SMOOTHNESS BRIDGES SPARSITY AND STABILITY IN MOES

Anonymous authors

Paper under double-blind review

ABSTRACT

Mixture-of-experts (MoE) architectures have recently emerged as an effective approach for scaling model capacity while managing computational costs by leveraging expert sparsity, where only a subset of experts is activated during inference. Despite their computational efficiency, MoE models face challenges in training stability compared to their dense counterparts, largely due to the introduction of expert sparsity. While several methods have been proposed to mitigate this instability, the underlying relationship between expert sparsity and training stability remains unclear. In this work, we develop a theoretical framework that demonstrates an inverse correlation between training stability and expert sparsity, with gradient smoothness serving as the bridge. We derive an upper bound on training stability, formalizing for the first time the sparsity-stability trade-off in MoE models. Our findings show that activating more experts enhances gradient smoothness and improves training stability but at the cost of reduced sparsity. We validate our theory through extensive experiments on various architectures and datasets, and propose a novel MoE structure that addresses stability without sacrificing sparsity. This design introduces independent router heads and a soft top-K selection via sampling without replacement, which smooths the gradient landscape while maintaining expert sparsity. Further analysis confirms the promise of this structure in striking the optimal balance between sparsity and stability, offering a new direction for optimizing MoE architectures in large-scale models.

028 029 030 031

032

004

006

008 009

010 011

012

013

014

015

016

017

018

019

021

023

025

026

027

1 INTRODUCTION

033 Mixture of Experts (MoE) was introduced to im-034 plement conditional computation within a model to enhance training and inference speeds (Jacobs et al., 1991; Jordan & Jacobs, 1994). MoE was later extended to deep learning architectures, in-037 cluding CNNs, RNNs, and transformers (Eigen et al., 2013; Shazeer et al., 2017). MoE has since evolved to support large-scale models, as 040 demonstrated by recent works (Jiang et al., 2024; 041 Wei et al., 2024; Krajewski et al., 2024), which 042 highlight the scalability advantages of sparse 043 MoEs over dense models. For a comprehensive 044 overview, we refer readers to surveys (Yuksel et al., 2012; Masoudnia & Ebrahimpour, 2014).

Despite the empirical success of MoEs, a critical challenge persists: the trade-off between sparsity and stability. Sparser MoEs, of which routers select fewer experts for each input, are more efficient to run but less stable to train (Shazeer et al., 2017; Fedus et al., 2022; Zoph et al., 2022). This dilemma presents challenges for MoE networks in terms of overfitting and fine-tuning. To address the instability of MoE

Figure 1: An illustration of sparsity-stability trade-off in MoEs.

054 training, researchers have explored various strategies, such as, stochastic or differentiable top-K se-055 lection for soft routing (Xie & Ermon, 2019; Paulus et al., 2020; Hazimeh et al., 2021), and different 056 dense training strategies bypassing sparse routing (Nie et al., 2021; Komatsuzaki et al., 2022; Chen 057 et al., 2023; Pan et al., 2024). However, the exact relationship between expert sparsity and training 058 stability remains unclear, hindering theoretical guidance for improving MoE training and limiting their broader application.

060 We begin with an illustrative example of MoE training (see Figure 1 and Appendix A for details). In 061 Figure 1, the x-axis (θ_1) represents expert 1's parameter, the y-axis (θ_2) represents expert 2's param-062 eter, and the z-axis $(l(\theta_1, \theta_2))$ denotes the loss. The 3D surface illustrates the loss landscape, while 063 the 2D contours show its projections. The blue-red lines (top-1 optimization in the full space) ex-064 hibit far more zigzagging compared to the black lines (top-2 optimization in the full space), although the projected blue and red lines (top-1 optimizations in sub-spaces) remain relatively smooth. This 065 suggests that the loss landscape of a dense MoE is smoother than that of a sparse MoE, leading to 066 more predictable gradients and stable training. This insight leads us to the following question: 067

068 069

071

073

074

075

076

077

078

079

081

082

084

085

Does selecting more experts in MoEs result in smoother optimization and more stable training?

070 In this work we investigate the above question through both theoretical and empirical investigations, where our main contributions can be summarized as follows:

- We propose a theoretical framework connecting expert sparsity and training stability via gradient smoothness. By introducing the concept of gradient smoothness and analyzing the Lipschitz constants of both the loss function and its gradient, we establish the quantitative relationship between sparsity and stability. We obtain the theoretical upper bound on training stability for MoEs, formulating the sparsity-stability trade-off in MoE models for the first time. Our theory shows that activating more experts enhances gradient smoothness and improves training stability upper bound, however at the cost of reduced sparsity.
- Our experimental investigation across representative architectures verify the universal efficacy of our theory. Specifically, we perform extensive experiments using MoE architectures based on Multi-Layer Perceptrons (MLPs), Convolutional Neural Networks (CNNs), and transformers, applied to synthetic, image, and text datasets. These experiments consistently demonstrate that denser MoEs result in smoother gradients and more stable training across various architectures and datasets, supporting our theoretical findings.
- We introduce a novel MoE structure that improves stability without sacrificing sparsity, striking the sparsity-stability trade-off. Under the guidance of our theory, we address two key issues in conventional MoE models: zero gradients in top-1 MoEs and the deterministic nature of top-K selection. Our design introduces independent router heads 090 and uses a soft top-K selection through sampling without replacement, smoothing the gradient landscape while maintaining expert sparsity. This structure achieves stability bounds 092 comparable to dense models, offering a solution to the sparsity-stability trade-off in MoEs.

094 This paper is structured as follows: Section 2 covers related works, followed by the preliminaries in 095 Section 3. In Section 4, we present our theoretical findings and introduce our new MoE structure. Section 5 details our empirical results. Section 6 concludes our paper. 096

098

099

2 **RELATED WORKS**

100 Training Instability of MoEs: Compared to dense networks, MoEs have been noted for their poorer 101 stability and generalization, as highlighted by (Shazeer et al., 2017; Fedus et al., 2022; Zoph et al., 102 2022). These issues make MoEs prone to overfitting and challenging to fine-tune. Foundational 103 works by Shazeer et al. (Shazeer et al., 2017) and subsequent studies by Fedus et al. (Fedus et al., 104 2022) and Zoph et al. (Zoph et al., 2022) identified these challenges and initiated the exploration of 105 methods to mitigate them. To address the instability of MoEs, researchers have explored stochastic or differentiable top-K selection for soft routing (Xie & Ermon, 2019; Paulus et al., 2020; Hazimeh 106 et al., 2021) and different dense training strategies bypassing sparse routing (Nie et al., 2021; Ko-107 matsuzaki et al., 2022; Chen et al., 2023; Pan et al., 2024). These studies provided critical insights

into the instability problem but did not fully address the connection between expert sparsity and training stability, which our work aims to explore further.

Gradient Smoothness and Training Stability: Mini-batch Stochastic Gradient Descent (SGD) 111 (Robbins & Monro, 1951) is a widely utilized optimization method in deep learning. The conver-112 gence properties of mini-batch SGD are well-established under certain smoothness and convexity 113 conditions (Garrigos & Gower, 2023). Recent studies have extensively examined the critical role of 114 gradient smoothness in achieving stable and generalizable mini-batch SGD methods (Hardt et al., 115 2016; Charles & Papailiopoulos, 2018; Kuzborskij & Lampert, 2018; Wu et al., 2018; Lei & Ying, 116 2020). Techniques such as weight decay (Krogh & Hertz, 1991), gradient clipping (Mikolov et al., 117 2012), network pruning (Srivastava et al., 2014), and batch normalization (Ioffe & Szegedy, 2015) 118 have been proposed to enhance the stability of mini-batch SGD. These foundational studies on gradient smoothness and stability directly inform our work, as we extend these concepts to the sparsity 119 of MoEs. By connecting gradient smoothness with the expert selection process in MoEs, our work 120 builds upon these established principles to propose a theoretical framework that links expert sparsity 121 with training stability. 122

123 124

125

129

131

132 133 134

137 138

3 PRELIMINARIES

In this section, we introduce the foundational concepts and notations that will be used throughout this
 paper, focusing on the structure and properties of MoE networks and the mathematical definitions
 related to smoothness and stability of the training process.

130 3.1 MIXTURE OF EXPERTS STRUCTURE

We consider a MoE network \mathcal{F} composed of N MoE blocks, expressed as:

$$\mathcal{F} = \mathcal{F}_1 \circ \mathcal{F}_2 \circ \cdots \circ \mathcal{F}_N$$

The output of each block \mathcal{F}_i is a weighted average of the selected K_i experts out of the total M_i experts in \mathcal{F}_i :

$$\mathcal{F}_{i}\left(\mathbf{\Theta}_{i};\mathbf{x}
ight)=\sum_{j\in\mathcal{T}_{i}}\mathcal{G}_{i,j}\left(\mathbf{\Theta}_{i}^{g};\mathbf{x}
ight)f_{i,j}\left(\mathbf{\Theta}_{i,j}^{f};\mathbf{x}
ight).$$

Here, *i* is the block index, and *j* is the expert index. **x** denotes the inputs to the whole network \mathcal{F} . We also denote **y** as the output of the whole network \mathcal{F} , and \mathbf{z}_i as the input of the MoE block \mathcal{F}_i for *i* = 1, 2, ..., *N* with $\mathbf{z}_1 = \mathbf{x}$. The set \mathcal{T}_i represents the indices of selected experts in block \mathcal{F}_i . The function $f_{i,j}$ denotes the *j*-th expert in \mathcal{F}_i . The function $\mathcal{G}_{i,j}$ represents the router probability head for $f_{i,j}$, outputting a probability value for MoE averaging. The parameters of block \mathcal{F}_i are denoted by $\Theta_i = \left[\Theta_i^g, \Theta_{i,1}^f, \dots, \Theta_{i,M_i}^f\right]$, where Θ_i^g and $\Theta_{i,j}^f$ are the parameters of the router \mathcal{G}_i and expert $f_{i,j}$ in block \mathcal{F}_i . The parameters of network \mathcal{F} is denoted by $\Theta = \left[\Theta_1, \dots, \Theta_N\right]$.

