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ABSTRACT

A/B testing is a critical tool for evaluating the effectiveness of strategies, but its
conclusions are typically limited to the Average Treatment Effect (ATE). How-
ever, a more fundamental question arises when deciding whether to implement
personalized interventions: whether Heterogeneous Treatment Effects (HTE) ex-
ist. This paper addresses the challenge of testing for the existence of HTE. While
current methods based on the t-test are effective, the core pursuit of statistical in-
ference is to enhance test power to more sensitively detect subtle heterogeneous
effects. To this end, this paper proposes a novel sequential testing framework
based on Strategy Limit Theory, specifically designed to more effectively identify
these hard-to-detect, subtle differences. The main contributions are as follows: (i)
We integrate HTE existence testing into a strategic decision-making process and
construct a new test statistic based on Strategy Limit Theory, weighted by param-
eter λ to control Type I error. By maximizing the divergence between the distri-
butions under the null and alternative hypotheses, we enhance the test’s power.
(ii) We extend this approach to online experimental settings and introduce a Bi-
Optimal Strategy (BOS). This strategy not only improves statistical power but
also significantly enhances the cumulative reward of the experiment. (iii) We de-
velop a complete sequential testing procedure. By combining the alpha-spending
function with the Bootstrap method, we determine dynamic stopping boundaries
to accommodate the complex joint distribution of our statistic. (iv) We validate
the effectiveness and superiority of our proposed method through extensive sim-
ulation experiments and empirical analysis on Tenrec, a real-world dataset from
Tencent’s recommendation system.

1 INTRODUCTION

A/B testing, also known as randomized controlled trials, is the gold standard for evaluating the effec-
tiveness of new strategies, products, and interventions. Widely used in both industry and academia,
its core conclusion typically focuses on the Average Treatment Effect (ATE), which measures the
average impact of an intervention across all individuals (Lai, 2001). However, the ATE’s limita-
tion is that it can obscure individual-level differences. In real-world scenarios, a strategy may have
a positive effect on some groups while having a limited or even negative effect on others. This
phenomenon, where the treatment effect varies with individual characteristics, is known as Hetero-
geneous Treatment Effects (HTE). This is a topic of significant interest in fields like social science,
economics, and medicine (Xie et al., 2012; Vivalt, 2015; Dahabreh et al., 2016).

Understanding and leveraging HTE is critical in areas such as personalized medicine, precision mar-
keting, and adaptive education. The premise for all personalized strategies is the existence of HTE.
If the treatment effect were constant for all individuals, a single, universal strategy would be optimal,
and there would be no need for personalized interventions (Grimmer et al., 2017). Therefore, before
investing resources into developing complex and computationally intensive personalized models
(e.g., causal forests, metalearners, and deep learning models) (Wager & Athey, 2018; Künzel et al.,
2019; Curth & Van der Schaar, 2021), a more fundamental and critical question is: Is there sufficient
statistical evidence to prove the existence of HTE? That is, we need a rigorous hypothesis test for
the existence of HTE.
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Existing literature has proposed several methods for testing the existence of HTE. Classic ap-
proaches often focus on specific HTE patterns, such as testing for qualitative interactions, where
an intervention produces effects in opposite directions across different subgroups (Gail & Simon,
1985; Roth & Simon, 2018). To adapt to the dynamic nature of online data streams, recent research
has extended this to a sequential testing framework (Shi et al., 2021). While these methods are ef-
fective, a core goal of statistical inference is to further enhance statistical power to more sensitively
detect subtle heterogeneous effects (Lai, 2001). Ignoring weak HTE signals could lead to missing
significant opportunities for personalized optimization.

To address these challenges, this paper proposes a novel sequential testing framework based on
Strategic Limit Theory (Chen et al., 2022). The core idea is to transform the HTE existence test into
a strategic decision-making process, structurally similar to a multi-armed bandit(Feldman, 1962;
Berry, 1972; Vogel, 1960) but aimed at maximizing statistical power. By strategically collecting
data, we construct a test statistic that maximizes the distributional divergence between the null (no
HTE) and alternative (HTE exists) hypotheses(Chen et al., 2023). This amplification of the under-
lying signal enables more reliable detection of subtle heterogeneous effects that are often missed by
traditional methods.

The main contributions of this paper are as follows:

• We propose an innovative strategic testing framework that formulates the HTE existence
test as a dynamic decision process. We then design a new test statistic based on Strategy
Limit Theory, weighted by λ to balance mean and volatility terms and control Type I er-
ror, which aims to maximize the distributional divergence between the null and alternative
hypotheses to enhance statistical power.

• We extend this framework to online experimental settings and introduce a Bi-Optimal Strat-
egy (BOS). This strategy not only maintains high statistical power but also significantly
improves the cumulative reward of the experiment, mitigating the ethical and cost concerns
of traditional sequential testing.

• We develop a complete sequential testing procedure. By innovatively combining the alpha-
spending function (Gordon Lan & DeMets, 1983) with the Bootstrap method, we precisely
determine dynamic stopping boundaries.

• We validate the efficiency and superiority of our method in detecting HTE through large-
scale simulation experiments and empirical analysis using Tenrec (Yuan et al., 2022), a
real-world dataset from Tencent’s recommendation system.

The rest of this paper is structured as follows: Section 2 provides background and problem defi-
nitions; Section 3 details our methodology, including the λ-weighted statistic and the incorporated
Strategic Central Limit Theorem; Section 4 describes the sequential testing procedure; Sections 5
and 6 present the results of our simulation studies and case analysis, respectively; Section 7 con-
cludes with a summary and discussion.

2 BACKGROUND AND PROBLEM STATEMENT

2.1 POTENTIAL OUTCOMES FRAMEWORK

To rigorously explore individual-level differences in treatment effects, our study is built upon the
potential outcomes framework. We observe a sequential data stream of triplets {(Xj , Aj , Yj)}Jj=1.
Here, Xj ∈ Rp is the covariate vector for the j-th observational unit, Aj ∈ {0, 1} is a binary
variable representing the treatment assigned to the unit, and Yj is the observed outcome or reward.
A larger value for Yj typically indicates a more desirable outcome. For each unit j, we define two
potential outcomes: Y ∗

j (1) and Y ∗
j (0). Y ∗

j (1) is the outcome that unit j would have if it received
the treatment (Aj = 1), while Y ∗

j (0) is the outcome if it received the control (Aj = 0).

2.2 HYPOTHESIS TESTING FOR HETEROGENEOUS TREATMENT EFFECTS

Heterogeneous Treatment Effects (HTE) refer to the phenomenon where the effect of a treatment
intervention varies depending on individual characteristics (i.e., covariates). If HTE does not exist,
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it implies that the treatment effect is constant for all individuals, and a single, unified strategy is opti-
mal. Conversely, the existence of HTE provides the theoretical basis for personalized interventions.
Our primary objective is to test for the existence of HTE. To do so, we focus on whether the treat-
ment effect for a subgroup with specific covariates x, given by τ(x) = E[Y ∗(1) − Y ∗(0)|X = x],
is consistently zero. In practice, directly solving for the conditional expectation E[Y ∗(a)|X = x]
is challenging. Thus, we introduce a basis function φ(x) to approximate the conditional expected
reward Q0(x, a) = E[Y ∗(a)|X = x]. Specifically, we set Q0(x, a) ≈ φ(x)⊤β∗

a , where β∗
a ∈ Rq

is a parameter vector to be estimated. The treatment effect for a specific subgroup can then be
approximated as:

τ(x) ≈ φ(x)⊤(β∗
1 − β∗

0).

Based on this, the problem of testing for the existence of HTE can be formalized as a hypothesis
test:

H0 : φ⊤(x) (β∗
1 − β∗

0) = 0, ∀x ∈ X vs H1 : φ⊤(x) (β∗
1 − β∗

0) ̸= 0,∃x ∈ X .

