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Beyond Markovian: Reflective Exploration via
Bayes-Adaptive RL for LLM Reasoning

Anonymous Authors1

Abstract
Large Language Models (LLMs) trained via Re-
inforcement Learning (RL) have exhibited strong
reasoning capabilities and emergent reflective be-
haviors, such as backtracking and error correc-
tion. However, conventional Markovian RL con-
fines exploration to the training phase to learn an
optimal deterministic policy and depends on the
history contexts only through the current state.
Therefore, it remains unclear whether reflective
reasoning will emerge during Markovian RL train-
ing, or why they are beneficial at test time. To rem-
edy this, we recast reflective exploration within
the Bayes-Adaptive RL framework, which ex-
plicitly optimizes the expected return under a
posterior distribution over Markov decision pro-
cesses. This Bayesian formulation inherently in-
centivizes both reward-maximizing exploitation
and information-gathering exploration via belief
updates. Our resulting algorithm, BARL, instructs
the LLM to stitch and switch strategies based on
the observed outcomes, offering principled guid-
ance on when and how the model should reflec-
tively explore. Empirical results on both synthetic
and mathematical reasoning tasks demonstrate
that BARL outperforms standard Markovian RL
approaches, achieving superior test-time perfor-
mance and token efficiency.

1 Introduction

Large Language Models (LLMs) have demonstrated impres-
sive reasoning abilities, such as in solving complex math
problems. A key factor driving this progress is the use of
Chain-of-Thought (CoT) reasoning (Wei et al., 2022), where
the model engages in intermediate deliberation before pro-
ducing an answer. Building on this, recent advances have
employed Reinforcement Learning (RL) to further enhance
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LLM reasoning by optimizing for verifiable outcome re-
wards (Jaech et al., 2024; Guo et al., 2025; Yu et al., 2025;
Wei et al., 2025). Notably, RL-trained models have exhib-
ited emergent behaviors such as generating long CoTs and
engaging in self-reflection, a process of backtracking to
previous states to correct earlier mistakes, also known as
the “Aha moment” (Guo et al., 2025; Zeng et al., 2025).
However, despite these compelling phenomena, it remains
unclear why and under what conditions reflective reasoning
is beneficial at test time, or whether such behaviors will
emerge through conventional RL training.

Prevalent views attempt to explain the usefulness of test-
time reflections as exploratory steps that provide additional
contexts for more optimal decision-making. Yet in stan-
dard Markovian RL, the exploration–exploitation trade-off
is resolved entirely during training: the agent interleaves
exploration and exploitation to learn a training-time optimal
policy, but switches to pure exploitation at test time. As a
result, standard RL allows a Markovian policy to be optimal
by simply memorizing training solutions once encountered.
Moreover, the Markov assumption restricts the policy to
condition decisions solely on the current state rather than on
contextual information gathered through exploration. Thus,
the agent learns an optimal deterministic policy through
repeated trial and error, with no incentives to adaptively
explore with reflections. In summary, under conventional
Markovian RL, there is no guarantee that reflective explo-
rations will emerge during training, nor does it explain why
such explorations might be advantageous at test time.

To address this gap, we propose grounding reflective rea-
soning with Bayes-Adaptive RL, which explicitly optimizes
for test-time generalization by maximizing the expected
return under a posterior distribution over MDPs. The objec-
tive incentivizes both reward-seeking actions and epistemic
explorations that gather information to reduce the MDP’s
uncertainty, such as the uncertainty regarding the progress
made by different actions. This enables the model to adapt
on-the-fly at test time by updating its beliefs and switch-
ing strategies based on observed outcomes, naturally giving
rise to reflective exploration behaviors. We prove that the
expected return of an adaptive policy can be exponentially
higher than the optimal Markovian policy at test time.
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Building upon this formulation, we introduce a novel al-
gorithm, Bayes-Adaptive RL for LLM Reasoning (BARL).
For each prompt, BARL performs online rollouts to gen-
erate a set of candidate answers, each associated with an
MDP hypothesis. The state-action value is then computed
by weighting each hypothesis according to the model’s cur-
rent belief, with penalties applied for mismatches between
predicted and observed rewards, thereby signaling when to
switch strategies. BARL provides a principled mechanism
for integrating and revising plausible strategies, analogous to
linearizing best-of-N reasoning, but with explicit guidance
on when and how the model should reflectively explore.

