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Abstract— Mammogram benign or malignant classification
with only image-level labels is challenging due to the absence
of lesion annotations. Motivated by the symmetric prior that the
lesions on one side of breasts rarely appear in the corresponding
areas on the other side, we explore to answer a counterfactual
question to identify the lesion areas. This counterfactual question
means: given an image with lesions, how would the features have
behaved if there were no lesions in the image? To answer this
question, we derive a new theoretical result based on the sym-
metric prior. Specifically, by building a causal model that entails
such a prior for bilateral images, we identify to optimize the
distances in distribution between i) the counterfactual features
and the target side’s features in lesion-free areas; and ii) the
counterfactual features and the reference side’s features in lesion
areas. To realize these optimizations for better benign/malignant
classification, we propose a counterfactual generative network,
which is mainly composed of Generator Adversarial Network and
a prediction feedback mechanism, they are optimized jointly and
prompt each other. Specifically, the former can further improve
the classi?cation performance by generating counterfactual fea-
tures to calculate lesion areas. On the other hand, the latter helps
counterfactual generation by the supervision of classification loss.
The utility of our method and the effectiveness of each module
in our model can be verified by state-of-the-art performance on
INBreast and an in-house dataset and ablation studies.
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I. INTRODUCTION

BREAST cancer is the leading cause of cancer
death among women [35]. The mammography-based

Benign/Malignant Classification (BMC) is considered to be
an effective way for early breast cancer diagnosis. Since
the annotations of lesion areas are manually costly (e.g.,
labelling bounding boxes [8], [23], [30], [36], [40] or binary
masks [7]), it is desired for clinical use to achieve BMC
with only image-level labels. The key towards this goal
lies in the exploration of abnormal patterns/features, such as
masses, calcification clusters, structure distortions and their
associated signs like skin retraction, skin thickening and so
on. However, the high-intensity breast tissues in 2D image
(as projection of the 3D organ) may partially obscure the
lesions, making the identification of the above abnormalities
challenging.

To solve this problem, existing works mainly utilize spe-
cific rules or attention modules for feature selection. For
example, [46] selects the local features with the maximum
response or largest prediction score; [9], [44] selects the
most discriminative region via the proposed attention branch
supervised by a classification signal. However, these methods
fail to consider the mammogram domain knowledge, which
can be very valuable for lesion localization.

One important mammogram medical prior is “Anotomi-
cal Symmetry”, which has been authenticated by BI-RADS
standard of American College of Radiology [33]. Such a
prior is two-fold. On one hand, the lesion area in the one
side rarely appears in the corresponding area in the other,
as illustrated by the unhealthy cases in Fig. 1 (a). On
the other, for lesion-free areas in both sides, the bilateral
breasts often share similar parenchymal texture, as shown
in Healthy Breasts cases in Fig. 1 (b). This symmetric
prior is also found in previous studies about breast cancer
[2], [5], [21].

Inspired by such a prior, it is natural to ask the fol-
lowing counterfactual generation question: what would the
features of the target image have been looked like had lesions
removed, given observed target image with lesions and the
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Fig. 1. (a) Two cases to show how the unhealthy breasts look asymmetrical. (b) Illustrations of that healthy breasts are roughly bilaterally symmetrical, with
patterns and appearance (e.g., structure, distribution, density, and morphology) of breast tissues can be very diverse among them.

reference image that is lesion-free in the corresponding area?
After such counterfactual features being generated, the residue
between the original target features and the counterfactual one
incorporates the information of lesions. Hence the calculated
residue can provide clinically explainable information for
BMC. The answer to the above question is via constructing
a structural causal model [28] in which the counterfactual
learning is well defined. Specifically, a structural causal model
(SCM) is proposed that introduces latent bilateral variables for
generating bilateral images. To depict the bilateral symmetry,
we further introduce a hidden confounder (including DNA,
environment, etc.) that generates such bilateral features via
the same causal mechanism. Following the symmetric prior,
we can obtain an inspiring theory dubbed as counterfactual
constraints: the target features of counterfactual generation
share the same distribution (i) with the reference features in
lesion areas and (ii) with the target features in lesion-free
areas. Based on such a theoretical finding, we propose a novel
Counterfactual Generation Network (CGN). Note that pixel-
to-pixel registration between bilateral images is challenging
due to unpleasant spatial distortion during image capturing
and imperfect anatomical symmetry, we apply counterfactual
generation in feature level motivated by [22]. Moreover, it
achieves faster training speed without losing prediction power.
This is also the reason why many domain adaptation methods
work on feature space. Our CGN simultaneously optimizes the
counterfactual generation (under counterfactual constraints)
and lesion-area estimation via an attention-based prediction
feedback mechanism, in an iterative manner. During opti-
mization, both the lesion-area estimation and counterfactual
generation prompt each other, supervised by classification loss.

In contrast to the existing GAN-based works [31], [34], [38],
[45] for counterfactual generation, our method is endowed
with a theoretical guarantee regarding the counterfactual dis-
tribution [6] by exploiting the symmetric prior. Specifically,
AnoGAN [31] learns the latent space of healthy data and
assumes that the lesions cannot be reconstructed within such
latent space. Therefore the areas with large reconstruction
errors are more likely to be lesions. Its performance highly
depends on how well the healthy data is modeled. However,
in our mammogram application, the glandular structure and
characterization of healthy images can be very diverse. Some-
times the healthy pattern can even be similar to lesions, as
shown in Fig. 1. Thus it is challenging to model healthy
patterns well and distinguish the lesions at the same time
using only healthy data. Although the cycle consistency loss
[34], [45] can utilize the lesion information by learning a back
translation (i.e., from the counterfactual to the original), they
also suffer from the healthy modeling problem in the forward
translation (i.e, from the original to the counterfactual). What
is more, these methods all assume that the translated data
can be translated back to the original data [16], [26]. In our
application, it means the back translation network should be
able to model the location and appearance of the removed
lesion. However, mammogram lesions can appear anywhere,
i.e., the location of the lesions is unpredictable. Therefore, it is
an ill-posed problem to translate the counterfactual data back
to the corresponding original data perfectly. BR-GAN [38]
further improves cycle consistency mechanism by utilizing the
information of the contralateral information during generation.
However, this method implicitly assumes that the contralateral
side contains no lesions, which may not hold in real scenarios.
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Fig. 2. (a): Our causal graph with observed variables marked by yellow and unobserved variables marked by gray. For notations, C denotes the DNA,
growth environment that can explain the common properties shared between XT and X R ; Z R, ZT denote lesion states (Z�

