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ABSTRACT

Cooperative multi-agent reinforcement learning (MARL) is extensively used for
solving complex cooperative tasks, and value decomposition methods are a preva-
lent approach for this domain. However, these methods have not been successful in
addressing both homogeneous and heterogeneous tasks simultaneously which is
a crucial aspect for the practical application of cooperative agents. On one hand,
value decomposition methods demonstrate superior performance in homogeneous
tasks. Nevertheless, they tend to produce agents with similar policies, which is
unsuitable for heterogeneous tasks. On the other hand, solutions based on per-
sonalized observation or assigned roles are well-suited for heterogeneous tasks.
However, they often lead to a trade-off situation where the agent’s performance in
homogeneous scenarios is negatively affected due to the aggregation of distinct
policies. An alternative approach is to adopt sequential execution policies, which
offer a flexible form for learning both types of tasks. However, learning sequential
execution policies poses challenges in terms of credit assignment, and the limited
information about subsequently executed agents can lead to sub-optimal solutions,
which is known as the relative over-generalization problem. To tackle these issues,
this paper proposes Greedy Sequential Execution (GSE) as a solution to learn the
optimal policy that covers both scenarios. In the proposed GSE framework, we
introduce an individual utility function into the framework of value decomposition
to consider the complex interactions between agents. This function is capable of
representing both the homogeneous and heterogeneous optimal policies. Further-
more, we utilize greedy marginal contribution calculated by the utility function as
the credit value of the sequential execution policy to address the credit assignment
and relative over-generalization problem. We evaluated GSE in both homogeneous
and heterogeneous scenarios. The results demonstrate that GSE achieves signifi-
cant improvement in performance across multiple domains, especially in scenarios
involving both homogeneous and heterogeneous tasks.

1 INTRODUCTION

Centralized training with decentralized execution (CTDE) provides a popular paradigm for value-
based cooperative multi-agent reinforcement learning (MARL), which has been extensively employed
to learn effective behaviors in many real-world tasks from agents’ experiences (Sunehag et al., 2017;
Rashid et al., 2018). These tasks encompass different types of scenarios, including homogeneous
scenarios where agents are required to take similar actions, e.g., bimanual manipulation (Lee et al.,
2013; Caccavale et al., 2008), and heterogeneous scenarios where agents are required to take distinct
actions, e.g., autonomous driving through a crossroad (Chen et al., 2021). Following the Individual
Global Maximum (IGM) principle (Hostallero et al., 2019), these value decomposition methods can
learn centralized value functions as monotonic factorizations of each agent’s utility function and
enable decentralized execution. Meanwhile, as the parameters of the utility network can be shared
among all agents (Gupta et al., 2017), the number of parameters to be trained can be significantly
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reduced. These features together increase the potential of previous CTDE solutions to be applied in
large-scale scenarios involving either homogeneous or heterogeneous tasks.

Assuming that scenarios only involve either homogeneous or heterogeneous tasks is oversimplified,
as many real-world scenarios require agents to learn both tasks simultaneously (for example, running
a restaurant requires waiters and cooks to cooperate within each group and between these two
groups (Knott et al., 2021)). However, existing value decomposition methods have not been successful
in addressing both types of tasks simultaneously. In homogeneous scenarios, the monotonic value
function restricts the value function to sub-optimal value approximations in environments with non-
monotonic payoffs (Wang et al., 2020a; Son et al., 2019), they cannot represent the policy that an
agent’s optimal action depends on actions from other agents. This problem, known as the relative
overgeneralization (Panait et al., 2006), prevents the agents from solving all kinds of homogeneous
tasks. Recent methods have attempted to address this issue by encouraging agents to simultaneously
take the same cooperative actions to find optimal policies in non-monotonic payoffs (Rashid et al.,
2020; Mahajan et al., 2019). However, while agents acquiring similar policies can be advantageous
for learning in non-monotonic homogeneous scenarios, it impedes the ability of agents to adapt
to heterogeneous scenarios. Meanwhile, in heterogeneous scenarios, one of the main challenges
is obtaining distinct policies among agents when the utility network is shared among all of them.
This shared utility network makes it difficult for agents to learn and exhibit diverse policies that are
necessary for such scenarios. Therefore, several methods employ techniques such as incorporating
agent ID as input to construct different policies (Li et al., 2021a) or assigning different roles to
encourage diverse behaviors (Christianos et al., 2021; Wang et al., 2020c). Nevertheless, these
methods still encounter other challenges. They tend to result in fixed policies that can only represent
a single solution mode of the task, which precludes cooperation when working with dynamically
changing agents (Fu et al., 2022). In addition, simply aggregating distinct policies results in a
trade-off scenario, where performance in homogeneous scenarios is negatively impacted (Christianos
et al., 2021; Li et al., 2021a).

To address these challenges, sequential execution policies have been introduced. These policies
allow agents to take actions based on the actions of previous agents, enabling the learning of both
homogeneous and heterogeneous tasks (Fu et al., 2022; Liu et al., 2021). In this approach, as
latter agents can adjust their actions based on the actions of earlier agents, they can exhibit either
homogeneous or heterogeneous policy to cooperate with the previous agents, depending on the
specific situation. However, sequential execution methods encounter challenges in credit assignment,
as the policy form does not conform to the IGM principle, precluding current value decomposition
methods from learning each agent’s individual utility. Additionally, as the former executed agents
lack action information about the latter agents, the former executed policies may still converge to a
sub-optimal solution and cannot solve the relative overgeneralization problem thoroughly.

