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ABSTRACT

Tasks that rely on multi-modal information typically include a fusion module that
combines information from different modalities. In this work, we develop a self-
supervised module, called REFINER, that refines multimodal representations us-
ing a decoding/defusing module applied downstream of the fused embedding. Our
approach strengthens representation of features computed upstream of the fusion
module that are relevant to the downstream task. Our approach provides both
stronger generalization and reduced over-fitting. REFINER is only applied during
training keeping the inference time intact. The modular nature of REFINER lends
itself to be combined with different fusion architectures easily. We demonstrate
the power of REFINER on three datasets over powerful baseline fusion modules,
and further show that they give a significant performance boost in few shot learn-
ing tasks.

1 INTRODUCTION

Figure 1: Illustration of the idea behind the REFINER module.

In several real-world applications, decision making involves integrating multiple modalities such
as vision, text, auditory, and possibly even the content creator and how people engage with the in-
put Ngiam et al. (2011); Atrey et al. (2010); Oviatt et al. (2003). The application of multi-modal
inference or decision making systems spans several fields such as hate speech detection Gomez
et al. (2020), misinformation detection Khattar et al. (2019), reasoning tasks Cadene et al. (2019),
etc. Multimodal modeling includes two broad steps: extraction of features from different modali-
ties, and fusion of the different modalities. Several choices are available for fusion, including late
fusion, mid-fusion or early fusion Gadzicki et al. (2020); Minotto et al. (2014). Early fusion inte-
grates features extracted from multiple modalities, and uses the integrated feature representation for
learning downstream tasks. Late fusion integrates classification scores of different features Poria
et al. (2017) to obtain the final classification score. Some of these fusion methods include concat
fusion Wang et al. (2020) based on concatenated features, Set-based fusion Reiter et al. (2020) based
on permutation invariant functions or Graph-based fusion modules Angelou et al. (2019).

In this work, we propose to refine fusion representations to optimally represent features computed
upstream of the fusion module to inform the downstream task. This approach is partly motivated
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by a limitation of current fusion strategies that predominantly encode multimodal information, ig-
noring potentially the importance of retaining unimodal or weakly multimodal (e.g. transformers
with cross-modal key-value pairs) signals. The REFINER module, used with a multimodal fusion
architecture is referred to as Refiner Fusion Network (ReFNet). The main idea behind ReFNet is
to balance the fusion module with a REFINER module using a reconstruction loss. The REFINER
module drives creation of sets of artificial neurons preferentially tuned to specific modal inputs,
while the fusion module drives creation of artificial neurons with mixed representations. The target
for REFINER can be unimodal representations when using non-transformer architectures such as
GMU, concat etc. or weakly multimodal signals for early fusion methods such as multimodal trans-
formers, and in general can strive for the representation of any intermediate feature upstream of the
fusion module.

Our contributions can be summarized as follow:

1. We propose a REFINER module that can be added to any given fusion module to induce
modality-specific neurons. We show that ReFNet, a fusion architecture combined with the
REFINER module, can boost performance even over powerful transformers. We also show
that ReFNet boosts performance on retrieval tasks where the query is unimodal but (key,
value) pair is multimodal.

2. When coupled with metric learning, which we call ReFNetMS, we observe a further boost
in performance, and surmise from the T-SNE plots that this approach creates two strong
clusters per class, a modality-responsible and a mixed cluster.

3. Lastly, we demonstrate that the REFINER has increased level of tolerance to lesser amount
of labeled data.

2 RELATED WORK

Multitask Learning The idea behind multitask learning is to learn tasks in parallel but using a
shared representation Caruana (1997). A CentralNet architecture expanded this idea for multimodal
fusion networks Vielzeuf et al. (2018); Pérez-Rúa et al. (2019) by creating a central network that
links modality specific networks. Each modality is allowed to make decisions independent of other
modalities, while a central network aims to leverage the mixed modalities. Taskonomy Zamir et al.
(2018) builds the shared representation space by first learning several low level tasks. Recently,
the UniT architecture was introduced Hu & Singh (2021) providing an end-to-end framework for
multimodal multitasking.

Graph based Fusion In Graph based fusion modules, each input modality can be considered nodes
of a graph with a known adjacency matrix Zhang et al. (2019); Angelou et al. (2019) or explicitly
modeling interaction across modalities Mai et al. (2020). The GINFusion model Xu et al. (2018)
creates a representation of the graph in an embedding space using a dense graph connection. Adding
ReFNet to the downstream loss pushes the fusion architecture to have strong unimodal and strong
multimodal components, and to induce edges between modalities, when they exist (refer Appendix,
Section A.4 for more details). The GRN technique for relational reasoning problems used the notion
of responsibility to refine graph embeddings Huang et al. (2020).

