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Abstract001

We focus on the problem of fusing two or more002
heterogeneous large language models (LLMs)003
to leverage their complementary strengths. One004
of the challenges of model fusion is high com-005
putational load, specifically in fine-tuning or006
aligning vocabularies. To address this, we007
propose Cool-Fusion, a simple yet effective008
approach that fuses the knowledge of source009
LLMs, which does not require training. Unlike010
ensemble methods, Cool-Fusion is applicable011
to any set of source LLMs that have different012
vocabularies. To overcome the vocabulary dis-013
crepancies among LLMs, we ensemble LLMs014
on text level, allowing them to rerank the gen-015
erated texts by each other with different granu-016
larities. Extensive experiments have been con-017
ducted across a variety of benchmark datasets.018
On GSM8K, Cool-Fusion increases accuracy019
from three strong source LLMs by a significant020
margin of 17.4%. We will make our source021
code in the attachment publicly available.022

1 Introduction023

Different large language models (LLMs) exhibit024

diverse strengths and weaknesses due to various025

factors, such as datasets used for pre-training and026

fine-tuning, architectures, optimizers, hyperparam-027

eters, and training methodologies. Recent work028

(Jiang et al., 2023) has found that it is possible to029

develop fusion methods to harness the complemen-030

tary potentials of the LLMs for improved general or031

task-specific performance, such as higher accuracy032

and better alignment with human preferences.033

However, conventional ensemble approaches re-034

quire the source LLMs to have the same token035

vocabulary, while weight merging (Wortsman et al.,036

2022; Jolicoeur-Martineau et al., 2024) is further037

limited to models with identical architectures. Al-038

though model fusion (Li et al., 2023a) has attracted039

increasing interest, it faces a series of challenges,040

including the formidable computational costs asso-041

ciated with training (Bansal et al., 2024; Xu et al.,042

2024), fine-tuning (Jiang et al., 2023), distillation 043

(Taori et al., 2023; Wan et al., 2024a,b), and the 044

combinatorial optimization needed for vocabulary 045

alignment (Wan et al., 2024a,b; Fu et al., 2023; Xu 046

et al., 2024). Therefore, existing fusion approaches 047

are daunting for researchers and practitioners who 048

cannot afford to train or fine-tuning LLMs, and 049

are unsuitable for application scenarios that require 050

rapid deployment. 051

Aiming for a general LLM fusion approach that 052

is applicable to any set of source LLMs with diverse 053

tokenizers, and is both cost-effective and fast to 054

deploy, we propose Cool-Fusion to fuse the knowl- 055

edge of heterogeneous LLMs without any training. 056

The core of our algorithm combines the source 057

LLMs to rerank text segments that they generate in- 058

dividually, rather than using the ensemble of LLMs 059

as token generators with their own sets of disjoint 060

vocabularies. In Cool-Fusion, we propose to fuse 061

knowledge at text segments of different granulari- 062

ties, and discuss their pros and cons. An overview 063

of Cool-Fusion is shown in Figure 1. In summary, 064

Cool-Fusion has the following properties: 065

• Simplicity: Cool-Fusion is simple both in con- 066

cept and for implementation. Unlike prior ap- 067

proaches, Cool-Fusion starts to generate texts 068

as soon as we have the source LLMs, since no 069

training of any type is required. Consequently, 070

we do not need to worry about the problems 071

associated with fine-tuning and training, such 072

as overfitting the training distribution, insuffi- 073

cient hyper-parameter tuning, or loss of gen- 074

eralization ability (Fu et al., 2023). 075

• Availability: Based on pure inference, Cool- 076

Fusion can be accessed by a larger range of 077

budget-limited researchers and practitioners. 078

• Scalability: Cool-Fusion alternates between a 079

generation and an evaluation step. Each of the 080
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Figure 1: An illustration of Cool-Fusion. The TextGen component is illustrated in Figure 2.

