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ABSTRACT

Mixture-of-experts (MoE) architectures have recently emerged as an effective ap-
proach for scaling model capacity while managing computational costs by lever-
aging expert sparsity, where only a subset of experts is activated during inference.
Despite their computational efficiency, MoE models face challenges in training
stability compared to their dense counterparts, largely due to the introduction of
expert sparsity. While several methods have been proposed to mitigate this in-
stability, the underlying relationship between expert sparsity and training stability
remains unclear. In this work, we develop a theoretical framework that demon-
strates an inverse correlation between training stability and expert sparsity, with
gradient smoothness serving as the bridge. We derive an upper bound on training
stability, formalizing for the first time the sparsity-stability trade-off in MoE mod-
els. Our findings show that activating more experts enhances gradient smoothness
and improves training stability but at the cost of reduced sparsity. We validate our
theory through extensive experiments on various architectures and datasets, and
propose a novel MoE structure that addresses stability without sacrificing spar-
sity. This design introduces independent router heads and a soft top-K selection
via sampling without replacement, which smooths the gradient landscape while
maintaining expert sparsity. Further analysis confirms the promise of this struc-
ture in striking the optimal balance between sparsity and stability, offering a new
direction for optimizing MoE architectures in large-scale models.

1 INTRODUCTION

Figure 1: An illustration of sparsity-stability
trade-off in MoEs.

Mixture of Experts (MoE) was introduced to im-
plement conditional computation within a model
to enhance training and inference speeds (Jacobs
et al., 1991; Jordan & Jacobs, 1994). MoE was
later extended to deep learning architectures, in-
cluding CNNs, RNNs, and transformers (Eigen
et al., 2013; Shazeer et al., 2017). MoE has
since evolved to support large-scale models, as
demonstrated by recent works (Jiang et al., 2024;
Wei et al., 2024; Krajewski et al., 2024), which
highlight the scalability advantages of sparse
MoEs over dense models. For a comprehensive
overview, we refer readers to surveys (Yuksel
et al., 2012; Masoudnia & Ebrahimpour, 2014).

Despite the empirical success of MoEs, a crit-
ical challenge persists: the trade-off between
sparsity and stability. Sparser MoEs, of which
routers select fewer experts for each input, are
more efficient to run but less stable to train
(Shazeer et al., 2017; Fedus et al., 2022; Zoph
et al., 2022). This dilemma presents challenges
for MoE networks in terms of overfitting and
fine-tuning. To address the instability of MoE
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training, researchers have explored various strategies, such as, stochastic or differentiable top-K se-
lection for soft routing (Xie & Ermon, 2019; Paulus et al., 2020; Hazimeh et al., 2021), and different
dense training strategies bypassing sparse routing (Nie et al., 2021; Komatsuzaki et al., 2022; Chen
et al., 2023; Pan et al., 2024). However, the exact relationship between expert sparsity and training
stability remains unclear, hindering theoretical guidance for improving MoE training and limiting
their broader application.

We begin with an illustrative example of MoE training (see Figure 1 and Appendix A for details). In
Figure 1, the x-axis (θ1) represents expert 1’s parameter, the y-axis (θ2) represents expert 2’s param-
eter, and the z-axis (l(θ1, θ2)) denotes the loss. The 3D surface illustrates the loss landscape, while
the 2D contours show its projections. The blue-red lines (top-1 optimization in the full space) ex-
hibit far more zigzagging compared to the black lines (top-2 optimization in the full space), although
the projected blue and red lines (top-1 optimizations in sub-spaces) remain relatively smooth. This
suggests that the loss landscape of a dense MoE is smoother than that of a sparse MoE, leading to
more predictable gradients and stable training. This insight leads us to the following question:

Does selecting more experts in MoEs result in smoother optimization and more stable training?

In this work we investigate the above question through both theoretical and empirical investigations,
where our main contributions can be summarized as follows:

• We propose a theoretical framework connecting expert sparsity and training stability
via gradient smoothness. By introducing the concept of gradient smoothness and ana-
lyzing the Lipschitz constants of both the loss function and its gradient, we establish the
quantitative relationship between sparsity and stability. We obtain the theoretical upper
bound on training stability for MoEs, formulating the sparsity-stability trade-off in MoE
models for the first time. Our theory shows that activating more experts enhances gradient
smoothness and improves training stability upper bound, however at the cost of reduced
sparsity.

• Our experimental investigation across representative architectures verify the univer-
sal efficacy of our theory. Specifically, we perform extensive experiments using MoE
architectures based on Multi-Layer Perceptrons (MLPs), Convolutional Neural Networks
(CNNs), and transformers, applied to synthetic, image, and text datasets. These exper-
iments consistently demonstrate that denser MoEs result in smoother gradients and more
stable training across various architectures and datasets, supporting our theoretical findings.

• We introduce a novel MoE structure that improves stability without sacrificing spar-
sity, striking the sparsity-stability trade-off. Under the guidance of our theory, we ad-
dress two key issues in conventional MoE models: zero gradients in top-1 MoEs and the
deterministic nature of top-K selection. Our design introduces independent router heads
and uses a soft top-K selection through sampling without replacement, smoothing the gra-
dient landscape while maintaining expert sparsity. This structure achieves stability bounds
comparable to dense models, offering a solution to the sparsity-stability trade-off in MoEs.

This paper is structured as follows: Section 2 covers related works, followed by the preliminaries in
Section 3. In Section 4, we present our theoretical findings and introduce our new MoE structure.
Section 5 details our empirical results. Section 6 concludes our paper.

2 RELATED WORKS

Training Instability of MoEs: Compared to dense networks, MoEs have been noted for their poorer
stability and generalization, as highlighted by (Shazeer et al., 2017; Fedus et al., 2022; Zoph et al.,
2022). These issues make MoEs prone to overfitting and challenging to fine-tune. Foundational
works by Shazeer et al. (Shazeer et al., 2017) and subsequent studies by Fedus et al. (Fedus et al.,
2022) and Zoph et al. (Zoph et al., 2022) identified these challenges and initiated the exploration of
methods to mitigate them. To address the instability of MoEs, researchers have explored stochastic
or differentiable top-K selection for soft routing (Xie & Ermon, 2019; Paulus et al., 2020; Hazimeh
et al., 2021) and different dense training strategies bypassing sparse routing (Nie et al., 2021; Ko-
matsuzaki et al., 2022; Chen et al., 2023; Pan et al., 2024). These studies provided critical insights
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into the instability problem but did not fully address the connection between expert sparsity and
training stability, which our work aims to explore further.