Autoencoder Autoencoders play a big role in unsupervised learning, transfer learning and dimen-
sionality reduction Baldi (2012); Burda et al. (2015); Makhzani et al. (2015). Set autoencoders can
be used for dimensionality reduction of feature sets Chen et al. (2018). Multi-modal autodecoders
have been developed for filling in missing data Jaques et al. (2017). A special case of the REFINER
will be the cyclic loss function introduced in Zhu et al. (2017).

Metric Learning Supervised deep metric learning has been the focus of several research efforts Li
& Tang (2015); Kaya & Bilge (2019); Duan et al. (2018). Contrastive loss Hadsell et al. (2006);
Hu et al. (2014) and triplet losses Schroff et al. (2015); Cheng et al. (2016) are being widely used
in several applications. In contrastive learning Khosla et al. (2020); Weinberger & Saul (2009),
samples with similar labels are pulled together in the fusion embedding space while those with dis-
similar labels are pulled apart. Triplet loss uses anchors, where one positive and negative sample are
chosen per anchor, which are typically the hardest examples for a given anchor. Other approaches
include lifted structures Oh Song et al. (2016), n-pair losses Sohn (2016), quadruplets Chen et al.
(2017), angular loss Wang et al. (2017), adapted triplet loss Yu et al. (2018), and multi-similarity loss
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Figure 2: Schematic of the Refiner Network applied to (left) MMBT architecture and (right) VIL-
BERT architecture. Decoders are added for each uni-modal feature to compute the Refiner loss.
Note that the refiner targets can leverage any of the standard pooling operations used in Transform-
ers ranging from just using the last encoder layer to pooling across several encoder layers.

functions Wang et al. (2019) that utilize pair-wise relations across samples in a batch. A modality-
alignment loss maximizing distance on differing identities was introduced in Wen et al. (2021). In
this paper, we use the Multi-Similarity contrastive loss function in combination with the REFINER
module. We call this method ReFNetMS, wherein the REFINER module is also trained to maxi-
mizing separation of dissimilar embeddings in the fusion space, that can simultaneously elicit the
underlying graphical structure across modalities and samples.

3 MULTIMODAL REFINER FUSION NETWORK DESIGN

Let F1, F2, · · · FM refer to featurized inputs of M modalities to a fusion module. A fusion module
then aggregates these inputs, and creates a fused embedding of the multi-modal features as

Femb = A([F1, F2, · · ·FM ]) (1)
where A maps the input features to an embedding space. In the context of this paper, A can encom-
pass many of the fusion methods in literature such as Concat, Linear or transformer based fusion
modules used with Concat-Bert, ViLBERT, MMBT, etc. The fused embedding is subsequently used
to train a downstream task such as classification.

The REFINER module that we introduce in this paper applies a set of decoders to the fused embed-
ding, and imposes a reconstruction loss between the decoded outouts and REFINER targets that are
chosen upstream of the fusion module based on the architevture (Fig. 6).

Ri = Di(Femb)∀i = 1, 2, · · ·M (2)
where Ri are the set elements generated by the refiner module Di. We then introduce a self-
supervised loss function, Ci,ss, for each refiner target

Ci,ss = L(Ri, Hi(Fi))∀i = 1, 2, · · ·M (3)
where Hi is a mapping of the features to the refiner space and L is a loss function. In general Hi

can be the identity transformation in the context of simple architectures, but in the context of trans-
formers, Hi usually involves modality specific pooling across transformer encoder layers. The total
refiner cost function is

∑M
i=1 γiCi,ss where γi are the weights of the refiner cost function associated

with the different features.
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3.1 REFINER AS A SELF-SUPERVISION MODULE

One feature of the REFINER module is that it is self-supervised and can leverage unlabeled data.
REFINER helps the fusion module to be pre-trained initially using the refiner losses before training
on the downstream task. Three self-supervised loss functions were explored in this work, cosine
similarity, mean-squared error, and refiner-contrastive loss. The refiner-contrastive loss imposes
that, within a batch, the decoded signals for a particular input are closer to it’s target compared to
the other targets to within a margin. To calculate refiner-contrastive loss, we first calculate rij =
Similarity(Ri, Hj(F )) which is the similarity of ith decoded signal with the jth target within a batch.
The loss within a batch for a given sample t is then calculated as

L(xt, yt) =

NB∑
k=1,k 6=t

H(rkt − rtt) (4)

where H(x) = x when x is positive and zero otherwise and NB is the batch size.

3.2 REFINER MODULE ON MULTI-MODAL TRANSFORMERS

The REFINER module can be applied on top of any fusion architecture that takes as input feature
streams from the multiple modalities that are finally fused together. These streams can be in the form
of a set or a graph. Multi-modal transformers such as MMBT Kiela et al. (2019), VisualBert Li et al.
(2019) and ViLBERT Lu et al. (2019) have emerged as strong multi-modal models in the recent past.
They combine the power of BERT model Devlin et al. (2018) for processing text, caption or OCR,
with powerful ResNet models He et al. (2016) to capture image features. In ViLBERT, a multi-
modal co-attention model is used that has demonstrated powerful state-of-the-art performance on
many public multi-modal benchmark tasks. In MMBT, tokens from each modality are concatenated
and used as different sentences (segments) of a transformer encoder.