Here, X is the support set of the covariate X . Rejecting H0 indicates that a treatment effect exists,
and this effect is non-zero in at least some subgroups.

3 METHODOLOGY

3.1 A STRATEGIC FRAMEWORK FOR HTE TESTING

To effectively test for the existence of HTE, this paper introduces a novel testing framework. This
framework draws on the idea of strategic two-sample testing, framing the hypothesis testing problem
as an abstract strategic decision-making process, structurally similar to a Two-Armed Bandit (TAB).

It is important to note that the TAB framework we construct is a statistical decision tool, not a
direct online experiment or clinical trial design. The two “arms” in this framework, which we
call Left (L) and Right (R), do not represent the actual treatment options (e.g., treatment group
vs. control group). Instead, they represent two different strategies used at each step of the test
to update the statistical evidence. At step j of the testing process, we make a strategic decision
ϑj ∈ {0, 1} (0 for choosing the L arm, 1 for the R arm) based on historical information. This
decision is designed to construct an optimal update term Uθ

j (x). The ultimate goal of this sequence
of strategic choices, θ = {ϑ1, ..., ϑJ}, is to shape the probability distribution of the final test statistic
so that it is maximally distinguishable under H0 and H1, thereby boosting the test’s statistical
power.

3.2 THE TEST STATISTIC AND ITS DISTRIBUTION

This subsection details the construction of our proposed test statistic. First, at step j, we construct
Uϑ
j (x) based on the strategic decision ϑj :

Uθ
j (x) =

{
WL

j = φT (x){Σ̂−1
0,jφ(Xj)Yj − Σ̂−1

1,jφ(X
∗
1,j)Y

∗
1,j}, if ϑj = 0

WR
j = φT (x){Σ̂−1

1,jφ(Xj)Yj − Σ̂−1
0,jφ(X

∗
0,j)Y

∗
0,j}, if ϑj = 1

where Σ̂a,j is the estimated covariance matrix based on historical data up to step j − 1 for group a
(a = 0 or 1). (X∗

a,j , Y
∗
a,j) represents an observation randomly sampled from the historical data of

the same treatment group, used to construct the other part of the update term.

After a total of J steps, we construct the final test statistic. Statistic is designed as a weighted com-
bination of a mean term and a volatility term. The standard approach effectively gives these terms
equal weighting. However, inspired by recent work in strategic A/B testing (Zhang et al., 2025),
we introduce a weighting parameter λ, to more flexibly tune the test’s properties. This parameter
is crucial for balancing the trade-off between achieving greater statistical power and maintaining
rigorous control over the Type I error rate. A larger value for λ generally boosts statistical power but
can slow the statistic’s convergence and inflate the Type I error if chosen improperly. The resulting
weighted statistic for any given covariate x is formulated as:

SJ,λ(x, θ) =
1

J

J∑
j=1

λ

1− λ
Uθ
j (x) +

1√
J

J∑
j=1

Uθ
j (x)

σ̂J
, (1)

3
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where λ ∈ (0, 1) and σ̂J is a consistent estimator of var(Uθ
j (x)).

To test for the global existence of HTE, we use its supremum over all x ∈ X as the final test statistic:

SJ,λ(θ) = sup
x∈X

SJ,λ(x, θ), (2)

According to Strategy Limit Theory (Chen et al., 2022), for a specific strategy θ to be introduced in
subsequent sections, this statistic’s asymptotic distribution under H0 is a standard normal distribu-
tion. However, under the alternative hypothesis H1, its asymptotic distribution will exhibit a unique
“bi-normal distribution”, with a probability density function of the form:

fκ(y) =
1√
2π

e−
(|y|−κ)2

2 − κe2κ|y|Φ(−|y| − κ).

As shown in Figure 1, this distribution is more “flattened” and bimodal than the standard normal
distribution. It is this significant distributional divergence between H0 and H1 that allows our
testing method to more sensitively capture the existence of treatment effects, thereby achieving
higher statistical power.
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Figure 1: Density plots of bi-normal distribution across different κ = 0.5, 1.5, and 2 vs. the density
plot of standard normal distribution (blue line, as κ = 0).

3.3 OPTIMAL STRATEGY

To maximize statistical power, this paper introduces an Optimal Strategy (OS), denoted as θos. The
core idea of this strategy is to dynamically choose a sequence of actions that, when the alternative
hypothesis H1 is true, maximizes the volatility of the test statistic, making it easier to reject the null
hypothesis.
Lemma 3.1. (Optimal strategy θos) For any 0 ≤ l < ∞, we can construct strategies θos =
(ϑos

1 , · · · , ϑos
J ) as follows:

ϑos
j =

{
0, Sj−1,λ(x, θ

os) > 0,
1, Sj−1,λ(x, θ

os) ≤ 0,
for j ≥ 1 (3)

such that
lim

J→∞
Pr (|SJ,λ (x, θ

os)| ≥ l) = lim
J→∞

sup
θ∈Θ

Pr (|SJ,λ (x, θ
os)| ≥ l) ≥ Pr(|T | ≥ l) (4)

where T is the standard T-Test statistic that follows the normal distribution as a baseline method.

The equality on the right side of Equation 4 holds if and only if Q0(x, 0) = Q0(x, 1). The intuition
behind this decision rule is that if the previous step’s statistic Sj−1,λ is positive, we choose an
update strategy (arm L) that tends to make it negative in the current step, and vice versa. This
alternating update mechanism ensures that when H0 is true, the statistic still converges to a standard
normal distribution. However, when H1 is true, this mechanism significantly increases the statistic’s
volatility, causing it to asymptotically converge to the aforementioned bi-normal distribution. This
makes it much easier to cross the rejection boundary, thus boosting the test’s power.

4
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3.4 BI-OPTIMAL STRATEGY

In offline testing, the test statistic constructed with the OS demonstrates powerful testing perfor-
mance. However, in online testing scenarios (especially in medical trials), the cumulative reward
during the experiment is a critical factor that must be considered. The OS, in its pursuit of maximiz-
ing test power, might choose a less effective intervention, raising ethical and safety concerns.

To address this, we propose a novel contribution: the Bi-Optimal Strategy (BOS), denoted as θ∗.
This strategy is designed to achieve a dual objective: (i) maintain the high test power provided by the
OS; and (ii) maximize the cumulative reward assigned to experimental units during the experiment.
Theorem 3.2. (Bi-optimal strategy θ∗) For any 0 ≤ l <∞, we can construct Bi-optimal strategies
θ∗ = (ϑ∗

1, · · · , ϑ∗
J) as follows:

ϑ∗
j =

 0, I {Sj−1,λ(x, θ
∗)} I

{
Q̂0(x, 0)− Q̂0(x, 1)

}
≥ 0,

1, I {Sj−1,λ(x, θ
∗)} I

{
Q̂0(x, 0)− Q̂0(x, 1)

}
< 0.

(5)

Under the Bi-optimal strategy, the test statistics SJ,λ(θ
∗) exhibit the following asymptotic prop-

erties. Let φ ∈ C(R) be a continuous function on R with finite limits at ±∞, and be
an even function and monotone on (0,∞), then the limit distributions of {SJ,λ(θ

∗)} satisfies
limJ→∞ EP [φ (SJ,λ(θ

∗))] = EP [φ (σ0ηJ)] , where ηJ ∼ S (m/σ0,∆J/σ0) with the initial value
m and parameter ∆J = |∆| +

√
J |∆|/σ, σ0 =

√
1 + ∆2/σ2. The density function of skewed

binormal distribution is

f
m
σ0

,
∆J
σ0 (y) =

1√
2π

e−
(y−m/σ0)2−2∆J (|y|−|m|/σ0)/σ0+∆2

J/σ2
0

2 − ∆J

σ0
e

2∆J |y|
σ0 Φ

(
−|y| − |m|

σ0
− ∆J

σ0

)
.