Gradient Smoothness and Training Stability: Mini-batch Stochastic Gradient Descent (SGD)
(Robbins & Monro, 1951) is a widely utilized optimization method in deep learning. The conver-
gence properties of mini-batch SGD are well-established under certain smoothness and convexity
conditions (Garrigos & Gower, 2023). Recent studies have extensively examined the critical role of
gradient smoothness in achieving stable and generalizable mini-batch SGD methods (Hardt et al.,
2016; Charles & Papailiopoulos, 2018; Kuzborskij & Lampert, 2018; Wu et al., 2018; Lei & Ying,
2020). Techniques such as weight decay (Krogh & Hertz, 1991), gradient clipping (Mikolov et al.,
2012), network pruning (Srivastava et al., 2014), and batch normalization (Ioffe & Szegedy, 2015)
have been proposed to enhance the stability of mini-batch SGD. These foundational studies on gra-
dient smoothness and stability directly inform our work, as we extend these concepts to the sparsity
of MoEs. By connecting gradient smoothness with the expert selection process in MoEs, our work
builds upon these established principles to propose a theoretical framework that links expert sparsity
with training stability.

3 PRELIMINARIES

In this section, we introduce the foundational concepts and notations that will be used throughout this
paper, focusing on the structure and properties of MoE networks and the mathematical definitions
related to smoothness and stability of the training process.

3.1 MIXTURE OF EXPERTS STRUCTURE

We consider a MoE network F composed of N MoE blocks, expressed as:

F = F1 ◦ F2 ◦ · · · ◦ FN .

The output of each block Fi is a weighted average of the selected Ki experts out of the total Mi

experts in Fi:
Fi (Θi;x) =

∑
j∈Ti

Gi,j (Θ
g
i ;x) fi,j

(
Θf

i,j ;x
)
.

Here, i is the block index, and j is the expert index. x denotes the inputs to the whole network F .
We also denote y as the output of the whole network F , and zi as the input of the MoE block Fi for
i = 1, 2, . . . , N with z1 = x. The set Ti represents the indices of selected experts in block Fi. The
function fi,j denotes the j-th expert in Fi. The function Gi,j represents the router probability head
for fi,j , outputting a probability value for MoE averaging. The parameters of block Fi are denoted

by Θi =
[
Θg

i ,Θ
f
i,1, . . . ,Θ

f
i,Mi

]
, where Θg

i and Θf
i,j are the parameters of the router Gi and expert

fi,j in block Fi. The parameters of network F is denoted by Θ = [Θ1, . . . ,ΘN ].

The output of router probability head Gi,j is computed as:

Gi,j (Θ
g
i ;x) = softmax (TopKi (gi,j(Θ

g
i ;x)))

=
1j∈Ti

· exp (gi,j(Θg
i ;x))∑

k∈Ti
exp (gi,k(Θ

g
i ;x))

.

Here, 1j∈Ti is the indicator function, which outputs 1 if j ∈ Ti and 0 otherwise. And gi,j denotes
the router value head for fi,j , typically implemented as a MLP network. The most common method
for constructing Ti is by top-Ki sorting, where experts fi,j are sorted by their corresponding router
values gi,j , and the first Ki experts are selected and weighted by their associated router probabilities
to compute the output of the MoE block Fi.

3.2 SMOOTHNESS OF LOSS FUNCTION

Smoothness of a loss function is an important factor that impacts the performance of gradient descent
methods. A smooth loss function typically has a gradient that varies gradually with changes in the
parameters, leading to a more stable convergence behavior during the optimization process. In
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contrast, a non-smooth or highly irregular loss function can result in a noisier gradient estimate,
which may slow down the convergence of gradient descent. Here, we outline the key mathematical
concepts pertaining to the smoothness of loss functions.

A loss function L : Ω× X → R is convex if, for all Θ,Θ′ ∈ Ω, the following holds:

L (Θ′;x) ≥ L (Θ;x) +∇ΘL (Θ;x)
⊤
(Θ′ −Θ) .

And a loss function L is L-Lipschitz if, for all Θ ∈ Ω and x ∈ X, the gradient satisfies
∥∇ΘL (Θ;x)∥2 ≤ L, i.e., L is an upper bound on the 2-norm of the loss gradients. This implies:

∥L (Θ;x)− L (Θ′;x)∥ ≤ L ∥Θ−Θ′∥ .
Similarly, L is β-smooth if its gradient ∇ΘL is β-Lipschitz, meaning:

∥∇ΘL (Θ;x)−∇Θ′L (Θ′;x)∥ ≤ β ∥Θ−Θ′∥ .

3.3 STABILITY OF TRAINING METHOD

In this work, stability refers to the sensitivity of an optimization algorithm to changes in the training
data. A stable algorithm produces similar outputs when the data is slightly altered, often leading to
better generalization.

We use mini-batch Stochastic Gradient Descent (SGD) to train MoEs:

Θt+1 := U (Θt;B) = Θt − αt

∑
xi∈B ∇ΘL (Θt;xi)

B
,

where t is the iteration, B is the batch, B is the batch size, and αt is the learning rate. We omit tuples
(Θ;x) when clear from context.

An SGD update rule U is ϵ-uniformly stable (Hardt et al., 2016) if, for datasets B,B′ ∈ X|B| differing
by one point, the following holds:

sup
x

EU [∥L(U(B);x)− L (U (B′) ;x)∥2] ≤ ϵ. (1)

Here, the expectation is over the internal stochasticity of mini-batch selection. We denote by
ϵstab(U , |B|) the infimum of ϵ for which this holds, with lower values indicating better stability.

In (Hardt et al., 2016), an upper bound on ϵstab of the form O
(
L2αt

)
is derived. Given that SGD

converges for convex loss if and only if αt ≤ 1
4β (Garrigos & Gower, 2023), ϵstab is consequently

bounded by O
(

L2

β

)
with a convergence guarantee. Inspired by this result, we adopt L2

β as a measure
of gradient smoothness, as it is closely tied to ϵstab.

4 THEORETICAL ANALYSIS

In this section, we present the main results of our theoretical analysis on the relationship between
expert sparsity, gradient smoothness, and training stability in MoE models. Detailed proofs can be
found in Appendix B and C.

We define key terms as follows: (1) Expert sparsity, quantified by the top-K parameter, refers to
the number of activated experts; (2) Training stability, formalized by ϵstab, measures the stability of
mini-batch SGD updates; (3) Gradient smoothness, evaluated by L2

β , reflects how rapidly the loss
function can change. Sparsity K ranges from 1 to the total number of experts in the MoE block,
with smaller K indicating greater sparsity. Both ϵstab and L2

β range from 0 to infinity, with higher
values implying less stability and smoothness in MoEs.

