
Convex quadratic programming-based predictors:
An algorithmic framework and a study of
possibilities and computational challenges

Linnéa Gyllberg, Shudian Zhao[0000−0001−5949−9465], and
Jan Kronqvist∗[0000−0003−0299−5745]

Department of Mathematics, KTH Royal Institute of Technology,
Stockholm, Sweden

∗ Corresponding author: Jan Kronqvist, jankr@kth.se

Abstract. We present a class of predictive models for forecasting time-
series data, referred to as convex quadratic programming-based (CQPB)
predictors. The predictions are computed from the minimizer of a con-
vex quadratic problem, where previous observations are integrated as pa-
rameters. The remaining parameters, including constraints and objective
coefficients, are trainable parameters. This work investigates the predic-
tive capabilities of CQPB predictors and the computational challenges
in their training. We analyze their properties and prove that this class
of predictors includes classical autoregressive (AR) models, thus forming
a generalization of AR models. The training problem is formulated as a
bilevel optimization problem. To solve these training problems efficiently,
we propose a two-stage heuristic algorithm based on the block coordinate
descent approach. The results highlight the potential of CQPB predic-
tors. Although training is challenging, our approach efficiently computes
good solutions for moderate-size datasets.

Keywords: Time-series prediction · Inverse optimization · Bilevel opti-
mization · Optimization-based predictive models.

1 Introduction

Prediction, or forecasting, is one of the fundamental challenges in data anal-
ysis, machine learning (ML), and artificial intelligence (AI). We focus on the
prediction of time-series data, where the goal is to compute a prediction, or fore-
cast, of the next point using a set of previous observations from the time series.
However, the proposed framework is not limited to time-series data. Prediction
of time-series data has been an active research area for more than fifty years
[25]. A wide range of methods have been proposed over the years, ranging from
classical methods such as autoregressive (AR) models [3] and autoregressive in-
tegrated moving average (ARIMA) models [7] to more modern approaches based
on methods, such as support vector machines (SVM) [22], random forests (RF)
[8], neural networks (NN) [12], and recurrent neural networks (RNN) [16].



2 L. Gyllberg, S. Zhao, and J. Kronqvist

In this paper, we present a class of predictors that are based on a convex
quadratic program (QP). The prediction is given by the minimizer of a convex
QP, and we refer to these as convex quadratic programming-based models. Some
of the parameters in the QP are given by previous observations in the time series,
and some are trainable parameters. We show that this forms a versatile class of
predictive models and that it forms a generalization of AR models for certain
parameter configurations. For certain applications, the time series can originate
from a sequence of optimization problems, e.g., prices in energy markets [5]. Even
though the time series originates from the solutions of more complex optimiza-
tion problems, it seems natural to compute the prediction from an optimization
problem. Compared to, e.g., neural network models, the QP-based prediction
model can also offer a somewhat higher degree of interpretability.

Recently, there has been research on integrating convex optimization in neu-
ral networks [17, 1], e.g., forming layers where the output is given by the mini-
mizer of a convex problem. This line of work is related, but they focus on more
general structures and different training procedures. Training the QP-based mod-
els can also be viewed as an inverse optimization problem [9], and there are simi-
larities with studies (e.g., [13, 14, 2, 10]) where they learn optimization problems.

The main contribution and goals of this paper can be summarized as:

– We propose a class of optimization-based predictors where the prediction is
computed by a quadratic programming problem.

– We investigate the predicting capabilities of the proposed predictors and
show that this class of predictors forms a generalization of AR models.

– We investigate the computational challenges of training convex optimization-
based predictors through a so-called KKT reformulation. We propose some
simple symmetry-breaking constraints to improve the computational per-
formance and a simple heuristic decomposition technique to compute good
solutions with a reasonable computational burden.

The goal is not to claim that the proposed class of predictors is superior but
to investigate their potential. Training the convex optimization-based predictor
through a KKT reformulation is obviously going to be challenging. However, due
to the remarkable progress in state-of-the-art MIP solvers, it is not clear how
much data or how large the predictive model can be for the training problem to
remain solvable. To the authors’ best knowledge, there is not much existing in the
literature about predictors of this type nor about their predictive capabilities.
One of the main goals has, therefore, been to analyze the predictive capabilities
of this class of predictive models to determine if further research on solving the
training problems more efficiently is motivated. The short answer is yes, and in
the numerical experiment section, we show that the models have good predictive
capabilities, but training them is challenging.

