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Abstract

Financial transactions are increasingly being handled by automated programs called
smart contracts. However, one challenge in the adaptation of smart contracts is the
presence of vulnerabilities, which can cause significant monetary loss. In 2024,
$247.88 M was lost in 20 smart contract exploits. According to a recent study, ac-
counting bugs (i.e., incorrect implementations of domain-specific financial models)
are the most prevalent type of vulnerability, and are one of the most difficult to find,
requiring substantial human efforts. While Large Language Models (LLMs) have
shown promise in identifying these bugs, they often suffer from lack of generaliza-
tion of vulnerability types, hallucinations, and problems with representing smart
contracts in limited token context space. This paper proposes a hybrid system com-
bining LLMs and rule-based reasoning to detect accounting error vulnerabilities in
smart contracts. In particular, it utilizes the understanding capabilities of LLMs
to annotate the financial meaning of variables in smart contracts, and employs
rule-based reasoning to propagate the information throughout a contract’s logic
and to validate potential vulnerabilities. To remedy hallucinations, we propose a
feedback loop where validation is performed by providing the reasoning trace of
vulnerabilities to the LLM for iterative self-reflection. We achieve 75.6% accuracy
on the labelling of financial meanings against human annotations. Furthermore, we
achieve a recall of 90.5% from running on 23 real-world smart contract projects
containing 21 accounting error vulnerabilities. Finally, we apply the automated
technique on 8 recent projects, finding 4 known and 2 unknown bugs.

1 Introduction

Blockchains are public, append-only ledgers that record data in a secure manner and provide a
foundation for many financial applications. Two such applications are tokens and smart contracts.
Tokens are cryptocurrencies (e.g., Bitcoin Nakamoto [2008], WETH WETH [2024]). Smart contracts
are programs that perform a service once deployed to the blockchain, typically financial in nature.
Example services include banking, marketplaces, and loaning. With the digitization of finance, smart
contracts have seen increasing usage for financial transactions. For example, the Ethereum blockchain
has over 40 million smart contracts deployed Bitkan [2024]. Smart contracts are implemented in a
Java-like language known as Solidity [2023] They are similar to traditional software applications in
that they are composed of functions, and not all functions can be invoked (due to function modifiers).
Entry functions are those that can be directly invoked by users, which are defined as any entities (e.g.,
humans) interacting with the smart contract.

Our work focuses on one challenge in smart contracts, namely their vulnerability to accounting bugs.
As defined by Zhang et al. [2023], accounting bugs are incorrect implementations of domain-specific
business models. According to the study, accounting bugs are the most popular type of bug, as
well as one of the most difficult for humans to identify. Furthermore, they cause significant damage
if exploited. In 2024, more than $50 M dollars in damages DefiLlama [2024] were caused by 8
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accounting bugs so far. There are many existing vulnerability detection techniques for smart contracts,
including fuzzers Wüstholz and Christakis [2020]; Choi et al. [2021] , program analysis Wang
et al. [2019]; Huang et al. [2022] , verification Jiao et al. [2020]; Tan et al. [2022] , and symbolic
execution Consensys [2024]; Bose et al. [2022]. However, we find that most cannot handle accounting
bugs. Recently, Zhang [2024] proposed a program analysis based technique that relies on a type
system. In particular, it relies on manual annotation of initial types of variables, which include
the currency unit, scaling factor, and correspondence to some functionality in a bank. With such
knowledge, it performs type checking to detect accounting bugs. However, the annotation is extensive,
in many cases requiring deep understanding of the code and even external documentation. Hence,
there is a need to develop an automated technique for detecting accounting bugs in smart contracts.

According to Zhang et al. [2023], the reason that accounting bugs are difficult to identify is due to the
necessity to first understand the complex business logic of smart contracts. We hypothesize that LLMs
like GPT can be used to perform the analysis, citing their capability to easily comprehend code. For
example, Sun et al. [2024] propose an LLM based technique that performs analysis of smart contracts,
through utilizing context from past vulnerabilities as well as techniques such as Chain-of-thought
(COT) to improve the reasoning capability of the LLM. However, the approach does not focus on
accounting bugs, and the analysis is function-level as opposed to file-level. Furthermore, a significant
concern with LLM-based techniques is the generation of hallucinations. Hence, a naive approach
focused on detecting accounting bugs providing high-level descriptions and few-shot examples of
accounting bugs does not suffice, due to the observations that:

Challenge 1: The code of smart contracts provided for analysis is often too large or too costly
to fit in the limited token context space. While it is possible to filter non-relevant functions (i.e.,
functions which cannot be invoked by the public), the remaining code usually retains the same issues.
Furthermore, reducing the scope of the analysis to function-level can miss accounting bugs that
spread across multiple functions or even files.

Challenge 2: Most warnings produced by the method are often hallucinations from the model, and
there is no existing technique to validate the warnings without human analysis.

While the naive approach fails, we are able to develop 4 key insights. First, the task of detecting
accounting bugs can be split into two subtasks: assigning financial meanings to variables and
checking the correctness of operations. For example, there is an accounting bug in the operation
Z = X + Y , where X has a financial meaning of a balance (i.e., an amount of some currency) and Y
has a financial meaning of price (i.e., an exchange rate between two currencies), the reasoning being
that such an operation does not result in meaningful output, hence is a violation of all business models.
Second, LLMs such as GPT can easily assign financial meanings to variables through semantic
analysis. However, prompting LLMs to annotate all variables is infeasible due to monetary cost
and risks of misclassifications due to hallucinations. Hence our third insight: rule-based reasoning
allows for propagation of financial meaning, efficient checking of operation correctness, and
function-level analysis with file-level scope. Rule-based systems Hayes-Roth [1985] are an
approach to artificial intelligence that operates on a set of predefined rules. In our context, inferences
rule are utilized for the propagation, taking advantage of the deterministic results of financial meaning
operations. Furthermore, the rules substantially reduce the workload on LLMs to only annotating
entry variables (i.e., parameters of entry functions and global variables), as all other variables can be
assigned financial meanings from the propagation. Finally, inference rules can be enhanced to enable
propagation through function invocations, reducing the analysis to function-level while maintaining
file-level scope for detection. Fourth, while hallucinations are still an issue, a reasoning trace can
be prompted to the LLM to detect hallucinations in annotations. Furthermore, the trace can be
integrated with an iterative feedback loop to automatically remedy hallucinations.

Based on the insights, we develop ABAUDITOR , a hybrid LLM and rule-based reasoning system to
automatically detect accounting errors. It utilises the understanding capabilities of LLM (specifically,
GPT 3.5-turbo OpenAI [2024]) to provide financial meaning annotations for entry variables and
rule-based reasoning to propagate meanings to other variables and to discover potential vulnerabilities.
Furthermore, our technique reduces hallucinations by implementing an iterative feedback loop where
reasoning traces of potential bugs are provided to the LLM for self-reflection. In sum, we make the
following contributions.