In this work, we propose Greedy Sequential Execution (GSE) which is capable of addressing these
problems and adapting to both homogeneous and heterogeneous tasks. Specifically, we first propose
a value decomposition scheme that captures the interactions between agents while adhering to the
IGM principle. This value decomposition enables agents to learn individual utilities that take into
account interactions with all other cooperative agents. We demonstrate that such individual utilities
can accurately represent both homogeneous and heterogeneous payoff matrices. However, since the
individual utilities require the actions of all other agents to conduct actions, which is infeasible in
sequential execution, they cannot be directly used as the policy’s value function. To address this
issue, we further propose an explicit credit assignment method that calculates a greedy marginal
contribution as the credit value for each agent’s policy in sequential execution. The insight behind
this is that each agent’s optimal cooperative policy is to maximize the marginal contribution of
joining the group of previously executed agents while considering that the latter agents will take
optimal cooperative actions to cooperate with it. We show that the greedy marginal contribution
can overcome the relative over-generalization problem by avoiding taking conservative actions that
lead to mis-coordination. Furthermore, using the explicit credit assignment method can address the
challenges of learning each agent’s individual utility in the sequential execution policy. It allows for
the precise allocation of credit to each agent’s actions, enabling effective learning of the sequential
execution policy. We evaluated GSE in comparison to several state-of-the-art baselines in various
scenarios, including homogeneous tasks, heterogeneous tasks, and a combination of both tasks. The
results demonstrate that our proposed method achieves a significant improvement in performance
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Figure 1: Left: The illustration of Eq. (4) and Eq. (5). The orange area is where the methods using
Qi(τi, ai) as the individual utilities have the maximum possibility to solve both tasks depicted by
the example payoff matrixes. Middle: Non-monotonic payoff matrix of the homogeneous example,
where agents are required to take action A simultaneously to achieve cooperation and taking action A
alone results in a penalty. Right: Payoff matrix of the heterogeneous example, where taking the same
action is punished and taking distinct action is rewarded.

across all domains and the most prominent advantages in scenarios involving both tasks, while other
methods struggle to provide effective solutions.

2 PRELIMINARIES

Dec-POMDP. A fully cooperative multi-agent sequential decision-making task can be described as
a decentralized partially observable Markov decision process (Dec-POMDP), which is defined by a
set of possible global states S, actions A1, ..., An, and observations Ω1, ...,Ωn. At each time step,
each agent i ∈ {1, ..., n} chooses an action ai ∈ Ai, and they together form a joint action u ∈ U .
The next state is determined by a transition function P : S × U → S. The next observation of each
agent oi ∈ Ωi is updated by an observation function O : S → Ω. All agents share the same reward
r : S × U → r. The objective is to learn a local policy πi(ai|st) for each agent such that they can
cooperate to maximize the expected cumulative discounted return Rt =

∑∞
j=0 γ

jrt+j . The joint value
function is Qtot = Est+1:∞,at+1:∞[Rt|st,ut]. The observation of each agent can also be replaced by
the history of actions and observations of each agent to handle partial observability (Sunehag et al.,
2017; Rashid et al., 2018). The history of actions and observations of agent i can be viewed as τi
which is (o0i , a

0
i , ..., o

t
i).

Value Decomposition Methods. Current value decomposition methods represent the joint action
value function Qtot as a mixing of per-agent utility functions to form the CTDE structure, where
Individual Global Max (IGM) principle (Hostallero et al., 2019) is wildly used to enable efficient
decentralized execution:

argmax
u

(Qtot(s, u)) = {argmax
a1

(Q1(τ1, a1)), ..., argmax
an

(Qn(τn, an))}. (1)

QMIX (Rashid et al., 2018) combines the agent utilities via a continuous monotonic function to
satisfy IGM, i.e.,

QQMIX
tot (s, u) = f(Q1(τ1, a1), ..., Qn(τn, an))

∂QQMIX
tot

∂Qi
> 0,∀i ∈ n.

(2)

Shapley Value and Marginal Contribution. We introduce the concept of the marginal contribution
of Shapley Value (Shapley, 2016). The marginal contribution of Shapley Value for agent i is defined
as

ϕi = v(C)− v(C/i) (3)

where C is a team of agents that cooperate with one another to achieve a common goal, and C/i
represents the set in the absence of agent i. v(C) refers to the value function that estimates the
cooperation of a set of agents.
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3 MOTIVATING EXAMPLES

In this section, we utilize two example tasks as motivating examples to illustrate the advantages and
limitations of various methods. Their payoff matrices are depicted in Figure 1.

3.1 ISSUES OF CURRENT METHODS

We investigate the limitations of current value decomposition methods by analyzing the form of
individual utility. Currently, these methods model the individual utility of each agent as a value
function Qi(τi, ai) to learn the decentralized policy. However, since the returns of both the homo-
geneous and heterogeneous tasks depend on the actions of other agents, such an individual utility
is not sufficient to represent the cooperation policy. We propose a more comprehensive individual
utility function, Qi

c(τi, u
−
i , ai), where u−

i represents the joint actions of all other agents who have
the potential to cooperate (discussed in detail in Section 4.1). According to this decomposition, the
individual utility Qi(τi, ai) can be viewed as a variable sampled from the distribution Qi

c(τi, u
−
i , ai)

over u−
i . This understanding enables us to demonstrate that Qi(τi, ai) cannot represent homogeneous

and heterogeneous policies simultaneously, resulting in the trade-off when learning both types of
tasks concurrently. We illustrate this through the two motivating example scenarios.

For the two example tasks, the learned policy fails to represent the optimal policy when

r1
r2

<
2pb − 1

1− pb
. (4)

In the homogeneous scenarios, while the learned policy can never represent the optimal policy in the
heterogeneous scenarios and the possibility Pc of achieving cooperation is

Pc = 2 · pb · (1− pb). (5)

where pb is the probability of each policy taking action B. The detailed derivation and proof are
included in Appendix 5. Figure 1 illustrates the result of Eq. (4) and Eq. (5). The result indicates that
as the pb grows the r1

r2
grows exponentially in the homogeneous scenarios. Therefore, we notice that

there is a trade-off as solving the homogeneous non-monotonic matrixes requires the pb to decrease
to zero, while solving the heterogeneous matrixes needs to increase pb when pb is below 0.5. As a
result, the ability of these methods to effectively learn both homogeneous and heterogeneous tasks
simultaneously is limited.