#iteration 0 1 2 3 4 5 6 7 8 9 10
LLaMA-3 _not _the _only _ones _who _can _be _used _for _this _purpose
Phi-3 _trained _inherently _only _ones _that _can _be _used _for _this _purpose
LLaMA-3 _not _the _only _ones _who _have _been _affected _by _the _pandemic
Phi-3 _trained _on _vast _datasets _that _include _a _wide _variety _of _human

Table 1: A example of Cool-Fusion for 10 iterations following the example in Figure 1. The first two rows show the
text segments predicted by LLaMA-3 and Phi-3 jointly in Cool-Fusion, where the winning text segments are in bold.
We use underscores to represent whitespaces. For comparison, the last two rows are text segments predicted by
LLaMA-3 and Phi-3 individually.

two steps invoke the source LLMs indepen-081

dently, and small amount of texts and scores082

are gathered and scattered between the steps.083

Given k GPUs, Cool-Fusion is scalable to k084

source LLMs with constant delay.085

• Superior performance: Albeit being sim-086

ple, Cool-Fusion exhibits competitive per-087

formances over strong baselines, persistent088

across a wide range of challenging tasks.089

We evaluated extensively on greedy comple-090

tion benchmarks across various domains, including091

math (GSM8K, multilingual GSM, and MATH),092

and Q&A (CoQA, DROP, TriviaQA). We experi-093

mented on an array of open-source LLMs, includ-094

ing the most recent state-of-the-art LLMs, namely095

LLaMA-3 8B (Touvron et al., 2023), Phi-3 mini096

(et al, 2024), and GLM-4 9B (Zeng et al., 2023).097

Our results demonstrate that Cool-Fusion signifi-098

cantly outperforms the individual source LLMs as099

well as recent LLM fusion methods that require100

training. On the GSM8K dataset, Cool-Fusion101

increases the prediction accuracy from the best-102

performing source LLM LLaMA-3 8B by a signifi-103

cant margin of 17.4%.104

2 Cool-Fusion: Fuse LLMs without105

Fine-tuning106

Since the token vocabularies are usually different107

across LLMs, a token predicted by one LLM may108

not find a deterministic counterpart in another LLM.109

For instance, the common tokens between LLaMA-110

3 and Phi-3 account for only 6.4% of their total111

tokens, and those between Phi-3 and GLM-4 ac-112

count for only 7.5%. Prior approaches resort to 113

heuristics to find similar tokens across token vocab- 114

ularies, which introduces errors and requires heavy 115

training due to the combinatorial optimization com- 116

plexity. In ensemble approaches, the predicted dis- 117

tributions on heterogeneous token vocabularies are 118

first individually mapped into distributions on a 119

shared tokens-vocabulary, and the next jointly pre- 120

dicted token from the shared vocabulary is the one 121

that has the largest sum of logit values from these 122

distributions. Inspired by this, we generalize the 123

element of predicting from a single token to pre- 124

dicting a short text segment containing one or more 125

tokens that can be commonly decoded by all het- 126

erogeneous tokenizers, and the criteria from the 127

sum of logit values to the averaged perplexities of 128

the text segment obtained from the LLMs. With 129

this new approach, we can avoid the computation 130

and inaccuracies associated with the mapping from 131

individual token vocabularies into a single shared 132

token vocabulary. 133

2.1 Overview of Cool-Fusion 134

A text generation task involves generating a con- 135

tinuation of a given context. Our approach can be 136

easily explained with a real running example, as 137

illustrated in Figure 1. Cool-Fusion features a text 138

generation loop, where a text segment is generated 139

at each iteration of the loop. In the example, we 140

fuse two source LLMs, LLaMA-3 8B and Phi-3 141

mini, with the input context text being “LLMs are”. 142

Each iteration in the text generation loop consists 143

of three steps: (1) each source LLM individually 144

generates a text segment, (2) each source LLM 145
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computes a perplexity for every text segment gener-146