u=T ,R = 1 if there are lesions in �;
and = 0 if not ); HR, HT respectively denote the hidden features of the image. (a) is mathematically expressed in our Eq (1). (b): Our counterfactual learning
framework, motivated by symmetric prior (as shown in the top blue box). Our theoretical result (theorem 1) is illustrated in the bottom orange box, in which
the HC denotes the counterfactual result of the target side with the removal of lesion areas, i.e., the counterfactual result of HT under counterfactual event
ZT = 0. The blue arrows denote “distributionally equivalence”. As shown, the distribution of H �

C is the same with H �
R , described by Eq. (2); the distribution

of H �
C is the same with H �

T , described by Eq. (3).

Instead of learning from healthy images, our CGN applies
counterfactual generation conditioning on the bilateral infor-
mation. Based on the symmetry prior, we propose to generate
counterfactual features and estimate lesion areas together
under counterfactual constraints: being similar in distribution
with the reference features in lesion areas and maintaining
the information of the target features in lesion-free areas.
The whole pipeline of our method is illustrated in Fig. 3.
Specifically, we first apply a deep generator with AdaIN [18]
mechanism to provide the feature generation ability. Then
we design a prediction feedback mechanism to help estimate
the lesion areas. Meanwhile, an adversarial reference loss, a
feedback triplet loss, and an auxiliary negative embedding
loss are proposed to encourage the generated features to
satisfy the above counterfactual constraints. Both the lesion-
area estimation and counterfactual generation are optimized
jointly and prompt each other. Further, we get the residual
features by computing the difference between the generated
counterfactual features and target features. Finally, we aggre-
gate the residual features together with the target features for
the final classification.

We evaluate the proposed method on a public dataset
INBreast [25] and an in-house dataset. Our CGN achieves
an area under the curve (AUC) of 91.3% on INBreast and
78.1% on the in-house dataset, which largely outperforms the
representative methods. Our contributions are summarized as
follows:

1) Ideologically, we exploit the symmetric prior into coun-
terfactual generation for benign/malignant classification.

2) Theoretically, we prove that the counterfactual features
should follow the counterfactual constraints, under the
symmetric prior.

3) Methodologically, we propose the counterfactual gener-
ation network, guided by the counterfactual constraints.

4) Experimentally, we achieve state-of-the-art perfor-
mance for mammogram classification on both the public
and the in-house datasets.

II. RELATED WORK

A. Counterfactual Generation

Existing GAN-based models for counterfactual generation
can be roughly categorized into two classes: (i) healthy
modeling methods, e.g., AnoGAN [31] and (ii) methods
based on cycle consistency, e.g., CycleGAN [45], Fixed-
point GAN [34]. For class (i), they propose to model the
pattern of healthy data. However, these methods suffer from
unstable result due to large diversity of glandular structure
and characterization of healthy images. For class (ii), they use
cycle consistency loss to incorporate bi-directed translation:
forward translation (from the original to the counterfactual)
and back translation (from the counterfactual to the original).
These methods suffer from two problems: a) the healthy
modeling problem for forward translation, similar to class
(i); b) the ill-posed problem for back translation since the
location and appearance of the removed lesion are diverse and
unpredictable. In comparison with existing works, our method
learns healthy pattern by exploiting symmetric prior, so as to
avoid the problems mentioned above. As a result, our model is
able to achieve more robust counterfactual generation result.

B. BMC With Only Image-Level Labels

Previous approaches that can be used to address BMC
with only image-level labels without any extra annotations
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Fig. 3. The schematic overview of CGN. First, two feature extractors with weight sharing extract the features for input paired target and reference images,
respectively. Then the bilateral features are processed by AdaIN mechanism and fed into the generator G to generate the counterfactual features. The
counterfactual features are constrained by adversarial learning with a feedback triplet loss LFT , and a negative embedding loss LN E . Then, the residual
features are obtained by computing the difference between the target features and counterfactual features. Finally, the residual features are fed into a Fusion
network with target features and outputs prediction of benign/malignant.

are roughly categorized into two classes: (i) the attention-
based methods, e.g., Zhu et al. [46], Zhou et al. [44]
and Fukui et al. [9]; (ii) the multi-view fusion methods,
e.g., Wu et al. [41], BR-GAN [38]. For class (i), they append
a response-based visual explanation model with an attention
module or specific rules. However, they all ignore medical
domain knowledge which is valuable for BMC and are fragile
when facing dense breasts without learning from bilateral
information. For class (ii), since the bilateral breasts are not
pixel-to-pixel symmetry, direct multi-view fusions [41] can be
very sensitive to bilateral misalignment. Although the residual-
preserved mechanism proposed by [38] could improve the
cycle consistency mechanism, the location of lesions can be
inaccurate due to lack of leveraging symmetric prior regarding
lesion areas. In contrast, our method can avoid the problems
above by taking advantage of the symmetric prior elaborately.
More importantly, our method is guaranteed by theoretical
formulation on the counterfactual generation via structural
causal model.