147 The output of router probability head $\mathcal{G}_{i,j}$ is computed as:

$$\mathcal{G}_{i,j}\left(\boldsymbol{\Theta}_{i}^{g};\mathbf{x}\right) = \operatorname{softmax}\left(\operatorname{TopK}_{i}\left(g_{i,j}\left(\boldsymbol{\Theta}_{i}^{g};\mathbf{x}\right)\right)\right)$$
$$\mathbf{1}_{j\in\mathcal{T}_{i}}\cdot\exp\left(g_{i,j}\left(\boldsymbol{\Theta}_{i}^{g};\mathbf{x}\right)\right)$$

 $= \frac{\mathbf{1}_{j \in \mathcal{T}_{i}} \exp\left(g_{i,j}(\mathbf{\Theta}_{i}^{*};\mathbf{x})\right)}{\sum_{k \in \mathcal{T}_{i}} \exp\left(g_{i,k}(\mathbf{\Theta}_{i}^{*};\mathbf{x})\right)}.$

Here, $\mathbf{1}_{j \in \mathcal{T}_i}$ is the indicator function, which outputs 1 if $j \in \mathcal{T}_i$ and 0 otherwise. And $g_{i,j}$ denotes the router value head for $f_{i,j}$, typically implemented as a MLP network. The most common method for constructing \mathcal{T}_i is by top- K_i sorting, where experts $f_{i,j}$ are sorted by their corresponding router values $g_{i,j}$, and the first K_i experts are selected and weighted by their associated router probabilities to compute the output of the MoE block \mathcal{F}_i .

157

148 149

158 3.2 Smoothness of Loss Function

159

Smoothness of a loss function is an important factor that impacts the performance of gradient descent methods. A smooth loss function typically has a gradient that varies gradually with changes in the parameters, leading to a more stable convergence behavior during the optimization process. In contrast, a non-smooth or highly irregular loss function can result in a noisier gradient estimate, which may slow down the convergence of gradient descent. Here, we outline the key mathematical concepts pertaining to the smoothness of loss functions.

A loss function $\mathcal{L}: \Omega \times \mathbb{X} \to \mathbb{R}$ is convex if, for all $\Theta, \Theta' \in \Omega$, the following holds:

$$\mathcal{L}\left(\boldsymbol{\Theta}';\mathbf{x}\right) \geq \mathcal{L}\left(\boldsymbol{\Theta};\mathbf{x}\right) + \nabla_{\boldsymbol{\Theta}}\mathcal{L}\left(\boldsymbol{\Theta};\mathbf{x}\right)^{\top}\left(\boldsymbol{\Theta}'-\boldsymbol{\Theta}\right)$$

And a loss function \mathcal{L} is *L*-Lipschitz if, for all $\Theta \in \Omega$ and $\mathbf{x} \in \mathbb{X}$, the gradient satisfies $\|\nabla_{\Theta} \mathcal{L}(\Theta; \mathbf{x})\|_2 \leq L$, i.e., *L* is an upper bound on the 2-norm of the loss gradients. This implies:

$$\|\mathcal{L}(\mathbf{\Theta}; \mathbf{x}) - \mathcal{L}(\mathbf{\Theta}'; \mathbf{x})\| \le L \|\mathbf{\Theta} - \mathbf{\Theta}'\|.$$

Similarly, \mathcal{L} is β -smooth if its gradient $\nabla_{\Theta} \mathcal{L}$ is β -Lipschitz, meaning:

$$\left\|\nabla_{\boldsymbol{\Theta}}\mathcal{L}\left(\boldsymbol{\Theta};\mathbf{x}\right) - \nabla_{\boldsymbol{\Theta}'}\mathcal{L}\left(\boldsymbol{\Theta'};\mathbf{x}\right)\right\| \leq \beta \left\|\boldsymbol{\Theta} - \boldsymbol{\Theta'}\right\|$$

3.3 STABILITY OF TRAINING METHOD

In this work, stability refers to the sensitivity of an optimization algorithm to changes in the training data. A stable algorithm produces similar outputs when the data is slightly altered, often leading to better generalization.

We use mini-batch Stochastic Gradient Descent (SGD) to train MoEs:

$$\boldsymbol{\Theta}_{t+1} := \mathcal{U}\left(\boldsymbol{\Theta}_t; \mathcal{B}\right) = \boldsymbol{\Theta}_t - \alpha_t \frac{\sum_{\mathbf{x}_i \in \mathcal{B}} \nabla_{\boldsymbol{\Theta}} \mathcal{L}\left(\boldsymbol{\Theta}_t; \mathbf{x}_i\right)}{B},$$

where t is the iteration, \mathcal{B} is the batch, B is the batch size, and α_t is the learning rate. We omit tuples (Θ ; x) when clear from context.

An SGD update rule \mathcal{U} is ϵ -uniformly stable (Hardt et al., 2016) if, for datasets $\mathcal{B}, \mathcal{B}' \in \mathbb{X}^{|\mathcal{B}|}$ differing by one point, the following holds:

$$\sup_{\mathbf{x}} \mathbb{E}_{\mathcal{U}}\left[\left\|\mathcal{L}(\mathcal{U}(\mathcal{B}); \mathbf{x}) - \mathcal{L}\left(\mathcal{U}\left(\mathcal{B}'\right); \mathbf{x}\right)\right\|_{2}\right] \le \epsilon.$$
(1)

Here, the expectation is over the internal stochasticity of mini-batch selection. We denote by $\epsilon_{\text{stab}}(\mathcal{U}, |\mathcal{B}|)$ the infimum of ϵ for which this holds, with lower values indicating better stability.

In (Hardt et al., 2016), an upper bound on ϵ_{stab} of the form $O(L^2 \alpha_t)$ is derived. Given that SGD converges for convex loss if and only if $\alpha_t \leq \frac{1}{4\beta}$ (Garrigos & Gower, 2023), ϵ_{stab} is consequently bounded by $O(\frac{L^2}{\beta})$ with a convergence guarantee. Inspired by this result, we adopt $\frac{L^2}{\beta}$ as a measure of gradient smoothness, as it is closely tied to ϵ_{stab} .

199 200

201

202

203

167 168

169

170 171

173 174 175

176

182 183

189 190

191

4 THEORETICAL ANALYSIS

In this section, we present the main results of our theoretical analysis on the relationship between expert sparsity, gradient smoothness, and training stability in MoE models. Detailed proofs can be found in Appendix B and C.

We define key terms as follows: (1) *Expert sparsity*, quantified by the top-*K* parameter, refers to the number of activated experts; (2) *Training stability*, formalized by ϵ_{stab} , measures the stability of mini-batch SGD updates; (3) *Gradient smoothness*, evaluated by $\frac{L^2}{\beta}$, reflects how rapidly the loss function can change. Sparsity *K* ranges from 1 to the total number of experts in the MoE block, with smaller *K* indicating greater sparsity. Both ϵ_{stab} and $\frac{L^2}{\beta}$ range from 0 to infinity, with higher values implying less stability and smoothness in MoEs.

The following assumption on the local properties of the MoE loss function is essential for all theoretical results in this section:

213 214 215 Assumption 1 (Local properties of the MoE loss). Assume the loss function $\mathcal{L}(\Theta; \mathbf{x})$ is locally convex, β -smooth, and L-Lipschitz for every $(\Theta, \mathbf{x}) \in \mathcal{B}_{\epsilon}(\tilde{\Theta}) \times \mathbb{X}$, where $\mathcal{B}_{\epsilon}(\tilde{\Theta}) := \{\Theta \mid \|\Theta - \tilde{\Theta}\|_{2} \le \epsilon, \Theta, \tilde{\Theta} \in \Omega\}$ denotes the neighborhood of $\tilde{\Theta}$ in Ω . 4.1 Sparsity-Stability Trade-off in MoEs

With the key terms and assumptions established, we now analyze specific properties of the MoE model under different configurations. Starting with the case where top- $K_i = 1$, we observe notable behavior in the router gradients.

Proposition 1 (Zero gradients for top-1 MoEs). For i = 1, 2, ..., N, if $K_i = 1$, the Jacobian of the router in MoE block i is zero, i.e., $\nabla_{\Theta_i^g} \mathcal{L} = 0$.

Proposition 1 reveals that selecting a single expert (top- $K_i = 1$) leads to vanishing router gradients, hindering effective routing. For top- $K_i > 1$, we derive the following lemma on the trade-off between sparsity K and L-Lipschitzness and β -smoothness.

Lemma 1 (Sparsity-smoothness trade-off in MoEs). Under Assumption 1, with top- $K_i = K > 1$ for i = 1, 2, ..., N, the L-Lipschitz constant of the MoE loss function is:

$$L = O\left(\frac{1}{\sqrt{K}}\right),\,$$

and the β -smoothness constant is:

$$\beta = O\left(\frac{1}{\sqrt{K}}\right).$$

Lemma 1 establishes the foundation for linking sparsity and stability in MoEs (see Appendix B). Let $\epsilon_{\text{stab}}^{\text{MoE}}$ denote the stability of the MoE, defined as in Equation 1. The following theorem formalizes the trade-off between stability $\epsilon_{\text{stab}}^{\text{MoE}}$ and sparsity K.

Theorem 1 (Sparsity-stability trade-off in MoEs). Under Assumption 1, with $K_1 = K_2 = \cdots = K_N = K \ge 1$, and mini-batch SGD with fixed step size $\alpha = 1/(4\beta)$ for T steps in $\mathcal{B}_{\epsilon}(\tilde{\Theta})$, the MoE achieves uniform stability:

$$\epsilon_{stab}^{\textit{MoE}} \le O\left(\frac{T}{\sqrt{K}B}\right).$$

The theorem shows that stability is inversely related to top-K, the number of activated experts. Increasing K, activating more experts, improves stability at the expense of sparsity. While decreasing K, activating less experts, reduces stability. It underscores the need to balance expert selection and stability in MoEs.

4.2 DESIGNING MORE STABLE MOES

Proposition 1 and Theorem 1 highlight two key issues with standard MoEs: (1) zero router gradients for top-1 MoEs (see Appendix B for more details), and (2) instability in sparse MoEs (small top-K). The former is due to shared router parameters, while the latter stems from deterministic sorting in top-K.

To address these, we propose the following modification:

$$\tilde{\mathcal{G}}_{i,j}\left(\boldsymbol{\Theta}_{i,j}^{g};\mathbf{x}\right) = \frac{\mathbf{1}_{j\in\tilde{\mathcal{T}}_{i}}\cdot\exp\left(\tilde{g}_{i,j}\left(\boldsymbol{\Theta}_{i,j}^{g};\mathbf{x}\right)\right)}{\sum_{k\in\tilde{\mathcal{T}}_{i}}\exp\left(\tilde{g}_{i,k}\left(\boldsymbol{\Theta}_{i,j}^{g};\mathbf{x}\right)\right)},$$

where $\hat{\mathcal{G}}$ incorporates (Figure 2):

- **Multi-headed routing**: Each output $\tilde{g}_{i,j}$ is generated by an independent network with parameter $\Theta_{i,j}^g$, unlike single-headed routers with shared parameters (Figure 2(b)).
- Soft top-K by sampling: Stochastic top-K is implemented via Gumbel-softmax sampling, without replacement, from the distribution $p_j = \text{softmax}(\tilde{g}_{i,j})$, generating the sampled indices set $\tilde{\mathcal{T}}_i$ (Figure 2(d)).