ated in step 1, (3) the text segment with the smallest147

averaged perplexity is selected as the jointly pre-148

dicted text segment, which is then broadcast to up-149

date all source LLMs. Next, we will discuss more150

details for each step, as illustrated in Figure 1.151

In step 1 of each iteration, a text generation com-152

ponent (TextGen) in each source LLM is respon-153

sible for generating text segments. Different im-154

plementations of TextGen may generate text seg-155

ments of different lengths, ranging from minimal156

decodable text segments consisting of one or a few157

tokens to phrases containing several words. We158

will discuss two implementation options in Sec-159

tions 2.2 and 2.3. In Figure 1, the text segments160

generated by the two TextGen components are “not”161

and “trained”, respectively.162

In step 2, each text segment is sent to all LLMs to163

obtain a perplexity using the key-value cache from164

the previous iteration, specifically the key-value165

cache before the generation of the text segment in166

the current iteration. Finally, the perplexities of167

each text segment are gathered from every LLM168

and are averaged to evaluate the text segment. In169

Figure 1, the text segment “not” is first encoded by170

the tokenizers of LLaMA-3 8B and Phi-3 mini into171

token sequences [539,] and [451,]. These two token172

sequences are forwarded through their correspond-173

ing LLMs, resulting in two perplexities, 16.6 and174

15.3, for text segment “not”, which are finally aver-175

aged to 15.9. For better efficiency in this step, we176

forward all text segments, i.e. “not” and “trained”,177

together in a batch through all LLMs.178

In step 3, the winner among the text segments179

is selected based on their average perplexity com-180

puted in step 2. In Figure 1, the winner is “not”,181

whose average perplexity of 15.9 is better (smaller)182

than that of “trained”, which is 152.2. We justify183

the adoption of average perplexity with two per-184

spectives: the ensemble perspective and the critic185

perspective. From the ensemble perspective, the186

average perplexity is aligned with the cross-entropy187

objective of the ensemble of the LLMs. From the188

critic perspective, the LLMs leverage their comple-189

mentary critical abilities to detect non-factual text190

segments by giving them high perplexities. Finally,191

the winning text segment is forwarded through all192

LLMs, except for the LLM that generated the win-193

ning text segment, to update their states before en-194

tering the next iteration. The winning text segment195

selected in our approach may not be optimal, and a196

natural improvement is to let each LLM generates197
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Figure 2: A contrived example illustrates our aligned
text segments generation. In this example, the gener-
ated token sequence from LLaMA is first decoded into
text, and then encoded and decoded by the tokenizers of
two source LLMs into text segments: [“not”, “the”] and
[“no”, “t”, “the”], respectively. The aligned text segment
“not” ends at the first common decodable boundary of
all tokenizers, which helps to reduce biases in perplex-
ity assessment due to the uneven text segment lengths
across the tokenizers.

its top-k text segments in step 1 using beam search. 198

Table 1 shows the running results of our Cool- 199

Fusion following the example in Figure 1 with a 200

side-by-side comparison of the generation from 201

the two source LLMs. As we can see from this 202

example, the text generated by Cool-Fusion is sel- 203

dom identical to that of its source LLM, since the 204

divergence accumulates from the different text seg- 205

ment in each iteration. It seems that shorter text 206

segments can result in more flexibility and lower 207

perplexity; however, this is not necessarily the case. 208

We will present two options for the selection of text 209

segment length in Sections 2.2 and 2.3. 210

On the other extreme, the entire continuation can 211

be used as a text segment, and sentence-level per- 212

plexity is employed to select (rerank) the the best 213

continuation. In our Cool-Fusion approach, we can 214

simultaneously employ an iterative fine-grained 215

text segment selection and a coarse-grained sen- 216

tence level reranking at the same time with almost 217

no additional overhead. We let each source LLM 218

independently predict a continuation segment in 219

the same batch as each fine-grained text segment, 220

with an additional overhead only on packing their 221

key-value caches together. Then, we obtain k in- 222

dividual continuations in addition to a jointly pre- 223

dicted continuation. Our experiment results show 224

that reranking these k+1 continuations on their av- 225

erage perplexities can lead to substantial improve- 226

ments over using the joint prediction alone. 227
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Name Model ID Parameters Vocab size Tokenizer category
LLaMA-3 (Touvron et al., 2023) meta-llama/Meta-Llama-3-8B-Instruct 8B 128,256 LLaMA-3
MPT (Team, 2023) mosaicml/mpt-7b-instruct 7B 50,277 LLaMA-3
LLaMA-2 (Touvron et al., 2023) meta-llama/Llama-2-7b-chat-hf 7B 32,000 LLaMA-2
Phi-3 (et al, 2024) microsoft/Phi-3-mini-128k-instruct 3.8B 32,038 LLaMA-2
OpenLLaMA (Geng and Liu, May 2023) m-a-p/OpenLLaMA-Reproduce 7B 32,000 LLaMA-2
GLM-4 (GLM, 2024) THUDM/glm-4-9b-chat 9B 151,343 OTHER
ChatGLM-3 (Zeng et al., 2023) THUDM/chatglm3-6b 6B 64,796 OTHER
ChatGLM-2 (Zeng et al., 2023) THUDM/chatglm2-6b 6B 64,787 OTHER
Baichuan2 (Baichuan., 2023) Baichuan2-7B-Chat 7B 125,696 OTHER

Table 2: Source LLMs used in our experiments are divided into three categories in the last columns according to
how to obtain their shortest text segments.