III. METHODOLOGY

Problem Setup and Notations: The goal of mammogram
benign or malignant classification is to learn classifier f :
X → YT that predicts the disease label of target side XT .
Where X := (XT ,XR) (XT ,XR ⊂ R

d ) denotes the input
space of bilateral breast images. Here, T and R respectively
stand for the target and reference side of bilateral breast
images. YT := {0, 1} denotes the disease label of the target
side (1 denotes malignant and 0 denotes benign). To achieve
this goal, we are given training data {(xi

T , xi
R, yi

T )}i∈[N]

([N] := {1, . . . , N} for any integer N > 0). During test stage,
our goal is to predict yt for a new instance x = (xT , xR) ∈ X .

A. Counterfactual Learning

Symmetric Prior [33]: For a paired image data, if the target
image contains lesions, the corresponding symmetrical area
in the reference image has almost certainly no lesions. If the
area on both sides contain no lesions, they share the same
distribution on parenchymal texture.

This symmetric prior provides guidance for localizing lesion
areas, as a residue between the features of the target image
and the one with the removal of corresponding lesions. The
generation of the latter image is a counterfactual question,
i.e., what would the features of target image have been looked
like had lesions removed, given observed target image with
lesions and the reference image that is lesion-free in the
corresponding area? Such a counterfactual question has been
well-defined and explored in the framework of Structural
Causal Model (SCM) [28] that entails the causal assumptions
in the corresponding causal graph. In our scenario, these causal
assumptions come from the symmetric prior between bilateral
images.

To describe this bilateral symmetry, we propose a SCM
that introduces a hidden common factor (denoted as C which
can refer to DNA, growth environment, etc.) as the con-
founder of the bilateral variables. This bilateral generation
depicts our symmetric prior as shown in Fig. 2 (a). Besides,
our SCM incorporates bilateral latent features HU=T ,R, as
abstraction/concepts of bilateral images. Such bilateral fea-
tures, which are affected by C and disease status (YU=T ,R)
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that is determined by lesion status ZU=T ,R . The distribution
of these variables are assigned by the following structural
equations:

C = fC (ε) →
{

ZT = fZT (C)

Z R = fZ R (C)
→

{
YT = fYT (C, ZT )

YR = fYR (C, Z R)

→
{

HT = fHT (C, YT )

HR = fHR (C, YR)
→

{
XT = fXT (C, HT )

X R = fX R (C, HR).
(1)

Equipped with such a SCM, we can mathematically for-
mulate the symmetric prior as Z�

T = 1 → Z�
R = 0,

with � denoting the lesion areas of the target image XT .
The counterfactual generation question can be formulated as
HT (ZT =0)

�(c) that can be read as the value of HT on � in
situation C = c had Z�

T = 0 [28]. Since the situation C = c
is induced by the factual event {H �

T = ht , Z�
T = 1}, our

counterfactual distribution can be denoted as P(HT (Z�
T =0)

� =
h|H �

T = ht , Z�
T = 1). Under our SCM and the symmetric

prior, we have following results for counterfactual generation:
Theorem 1: Under the symmetric prior, the structural equa-

tion model defined in Eq. (1) for Fig. 2 (a) has the following
results for counterfactual distribution of target features:

P(HT (Z�
T =0)

� = h|H �
T = ht , Z�

T = 1)

= P(H �
R = hr |H �

T = ht , Z�
T = 1) (2)

P(HT (Z�
T =0)

� = h|H �
T = ht , Z�

T = 0)

= P(H �
T = ht |H �

T = ht , Z�
T = 0), (3)

The proof of Theorem 1 is shown in our appendix. This
theorem implies the following counterfactual constraints: the
distribution of generated counterfactual features should be
equal (i) to reference features in lesion areas, (ii) to target fea-
tures in lesion-free areas. To realize the above counterfactual
constraints, we propose to optimize the following objectives
for the counterfactual generation:

min
θ

D(Pθ (HT (Z�
T =0)

�), Pθ (H �
R )) (4)

min
θ

D(Pθ (HT (Z�
T =0)

�), Pθ (H �
T )), (5)

where D denotes generalized distance measure, e.g., KL
divergence. With such counterfactual learning, it is expected
that the lesion areas, as the subtraction of counterfactual
generation of HT (with lesions removed) from original HT ,
can be detected precisely and hence can lead to accurate
classification performance. To achieve the above two goals,
we propose a counterfactual generating network (CGN), which
cooperatively localizes the lesion areas and achieve counterfac-
tual generation simultaneously. We explain the CGN in details
in the subsequent section.

B. Counterfactual Generating Network (CGN)

As illustrated in Fig. 3, our counterfactual generation net-
work for mammogram classification contains the following
steps: (i) Extract the target and reference features HT and
HR from images XT and X R , via a feature extractor chosen
from backbone network, e.g. AlexNet [19], ResNet [14],

DenseNet [17], EfficientNet [37], (ii) a counterfactual genera-
tion module is designed to generate counterfactual features HC

from both HT and HR , (iii) a classification module is designed
to predict malignant/benign, with aggregated HC and HT as
input. To accurately identify � for generating HC in step (ii),
a prediction feedback mechanism and a set of counterfactual
constrains motivated by Eq. (4) and (5) are designed. In what
follows, we will explain the above mechanisms in more details.

1) Counterfactual Generation Module: The Adaptive
Instance Normalization (AdaIN) [18] has been proved to be
effective for style transfer tasks. It is adopted in the generator
G (as shown in Fig. 3) for counterfactual generation, with HT

as content and HR as style in our case:

Ada I N(HT , HR) = σ(HR)

(
HT − μ(HT )

σ (HT )

)
+ μ(HR), (6)

with μ(·) and σ(·) denoting the mean and standard variance
function. As suggested by [18], an interpolated HT and AdaIN
are fed into a generator network containing nine residual
blocks to generate counterfactual features HC :

HC = G((1 − α) ∗ HT + α ∗ Ada I N(HT , HR)), (7)

where α is a hyper-parameter of the interpolation weight.
2) Classification Module: The residual features (entailing

lesion information) obtained by HT − HC and HT (with
additional contextual information which is showed useful for
the medical image inference [3] besides lesion-related infor-
mation we obtained) are fed into a classifier in a concatenated
way. This classifier, which implements a convolutional block
as FusionLayer to obtain the fused features, is trained via
commonly used cross-entropy loss:

LC L S(G)=−(Y gt
T ∗ log YT (HT − G(HR, HT ), HT )

+ (1−Y gt
T )∗log(1−YT (HT −G(HR, HT ), HT ))),

(8)

where YT (HT − G(HR, HT ), HT ) (with HC = G(HR, HT ))
is the classification probability of being malignant.