3.2 SEQUENTIAL EXECUTION AS A REMEDY

Another method is proposed that models individual utility as Qi
s(τi, a1:i−1, ai), which is a sequential

execution policy. We illustrate that as pb serves as a known variable for the subsequently executed
agent, the utility of the latter agent can choose actions in accordance with the actions of the former
agent, thereby achieving the desired similar or distinct policies. As a result, the overall policy can
encompass both homogeneous and heterogeneous policies. Although the interactions between agents
involve communication, the bandwidth is limited as the actions are one-hot vectors. Therefore,
these methods retain the potential to be implemented in complex real-world scenarios. However, the
individual utility Qi

s(τi, a1:i−1, ai) does not satisfy the IGM principle as the former agents’ utilities
lack the necessary information about other agents’ actions (detailed in the Appendix 6), which
precludes implicit credit assignment. Additionally, the individual utility of the former agent remains
Qi

s(τi, ai), which encounters the problem of relative over-generalization. Therefore, while the policy
form is capable of representing the target policy mode, it is not guaranteed to converge to it.

4 GREEDY SEQUENTIAL EXECUTION

In this section, we propose Greedy Sequential Execution (GSE) to address the problems of credit
assignment and relative over-generalization in the sequential execution policy. Specifically, we first
propose a value decomposition that can capture the interactions between agents while adhering to
the IGM principle. Then, we propose an actor-critic structure based on the value decomposition that
trains a critic and calculates a greedy marginal contribution as credit value for sequential execution
policy training. This explicit credit value addresses the credit assignment problem in learning
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Figure 2: The architecture of our method. Upper (Blue): The architecture for critic Qi
c(τi, u

−
i , ai)

that we elaborated in Section 4.1. Lower (Green): The framework of the calculation of the greedy
marginal contribution based on Qi

c(τi, u
−∗
i , ai) and the sequential execution policy Qi

s(τi, a1:i−1, ai).

sequential execution policy. Meanwhile, the greedy value of marginal contribution tackles the relative
overgeneralized problem of former executed agents in sequential execution. As a result, GSE achieves
optimal cooperation in scenarios involving both homogeneous and heterogeneous tasks by effectively
learning the sequential execution policy.

4.1 VALUE DECOMPOSITION

Since the current individual utility Qi(τi, ai) is insufficient to represent the optimal policy in both
homogeneous and heterogeneous scenarios, we illustrate that Qi

c(τi, u
−
i , ai) is a more comprehensive

utility which can capture the interactions between agents.

Theorem 4.1. For any rtot(s, u), the corresponding Qtot(s, u) = E [
∑∞

t=0 γ
trtot(s, u) | π] and

each agent’s utility Qi
c(τi, u

−
i , ai) satisfies

argmax
u

(Qtot(s, u)) = {argmax
a1

(Q1
c(τ1, u

−
1 , a1)), ..., argmax

an

(Qn
c (τn, u

−
n , an))}. (6)

Detailed proof can be found in Appendix 4. Theorem 4.1 indicates that the value decomposition using
utility Qi

c(τi, u
−
i , ai) can represent the value decomposition given any reward function and satisfies

the IGM principle. Therefore, we can use all Qi
c to calculate Qtot through a monotonic mixing

network similar to QMIX, and Theorem 4.1 illustrates the mixing value is unbiased. Specifically,
the overall critic value function consists of each agent’s adaptive utility Qi

c(τi, u
−
i , ai) and a mixing

network to produce the global Q-value Qtot(s, u). The critic value function is learned by optimizing

LTD(θ) = Eπ[Qtot(st,ut)− yt]
2

yt = rt + γmax
ut+1

Qtot (st+1,ut+1) .
(7)

4.2 CREDIT ASSIGNMENT VIA GREEDY MARGINAL CONTRIBUTION

The utilization of the critic value function as the agent policy’s value function is not feasible due
to its reliance on the actions of all other agents, resulting in a deadlock situation. An alternative
approach is the utilization of a sequential execution policy, represented by Qi

s(τi, a1:i−1, ai), which
allows for the consideration of the actions of former agents. However, this approach does not adhere
to the principles of IGM principal and encounters the relative over-generalization problem. To
overcome these limitations, we propose an explicit credit assignment method utilizing marginal
contribution of Shapley values for the learning of a policy capable of addressing both homogeneous
and heterogeneous tasks.
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According to the sequential execution process, each agent takes actions with the actions of former
executed agents, which is equivalent to agent i joining a group consisting of former executed
agents. Therefore, the policy represented by Qi

s(τi, a1:i−1, ai) should aim to maximize the marginal
contribution of agent i joining the group of former executed agents. Based on the critic value function,
the marginal contribution of agent i can be calculated as

ϕi(τi, a1:i−1, ai) = v(Ti)− v(Ti/i) = Qi
c(τi, a1:i−1, ai)− V i

c (τi, a1:i−1), (8)

where ϕi is the marginal contribution. The reason behind this is that the uniqueness of the optimal
action within the entire action space, where the primary actions often result in mis-coordination.
Therefore, we can use V i

c (τi, a1:i−1) as the value of agent i not joining the former group to calculate
the marginal contribution. However, such a calculation still faces other problems. Since the critic
value function Qi

c is trained by taking u−
i instead of a1:i−1 as input, the accuracy of the calculated

marginal contribution may be affected. Additionally, such a marginal contribution encounters the
relative over-generalization problem, as the value of action ai depends on overall joint actions u−

i
and the current marginal contribution cannot consider the actions of latter agents ai+1:n, leading the
marginal contribution of ai converge to an average value as we discussed in Section 3. To address
these problems, we propose a greedy marginal contribution,