2.2 Shortest Text Segment228

We will discuss two implementations of the229

TextGen component, as shown in Figure 2. We230

prefer shorter text segments since they suggest231

finer-grained token selection and are therefore more232

likely to obtain a similar token sequence from an233

optimal token level ensemble approach. In this sub-234

section, we will demonstrate how to generate the235

shortest possible text segments.236

We define the shortest text segment as a text237

that can be decoded from the shortest token se-238

quence generated by a greedy decoding process.239

Not all token sequences are decodable. For in-240

stance, LLaMA-2 uses three Unicode bytes as the241

tokens to encode a single Chinese character, so the242

first one or two of these tokens cannot be decoded.243

When decoding a token sequence into text, some244

tokenizers return additional information about the245

sequence of words in the text and the tokens that246

decode each of these words. In this case, we adopt247

the words as our shortest text segments since they248

are the minimal semantic units underlying a token249

sequence, although sometimes a word cannot be250

further divided into decodable subwords.251

Specifically, tokenizers from the LLaMA-3 to-252

kenizer provide a word_ids function that returns253

the IDs of the words in each decoded text, and a254

word_to_tokens function that returns the indexes255

of the first and last tokens for each word id. Tok-256

enizers derived from the LLaMA-2 tokenizer pro-257

vide an offsets property for each token, which258

contains the starting and ending character indexes259

in the text for the word decoded from the token.260

For tokenizers that return decoded text without261

information about words, we derive shortest text262

segments as follows. Iteratively, we build a token263

sequence that initially contains only the next pre-264

dicted tokens. Subsequently, a new next token is265

appended to the token sequence in each new itera-266

tion. In some iterations, if we can decode the cur-267

rent token sequence into a text that can be encoded268

Metric LLaMA-3 Phi-3 Cool2 GLM-4
Avg. perplexity 1.48 1.35 - 1.46
Accuracy 0.6914 0.6831 0.7233 0.6338

Rerank3 Cool−align Cool Cool+R
Avg. perplexity - - 1.29 -
Accuracy 0.7779 0.7445 0.7468 0.812

Table 3: Averaged perplexities and accuracies in the
GSM8K datasets (Section 3.4).

back into the same token sequence, the decoded 269

text is the shortest decodable text segment we need. 270

Table 2 lists the LLMs that we will use in our 271

experiments and their categories according to the 272

above discussion. 273

2.3 Aligned Text Segments 274

In this subsection, we propose a better type of text 275

segment to reduce the bias in the average perplexity 276

used to select the best text segments generated by 277

the source LLMs. 278

Different tokenizers may produce their shortest 279

text segments of varying lengths. For instance, 280

the text “Multi-tasking” is divided by LLaMA-3 281

and LLaMA-2 tokenizers into words [“Multi”, “- 282

tasking”] and [“Multi-tasking”], respectively. 283

On the other hand, perplexity, as a measure of 284

how well a given model generates a continuation 285

given a context, is the most widely used metric for 286

evaluating language models due to simplicity and 287

its alignment to the cross-entropy (CE) loss used 288

for the next-token prediction objective. Since the 289

latter confers multi-step reasoning ability to LLMs, 290

we believe that perplexity is not only a measure of 291

language fluency but also an indicator of inference 292

correctness to some extent. The perplexity (PPL) 293

of a token sequence s is proportional to the average 294

of the logits of the tokens: 295

PPLu(s) = exp(
1

|s|
∑
si∈s

− log pu(si)), (1) 296

where log pu(si) is the logit output of the LM u for 297

each token si. 298
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However, as a measure of uncertainty,299