This strategy combines the alternating update mechanism of the OS with a greedy approach: when
deciding the form of the statistic, it also considers the current estimated rewards for each treatment
option, Q̂0(x, a), and tends to choose the option with the higher estimated reward. This design
ensures that while maintaining high test power, the safety and effectiveness of the experimental
process are improved. As shown in Figure 2a, under the Bi-optimal Strategy (BOS), the asymptotic
distribution of the test statistic SJ,λ(θ

∗) is compared to the strategy θos from Lemma 4. Under
strategy θ∗, the agent is more likely to choose a behavior with a higher reward. On the other hand,
as shown in Figure 2b, under the alternative hypothesis, the asymptotic distribution of SJ,λ(θ

∗) is
still more dispersed than the classic normal distribution, which indicates that the bi-optimal strategy
retains the stronger test power brought by the bi-normal distribution.
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(a) Density plots of Test Statistics SJ,λ(θ) under
different strategy: optimal strategy θos (blue line)
and bi-optimal strategy θ∗ (orange line).
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(b) The shadow denotes the power
of testing statistic SJ,λ(θ

∗) i.e.,
Pr

(
|SJ,λ(θ

∗)| > zα/2|H1

)
under d0 =

supx∈X (Q0(x, 1)−Q0(x, 0)) = 1.

3.5 ASYMPTOTIC PROPERTIES AND POWER ANALYSIS

This section analyzes the power advantage of the BOS. Theorem 5 shows that under the BOS, when
H0 is true, the statistic still converges to a standard normal distribution. However, when H1 is true,
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the test statistic follows a skewed bi-normal distribution. Based on these findings, the following
theorem demonstrates that for a sufficiently large sample size J , the test power 1− β2 of our BOS-
based method is greater than or equal to the power 1− β1 of a traditional adaptive t-test.
Theorem 3.3. (i) Power Analysis: The critical value zα/2 is calculated under the standard normal
distribution and the rejection region corresponds to the light red area in Figure 2b. Let d0 =
supx∈X (Q0(x, 1)−Q0(x, 0)), the statistical power can be approximated by:

1− β2 = lim
n→∞

Pr(|SJ,λ(θ)| > Zα/2|H1) = 1− Φ

(
−
d0 − zα/2

σ0

)
+ e

2d0zα/2

σ2
0 Φ

(
−
d0 + zα/2

σ0

)
(6)

For a sufficiently large J , we can obtain

1− β2 ≥ 1− Φ

(
|d0|+

√
J|d0|
σ + zα/2

σ0

)
+Φ

(
|d0|+

√
J|d0|
σ − zα/2

σ0

)

≥ 1− Φ

(√
J/2|d0|
σ

+ zα/2

)
+Φ

(√
J/2|d0|
σ

− zα/2

)
(s.t.; J ≥

√
σ|d0|)

= 1− β1. (7)

(ii) Type I error control: Under H0, the test statistic SJ,λ(θ) satisfies

lim
n→∞

Pr(|SJ,λ(θ)| > Zα/2|H1) = Φ

(
−
d0 − zα/2

σ0

)
+ e

2d0zα/2

σ2
0 Φ

(
−
d0 + zα/2

σ0

)
≤ α+ o(1)

(8)

4 SEQUENTIAL TESTING AND STOPPING BOUNDARIES

4.1 SEQUENTIAL TESTING

In online experimental scenarios, continuously monitoring data and making decisions as early as
possible can significantly save resources and time. For this reason, this paper designs a Sequential
Test procedure. We assume that there are K pre-defined interim analysis time points during the
experiment. At the k-th analysis point (1 ≤ k ≤ K), we calculate the current test statistic SJ,λ,k(θ

∗).
The goal is to find a set of time-varying stopping boundaries z1, ..., zK such that the cumulative
Type I error rate throughout the entire testing process is strictly controlled at or below the pre-set
significance level α.

Specifically, at the k-th interim analysis, if we observe SJ,λ,k(θ
∗) ≥ zk, we stop the experiment

and reject the null hypothesis H0. To ensure the overall test level, under H0 being true and given a
significance level α, the boundaries {zk}Kk=1 must satisfy the following condition:

Pr

{
max

k∈{1,...,K}
(SJ,λ,k(θ

∗)− zk) > 0

}
≤ α+ o(1) (9)

Combining equation 1, equation 2, and equation 9, we need to find {zk}Kk=1 that satisfy:

Pr

 max
k∈{1,...,K}

sup
x∈X

 1

J

J∑
j=1

λ

1− λ
Uθ
j,k(x) +

1√
J

J∑
j=1

Uθ
j,k(x)

σ̂J,k

− zk

 > 0

 ≤ α+ o(1).

(10)

4.2 BOOTSTRAP-BASED STOPPING BOUNDARIES

However, precisely calculating the boundaries {zk}Kk=1 that satisfy the above conditions is ex-
tremely challenging. The main obstacle is that the joint distribution of the sequence of test statistics

6
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Figure 3: The frequency distribution histogram of the test statistic SJ,λ(θ
∗) (in blue) is compared

with the density plot of the theoretical asymptotic distribution (in red) under different d0.

{SJ,λ,k(θ
∗)}Kk=1, generated by our strategic framework, is highly complex and cannot be solved

through analytical methods or traditional numerical integration. To overcome this, this paper pro-
poses a sequential testing procedure based on the Bootstrap method. The core idea is to use the
Bootstrap to simulate the complex joint distribution of the test statistics, thereby estimating appro-
priate stopping boundaries.

First, we introduce the α-spending approach to allocate the overall Type I error rate α for the entire
testing procedure. Here, α(k) is a non-decreasing function that satisfies α(0) = 0 and α(K) = α.
At the k-th test, we allow a portion of the error rate to be “spent”, specifically α(k) − α(k − 1).
Common α-spending functions include the Pocock type and the O’Brien-Fleming type, for example:

α1(k) = α log

(
1 + (e− 1)

k

K

)
, α2(k) = 2− 2Φ

(
Φ−1(1− α/2)

√
K√

k

)

α3(k) = α

(
k

K

)θ

, for θ > 0, α4(k) = α
1− exp(−γk/K)

1− exp(−γ)
, for γ ̸= 0

(11)

where Φ is the Quantile function of the standard normal distribution.

Next, we use an iterative Bootstrap procedure to estimate the critical value ẑk at each interim anal-
ysis. Specifically, at the k-th analysis, we generate B Bootstrap samples and construct the corre-
sponding Bootstrap test statistics:

ŜMB
J,λ,k(x, θ

∗) =
1

J

J∑
j=1

λ

1− λ
Uθ,MB
j,k (x) +

1√
J

J∑
j=1

Uθ,MB
j,k (x)

σ̂MB
J,k

ŜMB
J,λ,k(θ

∗) = sup
x∈X

ŜMB
j,λ,k(x, θ

∗),

These are used to simulate the distribution of SJ,k(θ
∗) under H0. We then solve for ẑk such that it

satisfies:

Pr∗
{

max
i∈{1,...,k−1}

(
ŜMB
J,λ,i (θ

∗)− ẑi

)
≤ 0, ŜMB

J,λ,k (θ
∗) > ẑk

}
= α (k)− α (k − 1) , (12)

And at any interim analysis stage, if SJ,λ,k(x, θ
∗) > ẑk, we reject H0. The detailed steps of this

process are clearly presented in Algorithm 1.
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5 SIMULATION STUDIES

This section uses simulated data to evaluate the effectiveness of the proposed methods. The val-
idation focuses on two main aspects: (i) verifying that the test statistic, under the strategy from
Theorem 5, asymptotically follows a skewed bi-normal distribution; and (ii) comparing the perfor-
mance of the testing methods based on the strategies from Lemma 3.1 and Theorem 5 against a
standard sequential adaptive T-test.