In the rest of the paper, we apply ReFNet on top of MMBT and ViLBERT architecture, as well as
simpler architectures such as Concat, LinCat and GMU. The output post the co-attention layers of
the text and visual streams are fused, and a decoder is applied to the fused embedding to decode back
the text and visual embeddings using an MLP with hidden layers. REFINER can elicit hidden struc-
tures in the input multi-modal data that we describe in detail in section A.4 and demonstrate some
interesting properties of linear REFINER networks in section A.6. We believe that the REFINER
can generally be useful to other early or mid fusion architectures not discussed in this paper.

3.3 MULTI-SIMILARITY LOSS

The addition of supervised metric learning with REFINER enables separation of embeddings per
class across modalities (because the REFINER is responsible) as we demonstrate with a T-SNE
figure later in the manuscript. Without REFINER, metric learning maximizes separation of fused
embeddings based on the downstream classification task. We use the Multi-similarity loss in this
paper, though other contrastive loss functions can be used. The Multi-similarity loss for T training
samples in a batch is calculated as Wang et al. (2019)

LMS =
1

T

T∑
i=1

[
1

α
log[1 +

∑
e−α(Sik−λ)]

]
+

[
1

β
log[1 +

∑
eβ(Sik−λ)]

]
, (5)

where Sij is the similarity (dot product) between samples and α, β and λ are hyperparameters. We
provide the overall algorithm in Alg. 1 where γi are the self-supervised loss coefficients, ζ is the
loss coefficient for contrastive loss, wk are the weights of the fusion and refiner networks and η is
the learning rate. Refer to section A.1 for additional details on the integration.

4 EXPERIMENTS

For this study, we use the ViLBERT and MMBT models Lu et al. (2019) as baseline for training
and testing ReFNet and ReFNetMS in addition to GMU, Linear Sum and Concat baselines Arevalo
et al. (2017). Similar to Kiela et al. (2020), the ViLBert model was only unimodally pretrained.
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Algorithm 1 Algorithm for training Multi-modal Fusion Networks

Pretraining (optional)

Compute features, F1, F2, · · · , FM .
while epoch ≤ max epochs do
Lpretrain =

∑
γiCi,ss

wk+1 = wk − η ∂Lpretrain

∂w
end while

Training

while epoch ≤ max epochs and stop criterion is not met do
Femb = A([F1, F2, · · ·FM ])
Ri = Di(Femb)∀i = 1, 2, · · ·M
Ltrain = Ldownstream +

∑
γiCi,ss + ζ ∗ LMS

wk+1 ← wk − η ∂Ltrain

∂w
end while

For ViLBERT, we use the tokens from each of text and image channels as targets for REFINER,
whereas for MMBT, we use average pooled outputs in the last transformer layer for each modality
as REFINER targets as illustrated in Figure 2. We used the MMF framework Singh et al. (2020a)
built on PyTorch Paszke et al. (2019) for setting up the training and evaluation pipelines. We plan to
open source the developments in this paper with the MMF framework.

4.1 DATASETS

We use three datasets - the multimodal IMDB, Hateful Memes and SNLI visual entailment for this
paper, which are described below.

MM-IMDB: The multi-modal IMDB dataset Arevalo et al. (2017) contains 25,959 movies and their
poster, genre, plot and other metadata fields such as year, language, writer, director, and aspect ratio.
The goal is to classify the movie into 24 categories. Each movie can belong to more than one
class. The micro-f1 and macro-f1 scores were used to evaluate performance. The original dataset
contains a baseline using Gated Multimodal units(GMU) Arevalo et al. (2017). Three models from
the original paper, as well as ViLBERT baseline Singh et al. (2020b) and MMBT baselines are used
here. Note that ReFNet combines each of the base fusion modules with the REFINER module. For
the non-transformer baselines, the output of the unimodal text and image encoders were used as
targets, and the REFINER decoder takes as input the activation layer post-gating. Since each movie
can simultaneously have multiple classes present, the precision and recall scores are calculated based
on the f-score as follows Madjarov et al. (2012).

The macro f1 score is calculated from the precision, pj and recall rj of each class as

fmacro
1 =

1

N

N∑
j=1

2× pj × rj
pj + rj

whereN is the number of classes. The micro f1 score is calculated using all the class labels together
as

fmicro
1 =

2× pmicro × rmicro

pmicro + rmicro

where pmicro and rmicro are the precision and recall across all classes calculated based on the total
number of true positives, false positives and false negatives.