2 Convex Optimization-based predictors

Here we focus on the prediction of time-series data, where the goal is to esti-
mate x̂t+1 ∈ Rd given a set of observations xt,xt−1, . . . ,xt−k ∈ Rd. We propose



Convex quadratic programming-based predictors 3

a somewhat unusual class of predictors where the prediction is computed from
the minimizer of a convex optimization problem, whose parameters include the
previous observations xt,xt−1, . . . ,xt−k. We are not the first to propose inte-
grating convex optimization for prediction/estimation types of task, e.g., see [2].
However, as it is a fairly recent methodology, we start by formally defining what
we mean by a convex optimization-based prediction.

Definition 1. A prediction x̂t+1 computed by x̂t+1 = h(y∗) and

y∗ =argmin
y≥0

f(y)

s.t. g(y,xt, . . . ,xt−k) = 0,
(1)

where (1) is a convex optimization problem, is regarded as a convex optimization-
based prediction.

Inference of the convex optimization-based predictor is computationally cheap
if problem (1) is “well-behaved” and relatively small (convexity alone does not
guarantee easy to solve). Compared to, e.g., neural network models, inference
can be more expensive as (1) does not have a closed-form solution. However, the
main challenge is clearly in training the predictive model (1), i.e., optimizing the
functions f, g, and their coefficients to get an optimal prediction. Training is far
from trivial as the training task results in a nonconvex optimization problem,
more specifically, a bilevel optimization problem. For more details on bilevel op-
timization, we refer to [18, 4]. We refer to problem (1) as the inner optimization
problem and the task of optimizing f, g as the training problem.

For simplicity and ease of presentation, we only consider single-variate time-
series prediction, i.e., d = 1, and x̂t+1 ∈ R+. However, the techniques can also
be applied to multi-variate prediction and can consider multiple input variables
by simply restructuring the inner optimization problem (1) to incorporate these
features. Also, note that the data can always be shifted to make all points posi-
tive. To keep the training problem tractable, we only consider convex quadratic
programming-based (CQPB) predictors given by

CQPB({xi}ti=t−k+1;A,b, c) := x̂t+1 =h(y∗),

y∗ = argmin
y∈Rn

c⊤y +
1

2

n∑
i=2

y2i +
1

2
(y1 − xt)

2

s.t. Ay =


xt−k+1

...
xt

b

 , y ≥ 0,

(2)

where c, b, and A are trainable parameters with k > 1. Furthermore, we restrict
the predictions to be given by

x̂t+1 = h(y∗) = [1 0 . . . 0]y∗. (3)



4 L. Gyllberg, S. Zhao, and J. Kronqvist

These restrictions are mainly to keep the resulting training problem computa-
tionally easier, but we will show that this is still a fairly general class of predictors
capable of good predictive performance.

Before we continue, we want to briefly motivate this class of predictive mod-
els, i.e., the structure of inner problem (2). The quadratic terms in the objective
are included to ensure a unique optimizer of the problem, which avoids addi-
tional difficulties in training the parameters. The quadratic terms also act as a
regularization and favors predictions close to the last observation.

Next, we briefly discuss the versatility of the predictive model given by (2).
A simple but interesting result is that we can show that it forms a generalization
of AR models [3]. We formalize this property in the following proposition.

Proposition 1. The class of predictors given by (2), where c,b, and A are
model parameters, can be viewed as a generalization of autoregressive (AR) mod-
els.

Proof. Consider the case with b = 0, an arbitrary vector c ∈ Rn, and

A =


1 −1 −1 . . . −1
0 ωn−1 0 . . . 0
...

. . .
...