• We abstract detecting accounting bugs into two subtasks: identifying financial meanings of
variables with LLM, and checking correctness of operations with rule-based reasoning.
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1 contract MagicLpAggregator{
2 function getPairPrice () public returns (int256) {
3 baseReserve = baseCurrency.totalSupply ();
4 quoteReserve = quoteCurrency.totalSupply () * priceOfBaseInQuote ();
5 totalShareSupply = totalShareSupply ();
6 return (( baseReserve + quoteReserve) / totalShareSupply);
7 }}

Figure 1: Buggy Code from Abracadabra MIMSwap Abracadabra [2024]

• We develop a method to detect hallucinations in GPT via generating a reasoning trace and
prompting it back to GPT for self-reflection.

• We implement a prototype ABAUDITOR based on Slither Feist et al. [2019] using the
GPT-3.5 turbo model as our LLM. We evaluate on 34 real contracts from Zhang et al.
[2023] that have 40 reported accounting bugs. Among these bugs, we find that 19 of them
belong to categories such as pure math errors (i.e., the > operation is swapped with <)
hence fall out of scope. Our method detects 19 of the remaining in-scope bugs (i.e., 90.5%
recall). Furthermore, we achieve 75.6% accuracy in financial meaning annotations by our
system versus by humans. We also measure the results without our reasoning trace-based
hallucination reduction, and find that the trace reduces the false positive rate by 54.5%.
Furthermore, we run our system on 8 new smart contract projects, finding 6 out of 7
accounting bugs, two of which are zero-day (i.e. not discovered before) vulnerabilities.

2 Motivation

We demonstrate the effectiveness of our hybrid system with the following real-world example.

In January 2024, the smart contract project Abracadabra MIMSwap Mutual [2024] was exploited for
$6.5 M dollars. The loss was due to an attack known as a flash loan attack, which is when a malicious
actor takes advantage of a vulnerability to control a currency’s price and make profit. Typically the
attack begins via a large loan which is used to skew the price through the vulnerability. The attacker
then makes a profit based on the skewed price (by trading the exploited currency), and pays off
the loan right after. Flash loan attacks have caused $33.35 M in damages in 2024 alone DefiLlama
[2024]. The developers fixed the vulnerability in their new version, and posted the code as a bug
bounty on Code4rena in March. Code4rena [2024] is a prestigious vendor for smart contract auditing
competitions. However, the new implementation was also vulnerable to the aforementioned attack.
The vulnerability was an accounting bug, and was only found by two security researchers, among
hundreds. Figure 1 shows code for the function that contains the accounting bug. The function is
written in Solidity, and has been simplified for demonstrative purposes. The code was taken from the
released Code4rena bug report after publication, and the vulnerability has already been fixed.

In Figure 1, getPairPrice() is a function in the file MagicLpAggregator.sol. The file im-
plements an exchange of three cryptocurrencies: the base token, the quote token, and the share
token. In the exchange, users can trade base tokens with quote tokens, or vice versa. Intuitively, the
functionality is analogous to an ATM. The share token represents a share of the total base and quote
token in the exchange. It acts similar to real-world stocks, where instead of a company, ownership is
designated to the amounts of base and quote tokens in the exchange. Users can buy or sell the share
token by paying or receiving amounts of both the base and quote token, respectively. The function
getPairPrice() is used to calculate the price of the share token, in units of the base token.

In the getPairPrice() function, the price of the share token is calculated as fol-
lows. The total amount of base tokens is calculated on line 3 via the function call
baseCurrency.totalSupply(). The total amount of quote tokens is calculated on line 4 via the
function call quoteCurrency.totalSupply(). It is then converted to an equivalent amount of base
tokens by multiplying the price of base tokens. The function calls baseCurrency.totalSupply()
and quoteCurrency.totalSupply() return the exact amount of each token owned by the smart
contract. Then, the amount of available share tokens (totalShareSupply) is obtained on line
5. Finally, the share token price is calculated by adding the total amount of base currency,
baseReserve, with the total amount of converted quote currency, quoteReserve, and dividing by
the totalShareSupply.
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The accounting bug is due to using baseReserve and quoteReserve to compute the share
token price. Specifically, it is due to the function calls baseCurrency.totalSupply() and
quoteCurrency.totalSupply(), which directly return the amounts of base and quote curren-
cies owned by the smart contract. A malicious actor can initiate a flash loan attack by taking a large
loan of the base or quote currency and paying it to the smart contract. This results in the amount
of base or quote currency to be inflated, and when calling the function getPairPrice(), a grossly
incorrect share price is returned. The malicious actor can take advantage of the price to make profit.

When our technique is run on the smart contract, it identifies the vulnerability with no false positives.
It can determine that the variables baseReserve, quoteReserve, and totalPairSupply all repre-
sent reserves in the smart contract, and that the return value of the function priceOfBaseInQuote()
represents a price. Reserve is defined as an amount of currency that is owned by the smart con-
tract. Price is defined as the exchange rate of one currency to another. Furthermore, it is able
to determine that the addition operation on line 6, (baseReserve + quoteReserve), also has a
financial meaning of reserve. Intuitively, the result of the operation is considered a reserve be-
cause it represents the aggregation of two reserve values, thereby maintaining its definition. Our
system reports an error for the division operation on line 6, where the code attempts to produce
a price by the division of two reserves, following a rule that disallows any division of two re-
serves. Such divisions are problematic due to being a potential vulnerability for flash loan at-
tacks, as demonstrated above. A better alternative would be to obtain the price by querying off-
chain authorities, which are trusted services that process data such as prices off the blockchain.
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Figure 2: Architecture of Our System

3 Design

A naïve approach of directly prompting the
LLM does not work ( Appendix A). The
under-performance of the naive approach
leads to our proposal of ABAUDITOR. Fig-
ure 2 shows the architecture of ABAUDI-
TOR. The blue blocks represent actions
taken by the system, while the grey blocks
represent the intermediate and final results produced by the system. ABAUDITOR takes as input a
singular smart contract file or an entire directory with many such files. First, ABAUDITOR extracts
the control flow graph (CFG) of the targeted smart contracts and converts the individual operations
to static single assignment (SSA) Cytron et al. [1986], a specific intermediate representation whose
details are not needed to understand our paper. From the extracted CFG, entry functions are identified.
Recall entry functions are those that are accessible to all users. These are done using APIs from an
existing analysis framework Slither Feist et al. [2019]. Once all entry functions are identified, the next
step involves identifying and annotating the financial meanings of their parameters as well as global
variables. This is discussed in more detail in Section 3.1. After the initial labeling, propagation of
financial meanings and verification of the correctness of all operations is done through rule-based rea-
soning. This is discussed in more detail in Section 3.2. At this step, a list of potential vulnerabilities
is generated and validated as either a hallucination or a real bug. The validation process is discussed
in more detail in Section 3.3

1 contract CurrencySwap{
2 uint256 netRate;
3 function applyFee(uint256 _tAmount , uint256

_netRate)
4 internal returns (uint256 _fAmount){
5 _fAmount = _tAmount * _netRate;
6 }
7 function tswap(uint256 tAmount , uint256 , price)
8 public returns (uint256 swappedAmount){
9 // USAGE: deducts fee from ’tAmount ’