The following assumption on the local properties of the MoE loss function is essential for all theo-
retical results in this section:

Assumption 1 (Local properties of the MoE loss). Assume the loss function L(Θ;x) is lo-
cally convex, β-smooth, and L-Lipschitz for every (Θ,x) ∈ Bϵ(Θ̃) × X, where Bϵ(Θ̃) :={
Θ | ∥Θ− Θ̃∥2 ≤ ϵ,Θ, Θ̃ ∈ Ω

}
denotes the neighborhood of Θ̃ in Ω.
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4.1 SPARSITY-STABILITY TRADE-OFF IN MOES

With the key terms and assumptions established, we now analyze specific properties of the MoE
model under different configurations. Starting with the case where top-Ki = 1, we observe notable
behavior in the router gradients.

Proposition 1 (Zero gradients for top-1 MoEs). For i = 1, 2, . . . , N , if Ki = 1, the Jacobian of
the router in MoE block i is zero, i.e., ∇Θg

i
L = 0.

Proposition 1 reveals that selecting a single expert (top-Ki = 1) leads to vanishing router gradients,
hindering effective routing. For top-Ki > 1, we derive the following lemma on the trade-off between
sparsity K and L-Lipschitzness and β-smoothness.

Lemma 1 (Sparsity-smoothness trade-off in MoEs). Under Assumption 1, with top-Ki = K > 1
for i = 1, 2, . . . , N , the L-Lipschitz constant of the MoE loss function is:

L = O

(
1√
K

)
,

and the β-smoothness constant is:

β = O

(
1√
K

)
.

Lemma 1 establishes the foundation for linking sparsity and stability in MoEs (see Appendix B). Let
ϵMoE

stab denote the stability of the MoE, defined as in Equation 1. The following theorem formalizes
the trade-off between stability ϵMoE

stab and sparsity K.

Theorem 1 (Sparsity-stability trade-off in MoEs). Under Assumption 1, with K1 = K2 = · · · =
KN = K ≥ 1, and mini-batch SGD with fixed step size α = 1/(4β) for T steps in Bϵ(Θ̃), the MoE
achieves uniform stability:

ϵMoE
stab ≤ O

(
T√
KB

)
.

The theorem shows that stability is inversely related to top-K, the number of activated experts. In-
creasing K, activating more experts, improves stability at the expense of sparsity. While decreasing
K, activating less experts, reduces stability. It underscores the need to balance expert selection and
stability in MoEs.

4.2 DESIGNING MORE STABLE MOES

Proposition 1 and Theorem 1 highlight two key issues with standard MoEs: (1) zero router gradients
for top-1 MoEs (see Appendix B for more details), and (2) instability in sparse MoEs (small top-K).
The former is due to shared router parameters, while the latter stems from deterministic sorting in
top-K.

To address these, we propose the following modification:

G̃i,j

(
Θg

i,j ;x
)
=

1j∈T̃i
· exp

(
g̃i,j

(
Θg

i,j ;x
))∑

k∈T̃i
exp

(
g̃i,k

(
Θg

i,j ;x
)) ,

where G̃ incorporates (Figure 2):

• Multi-headed routing: Each output g̃i,j is generated by an independent network with
parameter Θg

i,j , unlike single-headed routers with shared parameters (Figure 2(b)).

• Soft top-K by sampling: Stochastic top-K is implemented via Gumbel-softmax sampling,
without replacement, from the distribution pj = softmax(g̃i,j), generating the sampled
indices set T̃i (Figure 2(d)).

5
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Figure 2: MoE architecture comparison. (a) Single-headed routing. (b) Multi-headed routing. (c)
Deterministic top-K. (d) Soft top-K by sampling.

The experts fi,j remain unchanged, and the output of the new MoE structure is:

F̃i (Θ;x) =
∑
j∈T̃i

G̃i,j

(
Θg

i,j ;x
)
fi,j

(
Θf

i,j ;x
)
.

We refer to this structure as soft multi-headed MoE and denote its stability as ϵmod-MoE
stab . The follow-

ing theorem establishes the stability of the modified MoE:

Theorem 2 (Stability of modified MoE) Under Assumption 1, with M1 = M2 = · · · = MN =
M ≥ 1, and running mini-batch SGD with fixed step size α = 1/(4β) for T steps in Bϵ(Θ̃), the
stability bound is:

ϵmod-MoE
stab ≤ O

(
T√
MB

)
.

Recall that M is the total number of experts in each MoE block, with M ≥ K, the number of
activated experts. Theorem 2 shows that the modified MoE F̃ pushes the stability bound in Theorem
1 to its theoretical extreme value reached when all the M experts are activated, by activating only K
of them. Therefore, the modified MoE F̃ matches the stability bound of dense models, regardless
of top-K, while avoiding the zero router gradient issue highlighted in Proposition 1. This suggests
that the proposed model addresses the sparsity-stability trade-off. Proof details are in Appendix C,
with empirical results in Section 5.

5 EXPERIMENTAL VERIFICATION

In Section 4, we theoretically establish a connection between expert sparsity and training stability via
gradient smoothness. Based on the theory, we also propose a novel MoE structure and demonstrate
its superiority. To empirically validate these theoretical findings, we conducted a comprehensive se-
ries of experiments across various models and datasets. This section details our experimental setup,
implementation, evaluation metrics, and results. Through these experiments, we systematically in-
vestigate the interplay between stability, smoothness, and sparsity, providing empirical evidence to
support our theoretical insights and demonstrating the practical implications for optimizing MoE
architectures.

5.1 SETUPS

5.1.1 EXPERIMENT OF MLP-MOES ON SYNTHETIC DATA

Data: We generate 10 categories of 128-dimensional data by sampling from Gaussian distributions
with varying means and standard deviations. For each category, 2,000 data points are prepared for
training, and 800 for testing, resulting in a training set size of 20,000 and a test set size of 8,000.

Model: Our MoE architecture consists of 1 router and 5 experts. Both the router and the experts
are implemented as two-layer Multi-Layer Perceptron (MLP) networks. Each expert network is
pre-trained to specialize in 2 out of the 10 data categories.

6
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5.1.2 EXPERIMENT OF CNN-MOES ON IMAGE DATA

Data: Our CNN model is trained on the Fashion-MNIST (Xiao et al., 2017) dataset, a ten-class
classification task. The dataset comprises 60,000 training samples and 10,000 test samples.

Model: The MoE model used in this experiment comprises a two convolutional layers followed by
a MoE block which includes 1 router and 5 experts. Similar to the synthetic-data experiments, both
the router and the experts are two-layer MLP networks, with each expert pre-trained to specialize in
2 out of the 10 data categories.