3) Prediction Feedback Mechanism: This mechanism is
to estimate the lesion areas � for follow-up counterfactual
generation (specifically Eq. (10)). For implementation, we
use the attention mechanism, in which the attention map
is calculated by normalization/softmax following the class
activation map (CAM) [44], i.e., P� = so f tmax(C AM) that
denotes the probability map of being lesions. Higher value of
a pixel implies higher probabilities of being lesioned. Thus
1 − P� measures the probability of not being lesioned.

4) Counterfactual Constraints: Since the direct optimiza-
tion of Eq. (4) and (5) can be intractable/unstable for general
distance measure D such as KL-divergence, we adopt the
adversarial learning strategy [10]. For optimization of Eq. (4),
GAN generates similar features from the whole reference
image and can constrain our desired features be the same as
the reference in lesion areas. Specifically, a Discriminator D
(learns to classify HC and HR) and a Generator G (fools the
discriminator) are designed and trained in a competing way:

min
G

max
D

LAD(G, D)

:= log (D (HR)) + log (1 − D (G(HT , HR))) . (9)
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However, the generated features through GAN loss are
undesired features in lesion-free areas. For optimization of
Eq. (5), we use a prediction feedback mechanism to localize
lesion areas. One intuitive way to use feedback mechanism
is constraining generated features to be the same as the
target/reference features in lesion-free/lesion areas directly.
However, motivated by [32], the triplet loss can be better than
such designs. They will suffer from slow convergence and
falling into local minimum easily. We analysis and evaluate
such variant methods in Sec IV-F. Thus, we propose a feed-
back triplet loss to minimize the distance between the target
features H �

T and counterfactual features H �
C in lesion-free

areas, which is measured by target-counterfactual distance dtc

by weighted mean square error:

dtc =
∑h

i
∑w

j (1 − Pij
� )

∥∥∥H ij
T − H ij

C

∥∥∥2

2

h × w − 1
, (10)

where h and w denote the height and width of CAM respec-
tively. Motivated by minimization of distance between HC and
HR enforced by Eq. (9), we choose a drc between HR and HT

as an adaptive reference to minimize dtc. The drc is measured
by chamfer distance [1] to endure the misalignment, and is
defined by

drc =
∑h

i
∑w

j (min
u,v

∥∥∥H ij
R −H uv

C

∥∥∥2

2
+min

u,v

∥∥∥H ij
C −H uv

R

∥∥∥2

2
)

2 × h × w
. (11)

Therefore, the feedback triplet loss is defined as:

LFT (G) = max {0, dtc + β − drc} . (12)

The triplet loss makes HC be closer to HT than HR in
terms of the lesion-free areas. Further the GAN loss makes
the distance between HC and HR be close in the lesion areas.
Based on the cooperation of GAN loss and the triplet loss, the
generated HC satisfies Eq. (4) and (5). Besides, L FT (G) as a
margin term can avoid learning identity mapping from HT to
HC during minimizing L FT (G). Catering misalignment is not
needed for dtc since HC is for the “target” and hence perfectly
aligned with HT in pixel-wise.

Besides, since the lesion regions of HT have been removed
in HC , the HC must also be non-malignant. Such a knowledge
can be reflected via an auxiliary negative embedding loss as
a constraint:

LN E (G) = − log(1 − pm(HC)), (13)

where pm(HC) denotes the malignant probability of HC .
5) Joint Optimization: The final loss is combination of the

losses defined in Eq. (8), (9), (12) and (13):

min
G

max
D

L(G, D) :=
∑

k

{Lk
AD(G, D) + Lk

N E (G)

+Lk
FT (G) + Lk

C L S(G)
}
, (14)

where k denotes sample index, that is, we calculate corre-
sponding losses for each sample and derive the final joint
loss. By optimizing the loss L(G, D), these modules can be
optimized cooperatively and compatibly: the counterfactual
generation helps discover the lesions for classification; on

the other hand, the classification module helps counterfactual
generation in a supervised way. The effect of these modules
can be validated by our ablation study, which are explained
detailedly in the next section.

IV. EXPERIMENTS

A. Datasets

We evaluate our method on both the public and the in-house
datasets, with only image-level malignant/benign labels are
provided. For benign/malignant classification, we select only
lesional images according to the clinical report, as lesion-free
images are healthy by default. For the public dataset, we use
INBreast dataset [25] due to its high quality compared to other
public datasets [46] and an in-house dataset. The INBreast
dataset contains 115 cases and 410 mammograms. INBreast
provides each image a BI-RADS result as image-wise ground
truth and we use the same pre-prosessing method of labels as
Zhu et al. [46](malignant if BI-RADS > 3; benign otherwise).
We share the same dataset with Zhu et al. [46] in which the
dataset contains 100 mammogram images with masses, except
that we discard 9 of them for lack of contralateral images. We
use five-fold cross-validation for evaluation and area under the
curve (AUC) for measurement.