− log pu(si) tends to be larger at the first token of300

each word. This is comparable to the observation301

on larger scales that the perplexity of the first302

word in a sentence is usually larger than those303

of the words following it, and that the perplexity304

of the first sentence in a paragraph is larger than305

those of the sentences following it. Here is a306

concrete example: in the LLaMA-3 8B model, the307

− log pu(si)’s values for the three tokens [“Multi”,308

“-task”, “ing”] are -2.66, -9.13, -14.69, respectively.309

Clearly, the model is more uncertain about the310

first token, and is more confident about the second311

token “-task” given the first token being “Multi”.312

Therefore, using perplexity as an assessment313

will bias towards longer text segments, and to-314

wards LLMs with tokenizers that generate text seg-315

ments of larger average lengths. Suppose both316

LLaMA-3 and LLaMA-2 will predict the word317

“Multi-tasking”, and their next text segments should318

be tied. Based on perplexity, however, the text seg-319

ment “Multi-” from LLaMA-3 (-2.66) is regarded320

as worse than “Multi-tasking” from LLaMA-2321

((−2.66− 9.13− 14.69)/3 = −8.83).322

To mitigate this problem, we must reduce the323

discrepancies between the average lengths of the324

text segments generated by different source LLMs.325

To this end, we define a new aligned text segment326

for each source LLM as the shortest text segment327

that is generated by the LLM and is decodable by328

the tokenizers of all source LLMs.329

2.4 Incremental Encoding & Decoding330

Both shortest text segments and aligned text seg-331

ments require more frequent invocations of tok-332

enizers than conventional decoding. In this subsec-333

tion, we investigate an implementation issue about334

how to make decoding and encoding more efficient.335

First, let us examine the problem that not all tok-336

enizers encode and decode incrementally, that is,337

the next text cannot be decoded solely from the338

next tokens, which results in significant delays as339

the encoding/decoding sequence increases.340

It is expected that the text input and the tokenized341

sequence are reversibly convertible. For multilin-342

gual tokenizers, whitespace is treated as a normal343

symbol and preserved in the segmented tokens, al-344

lowing us to de-tokenize text without relying on345

language-specific rules such as: there is whites-346

pace between two English words, but not between347

Chinese and Japanese words.348

An instance of non-incremental encoding and de-349

coding is the LLaMA-2 tokenizer, whose encode 350

and decode functions are context-dependent and 351

require complete token sequences or text to work 352

correctly. For example, the decode function in 353

LLaMA-2 decodes the token [839] into “If” or “ If” 354

(with a preceeding space) depending on whether 355

or not the token is the first token in the token se- 356

quence. Therefore, we cannot encode a new token 357

in isolation, and the conventional method to decode 358

a few new tokens is to encode the concatenation 359

of all previous tokens and the new tokens, which 360

makes it inefficient for long sequences. 361

To enable incremental decoding, we only 362

prepend the tokens belonging to the previous k 363

decoded words to the new tokens, and we remove 364

these k words from the decoded text after decod- 365

ing. We handle incremental encoding similarly 366

by prepending k decoded words to new text to be 367

encode. Thus, we can encode and decode with con- 368

stant computational complexity regardless of the 369

context length. We empirically found that k = 4 370

ensures correctness for both incremental encoding 371

and decoding. 372

3 Experiments 373

Our experiments are conducted in a challenging 374

scenario for LLM fusion, where the tokenizers of 375

the source LLMs have very different token vocabu- 376

laries and define text segments differently. A wide 377

range of datasets is used to make our evaluations 378

comprehensive. The questions that we want to 379

answer from our experiments include: How does 380

Cool-Fusion’s performance compare with recent 381

work? What are the contributions of its individual 382

components, such as fine-grained perplexity-based 383

text segment selection, shortest text segments, and 384

aligned text segments? Is it a general method that 385

performs well in various domains? Can it improve 386

multilingual performance? Does its performance 387

persist when fusing different LLMs? 388

3.1 Settings and Datasets 389

We conduct experiments with several recent state- 390

of-the-art open-source LLMs as our source LLMs, 391

as listed in Table 2. 392

To assess the performance of Cool-Fusion, we 393

conduct experiments using the LM-Evaluation- 394

Harness (Gao et al., 2023), a benchmark framework 395

designed to evaluate LLMs’ few-shot capabilities 396

across various domains. We use its default set- 397

tings, except for employing 3-shot prompting in 398
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Method src LLMs Training GSM8K
LLaMA2-7B-Chat - - 24.64
ChatGLM2-6B - - 30.78
Baichuan2-7B-Chat - - 29.95
InternLM-7B-Chat - - 32.30
TigerBot-7B-Chat-V3 - - 27.29
Vicuna-7B-V1.5 - - 18.88
ChineseAlpaca2-7B - - 13.12
MBR 7 above - 36.47 (+4.17)
PairRanker 7 above Ranker 39.58 (+7.28)
LLM-Blender 7 above Merger 34.80 (+2.50)
EVA 7 above Vocab Map 42.91(+10.61)
LLaMA2-7B-Chat - - 19.3
ChatGLM2-6B - - 25.9
Baichuan2-7B-Chat - - 26.9
Cool 3 above Training-free 33.5 (+6.6)