10 fRate = netRate;
11 net_tAmount = applyFee(tAmount , fRate);
12 final_tAmount = net_tAmount * fRate;
13 swappedAmount = final_tAmount * price;
14 }}

Figure 3: Demo smart contract with accounting bug

We demonstrate each step of our tech-
nique with an example found in Fig-
ure 3, which shows a bug. The code
contains two functions: tswap() and
applyFee(). tswap() is a public
function (i.e., it can be invoked by
all users) which performs a swap of
tAmount of one currency to another.
During the swap, a fee is applied.
Function applyFee() is an internal
function used to calculate the remain-
ing amount after fee is applied in the
exchange. The accounting bug is that
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+ : (R1)
y1 : rawbal y2 : rawbal

x := y1 + y2 : rawbal
(R2)

y1 : reserve y2 : reserve

x := y1 + y2 : reserve

− : (R3)
y1 : rawbal y2 : rawbal

x := y1 − y2 : rawbal
(R4)

y1 : netbal y2 : netbal

x := y1 − y2 : netbal

× : (R5)
y1 : rawbal y2 : netrate

x := y1 × y2 : netbal
(R6)

y1 : reserve y2 : netrate

x := y1 × y2 : [Error]
(R7)

y1 : netbal y2 : netrate

x := y1 × y2 : [Error]

÷ : (R8)
y1 : rawbal y2 : rawbal

x := y1 ÷ y2 : price
(R9)

y1 : reserve y2 : reserve

x := y1 ÷ y2 : [Error]
Figure 4: Subset of Rule-Based Inference Rules

the remaining amount is less than intended. Particularly, this is because fee is applied to it twice, one
instance on line 5 in applyFee(), and the other on line 12.

3.1 Initial Annotation by LLM

For every entry function parameter and global variable, GPT performs initial annotation of their
financial meaning. In our implementation, we define 6 possible choices for initial financial meanings,
which are: raw balance, net rate, interest rate, debt, price, and reserve. Raw balance is defined as
an amount of currency that is strictly owned by a user. Net rate is defined as the percentage left
after applying a fee. In the blockchain economy, many smart contracts deduct a fee from users to
earn profit. Net rate is the amount left after the fee, (e.g., if 10% fee was deducted, net rate is 90%).
Interest rate represents the percentage charged on borrowed or lent funds. Debt refers to the amount
of borrowed funds owed by a user. Price represents the exchange rate from one currency to another.
Reserve denotes the pool of funds strictly owned by the smart contract. These latter two financial
meanings were depicted in Figure 1 in the motivation section. We restrict the choices of initial
annotations to these 6 types as they are sufficient for commonly seen business models, although it is
very easy to expand the system.

GPT is prompted with high-level definitions of each financial meaning, as well as few-shot examples
of real-world instances. To fit the few-shot examples as well as to account for the potential size of the
entry function, each financial meaning is formatted in its own prompt. To perform the annotation
for an entry function parameter, the name of the parameter and the code of the entry function are
provided to the prompt. To perform the annotation for a global variable, a similar prompt is crafted
for every function it appears in, and the final assignment is done via the first financial meaning to
appear 3 times, or a majority vote. An example can be found in Appendix B and Appendix C.

3.2 Rule-based Reasoning

We describe the inference rules used in reasoning. The rules are invariants (i.e. properties held across
different business models) that we have manually summarized. Th invariants are summarized from
a study of many business models and their variants Zhang et al. [2023]. A subset of these rules is
included in Figure 4. There are in total 119 such rules. Within the table, y : τ represents variable
y having the financial meaning of τ . The statement x := ... : τ represents that τ is the resulting
financial meaning from the statement that will be propagated to x.

Rule R1 specifies that when a variable y1 with the meaning rawbal, or raw balance, is added to a
variable y2 which is also a raw balance variable, the result x is a raw balance. Rule R2 is similar
for reserve. Rule R3 specifies when a variable y1 is subtracted from a variable y2, and both have
financial meanings of raw balance, the result is still a raw balance. Rule R4 specifies when a variable
y1 is subtracted from a variable y2, and both have financial meanings of net balance, the result is still
a net balance. Net balance is defined as an amount of currency owned by a user that has already had
a fee applied. Rule R5 specifies when a raw balance variable y1 is multiplied by a net rate y2, the
result is a net balance. The operation represents collecting a fee from a user. Rule R6 specifies when
a reserve variable y1 is multiplied by a net rate y2, the result is an error. The operation is deducting a
fee from the smart contract, which is counterintuitive. Rule R7 specifies when a net balance variable
y1 is multiplied by a net rate y2, the result is an error. The operation represents collecting fee twice
from a user, which should not be allowed. Rule R8 specifies when a raw balance variable is divided

5



User: { You are given a reasoning trace of an accounting bug. Identify any possible mislabelings.
In each operation, each variable has a financial meaning. Financial meaning is defined as … 
Here are the inference rules for “x”:

R1: “raw balance” x “net rate” : “net balance” R2: “reserve” x “net rate” : Error
…
The trace is provided below. It contains all related operations to the accounting bug. 
Each line of the trace contains an operation in the following format:

Trace line: Operation : Propagation Reason+ Line #
Trace{
1: tAmount in tswap() was typed by the LLM in entry function tswap() to a Reserve
2: _tAmount in applyFee() = tAmount in tswap(), _tAmount is a Reserve due to parameter propagation 
on line 11.
3: _netRate (Net Rate) in …
4: Error in operation “_tAmount (Reserve) * _netRate (Net rate)” in applyFee() on line 5 due to 

violation R2} }

1

2

3

4

LLM:{Variable “tAmount” should be classified as a raw balance. It is used to multiply 
“_netRate”, which is a net rate, hence the most likely candidate is raw balance, according to R1.}

2

1

3

Figure 5: Reasoning Trace Prompt and Response from Hallucination

by a raw balance, the result is a price. Rule R9 specifies when a reserve variable y1 is divided by
another reserve variable y2, the result is an error.

The overall process of ABAUDITOR is the following. Given a smart contract, it traverses the
statements in the function invocation order and the control flow graph order. It prompts the LLM
to assign the initial annotation when encountering a global variable or an entry function parameter
that has not been prompted before. Otherwise, it invokes the inference engine that follows the
aforementioned rules to propagate financial meanings and identify potential bugs. For each step of
propagation, the system records its source. This is for later construction of reasoning traces. For
example, _tAmount on line 5 in Figure 3 has its origin from _tAmount on line 3, whose origin is in
turn tAmount on line 11, whose origin is line 7 by the LLM. The algorithm and an example of the
whole process can be found in Appendix D.

3.3 Iterative Validation of Accounting Bugs and Application of Remedy

At this point, our algorithm has produced a list of statements containing potential accounting bugs.
However, some of the bugs are produced from mislabelled initial annotations (i.e., due to GPT
hallucinations), while others are true accounting bugs. In this subsection, we discuss how we detect
hallucinations by providing a reasoning trace for GPT to perform self-reflection. We also explain how
this approach can be integrated into an iterative feedback loop to automatically correct hallucinations
and re-run the analysis, thereby improving the accuracy of bug detection.