To illustrate the benefits of BARL, we begin with a synthetic
task designed to mirror test-time generalization in LLM
reasoning. The agent receives a reward only when it repeats
a prompt token three times, but the training and testing
prompt tokens differ. Markovian RL memorizes the training
solutions and fails to generalize. In contrast, BARL learns
to switch strategies by eliminating hypotheses, ultimately
discovering the ground-truth MDP for optimal behavior.

We further evaluate BARL on math reasoning tasks using
various LLMs. Across these models, BARL consistently
outperforms Markovian RL algorithms, such as GRPO and
a strong progress-reward baseline, on multiple benchmarks.
BARL achieves significantly greater token efficiency, requir-
ing up to 2x fewer than GRPO and over 10x fewer than the
Qwen2.5-Math-1.5B base model. Moreover, we observe
no strong correlation between overall model performance
and the frequency of reflections. Instead, BARL’s advantage
stems from more efficient exploration and more effective
thinking tokens. We summarize the takeaways as follows:

Key Takeaways: Why, How, and When to Reflect

• Why: Markovian RL neither ensures the emergence
of reflective exploration nor explains its benefits at
test time since (1) exploration is confined to train-
ing to learn an optimal deterministic policy, and (2)
the state-conditional policy lacks incentives to col-
lect additional contexts and backtrack. In contrast,
Bayesian RL, by optimizing test-time generalizabil-
ity, encourages explorations to gather contextual
information that reduces the MDP uncertainty.

• How: BARL stitches plausible strategies by main-
taining a posterior over MDP hypotheses, each as-
sociated with a candidate answer. Reflective ex-
ploration emerges through hypothesis elimination,
enabling on-the-fly adaptation.

• When: LLMs should self-reflect when discrepan-
cies arise between their internal beliefs and cumula-
tive reward feedback—signaling strategy switching
by downweighting hypotheses that are unlikely to
be optimal given previous observations.

2 The Necessity of Bayes-Adaptive RL for
Reflective Reasoning

Markovian RL. When the underlying MDP is known
with certainty, the Markov property ensures that the policy
and value depend on the history ht = (s0, a0, r0, . . . , st)
only through the state st, i.e., Qπ(ht, at) = Qπ(st, at). In
this setting, exploratory actions that aim to enrich the his-
tory ht with additional contexts, such as incorrect attempts
followed by backtracking, are unnecessary, as the current
state st already encodes all relevant information for optimal
decision-making.

Moreover, the optimal Q-function is Q∗ = maxπ Q
π and

the optimal policy π∗ is greedy w.r.t. Q∗. That is, π∗

is a deterministic policy, where π∗(a′|s) = 1 for a′ =
argmaxa Q

∗(s, a).
Theorem 2.1. Optimality of Markovian RL is attained by
deterministic non-reflective policies.

Reflective policies are more suboptimal than non-reflective
policies in both discounted infinite-horizon and finite-
horizon MDPs, as the Q-value of the wrong action is no
larger than that of the correct action since more tokens are
needed to correct the error. Explorations should only occur
during training, in a trial-and-error manner with repeated
episodes, to discover the golden answers. The Markovian
RL objective allows the optimal policy that memorizes these
training answers to be fully exploited, with no incentive to
adaptively explore with reflections.