Table 4: We compare our results with recent model
fusion algorithms that use training. Data in the first two
blocks are from (Xu et al., 2024), and those in the last
two blocks are our results. Please note that this is not
an apple-to-apple comparison: (1) we are comparing
a training-free method to those that require different
types of training: PairRanker (Chen et al., 2023), LLM-
Blender (Jiang et al., 2023), EVA (Xu et al., 2024), (2)
the results of our Cool-Fusion are based on fusing three
source LLMs due to our resource limitations, and (3)
the scores of our source LLMs are on average more than
4 points lower than those reported in (Xu et al., 2024)
due to differences in experimental settings.

all experiments. We conducted experiments on the399

following greedy text generation tasks.400

CoQA (Reddy et al., 2019) requires understand-401

ing a text passage and answer a series of intercon-402

nected questions that appear in a conversation.403

DROP (Dua et al., 2019) is a crowdsourced,404

adversarially-created, 96k-question benchmark, in405

which a system must resolve references in a ques-406

tion, perhaps to multiple input positions, and per-407

form discrete operations over them (such as addi-408

tion, counting, or sorting).409

TriviaQA (Joshi et al., 2017) is challenging as410

the answers for a question may not be directly ob-411

tained by span prediction and the context is long.412

MATH (Hendrycks et al., 2021) is a dataset of413

12,500 challenging competition mathematics prob-414

lems. Each problem in MATH has a full step-by-415

step answer derivations and explanations.416

GSM8K (Cobbe et al., 2021) is a dataset of high417

quality linguistically diverse grade school math418

word problems, that take between 2 and 8 steps of419

elementary calculations (+−×÷) to solve.420

MGSM (Saparov and He, 2023) stands for Mul-421

tilingual Grade School Math Benchmark, where422

the same 250 problems from GSM8K are each423

translated in 10 languages other than English.424

Unscramble is used for evaluating language425

models’ ability to handle text manipulation tasks.426

Method Training GSM8K
FuseLLM-7B [*] Yes, via distillation 13.8
Cool (ours) No 12.3

Table 5: Comparison on the GSM8K dataset. Both meth-
ods use source LLMs: LLaMA2-7B-Chat (Touvron
et al., 2023), MPT 7B (Team, 2023), and OpenLLaMA-
7B (Geng and Liu, May 2023).

It contains several datasets that require creative 427

generation (Anagrams), pattern manipulation (Cy- 428

cle Letters), and contextual awareness (Random 429

Insertion) rather than structured reasoning. 430

3.2 Ablation study 431

We compare Cool-Fusion with several source 432

LLMs as baselines in Table 3. Cool2, which fuses 433

LLaMA-3 and Phi-3, immediately increases accu- 434

racy by 4.6% and 5.9%, respectively. Cool, which 435

fuses LLaMA-3, Phi-3, and GLM-4, further in- 436

creases the increments to 8.0%, 9.3%, and 17.8%, 437

respectively. This verifies the effectiveness of our 438

fine-grained perplexity-based reranking. 439

Cool−align is an implementation using shortest 440

text segment (Section 2.2), while Cool implements 441

aligned text segment (Section 2.3). Cool−align 442

leads to a 0.3% relative decrement, suffered from 443

occasional bias in perplexity assessment. 444

Rerank is a simple reranking method, where each 445

source LLM predicts a continuation individually, 446

and these continuations are reranked using their 447

average perplexities from all source LLMs. Rerank 448

turns out to be very effective and it obtains a 12.5% 449

increment over LLaMA-3. Cool+R is a combina- 450

tion of Cool-Fusion and Rerank, which achieves a 451

significant accuracy improvement of 17.4% over 452

LLaMA-3 and 4.4% over Rerank. 453

3.3 Compare with Other LLM Fusion 454

Methods. 455

We compare several existing fusion algorithms in 456

Table 4 on GSM8K. Due to resource limitations, 457

we can only fuse three LLMs in our experiments. 458

It is difficult to make an apple-to-apple compar- 459

ison. Due to differences in experimental setting, 460

our scores for the source LLMs are, on average, 461

4 points lower than those reported in (Xu et al., 462

2024). Table 4 shows that, although using only the 463

three source LLMs and requiring no training, our 464

Cool-Fusion reports a comparable score increment 465

to existing methods that require different types of 466

training to fuse all of the seven source LLMs. 467

The results in Table 5 demonstrate that Cool 468
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Figure 3: Accuracies in the Math dataset.