For an accounting bug report regarding some buggy statement, its reasoning trace contains the list of
operations involved in the propagation of financial meanings from the initial LLM annotations to
the operands in the buggy statement. For each operation, the source statement and the rule applied
in propagation are included. At the end, the explanation of why the system considers this a bug is
also appended. It provides a comprehensive context on which the LLM performs self-reflection. We
then compose a self-reflection prompt to the LLM, providing the trace, the definitions of all financial
meanings, together with a subset of related reasoning rules in natural language, and ask the LLM
to consider if other initial annotations are possible for the involved entry/global variables. If so,
the system continues with the new annotations. If the bug disappears with the new annotations, we
consider it a false positive caused by hallucination. The procedure is iterative. If the LLM considers
there are no other annotations, and the bug still persists, we consider the bug real and include it in the
final report. The trace construction algorithm is presented in Appendix E.

Example. An example of a reasoning trace can be found in Figure 5. It was generated from an
accounting bug produced by mislabeled inital annotations (due to hallucinations). We have reduced
its content for sake of space, and only include necessary details for discussion. Here we discuss
the content of the reasoning trace as well as how GPT responds to it. As mentioned previously, the
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definitions of all financial meanings are provided in the trace. Specifically, they can be found in
the yellow box labeled with "1". The green box labeled with "2" contains the set of relevant rules.
We have selected two such rules (R1: raw balance × net rate = net balance [a raw balance variable
multiplied by a net rate results in a net balance] and R2: reserve × net rate = Error). Finally, we
provide the list of related operations to the reported accounting bug in the blue box labeled with "3".
We go over the included operations as follows. In the first operation, we provide that the variable
tAmount located in function tswap() was initially annotated by GPT as a reserve. In the second
operation, we provide that tAmount in tswap() is propagated to parameter _tAmount in function
applyFee(), and hence the latter also has the financial meaning of reserve. The third line begins a
chain of related operations depicting how variable _netRate in function applyFee() is eventually
assigned the financial meaning of net rate, however, we exclude them here for the sake of space. In
the fourth operation in the figure, we provide the erroneous operation of _tAmount * _netRate
on line 5 in applyFee(), and explain how it is an accounting bug due to the rule R2. In particular,
_tAmount was assigned the meaning of reserve while _netRate was assigned the meaning of net
rate, and the result of their multiplication is an error, as defined by R2.

The response from GPT can be found in the orange box labelled with "4". In particular, the response
details how the entry variable tAmount should have been classified as a raw balance. It supports this
claim by referencing that if _tAmount (which had its meaning directly propagated from tAmount)
was classified as such, the fourth operation would succeed according to R1. Since GPT reports that a
reclassification should be made, the initial annotations are updated (i.e., tAmount is classified to raw
balance), and the rule-based reasoning algorithm is rerun. Although the annotations are now correct,
the rerun still produces a potential accounting bug in line 12. We note that this accounting bug is a
true bug, as discussed in Section 3.2. The system reports it accurately, and the LLM does not flag
any mislabeling. For more details, refer to Appendix F.

4 Evaluation

We implement our technique on the Slither [13] framework. We chose GPT-3.5 turbo for our LLM.
In this section, we conduct experiments to determine the effectiveness and efficiency of the technique.
We aim to answer the following research questions.

• Research Question 1: What is the effectiveness of our approach?
• Research Question 2: What is the distribution of financial meanings assigned by the LLM?

(Appendix G)
• Research Question 3: What is the efficiency of the approach?
• Research Question 4: What is the effect of fine-tuning and providing few-shot examples in

our system?
• Research Question 5: Can a less powerful model than GPT-3.5 be used in the approach?

(Appendix H)
• Research Question 6: How sensitive is the LLM annotation to variable names? (Appendix I)

4.1 Experimental Setup

Benchmark. We utilize the dataset provided by Zhang et al. [2023], which contains 513 smart
contract bugs across 113 smart contract projects. 72 are categorized as accounting bugs. We preclude
15 of them as they cannot be loaded by Slither or miss code. We further exclude 6 projects due to
reasons such as code obfuscation. The list of remaining projects can be found in Table 1.While a
project may have many files, we only run ABAUDITOR on those with accounting bugs. We further
analyze 8 new smart contract projects containing accounting bugs collected from the most recent
Code4rena bug reports. The list can be found in Appendix Table 4.

Baseline. For our baseline, we ran our rule-based reasoning algorithm using annotations provided by
humans on the main dataset. Specifically, we performed manual annotation of financial meanings on
every file containing accounting bugs in the benchmark. In each project, we only annotate the entry
variables, leveraging the propagation ability of our rule-based reasoning. We find that such effort is
substantial, sometimes requiring significant time and attention to detail. We also run our benchmark
with two recent tools, namely GPTScan ( Sun et al. [2023]) and ItyFuzz ( Shou et al. [2023]). We do
not run with older tools, since according to Zhang et al. [2023] published in 2023, accounting bugs
were beyond existing tools at the time.
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Table 1: Accuracy of Initial Financial Type Labelling

Project name
Labelling Baseline Ours No Rem.

NIS Tokens Func. Time Req.
Baseline Ours Iters. TP FP TP FP TP FP

MarginSwap 3 3 3 1 0 1 0 1 1 1 37558 23 24.47s 18
VaderMath 4 4 1 2 1 2 1 2 2 2 165284 60 219.74s 45

PoolTogether 4 2 0 1 0 1 0 1 0 1 51517 9 10.73s 16
YieldMicro 2 2 1 1 0 1 0 1 2 1 59592 25 10.23s 18

yAxis 4 3 1 2 1 2 1 2 2 1 22178 121 73.11s 17
BadgerDao 4 3 1 1 0 1 0 1 1 0 28379 22 154.06s 17
WildCredit 4 3 0 1 2 1 2 1 2 0 23058 2143 87.91s 14

PoolTogether v4 0 0 0 0 0 0 0 0 0 1 198600 60 14.75s 53
Badger Dao p2 5 4 1 1 0 1 0 1 2 0 100079 4 13.71s 43

yAxis p2 1 0 0 0 0 0 0 0 0 1 5655 5 15.2s 3
Malt Finance 2 0 0 0 0 0 0 0 0 2 139665 24 51.69s 45

Perennial 3 3 0 1 0 1 0 1 0 0 4106 21 146.89s 7
Sublime 13 9 0 2 2 2 3 2 3 0 27263 29 35.36s 18

Yeti Finance 1 1 1 0 0 0 0 0 1 1 14256 247 48.81s 14
Vader Protocol p3 1 1 0 3 0 3 0 3 0 1 90713 84 121.49s 47

InsureDao 6 3 0 0 0 0 1 0 1 1 587797 32 74.06s 25
Rocket Joe 4 3 0 1 1 1 1 1 1 0 96258 41 178.76s 47

Concur Finance 2 1 1 0 0 0 0 0 2 1 62089 100 184.32s 40
Biconomy Hyphen 5 4 1 1 0 1 0 0 1 0 105347 248 102.63s 30