ϕ∗
i (τi, a1:i−1, ai) = Qi

c(τi, a1:i−1, a
∗
i+1:n, ai)− V i

c (τi, a1:i−1, a
∗
i+1:n), (9)

where a∗i+1:n is the optimal cooperative actions to cooperate with former agents that maximize ϕi.
This approach ensures that the marginal contribution accurately represents the potential optimal value
of action ai, rather than an average value, thus addressing the issue of relative over-generalization.
Furthermore, by including full information about u−

i as inputs, this approach allows for the accurate
calculation of values by ϕi. However, a∗i+1:n is not directly observable. Intuitively, the greedy
marginal contribution means that each agent takes the action under the condition that all the latter
agents will take the optimal cooperative action to cooperate with it. Therefore, we use the greedy
actions agi+1:n from the behavior policy to represent the a∗i+1:n,

agi+1:n = {argmax
ai+1

(Qi+1
s (τ1, a1:i)), ..., argmax

an

(Qn
s (τi, a1:n−1))}, (10)

However, such an estimation is not guaranteed to be correct when the behavior policy has not
converged in the early training period. Therefore, we additionally use the Monte Carlo method to
estimate the a∗i+1:n to address this problem. Specifically, we sample M random joint actions as
aj=1:M
i+1:n and search for the ai+1:n with the maximum value of ϕi in the collection of aj=1:M

i+1:n and
agi+1:n to be the a∗i+1:n.

In this way, we have our sequential execution policy’s value function Qi
s(τi, a1:i−1, ai) and decen-

tralized policy as π(ai|τi, a1:i−1) = argmaxai
(Qi

s(τi, a1:i−1, ai)). The overall loss is

Lp(µ) = Eπ[Q
i
s(τi, a1:i−1, ai)− ϕ∗

i (τi, a1:i−1, ai)]
2. (11)

In terms of practical implementation, we utilize an attention structure to address the varying di-
mensions of a1:i−1, enabling the implementation of parameter sharing. The overall structure of our
method is shown in Figure 2.

5 UNDERSTANDING TASK TYPES THROUGH MULTI-XOR GAMES

To evaluate how the different task types affect the performance of all methods, we devise a simple
one-step randomized Multi-XOR game. Agents in the game can either take a cooperative action
C or a lazy action L. The game requires two out of four agents to take cooperative actions C
simultaneously to achieve successful cooperation. In contrast, if a single agent takes cooperative
actions C, a homogeneous penalty is applied, and when more than two agents take cooperative actions
C, a heterogeneous penalty is given. To prevent agents from learning a fixed strategy, we randomly
selected a dummy agent at the beginning of each episode, which cannot participate in cooperation
and can only take the lazy action L. We set three scenarios according to the challenges of tasks,
the homogeneous scenario with only the homogeneous penalty, the heterogeneous with only the
heterogeneous penalty, and the mixing scenario with both penalties. These methods that we compared
include CDS (Li et al., 2021a), which employs mutual information to learn agent ID-specific policies;
Shapley (Li et al., 2021b), which utilizes Shapley Value to estimate complex agent interactions; and
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Figure 3: Results of Multi-XOR game. Left: Homogeneous challenge. Middle: Heterogeneous chal-
lenge. Right: Mixing scenario that combines both the Homogeneous and Heterogeneous challenges.

both MAVEN (Mahajan et al., 2019) and QMIX (Rashid et al., 2018), which are common value
decomposition methods. For a detailed introduction to all the methods compared, please refer to
Appendix 1. Detailed reward settings are included in Appendix 2.

The results displayed in Figure 3 indicate that our method effectively masters both homogeneous and
heterogeneous tasks in the randomized Multi-XOR game. Specifically, in the homogeneous scenario,
all other methods fail to overcome the non-monotonicity and learn a lazy policy that never engages
in cooperative action to avoid penalties, except for MAVEN which is proposed to learn cooperative
policy in non-monotonic environments. In the heterogeneous scenario, MAVEN and QMIX fail to
learn heterogeneous policies and take cooperative action together, resulting in failure. In the mixing
scenario, our method also outperforms other methods, indicating its robustness in handling both
homogeneous and heterogeneous tasks simultaneously. Overall, our method demonstrates superior
performance in adapting to different types of cooperative tasks compared to other methods.

6 EXPERIMENTS

6.1 EXPERIMENTAL SETTINGS

We have developed a series of challenging cooperative scenarios that involve the integration of both
homogeneous and heterogeneous tasks to evaluate all methods. The experiments are conducted based
on MAgent (Zheng et al., 2018) and Overcooked (Sarkar et al., 2022). We implement five tasks
in MAgent: lift, heterogeneous_lift, multi_target_lift, pursuit and bridge. These scenarios can be
classified into three categories: homogeneous, heterogeneous, and mixing.

Homogeneous scenarios: In our implementation, we have included two homogeneous scenarios
within the task of lift. Specifically, the lift task requires the coordination of two agents to lift a cargo.
Successful completion of the task necessitates the simultaneous execution of the "lift" action by both
agents, otherwise, the cooperation will fail and the agent who takes the action will incur a penalty
of −r2, similar to the homogeneous task discussed in Section 3. To evaluate all methods, we have
chosen two scenarios with −r2 = 0 and −r2 = −0.3, as these scenarios represent situations without
and with the relative over-generalization problem, respectively.

Heterogeneous scenarios: In heterogeneous_lift, agents must lift cargos cooperatively with changing
partners. Rewards are given for two-agent lifts, with penalties for more than two. Each episode
randomly excludes one or two agents from cooperating, preventing fixed policy learning. The
challenge of this task lies in the fact that agents must adapt to varied partners for successful lifting.
This necessitates the learning of heterogeneous policy to succeed.