0 . . . ω0

 . (4)

The prediction given by (2) with this choice of A matrix, is simply x̂t+1 =∑n−1
i=0 ωixt−i. This shows that by choosing a certain structure of the inner prob-

lem, i.e., the size of the A matrix, the predictor can be equivalent to an AR
model with the same number of previous observations. But, when specifying the
size of the A matrix, the training problem is not restricted to the specific A
matrix given in (4), and can, therefore, be considered a generalization. ⊓⊔

Understanding the model complexity is important to prevent over-fitting.
The number of parameters in (2) gives some insight into the model complexity,
but to get a better understanding, we need to analyze the structure of problem
(2). For example, if the RHS of the equation system in (2) contains as many
old data points as the dimension of y and A has full rank, then the prediction
is always given by a specific linear combination of old data points. We mainly
consider the case where there is at least one more variable than the number of
rows in A, where the minimization operator plays a clear role in the prediction.
With more variables in problem (2), we get a higher dimensional feasible set
and more degrees of freedom. For a certain number of rows in A and a given
number of old data points, more degrees of freedom in (2) generally result in a
more complex predictive model.

3 Training CQPB predictors

Given the data x =
[
x1 · · ·xN

]
∈ RN

+ , the task of training the convex quadratic
programming-based (CQPB) predictor, i.e., determining the coefficients in A,b,



Convex quadratic programming-based predictors 5

and c, can be formulated as

min
(A,b,c)∈Ω

N−1∑
t=k

(xt+1 − x̂t+1)
2

s.t. x̂t+1 = CQPB(xt−k+1, . . . , xt;A,b, c), ∀t = k, .., N − 1,

(5)

where k is the number of observations used for each prediction. The set Ω is a
simple box defined by upper and lower bounds of each entry of A,b and c. For
simplicity and to keep the training easier, we set the bounds as ±1. The training
problem (5) is a so-called QP-QP bilevel problem. As the lower-level problem
has a strictly convex quadratic objective function and only linear constraints, it
satisfies the linear constraint qualification (LCQ) and has a unique minimizer.
We can, therefore, use the standard approach of replacing the inner problems
with their KKT conditions, e.g., see [11, 14, 18]. The training problem can then
be written as the single-level optimization problem

Ptrain(x, k, n, nb) := argmin
A,c,yk,...,yN−1

N−1∑
t=k

(xt+1 −
[
1 0 · · · 0

]
yt)

2 (6a)

s.t. − 1 ≤ Ajℓ ≤ 1, ∀j ∈ [k + nb], ∀ℓ ∈ [n], (6b)
− 1 ≤ bj ≤ 1, ∀j ∈ [nb], (6c)
− 1 ≤ cℓ ≤ 1, ∀ℓ ∈ [n], (6d)

Ayt = b̄t, ∀t ∈ {k, k + 1, . . . , N − 1}, (6e)

s⊤t yt = 0, ∀t ∈ {k, k + 1, . . . , N − 1}, (6f)

c+ ȳt = A⊤λt + st, ∀t ∈ {k, k + 1, . . . , N − 1}, (6g)

yt, st ∈ Rn
+,λt ∈ Rk+nb , ∀t ∈ {k, k + 1, . . . , N − 1}, (6h)

A1,2 ≥ · · · ≥ A1,n, (6i)

where b̄⊤
t =

[
xt−k+1 · · · xt b

⊤] and ȳt = yt −
[

xt

0n−1

]
. To clarify the notation,

[n] = {1, 2, . . . , n} and 0n−1 is a vector with n − 1 zeroes. Moreover, since we
only care for trainable parameters and the prediction for the training dataset,
we denote (A∗, c∗, x̂) = Ptrain(x, k, n, nb).

The constraints (6b)–(6d) enforces our bound restrictions for the model pa-
rameters. Constraints (6e)–(6h) originate from the KKT conditions of each inner
optimization problem. The last group of constraints (6i) are so-called symmetry-
breaking constraints and are included to prevent multiple equivalent solutions.
Without these constraints, we could reorder the variables yt,2, yt,3, . . . , yt,n and
the corresponding rows of A to get technically different solutions, but result-
ing in the same predictions. Eliminating such symmetries typically results in an
easier problem.