We used the AdamW optimizer, with a Cosine warmup and Cosine decay learning rate scheduler.
The value of the limiting factor for AdamW optimizer was set to 1e−8 and corresponding coefficients
for first and second moments were set to 0.9 and 0.999 respectively. The batch size was set to 32,
learning rate was set to 5e−5 and the fused embedding dimension was set to 512. An MLP with a
hidden layer was used for the decoding refiner module. For the metric loss function in Eq. 5, values
of α = 50 and β = 2 were chosen. Hyperparameters η1, η2, and ζ were in the range of 0.0 to 0.3.
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Figure 3: Examples from the (left) Hateful Memes dataset showing two not hateful (top) and two
hateful (bottom) memes from the Hateful Memes dataset, and (right) two examples from the multi-
modal IMDB dataset with the genre that is to be predicted. There is also a corresponding text
description for each input which is not shown, and each input may have multiple labels associated.

Hateful Memes: Hateful Memes dataset Kiela et al. (2020) contains over 10,000 multi-modal ex-
amples (image and text) with the goal of detecting if an input is hateful or not. The dataset is con-
structed such that unimodal models struggle and only multi-modal models can succeed (see Fig. 3).
Difficult examples (“benign confounders”) are added to the dataset to make it hard to rely on uni-
modal signals. The dataset comprises of five different types of memes: multimodal hate, where
benign confounders were injected for both modalities, unimodal hate where one or both modalities
were already hateful on their own, benign image and benign text confounders and finally random
not-hateful examples. There were 1,000 samples in the validation dataset and 2,000 examples in the
test dataset. Range for the hyperparameters ηi and ζ were between 0.0 to 0.3 in Algorithm 1.

We use a cross entropy loss for the two-label classification. We train on 8 NVIDIA Volt100 GPUs
with a total batch size of 32 for a total of 22000 updates. We evaluate every 1000 updates and save
the model with the best AUROC metric on the validation set. We use the AdamW optimizer with an
initial learning rate of 1.0e-05. We use a linear decay learning rate schedule with warm up to train
the model.

SNLI Visual Entailment: The SNLI Visual Entailment (SNLI-VE) dataset Xie et al. (2019) con-
sists of image-sentence pairs whereby a real world image premise and a natural language hypothesis
are given. The goal is to determine if the natural language hypothesis can be concluded given the
information provided by the image premise. Three labels, entailment (hypothesis is true), neutral
or contradiction (hypothesis is false), are assigned to image-sentence pairs. The dataset has 550k
image-sentence pairs generated based on the Stanford Natural Language Inference (SNLI) Bowman
et al. (2015) corpus and Flickr30k Plummer et al. (2016) dataset. The training setup is the same as
Hateful Memes dataset except we use a batch size of 480, an initial learning rate of 5.0e-05, and a
total of 10000 updates.

4.2 DO MULTIMODAL FUSION ARCHITECTURES INNATELY ENCODE UPSTREAM(UNIMODAL
OR WEAKLY MULTIMODAL) INFORMATION?

We performed an analysis of the impact of preserving upstream information on the performance on
both the Hateful Memes and the mmIMDB datasets. We used the ReFNet weight (γ in Algorithm 1)
as an index of preserving information upstream of the fusion module, with contrastive loss weight η
set to zero. Fig. 4 shows that as we apply ReFNet with a loss weighted by γ, the accuracy initially
increases but once the unimodality starts to dominate and prevent effective multimodal mixing, the
accuracy starts dropping back.

model Top-1 Top-2 Top-5 Top-10
baseline 27.44 42.83 60.51 67.02
ReFNet 42.67 46.99 58.15 70.05

Table 1: Image-based retrieval of the multimodal embeddings from the fusion module using uni-
modal image embedding from the upstream image encoder.
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Figure 4: Relative change in accuracy as we increase the weight of the REFINER reconstruction
loss, showcasing that no reconstruction loss (baseline) does not fully leverage information of the
fusion module.
Next, we performed a study wherein we stored the embeddings using the baseline and ReFNet
trained mmIMDB datasets in a bank, and tried to retrieve the target using just the image encoder
using a k-nearest neighbor search. The query for the kNN search is an unimodal image encoder and
the (key, value) pairs are the (fused embedding, target) pairs. Results are summarized in Table 1
demonstrating that REFINER achieves superior retrieval based on unimodal image signal compared
to native Multimodal Fusion modules on the test set. REFINER consistently outperformed base-
line when using unimodal text encoders as well (discussed in Appendix A.8). These experiments
demonstrate a better encoding of the unimodal signals in the fused representation.

To further understand this problem, we performed studies with just the relevant unimodal features on
the mmIMDB dataset. Full details of the study are provided in section A.5, with the results indicating
that when only the relevant text and image signals are fed into the fusion network, REFINER is able
to boost performance on both text-only and image-only inputs.

4.3 IMPACT OF ADDING MULTI-SIMILARITY LOSS TO EMBEDDINGS

Figure 5: Visualization of fusion features in reduced dimensions using T-SNE. Left: fusion fea-
tures of ViLBERT baseline showing the 3 clusters with entanglements. Center: fusion features of
ReFNet showing the 3 clusters are better separated with less entanglements. Right: fusion features
of RefNetMS showing the Refiner and Contrastive loss inducing six clusters across modalities and
classes (three clusters for each of the vision and text modalities). The colors red, blue, and green
represent three classes contradiction, entailment, and neutral.