Homogeneous & heterogeneous scenarios: We also implement three tasks that necessitate both
homogeneous and heterogeneous policies to be solved. The first task, multi_target_lift, is similar to
lift, but with different cargos with varying rewards. The challenge of this task is that agents must learn
to lift cargos with lower rewards in order to achieve optimal cooperation, instead of all competing to
lift cargos with higher rewards. The second task, pursuit, requires agents to catch a prey and rewards
are only given when two agents attack together, otherwise, a penalty is imposed. Additionally, the
prey will be killed if more than two agents attack together, resulting in a significant penalty, thus
requiring agents to perform differently to avoid killing the prey. In the third bridge task, agents
start on opposite sides of the map and must navigate through a single tunnel, initially blocked by an
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Figure 4: Top: The performance results in lift with the penalty dropping from 0 to -0.3 and heteroge-
neous_lift. Bottom: The results in multi_target_lift, pursuit and bridge.
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Figure 5: Results of Overcooked. Difficulty increases from left to right.

obstacle. Two agents must cooperate to break this barrier, then learn to retreat, preventing tunnel
blockage for others.

We also designed three scenarios in Overcooked that require both homogeneous and heterogeneous
policies. In the game, the objective is to cook and deliver soups. We designed the picking of onions
to be a cooperative action that requires two agents to work together. However, the cooking and
delivering process introduce the need for agents to exhibit different behaviors, such as yielding to
others. We evaluated our approach on three maps of different difficulties: an easy small map with
multiple onions, a medium-difficulty small map with a single onion, and a challenging large map
with a single onion. Please refer to Appendix 2 and Appendix 3 for more experimental settings.

In the experiments, the methods compared are introduced in Section 5. All the baseline methods use
the agent ID as an extra input to enable the learning of heterogeneous policies, while our method does
not. All methods use the same basic hyperparameters and network structures with similar parameters
to ensure the comparison is fair.

6.2 PERFORMANCE

We evaluate the performance of various methods in three types of scenarios: homogeneous, het-
erogeneous, and homogeneous & heterogeneous. The results of MAgent scenarios are shown in
Figure 4 and Overcooked are in Figure 5. The results for the homogeneous scenarios indicate that
the performance of all comparison methods is heavily influenced by the increase in penalty. Most
methods are able to learn an optimal policy when the penalty is zero, but they fail to converge to a
cooperative policy when the penalty is -0.3. Their policies converge to a sub-optimal policy that never
takes cooperative actions in order to avoid the mis-coordination penalty, except for MAVEN which
is proposed to solve the relative overgeneralization problem. In contrast, our method can find the
optimal cooperative policy in both scenarios regardless of the growing penalty. This result indicates
that our method is able to overcome the relative over-generalization problem.
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Figure 6: The first two figures are ablations of specific parts of our method. The third figure is the
ablation of sample number M , the fourth figure is training with a larger scale of agents.

In the heterogeneous scenario, we observe that QMIX converges to a sub-optimal policy that all agents
lift together, resulting in penalties. Similarly, other methods also struggle to learn the cooperative
policy but can learn to take lazy actions to avoid penalties. All of these policies reflect a failure
to learn distinct policies that can adapt to dynamically changing partners. In contrast, our method
demonstrates the ability to adapt to the actions of other agents and outperforms other methods in
terms of both final performance and sample efficiency when learning heterogeneous policy.

Lastly, we evaluate all methods in mixing scenarios involving both homogeneous and heterogeneous
tasks. The results show that our method has the most significant advantage in these scenarios.
In MAgent scenarios, most methods coverage to the conservative policy since the penalty comes
from mis-coordination of both homogeneous and heterogeneous actions which they cannot handle
simultaneously. However, CDS can solve the bridge scenario, which is because the homogeneous
behavior only involves breaking the obstacle and most required behaviors are heterogeneous actions.
In Overcooked scenarios, we compared our method with MAVEN and CDS as they represent
methods that can handle complex homogeneous and heterogeneous tasks, respectively. The results
are consistent with other mixing scenarios. Since the learning difficulty of these tasks mainly arises
from learning two conflicting tasks modes simultaneously, this result indicates that our method can
unify the learning of similar and distinct policies. On the contrary, all other methods struggle to learn
an efficient policy to solve the tasks due to their narrow policy representation ability.

6.3 ABLATIONS

We conduct several ablation studies to evaluate the effectiveness of our proposed method in homo-
geneous & heterogeneous scenarios, multi_target_lift and multi_XOR. Specifically, we evaluate our
method training without using greedy actions, meaning we relied on marginal contributions instead
of greedy marginal contributions. Additionally, we evaluated the method without using marginal
contributions, instead directly using the policy value function to fit the Qtot. The results of these
evaluations are presented in Figure 6. The results indicate that training without using greedy actions
can significantly degrade performance, as using greedy actions helps to overcome the relative over-
generalization problem. Training without using marginal contributions also degrades performance in
both scenarios as the sequential execution policy does not satisfy the IGM principle, underscoring
the importance of our proposed utility function. Additionally, we evaluated how the sample number
M affects performance. The results demonstrate that a small value of M can be problematic as it
may not select the greedy value of actions. However, a reasonably large value of M is sufficient as
increasing M beyond 5 does not further improve performance. Finally, we evaluated our method
with a larger number of agents, specifically by using double or triple the number of agents compared
to our standard configurations. The results in Figure 6 demonstrate that our method is capable of
handling a larger number of agents without affecting performance.