Problem (6) is challenging and contains both complementarity constraints
(6f) and nonconvex constraints with bilinear terms (6e) and (6g). The number



6 L. Gyllberg, S. Zhao, and J. Kronqvist

of nonconvex terms increases with the size of the inner problem (2). A copy of
all these constraints is also generated by each data point used for training. The
number of data points N , thus, strongly affects the tractability of problem (6).
We do not detail how such problems can be solved, but they can be handed
directly by MIP solvers such as Gurobi [15] and SCIP [6]. However, directly
solving problem (6) is intractable even with relatively little data and small CQPB
models. To handle problems of meaningful size and get a good, but potentially
suboptimal solution, we use a two-stage strategy to solve the problem. First, we
determine an initial solution by solving (6) with a small subset of the data. Then
we fix all but one row of the A matrix and solve problem (6) with most elements
of A fixed. Such a variables-fixing approach eliminates most of the bilinear terms.
We then iterate by unlocking another row of A and fix all other rows in a block
coordinate descent-type fashion. Algorithm 1 presents the complete procedure.

Algorithm 1 The two-stage alternating optimization-based training algorithm
Input: A time-series x, a consecutive subset xinit, the window size k, model

complexity parameters n and nb, the tolerance ε ≥ 0, and time limit Tmax.
Output: Â, ĉ, and x̂.

1: procedure Initialization Stage
2: (A0, c0, x̂init)← Ptrain(xinit, k, n, nb); ▷ Solve within Tmax

3: end procedure
4: procedure Alternating Stage
5: j ← 1, ∆← +∞, OBJ0 ← +∞;
6: while ∆ ≥ ϵ do
7: for i = 1, . . . , k + nb do ▷ Fix all but the value of Ai· with Aj−1

8: (Aj , cj , x̂)← P
train,As·=Aj−1

s· ,∀s ̸=i
(x, k, n, nb) ; ▷ Solve within Tmax

9: OBJj ←
∑N

t=k(xt+1 − x̂t+1)
2 ;

10: ∆← OBJj−1 −OBJj ;
11: j ← j + 1; ▷ Count iterations
12: end for
13: end while
14: (Â, ĉ, x̂)← (Aj , cj , x̂j) .
15: end procedure

One can also initiate Algorithm 1 by forming an initial A matrix and b vector
based on a trained AR model. The A matrix and b vector are then formed from
the AR predictor similarly as in the proof of Proposition 1, and potentially filled
out with zeroes if the QCPB predictor is of higher dimensionality. This provides
a starting point with the same RMSE as the AR predictor on the training set.

4 Numerical Experiments

The implementation of data preprocessing, proposed methods, and other base-
line approaches are carried out in Python. The optimization problems solved



Convex quadratic programming-based predictors 7

in Algorithm 1 are solved by Gurobi 11.0.3 [15], and ARMA and RNNs, as
baseline approaches, are implemented and trained by Statsmodels [23] and
PyTorch [21], respectively. All the experiments were run on a laptop with an
Intel(R) Core(TM) i7-7500U CPU @ 2.70GHz processor and 16GB of RAM. To
keep the training problems more manageable, we have forced bounds of ±5 on
dual variables (i.e., λ and s) for unbounded directions in problem (6). It is com-
mon to assume bounds on the dual variables when using the KKT reformulation,
but one should be careful, as too restrictive bounds may lead to infeasibility. A
more rigorous approach should be used to determine the bounds. However, here
the goal has only been to investigate the potential of CQPB predictors.

In the initialization stage of Algorithm 1, we have used as many data points
as possible, while keeping problem (6) solvable within a minute. The number
of data points in the initialization varied between 5 and 13. We initially set
a time limit Tmax of 30 seconds for the subproblems, and we set Tmax to 60
seconds when Gurobi could not find an initial solution in 30 seconds. To keep
the problems simpler, we set n = k + 1 and nb = 0, i.e., one more variable in
problem (2) than the number of data points used for prediction and the number
of constraints. Preliminary results with n = k+2 did not show a clear difference
in the models’ predicting performance. For all experiments, we used ε = 1e− 8.

4.1 Data sets

We have considered the following data sets that vary in prediction difficulty:

1. Nordpool [20]: This dataset contains system prices for the Nordic energy
market collected and published by the Nord Pool. We choose a consecutive
sequence of daily prices measured at midnight from 2022-01-01 and ending
with a given length. All the prices are scaled with a factor of 0.01.