Sublime p2 4 4 0 0 0 0 0 0 0 1 109168 40 34.70s 37
Volt Finance 1 1 0 0 0 0 0 0 0 1 135919 79 34.96s 16

Badger Dao p3 4 4 0 0 0 0 0 0 0 1 129386 104 518.63s 92
Tigris Trade 5 4 1 1 0 1 1 1 1 1 599294 3493 492.87s 471

Total 82 62 19 7 19 10 19 22 19

The experiments are conducted on a machine with AMD Ryzen 3975x and 512GB RAM,

4.2 Research Question 1: Effectiveness of approach

We ran our system and the baseline technique on the benchmark. We manually inspect all results
reported by both methods and categorize them as true positives (TP) or false positives (FP). We also
compared the annotations produced by the LLM (i.e., from our system) with the human annotations.
We collected the number of invocations of the reasoning trace feedback loop , the number of tokens
passed to GPT, the number of total functions analyzed, the run time , and the number of GPT requests.
The manual evaluation involved two researchers. Two independently categorized the results and
provided annotations while an external judge resolved any inconsistencies.

The results can be found in Table 1. The name of the smart contract project can be found in the
leftmost column. The column labelled "Baseline" shows the total human annotations for each project.
The column labelled "Ours" shows the number of correct annotations by GPT. The column labelled
"Iters" shows the number of times the iterative feedback loop was invoked. The following three
headers contain the results from running the baseline (labelled "Baseline"), our technique with the
feedback loop (labelled "Ours"), and our technique without it (labelled "No Rem."). For each header,
the column labeled with "TP" contains the number of true positive bugs. The column labeled with
"FP" contains the number of false positive reports. Accounting bugs that are out of the scope of
our system can be found in the column labeled with "NIS" or Not-in-Scope. Such accounting bugs
belong to other categories such as pure-math-errors (i.e., a ’>’ sign is swapped with a ’<’ sign). The
following data are unique to our system. The number of tokens prompted can be found in the column
labeled with "Tokens". The number of function analyzed can be found in the column labeled with
"Func.". The run time per project can be found in the column labeled with "Time". The number of
requests set can be found in the column labeled with "Req.".

Observations. Both our system and our baseline were run on 23 smart contract projects, containing
40 accounting errors. In regards to the effectiveness, our system reports 19 TP and 10 FP, while
the baseline reports 19 TP and 7 FP. While both techniques are unable to detect 21 of the total
accounting errors, we find that 19 of them are beyond scope. Hence, the recalls of both our system
and our baseline are 19/(40-19) = 90.5%. In regards to labelling, our technique can correctly annotate
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Table 2: Results of GPTScan
Bug Type Included Projects Total Instances

Wrong Order Interest 2 2
Flashloan Price 6 4
First Deposit 0 0
Approval Not Revoked 1 1

Table 3: Results Using Fine-tuned GPTs
Model TP FP Iters. Correct Annotations

Baseline (Manual) 19 7 N/A 82/82
ABAuditor (Gpt3.5 w/ few-shot) 19 10 12 62/82
GPT3.5 no few-shot 17 31 14 32/82
Fine-tuned GPT3.5 no few-shot 17 16 9 39/82
Fine-tuned GPT3.5 w/ few-shot 19 9 7 64/82
Fine-tuned GPT4.o mini w/ few-shot 19 9 2 71/82

62 out of the 82 human annotations performed in the baseline, achieving an accuracy of 62/82 =
75.6%. We find that most misclassifications were due to hallucinations in the initial annotation not
resulting in accounting bug warnings. As a result, our feedback loop was not run, hence leaving
the misclassifications as is. Also observe that using the reasoning traces reduces the number of FPs
from 22 to 10, denoting a 54.5% reduction, without losing any TPs. In most cases, fixing these
hallucination requires less than 3 iterations.

False Positives. We manually inspect the false positives produced by the system. We find that of the
7 FP common to both our full system and our baseline, the most common issue is the path-insensitive
nature of our rule-based reasoning. For example, our rules are unable to deal with the scenario where
a variable can potentially have two financial meanings due to an if conditional. Such scenarios
require path-sensitive analysis such as symbolic execution, or enhancing with expressive reasoning
methods such as Symbolic Finite Automata (SFA), which can model symbolic transitions between
states to model stateful behaviors of business models. Of the 3 FP unique to our full technique, we
find that the reason is due to hallucinations in the initial annotation. Particularly, when performing
the hallucination remedy procedure, GPT fails to recognize or fails to fix the hallucination. Solving
this problem requires improving upon the reasoning trace generation. We will leave resolving both to
our future work.

Further experiments. To further test the effectiveness of our technique, we run our system on 8 very
recent real world smart contracts released in 2024 containing accounting bugs. We do not perform
any human annotation, and run our system directly, allowing GPT to perform annotation on all of the
entry variables. Our technique can detect 6 of the 7 accounting bugs that are in scope, including 2
zero-day bugs. We have made reports on the zero-day bugs and submitted them to the developers.
Our system reports 6 FPs. We argue that this demonstrates the effectiveness of our system even in
latest projects. Details can be found in Appendix J.

4.3 Research Question 3: What is the efficiency of the technique?

To evaluate the efficiency of the system, we measure the cost of evaluation on the main dataset.
Regarding the monetary cost of the system, each project requires an average of 110645 tokens to run.
Using the API pricing of the GPT3.5-Turbo model, we find that the average cost to run one such
project is 110645 ∗ $0.5/1000000 = $0.05. Regarding the time to run the system, we find that each
project requires an average of 115.19 seconds to run, or approximately 2 minutes.

4.4 Research Question 4: What is the effect of fine-tuning and providing few-shot examples
in our system?

We examined the impact of fine-tuning GPT-3.5 and providing few-shot examples for our system
to identify accounting bugs. We also studied the benefits of using a fine-tuned GPT-4.o mini model
instead of the GPT-3.5 turbo model. We used 50 fine-tuning examples covering all the supported
financial types and those without financial meanings. Then, we evaluated our system with different
settings, namely with and without fine-tuning, with and without few-shot examples in prompting..
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We include only one setting for GPT-4 due to the high cost of fine-tuning and using it. The results
can be found in Table 3. In the table, the first column labelled "Model" shows the settings used
for each experiment. The second column labeled "True Pos." shows the true positive bugs detected
during each experiment. The column labeled "False Pos." lists the number of false positive warnings
reported. The column labeled "Iters." shows the total number of times that the reflection process was
run. Finally, the column labeled "Correct Annotations" shows the total number of annotations that
match the human-labeled annotations.
Observe that the experiment on row 5 with both fine-tuning and providing few-shot examples to the
GPT 3.5 model improved annotation accuracy from 75.6% (62/82; the annotation accuracy of our
system located on row 2) to 78% (64/82). Only fine-tuning with no few shots on row 4 performs
worse than our default setting. No fine-tuning and no few shots, or simply using the GPT 3.5 model
directly, on row 3 generates many more false positives and requires more calls of the reflection
process. Using the fine-tuned GPT4.o model has the best performance in terms of a higher annotation
accuracy of 86.6% (71/82) at the expense of higher fine-tuning and inference costs. Note that the
annotation accuracy changes lead to changes of downstream bug finding. However, the influence may
not be proportional because the financial types involved in the bugs are not evenly distributed. That
is, the incorrect annotations lie in variables unrelated to the bugs.

