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Abstract
Omnidirectional cameras are capable of providing 360◦ field-of-view in a single shot. This comprehensive view makes them
preferable for many computer vision applications. An omnidirectional view is generally represented as a panoramic image
with equirectangular projection, which suffers from distortions. Thus, standard camera approaches should be mathematically
modified to be used effectively with panoramic images. In this work, we built a semantic segmentation CNN model that
handles distortions in panoramic images using equirectangular convolutions. The proposed model, we call it UNet-equiconv,
outperforms an equivalent CNN model with standard convolutions. To the best of our knowledge, ours is the first work on
the semantic segmentation of real outdoor panoramic images. Experiment results reveal that using a distortion-aware CNN
with equirectangular convolution increases the semantic segmentation performance (4% increase in mIoU). We also released
a pixel-level annotated outdoor panoramic image dataset which can be used for various computer vision applications such
as autonomous driving and visual localization. Source code of the project and the dataset were made available at the project
page (https://github.com/semihorhan/semseg-outdoor-pano).
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1 Introduction

Semantic segmentation is a fundamental and challenging
problem of computer vision. It is the task of assigning seman-
tic labels to each pixel in images. Many computer vision
applications benefit from it, such as pedestrian detection
[6,16], autonomous vehicles [22,26], pose estimation [19,27]
and remote sensing [13,24]. In the last decade, convolutional
neural networks (CNNs) have become the best among the
approaches of semantic segmentation with their capability
of learning fine and coarse details.

Unlike conventional cameras with narrow field-of-view
(FOV), omnidirectional cameras are capable of capturing
360◦ view with a single shot. Due to their wide FOV, they
have gained popularity in many computer vision application
areas from autonomous vehicles to augmented reality. This
led to an increasing amount of effort to adapt various com-
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puter vision tasks, especially object detection and semantic
segmentation, for 360◦ imagery.

A full omnidirectional view (360◦ horizontally and 180◦
vertically) is generally represented as a panoramic image
with equirectangular projection. Coordinates are propor-
tional to latitude and longitudeof the sphere, i.e., unit distance
in horizontal or vertical direction in the image corresponds
to a fixed amount of angular coverage (Fig. 1). It heavily
suffers from distortions toward the top and bottom which
causes objects to appear differently. This is a challenge for
computer vision methods which were optimized only with
standard FOV images.

To tackle distortions in panoramic images, several meth-
ods have been proposed [4,10,23,25], where the distortion is
modeled by an explicit implementation of convolution ker-
nel. By doing so, the convolution is performed, not on regular
grid coordinates, but on coordinates shifted by offsets calcu-
lated regarding spherical distortion.

In this work, we introduce a version of UNet [20], a
semantic segmentation CNN, where we replaced standard
convolution layers with equirectangular convolutions [10]
so that it can alleviate the effects of distortion in panoramic
images.Although there are previousworks [12,28] on seman-
tic segmentation of panoramic images, these studies are
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Fig. 1 A panoramic image with equirectangular projection. Source:
Google Street View

focused on either indoor environments [12] or synthetic
panoramic images [28]. In our work, we investigate the
semantic segmentation performance on real panoramic out-
door images for the first time. We report CNN performance
on panoramic outdoor images when the distortions are cor-
rected with equirectangular convolutions. We also evaluate
various transfer learning options.

In addition, we release a pixel-level semantically anno-
tated panoramic outdoor dataset, called as CVRG-Pano,
especially for visual-based localization and autonomous
driving tasks. Images belong to the urban and suburban
areas of Pittsburgh and downloaded from Google Street
View. Dataset consists of 600 images. We labeled 20 sepa-
rate semantic classes which are grouped into 7 categories.
Images were fine-level pixel annotated with an effort of
approximately 500 man-hours. CVRG-Pano shares most of
the classes with Cityscapes [5] so that it can be used for train-
ing on 360◦ images after initialized with Cityscapes weights.

We summarize the contributions of our work below:

– We propose a semantic segmentation CNN that han-
dles panoramic image distortions explicitly by using
equirectangular convolutions (UNet-equiconv). We test
its performance on an outdoor panoramic real image
dataset for the first time.