2. Global Temperature [19]: This data set contains changes in the annual
average global surface temperature, from which we use the data between
1909 and 2023. We specifically consider the yearly mean’s locally weighted
smoothing (lowess). The data points are shifted upward by the absolute value
of the minimum value to make all values nonnegative.

3. Sunspots [26]: This dataset contains the monthly mean sunspot number
from 1749-01-01 to 2017-08-31. The data are scaled by a factor of 0.01.

4.2 Reference models

To evaluate the predicting performance, we compared the following commonly
used predictors as baselines:

– Autoregressive models (AR): Autoregressive models are created with the
idea that the current value xt can be explained as a function of the k past
values xt−1, xt−2, . . . , xt−k. An autoregressive model of order k, abbreviated
as AR(k), is defined as xt = ϕ1xt−1 + ϕ2xt−2 + . . . + ϕkxt−k + wt, where
ϕ1, ϕ2, . . . , ϕk are constants and wt is white noise with mean zero and vari-
ance σ2

w. As AR models require processes to be (weakly) stationary, the



8 L. Gyllberg, S. Zhao, and J. Kronqvist

non-stationary time-series Global Temperature and Sunspots have been
made stationary through first-order differencing [25].

– Recurrent neural networks (RNN): A simple RNN predicts the output at
each time step depending on the current input and the hidden state from the
previous time steps. They excel in simple tasks with short-term dependencies
due to the ability to exploit the influence of previous inputs, such as time-
series data [24, 16]. We chose small RNNs with one hidden layer of size 32
on each recurrent cell with a varying window size m = {2, 4, 6}. All the
instances are trained with a batch size of 2 and 100 epochs, and the datasets
are normalized in the preprocessing.

5 Results

First, we investigate what size of problem (6) is directly solvable with Gurobi. We
tested two sizes for the CQPB model on the data set Global Temperature. We
found that problem (6) could not be solved by Gurobi for either model under
10 minutes when using more than 6 and 8 data points for k = 2 and k = 4,
respectively. This clearly shows the difficulty of directly optimizing (6).

To illustrate the simple training algorithm, we plot how the solution improves
over iterations with a CQPB model with parameters N = 50, Ninit = 12, and
k = 6 for the data set Nordpool in Figure 1. Here Algorithm 1 ran 12 iterations
taking 367s (with ε = 1e − 8). Algorithm 1 is a simple heuristic, but based on
our experiments it is effective at producing good solutions relatively fast.

2 4 6 8 10 120.050
0.075
0.100
0.125
0.150
0.175
0.200
0.225
0.250

Fig. 1: The iterations of Algorithm 1 plotted against the MSE for the Nordpool
data with N = 50 and k = 6.

5.1 Comparison with other predictive models

Table 1 presents the mean square error (MSE) for CQPB, AR(k), and RNN
trained with the datasets and various parameters as well as the prediction mean
square error (MSEp) for the P one-step ahead predictions outside of the training
data by the models. We have also included results with Algorithm 1 initiated
with the AR solution, and this is refered to as QCPB-AR. Table 1 shows that
CQPB overall performs similarly to both AR(k) and RNN. When it performs
worse, it is not by a large margin and sometimes it is the best-performing model.



Convex quadratic programming-based predictors 9

2023-01-01 2023-01-15 2023-02-01 2023-02-15 2023-03-01 2023-03-15 2023-04-01 2023-04-15
0.0

0.5

1.0

Nordpool Data

1920 1940 1960 1980 2000 2020
0

1

Global Temperature Data

1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
0

2

Sunspots Data

Original data CQBP AR(4) RNN Breakpoint for training

Fig. 2: Comparison of CQPB, AR(k), and RNN with N = 100, P = 15, and
k = 4. The last 15 points show one-step predictions beyond the training data.

Figure 2 presents three plots comparing results from different models for
each dataset separately, with N = 100, Ninit = 8 (Nordpool and Global
Temperature) or Ninit = 9 (Sunspots), and k = 4 All three models show
similar performance.

Whilst the performance of the CQPB predictor shows promise, the difficult
training is clearly a drawback. For both AR and RNN, the training of the models
is practically instantaneous, but the same cannot be said for the CQPB. The
training times varied greatly and were highly dependent on the number of itera-
tions to converge, with the fastest model taking just over a minute (two iterations
with a 30 s limit each) and the slowest a bit over 15 minutes (15 iterations with
a 60 s time limit). Most models took between 2 and 6 minutes to train.