The in-house dataset contains 2500 images. We select
1303 images of them that contain image-level benign or
malignant labeling annotations. The selected dataset contains
589 only masses, 120 only suspicious calcifications, 34 only
architectural distortions, 197 only asymmetries and 363 mul-
tiple lesions from 642 patients. All these 1303 images have
opposite sides, i.e. 1303 pairs (Note that the target image A
with a malignancy annotation is paired with B, counting as
one pair. Meanwhile, if B also has a malignancy annotation,
conversely B can be the target and A can be the reference,
counting as another one pair). We randomly divide the dataset
into training, validation and testing sets by the proportion
of 8 : 1 : 1 in patient-wise.

B. Experiment Settings

To validate the utility of our method, we apply our model
on two problem settings: the mass-lesion image classification
followed by [46] and mixed-lesion classification in which the
lesions can be masses, calcification clusters and distortions.
We adopt various backbones in each setting. All together,
we implement our model on: mass malignancy classifica-
tion on INBreast dataset with AlexNet [19], Resnet50 [13],
DenseNet [17] and EfficientNet [37] as backbone respectively;
mixed-lesion malignancy classification with Resnet50 [13] as
backbone on INBreast dataset; and mixed-lesion malignancy
classification with AlexNet [19] as backbone on in-house
dataset. To make a fair comparison, all methods (our method
and compared baselines) share the same backbone in each
setting.

C. Implementation Details

Mammogram images are commonly stored using a 14-bit
DICOM format. A simple linear mapping is used to convert
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TABLE I

AUC EVALUATION OF COMPARATIVE EXPERIMENTS ON (a) INBREAST + ALEXNET (MASS); (b) INBREAST + RESNET50 (MASS); (c) INBREAST +
DENSENET (MASS); (d) INBREAST + EFFICIENTNET (MASS); (e) INBREAST + RESNET50 (MIXED LESIONS); (f) IN-HOUSE + ALEXNET (MIXED

LESIONS); NOTE THAT THE ‘*’ MEANS OUR RE-IMPLEMENTATION. THE ‘-’ MEANS THERE ARE NO OFFICIAL REPORT RESULTS

them into 8-bit gray images. Then, the Otsus method [27] is
used for breast region segmentation and background removal.
The segmented images are resized into 224 × 224 and fed
to networks. For each training epoch, we follow the [46]
to randomly flip the mammograms horizontally and rotate
within 45 degrees. To maintain the symmetric prior, we
concatenate the target and the reference image in channel-wise
and implement random data augmentation in the same time.
After data augmentation, we split the target image and the
reference image in channel-wise. The models are initialized by
ImageNet pre-trained weights, since the ImageNet model can
extract high-level features of medical images, as used in [43].
Besides, as a large-scale dataset, the ImageNet pre-training
has been validated to help optimization on small dataset and
widely adopted for better training in medical imaging [11],
[20], [29], [42], [46]. Such an implementation of ImageNet
pre-training is also for a fair comparison with the baseline
method [46] in Table I, which pretrains the model on ImageNet
to improve the training efficiency on small-scale medical data.

We adopt the Adam optimization with a learning rate of
5e − 5. For each method, we train for 50 epochs and select
the best model on the validation set for testing. Both target
and reference features are extracted from the last convolution
layer. We implement all models with PyTorch.

D. Compared Baselines

We conduct our experiments on both Mass malignancy
classification (the 2nd to 5th columns of Table I) and Mixed-
lesion malignancy classification (the last two columns of
Table I). The compared baselines are: 1) Pretrained CNN [8]:
pre-trains the CNN with the regression to the hand-crafted
features; 2) Pretrained CNN+Random Forest [8]: uses the
random forest as the classifier, with the last layer of the
CNN pre-trained by 1) as input; 3) Zhu et al. [46] selects
local features with the maximum response and diagnosis
based on the largest prediction score; 4) Vanilla: trains the
network (i.e., AlexNet [19], ResNet50 [14], DenseNet [17]

or EfficientNet [37]) via vanilla empirical risk minimization;
5) AnoGAN [31]: uses GAN to learn the latent space of
healthy images, then the residue between which and that of
the original image is used for classification; 6) Fixed-Point
GAN [34]: generates healthy version of the target image via
fixed-point translation learning, followed by classification on
the residue between this generated healthy image and the orig-
inal one; 7) CycleGAN [45]: replaces the fixed-point transla-
tion learning with the cycle consistency loss during generating
the healthy image; 8) Wu et al. [41]: designs a deep simple
four-view CNN for classification; 9) Vanilla+GAP [44]:
incorporates Global Average Pooling (GAP) into Vanilla CNN
in 4); 10) Vanilla+ABN [9]: incorporates Attention Branch
Network (ABN) into Vanilla CNN in 4); 11) BR-GAN [38]:
generates healthy features by referring the contralateral image
based on cycle consistency and residual-preserved mechanism.
The residue between the healthy features and original one is
used for classification.

The 4th to 7th rows in Table I correspond to the official
results reported in each representative methods. Due to the
slightly difference in the number of images used by refer-
ence absence, for a fair comparison, we re-implement some
baselines in the list such as vanilla methods (AlexNet [19]/
ResNet50 [14]/DenseNet [17]/EfficientNet [37]), mammogram
classification methods [38], [41], [46], natural image clas-
sification methods [9], [44] and counterfactual generation
methods [31], [34], [45].