5 Limitations (see Appendix K)

6 Related Work

Rule-based Systems and Rule-base reasoning. Rule-based systems are a long-established field
in artificial intelligence. Early work such as Hayes-Roth [1985] and Golding and Rosenbloom
[1991] derive rule-based systems as a way to modularize knowledge. Rules-based systems have been
used to enhance LLMs, such as in generating business insights Vertsel and Rumiantsau [2024] and
visual data processing Sharan et al. [2023]. In the context of analysis, rule-based reasoning can
be particularly effective, such as in anomaly detection Preece et al. [1992], computer penetration
detection Ilgun et al. [1995], and reverse engineering of code Alnusair et al. [2014].

LLMs in Program Analysis The use of LLMs in program analysis has gained significant attention
in recent years. LLMs leverage extensive datasets and sophisticated neural network architectures to
understand and generate human-like text. They have seen usage in tasks such as code understanding
Nam et al. [2024], testing Deng et al. [2023], and detecting vulnerabilities Cheshkov et al. [2023].
In relation to our work, LLMs such as GPT have even been used to detect vulnerabilities in smart
contracts. Sun et al. [2024] evaluate the vulnerability reasoning capability of LLMs through
prompting approaches such as Chain-of-Thought (CoT). Xia et al. [2024] utilize GPT to verify
adherence of smart contracts to a set of standards known as the Ethereum Request for Comment
(ERC). Sun et al. [2023] perform vulnerability detection via function-level abstraction. In comparison,
our system focuses on the detection of accounting bugs in smart contracts.

Accounting Bugs in Smart Contracts. A recent technique was proposed in Zhang [2024] to detect
accounting bugs using a type system. It relies on intensive manual annotations of initial variable
types. A lot of human efforts are hence needed to apply it to a new contract. The technique has
inspired our rule-based reasoning part. To some extent, it corresponds to the baseline presented in our
evaluation section. In contrast, our technique proposes the novel integration between LLM annotation
and rule-based reasoning, enabling automation. It also uses reasoning traces to reduce hallucinations.

7 Conclusion

We develop a hybrid LLM and rule-based reasoning system for the detection of accounting bugs in
smart contracts. We utilize the understanding capability of LLMs like GPT to perform annotation
of financial meanings for variables. We further utilize rule-based reasoning to propagate financial
meanings and check for the correctness of operations. We implement a remedy technique for
hallucinations, which relies on the generation of reasoning traces. Our results achieve 75.6% accuracy
in annotations against those performed by humans, and detects 90.5% of the accounting bugs.
Furthermore, our system detects 2 zero-day accounting bugs, which have been reported to the
developers.
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User: { You are given an assistant for identifying accounting bugs in smart contracts.

Accounting bugs are defined as violations of domain specific business models.
The following are examples of accounting bugs in smart contracts, along with the reason that they are 
erroneous. Determine if such patterns can be found in the new smart contract.
Example 1: Code:{
[Code from Motivating Example]        
return ((baseReserve + quoteReserve) / totalShareSupply); (Line 10)
} Reason: { Line 10 is vulnerable to a flashloan attack due to …}
Example 2: Code: {… 
Please check for accounting bugs in this smart contract:{ [Code for target smart contract] }

}

----------------------------------------------------------------------------------------------------

1

2

3

Figure 6: Format for Naive Prompt

User: { You are given an assistant for assigning financial meaning to variables.

Variables in smart contract often have financial meaning. 
The financial meaning “reserve” is any amount of currency that is strictly owned by the smart contract.
The following are examples of “reserve” variables in smart contracts.
Example 1: Code:{
...

quoteReserve = quoteCurrency.totalSupply() * priceOfBaseInQuote(); 

(Line 6)

...} Variable: {quoteReserve} Reason: {Variable “quoteReserve” is…}
Example 2: Code: {… 
Answer YES/NO if “reserve” is the  financial meaning of Variable: {tAmount} in Function: {
function tswap(uint256 tAmount, uint256, price) public returns (uint256 
swappedAmount){…}    }

}

----------------------------------------------------------------------------------------------------

2

1

3

Figure 7: Format for Initial Prompt for Raw Balance

Supplementary Material

A A Naive Approach

A naive approach is to directly prompt the LLM with few-shot accounting bug examples and ask
it to find new bugs of a similar nature. Figure 6 shows the format of the prompt used for the naive
approach. Similar to existing works utilizing GPT to detect vulnerabilities in smart contracts Sun
et al. [2024]; Shou et al. [2024], high-level descriptions and few-shot examples of accounting bugs
are provided within the prompt. Specifically, the blue box labeled "1" contains the definition of
accounting bugs, while the red box labeled "2" shows the few-shot examples. Each few shot example
follows a two-part format: first, related code is provided, followed by the reason that it contains an
accounting bug (i.e., what domain-specific property is violated in the code). The purple box labeled
"3" is where the code of a target smart contract is provided as input to the LLM.

However, this approach does not suffice to detect accounting bugs, due to the observations that:

Challenge 1: The code of smart contracts provided for analysis is often too large or too costly to fit
in the limited token context space. While it is possible to filter non-relevant functions (i.e., functions
which cannot be invoked by the public), the remaining code usually still retains the same issues.
Furthermore, reducing the scope of the analysis to function-level analysis can miss accounting bugs
that spread across multiple functions or even files.

Challenge 2: Most warnings produced by the method are often hallucinations from the model, and
there is no existing technique to validate the warnings without human analysis.

13



B Prompt for LLM to Annotate Variable with Finnancial Meanings

Figure 7 demonstrates the prompt format for the financial meaning "reserve". The text in the blue
box labelled with "1" contains the definition of a "reserve". The text in the red box labelled with "2"
contains few-shot examples for a "reserve" variable. The text in the orange box labelled with "3"
contains the prompt used to determine whether or not the new variable (tAmount) should be assigned
a "reserve".

C Example of Initial LLM Annotation

Example. Referring to the example provided in Figure 3, there is only one entry function, tswap().
tswap() contains two parameters: tAmount and price, which are introduced on line 7. There is
also one global variable, netRate, which is defined on line 2. Only these 3 variables would be
selected for initial annotation, and the correct annotations for the variables are "raw balance", "price",
and "net rate", respectively.