We generated T-SNE plots on the fusion features for SNLI visual entailment dataset with ViLBERT,
ReFNet and ReFNetMS algorithms. Fig. 5 shows that ViLBERT model generates 3 vaguely sepa-
rated fusion feature clusters while the clusters generated by ReFNet has a better separation between
clusters and clearly delineates them. The metric learning algorithm is able to further separate the
clusters across modalities, therefore we observe six clusters, three different classes for each modality
(vision and language).

5 RESULTS

MM-IMDB: Table 2 compares the performance of non-transformer baselines for the multi-modal
IMDB dataset against ReFNet. Table 3 compares the performance of ReFNet and ReFNetMS on a test
set of MM-IMDB dataset to both ViLBERT and MMBT baseline models. ReFNet was generally
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Gated Multimodal Units Linear Sum Concat
model macro f1 micro f1 macro f1 micro f1 macro micro f1
baseline 54.1 63.0 53.0 60.7 52.1 60.6
ReFNet 56.0 64.0 56.7 64.1 56.3 61.7

Table 2: Comparison of the performance of ReFNet with non-transformer baselines for the multi-
modal IMDB dataset as described in Arevalo et al. (2017).

Hateful Memes Multimodal IMDB
model Acc. val. AUC val. Acc. test. AUC test. macro f1 test. micro f1 test.

ViLBERT 60.71 ±0.29 70.62 ±0.42 59.70 ±0.20 70.53 ±0.07 58.48 ± 0.25 66.77 ± 0.14
ReFNet 62.45 ± 1.09 70.87 ± 0.41 63.00 ± 0.31 71.83 ± 0.13 58.75 ± 0.07 67.02 ± 0.15

ReFNetMS 63.29 ± 1.31 70.99 ± 0.37 63.80± 0.36 72.06± 0.49 58.96± 0.09 67.31± 0.19

MMBT 57.60 ± 0.76 63.14 ± 0.14 61.30 ± 0.35 67.76 ± 0.06 57.38 ± 0.04 66.97 ± 0.05
ReFNet 56.80 ± 1.87 61.68 ± 1.54 62.30± 1.76 69.32 ± 1.00 58.43± 0.31 67.91± 0.08

ReFNetMS 58.00 ± 0.72 65.27± 0.25 59.60 ± 0.44 69.59± 0.15 58.03 ± 0.06 67.57 ± 0.06

Table 3: Comparison of the performance on Hateful Memes and MMIMDB datasets.

able to improve upon the performance for all five baselines. Relative gains between 1.59-5.60%
were observed for micro-f1 score and between 3.51-8.06% for macro-f1 scores of non-transformer
baselines. For the transformer models, relative gains of 0.81-1.40% and 0.82-1.83% in micro and
macro-F1 scores were observed, and these were statistically significant based on a t-test (p = 0.02
and 0.03 respectively).

Hateful Memes: Table 3 compares the performance of ReFNet and ReFNetMS with respect to the
ViLBERT and MMBT baselines. ReFNet had a relative gain in the AUC Of 1.84% over ViLBERT,
and 2.30% over MMBT baselines. The overall relative gain in AUC for ViLBERT and MMBT were
2.17% and 2.70% respectively. Based on a t-test, both ReFNet and ReFNetMS had a statistically
significant improvement on the AUC (p-value = 1e-4 and 0.006 respectively) for both models.

SNLI Visual Entailment: ReFNet showed a small relative improvement on the test set (improve-
ment in accuracy 0.1% ± 0.07 on the test set which was not significant). However, ReFNetMS im-
proves the Accuracy relatively by 0.71% which was significant (p-value = 0.001). Since the dataset
contains more than a hundred thousand examples, even a 1% improvement results in thousands of
images being correctly classified. This improvement with ReFNetMS is in the range of other SOTA
improvements over baseline with similar capacity for this dataset (e.g. refer Table 1 in Xie et al.
(2018) and table 1 in Shevchenko et al. (2021)).

6 ABLATION STUDIES

Amount of Labeled Data On the Hateful Memes dataset, the results based on successive reduction
in the fraction of labeled data are summarized in table 4. Using just 5% of the labeled data, the area
under the ROC curve on the test set has a relative gain between 3.46-4.41% and 3.58-6.72% using
ReFNet and ReFNetMS respectively. On the Multimodal IMDB dataset, ReFNet was able to achieve
performance boosts in the range of 4 to 12% under reduced resource setting. Results of the reduced
label study are discussed in detail in section A.3.