achieves competitive performance (12.3) without469

requiring any training, while FuseLLM-7B, which470

relies on distillation, achieves only a marginally471

higher accuracy (13.8).472

These results underscores the efficiency and prac-473

ticality of our training-free approach across differ-474

ent sets of models, making it a compelling alterna-475

tive to resource-intensive methods.476

3.4 Cross-domain Performances477

Next, we examine the general performance of Cool-478

Fusion in three different domains, where not all of479

source LLMs used have good performance. On480

the Q&A datasets (Figure 5), LLaMA-3 performs481

best, but GLM-4 fails to follow the output format482

in our 3-shot prompts. On the other hand, in the483

multilingual GSM datasets (Figure 4), the overall484

performance of GLM-4 is the best, while Phi-3485

does not perform well on multilingual data (et al,486

2024). Finally, on the Math dataset (Figure 3) and487

the Unscramble dataset (Figure 6), Phi-3 is the best488

performer, and the other two LLMs lag behind with489

significant gaps. It is therefore challenging to fuse490

LLMs in these datasets where the performance of491

the source LLMs differs and fluctuates dramatically.492

Cool-Fusion either outperforms all source LLMs or493

is comparable to the best performer and not being494

affected by the poorer ones, which shows that Cool-495

Fusion is a stable method for fusing source LLMs496

across different domains.497

Comparing the performance of Cool-Fusion in498

Table 3 with that in Figure 3, we can see that Cool-499

Fusion performs much better on GSM8K than on500

multilingual GSM, although the latter is a trans-501

lated subset of the former. This is probably because502

multilingual GSM contains a larger proportion of503

hard problems than in GSM8K.504

English

Chinese
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French

German

Russian

Average

0.3
0.35
0.4
0.45
0.5
0.55
0.6
0.65
0.7
0.75

model
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Phi-3
Cool 2 
GLM-4
Cool

Figure 4: Accuracies in the multilingual GSM datasets.

3.5 Summary of Experiments 505

In this section, we verify the effectiveness of the 506

components in Cool-Fusion through ablation stud- 507

ies, which shows that our Cool-Fusion achieves 508

significant improvements over the source LLMs 509

on challenging tasks. It is able to achieve further 510

advances when combined with other approaches, 511

and persistently being better or comparable to the 512

best-performing source LLMs even when some of 513

them exhibit deteriorated performance. Our Cool- 514

Fusion shows comparable performance with recent 515

state-of-the-art LLM fusion methods that require 516

training, and its performance persist when fusing 517

different LLMs. 518

4 Related Work 519

Cool-Fusion aligns with established ensemble prin- 520

ciples: (1) the Condorcet Jury Theorem, which 521

justifies more independent models and (2) the bias- 522

variance tradeoff, which suggests reduced variance 523

with more models. In this section, we summarize 524

prior work on model and LLM fusion. To our 525

knowledge, prior work on fusion of heterogeneous 526

LLMs involve different types of training. 527

Reranking methods first generate multiple can- 528

didates via probabilistic sampling, or by prompt- 529

ing LLMs. The quality of the candidates are then 530

assessed using different scoring methods (Ravaut 531

et al., 2022; Jiang et al., 2023). 532

Alignment matches the units of prediction from 533

multiple models, i.e. the vocabularies of differ- 534

ent LLMs. Since finding the optimal alignment 535

is a combinatorial optimization problem, align- 536

ment between vocabulary is still an open problem. 537

FuseLLM (Wan et al., 2024a), FuseChat (Wan et al., 538

2024b), and Specialized (Fu et al., 2023) use the 539

edit-distance between tokens to map token distribu- 540

tions between LLMs, while EVA (Xu et al., 2024) 541

trains a vocabulary projection matrix. 542
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Figure 5: F1 & EM in the four Q&A datasets.