Figure 2: **MoE architecture comparison.** (a) Single-headed routing. (b) Multi-headed routing. (c) Deterministic top-*K*. (d) Soft top-*K* by sampling.

The experts $f_{i,j}$ remain unchanged, and the output of the new MoE structure is:

$$\tilde{\mathcal{F}}_{i}\left(\boldsymbol{\Theta};\mathbf{x}\right) = \sum_{j \in \tilde{\mathcal{T}}_{i}} \tilde{\mathcal{G}}_{i,j}\left(\boldsymbol{\Theta}_{i,j}^{g};\mathbf{x}\right) f_{i,j}\left(\boldsymbol{\Theta}_{i,j}^{f};\mathbf{x}\right).$$

We refer to this structure as soft multi-headed MoE and denote its stability as $\epsilon_{\text{stab}}^{\text{mod-MoE}}$. The following theorem establishes the stability of the modified MoE:

Theorem 2 (Stability of modified MoE) Under Assumption 1, with $M_1 = M_2 = \cdots = M_N = M \ge 1$, and running mini-batch SGD with fixed step size $\alpha = 1/(4\beta)$ for T steps in $\mathcal{B}_{\epsilon}(\tilde{\Theta})$, the stability bound is:

$$\epsilon_{stab}^{mod-MoE} \le O\left(\frac{T}{\sqrt{MB}}\right).$$

Recall that M is the total number of experts in each MoE block, with $M \ge K$, the number of activated experts. Theorem 2 shows that the modified MoE $\tilde{\mathcal{F}}$ pushes the stability bound in Theorem 1 to its theoretical extreme value reached when all the M experts are activated, by activating only K of them. Therefore, the modified MoE $\tilde{\mathcal{F}}$ matches the stability bound of dense models, regardless of top-K, while avoiding the zero router gradient issue highlighted in Proposition 1. This suggests that the proposed model addresses the sparsity-stability trade-off. Proof details are in Appendix C, with empirical results in Section 5.

5 EXPERIMENTAL VERIFICATION

In Section 4, we theoretically establish a connection between expert sparsity and training stability via gradient smoothness. Based on the theory, we also propose a novel MoE structure and demonstrate its superiority. To empirically validate these theoretical findings, we conducted a comprehensive se-ries of experiments across various models and datasets. This section details our experimental setup, implementation, evaluation metrics, and results. Through these experiments, we systematically in-vestigate the interplay between stability, smoothness, and sparsity, providing empirical evidence to support our theoretical insights and demonstrating the practical implications for optimizing MoE architectures.

- 315 5.1 SETUPS 316
- 317 5.1.1 EXPERIMENT OF MLP-MOES ON SYNTHETIC DATA

Data: We generate 10 categories of 128-dimensional data by sampling from Gaussian distributions with varying means and standard deviations. For each category, 2,000 data points are prepared for training, and 800 for testing, resulting in a training set size of 20,000 and a test set size of 8,000.

Model: Our MoE architecture consists of 1 router and 5 experts. Both the router and the experts
 are implemented as two-layer Multi-Layer Perceptron (MLP) networks. Each expert network is pre-trained to specialize in 2 out of the 10 data categories.

324 5.1.2 EXPERIMENT OF CNN-MOES ON IMAGE DATA

Data: Our CNN model is trained on the Fashion-MNIST (Xiao et al., 2017) dataset, a ten-class classification task. The dataset comprises 60,000 training samples and 10,000 test samples.

Model: The MoE model used in this experiment comprises a two convolutional layers followed by
 a MoE block which includes 1 router and 5 experts. Similar to the synthetic-data experiments, both
 the router and the experts are two-layer MLP networks, with each expert pre-trained to specialize in
 2 out of the 10 data categories.

332 333

334

5.1.3 EXPERIMENT OF TRANSFORMER-MOES ON TEXT DATA

Data: The Transformer model is trained on the Banking77 dataset, which is designed for the task
 of dialogue intent prediction. The dataset contains 77 distinct intent categories, with 10,003 training
 samples and 3,080 test samples.

Model: We use the Bidirectional Encoder Representations from Transformers (BERT) (Devlin
 et al., 2018) model, initializing it with pre-trained parameters specifically tailored for the Bank ing77 dataset, followed by fine-tuning. In our MoE architecture, the feed-forward network layer is
 configured with 7 experts, each of which is a two-layer neural network with cubic activation.

342 343

344

350

351

5.2 IMPLEMENTATIONS

All of our models are implemented using PyTorch, and we utilize the mini-batch SGD optimizer for the training process. The MLP-MoE and CNN-MoE models are trained for 100 epochs with a learning rate of 0.001 and a batch size of 256. The Transformer model is trained for 15 epochs with a learning rate of 0.00005 and a batch size of 64. Model parameters are recorded at each epoch for downstream analysis of sparsity, smoothness and stability.

5.3 EVALUATIONS

352 We evaluate training stability ϵ_{stab} , L-Lipschitzness, and β -smoothness using the finite difference 353 method. At a certain step during the training process, we randomly select three data batches of 64 354 samples from the training set, denoted as \mathcal{B}_1 , \mathcal{B}_2 , and \mathcal{B}_3 . To explore the neighborhood of Θ_0 , the 355 parameters of the current network, we use respectively \mathcal{B}_1 and \mathcal{B}_2 to update the network, resulting in 356 two independently updated parameters Θ_1 and Θ_2 , as well as the corresponding Jacobians $\nabla_{\Theta_1} \mathcal{L}$ and $\nabla_{\Theta_2}\mathcal{L}$. The values of ϵ_{stab} , L, and β at the current step are then evaluated over \mathcal{B}_3 using finite differences: $\epsilon_{\text{stab}}(\mathcal{B}_1, \mathcal{B}_2) = \frac{\sum_{\mathbf{x} \in \mathcal{B}_3} \|\mathcal{L}(\Theta_1; \mathbf{x}) - \mathcal{L}(\Theta_2; \mathbf{x})\|_2}{64}$, $L(\mathcal{B}_1, \mathcal{B}_2) = \frac{\sum_{\mathbf{x} \in \mathcal{B}_3} \|\mathcal{L}(\Theta_1; \mathbf{x}) - \mathcal{L}(\Theta_2; \mathbf{x})\|_2}{64\|\Theta_1 - \Theta_2\|_2}$, and $\beta(\mathcal{B}_1, \mathcal{B}_2) = \frac{\sum_{\mathbf{x} \in \mathcal{B}_3} \|\nabla_{\Theta_1} \mathcal{L}(\Theta_1; \mathbf{x}) - \nabla_{\Theta_2} \mathcal{L}(\Theta_2; \mathbf{x})\|_2}{64\|\Theta_1 - \Theta_2\|_2}$. 357 358 359 360 361

Considering the impact of stochasticity in mini-batch SGD, we repeat the above experiment 200 times with different data batches $(\mathcal{B}_1, \mathcal{B}_2, \mathcal{B}_3)$. The largest values of ϵ_{stab} , L, β obtained are taken as the evaluation estimates for the current training step, denoted as $\tilde{\epsilon}_{\text{stab}}$, \tilde{L} , and $\tilde{\beta}$, respectively. Gradient smoothness is then computed as $\frac{\tilde{L}^2}{\tilde{\beta}}$.

Finally, we compute the average of the measurements taken across five trained models in the replicated experiments to determine our final values for smoothness and stability.

368 369

371

372

366

367

370 5.4 RESULTS

5.4.1 IMPACT OF EXPERT SPARSITY ON CONVERGENCE AND LOSS VARIANCE

To demonstrate the impact of expert sparsity on training stability as indicated by our theoretical analysis, we investigate the training loss and the variance of loss over the training process. Using a sliding window method (with a window size of 101), we calculate the variance of loss within each window as our measure of loss variance. As shown in Figure 3, the sparsest (top-1) network converges more slowly and has a higher loss variance compared to the densest (top-5) network, consistent with our theory.

Figure 3: Impact of Expert Sparsity on Convergence and Loss Variance. (a) MLP. (b) CNN. (c) Transformer. (Top) The sparse network (red line, top-K = 1) exhibits slower convergence compared to the dense network (blue line, top-K = 5). (Bottom) The sparse network shows greater variance in loss during training, indicating a less stable training process relative to the dense network.

Figure 4: Correlation Between Smoothness and Stability across Top-*K*. (a) MLP. (b) CNN. (c) Transformer. (Top) Each data point represents the gradient smoothness $(\frac{L^2}{\beta})$ and training stability ($\epsilon_{\text{stab}}^{\text{MOE}}$) measured from a MoE network, with different colors indicating different top-*K* values. (Bottom) The spread of the smoothness-stability region for different top-*K* settings is illustrated with corresponding colors.

5.4.2 CORRELATION BETWEEN SMOOTHNESS AND STABILITY ACROSS TOP-K

Similarly, to illustrate the relationship between gradient smoothness and training stability, we exam-ine both the smoothness $(\frac{L^2}{\beta})$ and stability (ϵ) at different steps during the model training process. As shown in the top row of Figure 4, each point denotes a measurement of smoothness and stability for a model at a certain training step in an experiment. It can be seen that the sparsest network (top-1) exhibits the widest dispersion in the upper right, indicating the worst smoothness and stabil-ity. In contrast, denser networks tend to concentrate in the lower left, exhibiting better smoothness and stability. Bottom row of Figure 4 exhibits the distribution area for varying top-K by stacking thresholded density plot of the scattered points. As top-K increases from 1 to 5, an obvious trend of distribution shifting from the upper right to the lower left is present. It demonstrates a negative relationship between sparsity and both stability and smoothness.

444 Figure 5: Evolution of Stability and Smoothness Throughout Training Stages. (a) MLP. (b) 445 CNN. (c) Transformer. Each subplot presents the gradient smoothness $\frac{L^2}{\beta}$ (upper panel) and training 446 stability ϵ_{stab} (lower panel) across different top-K settings. The x-axis represents top-K, while the 447 y-axes indicate stability (top) and smoothness (bottom). Each point is an average of the values in 448 the corresponding stage. Color shading illustrates the progression of training stages, with darker 449 shades corresponding to later stages. The figure highlights how different top-K values influence 450 the model's smoothness and stability throughout the training process, with denser settings showing more concentrated and stable behaviors. 451

454

5.4.3 EVOLUTION OF STABILITY AND SMOOTHNESS THROUGHOUT TRAINING STAGES

455 To further investigate the impact of expert sparsity on training stability and gradient smoothness, we conduct experiments at different training stages for networks trained with varying top-K val-456 ues. By adjusting the top-K hyperparameter, we measure the resulting smoothness and stability. As 457 shown in Figure 5, stability and smoothness exhibit distinct trends with changes in top-K: during 458 the early stages of training, differences among top-K values (except for top-1) are minimal, with 459 high-sparsity networks even showing lower initial smoothness. However, as training progresses, the 460 gap in smoothness and stability between networks of different sparsities becomes more pronounced. 461 Notably, the network trained with top-1 behaves differently from the others, consistent with our the-462 oretical observation that a top-1 router is nearly inactive, potentially explaining its distinct behavior. 463 As training advances, the instability and lack of smoothness in sparse networks become more appar-464 ent, consistent with the inverse relationship between sparsity and both stability and smoothness.