– We release a pixel-level annotated outdoor panoramic
image dataset for semantic segmentation. It is the first
of its kind. It can be used for a wide range of computer
vision applications, and we believe it will be beneficial
to the computer vision community.

The remainder of this paper is structured as follows. We
review the related work in Sect. 2. We describe the proposed
model and explain equirectangular convolution in Sect. 3.
We explained our dataset in Sect. 4. Experimental results are
given in Sect. 5 which is followed by conclusions in Sect. 6.

2 Related work

In the past years, deep neural networks have demonstrated
outstanding performance on semantic segmentation. The
literature review given below covers deep learning-based
methods. We categorize the previous studies into two: the
first group worked with perspective (standard FOV) images,
whereas the second group focused on panoramic imageswith
or without handling distortions.

2.1 Semantic segmentation of perspective images

One of the first CNN-based models, designed for seman-
tic segmentation, is fully convolution networks (FCN) [15].
In [15], Long et al. discarded the classification layer of
well-known CNN models, such as AlexNet and VGG, and
converted fully connected layers to convolution layers. By
doing so, they could work with variable sizes of inputs.
Encoded features are upsampled by applying skip connec-
tion and bilinear interpolation on the different depths of the
networks. Noh et al. [17] introduced DeconvNet, which is a
pioneer encoder–decoder model. The first part of the model
consists of convolution and pooling layers that encode the
features. The second part of the network upsamples the fea-
ture maps by using deconvolution (transpose convolution)
and unpooling layers. Another encoder–decoder network is
SegNet [1], which is similar to DeconvNet [17]. The encoder
part consists of the same number of convolutional layers as
VGG has, and the decoder part consists of deconvolution and
unpooling layers. The key novelty of SegNet is max-pooling
indexes are used in the decoder part, which helped to reduce
total number of parameters of the model. Ronneberger et al.
proposed UNet [20]. In UNet, entire features are upsampled
using bilinear interpolation and concatenated at the decoder
part of the network using skip connections. There are recent
better-performing semantic segmentation CNNmodels, such
as DeepLabv3+ [3]; however, in this paper we preferred to
build a UNet-based model due to its effectiveness and ease
of implementation.

2.2 Semantic segmentation of panoramic images

There is a recent body of research focused on how to han-
dle distortions while applying CNNs on panoramic images.
The main idea is that we should move rectangular con-
volution kernels on the sphere representations rather than
the panoramic images. Coors et al. [4] introduced spheri-
cal convolution. They modified standard convolutional layer
by calculating offsets of the grids regarding spherical distor-
tion and presented studies on object detection. Tateno et al.
[25] present results on dense depth estimation and seman-
tic segmentation, where CNN was trained with normal FOV
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images but used to get results from panoramic images with
distortion-aware kernels.

Su and Grauman [23] proposed SPHCONV. It learns
spherical convolution with training on perspective images.
The proposedmodel does not require an annotated panoramic
dataset. However, due to the narrow FOV of perspective
cameras, the close objects cannot be fully captured in the
training setwhich leads not performingwell for close objects.
Another limitation was that parameter size linearly increases
with the height of the equirectangular input image.

Deng et al. [8] introduced OOP-net. Apart from the con-
ventional CNN models, OOP-net has overlapping pyramid
pooling (OPP) module which explores local and global con-
textual information at the same time. That study used fisheye
cameras, where FOV is 180◦, without proposing a method
for handling distortions. In [28], Xu et al. released a syn-
thetic panoramic outdoor dataset for semantic segmentation.
Panoramic synthetic images are obtained from SYNTHIA
sequence dataset [21].

Fernandez-Labrador et al. [10] proposed equirectangular
convolution for 3D layout estimation. This is a special form
of deformable convolution [7], where offsets of the kernel
elements are fixed and calculated according to the equirect-
angular projection. In a follow-up study, Guerrero-Viu et
al. [12] introduced an equirectangular version of BlitzNet
[9] which is designed for semantic segmentation and object
detection. They worked on panoramic indoor dataset and
reported that performance increases when the network is
trained with panoramic images and equirectangular convo-
lution.

In ourwork, we follow the distortion handling approach of
[10] and introduce an equirectangular version ofUNetmodel,
called as UNet-equiconv. Different from previous works,
we directly work with an outdoor dataset of real panoramic
images. We investigate, for the first time, the effects of trans-
fer learning and distortion handling performance on outdoor
panoramic images.