7 CONCLUSION

This work introduces Greedy Sequential Execution (GSE), a unified solution designed to extend
value decomposition methods for tackling complex cooperative tasks in real-world scenarios. Our
method employs a utility function that accounts for complex agent interactions and supports both
homogeneous and heterogeneous optimal policies. Furthermore, by implementing a greedy marginal
contribution, GSE overcomes the relative over-generalization problem. Our experiments show that
GSE significantly improves performance across various domains, especially in mixed-task scenarios.
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A RELATED WORK

Recent works have extended MARL from small discrete state spaces (Yang & Gu, 2004; Busoniu
et al., 2008) to high-dimensional, continuous state spaces (Lowe et al., 2017; Peng et al., 2017).
The progresses of deep reinforcement learning give rise to an increasing effort in designing general-
purpose deep MARL methods for complex multi-agent environments, including COMA (Foerster
et al., 2018), MADDPG (Lowe et al., 2017), MAPPO (Yu et al., 2021) and etc. Currently, CTDE
is considered to be the de facto mainstream paradigm in this field (Lowe et al., 2017; Iqbal & Sha,
2019). In terms of specific methods, the Value-Decomposition Network (VDN) (Sunehag et al., 2017)
utilizes the factorization of joint-action Q-values as the sum of each agent’s utility. QMIX (Rashid
et al., 2018) is an extension of VDN which allows the joint action Q-value to be a monotonically
increasing combination of each agent’s utility, which can vary depending on the global state. There
are also other variants proposed to extend the applicability of the value decomposition methods. For
instance, QPLEX (Wang et al., 2020a) and QTRAN (Son et al., 2019) aim to learn value functions
with complete expressiveness capacity. MAVEN (Mahajan et al., 2019) hybridises value and policy-
based methods by introducing a latent space for hierarchical control. This allows MAVEN to achieve
committed, temporally extended exploration. Weighted QMIX (Rashid et al., 2020) is based on
QMIX and rectifies the suboptimality by introducing weights to place more importance on the better
joint actions. UneVEn (Gupta et al., 2021) learns a set of related tasks simultaneously with a linear
decomposition of universal successor features. Despite the effectiveness of these methods, they
are commonly designed to facilitate the learning of similar policies, it can be detrimental to the
acquisition of heterogeneous policies.

To solve the heterogeneous tasks, previous methods choose to add agent-specific information to the
observation or assign different roles to learn the distinct policies. PSHA (Terry et al., 2020) proposes
an agent indication to enable agents to represent heterogeneous policies. CDS (Li et al., 2021a)
uses mutual information to learn an agent ID-specific policy to deal with the problem of learning
diversity policies. ROMA (Wang et al., 2020c) proposes a role-oriented MARL framework to make
agents specialized in certain tasks. However, these methods, which solely focus on learning distinct
policies, often come at the cost of sacrificing the advantages associated with learning in homogeneous
scenarios. Furthermore, these methods tend to learn fixed policies that lack the necessary flexibility.

Other methods use a sequential execution policy to represent distinct policies. AR (Fu et al., 2022)
proposes a centralized sequential execution policy to solve permutation games. MAiF (Liu et al.,
2021) uses a sequential execution policy to learn a path-finding and formation policy for a multi-
agent navigation task. These methods can represent the optimal policy in both homogeneous and
heterogeneous scenarios. However, a naive sequential execution policy is not guaranteed to converge
to optimal policy and has the problem of credit assignment. Additionally, there are also methods
such as HAPPO (Kuba et al., 2021) that use sequential policy updates to guarantee monotonic
policy improvement of PPO (Schulman et al., 2017). MAT (Wen et al., 2022) adopts sequential
policy updates within the structure of a transformer. This design is aimed at executing updates both
monotonically and in parallel, thereby enhancing the time efficiency compared to previous methods
like HAPPO. SeCA (Zang et al., 2023) constructs a new advantage value to improve upon PG-based
methods. Different from focusing on an increment of PG-based methods, our work is proposed to
extend the applicability of value decomposition methods to solve the mixing of homogeneous and
heterogeneous tasks.

Our work is also related to the credit assignment. Previous methods usually use implicit credit
assignment methods to learn the policy, such as VDN and QMIX. However, explicit credit assignment
methods have also been proposed. For instance, COMA (Foerster et al., 2018) utilizes a counterfactual
advantage to learn the value function. Other methods use Shapley Value (Shapley, 2016) as the
credit value of each agent. Shapley Value originates from cooperative game theory and is able to
distribute benefits reasonably by estimating the contribution of participating agents. In these methods,
SQDDPG (Wang et al., 2020b) and Shapley (Li et al., 2021b) use Shapley Value to estimate the
complex interactions between agents. However, these methods can only get approximated Shapley
value as calculating the Shapley value involves exponential time complexity (Wang et al., 2020b)
and they are not designed to learn similar and distinct policies simultaneously. In this work, we
introduce an explicit credit assignment method using marginal contribution in Shapley value to learn
a sequential execution policy that can represent the optimal policy in scenarios with a mixing of
homogeneous and heterogeneous tasks.

13



Published as a conference paper at ICLR 2024

B SCENARIOS SETTINGS AND TRAINING DETAILS

In the Multi-XOR games, agents receive two types of rewards, as illustrated in Table 1 and 2. Table 1
displays the homogeneous reward, which exhibits a non-monotonic payoff. This poses a challenge
of relative overgeneralization for the learning process. Table 2 presents the heterogeneous reward,
where agents are required to take distinct actions. Specifically, if two agents choose the joint actions
C&C to solve the task, the other two agents must choose L&L; otherwise, a penalty will be imposed.
However, if all agents select L&L, the return will be zero.

In MAgent, each agent corresponds to one grid and has a local observation that contains a square
view centered at the agent and a feature vector including coordinates, health point (HP) and ID of
agents nearby, and the agent’s last action. The discrete actions are moving, staying, and attacking.
The global state of MAgent is a mini-map (6× 6) of the global information. The opponent’s policies
used in experiments are randomly escaping policy in pursuit. We choose five different scenarios
lift, heterogeneous_lift, multi_target_lift, pursuit and bridge. There are detailed settings of these
scenarios, as shown in Table 3. We demonstrate the payoff matrix by showing the R as the reward
returned when cooperation is achieved, Pho as are penalty when taking cooperative action but failing
to achieve cooperation in homogeneous scenarios, and Phe as the penalty for taking the same action
in heterogeneous scenarios.