465 466

467

5.4.4 IMPROVED STABILITY FOR SOFT TOP-K MULTI-HEADED MOES

To validate the effectiveness of the proposed soft top-K multi-headed MoE structure, we conduct experiments across different architectures, including MLP, CNN, and Transformer models, to analyze its stability and performance relative to traditional deterministic top-K MoEs.

As shown in Figure 6, the single-headed MoE with deterministic routing (orange lines) frequently suffers from vanishing gradients, particularly in sparse settings (top-K = 1), leading to training instability. In contrast, our proposed multi-headed MoE (blue lines) consistently maintains non-zero gradients throughout training, ensuring smoother and more stable convergence. This demonstrates that the multi-headed routing strategy effectively addresses the zero-gradient issue inherent in top-1 MoEs, particularly in scenarios where sparse selection of experts is critical.

Additionally, as depicted in Figure 7, we compare the training stability ϵ_{stab} across three routing 477 strategies: deterministic top-K followed by softmax (red lines), softmax followed by deterministic 478 top-K (orange lines), and softmax followed by stochastic top-K via sampling without replacement 479 (blue lines). The results indicate that the softmax followed by stochastic top-K routing provides the 480 highest stability (blue lines), followed by softmax with deterministic top-K (orange lines), while the 481 original deterministic top-K (red lines) shows the least stability. This confirms that incorporating 482 stochastic elements into the routing process leads to a significant improvement in training stability, 483 particularly in sparse configurations. 484

In summary, these experiments demonstrate that our soft top-K multi-headed MoE structure not only mitigates the gradient vanishing problem but also enhances training stability by introducing

Figure 6: Multi-Headed MoEs Eliminate Zero Router Gradients. (a) MLP. (b) CNN. (c) Transformer. The standard MoE with a single router head (red lines) shows vanishing gradients, particularly in sparse settings (top-K = 1), leading to unstable training dynamics. In contrast, the proposed multi-headed MoE (blue lines) maintains non-zero gradients throughout the training process, resulting in smoother and more stable convergence. This suggests that multi-headed routing effectively addresses the zero-gradient issue inherent in top-1 MoEs.

Figure 7: Improved Stability in Soft Top-K MoEs. (a) MLP. (b) CNN. (c) Transformer. Each subplot presents the training stability ϵ_{stab} across different routing methods: original deterministic top-K followed by softmax (red line), softmax followed by deterministic top-K (orange line), and 512 softmax followed by stochastic top-K via sampling without replacement (blue line). The x-axis 513 represents top-K, while the y-axis indicates the stability values. The stochastic top-K routing (blue 514 line) shows the highest stability, followed by the deterministic top-K after softmax (orange line), 515 and the least stable being the original deterministic top-K routing (red line). This suggests that our 516 soft top-K routing provides the most stable training dynamics, especially in sparse configurations, significantly improving upon the traditional deterministic top-K approach.

520

494

495

496

497

498

499 500

501

502

504

505

506

507

509

510

511

stochasticity into the expert selection process. These improvements are especially evident in highly sparse scenarios, where traditional top-K approaches struggle with unstable training dynamics.

CONCLUSION 6

In this paper, we have explored the intricate balance between expert sparsity and training stability 526 within MoEs. Through rigorous theoretical analysis, we have demonstrated that gradient smoothness 527 acts as a pivotal factor in harmonizing these two aspects. Our research reveals that denser MoE 528 configurations yield smoother gradients, thereby enhancing the stability of the training process. The 529 empirical evidence presented across diverse architectures and datasets corroborates our theoretical 530 insights, offering practical guidance for optimizing MoE architectures to achieve stable and efficient training. Additionally, we introduce a novel MoE structure that theoretically guarantees improved 531 stability by addressing the inherent challenges posed by sparse expert selection. This work not 532 only enriches the theoretical discourse on MoE stability but also provides actionable strategies for 533 real-world MoE deployments. 534

535

536 REFERENCES 537

Zachary Charles and Dimitris Papailiopoulos. Stability and generalization of learning algorithms 538 that converge to global optima. In International conference on machine learning, pp. 745–754. PMLR, 2018.

540 541 542	Tianlong Chen, Zhenyu Zhang, Ajay Jaiswal, Shiwei Liu, and Zhangyang Wang. Sparse moe as the new dropout: Scaling dense and self-slimmable transformers. <i>arXiv preprint arXiv:2303.01610</i> , 2023.
543 544 545	Jacob Devlin, Ming Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding. 2018.
546 547	David Eigen, Marc'Aurelio Ranzato, and Ilya Sutskever. Learning factored representations in a deep mixture of experts. <i>arXiv preprint arXiv:1312.4314</i> , 2013.
548 549 550 551	William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter models with simple and efficient sparsity. <i>Journal of Machine Learning Research</i> , 23(120):1–39, 2022.
552 553	Guillaume Garrigos and Robert M Gower. Handbook of convergence theorems for (stochastic) gradient methods. <i>arXiv preprint arXiv:2301.11235</i> , 2023.
554 555 556	Moritz Hardt, Ben Recht, and Yoram Singer. Train faster, generalize better: Stability of stochastic gradient descent. In <i>International conference on machine learning</i> , pp. 1225–1234. PMLR, 2016.
557 558 559 560	Hussein Hazimeh, Zhe Zhao, Aakanksha Chowdhery, Maheswaran Sathiamoorthy, Yihua Chen, Rahul Mazumder, Lichan Hong, and Ed Chi. Dselect-k: Differentiable selection in the mixture of experts with applications to multi-task learning. <i>Advances in Neural Information Processing Systems</i> , 34:29335–29347, 2021.
561 562 563	Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In <i>International conference on machine learning</i> , pp. 448–456. pmlr, 2015.
564 565 566	Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures of local experts. <i>Neural computation</i> , 3(1):79–87, 1991.
567 568 569	Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris Bam- ford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al. Mixtral of experts. <i>arXiv preprint arXiv:2401.04088</i> , 2024.
570 571 572	Michael I Jordan and Robert A Jacobs. Hierarchical mixtures of experts and the em algorithm. <i>Neural computation</i> , 6(2):181–214, 1994.
573 574 575	Aran Komatsuzaki, Joan Puigcerver, James Lee-Thorp, Carlos Riquelme Ruiz, Basil Mustafa, Joshua Ainslie, Yi Tay, Mostafa Dehghani, and Neil Houlsby. Sparse upcycling: Training mixture-of-experts from dense checkpoints. arXiv preprint arXiv:2212.05055, 2022.
576 577 578	Jakub Krajewski, Jan Ludziejewski, Kamil Adamczewski, Maciej Pióro, Michał Krutul, Szymon Antoniak, Kamil Ciebiera, Krystian Król, Tomasz Odrzygóźdź, Piotr Sankowski, et al. Scaling laws for fine-grained mixture of experts. <i>arXiv preprint arXiv:2402.07871</i> , 2024.
579 580 581	Anders Krogh and John Hertz. A simple weight decay can improve generalization. <i>Advances in neural information processing systems</i> , 4, 1991.
582 583	Ilja Kuzborskij and Christoph Lampert. Data-dependent stability of stochastic gradient descent. In <i>International Conference on Machine Learning</i> , pp. 2815–2824. PMLR, 2018.
584 585 586 587	Yunwen Lei and Yiming Ying. Fine-grained analysis of stability and generalization for stochastic gradient descent. In <i>International Conference on Machine Learning</i> , pp. 5809–5819. PMLR, 2020.
588 589	Saeed Masoudnia and Reza Ebrahimpour. Mixture of experts: a literature survey. <i>Artificial Intelligence Review</i> , 42:275–293, 2014.
590 591	Tomáš Mikolov et al. Statistical language models based on neural networks. 2012.
592 593	Xiaonan Nie, Xupeng Miao, Shijie Cao, Lingxiao Ma, Qibin Liu, Jilong Xue, Youshan Miao, Yi Liu, Zhi Yang, and Bin Cui. Evomoe: An evolutional mixture-of-experts training framework via dense-to-sparse gate. <i>arXiv preprint arXiv:2112.14397</i> , 2021.

594	Bowen Pan, Yikang Shen, Haokun Liu, Mayank Mishra, Gaoyuan Zhang, Aude Oliva, Colin Raffel,
595	and Rameswar Panda. Dense training, sparse inference: Rethinking training of mixture-of-experts
596	language models. arXiv preprint arXiv:2404.05567, 2024.
597	

- Max Paulus, Dami Choi, Daniel Tarlow, Andreas Krause, and Chris J Maddison. Gradient estimation with stochastic softmax tricks. *Advances in neural information processing systems*, 33:5691–5704, 2020.
- Herbert Robbins and Sutton Monro. A stochastic approximation method. *The annals of mathematical statistics*, pp. 400–407, 1951.
- Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. *arXiv preprint arXiv:1701.06538*, 2017.
- Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
 Dropout: a simple way to prevent neural networks from overfitting. *The journal of machine learning research*, 15(1):1929–1958, 2014.
- Tianwen Wei, Bo Zhu, Liang Zhao, Cheng Cheng, Biye Li, Weiwei Lü, Peng Cheng, Jianhao Zhang, Xiaoyu Zhang, Liang Zeng, et al. Skywork-moe: A deep dive into training techniques for mixture-of-experts language models. *arXiv preprint arXiv:2406.06563*, 2024.
- Lei Wu, Chao Ma, et al. How sgd selects the global minima in over-parameterized learning: A dynamical stability perspective. *Advances in Neural Information Processing Systems*, 31, 2018.
- Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms. *arXiv preprint arXiv:1708.07747*, 2017.
- Sang Michael Xie and Stefano Ermon. Reparameterizable subset sampling via continuous relax ations. *arXiv preprint arXiv:1901.10517*, 2019.
- Seniha Esen Yuksel, Joseph N Wilson, and Paul D Gader. Twenty years of mixture of experts. *IEEE transactions on neural networks and learning systems*, 23(8):1177–1193, 2012.
- Barret Zoph, Irwan Bello, Sameer Kumar, Nan Du, Yanping Huang, Jeff Dean, Noam Shazeer, and
 William Fedus. St-moe: Designing stable and transferable sparse expert models. *arXiv preprint arXiv:2202.08906*, 2022.