E. Experimental Analysis

1) Result Analysis: As shown in Table I, our method
performs better than others in all settings. Specifically, we
outperform attention-based methods (Zhu et al. [46], ABN [9]
and CAM [44]) largely by 4.9% to 10.5%, multi-view method
(Wu et al. [41]) largely by 4.7% to 7.5% and GAN-based
methods (AnoGAN [31], Fixed-Point GAN [34], Cycle-
GAN [45] and Wang [38]) by 1.0% to 11.5%. Due to the
attention mechanism, Zhu [46], ABN [9] and CAM [44] can
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Fig. 4. Visualization of class activation maps of Vanilla CNN, AnoGAN [31], Fixed-Point GAN [34], CycleGAN [45], Wu et al. [41], Zhu et al. [46],
ABN [9], BR-GAN [38] and CGN. Each row represents a pair of mammograms from bilateral breasts in the INBreast. The target containing lesions is bounded
by a red rectangle. The ground truth bounding boxes are labeled by green rectangles.

outperform the vanilla baseline. However, without exploiting
the domain knowledge of mammograms, their performances
are limited. The improvement of Wu et al. [41] over the vanilla
baseline indicates the benefit of leveraging bilateral informa-
tion. Further, our method does not require pixel-to-pixel align-
ment that is inappropriate for mammogram images however
was adopted by Wu et al. [41]. As to AnoGAN [31], compared
with the vanilla baseline, AnoGAN performs slightly worse
on INBreast dataset than on the in-house dataset. This may
be due to the fact that the in-house dataset contains more
healthy images. However, due to the difficulty of modeling a
large variety of healthy patterns, these methods are still limited
in terms of prediction power. Fixed-Point GAN [34] and
CycleGAN [45] share the similar cycle consistency constraint
and perform comparably. They outperform AnoGAN since
they can make use of the image-level annotations. However,
their performances are limited due to suffering from the ill-
posed translation on lesion removal. Although BR-GAN [38]
could alleviate this problem by incorporating the contralateral
information during generation, it could not generalize to the
case when the reference side contains lesions, leading to
descent in performance compared with ours.

2) Localization Evaluation: To evaluate the effectiveness
of our method in localizing lesion areas, we measure the
localization error by CAM [44]. Similar to [44], we first

calculate the CAMs based on the predicted category. Then
we segment the regions whose CAM value is greater than
20% of the maximum CAM value and obtain the bounding
box for the largest connected component in the segmentation
map. We use the top-1 localization error adopted in ILSVRC,
with the intersection over union (IOU) threshold set to 0.1.1

As is shown in Table II, our CGN obtains a localization error
of 0.421 for masses and 0.455 for all lesions, significantly
outperforming other methods. In particular, our CGN can
outperform BR-GAN by 8.9%-9.8% due to the appropriate
modeling of symmetric prior.

3) Visualization: To verify the effectiveness of CGN in
terms of learning lesion area, we visualize the class activation
maps, as shown in Fig. 4. First, we can observe (the first
three columns) the asymmetry in lesions’ positions between
bilateral images, which validates the bilateral asymmetric
prior. Besides, our CGN succeeds to localize all lesions due to
the incorporation of the bilateral symmetry prior. In contrast,
the other methods can detect out-of-lesion regions, especially
in the last two cases due to unobvious indistinct contrast
between the lesions and tissues. Specifically, the redundant

1The original IOU threshold is 0.5, which is normally adopted in detection
task. As our mainly focus on classification, we only require the localization
to be roughly contain the lesion areas.
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TABLE II

TOP-1 LOCALIZATION ERROR ON INBREAST DATASET FOR MASS CLASSI-
FICATION WITH RESNET50; INBREAST DATASET FOR MIXED-LESION

CLASSIFICATION WITH RESNET50

Fig. 5. Visualization of failure cases. The lesion in the first case is small
amorphous calcification; the lesion in the second case is mass with associated
signs of skin retraction.

areas selected by BR-GAN in the last case in Fig. 4 may be
accounted by the lesions existed in the reference side.

4) Failure Case Visualization: Some failure cases are pre-
sented in Fig. 5. As shown in the first row, the lesions of which
patterns are not obvious, such as microcalcifications; hence
they may be overwhelmed by other asymmetrical regions dur-
ing learning. As shown in the second row, under the symmetric
prior, our method also learns additional asymmetrical areas
which are highly suspicious lesion areas (e.g., skin retraction).
According to the American College of Radiology [33], the
additionally learned retraction in the second case can be
viewed as the associated signs caused by lesions, hence can
also be beneficial for prediction.

F. Ablation Study

We evaluate some variant models to verify the effectiveness
of each component. The ablative results in Table. III show
that deleting or changing any of the components would lead
to a descent of the classification performance. Specifically,
naive bilateral features fusion also leads to a boosting of
2.4% to 4.2% over vanilla on performance. It proves that
the bilateral symmetric prior is quite helpful for malignancy

classification. Meanwhile, the proposed prediction feedback
mechanism outperforms the non-feedback largely by 4.8%. We
explain that the classification module provides additional use-
ful supervision for lesion localization, making learning more
accurate and stable. For additional counterfactual constraint
of negative embedding loss, we show that it improves the
performance by 1.1%. Some variants in our ablation studies
are listed below:

× in the first raw: Vanilla single view network.
SBF: Simple Bilateral Fusion. The bilateral features are

directly concatenated and fed into the fusion layer;
TF-GAN: Target-Feature GAN. Replace AdaIN input by

target features only;
BF-GAN: Bilateral-Feature GAN. Replace AdaIN input by

simple combination of bilateral features;
Non-feedback: Estimate lesion areas � by the areas with

the largest target-counterfactual distance.
To further verify the effectiveness of the proposed adver-

sarial loss and feedback triplet loss LFT , we implement two
variants respectively:

Variant (1): As to the discriminator loss, we directly
minimize the distance between counterfactual features H �

C and
reference features H �

R in lesion areas. We still estimate the
lesion areas � by the prediction feedback mechanism.

Compared with the competing losses we used for discrimi-
nator and generator in our method:

min
G

max
D

LAD(G, D) := log (D (HR))

+ log (1 − D (G(HT , HR))) , (15)

we denote the modified discriminator loss and generator loss
of variant (1) as:

L�
G = log

(
1 − D

(
H �

C

))
(16)

L�
D = −log

(
1 − D

(
H �

C

)) − log
(
D

(
H �

R

))
(17)

therefore we have the final losses:

L1 = L�
G + LN E + LC L S (18)

which are iteratively trained with L�
D .