C L
C +0.5 -0.3
L -0.3 0

Table 1: Homogeneous payoff matrix of the Multi-XOR game.

C&C L&L
C&C -10 +0.5
L&L +0.5 0

Table 2: Heterogeneous payoff matrix of the Multi-XOR game.

Lift HeterogeneousLift MultiTargetLift Pursuit Bridge
Agent number 3 4 4 4 4
Object number 3 1 2 1 0

Map size 6 × 6 15 × 15 12 × 12 10 × 10 11 × 11
Payoff R=1,Pho=0,-0.3,Phe=0 R=1,Pho=0,Phe=-100 R=0.25,0.5,Pho=-0.2,Phe=-20,-40 R=0.5,Pho=-0.1,Phe=-1 R=0.5,Pho=-0.03,Phe=0

Table 3: Settings of MAgent Scenarios. R is the reward, Pho is the penalty of mis-coordination of
homogeneous behavior, Phe is the penalty of mis-coordination of heterogeneous behavior.

In the Overcooked environment, the objective is to perform a series of tasks involving onions, dishes,
and soups. The agents are required to place 2 onions in a pot, let them cook for 5 timesteps, transfer
the resulting soup into a dish, and finally serve it, which rewards all players with a score of 20. There
are six possible actions available to the agents: up, down, left, right, noop (no operation), and interact.
Notably, the action of picking up onions requires two agents to simultaneously take the "interact"
action, otherwise a penalty of -0.1 is incurred. On the other hand, actions such as putting onions into
the pots can be performed by a single agent. To evaluate the difficulty level of different scenarios, we
have designed three maps with varying levels of complexity. The easy map consists of more onions
and a smaller map size (5×5), making it relatively easier to solve. The medium map, on the other
hand, contains a single onion and a smaller map size (5×5). Finally, the hard map poses a greater
challenge with its larger map size (7×7) and a single onion, making exploration more demanding for
the agents.

We set the discount factor as 0.99 and use the RMSprop optimizer with a learning rate of 5e-4 for
policy and 1e-3 for the critic. The ϵ-greedy is used for exploration with ϵ annealed linearly from
1.0 to 0.05 in 700k steps. The batch size is 4 and updating the target network every 200 episodes.
The length of each episode in MAgent is limited to 100 steps in bridge and 50 for others, except for
Multi-XOR which is a single-step game. The sample number M of our method is 5 in all scenarios.
We run all the experiments five times with different random seeds and plot the mean/std in all the
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Figure 7: The images of the map of Overcooked tasks. From left to right is easy, medium and hard.

figures. All experiments are carried out on the same computer, equipped with Intel(R) Xeon(R) Gold
5218R CPU @ 2.10GHz, 64GB RAM and an NVIDIA RTX3090. The system is Ubuntu 18.04 and
the framework is PyTorch.

C DETAILS OF MODEL IMPLEMENTATION AND HYPERPARAMETERS

The network of all compared methods uses the same LSTM network, consisting of a recurrent layer
comprised of a GRU with a 64-dimensional hidden state, with one fully-connected layer before and
two after. All mixing networks use a fully-connected layer with 32-dimensional hidden state. The
network of our critic and policy uses two fully-connected layers with 64-dimensional hidden state
and one fully-connected layers with 32-dimensional hidden state after.

D PROOF OF THE VALUE DECOMPOSITION OF CRITIC

First of all, according to the decentralized execution setting, there exists a reward decomposition,

rtot(s, u) =
∑n

i=1 r
i
c(oi, u) =

∑n
i=1 r

i
c(oi, u

−
i , ai). (12)

This is because if the task can be solved by decentralized execution, the observation of each agent
must contain all the necessary information to identify the goals. Otherwise, agents will require
density communication to receive information about others’ observations to identify the goals, which
is not the setting that we discussed in our works. Then, we define the value decomposition Qi

c which
models each agent’s individual utility. From Eq. (12), we have

Qtot(s, u) = E
[∑∞

t=0 γ
trtot (s, u) | π

]
= E

[∑∞
t=0 γ

t ∑n
i=1 r

i
team(oi, u

−
i , ai) | π

]
=

∑n
i=1 Q

i
c(s, u).

(13)
In addition, we have

argmax
ai

(Qtot(s, u)) = argmax
ai

(Qi
c(s, u)) = argmax

ai

(Qi
c(τi, u

−
i , ai)). (14)

The first part is because the value of ai is represented by item Qi
c and the reason for the second part

is that Qi
c is only related to agent i as well as the actions of potential cooperative agents and all the

necessary information is contained in (τi, u
−
i , ai), so we can get the unbiased estimated value of Qi

c

given (τi, u
−
i , ai). Therefore, from Eq. (13) and Eq. (14) we have

argmax
u

(Qtot(s, u)) = {argmax
a1

(Q1
c(τ1, u

−
1 , a1)), ..., argmax

an

(Qn
c (τn, u

−
n , an))}. (15)

An intuitive understanding of Eq. (15) is that each agent takes action based on the perception of other
potential cooperative agents’ actions, so they can take the corresponding cooperative action and the
joint action is the optimal cooperative joint action.

E LIMITATIONS OF INDIVIDUAL UTILITY

E.1 HOMOGENEOUS SCENARIOS

First, for the homogeneous task, we have the payoff matrix in Table 4. Since, we indicate that the
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A B
A +r1 −r2
B −r2 0

Table 4: Example of a homogeneous payoff matrix.

