either in terms of the reconstruction error or change in32

the downstream cross-entropy loss. Using the SAE as an encoding mechanism, we can approximate33

the representation of the activations in two parts. First, we send them the SAE encodings of the34

Submitted to Workshop on Scientific Methods for Understanding Deep Learning, NeurIPS 2024.



activations z = Enc(x). Second, we send them a decoder network Dec(·) that recompiles these35

activations back to (some close approximation of) the neural activations, x̂ = Dec(z).36

This is closely analogous to two-part coding schemes (Grünwald, 2007) for transmitting a program37

via its source code and a compiler program that converts the source code into an executable format.38

Together the SAE activations and the decoder provide an explanation of the neural activations, based39

on the definition below.40

Definition 2.1 An explanation e of some phenomena p is a statement e(p) for which knowing e(p)41

gives some information about p. An explanation is typically a natural language statement2.42

The description length (DL) of an explanation is the number of bits needed to transmit the explanation.43

For an SAE, this would be DL = |z|bits + |Dec(·)|bits. The first term is O(n) and the second term is44

O(1) in the dataset size so the first term dominates in the large data regime.45

Occam’s Razor: All else equal, an explanation e1 is preferred to explanation e2 if DL(e1) < DL(e2).46

Intuitively, the simpler explanation is the better one. We can operationalise this as the Minimal47

Description Length (MDL) Principle for model selection: Choose the model with the shortest48

description length which solves the task. It has been observed that lower description length models49

often generalise better (MacKay, 2003).50

Definition 2.2 We define the Minimal Description Length (MDL) as MDLε(x) = minDL(SAE)51

where Loss(x, x̂) < ε and x̂ = SAE(x). We say an SAE is ε-MDL-optimal if it obtains this52

minimum.53

3 Interpretability requires independent additivity54

Following Occam’s razor we prefer simpler explanations, as measured by description length. But55

SAEs are not intended to simply give compressed explanations. They are also intended to give56

explanations that are interpretable and ideally human-understandable.57

SAE features can be interpreted either as causal results of the model inputs (which we can see58

by analyzing feature activation patterns) or they can be interpreted as causes of the model outputs59

(which we can see through conducting interventions on the features and seeing the downstream60

effects). In both cases, we want to be able to understand each SAE feature independently, without61

needing to control for the activations of the other features. If all the feature activations are causally62

entangled—as is the case for the dense neural activations themselves—then they are not interpretable.63

Note that for D features there are O(D2) pairs of features and
∑K

i

(
D
i

)
possible sets of features64

which is much too large for humans to hold in working memory. So for feature explanations to be65

human-understandable we cannot have the all the features being entangled such that understanding a66

single concept requires understanding arbitrary feature interactions.67

Hence, for interpretability, we need to be able to understand features independently of each other68

such that understanding a collection of features together is equivalent to understanding all the features69

separately. We call this property independent additivity, defined below.70

Definition 3.1 Independent Additivity: An explanation e based on a vector of feature activations71

z⃗ =
∑

i z⃗i is independently additive if e(z⃗) ≈
∑

i e(z⃗i). We say that a set of features zi are72

independently additive if they can be understood independently of each other and the explanation of73

the sum of the features is the sum of the explanations of the features3.74

1Here we use the term "feature" as is common in the literature to refer to a linear direction which corresponds
to a member of the set of a (typically overcomplete) basis for the activation space. Ideally the features are
relatively monosemantic and correspond to a single (causally relevant) concept. We make no guarantees that the
features found by an SAE are the "true" generating factors of the system.

2We will treat SAE activations and feature vectors as explanations themselves. Technically, we would want
to do the additional step of interpreting their activation patterns or the results of causal interventions to get a
natural language statement.