Variant (2): As to the feedback triplet loss LFT , we design
a variant feedback loss LFC instead. We direct constraint the
generated features H �

C in lesion-free areas to be similar to
target features H �

T .
The LFC is defined as:

LFC = dtc (19)

where dtc is defined as Eq. (10);
Therefore we have the final losses:

L2 = LG + LN E + LFC + LC L S (20)

which are iteratively trained with LD . The LG and L D are the
generator loss and the discriminator loss respectively, as we
used in the competing loss in min

G
max

D
LAD(G, D).

The experimental results of the two variants against our
proposed method are shown in Table. IV. We can see that
modifying either the adversarial loss LAD(G, D) or the feed-
back triplet loss LFT would lead to a descent performance.
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TABLE III

AUC EVALUATION OF ABLATION STUDY ON (a) INBREAST DATASET FOR MASS CLASSIFICATION WITH ALEXNET; (b) INBREAST DATASET FOR MASS
CLASSIFICATION WITH RESNET50; (c) INBREAST DATASET FOR MASS CLASSIFICATION WITH DENSENET; (d) INBREAST DATASET FOR MASS

CLASSIFICATION WITH EFFICIENTNET; (e) INBREAST DATASET FOR MIXED-LESION CLASSIFICATION WITH RESNET50; (f) IN-HOUSE

DATASET FOR MIXED-LESION CLASSIFICATION WITH ALEXNET

TABLE IV

AUC EVALUATION ON (a) INBREAST DATASET FOR MASS CLASSIFICATION WITH ALEXNET; (b) INBREAST DATASET FOR MASS CLASSIFICATION WITH

RESNET50; (c) INBREAST DATASET FOR MASS CLASSIFICATION WITH DENSENET; (d) INBREAST DATASET FOR MASS CLASSIFICATION WITH
EFFICIENTNET; (e) INBREAST DATASET FOR MIXED-LESION CLASSIFICATION WITH RESNET50; (f) IN-HOUSE DATASET FOR MIXED-

LESION CLASSIFICATION WITH ALEXNET

This can validate the effectiveness of these two losses in our
method.

As we said that due to the pixel-to-pixel registration between
bilateral images, we achieve counterfactual generation in fea-
ture level instead of image level. In practical experiments,
we get 91.0% AUC of feature level which is higher than
90.6% of image level, verifying the performance of the feature
generation. Moreover, the training speed of the former is more
faster than the latter with 6.6 s/epoch v.s. 23.5 s/epoch.

G. Counterfactual Validation

As there are no ground truth images under counterfactual
constraints, we adopt the visualization [4] and the FID mea-
surement to validate the effectiveness of our counterfactual
generation.

1) Counterfactual Visualization: We visualize the target fea-
tures, reference features, and generated counterfactual features
in Fig. 6. Since the three kinds of features are all with high
dimension, we perform the max-pooling cross the channel
dimension to generate the visualization heatmap for each of
them. The heatmaps are shown in the last three columns
respectively. Red indicates higher probabilities of being lesion
areas and blue indicates lower probabilities of being lesion
areas. As we can see, the activated lesion features (shown in
red) in the target features marked by green rectangles disappear
(shown in blue) in the corresponding areas of counterfactual
features. Similar to the corresponding areas in the reference
features, these areas are not highly responsive for lesions,
which is consistent with the first statement of our Theorem III.,

i.e., the distribution of counterfactual features in lesion areas
should be equal to the distribution of reference features.2

And we can also see that the learned counterfactual features
in other lesion-free areas are similar to the target features
mostly. This is also consistent with the second statement of
our Theorem III, i.e., the counterfactual features and target
features are not identical in pixel-to-pixel for the same reason
as lesion areas. In summary, the visualized results show that
the proposed method can effectively generate a lesion-free
version of the target features, i.e., counterfactual features.

We also visualize the predicted location of lesions during
the iterative training process in Fig. 7, to further verify the
effectiveness of our iterative optimization of CGN. As shown,
with the process of iteration, the predicted location of lesions
becomes more accurate.

2) FID Measurement: To further evaluate the effectiveness
of the generated counterfactual features, we measure the
feature distances in the INBreast by calculating the mean
FID [15], which has been used for medical images [12],
[24]. Specifically, the features from two distributions are fed
to the Inception-V3 network respectively, of which the last
pooling layer’s output is taken as the final visual features for
calculation. Denote μt ,�t , μr ,�r as the mean and covariance
for the two distributions of features, then the FID d is
computed by d = ||μt−μr ||22+T r(�t +�r −2(�t�r )

1/2). The
mean FID between the target and reference features is 56.15.

2Note that our result is given in the sense of distribution, it does not mean
complete replacement from the reference features. Especially the glands in
breasts are complicated, this means that the learned counterfactual features
and the reference features in lesion areas cannot be identical in pixel-to-pixel.
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Fig. 6. Visualization. Left three columns: the target images, the target images with ground truth annotations which are marked by green rectangles on
lesion areas, and reference images which are flipped horizontally for convenient comparison; Right three columns: feature maps of target images, feature
maps of reference images, and feature maps of our generated counterfactual features. All visualized features are obtained by taking the maximum value of
256 channels. The green rectangles in each row mark the features in lesion areas before and after the counterfactual generation.