For the non-standard undiscounted infinite-horizon MDPs,
where LLMs are encouraged to generate infinite tokens with-
out concerning token efficiency, reflective policies may be
as optimal as non-reflective ones. This is because the Q-
value of the wrong action can match that of the correct
one if the error is eventually corrected through reflection.
This observation provides a partial explanation for the emer-
gence of “Aha moment” with long CoT. However, even in
such settings, reflective reasoning may still fail to emerge
under Markovian RL, particularly if golden answers are dis-
covered either directly or by pruning incorrect exploratory
steps. In other words, this only explains why reflective ex-
plorations can appear during Markovian RL, instead of why
these behaviors are preferable to simply memorizing train-
ing solutions, nor whether they will emerge during training.

Next, we present Bayes-Adaptive RL, which explicitly op-
timizes for test-time generalization and naturally induces
reflective explorations.

Bayes-Adaptive RL. In a Bayes-Adaptive MDP
(BAMDP) (Bellman & Kalaba, 1959; Martin, 1965;
Lidayan et al.), the agent maintains uncertainty over the
underlying MDP, which is gradually reduced through
interactions. Due to this implicit partial observability (Duff,
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2001; Ghosh et al., 2021), the policy and value depend on
the full history ht, instead of only the state st, to capture the
agent’s evolving belief about the MDP parameters through
cumulative observations. The objective for BAMDPs is

JBayes(πθ) := Es0,πθ

[T−1∑
t=0

EM∼p(M|ht)

[
rM(st, at)

]]
,

where p(M|ht) is the posterior distribution of M after ob-
serving ht. This objective encourages the agent to not only
maximize immediate rewards but also explore to gather
more context about the uncertain MDP.

Optimal adaptive policies naturally induce exploratory re-
flection behaviors, which provide additional contextual in-
formation even if the state remains identical. While reflec-
tive actions may be suboptimal relative to the (unknown)
ground-truth MDP, the gathered context, especially the re-
wards, reduces the MDP’s uncertainty. This enables future
policies to leverage the updated belief to act more optimally.

Theorem 2.2. The test-time expected return of a Bayes-
Adaptive policy can be exponentially higher in T ∗ than that
of the optimal Markovian policy, where T ∗ is the minimal
number of steps required to reach the correct answer under
an optimal deterministic policy.

3 Method

The policy gradient for Bayes-Adaptive RL is as follows,
which differs from (B.2) by replacing the value under a
predefined M with a posterior-weighted value:

∇θJBayes = Es0,πθ

[T−1∑
t=0

∇θ log πθ(at | st)

· EM∼p(M|ht)

[
Qπθ

M(st, at)
]]
, (3.1)

where we write the history ht as st in π and Q since in
LLM reasoning, st already encodes the full sequence of
prior states and actions, and the reward is unavailable at test
time so it’s absorbed into θ as a function of st. Here, we
use the state-action value instead of the advantage since the
latter requires multiple Monte Carlo rollouts at each step.
By applying the Bayes rule, the posterior satisfies:

p(M | ht) ∝ p(M | s0:t) · p(r0:t−1 | s0:t, a0:t−1,M),

where p(M|s0:t) conditions only on the CoT, excluding
rewards, and can be interpreted as the model’s probabil-
ity of outputting solution yMs0 . Interestingly, the second
term p(r0:t−1|s0:t, a0:t−1,M) measures the likelihood of
observing the rewards r0:t−1 under M given the trajectory
s0:t. That is, we may write p(rt|st, at,M) ∝ exp(−β|rt−
rM(st, at)|) with a hyperparameter β to obtain

p(r0:t−1 | s0:t, a0:t−1,M) ∝
t−1∏
t′=0

exp
(
−β

∣∣rt′ − rM(st′ , at′)
∣∣),

where the proportionality holds since
p(rt′ |r0:t′−1, s0:t, a0:t−1,M) = p(rt′ |st′ , at′ ,M).