5.1.3 EXPERIMENT OF TRANSFORMER-MOES ON TEXT DATA

Data: The Transformer model is trained on the Banking77 dataset, which is designed for the task
of dialogue intent prediction. The dataset contains 77 distinct intent categories, with 10,003 training
samples and 3,080 test samples.

Model: We use the Bidirectional Encoder Representations from Transformers (BERT) (Devlin
et al., 2018) model, initializing it with pre-trained parameters specifically tailored for the Bank-
ing77 dataset, followed by fine-tuning. In our MoE architecture, the feed-forward network layer is
configured with 7 experts, each of which is a two-layer neural network with cubic activation.

5.2 IMPLEMENTATIONS

All of our models are implemented using PyTorch, and we utilize the mini-batch SGD optimizer
for the training process. The MLP-MoE and CNN-MoE models are trained for 100 epochs with a
learning rate of 0.001 and a batch size of 256. The Transformer model is trained for 15 epochs with
a learning rate of 0.00005 and a batch size of 64. Model parameters are recorded at each epoch for
downstream analysis of sparsity, smoothness and stability.

5.3 EVALUATIONS

We evaluate training stability ϵstab, L-Lipschitzness, and β-smoothness using the finite difference
method. At a certain step during the training process, we randomly select three data batches of 64
samples from the training set, denoted as B1, B2, and B3. To explore the neighborhood of Θ0, the
parameters of the current network, we use respectively B1 and B2 to update the network, resulting in
two independently updated parameters Θ1 and Θ2, as well as the corresponding Jacobians ∇Θ1L
and ∇Θ2L. The values of ϵstab, L, and β at the current step are then evaluated over B3 using finite

differences: ϵstab(B1,B2) =
∑

x∈B3
∥L(Θ1;x)−L(Θ2;x)∥2

64 , L(B1,B2) =
∑

x∈B3
∥L(Θ1;x)−L(Θ2;x)∥2

64∥Θ1−Θ2∥2
,

and β(B1,B2) =
∑

x∈B3
∥∇Θ1

L(Θ1;x)−∇Θ2
L(Θ2;x)∥

2

64∥Θ1−Θ2∥2
.

Considering the impact of stochasticity in mini-batch SGD, we repeat the above experiment 200
times with different data batches (B1,B2,B3). The largest values of ϵstab, L, β obtained are taken
as the evaluation estimates for the current training step, denoted as ϵ̃stab, L̃, and β̃, respectively.
Gradient smoothness is then computed as L̃2

β̃
.

Finally, we compute the average of the measurements taken across five trained models in the repli-
cated experiments to determine our final values for smoothness and stability.

5.4 RESULTS

5.4.1 IMPACT OF EXPERT SPARSITY ON CONVERGENCE AND LOSS VARIANCE

To demonstrate the impact of expert sparsity on training stability as indicated by our theoretical
analysis, we investigate the training loss and the variance of loss over the training process. Using
a sliding window method (with a window size of 101), we calculate the variance of loss within
each window as our measure of loss variance. As shown in Figure 3, the sparsest (top-1) network
converges more slowly and has a higher loss variance compared to the densest (top-5) network,
consistent with our theory.

7
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Figure 3: Impact of Expert Sparsity on Convergence and Loss Variance. (a) MLP. (b) CNN. (c)
Transformer. (Top) The sparse network (red line, top-K = 1) exhibits slower convergence compared
to the dense network (blue line, top-K = 5). (Bottom) The sparse network shows greater variance
in loss during training, indicating a less stable training process relative to the dense network.

Figure 4: Correlation Between Smoothness and Stability across Top-K. (a) MLP. (b) CNN. (c)
Transformer. (Top) Each data point represents the gradient smoothness (L

2

β ) and training stability
(ϵMoE

stab ) measured from a MoE network, with different colors indicating different top-K values. (Bot-
tom) The spread of the smoothness-stability region for different top-K settings is illustrated with
corresponding colors.

5.4.2 CORRELATION BETWEEN SMOOTHNESS AND STABILITY ACROSS TOP-K

Similarly, to illustrate the relationship between gradient smoothness and training stability, we exam-
ine both the smoothness (L

2

β ) and stability (ϵ) at different steps during the model training process.
As shown in the top row of Figure 4, each point denotes a measurement of smoothness and stability
for a model at a certain training step in an experiment. It can be seen that the sparsest network
(top-1) exhibits the widest dispersion in the upper right, indicating the worst smoothness and stabil-
ity. In contrast, denser networks tend to concentrate in the lower left, exhibiting better smoothness
and stability. Bottom row of Figure 4 exhibits the distribution area for varying top-K by stacking
thresholded density plot of the scattered points. As top-K increases from 1 to 5, an obvious trend
of distribution shifting from the upper right to the lower left is present. It demonstrates a negative
relationship between sparsity and both stability and smoothness.
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Figure 5: Evolution of Stability and Smoothness Throughout Training Stages. (a) MLP. (b)
CNN. (c) Transformer. Each subplot presents the gradient smoothness L2

β (upper panel) and training
stability ϵstab (lower panel) across different top-K settings. The x-axis represents top-K, while the
y-axes indicate stability (top) and smoothness (bottom). Each point is an average of the values in
the corresponding stage. Color shading illustrates the progression of training stages, with darker
shades corresponding to later stages. The figure highlights how different top-K values influence
the model’s smoothness and stability throughout the training process, with denser settings showing
more concentrated and stable behaviors.

5.4.3 EVOLUTION OF STABILITY AND SMOOTHNESS THROUGHOUT TRAINING STAGES

To further investigate the impact of expert sparsity on training stability and gradient smoothness,
we conduct experiments at different training stages for networks trained with varying top-K val-
ues. By adjusting the top-K hyperparameter, we measure the resulting smoothness and stability. As
shown in Figure 5, stability and smoothness exhibit distinct trends with changes in top-K: during
the early stages of training, differences among top-K values (except for top-1) are minimal, with
high-sparsity networks even showing lower initial smoothness. However, as training progresses, the
gap in smoothness and stability between networks of different sparsities becomes more pronounced.
Notably, the network trained with top-1 behaves differently from the others, consistent with our the-
oretical observation that a top-1 router is nearly inactive, potentially explaining its distinct behavior.
As training advances, the instability and lack of smoothness in sparse networks become more appar-
ent, consistent with the inverse relationship between sparsity and both stability and smoothness.

5.4.4 IMPROVED STABILITY FOR SOFT TOP-K MULTI-HEADED MOES

To validate the effectiveness of the proposed soft top-K multi-headed MoE structure, we conduct ex-
periments across different architectures, including MLP, CNN, and Transformer models, to analyze
its stability and performance relative to traditional deterministic top-K MoEs.