5.1 SIMULATION SETUP

We generated semi-synthetic data to evaluate our method under various HTE scenarios. The poten-
tial outcomes were constructed based on covariates drawn from a multivariate normal distribution,
with treatment effects defined by functions parameterized by an effect size d0. We considered two
challenging scenarios for the treatment effect structure. For all settings, we set the significance level
α = 0.05, λ = 0.7, and used B = 5000 for bootstrap samples. The detailed data generating process
is provided in Appendix B.
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Figure 4: Power Curve of the proposed test statistic (blue line) and T-Test (red line) under two
settings with varying d0 (H1) and σϵ.

5.2 ASYMPTOTIC DISTRIBUTION VERIFICATION

This subsection uses simulation experiments to verify whether the asymptotic distribution of the test
statistic SJ,λ(θ

∗) follows a skewed bi-normal distribution. Specifically, we set four different values
of d0 and construct the test statistic using the strategy from Theorem 5 throughout the experiment.

As shown in Figure 3, the results of this simulation experiment clearly demonstrate that for differ-
ent effect sizes d0 ∈ {0.3, 0.5, 0.7, 1}, the frequency distribution of the test statistic SJ,λ(θ

∗) (blue
area) aligns closely with the theoretical skewed bi-normal distribution (red curve). Furthermore, as
d0 increases, the bimodal shape of the distribution becomes more pronounced, which is in perfect
agreement with theoretical expectations. This result verifies the asymptotic properties of our pro-
posed test statistic under the alternative hypothesis, providing empirical evidence that the method
can effectively boost test power.

5.3 COMPARISON OF TEST POWER

We evaluated the performance of our proposed method against a sequential T-test baseline (Shi et al.,
2021). The evaluation metrics included: (i) test power (the probability of correctly rejecting the null
hypothesis); and (ii) for sequential tests, the average cumulative reward Y = 1

n(ks)

∑n(ks)
i=1 Yi and

the number of interim analyses ks required to stop.

The power curves in Figure 4 demonstrate that our method consistently achieves higher power than
the baseline across two scenarios, with a more significant advantage when the effect size d0 is small
or noise variance is high. For the online sequential evaluation, we adapted the T-test with an ϵ-greedy

8
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strategy (ϵ-T) for a fair comparison. The results, summarized from Tables 1 and 2 in the Appendix B,
show that both our Optimal Strategy (OS) and Bi-Optimal Strategy (BOS) stopped earlier (smaller
ks) than the baseline. Crucially, the BOS also maintained a higher cumulative reward, validating its
dual-objective design for practical online experiments.

6 CASE STUDY: TENREC RECOMMENDER SYSTEMS DATASET
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Figure 5: Critical values and Statistics for OS and T-test on Tenrec dataset

The dataset used in this section is the Tenrec recommender systems dataset, jointly released by
Tencent and Westlake University. Tenrec is a large-scale benchmark dataset for recommender sys-
tems, collected from two different feeds recommendation apps from Tencent across four scenarios,
covering approximately 5 million users and 140 million interactions. This experiment focuses on a
video recommendation subset, which records user behavior for two video categories from 5,022,750
distinct users. For the i-th visit, if the recommended video type is 1, we set Ai = 1; otherwise,
Ai = 0. The outcome Yi is defined as 1 if the user clicks on the recommended video, and 0 oth-
erwise. The dataset also records a 3-dimensional feature vector for each user, which serves as the
covariate Xi.

A subsequent experiment was conducted on this offline dataset to compare the optimal strategy (OS)
with a traditional T-test. It is worth noting that we have not yet performed an empirical analysis of
the bi-optimal strategy (BOS) in an online setting, as this typically requires collaboration with a
company. The experiment was configured with K = 15 interim analysis stages and a sample size of
n = 1000 for each stage.

As shown in Figure 5, the results confirm our simulation findings. The OS test rejected the null
hypothesis at the fourth analysis, one stage earlier than the T-test, indicating a more sensitive detec-
tion of HTE. Moreover, the rejection region for the OS test narrowed faster, further validating the
effectiveness of our Strategic Limit Theory based approach.

7 CONCLUSION

In this paper, we introduced a novel sequential testing framework for detecting Heterogeneous Treat-
ment Effects (HTE) based on Strategic Limit Theory. By framing HTE testing as a strategic deci-
sion process, our method amplifies subtle effect signals, enhancing statistical power. Our proposed
Bi-Optimal Strategy (BOS) is particularly suited for online settings, as it not only improves test
sensitivity but also optimizes for cumulative rewards. Extensive simulations and a case study on the
Tenrec dataset have validated the superiority of our approach.

Our method has some limitations. The Bootstrap procedure can be computationally intensive, es-
pecially in high-dimensional or small-sample settings. The framework’s complexity, involving dy-
namic decisions and matrix inversions, may also pose challenges in resource-constrained environ-
ments. Future work could focus on developing more efficient computational approximations and
extending the framework to more complex scenarios, such as those with network interference. Ulti-
mately, our work provides a powerful tool for answering the fundamental question of HTE existence,
serving as a critical prerequisite for subsequent personalized modeling.

9
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A RELATED WORK

This paper’s research spans three related areas: sequential hypothesis testing, the estimation and
testing of heterogeneous treatment effects, and strategic decision-making. Our core contribution
is to integrate cutting-edge strategic decision theory into a classic sequential testing framework to
solve the problem of HTE existence.

A.1 SEQUENTIAL HYPOTHESIS TESTING

The foundational work on sequential analysis stems from Abraham Wald’s research during World
War II. His introduction of the Sequential Probability Ratio Test (SPRT) fundamentally transformed
the paradigm of statistical trials (Wald, 1992). Compared to fixed-sample-size tests, SPRT allows
for dynamic decision-making during data collection, stopping the experiment as soon as sufficient
evidence is gathered. This approach saves approximately 50% of the sample size on average while
controlling for both Type I and Type II errors (Wald, 1992; Lai, 2001). This efficiency advantage led
to its widespread adoption in military applications, industrial quality control, and clinical medicine
(Morton, 1955; Chernoff, 1972).

With the advent of large-scale clinical trials, the classic SPRT became insufficient due to its need
for sample-by-sample observation. In response, group sequential methods were developed, which
allow for interim analyses at pre-specified time points. Early group sequential designs were proposed
by Pocock and O’Brien-Fleming (POCOCK, 1977; Fleming et al., 1984). However, these designs
require the number of interim analyses and the total sample size to be fixed in advance. To address
the uncertainty of data arrival in online and long-term experiments, Lan and DeMets introduced the
concept of the alpha-spending function (Gordon Lan & DeMets, 1983). This method allows for
flexible scheduling of interim analyses based on the accumulation of information. By using a pre-
defined spending function to dynamically allocate the total Type I error probability α, it rigorously
controls the overall error risk across multiple tests. These sequential analysis principles are now
widely used in modern online A/B testing platforms, enabling rapid decision-making and error rate
control (Johari et al., 2015; Kharitonov et al., 2015; Ju et al., 2019). They also form the basis for
more complex methods such as Trial Sequential Analysis (TSA), which addresses the problem of
Type I error inflation in meta-analyses (Kang, 2021). Our work builds on this flexible sequential
monitoring framework.

A.2 HTE ESTIMATION AND TESTING

In recent years, HTE research has become a hot topic in causal inference, largely benefiting from
machine learning techniques and their potential for personalized decision-making (Athey & Imbens,
2019).