Besides, the posterior-weighted value in (3.1) satisfies

EM∼
[
Qπθ

M(st, at)
]
= EM∼q(M|s0)

[
Qπθ

M(st, at)
p(M | ht)

q(M | s0)

]

=

|M|∑
i=0

Qπθ

Mi
(st, at)p(Mi | ht),

where the proposal q(M|s0) is the uniform distribution
over the support of plausible MDPs, defined w.r.t. the
ground-truth answer and candidate answers extracted from
the model’s CoTs. We draw |M| CoT rollouts of πθ on
prompt s0 to form {Mi}|M|

i=1 . The importance ratios are
then self-normalized over {Mi}|M|

i=1 and the ground-truth
MDP M0 defined w.r.t. y∗s0 . By letting p(Mi|s0:t) be the
model’s state-conditional belief, we obtain:

EM
[
Qπθ

M(st, at)
]
=

|M|∑
i=0

Qπθ

Mi
(st, at)︸ ︷︷ ︸

value in Mi

πθ(y
Mi
s0 |st + ¡/think¿)︸ ︷︷ ︸

LLM’s belief of Mi’s plausibility

·
t−1∏
t′=0

exp
(
−β

∣∣rt′ − rMi
(st′ , at′)

∣∣)︸ ︷︷ ︸
discrepancy b/w obs. & Mi’s prediction

, (3.2)

where rt′ is the actual observed reward as defined in (B.1),
and rMi

, Qπθ

Mi
are defined in (B.3) w.r.t. the hypothesis

Mi. For clarity, we have omitted the normalization constant
when computing p(Mi|ht) from the last two terms.

BARL offers a principled framework for stitching together
plausible strategies, analogous to linearizing best-of-N rea-
soning, but with guidance on when and how LLMs should
reflectively explore.

Remark 3.1. BARL maximizes the weighted sum of values
defined over each hypothesis MDP Mi. The first weight-
ing term πθ(y

Mi
s0 |·) captures LLM’s state-conditional belief

in the plausibility of Mi. The second product weighting
term accumulates the discrepancy between predicted re-
wards rMi(st′ , at′) and observed rewards rt′ , which serves
as a reflective signal for strategy switching by downweight-
ing hypotheses that have high belief probabilities but are
unlikely to be optimal.

4 How Bayes-Adaptive RL Helps
Generalization: A Didactic Example

In this section, we present a didactic example to show how
BARL facilitates test-time generalization. Consider the
action space A that consists of three tokens, {0, 1, 2}, with
one token generated at each timestep. The state is simply
st+1 = at. The objective is to repeat the prompt token
three times consecutively within 29 timesteps (33 + 2 is the
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Model GSM8K MATH CollegeMath OlympiadBench Average
Qwen2.5-Math-1.5B 40.0 34.1 6.6 21.8 25.6

GRPO 83.9(±0.5) 71.5(±0.4) 45.1(±0.3) 33.4(±0.4) 58.4(±0.3)

Progress 84.8(±0.6) 72.3(±0.4) 45.9(±0.3) 35.6(±0.2) 59.6(±0.2)

BARL 86.0(±0.6) 72.7(±0.3) 46.8(±0.2) 35.8(±0.4) 60.3(±0.1)

Qwen2.5-Math-7B 59.1 53.7 21.9 19.0 38.4
GRPO 90.3(±0.1) 77.6(±0.4) 47.0(±0.3) 39.0(±0.2) 63.5(±0.2)

Progress 91.1(±0.3) 78.8(±0.1) 47.2(±0.3) 41.1(±0.2) 64.5(±0.2)

BARL 91.7(±0.2) 79.2(±0.3) 47.5(±0.2) 42.0(±0.4) 65.1(±0.3)

minimal length of a sequence to include all unique triplets).
The prompt token is 0 or 1 at training time, and 2 at test
time. Episodes terminate when receiving a 1 reward.

This synthetic task mirrors LLM reasoning, where the goal
is not only to learn specific strategies (here, generating par-
ticular triplets) but also to acquire general problem-solving
abilities, such as when and how to switch to new strategies.
These capabilities are essential for handling distribution
shifts between training and evaluation, a common challenge
when developing effective reasoning models.