From the experiments, it was clear that using the AR solution as an initial-
ization was favorable. Otherwise the initialization in Algorithm 1 was sensitive
with regards to the parameters, e.g., the number of data points used in the
initialization. A more rigorous approach for determining bounds on the dual
variables should also be investigated. Finally, we also want to mention that the
performance of all models can most likely be improved by parameter tuning.

6 Conclusions

Overall, the CQPB predictor shows good capabilities for forecasting time-series
data. Our simple heuristic training approach manages to compute good solu-
tions, with predicting performance comparable to well-established methods for
moderate-size datasets. However, the training process is still computationally
challenging. Further research on CQPB predictors is, in our opinion, clearly
motivated and needed to make them practically applicable.



10 L. Gyllberg, S. Zhao, and J. Kronqvist

NORDPOOL DATA

N = 50, P = 10 N = 100, P = 15
k = 2 k = 4 k = 6 k = 2 k = 4 k = 6

MSE MSEp MSE MSEp MSE MSEp MSE MSEp MSE MSEp MSE MSEp

CQPB 0.0649 0.0709 0.0608 0.0733 0.0582 0.0581 0.0571 0.0728 0.0548 0.0642 0.0549 0.0529
CQPB-AR 0.0630 0.0644 0.0592 0.0772 0.0533 0.0736 0.0560 0.0573 0.0533 0.0642 0.0508 0.0649

AR(k) 0.0649 0.0534 0.0608 0.0572 0.0521 0.0419 0.0570 0.0581 0.0544 0.0614 0.0503 0.0529
RNN 0.0640 0.0631 0.0604 0.0604 0.0540 0.0507 0.0608 0.0572 0.0592 0.0553 0.0543 0.0507

GLOBAL TEMPERATURE DATA (×10−2)

N = 50, P = 10 N = 100, P = 15
k = 2 k = 4 k = 6 k = 2 k = 4 k = 6

MSE MSEp MSE MSEp MSE MSEp MSE MSEp MSE MSEp MSE MSEp

CQPB 0.0326 0.0316 0.0113 0.0236 0.0274 0.0387 0.0140 0.0216 0.0264 0.0350 0.0262 0.0227
CQPB-AR 0.0126 0.0833 0.0112 0.1525 0.0094 0.0318 0.0319 0.0285 0.0115 0.0752 0.0324 0.0268

AR(k) 0.0142 0.0192 0.0115 0.0164 0.0097 0.0173 0.0135 0.0138 0.0116 0.0146 0.0107 0.0161
RNN 0.0642 0.0617 0.0273 0.0263 0.0233 0.0224 0.0763 0.0757 0.0419 0.0396 0.0308 0.0355

SUNSPOTS DATA

N = 50, P = 10 N = 100, P = 15
k = 2 k = 4 k = 6 k = 2 k = 4 k = 6

MSE MSEp MSE MSEp MSE MSEp MSE MSEp MSE MSEp MSE MSEp

CQPB 0.1109 0.0616 0.1033 0.0431 0.1021 0.0405 0.0679 0.0953 0.0681 0.0796 0.1168 0.1043
CQPB-AR 0.1128 0.0614 0.1012 0.0425 0.1013 0.0507 0.0665 0.0944 0.0595 0.0899 0.0584 0.0895

AR(k) 0.1155 0.0212 0.1061 0.0251 0.1033 0.0261 0.0653 0.0641 0.0610 0.0718 0.0591 0.0766
RNN 0.1071 0.0999 0.0990 0.0931 0.0947 0.0911 0.0806 0.0818 0.0703 0.0711 0.0657 0.0682

Table 1: The performance of predictors trained with various parameters for the
different data sets, given as mean squared error (MSE). MSEp is the mean
squared error for P one-step ahead predictions beyond the training data. For
CQPB-AR, Algorithm 1 is initiated with the AR solution.

Acknowledgments. The authors gratefully acknowledge financial support from a
grant by Göran Gustafsson Stiftelser to Jan Kronqvist, and support from Digital Fu-
tures at KTH.