HTE research is divided into two main directions: testing and estimation. Testing aims to answer
the question, “Does heterogeneity exist?” Classic methods, such as Gail and Simon’s qualitative
interaction test, check whether an intervention produces effects in opposite directions across prede-
fined subgroups (Gail & Simon, 1985). This idea was later extended to modern frameworks (Roth
& Simon, 2018). More recently, to adapt to online data streams, Shi et al. extended this test to a
sequential framework, proposing an online sequential method specifically for detecting qualitative
treatment effects (Shi et al., 2021). Furthermore, econometrics and statistics have developed a va-
riety of nonparametric tests to check whether the conditional average treatment effect depends on
covariates (Chang et al., 2015; Hsu, 2017).

Compared to testing, HTE estimation has received more attention. The goal of estimation is to use
flexible models to estimate the full Conditional Average Treatment Effect (CATE) function τ(x).
Landmark methods include decision tree-based Causal Trees and their ensemble, Causal Forests
(Vivalt, 2015; Wager & Athey, 2018), as well as the generalized random forests (Sun & Abraham,
2021). Another popular class of methods are Meta-learners, which provide a general framework
for using any supervised learning algorithm to estimate HTE (Künzel et al., 2019). Additionally,
researchers have explored Bayesian methods (e.g., Gaussian processes) (Alaa & Van Der Schaar,
2017), high-dimensional sparse models (Powers et al., 2018), and the efficiency-boosting R-Learner
(Nie & Wager, 2021). Our paper focuses on HTE testing, providing a more powerful and general ex-

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

istence test than existing methods, thereby offering a foundational decision-making tool for whether
to employ complex estimation models.

A.3 STRATEGIC DECISION-MAKING AND SEQUENTIAL ANALYSIS

The multi-armed bandit is a classic model for sequential decision-making that illustrates the chal-
lenge of making decisions under uncertainty (Lai, 2001). A decision-maker must choose among
options with unknown payoffs to maximize long-term cumulative rewards, balancing the “exploita-
tion” of the best-performing option with the “exploration” of others (Feldman, 1962; Berry, 1972;
Vogel, 1960). This framework has become a cornerstone of adaptive experimental design, particu-
larly in scenarios where both learning efficiency and ethical considerations are important, such as
adaptive clinical trials (Simon, 1977).

Our innovation lies in not directly applying the bandit framework for reward maximization, but in
reinterpreting its decision structure as a tool for constructing an optimal statistical test. This idea is
rooted in the emerging Strategic Limit Theory (Chen et al., 2022; 2023). In our framework, the
selection of an “arm” does not correspond to a real intervention assignment but rather to a strategic
update of statistical evidence. This process is designed to “shape” a test statistic that maximizes the
distinguishability between the null and alternative hypotheses. Unlike traditional bandit algorithms,
our Optimal Strategy (OS) is specifically designed to maximize test power. Building on this,
the Bi-Optimal Strategy (BOS) integrates the goal of reward maximization. While improving
power, it adaptively allocates more samples to the group with higher expected returns, achieving
a dual optimization of both statistical inference efficiency and online experimental benefits (e.g.,
personalized value functions).

B SIMULATION

B.1 SIMULATION SET UP

We generated the potential outcomes by
Y ∗(a) = (Xi1 − 3Xi2 +Xi3)/2 + aτ(Xi) + ϵi (13)

where ϵi’s are i.i.d N(0, σ2
ϵ ), and Xi = (Xi1, Xi2, Xi3)

⊤. We first generated X∗
i =

(X∗
i1, X

∗
i2, X

∗
i3)

⊤ from a multivariate normal distribution with zero mean and covariance matrix
equal to

{
0.5|i−j|}

i,j
. Then we set Xij = X∗

ijI
(
X∗

ij |≤ 2
)
+ 2 sgn

(
X∗

ij

)
I
(
X∗

ij |> 2
)

to limit the

scope of Xi. We set τ(Xi) = 3/2γδ(3Xi1 +
√
2Xi2)X

2
i3 for some function γδ parameterized by

some δ ≥ 0. We consider two scenarios for γδ . Specifically, we set γδ(x) = d0x
2/3 in Scenario

1 and γδ(x) = d0cos(πx) in Scenario 2. For each setting, we further consider four cases by set-
ting d0 = {0.3, 0.5, 0.7, 1}. When d0 = 0, H0 holds. Otherwise, H1 holds. For all settings, we
construct the basis function φ(·) using additive cubic splines. For each univariate spline, we set the
number of internal knots to be 4. These knots are equally spaced between [−2, 2]. In addition, we
set the significance level α = 0.05, λ = 0.7 and choose B = 5000.

B.2 POWER TEST RESULTS

C SEQUENTIAL BOOTSTRAP ALGORITHM

First, we need to construct the sequence
{
Uθ,MB
j,k (x)

}J

j=1
generated from datasets D0,k and D1,k

via bootstrap sampling, where D0,k =
{
WL,MB

j,k

}J

j=1
and D1,k =

{
WR,MB

j,k

}J

j=1
. The specific

expressions are as follows:

Uθ,MB
j,k (x) =

 WL,MB
j = φ⊤(x)

{
Σ̂−1

0,jφ(Xj)Yj − Σ̂−1
1,jφ(X

∗
1,j)Y

∗
1,j + β̂1 − β̂0

}
, if ϑj = 0;

WL,MB
j = φ⊤(x)

{
Σ̂−1

1,jφ(Xj)Yj − Σ̂−1
0,jφ(X

∗
0,j)Y

∗
0,j + β̂0 − β̂1

}
, if ϑj = 1,

where X∗
a,j and Y ∗

a,j are obtained through randomized sampling in a bootstrap sample from treat-
ment group a, and β̂a is the least squares estimator obtained from the original data sample. Next,
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Table 1: Cumulative Average Reward Y of the three strategies and Number of Tests to Reach the
Stopping Boundary ks in Scenarios 1 with different d0

d0 K n = 100 n = 500 n = 1000 n = 2000

ϵ-T OS BOS ϵ-T OS BOS ϵ-T OS BOS ϵ-T OS BOS

d0 = 0.3

K=5 Y 1.873 0.382 1.728 1.908 0.514 2.096 2.154 0.437 2.011 2.037 0.371 2.308
Ks 2.689 2.478 2.531 2.647 2.303 2.448 2.535 2.165 2.221 2.301 1.992 2.012

K=10 Y 1.972 0.174 2.033 2.073 0.472 2.221 2.309 0.309 2.531 2.405 0.225 2.651
Ks 3.703 3.544 3.686 3.818 3.461 3.617 3.272 2.824 2.933 2.928 2.715 2.807

K=15 Y 2.017 0.288 2.266 2.139 0.308 2.348 2.431 0.289 2.592 2.472 0.209 2.647
Ks 5.819 5.178 5.551 5.572 5.003 5.329 5.033 4.663 4.822 4.773 4.282 4.401

K=20 Y 2.227 0.193 2.538 2.318 0.290 2.519 2.409 0.218 2.601 2.516 0.193 2.663
Ks 8.354 7.728 7.934 8.130 7.276 7.515 7.781 6.933 7.093 7.032 6.342 6.508

d0 = 0.5

K=5 Y 2.015 0.385 2.102 2.099 0.510 2.281 2.253 0.441 2.392 2.241 0.369 2.511
Ks 2.420 2.230 2.278 2.382 2.072 2.203 2.281 1.948 2.001 2.070 1.792 1.810

K=10 Y 2.169 0.179 2.338 2.280 0.470 2.554 2.540 0.312 2.784 2.645 0.229 2.916
Ks 3.332 3.189 3.317 3.436 3.114 3.255 2.944 2.541 2.639 2.635 2.443 2.526

K=15 Y 2.218 0.291 2.590 2.352 0.311 2.695 2.674 0.290 2.851 2.719 0.211 2.911
Ks 5.237 4.660 5.001 5.014 4.502 4.796 4.529 4.196 4.340 4.295 3.853 3.961