3Note that here the notion of summation depends on the explanation space. For natural language explanations,
summation of adjectives is typically concatenation ("big" + "blue" + "bouncy" + "ball" = "The big blue bouncy
ball"). For neural activations, summation is regular vector addition (x̂ = Dec(z⃗) =

∑
i Dec(zi) ).
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Figure 1: Finding the minimal description length (MDL) solution for SAEs trained on MNIST. A)
Description length vs sparsity (L0) for a set of hyperparameters with the same reconstruction error.
B) Plot of the number of alive features as a function of sparsity (L0). C) A random sample of SAE
features at the 95th, 80th, 50th, 20th, and 5th percentiles of feature density respectively.

The independent additivity condition is directly analogous to the "composition as addition" property of75

the Linear Representation Hypothesis (LRH) discussed in Olah (2024). Independent additivity relates76

to the SAE features being composable via addition with respect to the explanation - this is a property77

of the SAE Decoder. In the Linear Representation Hypothesis however, Composition as Addition is78

about the underlying true features (i.e. the generating factors of the underlying distribution), which is79

a property of the underlying distribution.80

It is immediate from the definition that Independent Additivity holds for linear decoders however, we81

note that this condition also allows for more general decoder architectures. For example, features can82

be arranged to form a collection of directed trees, shown in fig. 3, where arrows represent the property83

"the child node can only be active if the parent node is active"4. Here each feature still corresponds to84

its own vector direction in the decoder. Since each child feature has a single path to its root feature,85

there are no interactions to disentangle and the independent additivity property still holds, in that86

each tree can be understood independently in a way that’s natural for humans to understand, as a87

multi-dimensional feature. An advantage of the directed-tree SAE decoder structure is that it can be88

more description-length efficient as shown in fig. 5.89

4 The MDL-SAE finds interpretable and composable features for MNIST90

To achieve the same loss, higher sparsity (lower L0) typically requires a larger dictionary, so there’s91

an inherent trade-off between decreasing L0 and decreasing the dictionary size in order to reduce92

description length. We explore this trade-off in MNIST below and for the GPT-2 language model in93

appendix B.94

Lee (2001) describe the classical method for using the Minimal Description Length (MDL) criteria95

for model selection. Here we choose between model hyperparameters (in particular the SAE width96

and expected L0) for the optimal SAE. Our algorithm for finding the MDL-SAE solution and details97

for this case study are given in appendix F. We trained SAEs on the MNIST dataset of handwritten98

digits (LeCun et al., 1998) and find the set of hyperparameters resulting in the same test MSE. We99

see three basic regimes:100

• High L0, narrow SAE width (C, D in fig. 1): Here, the description length (DL) is linear101

with L0, suggesting that the DL is dominated by the number of bits needed to represent the102

L0 nonzero floats. The features appear as small sections of digits that could be relevant to103

many digits (C) or start to look like dense features that one might obtain from PCA (D).104

• Low L0, wide SAE width (A in fig. 1): Though L0 is small, the DL is large because as the105

SAE becomes wider, additional bits are required to specify which activations are nonzero.106

The features appear closer to being full digits, i.e. similar to samples from the dataset.107

4In practice, we typically expect feature trees to be shallow structures which capture causal relationships
between highly related features. A particularly interesting example of this structure is a group-sparse autoencoder
where linear subspaces are densely activated together.
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• The MDL solution (B in fig. 1): There’s a balance between the two contributions to the108

description length. The features appear like longer line segments or strokes for digits, but109

could apply to multiple digits.110

In this example, the MDL solution finds a meaningful decomposition of digits into stroke-like features.111

More dense SAEs find less interpretable point-like features, while sparser SAEs find features that112

resemble examples from the dataset and fail to decompose the digits into reusable and composable113

features.114

5 Optimising for MDL can reduce undesirable feature splitting115

In large language models, SAEs with larger dictionaries learn finer-grained versions of features116

learned in smaller SAEs, a phenomenon known as "feature splitting" (Bricken et al., 2023b). Feature117

splitting that introduces a novel conceptual distinction is desirable but some feature splitting—for118

example, learning dozens of features representing the letter "P" in different contexts (Bricken et al.,119