Targets for the REFINER module: The choice of targets for REFINER needs to be chosen care-
fully depending on the application. Choosing a target that is very upstream, such as the raw image
pixels or text tokens, can result in the REFINER undoing the cross-modal attention weighting which
is the hallmark of Multi-modal transformers. However, choosing a target which is just upstream
of the fusion module might not be very useful as that information might already be represented in
the fused embedding. To elucidate how the choice of REFINER target might affect the result, we
perform a study of choosing five different modality pooler operations on the performance.

Table 5 compares performance of the five different modality poolers on the mmIMDB dataset. The
results show that including penultimate layer on the modality pooling operation improves perfor-
mance of REFINER compared to just including the last layer, which might indicate that different
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5% V 5% T 5% T 10% V 10% T 10% T 20% V 20% T 20% T
model AUC Acc AUC AUC Acc AUC AUC Acc AUC

ViLBERT 59.4 52.8 57.12 60.32 54.45 60.28 50.20 50.2 61.31
ReFNet 58.65 56.94 59.64 61.84 54.65 60.87 61.95 53.70 63.90

ReFNetMS 62.02 57.40 60.96 61.82 54.25 60.78 62.78 58.30 62.86
MMBT 59.08 54.50 59.48 62.37 55.93 65.89 64.30 56.74 66.41.
ReFNet 61.23 50.60 61.54 62.47 57.43 66.06 63.59 57.33 68.06

ReFNetMS 59.72 58.00 61.69 62.26 57.00 66.97 63.95 56.10 65.97

Table 4: Ablation study on the Hateful Meme dataset (V: validation set, T: test set, x%: fraction of
labels used, AUC: area under the ROC curve and ACC is the accuracy of the predicted model).

target macro f1 val. micro f1 val. macro f1 test micro f1 test
average last layer 58.85 67.21 57.64 66.76

average last two layers 59.18 67.96 58.30 67.20
average sum last layer 58.64 68.07 58.33 67.20

average sum last two layers 59.05 68.09 58.66 67.78
average concat 57.55 67.22 57.75 67.48

Table 5: Comparison of different REFINER targets using five different modality pooling operations
on the test and validation performances.

encoder layers may contain relevant information for the corresponding modalities, which are not
implicitly represented in the fused embeddings.

7 DISCUSSION

We started with the hypothesis that refining fused representations of Multimodal fusion architectures
using a modality-centric decoder can improve performance on downstream tasks. We first demon-
strated the gap in existing Multimodal transformer architectures by showing that even with unimodal
inputs, refining the representation yields better performance. For these examples, the weights for
the irrelevant modalities were identified as zero naturally by the REFINER, and achieved relative
gain in performance of up to 2%. We further showed that ReFNet performs better on retrieval tasks
where query is uni-modal but key is multi-modal. We also demonstrated that ReFNet provides big-
ger boosts in reduced resource setting and might help in reducing annotation requirements as in
general. The choice of REFINER cost function also did not significantly change results (further
details in section A.2).

For the transformer baselines, the targets for REFINER can be either image pixels and raw text,
or the modality pooled inputs for each of the modalities. In general, the former did not give a
boost in performance, likely because the REFINER acts against the information fusion happening
within transformer encoders. The ablation studies on the REFINER targets indicated that using
penultimate encoder layers had a positive effect on the performance. REFINER only had a modest
increase in training time, while the use of Multi-Similarity loss had a training time increase of
around 30-35% (refer section A.7 for more details). The relative contribution of the REFINER
loss to the improvement in micro F1 score for the mmIMDB dataset was 46-56%, and the rest was
due to contrastive loss. More than 80% of the relative contribution for Hateful Memes dataset was
due to the self-supervised REFINER loss. Based on the overall improvements, we believe that our
approach will also be helpful to refine embeddings with other baselines such as UNITER Lippe et al.
(2020); Chen et al. (2019) (similar to MMBT) using the LXMERT fusion architecture or with other
pretraining methods such as Li et al. (2020); Yu et al. (2020). Note that REFINER is also applied
during fine-tuning and therefore can be used in tandem with other multimodal pretrained models.

Limitations and Future Work: We did not fully explore Metric Loss functions. Other modality
pooling functions for REFINER targets were not fully explored and need to be understood.
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A APPENDIX

A.1 REFINER WITH MULTI-SIMILARITY LOSS

REFINER uses a self-supervised reconstruction loss, but we posited that when used with a Multi-
similarity loss to contrast the embeddings associated with different labels, REFINER would create
more powerful embeddings. Metric Learning methods have shown strong improvements for multi-
class classification problems. When integrated with the self-supervised REFINER module, the met-
ric Refiner network is able to elicit representations of the fused embeddings in a responsible setting,
(i.e.) derive distance metrics in the embedding space characterized by strong unimodal and mixed
representations of the input features. Figure 6 shows how REFINER Module can be integrated with
the Multi-modal fusion module and combined with a Multi-Similarity loss. The latter is supervised,
and therefore cannot be used in the pretraining stage. The results showed that generally the Multi-
similarity loss can be helpful, especially in few-shot settings but it is not always the case. Plots
comparing how ReFNetMS provides a boost over ReFNet for the ViLBERT baseline, especially in
low shot settings, are illustrated in Fig. 7.