K=20 Y 2.450 0.199 2.791 2.549 0.288 2.770 2.650 0.224 2.861 2.767 0.195 2.929
Ks 7.518 6.955 7.140 7.317 6.548 6.763 6.905 6.239 6.383 6.328 5.707 5.857

d0 = 0.7

K=5 Y 2.158 0.379 2.312 2.231 0.519 2.422 2.380 0.435 2.584 2.459 0.375 2.743
Ks 2.151 1.982 2.024 2.117 1.842 1.961 2.028 1.732 1.776 1.840 1.593 1.609

K=10 Y 2.385 0.182 2.571 2.495 0.468 2.781 2.793 0.315 2.993 2.890 0.231 3.181
Ks 2.962 2.835 2.949 3.054 2.768 2.895 2.618 2.260 2.345 2.342 2.170 2.245

K=15 Y 2.439 0.285 2.825 2.578 0.315 2.973 2.898 0.294 3.111 2.980 0.213 3.190
Ks 4.655 4.142 4.440 4.451 4.002 4.263 4.026 3.730 3.857 3.820 3.425 3.526

K=20 Y 2.694 0.201 3.044 2.780 0.292 3.023 2.894 0.220 3.150 2.980 0.198 3.232
Ks 6.683 6.182 6.347 6.501 5.820 6.011 6.224 5.546 5.674 5.626 5.073 5.186

d0 = 1.0

K=5 Y 2.253 0.381 2.431 2.392 0.521 2.601 2.511 0.439 2.715 2.621 0.378 2.888
Ks 1.882 1.734 1.771 1.859 1.612 1.725 1.774 1.515 1.554 1.610 1.394 1.408

K=10 Y 2.501 0.180 2.783 2.684 0.473 2.994 2.913 0.310 3.241 3.098 0.233 3.425
Ks 2.592 2.480 2.575 2.672 2.422 2.533 2.290 1.978 2.051 2.049 1.899 1.965

K=15 Y 2.615 0.287 3.041 2.791 0.310 3.210 3.125 0.297 3.398 3.204 0.215 3.442
Ks 4.073 3.624 3.885 3.894 3.501 3.731 3.523 3.263 3.376 3.344 2.997 3.085

K=20 Y 2.893 0.203 3.280 2.993 0.295 3.264 3.116 0.223 3.402 3.197 0.199 3.471
Ks 5.847 5.409 5.553 5.688 5.094 5.259 5.446 4.853 4.964 4.922 4.439 4.556

based on the optimal strategy θ∗, we determine whether Uθ,MB
j,k (x) equals WL,MB

j,k or WR,MB
j,k . By

this sequential bootstrap sampling, we can obtain a bootstrap sample of
{
Uθ,MB
j,k (x)

}J

j=1
.

D PROOF

For any integer m ≥ 1, let Cm
b (R) denote the set of functions on R that have bounded derivatives

up to order m. According to Lemma 5.1 in Chen et al. (2022), let φ ∈ C3
b (R) be an even function.

For any α ∈ R, β > 0, and t ∈ [0, 1), we define H1(x) = φ(x), and

Ht(x) =

∫
R
φ(y)qα(t, x, y)dy, x ∈ R, (14)

where the dependence on φ, α and x is not explicitly noted for simplicity. where

qα(t, x, y) =
1

β
√
2π(1− t)

e
− (y−x)2−2αβ(1−t)(|y|−|x|)+α2β2(1−t)2

2(1−t)β2 −α

β
e

2α|y|
β Φ

(
− |y|+ |x|
β
√
1− t

− α
√
1− t

)
.

(15)
It is clear from the definition that

H0(x) = EP [βη] ,

where η ∼ S (α, x) is a skewed binormal distribution.
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Algorithm 1 Sequential Bootstrap Test

Input: An α spending function α(·), bootstrap samples number B, weight λ, number of samples
per stage J , and a set B = {1, . . . , B}.

1: for k = 1 to K do
2: Step 1: Compute SJ,k,λ(θ

∗)
3: for j = 1 to J do
4: Q̂0(x, a) = φ⊤(x)β̂a,j,k

5: Let C1 = I {Sj−1,k,λ(x, θ
∗) ≥ 0} and C2 = I

{
Q̂0(x, 0) ≥ Q̂0(x, 1)

}
6: if C1 · C2 ≥ 0 then
7: Uθ

j,k(x) = φ⊤(x)
{
Σ̂−1

0,jφ(Xj)Yj − Σ̂−1
1,jφ(X

∗
1,j)Y

∗
1,j

}
8: else
9: Uθ∗

j,k(x) = φ⊤(x)
{
Σ̂−1

1,jφ(Xj)Yj − Σ̂−1
0,jφ(X

∗
1,j)Y

∗
0,j

}
10: end if
11: Qj(θ

∗) =
∑j

i=1 U
θ∗

i,k(x)

12: Sj,k,λ(x, θ
∗) =

Qj−1(θ
∗) + Uθ∗

j,k(x)

j
+
Qj−1(θ

∗) + Uθ∗

j,k(x)√
jσ̂j

13: end for
14: SJ,k,λ(θ

∗) = supx∈X SJ,k,λ(x, θ
∗)

15: Step 2: Bootstrap
16: for b = 1 to B do
17: Compute: Uθ,MB

j (x), ŜMB
b (x, θ∗), and ŜMB

b (θ∗)
18: end for
19: Step 3: Reject or not
20: λ = α(k)−|Bc|/B

1−|Bc|/B

21: Set z to be the upper λ-th percentile of
{
ŜMB
b (θ∗)

}
b∈B

22: Update B ←
{
b ∈ B : ŜMB

b (θ∗) ≤ z
}

23: if SJ,k > z then
24: Reject H0 and terminate the experiment.
25: end if
26: end for

15
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Table 2: Cumulative Average Reward Y of the three strategies and Number of Tests to Reach the
Stopping Boundary ks in Scenario 2 with different d0

d0 K n = 100 n = 500 n = 1000 n = 2000

ϵ-T OS BOS ϵ-T OS BOS ϵ-T OS BOS ϵ-T OS BOS

d0 = 0.3

K=5 Y 1.850 0.441 1.532 2.229 0.291 2.315 2.374 0.156 2.386 2.401 0.089 2.414
Ks 2.984 2.466 2.472 2.654 2.433 2.575 2.548 2.107 2.333 2.181 1.882 2.003

K=10 Y 2.254 0.379 2.384 2.342 0.288 2.422 2.404 0.129 2.497 2.451 0.261 2.518
Ks 3.777 3.481 3.621 3.646 2.969 3.158 3.554 2.874 2.917 3.051 2.707 2.789

K=15 Y 2.327 0.224 2.411 2.384 0.364 2.486 2.417 0.261 2.522 2.460 0.211 2.551
Ks 5.408 5.145 5.264 5.393 5.028 5.188 5.127 4.977 5.012 4.837 4.542 4.609

K=20 Y 2.257 0.283 2.479 2.426 0.190 2.448 2.499 0.117 2.561 2.492 0.201 2.590
Ks 8.263 7.892 7.996 8.162 7.735 7.881 7.632 6.877 7.134 6.872 6.400 6.536

d0 = 0.5

K=5 Y 1.981 0.438 1.699 2.301 0.295 2.410 2.463 0.159 2.491 2.503 0.091 2.529
Ks 2.685 2.219 2.224 2.388 2.189 2.317 2.293 1.896 2.099 1.963 1.693 1.802

K=10 Y 2.361 0.381 2.501 2.455 0.290 2.549 2.521 0.131 2.603 2.579 0.265 2.641
Ks 3.399 3.132 3.259 3.281 2.672 2.842 3.198 2.586 2.625 2.746 2.436 2.510