As shown in Figure 6, the single-headed MoE with deterministic routing (orange lines) frequently
suffers from vanishing gradients, particularly in sparse settings (top-K = 1), leading to training
instability. In contrast, our proposed multi-headed MoE (blue lines) consistently maintains non-zero
gradients throughout training, ensuring smoother and more stable convergence. This demonstrates
that the multi-headed routing strategy effectively addresses the zero-gradient issue inherent in top-1
MoEs, particularly in scenarios where sparse selection of experts is critical.

Additionally, as depicted in Figure 7, we compare the training stability ϵstab across three routing
strategies: deterministic top-K followed by softmax (red lines), softmax followed by deterministic
top-K (orange lines), and softmax followed by stochastic top-K via sampling without replacement
(blue lines). The results indicate that the softmax followed by stochastic top-K routing provides the
highest stability (blue lines), followed by softmax with deterministic top-K (orange lines), while the
original deterministic top-K (red lines) shows the least stability. This confirms that incorporating
stochastic elements into the routing process leads to a significant improvement in training stability,
particularly in sparse configurations.

In summary, these experiments demonstrate that our soft top-K multi-headed MoE structure not
only mitigates the gradient vanishing problem but also enhances training stability by introducing
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Figure 6: Multi-Headed MoEs Eliminate Zero Router Gradients. (a) MLP. (b) CNN. (c) Trans-
former. The standard MoE with a single router head (red lines) shows vanishing gradients, particu-
larly in sparse settings (top-K = 1), leading to unstable training dynamics. In contrast, the proposed
multi-headed MoE (blue lines) maintains non-zero gradients throughout the training process, result-
ing in smoother and more stable convergence. This suggests that multi-headed routing effectively
addresses the zero-gradient issue inherent in top-1 MoEs.

Figure 7: Improved Stability in Soft Top-K MoEs. (a) MLP. (b) CNN. (c) Transformer. Each
subplot presents the training stability ϵstab across different routing methods: original deterministic
top-K followed by softmax (red line), softmax followed by deterministic top-K (orange line), and
softmax followed by stochastic top-K via sampling without replacement (blue line). The x-axis
represents top-K, while the y-axis indicates the stability values. The stochastic top-K routing (blue
line) shows the highest stability, followed by the deterministic top-K after softmax (orange line),
and the least stable being the original deterministic top-K routing (red line). This suggests that our
soft top-K routing provides the most stable training dynamics, especially in sparse configurations,
significantly improving upon the traditional deterministic top-K approach.

stochasticity into the expert selection process. These improvements are especially evident in highly
sparse scenarios, where traditional top-K approaches struggle with unstable training dynamics.

6 CONCLUSION

In this paper, we have explored the intricate balance between expert sparsity and training stability
within MoEs. Through rigorous theoretical analysis, we have demonstrated that gradient smoothness
acts as a pivotal factor in harmonizing these two aspects. Our research reveals that denser MoE
configurations yield smoother gradients, thereby enhancing the stability of the training process. The
empirical evidence presented across diverse architectures and datasets corroborates our theoretical
insights, offering practical guidance for optimizing MoE architectures to achieve stable and efficient
training. Additionally, we introduce a novel MoE structure that theoretically guarantees improved
stability by addressing the inherent challenges posed by sparse expert selection. This work not
only enriches the theoretical discourse on MoE stability but also provides actionable strategies for
real-world MoE deployments.
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A THE ILLUSTRATIVE EXPERIMENT

Data: We consider a straightforward scenario where the input data x are uniformly distributed
across the interval [−1, 1], denoted as U [−1, 1]. This uniform distribution is selected to provide
a controlled and interpretable setting for analyzing the behavior of the Mixture of Experts (MoE)
model. The target output for all input data points is set to 0, simplifying the assessment of the
model’s optimization performance.

Model: The model employed in this experiment is a one-layer MoE consisting of two linear experts.
The expert functions are defined as f1(θ1;x) = θ1x and f2(θ2;x) = θ2x, where θ1 and θ2 are the
respective parameters of the experts. The router function is fixed with equal probabilities (p1, p2) =(
1
2 ,

1
2

)
, ensuring that any input x is equally likely to be routed to either f1 or f2. The output y of the

MoE varies depending on the top-k setting. When top-k = 2, the output is calculated as a weighted
sum of contributions from both experts: y = p1f1 + p2f2. For top-k = 1, the output is randomly
selected as either f1 or f2. The loss function is defined as the squared 2-norm between the target
value 0 and the output y, expressed as l(θ1, θ2) = y2. The optimization is carried out using gradient
descent with a fixed learning rate of 0.1, over 20 steps. This simplified MoE setup is designed to
illustrate the relationship between expert sparsity, gradient smoothness, and training stability within
a controlled experimental framework.

B PROOF OF THEOREM 2

In this sub-section, we present a detailed analysis leading to the proof of Theorem 1. Our approach
begins by considering the structure of the MoE network and establishing bounds on the router prob-
abilities Gi,j . We derive the Jacobians of the MoE block output with respect to both the router and
expert parameters, followed by computing the squared l2-norms of these Jacobians. These computa-
tions allow us to determine the local Lipschitz constants of the whole network using the chain rule.
Subsequently, we extend this analysis to the Hessians, which helps us establish the local smoothness
constants. Finally, by combining these results with our assumptions and leveraging Theorem 3, we
derive the bounds necessary to prove the stability result encapsulated in Theorem 1.

We begin by the following theorem introduced in (Hardt et al., 2016),

Theorem 3 (Upper bound on general stability). Assume that the loss function L(·;x) ∈ [0, 1] is
convex, β-smooth, and L-Lipschitz for every x. If we run mini-batch SGD with fixed step sizes
α = 2/β for T steps, then mini-batch SGD satisfies uniform stability with:

ϵstab ≤ L2T

βB
.

Theorem 3 reveals that the stability of mini-batch SGD improves as the Lipschitz constant L de-
creases, which is consistent with the intuition that smoother loss landscapes contribute to more
stable learning. This result is crucial for understanding how to control the trade-offs between learn-
ing rate, batch size, and smoothness in practical applications. Furthermore, it lays the groundwork
for Theorems 1 and 2, which extend these stability considerations to the context of MoE models,
specifically addressing the unique challenges posed by expert sparsity in these architectures.

For simplicity, we omit the tuples (Θ;x), (Θg
i ;x), and

(
Θf

i,j ;x
)

. Consider a MoE network F
composed of N MoE blocks:

F = F1 ◦ F2 ◦ · · · ◦ FN .