3 Method

3.1 Network architecture

We introduce an equirectangular version ofUNet [20], UNet-
equiconv, where each convolution layer is replaced with
equirectangular convolution (Sect. 3.2) to compensate dis-
tortions. The architecture of UNet-equiconv is shown in Fig.
2. Each convolution is followed by batch normalization and
rectified linear units (ReLU), which are omitted in the fig-
ure for the sake of simplicity. Also, repetitive convolution
layers are represented with ‘x.’ For instance ‘x4’ means the
same convolution is repeated four times. Output depth is 8,

Fig. 2 Architecture of UNet-equiconv

corresponding to 7 semantic categories and one ‘unlabeled’
category.

3.2 Equirectangular convolution

Previous CNN-based object detection and semantic seg-
mentation studies showed that when the convolutions are
modified to compensate the distortions, accuracy increases
([4,12,23,25]). The main idea is that we should move the
convolution kernels on the sphere rather than the panoramic
images (Fig. 3). The kernel is rotated and applied along the
sphere, and its position is defined by the spherical coordinates
(θ and φ) of its center. In practice, we use square kernels.
Here, we describe how to compute distorted pixel location
from the kernel entities for location p on the unit sphere.
Figure 3 illustrates the whole set of transformations applied
across different coordinate systems.

We follow the steps described in [10] and first define (u0,0,
v0,0) as the corresponding pixel location on the equirectangu-
lar image where we apply the convolution operation (i.e., the
image coordinate where the center of the kernel is located).
Then, these coordinates are transformed to a longitude and a
latitude in the spherical coordinate system (Fig. 3b).

θ0,0 =
(
u0,0 − W

2

)
360

W
; φ0,0 = −

(
v0,0 − H

2

)
180

H
(1)
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where θ and φ are in degrees andW and H are, respectively,
the width and height of the equirectangular image in pixels.

Subsequently, the 3D coordinates for every element in
the kernel (the tangent plane) is computed (Fig. 3c). When
we consider a 3x3 kernel on the equator, kernel element 3D
coordinates are:

p̂i j =
⎡
⎣x̂i j
ŷi j
ẑi j

⎤
⎦ (2)

where i and j are the horizontal and vertical indexes of a
kernel element. 3D coordinates change as follows:

p̂0,0 =
⎡
⎣0
0
1

⎤
⎦ , p̂±1,0 =

⎡
⎣± tanΔθ

0
1

⎤
⎦ , p̂0,±1 =

⎡
⎣ 0

± tanΔφ

1

⎤
⎦ (3)

where Δθ and Δφ are 360/W and 180/H in degrees, respec-
tively. These correspond to the angles covered by one pixel
in the equator of the sphere. When the filter size is larger,
angular coverage of kernel also decreases. Although we do
not employ, lower resolution kernels can also be defined for
wide angles. Readers can find detailed formulation on vari-
ous kernel resolutions in [10].

We keep the kernel shape on the tangent plane fixed.When
applying the filter at a different location (θ ,φ), we rotate the
points to the corresponding point of the sphere. We also
project each point onto the sphere surface by normalizing
the vectors:

pi j =
⎡
⎣xi j
yi j
zi j

⎤
⎦ = Ry(φ0,0)Rx (θ0,0)

p̂i j
| p̂i j | (4)

where Ra(β) stands for a rotationmatrix of an angleβ around
a axis.

Finally, the rest of elements are back-projected to the
equirectangular image domain (Fig. 3d). First, 3D kernel
coordinates are transferred to latitude and longitude angles,
which is called as the inverse gnomonic projection:

θi j = arctan

(
xi j
zi j

)
; φi j = arcsin

(
yi j

)
(5)

Then, converted to the original 2D equirectangular image
domain:

ui j =
(

θi j

360
+ 1

2

)
W ; vi j =

(
− φi j

180
+ 1

2

)
H (6)

Equirectangular convolution is a special form of
deformable convolution [7], where the convolution is not per-
formed by a grid-like kernel, but learned offsets are added
to the kernel locations. In panoramic images, deformation