2023b)—is undesirable and can waste dictionary capacity while not giving more explanatory power.120

A toy model of undesirable feature splitting is an SAE that represents the AND of two boolean121

features, A and B, as a third feature direction. The two booleans represent whether the feature vectors122

vA and vB are present or not, so there are four possible activations: 0, vA, vB , and vA + vB . See123

appendix E for details on our model of feature splitting.124

Even though feature splitting always results in a lower L0, it does not always result in the smallest125

description length. The phase diagram in fig. 4 shows the case where pA = pB . If the correlation126

coefficient ρ between A and B is small then representing only A and B, but not A ∧B, takes fewer127

bits so the preferred solution avoids feature splitting. However, if the correlation is large, then feature128

splitting is preferred since A ∧B occurs frequently enough that explicitly representing it reduces the129

description length. In this way, minimizing description length can limit the amount of undesirable130

feature splitting and gives us a concrete decision criteria to understand when we might expect feature131

splitting.132

6 Related Work133

Bricken et al. (2023a) also consider how information measures relate to SAEs and find that "bounces"134

in entropy correspond to dictionary sizes with the correct number of features in synthetic experiments.135

We find a similar bounce in description length in a non-synthetic experiment. We go further by136

studying several examples where minimal description length gives more intuitive features and discuss137

more description-efficient SAE architectures.138

As in Ramirez and Sapiro (2012), we use the MDL approach for the Model Selection Problem139

using the criteria that the best model for the data is the model that captures the most useful structure140

from the data. Chan et al. (2024) use Mechanistic Interpretability techniques to generate compact141

formal guarantees (i.e. proofs) of model performance and also note a deep connection between142

interpretability and compression.143

7 Conclusion144

In this work, we have presented an information-theoretic perspective on Sparse Autoencoders as145

explainers for neural network activations. Using the MDL principle, we provide some theoretical146

motivation for existing SAE architectures and hyperparameters. We also hypothesise a mechanism147

for, and criteria to describe, the commonly observed phenomena of feature splitting. In the cases148

where feature splitting can be seen as undesirable for downstream applications, we hope that, using149

this theoretical framework, the prevalence of undesirable feature splitting could be decreased in150

practical modelling settings.151
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8 Debunking Challenge152

8.1 What commonly-held position or belief are you challenging?153

In Mechanistic Interpretability, a commonly held belief is that interpretable explanations consist of154

sparse latents and in particular that sparsity is an operationalisable proxy for interpretability that we155

can use both in our loss functions and for model selection (Sharkey et al., 2022; Huben et al., 2024;156

Bricken et al., 2023b; Olah, 2024; Gao et al., 2024).157

In this way, researchers typically try to attain SAEs which perform well on a (reconstruction error,158

sparsity)-Pareto frontier. That is, they seek to reconstruct the data effectively using as few SAE159

latent features as possible, trading off reconstruction error and sparsity. Though this framing has160

been produced useful features in an unsupervised manner in some cases, we note that optimising for161

sparsity has many undesirable outcomes:162

• Feature Splitting: In section 5 and appendix E, we give a model of undesirable feature163

splitting in which an SAE learns to represent the AND of two genuine model features as a164

third latent feature direction. If the model has sufficient width, then, from the perspective of165

sparsity, it is always beneficial to represents ANDs of features which co-occur even once166

in the dataset. We can see that this leads to unrestrained, undesirable feature splitting as167

several composite features get their own direction in the SAE even if they are not salient168

features either to the human interpreters or to the model.169

• Strange Limiting Properties for sparsity: Suppose that we’re jointly optimising for170

sparsity and reconstruction error with the SAE width as a free hyperparameter. How should171

we expect the width to change as we optimise? It is immediate to see that the width should172

grow to be extremely large: the natural solution to this optimisation problem is to take173

the width of the SAE to be equal to the number of possible neural activation inputs (i.e.174