A.2 EFFECT OF THE CHOICE OF COST FUNCTION

The choice of cost function did not have a drastic impact on the outcome. Cosine similarity and
Mean-Squared Error generally converged faster and the difference between them was within the
standard deviation and not statistically significant. Contrastive loss converged slightly slower and
lagged behind the the other two losses for the same number of epochs by around 0.5%.
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Figure 6: Schematic of the proposed algorithm with a refiner and contrastive loss module. The
image based features F1, F2, F3, F4 and text based features F5, F6 are fused together, and a refiner
is applied on the fused embedding to generate refiner outputs R1, R2, · · · , R6 which are used to
define a self-supervised loss function and a supervised Multi-similarity contrastive loss is also used
across samples in a batch.

Figure 7: Comparison of performance of the baseline ViLBERT model, ReFNet and ReFNetMS
across datasets with 5%, 10% and 20% of labeled training data available. Figure on the left shows
micro and macro f1 scores on the validation dataset and that on the right shows the scores on the test
dataset.
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A.3 ABLATION STUDY ON THE MULTIMODAL IMDB DATASET

We successively chose a fraction of the labeled dataset in MM-IMDB (5, 10 and 20% of the training
data) for downstream classification. The test set was kept intact. The baselines were rerun using
the ViLBERT and MMBT models. Metrics were reported on the test dataset based on the model
corresponding to the best validation performance on 20000 iterations. With just 5% of labeled
dataset available, ReFNet was able to achieve a higher micro f1 score (+4.03) and a higher macro f1
score (+11.83) compared to the ViLBERT baseline, and a higher micro f1 score (+4.71) and a higher
macro f1 score (+6.78) on the MMBT baseline. ReFNetMS boosted the performance over baseline
to +6.51 micro f1 score and +13.77 macro f1 score for the former. A full summary of the ablation
study is provided in Table 6.

5% labeled 5% labeled 10% labeled 10% labeled 20% labeled 20% labeled
model macro-f1 micro-f1 macro-f1 micro-f1 macro-f1 micro-f1

ViLBERT 34.06 56.62 46.73 62.65 56.08 65.75
ReFNet 45.89 60.65 48.70 63.41 56.43 66.24

ReFNetMS 47.83 63.13 51.73 64.31 57.12 66.63
MMBT 40.49 57.00 48.25 61.77 53.37 66.23
ReFNet 47.27 61.71 47.34 62.45 55.86 66.86

ReFNetMS 42.05 57.47 48.78 61.64 56.37 66.94

Table 6: Ablation study on the MM-IMDB dataset. Fraction labeled is the fraction of labeled sam-
ples used during training for the logit binary cross entropy function.

A.4 INDUCING LATENT GRAPH STRUCTURES

While we do not explicitly model graph in this paper, we show in this section that our proposed
method can exploit and elicit hidden graphical connections in the data, both across modes within a
training sample and across samples in a batch. In Theorem A.1, we show that when an (unknown)
adjacency matrix, A, exists that contains the connections across modalities and when the fusion
network and refiner network are linear, then the inverse of the weights of the refiner network contains
the weighted adjacency matrix when k = m, where m is the number of modalities and k is the rank
of the fused embnedding representation (assuming d > k).
Theorem A.1. Let A be an unknown adjacency matrix and W be the weights of an affine transfor-
mation to generate the fusion embedding, E. The weights Γ of a linear refiner satisfy the property,
ΓWA = Im.

Proof. Let Fm×d represent features where m is the number of modalities and d is the size of each
feature vector. We assume that each modality has a feature vector of dimension d without any loss
of generality (otherwise they can be padded with zeros).

The unknown adjacency matrix, Am×m contains ones whenever modality i and j have an edge
between them. Let Wk×m be the unknown coefficients that create the fusion embeddings, Ek×d
from the features as shown in Equation 6.

E = WAF (6)

where E is the embedding in a k × d space. The fusion module generates weights, W∗ = WA.
The refiner calculates weights Γm×k such that F̃ = ΓE = ΓWAF. Since the refiner network finds
weights such that F̃ = F (refer Eq. 2 where D(x) = Γx and Hi is identity), we have

F = ΓWAF.

Since the above holds ∀F, ΓWA = Im where Im is an identify matrix of size m×m.

If WA is invertible, then Γ = (WA)−1. Without using refiner, the weights, W∗ will be tuned by
a downstream task of much lower dimension than the refiner module, and therefore the weights will
be tuned to generate a good representation of the graph in a much lower dimensional space, thereby
failing to induce the latent graphical structure.
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Figure 8: Plot of the reconstruction loss of the adjacency matrix against the dimension of the fused
embedding space for different values of d for (top) m=64, (middle) m=128 and (bottom) m=512.

We show in section A.6 the ability of Γ to recover the adjacency matrix when the rank of E is less
than m.