D Rule-based Reasoning Algorithm and Example

Data: p← the list of all operations in the smart contract, ordered according to the CFG in SSA
Result: nodeserror ←

a list of the operations in SSA form containing accounting error vulnerabilities
1 nodeserror = [];
2 while p is not empty do
3 nodecur = p.pop();
4 for x in nodecur.operands do
5 if (x is entry function parameter or global) and (x.fin is None) then
6 x.fin = LLMGetFinanceType(x);
7 end
8 end
9 haserr, nodescur.dest.fin = RuleBasedInference(nodecur.op, nodescur.operands);

10 nodecur.dest.definition = nodescur;
11 if haserr is True then
12 nodeserror.add(nodecur);
13 end
14 end

Algorithm 1: Rule-based reasoning pseudocode

We explain the usage of the rule set for analysis and propagation through the pseudocode presented
in Algorithm 1. The pseudocode shows the Algorithm for both sections 3.1 and 3.2.p represents the
list of operations in the smart contract in CFG order in SSA, and is provided as input. According to
Figure 2, it is the first grey box. The output is a list of nodes that potentially contain accounting bugs.
According to Figure 2, it is the second grey box. A node is defined as either an assignment x = y,
or a computational operation x = y1 op y2. In the pseudocode, node.dest represents the destination
of the node (e.g., x), node.op represents the operation performed in a node (e.g., +, −, =, ...), and
node.operands represent the operands (e.g., y1, y2) that appear in the node. For any variable x, its
financial meaning is denoted by x.fin and its parent node (i.e., the node that assigned its financial
meaning) is denoted x.definition.

The loop from lines 2-14 traverse p in order, and for each node, performs the following operations.
An inner loop from line 4-13 traverses each variable (dubbed x) that appears in the node. If variable x
is an entry function parameter or a global variable, the initial annotation discussed in 3.1 is performed
(lines 5-7). Lines 9-10 show the propagation. The financial meaning of the variable nodecur.dest, or
the destination variable of the current node, is the result of rule-based inference given the operation
of the node (nodecur.op) and its operands (nodecur.operands). If the operation is valid (i.e., the
operation aligns with a rule in the rule set), the destination variable is assigned the resulting financial
meaning of the operation. If there is no right operand (i.e., the node is an assignment), the financial
meaning of the destination variable is assigned the financial meaning of the singular operand. If the
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operation is invalid (i.e., does not satisfy a rule), the node is added to the list of potential accounting
bugs, nodeserror. The definition of variable nodecur.dest is assigned to nodecur.

Example. We demonstrate how rule-based reasoning is used to propagate financial meaning as well
as identify potential accounting bugs using the example in Figure 3. We use the initial annotations
of variable tAmount ← reserve, price ← price, and netRate ← net rate to demonstrate how
misclassified initial annotation (i.e., tAmount should be a raw balance) can lead to false postive
reports.

We begin with the first operation in function tswap() of fRate = getFeeRate() on line 6.
Chaining the SSA nodes of the operation results in: fRate [in tswap()] = getFeeRate()
= feeRate [in getFeeRate()] = feeRate [Global]. Since all of the SSA nodes are assign-
ments, the financial meaning of fRate in tswap() is simply that of global variable feeRate, which
is fee rate (as assigned from the initial annotation.

Continuing to the second operation in function tswap() of net_tAmount = applyFee(tAmount,
fRate) on line 11, we find that there is an improper usage of financial meanings, hence resulting
in a potential accounting bug. Specifically, the violation of the rule-based reasoning occurs in
the operation _fAmount = _tAmount * _netRate on line 5 within function applyFee(). In
tswap(), function applyFee() is called with two parameters, tAmount (initially annotated as a
reserve), and fRate (annotated as a net rate). Correspondingly, parameters _tAmount and _netRate
defined on line 4 are assigned the financial meanings of reserve and net rate, respectively. However,
the rule-based reasoning is violated on line 5 during the operation _tAmount * _netRate. This is
because multiplying a reserve and a net rate is not allowed, as demonstrated by rule R6 in Figure 4.
Intuitively, the net rate should be applied on a user-owned balance (i.e., raw balance) in order for the
smart contract to earn profit, yet this operation shows it being deducting from the smart contract’s
balance (i.e., reserve), instead. Hence, this node is added to the list of potential accounting bugs.

However, this accounting bug is present due to the misclassification of variable tAmount in the
initial annotation. By simply replacing the misclassified financial meaning (i.e., reserve) with the
correct one (i.e., raw balance), there will be no violation on line 5. Rule-based reasoning applied
to the operation _tAmount * _netRate yields a valid computation of raw balance multiplied by
net rate, as specified by R5 in the rules, leading to the assignment of net balance to the variable
_fAmount. Additionally, the true accounting bug in the operation net_tAmount * fRate on line
12 can be discovered via continuing the analysis. Variable net_tAmount on line 11 is assigned a net
balance, as it is assigned to be _fAmount by the return statement on line 6. In the next operation,
net_tAmount * fRate on line 11, there is an accounting bug due to the operation net balance * net
rate. It is represented by R7 in the rules. Intuitively, the fee has already been deducted from the users
balance, as represented by the variable net_tAmount being a net balance, hence the operation on
line 12 is applying the fee twice, which is not allowed.

E Reasoning Trace Construction Algorithm

Data: e← an operation that results in an accounting error vulnerability in SSA
Result: nodestrace ← a list of operation in SSA that represent the trace ofe

1 nodestrace = [];
2 nodeswklist = [];
3 nodeswklist.add(e) while nodeswklist is not empty do
4 nodecur = nodeswklist.pop();
5 nodestrace.add(nodescur) for x in nodecur.operands do
6 nodeswklist.add(x.definition)
7 end
8 end

Algorithm 2: Trace generation pseudocode

To obtain the list of related operations for the response trace, we develop a recursive algorithm that
traverses through and tracks each node along with the nodes defining its operands. The pseudocode
for the algorithm can be found in Algorithm 2 . The input e is a node that potentially contains an
accounting error. The output nodestrace is a list of nodes in the reasoning trace of e.
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User: { You are given a reasoning trace of an accounting bug. Identify any possible mislabelings.
…

R3: “net balance” x “net rate” : Error
Here are the inference rules for “x”:

R1: “raw balance” x “net rate” : “net balance”
…

Trace{
1: tAmount in tswap() was typed by the LLM in entry function tswap() as a Raw Bal.
2: _tAmount in applyFee() = tAmount in tswap(), _tAmount is a Raw Bal. due to parameter prop. on line 11. 
3: _netRate (Net Rate) in …

4: “_fAmount = tAmount * _netRate ”, _fAmount is a Net Bal. in applyFee() on line 5
due to rule R1 (Raw bal. x net rate)

5: net_tAmount in tswap() = _fAmount in applyFee(), net_tAmount is a Net bal.

due to return prop. on line 11.
6: Error in operation “net_tAmount (Net Bal.) * _fRate (Net Rate)” in tswap() on line 12

due to violation R3}

}

3

LLM:{There are no misclassifications. Variable “tAmount” is classified as a raw balance, as it is used in 
operation with net rate to produce a net balance according to R1.}

1

2

Figure 8: Reasoning Trace Prompt and Response for Valid Bug

The loop from lines 3-8 contains the procedure applied to a worklist queue that initially contains e.
First, the current node is popped into nodecur. The node is added to nodestrace. Then, for every
variable x in nodecur.operands, the parent node x.definition is added to the worklist. This process
continues until the worklist is empty.