The MoE block function Fi is given by:

Fi (Θi;x) =
∑
j∈Ti

Gi,j (Θ
g
i ;x) fi,j

(
Θf

i,j ;x
)
,

where the router probability function Gi,j is:

Gi,j (Θ
g
i ;x) = softmax (TopKi (gi,j(Θ

g
i ;x)))

=
1j∈Ti

· exp (gi,j(Θg
i ;x))∑

k∈Ti
exp (gi,k(Θ

g
i ;x))

.
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Let T full
i be the index set of all experts. We first show that Gi,j = O

(
1
Ki

)
if j ∈ Ti. Starting with

the upper bound:

Gi,j (Θ
g
i ;x) =

exp (gi,j(Θ
g
i ;x))∑

k∈Ti
exp (gi,k(Θ

g
i ;x))

≤
maxj∈T full

i
exp (gi,j(Θ

g
i ;x))

Ki mink∈T full
i

exp (gi,k(Θ
g
i ;x))

= O

(
1

Ki

)
,

(2)

where the last equality follows because gi,j is bounded according to Assumption 1. Similarly, for
the lower bound:

Gi,j (Θ
g
i ;x) =

exp (gi,j(Θ
g
i ;x))∑

k∈Ti
exp (gi,k(Θ

g
i ;x))

≥
minj∈T full

i
exp (gi,j(Θ

g
i ;x))

Ki maxk∈T full
i

exp (gi,k(Θ
g
i ;x))

= O

(
1

Ki

)
.

(3)

Combining Equations (2) and (3), we establish that Gi,j = O
(

1
Ki

)
if j ∈ Ti.

Next, we derive the Jacobian of the MoE block output Fi with respect to the router parameters Θg
i :

∂Fi

∂Θg
i

=
∑
j∈Ti

∂Gi,j

∂Θg
i

fi,j

=
∑
j∈Ti

((
exp (gi,j)

∂gi,j
∂Θg

i

(∑
k∈Ti

exp (gi,k)

)
−

exp (gi,j)

(∑
k∈Ti

exp (gi,k)
∂gi,k
∂Θg

i

))/
(∑

k∈Ti

exp (gi,k)

)2

fi,j


=
∑
j∈Ti

((∑
k∈T

(
exp (gi,j + gi,k)

(
∂gi,j
∂Θg

i

− ∂gi,k
∂Θg

i

)))/
(∑

k∈Ti

exp (gi,k)

)2

fi,j


=
∑
j∈Ti

∑
k∈Ti

Gi,jGi,k

(
∂gi,j
∂Θg

i

− ∂gi,k
∂Θg

i

)
fi,j

=
∑
j∈Ti

Gi,j

(∑
k∈Ti

Gi,k

(
∂gi,j
∂Θg

i

− ∂gi,k
∂Θg

i

))
fi,j .

(4)

First, note that when Ki = 1,
∑

k∈Ti
gi,k

(
∂gi,j
∂Θg

i
−∂gi,k

∂Θg
i

)
= gi,j

(
∂gi,j
∂Θg

i
− ∂gi,j

∂Θg
i

)
= 0, i.e.,

∂Fi(Θi;x)
∂Θg

i
= 0. This proves Proposition 1.

When Ki > 1, denote Gi,j

(∑
k∈Ti

Gi,k

(
∂gi,j
∂Θg

i
− ∂gi,k

∂Θg
i

))
fi,j as Gi,jaj and Gi,k

(
∂gi,j
∂Θg

i
− ∂gi,k

∂Θg
i

)
as Gi,kbk. To obtain the squared l2-norm of ∂Fi

∂Θg
i

, we first compute the squared l2-norm of the inner
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summation, ∥∥∥∥∥∑
k∈Ti

Gi,k

(
∂gi,j
∂Θg

i

− ∂gi,k
∂Θg

i

)∥∥∥∥∥
2

2

=
∑
k∈Ti

G2
i,k ∥bk∥22 +

2
∑

p,q∈Ti

Gi,pGi,qb
⊤
p bq

=
∑
k∈Ti

O

(
1

K2
i

)
∥bk∥22 +

2
∑

p,q∈Ti

O

(
1

K2
i

)
b⊤
p bq

= O

(
1

Ki

)
.

And hence we can compute the squared l2-norm of the outer summation,

∥∥∥∥ ∂Fi

∂Θg
i

∥∥∥∥2
2

=

∥∥∥∥∥∥
∑
j∈Ti

Gi,j

(∑
k∈Ti

Gi,k

(
∂gi,j
∂Θg

i

− ∂gi,k
∂Θg

i

))
fi,j

∥∥∥∥∥∥
2

2

=
∑
j∈Ti

G2
i,k ∥aj∥

2
2 + 2

∑
p,q∈Ti

Gi,pGi,qa
⊤
p aq

=
∑
j∈Ti

G2
i,kO

(
1

Ki

)
∥fi,j∥22 +

2
∑

p,q∈Ti

Gi,pGi,qO

(
1

Ki

)
f⊤
i,pfi,q

=
∑
k∈Ti

O

(
1

K3
i

)
∥fi,j∥22 +

2
∑

p,q∈Ti

O

(
1

K3
i

)
f⊤
i,pfi,q

= O

(
1

K2
i

)
.

(5)

The Jacobian with respect to the expert parameters Θf
i,j is given by:

∂Fi

∂Θf
i,j

=

{
Gi,j

∂fi,j

∂Θf
i,j

, if j ∈ Ti,

0, otherwise.
(6)

For j ∈ Ti, the squared l2-norm of ∂Fi

∂Θf
i,j

is as follows:

∥∥∥∥∥ ∂Fi

∂Θf
i,j

∥∥∥∥∥
2

2

= G2
i,j

∥∥∥∥∥ ∂fi,j

∂Θf
i,j

∥∥∥∥∥
2

2

= O

(
1

K2
i

)
. (7)

The Jacobian with respect to the input zi is derived similarly:

∂Fi

∂zi
=
∑
j∈Ti

(
Gi,j

(∑
k∈Ti

Gi,k

(
∂gi,j
zi

− ∂gi,k
∂zi

))
fi,j+

Gi,j
∂fi,j
∂zi

)
.

(8)
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Noticing that ∥Gi,j

(∑
k∈Ti

Gi,k

(
∂gi,j
zi

− ∂gi,k
∂zi

))
fi,j∥22 = O

(
1

K3
i

)
and

∥∥∥Gi,j
∂fi,j
∂zi

∥∥∥2
2
= O

(
1

K2
i

)
.