Fig. 3 Distortion-aware convolution. Each pixel p in the equirectangu-
lar image is transformed into unit sphere coordinates, then the sampling
grid is computed on the tangent plane in unit sphere coordinates, and
finally, the sampling grid is backprojected into equirectangular image
to determine the location of the distorted sampling grid

Fig. 4 The offsets of spherical convolution. Three different kernel posi-
tions are shown to highlight the differences between offsets. On the
equator, kernel maps the neighboring pixels. As we approach to the
poles, the deformation gets bigger. When the borders are exceeded, the
points are taken from the other side of the 360◦ image

does not have a free form and the offsets in kernel follow a
pattern. Thus, the offsets are not learned but computed using
the geometry of equirectangular projection. The offsets are
constant as the kernel moves horizontally, but they increase
as the convolution kernel moves to the poles of the sphere
(Fig. 4).

4 Dataset

Commonly used datasets of semantic segmentationwere pre-
pared with standard FOV cameras [2,5,11,14]. Providing
360◦ view presents important benefits to a wide range of
applications. Therefore, we decided to release a pixel-level
annotated 360◦ outdoor panoramic dataset. We hope that our
effort will be beneficial to research in various sub-fields such
as visual localization and autonomous driving.
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Table 1 Details of categorical grouping

Flat Ground, road, sidewalk, parking

Construction Building, wall, fence, bridge

Object Pole, traffic light, traffic sign

Nature Vegetation, terrain

Sky Sky

Person Person

Vehicle Car, truck, bus, motorcycle, bicycle

Fig. 5 Number of annotated pixels (y-axis) of each category, and their
categorical labels (x-axis)

4.1 Pixel-level annotated dataset

We prepared an outdoor panoramic image dataset with
semantic labels, called as CVRG-Pano. Images belong to
the urban and suburban parts of Pittsburgh City. They were
obtained fromGoogle Street View and downloaded via Street
View Download 360 application1. The dataset consists of
pixel-level annotated 600 images. We manually labeled 20
semantic classes and then grouped them into 7 categories
(Table 1) in accordance with the categorization defined in
[5]. Figure 5 shows the distribution of categorical dataset.
The dataset is divided into three: 446 images for training, 48
images for validation and 76 images for testing. The dataset is
available at the project repository2. An example image from
panoramic dataset and its semantic labels are shown in Fig.
6.

4.2 Automatically generated semantic
segmentation dataset

Manual annotation is a labor-intensive task and takes great
amount of time. As an alternative, we follow a method
to fastly produce semantic masks of panoramic images.
First, we generate cubemaps of panoramic images. Then, the

1 https://iStreetView.com.
2 https://github.com/semihorhan/semseg-outdoor-pano.

Fig. 6 An example image from CVRG-Pano and its semantic labels

semantic mask of each cubemap is generated by a state-of-
the-art segmentationCNNmodel (we usedHRNet-OCR [29]
trained on Cityscapes). As a final step, we project semantic
mask of all cubemaps to panorama. The whole process is
illustrated in Fig. 7. This automatically generated panoramic
outdoor dataset consists of 504 images. We grouped seman-
tic classes into seven categories conforming to the pixel-level
manually annotated dataset (Table 1).

5 Experiments

Weconducted several experiments onboth datasetswith stan-
dard and equirectangular convolutions. We mainly report the
effects of equirectangular convolution andvariousweight ini-
tializations on the segmentation performance. Moreover, we
investigate the usefulness of automatically generated masks.
PyTorch [18], version 1.7.1, is used as a deep learning frame-
work, and all models are trained with Nvidia GeForce GTX
1080 GPU.

5.1 Evaluationmetric

We evaluated the performance of models using mean inter-
section over union (mIoU) as it is a common evaluation
metric (e.g., [5], [12]). In Eq. 7, M represents the total num-
ber of classes, Ai is total number of ground truth pixels of
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Fig. 7 The processes of automatic semantic mask generation. As a first step, we generate cubemaps of panorama and then generate a mask of each
cubemaps by the state-of-the-art CNN model. As the last step, we project a mask of cubemaps to panorama

Table 2 Effect of weight
initialization on training with
pixel-level annotated panoramic
image dataset

Test mIoU

From scratch 0.610

ImageNet 0.634

Cityscapes 0.649

class i , and Âi is predicted number of pixels for class i .