Disclosure of Interests. The authors have no conflicts of interest.

References

1. Agrawal, A., Amos, B., Barratt, S., Boyd, S., Diamond, S., Kolter, J.Z.: Differ-
entiable convex optimization layers. Advances in neural information processing
systems 32 (2019)

2. Agrawal, A., Barratt, S., Boyd, S.: Learning convex optimization models.
IEEE/CAA journal of automatica sinica 8(8), 1355–1364 (2021)

3. Akaike, H.: Fitting autoregreesive models for prediction. In: Selected Papers of
Hirotugu Akaike, pp. 131–135. Springer (1969)



Convex quadratic programming-based predictors 11

4. Bard, J.F.: Practical bilevel optimization: algorithms and applications, vol. 30.
Springer Science & Business Media (2013)

5. Biggar, D.R., Hesamzadeh, M.R.: The economics of electricity markets. John Wiley
& Sons (2014)

6. Bolusani, S., Besançon, M., Bestuzheva, K., Chmiela, A., Dionísio, J., Donkiewicz,
T., van Doornmalen, J., Eifler, L., Ghannam, M., Gleixner, A., et al.: The scip
optimization suite 9.0. arXiv preprint arXiv:2402.17702 (2024)

7. Box, G.E., Jenkins, G.M., Reinsel, G.C., Ljung, G.M.: Time series analysis: fore-
casting and control. John Wiley & Sons (2015)

8. Breiman, L.: Random forests. Machine learning 45, 5–32 (2001)
9. Chan, T.C.Y., Mahmood, R., Zhu, I.Y.: Inverse Optimization: Theory and Appli-

cations. Operations Research (2023)
10. Chan, T.C., Kaw, N.: Inverse optimization for the recovery of constraint parame-

ters. European journal of operational research 282(2), 415–427 (2020)
11. Dempe, S., Dutta, J.: Is bilevel programming a special case of a mathematical pro-

gram with complementarity constraints? Mathematical Programming 131 (2012)
12. Frank, R.J., Davey, N., Hunt, S.P.: Time series prediction and neural networks.

Journal of intelligent and robotic systems 31, 91–103 (2001)
13. Gupta, R., Zhang, Q.: Decomposition and Adaptive Sampling for Data-Driven

Inverse Linear Optimization. INFORMS Journal on Computing 34(5) (2022)
14. Gupta, R., Zhang, Q.: Efficient learning of decision-making models: A penalty block

coordinate descent algorithm for data-driven inverse optimization. Computers &
chemical engineering 170, 108123– (2023)

15. Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2024),
https://www.gurobi.com

16. Hewamalage, H.: Recurrent neural networks for time series forecasting: Current
status and future directions. International Journal of Forecasting 37 (08 2020)

17. Katyal, C.: Differentiable convex optimization layers in neural architectures: Foun-
dations and perspectives (2024), arXiv preprint

18. Kleinert, T., Labbé, M., Ljubić, I., Schmidt, M.: A survey on mixed-integer pro-
gramming techniques in bilevel optimization. EURO Journal on Computational
Optimization 9, 100007 (2021)

19. NASA: Global surface temperature (Feb 2024), https://climate.nasa.gov/vital-
signs/global-temperature/?intent=111

20. Nordpool: Day-ahead prices (2025), https://data.nordpoolgroup.com/auction/day-
ahead/prices

21. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z.,
Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch. In:
NIPS-W (2017)

22. Sapankevych, N.I., Sankar, R.: Time series prediction using support vector ma-
chines: a survey. IEEE computational intelligence magazine 4(2), 24–38 (2009)

23. Seabold, S., Perktold, J.: statsmodels: Econometric and statistical modeling with
python. In: 9th Python in Science Conference (2010)

24. Sherstinsky, A.: Fundamentals of recurrent neural network (RNN) and long short-
term memory (lstm) network. Physica D: Nonlinear Phenomena 404 (2020)

25. Shumway, R.H., Stoffer, D.S.: Time Series Analysis and Its Applications. Springer
Texts in Statistics, Springer New York, New York, NY, 1st ed. 2000. edn. (2000)

26. SIDC: Sunspots (Feb 2021), https://www.kaggle.com/datasets/robervalt/sunspots/data