Denote Gi,j

(∑
k∈Ti

Gi,k

(
∂gi,j
zi−1

− ∂gi,k
∂zi−1

))
fi,j + Gi,j

∂fi,j
∂zi

as cj , we can compute ∥cj∥22 =

O
(

1
K3

i

)
+O

(
1

K2
i

)
+ 2O

(
1

K2.5
i

)
= O

(
1

K2
i

)
and

∥∥∥∥∂Fi

∂zi

∥∥∥∥2
2

=

∥∥∥∥∥∥
∑
j∈Ti

cj

∥∥∥∥∥∥
2

2

=
∑
j∈Ti

∥cj∥22 + 2
∑

p,q∈Ti

c⊤p cq

=
∑
j∈Ti

O

(
1

K2
i

)
+ 2

∑
p,q∈Ti

O

(
1

K2
i

)

= O

(
1

Ki

)
.

(9)

Using the chain rule ∂L
∂Θi

= ∂L
∂zN

(∏N
j=i+1

∂Fj

∂zj

)
∂Fi

∂Θi
and Equations (5), (6), and (9), we can obtain

the squared l2-norms of the Jacobians of the entire MoE network:

∥∥∥∥ ∂L
∂Θg

i

∥∥∥∥2
2

=

∥∥∥∥ ∂L
∂zN

∥∥∥∥2
2

 N∏
j=i+1

∥∥∥∥∂Fj

∂zj

∥∥∥∥2
2

∥∥∥∥ ∂Fi

∂Θg
i

∥∥∥∥2
2

= O (1)

 N∏
j=i+1

O

(
1

Kj

)O

(
1

K2
i

)

= O

(
1

K2
i

∏N
j=i+1 Kj

)
,

(10)

and

∥∥∥∥∥ ∂L
∂Θf

i,j

∥∥∥∥∥
2

2

=

∥∥∥∥ ∂L
∂zN

∥∥∥∥2
2

 N∏
j=i+1

∥∥∥∥∂Fj

∂zj

∥∥∥∥2
2

∥∥∥∥∥ ∂Fi

∂Θf
i,j

∥∥∥∥∥
2

2

= O (1)

 N∏
j=i+1

O

(
1

Kj

)O

(
1

K2
i

)

= O

(
1

K2
i

∏N
j=i+1 Kj

)
.

(11)
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Since ∂Fi

∂Θi
:=

(
∂Fi

∂Θg
i
, ∂Fi

∂Θf
i,1

, . . . , ∂Fi

∂Θf
i,Ni

)
and ∂L

∂Θ :=
(

∂L
∂Θ1

, ∂L
∂∇Θ2

, . . . , ∂L
∂ΘN

)
, we have

∥∥∥∥ ∂L∂Θ
∥∥∥∥2
2

=

N∑
i=1

∥∥∥∥ ∂L
∂Θi

∥∥∥∥2
2

=

N∑
i=1

∥∥∥∥ ∂Fi

∂Θg
i

∥∥∥∥2
2

+
∑
j∈Ti

∥∥∥∥∥ ∂Fi

∂Θf
i,j

∥∥∥∥∥
2

2


=

N∑
i=1

(
O

(
1

K2
i

∏N
j=i+1 Kj

)
+

∑
j∈Ti

O

(
1

K2
i

∏N
j=i+1 Kj

)
=

N∑
i=1

(
O

(
1

K2
i

∏N
j=i+1 Kj

)
+

O

(
1∏N

j=i+1 Kj

))

=

N∑
i=1

(
O

(
1∏N

j=i Kj

))

= O

(
1

KN

)

(12)

Therefore,
∥∥ ∂L
∂Θ

∥∥
2
= O

(
1√
KN

)
and the local Lipschitzness constant L = maxΘ∈Bϵ(Θ̃)

∥∥ ∂L
∂Θ

∥∥
2
=

O
(

1√
KN

)
.

Following the same approach used to prove Lemma 1 but computing Hessians instead, we first derive
the Hessians of the router and experts in each MoE block:

∂2Fi

(∂Θg
i )

2 =
∂
(

∂Fi

∂Θg
i

)
∂Θg

i

=
∑
j∈Ti

Gi,jfi,j

(∑
k∈Ti

Gi,k

(
∂gi,j
∂Θg

i

− ∂gi,k
∂Θg

i

))2

+

∑
k∈Ti

(
G2
i,k

(
∂gi,j
∂Θg

i

− ∂gi,k
∂Θg

i

)2

+

Gi,k

(
∂2gi,j

(∂Θg
i )

2 − ∂2gi,k

(∂Θg
i )

2

)))
,

(13)

and

∂2Fi(
∂Θf

i,j

)2 =

Gi,j
∂2fi,j

(∂Θf
i,j)

2 , if j ∈ Ti,

0, otherwise.
(14)
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Computing the squared l2-norms of the above two Hessians:

∥∥∥∥∥ ∂2Fi

(∂Θg
i )

2

∥∥∥∥∥
2

2

=
∑
j∈Ti

O

(
1

Ki

)(∑
k∈Ti

O

(
1

Ki

))2

+

∑
k∈Ti

(
O

(
1

K2
i

)
+ O

(
1

Ki

)))
,

=
∑
j∈Ti

O

(
1

K2
i

)(
O

(
1

K2
i

)
+O

(
1

Ki

))

=
∑
j∈Ti

O

(
1

K3
i

)

= O

(
1

K2
i

)
,

(15)

and

∥∥∥∥∥∥∥
∂2Fi(
∂Θf

i,j

)2
∥∥∥∥∥∥∥
2

2

= G2
i,j

∥∥∥∥∥∥∥
∂2fi,j(
∂Θf

i,j

)2
∥∥∥∥∥∥∥
2

2

= O

(
1

K2
i

)
. (16)

Again, using the chain rule and Equations (9), (15), and (16), we obtain the l2-norms of the Hessians
of the whole MoE network:

∥∥∥∥∥ ∂2L
(∂Θg

i )
2

∥∥∥∥∥
2

2

=

∥∥∥∥ ∂L
∂zN

∥∥∥∥2
2

 N∏
j=i+1

∥∥∥∥∂Fj

∂zj

∥∥∥∥2
2

∥∥∥∥∥ ∂2Fi

(∂Θg
i )

2

∥∥∥∥∥
2

2

= O (1)

 N∏
j=i+1

O

(
1

Kj

)O

(
1

K2
i

)