K=15 Y 2.451 0.229 2.539 2.503 0.368 2.608 2.540 0.265 2.651 2.591 0.215 2.689
Ks 4.867 4.630 4.737 4.853 4.525 4.669 4.614 4.479 4.510 4.353 4.087 4.148

K=20 Y 2.399 0.288 2.603 2.551 0.195 2.577 2.621 0.120 2.698 2.633 0.205 2.731
Ks 7.436 7.102 7.196 7.345 6.961 7.092 6.868 6.189 6.420 6.185 5.760 5.882

d0 = 0.7

K=5 Y 2.093 0.445 1.841 2.392 0.299 2.512 2.531 0.162 2.599 2.583 0.095 2.639
Ks 2.416 1.997 2.001 2.149 1.970 2.085 2.063 1.706 1.889 1.766 1.523 1.621

K=10 Y 2.453 0.385 2.613 2.541 0.293 2.671 2.618 0.135 2.719 2.681 0.269 2.760
Ks 3.059 2.818 2.933 2.953 2.404 2.558 2.878 2.327 2.362 2.471 2.192 2.259

K=15 Y 2.540 0.231 2.655 2.611 0.370 2.719 2.673 0.269 2.780 2.711 0.219 2.813
Ks 4.380 4.167 4.263 4.367 4.072 4.199 4.152 4.031 4.059 3.917 3.678 3.733

K=20 Y 2.501 0.291 2.721 2.650 0.198 2.699 2.733 0.123 2.819 2.751 0.209 2.860
Ks 6.692 6.391 6.476 6.610 6.265 6.382 6.181 5.570 5.778 5.566 5.184 5.293

d0 = 1.0

K=5 Y 2.211 0.449 1.988 2.493 0.305 2.622 2.612 0.168 2.701 2.671 0.099 2.755
Ks 2.174 1.797 1.801 1.934 1.773 1.876 1.856 1.535 1.699 1.589 1.370 1.459

K=10 Y 2.541 0.388 2.721 2.633 0.298 2.790 2.711 0.139 2.844 2.779 0.271 2.881
Ks 2.753 2.536 2.639 2.657 2.163 2.302 2.589 2.094 2.125 2.224 1.972 2.033

K=15 Y 2.621 0.235 2.778 2.710 0.375 2.833 2.791 0.272 2.901 2.822 0.221 2.940
Ks 3.942 3.750 3.837 3.930 3.665 3.779 3.737 3.628 3.653 3.525 3.310 3.360

K=20 Y 2.601 0.295 2.841 2.753 0.201 2.811 2.851 0.126 2.933 2.873 0.213 2.981
Ks 6.023 5.752 5.828 5.949 5.638 5.744 5.563 5.013 5.200 5.009 4.665 4.764

The following lemma (Chen et al., 2022) lists some analytic properties of the family {Ht(x)}t∈[0,1].

Lemma D.1. Let the number of dots on top of a function denote the same order derivatives with
respect to x.

(1) For each fixed t ∈ [0, 1], Ht(x) ∈ C2
b (R). In addition, the first and second order derivatives of

Ht(x) are uniformly bounded for all 0 ≤ t ≤ 1 and x.

(2) The family {Ḧt(x)}t∈[0,1] is uniformly Lipschitz, i.e., there exists a constant L, independent of
t, such that ∣∣∣Ḧt (x1)− Ḧt (x2)

∣∣∣ ≤ L |x1 − x2| , x1, x2 ∈ R.

(3) For any t ∈ [0, 1], Ht(x) is an even function. Furthermore, if for any x ∈ R,

sgn(φ̇(x)) = ± sgn(x),

then
sgn(Ḣt(x)) = ± sgn(x), x ∈ R.

(4) If sgn(φ̇(x)) = ± sgn(x) for all x ∈ R, then

J∑
m=1

sup
x∈R

∣∣∣∣Hm−1
J

(x)−Hm
J
(x)∓ α

J

∣∣∣Ḣm
J
(x)
∣∣∣− β2

2J
Ḧm

J
(x)

∣∣∣∣ = O(
β|α|
J

+
β√
J
).
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All results below are under the assumptions of Theorem 3.2. The next lemmas give two remainder
estimations that will be used repeatedly in the sequel.

Lemma D.2. Let φ ∈ C3
b (R) be symmetric with centre c ∈ R, and {Ht(x)}t∈[0,1] be defined as in

(14). Given Θ =
{
ϑ |
∣∣EP [U

ϑ
m]
∣∣ = ∆

}
, for any ϑ ∈ Θ, J ∈ N+ and 1 ≤ m ≤ J , set

Γ(m,J, ϑ) = Hm
J

(
Sϑ
m−1

)
+ Ḣm

J

(
Sϑ
m−1

)(Uϑ
m

J
+

U
ϑ

m√
J

)
+

1

2
Ḧm

J

(
Sϑ
m−1

)(U
ϑ

m√
J

)2

, (16)

where U
ϑ

m = (Uϑ
m − µϑ

m)/σ. Then

J∑
m=1

EP

[∣∣Hm
J

(
Sϑ
m

)
− Γ(m,J, ϑ)

∣∣] = O

(
1√
J

)
. (17)

Proof. In fact, by (1) and (2) of Lemma D.1, there exists a constant C > 0 such that

sup
t∈[0,1]

sup
x∈R

∣∣∣Ḧt(x)
∣∣∣ ≤ C, sup

t∈[0,1]

sup
x,y∈R,x̸=y

∣∣∣Ḧt(x)− Ḧt(y)
∣∣∣

|x− y|
≤ C.

It follows from Taylor’s expansion that for any x, y ∈ R, and t ∈ [0, 1],∣∣∣∣Ht(x+ y)−Ht(x)− Ḣt(x)y −
1

2
Ḧt(x)y

2

∣∣∣∣ ≤ C

2
|y|3. (18)

For any 1 ≤ m ≤ J , taking x = Sϑ
m−1, y = Uϑ

m/J + U
ϑ

m/
√
J in (18), we obtain

J∑
m=1

EP

[∣∣Hm
J

(
Sϑ
m

)
− Γ(m,J, ϑ)

∣∣]
≤C

2

J∑
m=1

E

∣∣∣∣Uϑ
m

J

∣∣∣∣2 + 2

∣∣∣∣Uϑ
m

J

∣∣∣∣
∣∣∣∣∣U

ϑ

m√
J

∣∣∣∣∣+
∣∣∣∣∣Uϑ

m

J
+

U
ϑ

m√
J

∣∣∣∣∣
3


≤C

2

(
1

J
+

4

σ
√
J
+

4

J2
+

32

σ3
√
J

)
≤ C ′
√
J
,

where the penultimate inequality is due to the uniform boundedness of {Zϑ
m}.