648 A THE ILLUSTRATIVE EXPERIMENT

Data: We consider a straightforward scenario where the input data x are uniformly distributed across the interval [-1, 1], denoted as U[-1, 1]. This uniform distribution is selected to provide a controlled and interpretable setting for analyzing the behavior of the Mixture of Experts (MoE) model. The target output for all input data points is set to 0, simplifying the assessment of the model's optimization performance.

655 **Model**: The model employed in this experiment is a one-layer MoE consisting of two linear experts. 656 The expert functions are defined as $f_1(\theta_1; x) = \theta_1 x$ and $f_2(\theta_2; x) = \theta_2 x$, where θ_1 and θ_2 are the 657 respective parameters of the experts. The router function is fixed with equal probabilities $(p_1, p_2) =$ 658 $(\frac{1}{2}, \frac{1}{2})$, ensuring that any input x is equally likely to be routed to either f_1 or f_2 . The output y of the 659 MoE varies depending on the top-k setting. When top-k = 2, the output is calculated as a weighted 660 sum of contributions from both experts: $y = p_1 f_1 + p_2 f_2$. For top-k = 1, the output is randomly selected as either f_1 or f_2 . The loss function is defined as the squared 2-norm between the target 661 value 0 and the output y, expressed as $l(\theta_1, \theta_2) = y^2$. The optimization is carried out using gradient 662 descent with a fixed learning rate of 0.1, over 20 steps. This simplified MoE setup is designed to 663 illustrate the relationship between expert sparsity, gradient smoothness, and training stability within 664 a controlled experimental framework. 665

B PROOF OF THEOREM 2

666

667

668

678

679

680

681 682 683

693 694

695 696 697

699

In this sub-section, we present a detailed analysis leading to the proof of Theorem 1. Our approach 669 begins by considering the structure of the MoE network and establishing bounds on the router prob-670 abilities $\mathcal{G}_{i,j}$. We derive the Jacobians of the MoE block output with respect to both the router and 671 expert parameters, followed by computing the squared l_2 -norms of these Jacobians. These computa-672 tions allow us to determine the local Lipschitz constants of the whole network using the chain rule. 673 Subsequently, we extend this analysis to the Hessians, which helps us establish the local smoothness 674 constants. Finally, by combining these results with our assumptions and leveraging Theorem 3, we 675 derive the bounds necessary to prove the stability result encapsulated in Theorem 1. 676

677 We begin by the following theorem introduced in (Hardt et al., 2016),

Theorem 3 (Upper bound on general stability). Assume that the loss function $\mathcal{L}(\cdot; \mathbf{x}) \in [0, 1]$ is convex, β -smooth, and L-Lipschitz for every \mathbf{x} . If we run mini-batch SGD with fixed step sizes $\alpha = 2/\beta$ for T steps, then mini-batch SGD satisfies uniform stability with:

$$\epsilon_{stab} \le \frac{L^2 T}{\beta B}$$

Theorem 3 reveals that the stability of mini-batch SGD improves as the Lipschitz constant *L* decreases, which is consistent with the intuition that smoother loss landscapes contribute to more stable learning. This result is crucial for understanding how to control the trade-offs between learning rate, batch size, and smoothness in practical applications. Furthermore, it lays the groundwork for Theorems 1 and 2, which extend these stability considerations to the context of MoE models, specifically addressing the unique challenges posed by expert sparsity in these architectures.

For simplicity, we omit the tuples $(\Theta; \mathbf{x})$, $(\Theta_i^g; \mathbf{x})$, and $(\Theta_{i,j}^f; \mathbf{x})$. Consider a MoE network \mathcal{F} composed of N MoE blocks:

$$\mathcal{F} = \mathcal{F}_1 \circ \mathcal{F}_2 \circ \cdots \circ \mathcal{F}_N.$$

The MoE block function \mathcal{F}_i is given by:

$$\mathcal{F}_{i}\left(\mathbf{\Theta}_{i};\mathbf{x}
ight) = \sum_{j\in\mathcal{T}_{i}}\mathcal{G}_{i,j}\left(\mathbf{\Theta}_{i}^{g};\mathbf{x}
ight)f_{i,j}\left(\mathbf{\Theta}_{i,j}^{f};\mathbf{x}
ight),$$

where the router probability function $\mathcal{G}_{i,j}$ is:

$$\mathcal{G}_{i,j}\left(\mathbf{\Theta}_{i}^{g};\mathbf{x}\right) = \operatorname{softmax}\left(\operatorname{TopK}_{i}\left(g_{i,j}\left(\mathbf{\Theta}_{i}^{g};\mathbf{x}\right)\right)\right)$$

700
701
$$g_{i,j}(\mathbf{O}_i, \mathbf{x}) = \operatorname{Solutian}(\operatorname{Top}_i, (\mathbf{G}_{i,j}, \mathbf{x}))$$

$$= \frac{\mathbf{1}_{j \in \mathcal{T}_i} \cdot \exp\left(g_{i,j}(\mathbf{\Theta}_i^g; \mathbf{x})\right)}{\left(g_{i,j}(\mathbf{\Theta}_i^g; \mathbf{x})\right)}$$

$$= \frac{1}{\sum_{k \in \mathcal{T}_i} \exp\left(g_{i,k}(\boldsymbol{\Theta}_i^g; \mathbf{x})\right)}$$

Let $\mathcal{T}_i^{\text{full}}$ be the index set of all experts. We first show that $\mathcal{G}_{i,j} = O\left(\frac{1}{K_i}\right)$ if $j \in \mathcal{T}_i$. Starting with the upper bound:

$$\begin{aligned}
\mathcal{G}_{i,j}\left(\boldsymbol{\Theta}_{i}^{g};\mathbf{x}\right) &= \frac{\exp\left(g_{i,j}\left(\boldsymbol{\Theta}_{i}^{g};\mathbf{x}\right)\right)}{\sum_{k\in\mathcal{T}_{i}}\exp\left(g_{i,k}\left(\boldsymbol{\Theta}_{i}^{g};\mathbf{x}\right)\right)} \\
&\leq \frac{\max_{j\in\mathcal{T}_{i}^{\text{full}}}\exp\left(g_{i,j}\left(\boldsymbol{\Theta}_{i}^{g};\mathbf{x}\right)\right)}{K_{i}\min_{k\in\mathcal{T}_{i}^{\text{full}}}\exp\left(g_{i,k}\left(\boldsymbol{\Theta}_{i}^{g};\mathbf{x}\right)\right)} \\
&= O\left(\frac{1}{K_{i}}\right),
\end{aligned}$$
(2)

where the last equality follows because $g_{i,j}$ is bounded according to Assumption 1. Similarly, for the lower bound:

$$\mathcal{G}_{i,j}\left(\boldsymbol{\Theta}_{i}^{g};\mathbf{x}\right) = \frac{\exp\left(g_{i,j}\left(\boldsymbol{\Theta}_{i}^{g};\mathbf{x}\right)\right)}{\sum_{k\in\mathcal{T}_{i}}\exp\left(g_{i,k}\left(\boldsymbol{\Theta}_{i}^{g};\mathbf{x}\right)\right)} \\
\geq \frac{\min_{j\in\mathcal{T}_{i}^{\text{full}}}\exp\left(g_{i,j}\left(\boldsymbol{\Theta}_{i}^{g};\mathbf{x}\right)\right)}{K_{i}\max_{k\in\mathcal{T}_{i}^{\text{full}}}\exp\left(g_{i,k}\left(\boldsymbol{\Theta}_{i}^{g};\mathbf{x}\right)\right)} \\
= O\left(\frac{1}{K_{i}}\right).$$
(3)

Combining Equations (2) and (3), we establish that $\mathcal{G}_{i,j} = O\left(\frac{1}{K_i}\right)$ if $j \in \mathcal{T}_i$.

Next, we derive the Jacobian of the MoE block output \mathcal{F}_i with respect to the router parameters Θ_i^g :

$$\begin{aligned} \frac{\partial \mathcal{F}_{i}}{\partial \Theta_{i}^{g}} &= \sum_{j \in \mathcal{T}_{i}} \frac{\partial \mathcal{G}_{i,j}}{\partial \Theta_{i}^{g}} f_{i,j} \\ &= \sum_{j \in \mathcal{T}_{i}} \left(\left(\exp\left(g_{i,j}\right) \frac{\partial g_{i,j}}{\partial \Theta_{i}^{g}} \left(\sum_{k \in \mathcal{T}_{i}} \exp\left(g_{i,k}\right) \right) - \right. \\ &\left. \exp\left(g_{i,j}\right) \left(\sum_{k \in \mathcal{T}_{i}} \exp\left(g_{i,k}\right) \frac{\partial g_{i,k}}{\partial \Theta_{i}^{g}} \right) \right) \right/ \\ &\left. \left(\sum_{k \in \mathcal{T}_{i}} \exp\left(g_{i,k}\right) \right)^{2} f_{i,j} \right) \\ &\left. \left(\sum_{k \in \mathcal{T}_{i}} \exp\left(g_{i,k}\right) \right)^{2} f_{i,j} \right) \\ &\left. \left(\sum_{k \in \mathcal{T}_{i}} \exp\left(g_{i,k}\right) \right)^{2} f_{i,j} \right) \\ &\left. \left(\sum_{k \in \mathcal{T}_{i}} \exp\left(g_{i,k}\right) \right)^{2} f_{i,j} \right) \\ &\left. \left(\sum_{k \in \mathcal{T}_{i}} \exp\left(g_{i,k}\right) \right)^{2} f_{i,j} \right) \\ &\left. \left(\sum_{k \in \mathcal{T}_{i}} \exp\left(g_{i,k}\right) \right)^{2} f_{i,j} \right) \\ &\left. \left. \left(\sum_{k \in \mathcal{T}_{i}} \exp\left(g_{i,k}\right) \right)^{2} f_{i,j} \right) \\ &\left. \left. \left(\sum_{k \in \mathcal{T}_{i}} \exp\left(g_{i,k}\right) \right)^{2} f_{i,j} \right) \\ &\left. \left. \left(\sum_{k \in \mathcal{T}_{i}} \exp\left(g_{i,k}\right) \right)^{2} f_{i,j} \right) \\ &\left. \left. \left(\sum_{k \in \mathcal{T}_{i}} \exp\left(g_{i,k}\right) \right)^{2} f_{i,j} \right) \\ &\left. \left. \left(\sum_{k \in \mathcal{T}_{i}} \exp\left(g_{i,k}\right) \right)^{2} f_{i,j} \right) \\ &\left. \left. \left(\sum_{k \in \mathcal{T}_{i}} \exp\left(g_{i,k}\right) \right)^{2} f_{i,j} \right) \\ &\left. \left. \left(\sum_{k \in \mathcal{T}_{i}} \exp\left(g_{i,k}\right) \right)^{2} f_{i,j} \right) \right\} \right\} \\ &\left. \left. \left. \left. \sum_{j \in \mathcal{T}_{i}} \sum_{k \in \mathcal{T}_{i}} \mathcal{G}_{i,j} \mathcal{G}_{i,k} \left(\frac{\partial g_{i,j}}{\partial \Theta_{i}^{g}} - \frac{\partial g_{i,k}}{\partial \Theta_{i}^{g}} \right) \right) f_{i,j} \right. \end{aligned} \right\} \\ \\ &\left. \left. \sum_{j \in \mathcal{T}_{i}} \mathcal{G}_{i,j} \left(\sum_{k \in \mathcal{T}_{i}} \mathcal{G}_{i,k} \left(\frac{\partial g_{i,j}}{\partial \Theta_{i}^{g}} - \frac{\partial g_{i,k}}{\partial \Theta_{i}^{g}} \right) \right) f_{i,j} \right. \end{aligned} \right\}$$