= O

(
1

K2
i

∏N
j=i+1 Kj

)
,

(17)

and

∥∥∥∥∥∥∥
∂2L(

∂Θf
i,j

)2
∥∥∥∥∥∥∥
2

2

=

∥∥∥∥ ∂L
∂zN

∥∥∥∥2
2

 N∏
j=i+1

∥∥∥∥∂Fj

∂zj

∥∥∥∥2
2


∥∥∥∥∥∥∥

∂2Fi(
∂Θf

i,j

)2
∥∥∥∥∥∥∥
2

2

= O (1)

 N∏
j=i+1

O

(
1

Kj

)O

(
1

K2
i

)

= O

(
1

K2
i

∏N
j=i+1 Kj

)
,

(18)
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Following the same process used to derive Equation (12) and noting that ∂2Fi

(∂Θi)
2 :=(

∂2Fi

(∂Θg
i )

2 ,
∂2Fi

(∂Θf
i,j)

2 , . . . ,
∂2Fi

(∂Θf
i,j)

2

)
and ∂2L

(∂Θ)2
:=
(

∂2L
(∂Θ1)

2 ,
∂2L

(∂Θ2)
2 , . . . ,

∂2L
(∂ΘN )2

)
, we obtain:

∥∥∥∥∥ ∂2L
(∂Θ)

2

∥∥∥∥∥
2

2

=

N∑
i=1

∥∥∥∥∥ ∂2L
(∂Θi)

2

∥∥∥∥∥
2

2

=

N∑
i=1

∥∥∥∥∥ ∂2Fi

(∂Θg
i )

2

∥∥∥∥∥
2

2

+
∑
j∈Ti

∥∥∥∥∥∥∥
∂2Fi(
∂Θf

i,j

)2
∥∥∥∥∥∥∥
2

2


=

N∑
i=1

(
O

(
1

K2
i

∏N
j=i+1 Kj

)
+

∑
j∈Ti

O

(
1

K2
i

∏N
j=i+1 Kj

)
=

N∑
i=1

(
O

(
1

K2
i

∏N
j=1+1 Kj

)
+

O

(
1∏N

j=i+1 Kj

))

=

N∑
i=1

(
O

(
1∏N

j=i Kj

))

= O

(
1

KN

)

(19)

Therefore,
∥∥∥ ∂2L
(∂Θ)2

∥∥∥
2

= O
(

1√
KN

)
and the local smoothness constant β =

maxΘ∈Bϵ(Θ̃)

∥∥∥ ∂2L
(∂Θ)2

∥∥∥
2
= O

(
1√
KN

)
. This completes the proof of Lemma 1.

Finally, using Theorem 1, Lemma 1, together with Assumption 1),we have:

ϵMoE
stab ≤

(
LMoE

)2
T

βMoEB
= O

(
T√
KNB

)
,

which completes the proof of Theorem 2.

C PROOF OF THEOREM 3

The proof of Theorem 3 closely follows the structure of the proof of Theorem 1, with the primary
differences lying in: (1) the big O bound of the modified router probability function G̃i,j , and (2)
the derivation of the Jacobians ∂Li

∂Θg
i,j

, ∂F̃i

∂Θg
i,j

, ∂F̃i

∂zi
, and the Hessians ∂2Li

(∂Θg
i,j)

2 , ∂2F̃i

(∂Θg
i,j)

2 with respect

to the independent router parameters Θg
i,j .

Recall that the modified MoE block function F̃i is given by:

F̃i (Θi;x) =
∑
j∈T̃i

G̃i,j (Θ
g
i ;x) fi,j

(
Θf

i,j ;x
)
,
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where T̃i is the set of expert indices selected by soft top-K and the modified router probability
function G̃i,j is:

G̃i,j

(
Θg

i,j ;x
)
= SoftTopKi

(
softmax

(
g̃i,j(Θ

g
i,j ;x)

))
= 1j∈T̃i

·
exp

(
g̃i,j(Θ

g
i,j ;x)

)
∑Kfull

i

k=1 exp
(
g̃i,k(Θ

g
i,j ;x)

) .

We begin by providing a new big O bound on G̃i,j . Using the same reasoning as in the derivation of

Equations (2) and (3), replacing Ki with K full
i , we obtain G̃i,j = O

(
1

Kfull
i

)
.

Next, we derive the Jacobian of the router probability function G̃i,j with respect to the router param-
eters Θg

i,k (where j might be different from k):

∂F̃i

∂Θg
i,k

=
∑
j∈T̃i

∂G̃i,j

∂Θg
i,k

fi,j

=
∑
j∈T̃i

(
1j=k · G̃i,j(1− G̃i,j)

∂G̃i,j

∂Θg
i,k

fi,j−

1j ̸=k · G̃i,j G̃i,k
∂G̃i,j

∂Θg
i,k

fi,j

)

=
∑
j∈T̃i

G̃i,j

(
δj,k − G̃i,k

)
fi,j

∂G̃i,j

∂Θg
i,k

,

(20)

where δj,k = 1 if j = k, and otherwise δj,k = 0.

By comparing Equation (4) with (20), we observe that the term
∑

k∈Ti
Gi,k

(
∂gi,j
∂Θg

i
− ∂gi,k

∂Θg
i

)
, which

is responsible for zero router gradients when top-K = 1, is absent in Equation (20). This indicates
that the modified MoE is immune to the zero gradient issue, regardless of the value of top-K.

Furthermore, the Hessian of the router probability function G̃i,j with respect to the router parameters
Θg

i,k (where j might be different from k) is derived as follows:

∂2F̃i(
∂Θg

i,k

)2 =
∂
(

∂F̃i

∂Θg
i,k

)
∂Θg

i,k

=
∑
j∈T̃i

fi,j

(G̃i,j

(
δj,k − G̃i,k

) ∂G̃i,j

∂Θg
i,k

)2

+

(
δj,kG̃i,j − δj,kG̃2

i,j + G̃3
i,k

∂G̃i,j

∂Θg
i,k

)
∂G̃i,j

∂Θg
i,k

+

G̃i,j

(
δj,k − G̃i,k

) ∂2G̃i,j(
∂Θg

i,k

)2
 .

(21)
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Using the same reasoning for deriving the l2-norms of the Jacobians and Hessians of the entire
network, as in Equations (12) and (19), we obtain∥∥∥∥ ∂L∂Θ

∥∥∥∥
2

= O

 1√
K full

N

 ,

∥∥∥∥∥ ∂2L
(∂Θ)

2

∥∥∥∥∥
2

2

= O

 1√
K full

N

 .

(22)

Finally, applying Theorem 2, Lemma 1, together with Assumption 1, we derive:

ϵmod-MoE
stab ≤

(
Lmod-MoE

)2
T

βmod-MoEB
= O

 T√
K full

N B

 ,

which completes the proof of Theorem 3.
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