We use a 2-head transformer encoder followed by a linear
layer as the policy and train it using the policy gradient from
Markovian RL (B.2) and from BARL (3.1). For Marko-
vian RL, the value Qπθ in the policy gradient is 1 only
when s0:T−1 contains the rewarding triplet argmaxtri r(tri)
of the ground-truth MDP, such as 000 or 111 during train-
ing. For BARL, we set β = ∞ so that

∏t−1
t′=0 exp(−β|rt′ −

rMi
(st′ , at′)|) = 1(argmaxtri rMi

(tri) /∈ s0:t), i.e., the
product is 0 when the rewarding triplet of Mi already ap-
pears in s0:t and thus is invalidated, and 1 otherwise. We
let the policy’s state-conditional belief be p(Mi|s0:t) = 1
for Mi whose rewarding triplet aligns with the sampled
policy action at, i.e., argmaxtri rMi

(tri) = st−1:t+1, where
st+1 = at ∼ πθ(·|st). Then the posterior-weighted value is

E
[
Qπθ

M(st, at)
]
= 1

(
st−1:t+1 ∈ {Mi}|M|

i=1 , st−1:t+1 /∈ s0:t
)
,

where at ∼ πθ(·|st). The above formulation incentivizes
the policy to eliminate hypotheses and switch to new strate-
gies (i.e., new triplets) when the current strategy has been
invalidated by earlier attempts up to step t. The difference
with (3.2) arises because the agent here is aware of the zero
reward associated with unterminated episodes.

Train
0

1

0

1

0

1

Markovian RL

2

Test

memorize solutions

? …

fail to generalize

random 0/1/2

Train & Test
0 1 0

Bayes-Adaptive RL

2
            r(010)=1 ✖ r(010)=1 ✖    
            r(102)=1 ✔ r(102)=1 ✖
            r(001)=1 ✔ r(001)=1 ✔

  … …                 … …
              belief at 010   belief at 0102

33 MDPs’ 
hypotheses

…
until 
r=1

        r(010)=1  ✖    
        r(102)=1  ✖
              … … 
        r(000)=1 ✔
belief at 0102…000

switch strategies w. eliminated hypotheses

0

We report the results in the following figure, where accu-
racies are averaged over 50 completions and the shadow
regions are the standard deviation across 3 independent

model training runs. The results show that Markovian RL
quickly finds and memorizes the training solutions but fails
to generalize at test time. In contrast, Bayes-Adaptive RL
increases both training and testing accuracies. Furthermore,
its accuracy and convergence rate improve when given prior
knowledge that rewarding triplets are repeated patterns, i.e.,
|M| = 3 with rM1

(000) = rM2
(111) = rM3

(222) = 1
and all other rewards are zero. This highlights the advan-
tage of more informative candidate sets, underscoring the
importance of balancing the diversity and plausibility of the
candidates. Specifically, they should be diverse enough to
capture test-time uncertainty, yet constrained to only the
most plausible candidates to shrink the hypothesis space.
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5 Experiments

We report the pass@1 accuracies in the above table. All
models are trained using three random seeds, and we cal-
culate the mean and standard deviation of the resulting ac-
curacies. It can be observed that BARL achieves higher
accuracies across most benchmarks and models. It con-
sistently outperforms the two Markovian RL baselines in
terms of average accuracy, with the most significant gains
observed on challenging benchmarks that demand effective
exploration, such as CollegeMath and OlympiadBench. We
also evaluate the token efficiency of BARL and baseline
models by measuring the total number of tokens required to
solve a problem with pass@k in the following figure. We
find that BARL achieves higher accuracies with substan-
tially fewer tokens, requiring up to 1.63x fewer average
tokens than the progress baseline, 2x fewer than GRPO, and
over 10x fewer than the base model. Please refer to Ap-
pendix D for more experiment details and ablation studies.
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Ré, C., and Mirhoseini, A. Large language monkeys:
Scaling inference compute with repeated sampling. arXiv
preprint arXiv:2407.21787, 2024.