First, note that when $K_i = 1$, $\sum_{k \in \mathcal{T}_i} g_{i,k} \left(\frac{\partial g_{i,j}}{\partial \Theta_i^g} - \frac{\partial g_{i,k}}{\partial \Theta_i^g} \right) = g_{i,j} \left(\frac{\partial g_{i,j}}{\partial \Theta_i^g} - \frac{\partial g_{i,j}}{\partial \Theta_i^g} \right) = 0$, i.e., $\frac{\partial \mathcal{F}_i(\boldsymbol{\Theta}_i;\mathbf{x})}{\partial \boldsymbol{\Theta}_i^g} = 0. \text{ This proves Proposition 1.}$

When $K_i > 1$, denote $\mathcal{G}_{i,j}\left(\sum_{k \in \mathcal{T}_i} \mathcal{G}_{i,k} \left(\frac{\partial g_{i,j}}{\partial \Theta_i^g} - \frac{\partial g_{i,k}}{\partial \Theta_i^g}\right)\right) f_{i,j}$ as $\mathcal{G}_{i,j}\mathbf{a}_j$ and $\mathcal{G}_{i,k}\left(\frac{\partial g_{i,j}}{\partial \Theta_i^g} - \frac{\partial g_{i,k}}{\partial \Theta_i^g}\right)$ as $\mathcal{G}_{i,k}\mathbf{b}_k$. To obtain the squared l_2 -norm of $\frac{\partial \mathcal{F}_i}{\partial \Theta_i^g}$, we first compute the squared l_2 -norm of the inner

 $\left\|\sum_{k\in\mathcal{T}_i}\mathcal{G}_{i,k}\left(\frac{\partial g_{i,j}}{\partial \boldsymbol{\Theta}_i^g}-\frac{\partial g_{i,k}}{\partial \boldsymbol{\Theta}_i^g}\right)\right\|_2^2=\sum_{k\in\mathcal{T}_i}\mathcal{G}_{i,k}^2\left\|\mathbf{b}_k\right\|_2^2+$ $2\sum_{p,q\in\mathcal{T}_i}\mathcal{G}_{i,p}\mathcal{G}_{i,q}\mathbf{b}_p^{\top}\mathbf{b}_q$ $= \sum_{k \in \mathcal{T}_i} O\left(\frac{1}{K_i^2}\right) \|\mathbf{b}_k\|_2^2 +$ $2\sum_{p,q\in\mathcal{T}_i}O\left(\frac{1}{K_i^2}\right)\mathbf{b}_p^\top\mathbf{b}_q$ $=O\left(\frac{1}{K_i}\right).$

And hence we can compute the squared l_2 -norm of the outer summation,

$$\begin{split} \left\| \frac{\partial \mathcal{F}_{i}}{\partial \Theta_{i}^{g}} \right\|_{2}^{2} &= \left\| \sum_{j \in \mathcal{T}_{i}} \mathcal{G}_{i,j} \left(\sum_{k \in \mathcal{T}_{i}} \mathcal{G}_{i,k} \left(\frac{\partial g_{i,j}}{\partial \Theta_{i}^{g}} - \frac{\partial g_{i,k}}{\partial \Theta_{i}^{g}} \right) \right) f_{i,j} \right\|_{2}^{2} \\ &= \sum_{j \in \mathcal{T}_{i}} \mathcal{G}_{i,k}^{2} \| \mathbf{a}_{j} \|_{2}^{2} + 2 \sum_{p,q \in \mathcal{T}_{i}} \mathcal{G}_{i,p} \mathcal{G}_{i,q} \mathbf{a}_{p}^{\top} \mathbf{a}_{q} \\ &= \sum_{j \in \mathcal{T}_{i}} \mathcal{G}_{i,k}^{2} O\left(\frac{1}{K_{i}}\right) \| f_{i,j} \|_{2}^{2} + \\ &2 \sum_{p,q \in \mathcal{T}_{i}} \mathcal{G}_{i,p} \mathcal{G}_{i,q} O\left(\frac{1}{K_{i}}\right) f_{i,p}^{\top} f_{i,q} \\ &= \sum_{k \in \mathcal{T}_{i}} O\left(\frac{1}{K_{i}^{3}}\right) \| f_{i,j} \|_{2}^{2} + \\ &2 \sum_{p,q \in \mathcal{T}_{i}} O\left(\frac{1}{K_{i}^{3}}\right) f_{i,p}^{\top} f_{i,q} \\ &= O\left(\frac{1}{K_{i}^{2}}\right). \end{split}$$
(5)

The Jacobian with respect to the expert parameters $\Theta_{i,j}^{f}$ is given by:

$$\frac{\partial \mathcal{F}_i}{\partial \mathbf{\Theta}_{i,j}^f} = \begin{cases} \mathcal{G}_{i,j} \frac{\partial f_{i,j}}{\partial \mathbf{\Theta}_{i,j}^f}, & \text{if } j \in \mathcal{T}_i, \\ 0, & \text{otherwise.} \end{cases}$$
(6)

For $j \in \mathcal{T}_i$, the squared l_2 -norm of $\frac{\partial \mathcal{F}_i}{\partial \Theta_{i,i}^f}$ is as follows:

$$\left\|\frac{\partial \mathcal{F}_i}{\partial \boldsymbol{\Theta}_{i,j}^f}\right\|_2^2 = \mathcal{G}_{i,j}^2 \left\|\frac{\partial f_{i,j}}{\partial \boldsymbol{\Theta}_{i,j}^f}\right\|_2^2 = O\left(\frac{1}{K_i^2}\right). \tag{7}$$

The Jacobian with respect to the input z_i is derived similarly:

$$\frac{\partial \mathcal{F}_{i}}{\partial \mathbf{z}_{i}} = \sum_{j \in \mathcal{T}_{i}} \left(\mathcal{G}_{i,j} \left(\sum_{k \in \mathcal{T}_{i}} \mathcal{G}_{i,k} \left(\frac{\partial g_{i,j}}{\mathbf{z}_{i}} - \frac{\partial g_{i,k}}{\partial \mathbf{z}_{i}} \right) \right) f_{i,j} + \mathcal{G}_{i,j} \frac{\partial f_{i,j}}{\partial \mathbf{z}_{i}} \right).$$
(8)

Noticing that $\|\mathcal{G}_{i,j}\left(\sum_{k\in\mathcal{T}_i}\mathcal{G}_{i,k}\left(\frac{\partial g_{i,j}}{\mathbf{z}_i}-\frac{\partial g_{i,k}}{\partial \mathbf{z}_i}\right)\right)f_{i,j}\|_2^2 = O\left(\frac{1}{K_i^3}\right)$ and $\left\|\mathcal{G}_{i,j}\frac{\partial f_{i,j}}{\partial \mathbf{z}_i}\right\|_2^2 = O\left(\frac{1}{K_i^2}\right)$. Denote $\mathcal{G}_{i,j}\left(\sum_{k\in\mathcal{T}_i}\mathcal{G}_{i,k}\left(\frac{\partial g_{i,j}}{\mathbf{z}_{i-1}}-\frac{\partial g_{i,k}}{\partial \mathbf{z}_{i-1}}\right)\right)f_{i,j}+\mathcal{G}_{i,j}\frac{\partial f_{i,j}}{\partial \mathbf{z}_i}$ as \mathbf{c}_j , we can compute $\|\mathbf{c}_j\|_2^2 =$ $O\left(\frac{1}{K^3}\right) + O\left(\frac{1}{K^2}\right) + 2O\left(\frac{1}{K^{2.5}}\right) = O\left(\frac{1}{K^2}\right)$ and $\left\|\frac{\partial \mathcal{F}_i}{\partial \mathbf{z}_i}\right\|_2^2 = \left\|\sum_{j \in \mathcal{T}_i} \mathbf{c}_j\right\|_2^2$ $=\sum_{j\in\mathcal{T}} \|\mathbf{c}_j\|_2^2 + 2\sum_{p,q\in\mathcal{T}} \mathbf{c}_p^\top \mathbf{c}_q$ (9) $=\sum_{i \in \mathcal{T}_{i}} O\left(\frac{1}{K_{i}^{2}}\right) + 2\sum_{n \ n \in \mathcal{T}_{i}} O\left(\frac{1}{K_{i}^{2}}\right)$ $=O\left(\frac{1}{K_{c}}\right).$ Using the chain rule $\frac{\partial \mathcal{L}}{\partial \Theta_i} = \frac{\partial \mathcal{L}}{\partial \mathbf{z}_N} \left(\prod_{j=i+1}^N \frac{\partial \mathcal{F}_j}{\partial \mathbf{z}_j} \right) \frac{\partial \mathcal{F}_i}{\partial \Theta_i}$ and Equations (5), (6), and (9), we can obtain the squared l_2 -norms of the Jacobians of the entire MoE network: $\left\|\frac{\partial \mathcal{L}}{\partial \mathbf{\Theta}_{i}^{g}}\right\|_{2}^{2} = \left\|\frac{\partial \mathcal{L}}{\partial \mathbf{z}_{N}}\right\|_{2}^{2} \left(\prod_{i=i+1}^{N} \left\|\frac{\partial \mathcal{F}_{j}}{\partial \mathbf{z}_{j}}\right\|_{2}^{2}\right) \left\|\frac{\partial \mathcal{F}_{i}}{\partial \mathbf{\Theta}_{i}^{g}}\right\|_{2}^{2}$ $= O(1) \left(\prod_{i=i+1}^{N} O\left(\frac{1}{K_{i}}\right) \right) O\left(\frac{1}{K_{i}^{2}}\right)$ (10) $= O\left(\frac{1}{K^2 \prod_{i=1}^N K_i}\right),$

and

 $\left\| \frac{\partial \mathcal{L}}{\partial \boldsymbol{\Theta}_{i,j}^{f}} \right\|_{2}^{2} = \left\| \frac{\partial \mathcal{L}}{\partial \mathbf{z}_{N}} \right\|_{2}^{2} \left(\prod_{j=i+1}^{N} \left\| \frac{\partial \mathcal{F}_{j}}{\partial \mathbf{z}_{j}} \right\|_{2}^{2} \right) \left\| \frac{\partial \mathcal{F}_{i}}{\partial \boldsymbol{\Theta}_{i,j}^{f}} \right\|_{2}^{2}$ $= O\left(1\right) \left(\prod_{j=i+1}^{N} O\left(\frac{1}{K_{j}}\right) \right) O\left(\frac{1}{K_{i}^{2}}\right)$ $= O\left(\frac{1}{K_{i}^{2} \prod_{j=i+1}^{N} K_{j}}\right).$ (11)