mIoU = 1

M

M∑
i=1

Ai ∩ Âi

Ai ∪ Âi
(7)

5.2 Weight initialization

Due to having a limited number of training images, we con-
ducted several experiments to maximize the potential of the
models. In Table 2, we see the effect of weight initializa-
tion on the performance of UNet with standard convolution
(UNet-stdconv). Training from scratch and two different
transfer learning alternatives are compared. All were trained
with pixel-level annotated training set and tested with 76-
image test set (cf. Sect. 4.1). We obtained the best result by
using pre-trained Cityscapes weights. We can also infer that
pre-training on a large dataset (even it is not composed of
city images) helps to perform better since the results with
the model pre-trained on ImageNet are better than the model
trained from scratch.

5.3 Standard versus equirectangular convolution

Here, we investigate how the performance of UNet-stdconv
changes when equirectangular convolution is applied (UNet-
equiconv). Firstly, all models were trained on Cityscapes
[5] dataset, and then they were fine-tuned on the panoramic
dataset. Table 3 shows that UNet-equiconv model that uses
equirectangular convolution, performs better than UNet-
stdconv. Test results support the hypothesis that eliminating
distortion at the feature level increases the performance of a
CNN model and improves its generalization ability not only
on indoor images [12], but also on outdoor images. Qualita-
tive comparison of both models is shown in Fig. 8.

We also observe from Table 3 that the classes that cover
larger portions of the image (e.g., sky, flat, construction)
have higher mIoU and rare classes have lower mIoU . An
important contribution of equirectangular convolution is that
it helps rare classes (e.g., object and person) significantly.
Since these objects cover small areas, especially if they are
close to the top or bottom of the image, compensating the
distortion may affect the result severely. (First row of Fig. 8
is an example.)

5.4 Usefulness of automatically generated dataset

We also conducted an experiment to investigate the useful-
ness of automatically generated dataset (cf. Sect. 4.2) for
training. First, we trainedUNet-stdconvmodel onCityscapes
[5]. Then, we fine-tuned UNet-stdconv model on automati-
cally generated dataset. Both baseline and fine-tuned models
were tested on pixel-level annotated 76 images. Accord-
ing to Table 4, the fine-tuned model performs better (0.626
mIoU) than the model which was only trained with per-
spective images (0.573 mIoU). This result shows that the
automatically generated dataset, even though there exist
wrong labeled pixels due to the automatic mask genera-
tion process, helps to adapt weights of the perspective image
trained model for panoramic images. Training with a much
precise panoramic dataset increases the performance even
more (0.649 mIoU in Table 2).

6 Conclusions

Panoramic images bring advantages for a wide range of com-
puter vision systems due to having wide FOV, but they suffer
from significant distortions. Naive approach would be gener-
ating overlapping perspective images and process them with
standard methods, but it becomes a computationally expen-
sive solution.

In this work, we propose UNet-equiconv which utilizes
equirectangular convolution to alleviate the effect of distor-
tion by explicitly modeling the offsets in the convolution
kernel. We conducted several experiments to compare the
performances of UNet-stdconv and UNet-equiconv. Results
indicate an improvement obtained by using equirectangular
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Table 3 Semantic segmentation
performance of UNet-stdconv
and UNet-equiconv

models mIoU flat construction object nature sky person vehicle

UNet-stdconv 0.649 0.960 0.827 0.173 0.787 0.976 0.127 0.693

UNet-equiconv 0.674 0.963 0.841 0.233 0.802 0.978 0.168 0.732

Fig. 8 Qualitative comparison of standard and equirectangular convolutionmodels for semantic segmentation onCVRG-Pano. Red circles highlight
some of the errors of standard convolution model that are not present in our distortion-aware approach

Table 4 Effect of fine-tuning
UNet-stdconv with
automatically generated dataset
after pre-trained with Cityscapes

Test mIoU

Cityscapes 0.573

Auto-pano 0.626

convolution, especially for small size objects which can be
represented weakly. Our results are consistent with previous
works which utilized equirectangular convolution in indoor
environments. We can also say that training with panoramic
images increases the performance of amodel even if standard
convolution is used.Wemadeour semantic segmentationout-
door panoramic dataset publicly available. We hope that the
dataset will be useful to the computer vision community.
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