D = (vocab size)seq len). In this case, we have the sparsity given as L0 = 1 and MSE175

reconstruction error as 0. Though this solution is optimal given the problem statement, it is176

difficult to see this solution as a valuable tool for interpreting the neural activations.177

8.2 How are your results in tension with this commonly-held position?178

We argue from the information-theoretic perspective of viewing SAEs as explanatory tools that179

compress neural activations into communicable explanation. From this perspective, minimising180

sparsity appears not as the true optimisation goal but rather as a proxy for minimising description181

length (i.e. conciseness).182

Under the MDL paradigm, we instead are able to overcome the two previously presented issues. For183

feature splitting, fig. 4 shows that MDL SAEs have a clear decision boundary which describes which184

feature splitting is deemed effective and so naturally reduce the prevalence of undesirable feature185

splitting in our feature dictionary. This results in SAEs which are subjectively more interpretable and186

speculatively appear to be more aligned with the model’s computation.187

8.3 How do you expect your submission to affect future work?188

We expect future work to optimise for the (reconstruct error, description length)-Pareto frontier rather189

than the (reconstruction error, sparsity)-Pareto frontier. We show that this approach naturally suggests190

SAE architectures which admit more human-interpretable features. Promising architectures for future191

work include hierarchical and group-sparse SAEs.192

Our work also naturally suggests a different approach to the unbounded search for ever-wider SAEs193

as present in Templeton et al. (2024). We expect future work to focus more on obtaining disentangled,194

causally relevant, interpretable features rather than pushing on the size of the dictionary.195

In particular, though (Engels et al., 2024) suggest that not all language model model representations196

are 1-d subspaces, we note that it is hard to successfully use this fact to build better SAE architectures.197

This is because, from a sparsity perspective, it is still better to instead use feature splitting to find198

linear directions rather than actually taking advantage of the inherent geometry of the feature space.199

With MDL-SAEs, it becomes feasible to successfully use the geometry of feature space to reduce the200

description length of the explanation (at the expense of sparsity), giving more interpretable features.201
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A SAE communication protocol254

En
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SAEs as a communication protocol

Figure 2: A schematic showing a sparse autoencoder (SAE) being used to communicate an input by
transmitting the encoded activations and decoding them into a reconstruction of the input.

B SAEs should be sparse, but not too sparse255

Naively we might see SAEs as decompressing neural activations which contain densely packed256

features in superposition. To see that SAEs are producing compressed explanations of activations we257

must note that the inherent feature sparsity means that it is more efficient to communicate SAE latent258

features rather than neural activations even though the dimension of the latent dimension is higher.259

The description length for a set of SAE activations (under independent additivity) with distribution260

p(z) is given by H(p) =
∑

z∈Z −p(z) log2 p(z). For exposition, consider a simpler formulation261

where we directly consider the bits needed without prior knowledge of the distributions. For a set of262

feature activations with L0 nonzero elements out of D dictionary features, an upper bound on the263

description length is264

DL ≲ L0(B + log2 D) (1)

where B is the effective precision of each float and log2 D is the number of bits required to specify265

which features are active. To achieve the same loss, higher sparsity (lower L0) typically requires a266

larger dictionary, so there’s an inherent trade-off between decreasing L0 and decreasing the dictionary267

size in order to reduce description length.268

As an illustrative example, in Appendix B, we compare reasonable hyperparameters for GPT-2 SAEs269

to dense/narrow and sparse/wide extreme hyperparameters. We show that an SAE (Bloom, 2024)270

has a description length of approximately 1405 bits per input token, compared to 5376 bits for271

transmitting the dense neural activations and 13,993 bits for a one-hot encoding of all possible token272

sequences of length 128. Here the SAE at intermediate sparsity and width has the lower description273

length.274

C Indepedently Additive SAE Architectures275

We show examples of different SAE architectures that satisfy independent additivity in fig. 3276