Since
$$\frac{\partial \mathcal{F}_{i}}{\partial \Theta_{i}} := \left(\frac{\partial \mathcal{F}_{i}}{\partial \Theta_{i}^{T}}, \frac{\partial \mathcal{F}_{i}}{\partial \Theta_{i,N_{i}}}\right)$$
 and $\frac{\partial \mathcal{L}}{\partial \Theta} := \left(\frac{\partial \mathcal{L}}{\partial \Theta_{i}}, \frac{\partial \mathcal{L}}{\partial \nabla_{\Theta_{2}}}, \dots, \frac{\partial \mathcal{L}}{\partial \Theta_{N}}\right)$, we have

$$\left\|\frac{\partial \mathcal{L}}{\partial \Theta}\right\|_{2}^{2} = \sum_{i=1}^{N} \left\|\frac{\partial \mathcal{L}}{\partial \Theta_{i}}\right\|_{2}^{2}$$

$$= \sum_{i=1}^{N} \left(\left\|\frac{\partial \mathcal{F}_{i}}{\partial \Theta_{i}^{g}}\right\|_{2}^{2} + \sum_{j \in \mathcal{T}_{i}} \left\|\frac{\partial \mathcal{F}_{i}}{\partial \Theta_{i,j}^{f}}\right\|_{2}^{2}\right)$$

$$= \sum_{i=1}^{N} \left(O\left(\frac{1}{K_{i}^{2}\prod_{j=i+1}^{N}K_{j}}\right) + \sum_{j \in \mathcal{T}_{i}} O\left(\frac{1}{K_{i}^{2}\prod_{j=i+1}^{N}K_{j}}\right)\right)$$

$$= \sum_{i=1}^{N} \left(O\left(\frac{1}{\prod_{j=i+1}^{N}K_{j}}\right)\right)$$

$$= \sum_{i=1}^{N} \left(O\left(\frac{1}{\prod_{j=i+1}^{N}K_{j}}\right)\right)$$

$$= O\left(\frac{1}{K_{N}}\right)$$
(12)

Therefore, $\left\|\frac{\partial \mathcal{L}}{\partial \Theta}\right\|_2 = O\left(\frac{1}{\sqrt{K_N}}\right)$ and the local Lipschitzness constant $L = \max_{\Theta \in \mathcal{B}_{\epsilon}(\tilde{\Theta})} \left\|\frac{\partial \mathcal{L}}{\partial \Theta}\right\|_2 = O\left(\frac{1}{\sqrt{K_N}}\right).$

Following the same approach used to prove Lemma 1 but computing Hessians instead, we first derive the Hessians of the router and experts in each MoE block:

$$\frac{\partial^{2} \mathcal{F}_{i}}{(\partial \Theta_{i}^{g})^{2}} = \frac{\partial \left(\frac{\partial \mathcal{F}_{i}}{\partial \Theta_{i}^{g}}\right)}{\partial \Theta_{i}^{g}} = \sum_{j \in \mathcal{T}_{i}} \mathcal{G}_{i,j} f_{i,j} \left(\left(\sum_{k \in \mathcal{T}_{i}} \mathcal{G}_{i,k} \left(\frac{\partial g_{i,j}}{\partial \Theta_{i}^{g}} - \frac{\partial g_{i,k}}{\partial \Theta_{i}^{g}} \right) \right)^{2} + \sum_{k \in \mathcal{T}_{i}} \left(\mathcal{G}_{i,k}^{2} \left(\frac{\partial g_{i,j}}{\partial \Theta_{i}^{g}} - \frac{\partial g_{i,k}}{\partial \Theta_{i}^{g}} \right)^{2} + \mathcal{G}_{i,k} \left(\frac{\partial^{2} g_{i,j}}{(\partial \Theta_{i}^{g})^{2}} - \frac{\partial^{2} g_{i,k}}{(\partial \Theta_{i}^{g})^{2}} \right) \right) \right),$$
(13)

913 and 914

 $\frac{\partial^{2} \mathcal{F}_{i}}{\left(\partial \Theta_{i,j}^{f}\right)^{2}} = \begin{cases} \mathcal{G}_{i,j} \frac{\partial^{2} f_{i,j}}{\left(\partial \Theta_{i,j}^{f}\right)^{2}}, & \text{if } j \in \mathcal{T}_{i}, \\ 0, & \text{otherwise.} \end{cases}$ (14)

Computing the squared l_2 -norms of the above two Hessians:

and

Again, using the chain rule and Equations (9), (15), and (16), we obtain the l_2 -norms of the Hessians of the whole MoE network:

 $\left\|\frac{\partial^{2}\mathcal{F}_{i}}{\left(\partial\Theta_{i}^{f}\right)^{2}}\right\|^{2} = \mathcal{G}_{i,j}^{2}\left\|\frac{\partial^{2}f_{i,j}}{\left(\partial\Theta_{i}^{f}\right)^{2}}\right\|^{2} = O\left(\frac{1}{K_{i}^{2}}\right).$

 $\left\| \frac{\partial^2 \mathcal{F}_i}{\left(\partial \mathbf{\Theta}_i^g\right)^2} \right\|_2^2 = \sum_{i \in \mathcal{T}_i} O\left(\frac{1}{K_i}\right) \left(\left(\sum_{k \in \mathcal{T}_i} O\left(\frac{1}{K_i}\right)\right)^2 + \right)$

 $=\sum_{i\in\mathcal{T}}O\left(\frac{1}{K_i^3}\right)$

 $=O\left(\frac{1}{K^2}\right),$

 $\sum_{k \in \mathcal{T}} \left(O\left(\frac{1}{K_i^2}\right) + O\left(\frac{1}{K_i}\right) \right) \right),$

 $=\sum_{i\in\mathcal{T}}O\left(\frac{1}{K_i^2}\right)\left(O\left(\frac{1}{K_i^2}\right)+O\left(\frac{1}{K_i}\right)\right)$

(15)

(16)

 $\left\| \frac{\partial^{2} \mathcal{L}}{(\partial \Theta_{i}^{g})^{2}} \right\|_{2}^{2} = \left\| \frac{\partial \mathcal{L}}{\partial \mathbf{z}_{N}} \right\|_{2}^{2} \left(\prod_{j=i+1}^{N} \left\| \frac{\partial \mathcal{F}_{j}}{\partial \mathbf{z}_{j}} \right\|_{2}^{2} \right) \left\| \frac{\partial^{2} \mathcal{F}_{i}}{(\partial \Theta_{i}^{g})^{2}} \right\|_{2}^{2}$ $= O\left(1\right) \left(\prod_{j=i+1}^{N} O\left(\frac{1}{K_{j}}\right) \right) O\left(\frac{1}{K_{i}^{2}}\right)$ $= O\left(\frac{1}{K_{i}^{2} \prod_{j=i+1}^{N} K_{j}}\right),$ (17)

and

$$\left\| \frac{\partial^{2} \mathcal{L}}{\left(\partial \Theta_{i,j}^{f}\right)^{2}} \right\|_{2}^{2} = \left\| \frac{\partial \mathcal{L}}{\partial \mathbf{z}_{N}} \right\|_{2}^{2} \left(\prod_{j=i+1}^{N} \left\| \frac{\partial \mathcal{F}_{j}}{\partial \mathbf{z}_{j}} \right\|_{2}^{2} \right) \left\| \frac{\partial^{2} \mathcal{F}_{i}}{\left(\partial \Theta_{i,j}^{f}\right)^{2}} \right\|_{2}^{2}$$
$$= O\left(1\right) \left(\prod_{j=i+1}^{N} O\left(\frac{1}{K_{j}}\right) \right) O\left(\frac{1}{K_{i}^{2}}\right)$$
$$= O\left(\frac{1}{K_{i}^{2} \prod_{j=i+1}^{N} K_{j}} \right),$$
(18)

972	Following the same process used to derive Equation (12) and noting that $\frac{\partial^2 F_{\mu}}{\partial 2 \rho_{\mu}^2}$:=
973	$\begin{pmatrix} 2^2T & 2^2T \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 2^2C & 2^2C \\ 0 & 0 & 0 \end{pmatrix}$	
974	$\left(\frac{\partial F_i}{(\partial \Theta_i^g)^2}, \frac{\partial F_i}{(\partial \Theta_i^f)^2}, \dots, \frac{\partial F_i}{(\partial \Theta_i^f)^2}\right)$ and $\frac{\partial L}{(\partial \Theta)^2} := \left(\frac{\partial L}{(\partial \Theta_1)^2}, \frac{\partial L}{(\partial \Theta_2)^2}, \dots, \frac{\partial L}{(\partial \Theta_N)^2}\right)$, we obtain:	
975	$\left(\begin{pmatrix} i & -i \end{pmatrix} \right) \left(\begin{pmatrix} i & 0 & i \end{pmatrix} \right) \left(\begin{pmatrix} i & 0 & i \end{pmatrix} \right)$	
976	$\ - \ ^2 N \ - \ ^2$	
977	$\left\ \frac{\partial^2 \mathcal{L}}{\partial \mathcal{L}}\right\ = \sum_{i=1}^{N} \left\ \frac{\partial^2 \mathcal{L}}{\partial \mathcal{L}}\right\ $	
978	$\left\ (\partial \Theta)^2 \right\ _{0}^{-1} \sum_{i=1}^{n-1} \left\ (\partial \Theta_i)^2 \right\ _{0}$	
979	$ \langle 2 -1 \langle 2 $	
980	$\frac{N}{N} \left(\parallel \partial^2 \mathcal{F} \parallel \parallel^2 \qquad \square \qquad \partial^2 \mathcal{F} \parallel \parallel \right)$	
981	$=\sum_{i}\left[\left\ \frac{\sigma_{i}}{\sigma_{i}} \right\ ^{2} + \sum_{i} \left\ \frac{\sigma_{i}}{\sigma_{i}} \right\ ^{2} \right]$	
982	$\overline{i=1} \left(\left\ \left(\partial \Theta_{i}^{s} \right) \right\ _{2} \overline{j \in \mathcal{T}_{i}} \left\ \left(\partial \Theta_{i,j}^{f} \right) \right\ _{2} \right)$	
983	N () $N $ ()	
984	$-\sum_{n=1}^{n} \left(\rho \left(\frac{1}{1} \right) \right) +$	
985	$-\sum_{i=1}^{N} \left(\bigcup_{i=1}^{N} K_{i} \bigcup_{i=i+1}^{N} K_{i} \right)^{-1}$	
986	$\iota = 1 (\iota \star \star j = \iota + 1 j \neq \iota$	
987	$\sum o \begin{pmatrix} 1 \end{pmatrix}$	
900	$\sum_{i \in \mathcal{T}} O\left(\frac{1}{K_i^2 \prod_{i=i+1}^N K_i}\right)$	(19)
909	$j \in I_i$ ($i = 1 - i + 1 = j - i + 1 = j \neq j$)	
990	$\sum_{n=1}^{N} \left(c_{n} \left(1 \right) \right)$	
002	$=\sum_{i=1}^{N}\left(O\left(\frac{K^{2}\Pi^{N}_{i}}{K^{2}\Pi^{N}_{i}}\right)+\right)$	
003	$i=1$ ($i i 1 1_{j=1+1} \cdots j$)	
993	$O\left(\frac{1}{1}\right)$	
995	$\left(\prod_{i=i+1}^{N} K_{i}\right)$	
996	$N \left(\left(1 \right) \right)$	
997	$=\sum \left(O\left(\frac{1}{N} \right) \right)$	
998	$\sum_{i=1}^{N} \left(\prod_{j=i}^{N} K_j \right)$	
999	(1)	
1000	$=O\left(\frac{-}{K_N}\right)$	
1001		
1002		