F LLM Reflection on a Real Bug Trace

The second reasoning trace in Figure 8 is generated for the accounting bug discovered by the correct
initial annotations. While the majority of the content is shared with that in Figure 5 , the green box
labeled with "1" representing inference rules contains the rule R3 net balance × net rate = Error
instead of R2. In the trace, we note that there are more operations. First, with the relabelling of
"reserve" to "raw balance", we find that the fourth operation is a success. The result is that the variable
_fAmount in applyFee()is now categorized as a net balance. In the fifth operation, _fAmount
is propagated to net_tAmount in function tswap() on line 11 due to the return statement. In the
sixth operation, we provide the new erroneous operation of net_tAmount * fRate on line 12, and
explain how it is an accounting bug due to the rule R3. In particular, net_tAmount was assigned
the meaning of net balance while fRate was assigned the meaning of net rate, and the result of their
multiplication is an error, as defined by R3.

The response from GPT can be found in the orange box labelled with "4". In particular, the response
concludes that no reclassification should be performed. As evidence, it provides the success of
operation 4 due to rule R1. As such, the accounting bug is considered real.

G Research Question 2: What is the distribution of financial meanings?

Figure 9 shows the distribution of the 6 financial meanings in the human annotations performed in
the first experiment. Notably, the largest category comprises raw balance variables. This outcome
aligns with our expectations. An entry function, defined as one that any user can invoke, often serves
as the entrance for users to interact with the smart contract’s underlying business model. Hence it
is natural that such functions have parameters representing raw balances or amounts of currency
owned by users. All other financial meanings are less common in the sense that they are not usually
controllable by users.
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Figure 9: Distributions of financial types

Table 4: Results on New Projects
Project Name TP FP FN NIS

Abracadabra 1 0 0 0
Thruster 0 0 1 0
Acala 0 0 0 1
Lybra 1 1 0 0
Polynomial 2 3 0 0
Trait Forge 0 1 N/A N/A
Munchables 1 2 N/A N/A
Basin 1 1 N/A N/A

H Research Question 5: Can a less powerful model than GPT-3.5 be used in
the approach?

We replaced GPT-3.5 in our system with less powerful models such as CodeLlama-7B-instruct-bf
and 13B-instruct-hf. CodeLlama-7B failed to produce formatted outputs in many cases such that our
pipeline could not parse its results properly. Similar problems were observed in existing works such
as Beurer-Kellner et al. [2023]. 13B performs better in this matter. However, it does not seem to
understand the nuances of various financial meanings even with the few-shot examples. As such, it
produced much worse annotation results than our default setting (41.9% vs 75.6%). This indicates
the level of intelligence of the underlying LLM is quite important.

I Research Question 6: How sensitive is the LLM annotation to variable
names?

We conducted an experiment in which we leveraged the Solidity compiler to rewrite variable names
(to something as plain as v1, v2), without changing program semantics, to see how the annotation is
affected. We kept the function names. We then reran our pipeline with the modified code. Our results
showed that the annotation accuracy degraded from 75.6% to 31.7%. The true positives (TPs) degrade
from 19 to 14, and the FPs increase from 9 to 21. It is not surprising because without proper variable
names, it is extremely difficult even for humans to decide the financial meaning of an operation, e.g.,
a simple addition. Note that the substantial annotation degradation does not yield in a proportional
loss in TPs. This is because for TPs, many incorrect annotations do not happen in the variables
that are involved in the bugs. For FPs, the same operations (e.g., simple additions) are allowed for
multiple financial types such that even though a variable is mis-annotated, and the system may not
flag its operation as an error.

J Results on Eight New Smart Contracts

The results of running our system on the 8 new smart contracts can be found in Table 4. The name of
the project can be found in the leftmost column. The number of true positive accounting errors can
be found in the column labeled with "TP". The number of false positive accounting errors can be
found in the column labeled with "FP". The number of false negative accounting errors can be found
in the column labeled with "FN". The number of accounting errors belonging to other categories (i.e.,
pure math errors) can be found in the column labeled with "NIS" (Not-in-scope).
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Out of the 8 accounting bugs in the new projects, the technique was able to detect 6. Furthermore,
one of the undetected accounting errors is due to an incorrect integer value, hence belonging to the
pure math category. Of the 6 accounting bugs, 2 are zero-day vulnerabilities, meaning that they were
previously undiscovered. Our technique fails to catch 1 bug (FN) and reports 7 false positive bugs
(FP). It analyzed a total of 10,097 additional functions. We find that the FN bug is due to the lack of
modeling of a specific financial meaning (i.e., a reward rate, which represents the percentage of a
loan that is earned as a reward for the loaner). We find that the FP bugs are due to similar reasons,
where financial meanings are incorrectly assigned to variables which have financial meanings that are
not modeled. We address both in the limitations section of our paper.

K Limitations

We note four main limitations: insufficient financial meaning coverage, inability to detect all hal-
lucinations, inability to handle all accounting bugs, and inability to scale to other programming
languages. The reason for the first is that we only model 6 financial meanings in our system. However,
real-world smart contracts may contain more financial meanings. As such our technique may miss
some accounting bugs. This can be improved by expanding the system to accommodate a wider
range of financial meanings. The reason for the second is that we only apply the hallucination
detection on potential accounting bugs. This can be improved by developing alternative methods
to detecting hallucinations. The reason for the third is that our system cannot handle accounting
bugs such as pure-math errors. To address this, a more comprehensive approach that combines
rule-based reasoning with additional analysis techniques may be necessary to capture these types
of errors effectively. For example, our rules could be extended to capture problematic smells, as
demonstrated in Rahman et al. [2019]. The reason for the fourth is that Solidity is the most popular
programming language for smart contracts, and our implementation currently only supports that.
Our system is implemented inside of Slither, a Solidity analysis engine that generates intermediate
representations (IR) of smart contracts and provides a rich set of APIs to manipulate the IRS. That
said, it is possible to implement the rule checker at the source level (using just a parser), which would
allow easy extension to other languages. We leave this to future work.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims made in the abstract and introduction match the results reported in
4.

Guidelines:
• The answer NA means that the abstract and introduction do not include the claims

made in the paper.
• The abstract and/or introduction should clearly state the claims made, including the

contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of the work are provided in 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: Our work does not include theoretical results, all results have been achieved
by our work.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The design of our architecture can be found in 3. It contains the main
algorithm, as well as pseudocode to help explain certain algorithms (i.e. for how the trace
for our hallucination remedy is generated).
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have submitted our code, as well as instructions on how to set up our
technique. Due to space limitations (the entire benchmark requires > 20 GB), we only
submit a subset of our benchmark.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Our work does not perform training, but we provide instructions on how to
understand the test output.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We did not perform studies of statistical significance in the experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide the specifications of the computer resources to run experiments in
4.

Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed the NeurIPS Code of Ethics and determine that we conform
with it.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss the dangers of accounting bugs in the real world in 1
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks. We do not release any new models nor data.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited the original owners of assets in our paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We have submitted our code, along with documentation on how to setup and
run the code.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We did not involve crowdsourcing, nor performed research with human
subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: We did not involve crowdsourcing, nor performed research with human
subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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