The counterfactual-reference mean FID is 27.04. The target-
counterfactual mean FID is 25.42 while the one after removing

the lesion areas from ground truth is 0.60. By comparing the
four distances to each other, we find the learned counterfactual
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Fig. 7. Iterative Training Process. Left three columns: the images of the left side, the images of the right side, with being target or reference marked
below, and the target images with ground truth annotations which are marked by green rectangles on lesion areas; Right five columns: the predicted location
of lesions by CGN during training per ten epochs.

features contain both reference information in lesion areas (by
FID of target-reference > FID of counterfactual-reference) and

target information in lesion-free areas (by FID of reference-
target > counterfactual-target).
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TABLE V

AUC EVALUATION OF BILATERAL EXPERIMENTS ON (a) INBREAST DATASET FOR MASS MALIGNANCY CLASSIFICATION WITH ALEXNET; (b) INBREAST
DATASET FOR MASS MALIGNANCY CLASSIFICATION WITH RESNET50; (c) INBREAST DATASET FOR MASS CLASSIFICATION WITH DENSENET;

(d) INBREAST DATASET FOR MASS CLASSIFICATION WITH EFFICIENTNET; (e) INBREAST DATASET FOR MIXED-LESION MALIGNANCY

CLASSIFICATION WITH RESNET50; (f) IN-HOUSE DATASET FOR MIXED-LESION MALIGNANCY CLASSIFICATION WITH ALEXNET

H. Bilateral Distribution Verification

In this section, we verify the correctness of our symmetric
prior assumption that motivates our proposed framework.
Specifically, we choose 1,000 unhealthy bilateral images, each
of which contains at least one lesion from the in-house
dataset. Then for comparison, we choose another 1,000 healthy
bilateral images.3 We respectively calculate FID to measure
the distribution similarities for the healthy set (i.e., DH ) and
the unhealthy set (i.e., DU ). Then we conduct the one-tailed
T-test with the null hypothesis H0 and alternative hypothesis
H1 defined as:

H0 : μ(DH ) >= μ(DU ) H1 : μ(DH ) < μ(DU ).

We obtain a p-value of 0.014 < 0.05, which means that we
can reject the original hypothesis H0 at a 95% significance
level. This result provides an evidence for us to reject H0,
i.e., the bilateral distribution distance of unhealthy cases is
larger than healthy cases significantly. This result can be
regarded as a manifestation of our symmetric prior assumption.

V. CONCLUSIONS

In this paper, we propose a novel approach called bilateral
asymmetry guided Counterfactual Generating Network (CGN)
to improve the mammogram classification performance. The
proposed method performs the counterfactual generation
by exploiting the symmetric prior effectively. Experimental
results indicate that the proposed CGN achieves state-of-the-
art results in both public and in-house datasets. Our work can
be referred as the showcase of exploiting symmetric prior,
which widely holds in many human organs, e.g., brains, eyes,
skeletal structures, and kidneys. Therefore, we believe that
the generalization ability of our method on corresponding
medical imaging problems, the efforts of which will be left
in future work.

APPENDIX A
PROOF OF THEOREM 1

Lemma 2: If the causal graph G satisfies that the common
factor C influences the bilateral variables simultaneously,
then,

fYT (C, ·) = fYR (C, ·)
fHT (C, ·) = fHR (C, ·)
fXT (C, ·) = fX R (C, ·) (21)

3We do not use the public INBreast dataset since there are too few healthy
couples for the FID results to be statistically significant

Lemma 2 shows that the causal factor C influences the
bilateral mammograms in equal function relationship.

Proof of Theorem 1:
Proof of Eq. (2):

P(HT (Z�
T =0)

� = h|H �
T = ht , Z�

T = 1)

=
∫

c
P(HT (Z�

T =0)
� =h|C =c)P(C =c|H �

T =ht , Z�
T =1)dc

=
∫

c
P(H �

T = h|C = c, Z�
T = 0)P(c|H �

T = h, Z�
T = 1)dc

=
∫

c
P(H �

R = h|C = c, Z�
R = 0)P(c|H �

T = h, Z�
T = 1)dc

= P(HR(Z�
R =0)

� = h|H �
T = ht , Z�

T = 1),

= P(H �
R = hr |H �

T = ht , Z�
T = 1), (22)

where the first equation is due to that the c is the only
parent node of HT (Z�

T =0)
�; the second equation is according to

Markov condition that HT (Z�
T =0)

�|C = HT |C, Z�
T , the third

equation is due to the symmetric prior.
Proof of Eq. (3): Since in the lesion-free areas, there are

Z�
T = 0, the probabilities are derived by the actual hidden

features HT = ht directly, i.e.,

P(HT (Z�
T =0)

� = h|H �
T = ht , Z�

T = 0)

= P(H �
T = ht |H �

T = ht , Z�
T = 0) (23)

�

APPENDIX B
BILATERAL ANALYSIS

To validate the superiority of our method over others in
identifying lesion regions for prediction based on bilateral
images, we compare with some bilateral fusion mechanisms in
some lesion detection methods. For our setting that is without
any ROI annotations and with image-level benign/malignant
ground truth only, we adapt their fusion mechanisms of
bilateral images for malignant prediction. We apply the same
classifier with ours, which takes the fused bilateral features
extracted by these methods as input. The compared bilateral
fusion mechanisms are listed below:

SBF: Simple Bilateral Fusion, as mentioned in
Section IV-F.

GF: Gated Fusion. Assign a gate to each bilateral region
feature to obtain the weighted bilateral features, with the
weight calculated via the gate operator [22].
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SFF: Simple Four-view Fusion. Ensemble cross-view and
contralateral-view by simple information fusion [39].

Both SFF and GF can be seen as variants of SBF. Specif-
ically, one branch of the model (view-wise fusion) in the
paper [39] and the gated fusion performed to proposals in
the 2nd paper [22] can be applied as bilateral feature fusion
like one of our ablation experiments in Tab. III (SBF, Simple
Bilateral Fusion). Due to better feature integration or lever-
aging more cross-view information, the GF and SFF slightly
outperform SBF, as shown in Table. V. But both of them
share the similar disadvantage with SBF: even for healthy
breasts, bilateral mammograms are only roughly symmetric
but not pixel-to-pixel, the similarity of bilateral features cannot
be guaranteed. While our method uses the symmetry prior
by healthy generation with an improved GAN. Therefore, our
method suffers less from problems and leads to better results.
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