Therefore, $\left\|\frac{\partial^2 \mathcal{L}}{(\partial \Theta)^2}\right\|_2 = O\left(\frac{1}{\sqrt{K_N}}\right)$ and the local smoothness constant $\beta = \max_{\Theta \in \mathcal{B}_{\epsilon}(\tilde{\Theta})} \left\|\frac{\partial^2 \mathcal{L}}{(\partial \Theta)^2}\right\|_2 = O\left(\frac{1}{\sqrt{K_N}}\right)$. This completes the proof of Lemma 1. Finally, using Theorem 1. Lemma 1, together with Assumption 1) we have:

Finally, using Theorem 1, Lemma 1, together with Assumption 1), we have:

$$\epsilon_{\rm stab}^{\rm MoE} \leq \frac{\left(L^{\rm MoE}\right)^2 T}{\beta^{\rm MoE}B} = O\left(\frac{T}{\sqrt{K_N}B}\right)$$

which completes the proof of Theorem 2.

1013 1014

C PROOF OF THEOREM 3

1015 1016

1017 The proof of Theorem 3 closely follows the structure of the proof of Theorem 1, with the primary 1018 differences lying in: (1) the big *O* bound of the modified router probability function $\tilde{\mathcal{G}}_{i,j}$, and (2) 1019 the derivation of the Jacobians $\frac{\partial \mathcal{L}_i}{\partial \Theta_{i,j}^g}$, $\frac{\partial \tilde{\mathcal{F}}_i}{\partial \Theta_{i,j}^g}$, and the Hessians $\frac{\partial^2 \mathcal{L}_i}{(\partial \Theta_{i,j}^g)^2}$, $\frac{\partial^2 \tilde{\mathcal{F}}_i}{(\partial \Theta_{i,j}^g)^2}$ with respect 1021 to the independent router parameters $\Theta_{i,j}^g$.

Recall that the modified MoE block function $\tilde{\mathcal{F}}_i$ is given by:

1023

1024 1025 $\tilde{\mathcal{F}}_{i}\left(\boldsymbol{\Theta}_{i};\mathbf{x}\right) = \sum_{j\in\tilde{\mathcal{T}}_{i}}\tilde{\mathcal{G}}_{i,j}\left(\boldsymbol{\Theta}_{i}^{g};\mathbf{x}\right)f_{i,j}\left(\boldsymbol{\Theta}_{i,j}^{f};\mathbf{x}\right),$ where \tilde{T}_i is the set of expert indices selected by soft top-K and the modified router probability function $\tilde{\mathcal{G}}_{i,j}$ is:

$$\tilde{\mathcal{G}}_{i,j}\left(\boldsymbol{\Theta}_{i,j}^{g};\mathbf{x}\right) = \text{SoftTopK}_{i}\left(\text{softmax}\left(\tilde{g}_{i,j}\left(\boldsymbol{\Theta}_{i,j}^{g};\mathbf{x}\right)\right)\right)$$
$$= \mathbf{1}_{j\in\tilde{\mathcal{T}}_{i}} \cdot \frac{\exp\left(\tilde{g}_{i,j}\left(\boldsymbol{\Theta}_{i,j}^{g};\mathbf{x}\right)\right)}{\sum_{k=1}^{K_{i}^{\text{full}}}\exp\left(\tilde{g}_{i,k}\left(\boldsymbol{\Theta}_{i,j}^{g};\mathbf{x}\right)\right)}.$$

We begin by providing a new big O bound on $\tilde{\mathcal{G}}_{i,j}$. Using the same reasoning as in the derivation of Equations (2) and (3), replacing K_i with K_i^{full} , we obtain $\tilde{\mathcal{G}}_{i,j} = O\left(\frac{1}{K_i^{\text{full}}}\right)$.

Next, we derive the Jacobian of the router probability function $\tilde{\mathcal{G}}_{i,j}$ with respect to the router parameters $\Theta_{i,k}^{g}$ (where *j* might be different from *k*):

 $\mathcal{L} = \sum_{i \in \tilde{\mathcal{T}}_i} \left(\mathbf{1}_{j=k} \cdot \tilde{\mathcal{G}}_{i,j} (1 - \tilde{\mathcal{G}}_{i,j}) \frac{\partial \tilde{\mathcal{G}}_{i,j}}{\partial \mathbf{\Theta}_{i,k}^g} f_{i,j} - \right)$

 $\mathbf{1}_{j\neq k} \cdot \tilde{\mathcal{G}}_{i,j} \tilde{\mathcal{G}}_{i,k} \frac{\partial \tilde{\mathcal{G}}_{i,j}}{\partial \boldsymbol{\Theta}_{i,k}^{g}} f_{i,j} \right)$

 $=\sum_{i\in\tilde{\mathcal{T}}}\tilde{\mathcal{G}}_{i,j}\left(\delta_{j,k}-\tilde{\mathcal{G}}_{i,k}\right)f_{i,j}\frac{\partial\tilde{\mathcal{G}}_{i,j}}{\partial\boldsymbol{\Theta}_{i,k}^{g}},$

(20)

 $\frac{\partial \tilde{\mathcal{F}}_i}{\partial \Theta^g_{i,k}} = \sum_{i \in \tilde{\mathcal{T}}_i} \frac{\partial \tilde{\mathcal{G}}_{i,j}}{\partial \Theta^g_{i,k}} f_{i,j}$

1058 where $\delta_{j,k} = 1$ if j = k, and otherwise $\delta_{j,k} = 0$.

By comparing Equation (4) with (20), we observe that the term $\sum_{k \in \mathcal{T}_i} \mathcal{G}_{i,k} \left(\frac{\partial g_{i,j}}{\partial \Theta_i^g} - \frac{\partial g_{i,k}}{\partial \Theta_i^g} \right)$, which is responsible for zero router gradients when top-K = 1, is absent in Equation (20). This indicates that the modified MoE is immune to the zero gradient issue, regardless of the value of top-K.

Furthermore, the Hessian of the router probability function $\tilde{\mathcal{G}}_{i,j}$ with respect to the router parameters $\Theta_{i,k}^{g}$ (where j might be different from k) is derived as follows:

$$\frac{\partial^{2} \tilde{\mathcal{F}}_{i}}{\left(\partial \Theta_{i,k}^{g}\right)^{2}} = \frac{\partial \left(\frac{\partial \tilde{\mathcal{F}}_{i}}{\partial \Theta_{i,k}^{g}}\right)}{\partial \Theta_{i,k}^{g}} = \sum_{j \in \tilde{\mathcal{T}}_{i}} f_{i,j} \left(\left(\tilde{\mathcal{G}}_{i,j} \left(\delta_{j,k} - \tilde{\mathcal{G}}_{i,k} \right) \frac{\partial \tilde{\mathcal{G}}_{i,j}}{\partial \Theta_{i,k}^{g}} \right)^{2} + \left(\delta_{j,k} \tilde{\mathcal{G}}_{i,j} - \delta_{j,k} \tilde{\mathcal{G}}_{i,j}^{2} + \tilde{\mathcal{G}}_{i,k}^{3} \frac{\partial \tilde{\mathcal{G}}_{i,j}}{\partial \Theta_{i,k}^{g}} \right) \frac{\partial \tilde{\mathcal{G}}_{i,j}}{\partial \Theta_{i,k}^{g}} + \tilde{\mathcal{G}}_{i,j} \left(\delta_{j,k} - \tilde{\mathcal{G}}_{i,k} \right) \frac{\partial^{2} \tilde{\mathcal{G}}_{i,j}}{\left(\partial \Theta_{i,k}^{g} \right)^{2}} \right).$$
(21)

Using the same reasoning for deriving the l_2 -norms of the Jacobians and Hessians of the entire network, as in Equations (12) and (19), we obtain

1083 1084 1085	$\left\ rac{\partial \mathcal{L}}{\partial \mathbf{\Theta}} ight\ _2 = O\left(rac{1}{\sqrt{K_N^{\mathrm{full}}}} ight),$	(22)
1086	$\parallel -2 = \parallel^2$	(22)
1087	$\left\ \frac{\partial^2 \mathcal{L}}{\partial \mathcal{L}}\right\ = O\left(\frac{1}{\partial \mathcal{L}}\right)$	
1088	$\left\ (\partial \Theta)^2 \right\ _2 = \bigcup_{A \in \mathcal{A}} \sqrt{K_{A}^{\text{full}}}$	
1089	$11 \times 112 \qquad \bigvee 11N /$	

Finally, applying Theorem 2, Lemma 1, together with Assumption 1, we derive:

$$\epsilon_{\text{stab}}^{\text{mod-MoE}} \leq \frac{\left(L^{\text{mod-MoE}}\right)^2 T}{\beta^{\text{mod-MoE}}B} = O\left(\frac{T}{\sqrt{K_N^{\text{full}}B}}\right),$$

6 which completes the proof of Theorem 3.