D Comparison of GPT-2 SAE hyperparameters277

• Reasonable SAEs: Bloom (2024)’s open-source SAEs for GPT-2 layer 8 have L0 = 65,278

D = 25, 000. Given B = 7 bits per nonzero float (8-bit quantization with the sign fixed to279

positive), the description length per input token is 1405 bits.280

• Dense Activations: A dense representation that still satisfies independent additivity would281

be to send the neural activations directly instead of training an SAE. GPT-2 has a model size282

of d = 768, the description length is simply DL = B d = 5376 bits per token.283

• One-hot encodings: At the sparse extreme, our dictionary has a row for each neural284

activation in the dataset, so L0 = 1 and D = (vocab size)seq len. GPT-2 has a vocab size of285
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Figure 3: Examples of different SAE architectures. All but nonlinear decoders are compatible with
independent additivity as feature activations correspond to adding a separate vector to the output.
Architectures with directed tree decoders or which allow for vectors lying within a subspace are
potentially more communication efficient since a child node can only be active if its parent node is
active.

50,257 and the SAEs are trained 128 token sequences. All together this gives DL = 13, 993286

bits per token.287

Although the comparison is slightly unfair because the SAE is lossy (93% variance explained) and the288

other cases are lossless, these calculations demonstrate that reasonable SAEs are indeed compressed289

compared to the dense and sparse extremes. We hypothesise that the reason that we’re able to get this290

helpful compression is that the true features from the generating process are themselves sparse.291

Note the difference here from choosing models based on the reconstruction loss vs sparsity (L0)292

Pareto frontier. When minimising L0, we are encouraging decreasing L0 and increasing D until293

L0 = 1. Under the MDL model selection paradigm we are typically able to discount trivial solutions294

like a one-hot encoding of the input activations and other extremely sparse solutions which make the295

reconstruction algorithm analogous to a k-Nearest Neighbour classifier.296

E Toy Model of Feature Splitting297

No Feature Splitting: Say that the SAE only learns two boolean feature vectors, vA and vB , as298

shown in fig. 4. It is still capable of reconstructing A ∧B as the sum vA + vB . The L0 would simply299

be the expectation of the boolean activations, so L0 = pA + pB and the description length would be300

DL = H(pA) +H(pB) where H(p) is the entropy of a Bernoulli variable with probability p.301

Feature Splitting: In this case, the SAE learns three mutually exclusive features. A ∧B is explicitly302

represented with the vector vA + vB while the two other features represent A ∧ ¬B and B ∧ ¬A303

with vectors vA and vB . This setup has the same reconstruction error but has lower L0 = pA∧¬B +304

pB∧¬A + pA∧B = pA + pB − pA∧B since the probabilities for A ∧ ¬B, say, are reduced as305

pA∧¬B = pA − pA∧B . Note that the L0 (sparsity) is necessarily lower than in the non-feature306

splitting case.307

F Details on determining the MDL-SAE308

F.1 Algorithm309

1. Specify a tolerance level, ε, for the loss function. The tolerance ε is the maximum allowed310

value for the loss, either the reconstruction loss (MSE for the SAE) or the model’s cross-311

entropy loss when intervening on the model to swap in the SAE reconstructions in place of312

the clean activations. For small datasets using a reconstruction, the test loss should be used.313

2. Train a set of SAEs within the loss tolerance. It may be possible to simplify this task by314

allowing the sparsity parameter to also be learned.315

3. Find the effective precision needed for floats. The description length depends on the float316

quantisation. We typically reduce the float precision until the change in loss results in the317

reconstruction tolerance level is exceeded.318
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A) No feature splitting C) Description lengths

A
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Feature 
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Figure 4: A toy model of undesirable feature splitting. The SAE can learn two boolean features
without feature splitting (A) or three mutually exclusive boolean features with feature splitting (B)
which always has lower L0. Minimizing description length provides a decision boundary (C) for
when feature splitting is preferred or not.