A B
A −r2 +r1
B +r1 −r2

Table 5: Example of a heterogeneous payoff matrix.

individual utility Qi(τi, ai), should be viewed as a variable sampled from distribution Qi
c(τi, u

−
i , ai).

Following this conclusion, we have the loss of Qi(τi, ai) should be

Li =
∑Ki

k=1 pk · (Q̂i
c(τi, u

k−
i , ai)−Qi(τi, ai))

2. (16)

where Q̂i
c means the ground true value function, uk−

i means one of the combination of u−
i and pk is

the possibility of uk−
i occurred. Therefore, Qi(τi, ai) learns to the converged value by optimizing Li,

we have the converged Q̂i(τi, ai) when Li is minimized,

Q̂i(τi, ai) =
∑Ki

k=1 pk · Q̂i
c(τi, u

k−
i , ai). (17)

For a simple demonstration, we take the example payoff into Eq. (17). The value of cooperative
action a∗i is

Q̂i(τi, a
∗
i ) = pa · Q̂i

c(τi, u
−∗
i , a∗i ) + pb · Q̂i

c(τi, u
−
i , a

∗
i ). (18)

where pa means the possibility of other agent taking cooperative actions ua−∗
i (ua−∗

i = A) and pb
means the possibility of other agents taking the other actions ub−

i (ub−
i = B). Additionally, we have

pa + pb = 1 (19)

Similarly, we have the value of lazy action a−i as

Q̂i(τi, a
−
i ) = pa · Q̂i

c(τi, u
−∗
i , a−i ) + pb · Q̂i

c(τi, u
−
i , a

−
i ). (20)

We know the policy represented by Qi(τi, ai) fails when Q̂i(τi, a
−
i ) is larger than Q̂i(τi, a

∗
i ), which

is
Q̂i(τi, a

−
i )− Q̂i(τi, a

∗
i ) = pa · (Q̂i

c(τi, u
−∗
i , a−i )−Qi

c(τi, u
−∗
i , a∗i ))

+pb · (Q̂i
c(τi, u

−
i , a

−
i )−Qi

c(τi, u
−
i , a

∗
i )) > 0

(21)

We take the +r1 and −r2 into Eq. (21),

Q̂i(τi, a
−
i )− Q̂i(τi, a

∗
i ) = pa · (−r2 − r1) + pb · (0− (−r2)) = (pb − 1) · (r2 + r1) + pb · r2 > 0

(22)
This means the policy represented by Qi(τi, ai) will fail when

r1 · (1− pb) < (2pb − 1) · r2. (23)

which equals to
r1
r2

< 2pb−1
1−pb

. (24)

E.2 HETEROGENEOUS SCENARIOS

First, for the heterogeneous task, we have the payoff matrix in Table 5. Similarly, agents with the
policy represented by Qi(τi, ai) fails when Q̂i(τi, a

−
i ) is larger than Q̂i(τi, a

∗
i ) in the heterogeneous

scenario. However, there are multiple optimal joint actions (1=A,2=B), (1=B,2=A), which are
different from the homogeneous scenarios. We first consider the (1=A,2=B) situation which is

Q̂i(τi, a
−
i )− Q̂i(τi, a

∗
i ) = pb · (Q̂i

c(τi, u
−∗
i , a−i )−Qi

c(τi, u
−∗
i , a∗i ))

+pa · (Q̂i
c(τi, u

−
i , a

−
i )−Qi

c(τi, u
−
i , a

∗
i )) > 0

(25)
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Taking the the +r1 and −r2 into Eq. (25),

Q̂i(τi, a
−
i )− Q̂i(τi, a

∗
i ) = pb · (−r2 − r1) + pa · (r1 − (−r2))

= −pb · (r2 + r1) + (1− pb) · (r2 + r1) > 0
(26)

which equals to
1− 2pb > 0 (27)

pb <
1
2 . (28)

For situation (1=B,2=A), we have a similar conclusion,

pa < 1
2 . (29)

We notice that the overall possibility of failure is

Pf = P (pa < 1
2 ) + P (pb <

1
2 ) = P ((1− pb) <

1
2 ) + P (pb <

1
2 ) = P ( 12 < pb) + P (pb <

1
2 ) = 1.

(30)
Therefore, the policy represented by Qi(τi, ai) can never promise to solve the heterogeneous task.
Furthermore, we can calculate the possibility of reaching cooperation,

Pc = P ((1 = B, 2 = A)) + P ((1 = A, 2 = B)) = pb · pa + pa · pb = 2 · pb · (1− pb). (31)

The maximization of Eq. (31) is 0.5 when pb = pa = 0.5. The result demonstrated that decreasing
pb when pb < 0.5 causes cooperation more difficult to be reached.

F ANALYSIS OF INDIVIDUAL UTILITY OF SEQUENTIAL EXECUTION POLICY

We have the IGM principal as

argmax
u

(Qtot(s, u)) = {argmax
a1

(Q1(τ1, a1)), ..., argmax
an

(Qn(τn, an))}. (32)

For sequential execution method, the policy is the form of

u = {argmax
a1

(Qi
s(τ1, a1)), ..., argmax

an

(Qi
s(τi, a1:n−1, an))}. (33)

We take the payoff matrix in Table 5 as an example, there are multiple optimal joint actions (1=A,2=B),
(1=B,2=A), we take the optimal actions into Eq. (33),

(1 = A, 2 = B) = {argmax
a1

(Qi
s(τ1, a1)), argmax

an

(Qi
s(τi, A, an))}

(1 = B, 2 = A) = {argmax
a1

(Qi
s(τ1, a1)), argmax

an

(Qi
s(τi, B, an))}.

(34)

We notice that although the latter utility has the correct maximization of the utility, the former one
has a conflict maximum result as it lacks the necessary information about other agents’ actions.
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