A.5 EXPERIMENTS WITH UNIMODAL INPUTS TO DRIVE FUSION NETWORKS

We paired each image with an irrelevant text input and vice-versa. If the fusion embeddings innately
encode unimodality, they should learn to ignore the irrelevant signals and get the strongest unimodal
performance. However, in practice, since the multimodal fusion modules generate high dimensional
fused representations and the learning geared towards lower dimensional tasks tend to get stuck in
local minima, the performance was poorer without an explicit regularizer such as what the REFINER
offers. Using the text only features, REFINER was able to boost the micro F1 score from 65.9 to
66.9 (+1%) and macro F1 score from 56.6 to 57.7 (+1.1%) respectively. Using the image only
features, REFINER was able to boost the micro-F1 score over MMBT baseline from 47.6 to 48.6
(no change in the micro F1 score). Also, as expected, the REFINER hyper-parameter sweep for the
text only inputs revealed an optimal value of 0.1 for text and 0.0 for image, while for the image only
inputs revealed an optimal value of 0.2 for image and 0.0 for text. These indicate that the refiner can
identify and tune the fused representations to use the relevant modality signal.

A.6 ANALYSIS OF LINEAR FUSION MODULES

In order to understand further the implications of the various assumptions in the proof in section A.4,
we analyze Linear fusion networks generated with a hidden unknown adjacency matrix.

First, we create a symmetric adjacency matrix comprised of zeros and ones of size m×m generated
randomly. Diagonals comprise of ones. The matrix represents hidden structures/links across modal-
ities. We then take a random feature vector of size d for each modality, and a random set of weights
that represents some optimality with respect to a downstream loss (the actual weights are not central
to the analysis; we averaged results across 5 randomly chosen sets of weights). The weights reduces
the d ×m feature vector into d × k, which represents the fused embedding, with the caveat that k
can be significantly less than m. The decoder weights Γ are calculated by taking the product of F
with the pseudo-inverse of the fused embeddings. The adjacency matrix is recalculated by multi-
plying the weights with Γ, and taking its pseudo-inverse. The error norm between the original and
reconstructed A were calculated, and averaged across features and weights for each d and m pair.

For the analysis, we first chose three different dimensions for the modality space, m=64, 128 and
512. We chose three different d values starting from 2 × m. Figure 8 shows the reduction in
reconstruction error as a function of the embedding dimension. When k is equal to m, the matrix
is perfectly invertible and we can reconstruct the matrix perfectly. We show in the figures that the
errors rapidly decay for the initial values of k and the error is maintained at a much lower value than
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Figure 9: Comparison of eigen-vectors (sorted for visualization purposes) of the ground truth and
different dimensions of fusion embeddings, demonstrating that when k=m, Linear Fusion Modules
can adequately reconstruct the ground truth.
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Figure 10: Convergence of ReFNet and ReFNetMS losses across three different datasets (from left -
10%, 20% and 100% of the training data.

the initial value. This reduction is better for larger m, and for a given m, larger d (though the curves
are fairly insensitive to d).

In addition, we show in Fig. 9 that the salient features of the reconstructed adjacency matrix are
close to the actual adjacency matrix when k nears m. The figure shows eigenvectors of the matrix
(sorted) for visualization of the differences in reconstruction.

A.7 EFFECT ON TRAINING TIME INCREASE

The increase in training time when adding the REFINER module for ReFNet is between 3-5%, and
when using ReFNetMS is between 30-35%. The higher train time when using the Multi-Similarity
loss comes from looking at different pairs of similar and dissimilar labels within a batch. If training
time is a bottleneck, the gains from the REFINER module alone can be leveraged. As shown in
Figure 10, the increase in train time of ReFNetMS also corresponds to a smaller loss and faster initial
rate of convergence. The loss converges faster with larger datasets because each epoch corresponds
to a larger set of samples.

A.8 UNIMODAL RETRIEVAL FROM MULTIMODAL EMBEDDINGS

model Top-1 Top-2 Top-5 Top-10
baseline 23.30 34.26 49.45 59.26
ReFNet 23.66 36.40 53.05 63.82

Table 7: Text-based retrieval of the Multimodal embeddings from the fusion module using unimodal
text encoder as the query, and with a weight of 0.2 for the modality refiners.

We performed a study to retrieve target using just the features from the text encoder. The multimodal
embeddings were obtained in two settings - (i) using the baseline fusion module as the encoder, and
(ii) using a ReFNet. The query for retrieval were the unimodal text encoder features (padded with
zeros to project onto the embedding space). Key and value pair for the retrieval were the fused
embeddings and the target vectors respectively. Table 7 summarizes the results for the retrieval
using Top-1, Top-2, Top-5 and Top-10 k Nearest Neighbors, demonstrating that the REFINER mod-
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ule consistently outperforms the baseline fusion module. This further strengthens our claim that
REFINER provides better unimodal representation in the fused embedding.
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