However, it is unclear if the alignment ap-543

proaches (Mavromatis et al., 2024; Xu et al., 2024),544

which assume substantial amount of common to-545

kens across vocabularies, will work for Unicode546

vocabularies, where different tokenizers may share547

little portion of their symbols: Unicode bytes are548

the basic symbols in Phi-3 (et al, 2024), while sub-549

word tokenization for Chinese (Si et al., 2023) uses550

glyph or pronunciation encoding.551

Ensembling approaches conventionally require552

the source models to have the same token vocabu-553

lary, which can be partially relaxed by vocabulary554

alignment (Mavromatis et al., 2024). LLM-Blender555

(Jiang et al., 2023) ensembles the outputs from556

several source LLMs by firstly using a fine-tuned557

ranking model to predict the top-ranked outputs,558

then it uses another fine-tuned LLM to generates559

a fused output. EVA (Xu et al., 2024) proposes to560

ensemble LLMs via a pre-trained vocabulary align-561

ment matrix to enable a fine-grained token-level562

ensemble at each generation step.563

Weight average. Researchers do not limit them-564

selves to predictions, e.g. logics. Model soups565

(Wortsman et al., 2022), which average the weights566

of multiple models fine-tuned with different hyper-567

parameter configurations, often improves accuracy568

and robustness. PAPA (Jolicoeur-Martineau et al.,569

2024) obtains a strong single model by training a570

population of models and averaging them once-in-571

a-while or slowly pushing them toward the average.572

These methods require no training data, but the573

models to fuse must be of the same architecture.574

Knowledge distillation. Alpaca (Taori et al.,575

2023) used text-davinci-003 to generate the instruc-576

tion data to distill a 7B LLaMA (Touvron et al.,577

2023) model to reduce the cost of training LLMs578

from scratch. FuseLLM (Wan et al., 2024a,b) ap-579

plies cost-effective distillation to merge pre-trained580

LLMs into a more potent model.581

Multi-agent approaches enable an orchestra-582

Anagrams

Cycle Letters

Random Insertion0 0.1
0.2
0.3
0.4
0.5
0.6

model
LLaMA-3
Phi-3
GLM-4
Cool

2/5/25, 10:04 AM 127.0.0.1:60944

127.0.0.1:60944 1/1

Figure 6: Accuracies in the Unscramble dataset.

tion of a collection of LLM modules working to- 583

gether, each with different potentials. MetaGPT 584

(Hong et al., 2024) encodes a standardized oper- 585

ating procedure (SOP) for software development 586

into a prompt sequence. It breaks down complex 587

tasks into subtasks, allowing agents with different 588

domain expertise–such as architecture design and 589

code debugging–to work harmoniously. 590

Beam search is importance for generation tasks 591

like summarization and machine translation, and 592

beam search with a single LLM often outperforms 593

multi-LLM fusion on tasks like machine translation 594

(Farinhas and et al., 2023) (e.g., MBR decoding 595

achieves state-of-the-art results). This paper fo- 596

cuses on challenging generation tasks that require 597

deep understanding and reasoning. Greedy genera- 598

tion was chosen for its simplicity and effectiveness, 599

as it is widely used in practice and has been shown 600

to perform well for large language models (LLMs). 601

Others Contrastive decoding (Li et al., 2023b) 602

exploits the contrasts between expert and amateur 603

LLMs by choosing tokens that maximize their log- 604

likelihood difference to amplify the good expert 605

behavior and diminish the undesired amateur be- 606

havior. CALM (Bansal et al., 2024) introduces 607

cross-attention between models to compose their 608

representations and enable new capabilities. 609

5 Conclusion and Future Directions 610

In this work, we propose Cool-Fusion, a simple 611

yet effective approach that fuses the knowledge 612

of heterogeneous source LLMs. Extensive experi- 613

ments with challenging datasets and strong source 614

LLMs verify the persistent improvements and ro- 615

bustness of our proposal. Future work can focus on 616

improving inference speed, including streamlining 617

different inference processes to fill GPU vacancies 618

waiting for communication, parallelizing tokeniz- 619

ers to find out whether a text segment is decodable 620

by all tokenizers, using longer text segments to 621

reduce communication overhead between LLMs. 622
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Limitations623

The inference speed of our implementation of Cool-624

Fusion is about six times slower than that of a stan-625

dard LLM, mainly due to the additional communi-626

cation among LLMs and the frequent invocation of627

tokenizers. Further optimizations, such as stream-628

lining different inference processes or implement-629

ing parallel tokenizers, might increase the speed of630

Cool-Fusion.631

Due to resource limitations, we only conduct ex-632

periments with two and three source LLMs. We633

used the automatic metrics that come with the Eval-634

uation Harness (Gao et al., 2023). Human or GPT-4635

evaluations could provide us with more reliable and636

comprehensive results.637

Ethical Statement638

This work fully complies with the ACL Ethics Pol-639

icy. We declare that there are no ethical issues in640

this paper, to the best of our knowledge.641
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