Lemma D.3. Let φ ∈ C3
b (R) be symmetric with centre c ∈ R, and {Ht(x)}t∈[0,1] be defined as in

(14). Taking pm = EP

[
I
(
f∗(sgn(P̂A,m−1 − P̂B,m−1)) < 0

)
| Hϑ

m−1

]
, Hϑ

m = σ{Uϑ
1 , . . . , U

ϑ
m},

and define the family of functions {Lm,J(x)}Jm=1 and {L̂m,J(x)}Jm=1 by

Lm,J(x) = Hm
J
(x) +

∆n

J

∣∣∣Ḣm
J
(x)
∣∣∣+ σ2

0

2J
Ḧm

J
(x), x ∈ R, (19)

L̂m,J(x) = Hm
J
(x)− ∆n

J

∣∣∣Ḣm
J
(x)
∣∣∣+ σ2

0

2J
Ḧm

J
(x), x ∈ R. (20)

(1) If sgn(φ̇(x)) = − sgn(x) for all x ∈ R, then

J∑
m=1

∣∣∣EP

[
Hm

J

(
Sϑ∗

m

)]
− EP

[
Lm,J

(
Sϑ∗

m−1

)]∣∣∣ = O

(
log J√

J
+

1√
J

)
, (21)

(2) If sgn(φ̇(x)) = sgn(x) for all x ∈ R, then

J∑
m=1

∣∣∣EP

[
Hm

J

(
Sϑ∗

m

)]
− EP

[
L̂m,J

(
Sϑ∗

m−1

)]∣∣∣ = O

(
log n√

J
+

1√
J

)
. (22)
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Proof. We only give the proof of (1), the rest of the proofs are similar. Let ϑ∗ = (ϑ∗
1, . . . , ϑ

∗
n) be

the strategy given in Definition 1. It follows from (3) in Lemma D.1 and direct calculation that, for
1 ≤ m ≤ J ,

EP [Γ (m,J, ϑ∗)]

=EP

Hm
J

(
Sϑ∗

m−1

)
+ Ḣm

J

(
Sϑ∗

m−1

)(Uϑ∗

m

J
+

U
ϑ∗

m√
J

)
+

1

2
Ḧm

J

(
Sϑ∗

m−1

)(U
ϑ∗

m√
J

)2


=EP

Hm
J

(
Sϑ∗

m−1

)
+ Ḣm

n

(
Sϑ∗

m−1

)
EP

[(
Uϑ∗

m

J
+

U
ϑ∗

m√
J

)
| Hϑ

m−1

]
+

1

2
Ḧm

J

(
Sϑ∗

m−1

)
EP

(U
ϑ∗

m√
J

)2

|Hϑ
m−1


=EP

[
Hm

J

(
Tϑ∗

m−1

)
+

∆n(1− pm)

J

∣∣∣Ḣm
J

(
Tϑ∗

m−1

)∣∣∣+ σ2
0

2J
Ḧm

J

(
Sϑ∗

m−1

)]
=EP

[
Lm,J

(
Sϑ∗

m−1

)]
+

∆n

J
Ep

[
pm

∣∣∣Ḣm
J

(
Sϑ∗

m−1

)∣∣∣] ,
which combined with (19) , the last equality obviously holds. And, it can be obtained that under
Definition 1,

n∑
m=1

EP [pm] = EP

[
J∑

m=1

E
[
I
(
f∗
(
sgn(P̂A,m−1 − P̂B,m−1)

)
< 0
)
| Hϑ

m−1

]]
≤ C ′′ log J

∆
,

(23)
where C ′′ is a constant. Then, according to (1) of Lemma D.1, there exists a constant K > 0 such
that

sup
t∈[0,1]

sup
x∈R

∣∣∣Ḣt(x)
∣∣∣ ≤ K.

Finally, according to (17) and pm ≥ 0, we have

J∑
m=1

∣∣∣EP

[
Hm

J

(
Sϑ∗

m

)]
− EP

[
Lm,J

(
Sϑ∗

m−1

)]∣∣∣
≤

J∑
m=1

{∣∣∣EP

[
Hm

J

(
Sϑ∗

m

)]
− EP [Γ (m,J, ϑ∗)]

∣∣∣+ ∣∣∣EP [Γ (m,J, ϑ∗)]− EP

[
Lm,J

(
Sϑ∗

m−1

)]∣∣∣}
≤ C ′
√
J
+

J∑
m=1

∆nK

J
Ep [pm]

≤ C ′
√
J
+

K ′C ′′ log J√
J

, (24)

where K ′ is a constant related to σ, and (1) holds obviously.

Now we are ready to prove Theorem 1. The main idea is to compare the terms in Sϑ∗

J to the
increments of the solution over small intervals.

Proof. Let φ ∈ C(R) be an even function. Assume that φ is decreasing on (0,∞) (the case that φ
is increasing on (0,∞) can be proved similarly). For any h > 0, define the function φh by

φh(x) =

∫ ∞

−∞

1√
2π

φ(x+ hy)e−
y2

2 dy.

By the Approximation Lemma (Feller, 1991), we have that

lim
h→0

sup
x∈R
|φ(x)− φh(x)| = 0. (25)
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It follows from direct calculation that

φh(x) =

∫ ∞

−∞

1√
2π

φ(x+ hy)e−
y2

2 dy

=

∫ ∞

−∞

1√
2π

φ(−x− hy)e−
y2

2 dy

=

∫ ∞

−∞

1√
2π

φ(−x+ hy)e−
y2

2 dy

= φh(−x).
Thus φh is also an even function. In addition, we have

φ̇h(x) =

∫ ∞

−∞

1√
2πh3

φ(x+ y)ye−
y2

2h2 dy

=

∫ ∞

0

1√
2πh3

(φ(y + x)− φ(y − x))ye−
y2

2h2 dy.

Since φ is decreasing on (0,∞), it follows that

sgn (φ̇h(x)) = − sgn(x).

We continue to use {Ht(x)}t∈[0,1] to denote the functions defined in (14) with φh in place of φ. Let

{Lm,J(x)}Jm=1 be functions defined in (19) with {Ht(x)}t∈[0,1] here.

For a large enough J , let ϑ∗ be the strategy defined in Definition 1, and let ηn ∼ S (∆n, x/σ0), by
direct calculation we obtain

EP

[
φh

(
Sϑ∗

J

)]
− EP [φh (σ0ηn)]

=EP

[
H1

(
Sϑ∗

J

)]
−H0(x)

=EP

[
H1

(
Sϑ∗

J

)]
− EP

[
H J−1

J

(
Sϑ∗

J−1

)]
+ EP

[
H J−1

J

(
Sϑ∗

J−1

)]
− EP

[
H J−2

J

(
Sϑ∗

J−2

)]
+ · · ·

+ EP

[
Hm

J

(
Sϑ∗

m

)]
− EP

[
Hm−1

J

(
Sϑ∗

m−1

)]
+ · · ·+ EP

[
H 1

J

(
Sϑ∗

1

)]
−H0

(
Tϑ∗

0

)
=

J∑
m=1

{
EP

[
Hm

J

(
Sϑ∗

m

)]
− EP

[
Hm−1

J

(
Sϑ∗

m−1

)]}
=

J∑
m=1

{
EP

[
Hm

J

(
Sϑ∗

m

)]
− EP

[
Lm,J

(
Sϑ∗

m−1

)]}
+

J∑
m=1

{
EP

[
Lm,J

(
Sϑ∗

m−1

)]
− EP

[
Hm−1

J

(
Sϑ∗

m−1

)]}
=:I1n + I2n.

According to Lemma D.3 and (4) in Lemma D.1, we can infer

|I1n|+ |I2n| ≤ K ′′
(
log J√

J
+

1√
J

)
,

where K ′′ is a constant. It implies that

lim
h→0

∣∣∣EP

[
φh

(
Tϑ∗

J

)]
− EP [φh (σ0ηn)]

∣∣∣ = O

(
log J√

J
+

1√
J

)
. (26)

Putting together (25) and (26), we have

lim
J→∞

∣∣∣EP

[
φ
(
Sϑ∗

J

)]
− EP [φ (σ0ηn)]

∣∣∣
≤ lim

h→0
lim

J→∞

∣∣∣EP

[
φ
(
Sϑ∗

J

)]
− EP

[
φh

(
Sϑ∗

J

)]∣∣∣
+ lim

h→0
lim

J→∞

∣∣∣EP

[
φh

(
Tϑ∗

J

)]
− EP [φh (σ0ηn)]

∣∣∣
+ lim

h→0
|EP [φh (σ0ηn)]− EP [φ (σ0ηn)]|

=0.
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Under review as a conference paper at ICLR 2026

Then we complete the proof of Theorem 3.2. Theorem 3.3 is a corollary directly from Theorem
3.2.
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