4. Calculate description lengths. With the quantised latent activations, the entropy can be
computed from the (discretized) probability distribution, {piα}, for each feature i, as

H =
∑
i,α

−piα log piα

5. Select the SAE that minimizes the description length i.e. the ε-MDL-optimal SAE.319

F.2 Details for MNIST case study320

For MNIST, we trained BatchTopK SAEs (Bussmann et al., 2024), typically for 1000+ epochs321

until the test reconstruction loss converged or stopping early in cases of overfitting. Our desired322

MSE tolerance was 0.0150. Discretizing the floats to roughly 5 bits per nonzero float gave an323

average change in MSE of ≈ 0.0001, which was roughly the scale over which MSE varied for the324

hyperparameters used.325

Gao et al. (2024) find that as the SAE width increases, there’s a point where the number of dead326

features starts to rise. In our experiments, we noticed that this point seems to be at a similar point to327

where the description length starts to increase as well, although we did not test this systematically328

and this property may be somewhat dataset dependent.329

G Hierarchical features allow for more efficient coding schemes330

Often features are semantically or causally related and this should allow for more efficient coding331

schemes. For example, consider the hierarchical concepts "Animal" (A) and "Bird" (B). Since all332

birds are animals, the "Animal" feature will always be active when the "Bird" feature is active. A333

conventional SAE would represent these as separate feature vectors, one for "Bird" (B) and one for334

"Generic Animal" (A ∧ ¬B), that are never active together, as shown in fig. 5. This setup has a low335

L0, equal to the probability of "Animal", pA, since something is a bird, a generic animal, or neither.336

An alternative approach would be to define a variable length coding scheme (Salomon, 2007). For337

example, one might consider first sending the activation for "Animal" (A) and only if "Animal" is338

active, sending the activation for "Animal is a Bird" (B|A). Now the description length is given as339

DL = H(pA) + pAH(pB|A) which is always fewer bits compared to the conventional SAE with340

DL = H(pA − pB) +H(pB), (see the phase diagram in fig. 5). The overall L0 however is higher341

because sometimes two activations are nonzero at the same time, so L0 = pA + pB|A.342

This case illustrates the potential to reduce description length by matching the SAE architecture343

more closely to the hierarchical and causal structure of the data distribution. We also see another344

case where optimising for sparsity differs to the MDL approach - hierarchical structures of the type345

described above are never beneficial when optimising for sparsity but when thinking in terms of346

Description Length, there are clear benefits to using the semantic structure of the data.347
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H Description lengths for hierarchical features348

Independent additivity of feature explanations also implies that the description length of the set of349

activations, {zi}, is the sum of the lengths for each feature DL({zi}) =
∑

i DL(zi). If we know350

the distribution of the activations, pi(z), then it is possible to send the activations using an average351

description length equal to the distribution’s entropy, DL(zi) = H(pi) ≡
∑

z∈Z −pi(z) log2 pi(z).352

For directed trees, the average description length of a child feature would be the conditional entropy,353

DLchild(zi) = H(pi| parent active), which accounts for the fact that DL = 0 when the parent is not354

active. This is one reason that directed tree-style SAEs can potentially have smaller descriptions than355

conventional SAEs.356

“Generic Animal” 
(A ⋀ not B)

A)   Separate features

“Bird” (B)

B)  Hierarchical features C)   Description Lengths

“Animal” (A)

“Animal is a bird” (B | A)

H
ierarchy better

Hierarchical
features preferred 

Figure 5: Two naturally hierarchical boolean features, such as "Animal" and "Bird", can be learned
as separate mutually exclusive features (A) or in hierarchy (B) where the child feature can only be
active if the parent feature is active, captured by the conditional probability pB|A. C) The hierarchical
case always has lower description length (DL) since the child feature’s activations need not be sent
when the parent is not active.
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