Chen, J., Chen, W., and Schneider, J. Bayes adaptive monte
carlo tree search for offline model-based reinforcement
learning. arXiv preprint arXiv:2410.11234, 2024.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., et al. Training verifiers to solve math word problems.
arXiv preprint arXiv:2110.14168, 2021.

Dong, H., Xiong, W., Goyal, D., Zhang, Y., Chow, W., Pan,
R., Diao, S., Zhang, J., Shum, K., and Zhang, T. Raft: Re-
ward ranked finetuning for generative foundation model
alignment. arXiv preprint arXiv:2304.06767, 2023.

Duan, Y., Schulman, J., Chen, X., Bartlett, P. L., Sutskever,
I., and Abbeel, P. Rl2: Fast reinforcement learn-
ing via slow reinforcement learning. arXiv preprint
arXiv:1611.02779, 2016.

Duff, M. O. Monte-carlo algorithms for the improvement of
finite-state stochastic controllers: Application to bayes-
adaptive markov decision processes. In International
Workshop on Artificial Intelligence and Statistics, pp. 93–
97. PMLR, 2001.

Duff, M. O. Optimal Learning: Computational procedures
for Bayes-adaptive Markov decision processes. Univer-
sity of Massachusetts Amherst, 2002.

Gandhi, K., Lee, D., Grand, G., Liu, M., Cheng, W., Sharma,
A., and Goodman, N. D. Stream of search (sos): Learning
to search in language. arXiv preprint arXiv:2404.03683,
2024.

Ghavamzadeh, M., Mannor, S., Pineau, J., Tamar, A., et al.
Bayesian reinforcement learning: A survey. Founda-
tions and Trends® in Machine Learning, 8(5-6):359–483,
2015.

Ghosh, D., Rahme, J., Kumar, A., Zhang, A., Adams,
R. P., and Levine, S. Why generalization in rl is diffi-
cult: Epistemic pomdps and implicit partial observability.
Advances in neural information processing systems, 34:
25502–25515, 2021.

Ghosh, D., Ajay, A., Agrawal, P., and Levine, S. Offline
rl policies should be trained to be adaptive. In Interna-
tional Conference on Machine Learning, pp. 7513–7530.
PMLR, 2022.

Guez, A., Silver, D., and Dayan, P. Efficient bayes-adaptive
reinforcement learning using sample-based search. Ad-
vances in neural information processing systems, 25,
2012.

Guo, D., Yang, D., Zhang, H., Song, J., Zhang, R., Xu, R.,
Zhu, Q., Ma, S., Wang, P., Bi, X., et al. Deepseek-r1: In-
centivizing reasoning capability in llms via reinforcement
learning. arXiv preprint arXiv:2501.12948, 2025.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft
actor-critic: Off-policy maximum entropy deep reinforce-
ment learning with a stochastic actor. In International
conference on machine learning, pp. 1861–1870. Pmlr,
2018.

Havrilla, A., Du, Y., Raparthy, S. C., Nalmpantis,
C., Dwivedi-Yu, J., Zhuravinskyi, M., Hambro, E.,
Sukhbaatar, S., and Raileanu, R. Teaching large language
models to reason with reinforcement learning. arXiv
preprint arXiv:2403.04642, 2024.

He, C., Luo, R., Bai, Y., Hu, S., Thai, Z. L., Shen, J., Hu, J.,
Han, X., Huang, Y., Zhang, Y., et al. Olympiadbench: A
challenging benchmark for promoting agi with olympiad-
level bilingual multimodal scientific problems. arXiv
preprint arXiv:2402.14008, 2024.

Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart,
S., Tang, E., Song, D., and Steinhardt, J. Measuring math-
ematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Jaech, A., Kalai, A., Lerer, A., Richardson, A., El-Kishky,
A., Low, A., Helyar, A., Madry, A., Beutel, A., Car-
ney, A., et al. Openai o1 system card. arXiv preprint
arXiv:2412.16720, 2024.

Kazemnejad, A., Aghajohari, M., Portelance, E., Sordoni,
A., Reddy, S., Courville, A., and Roux, N. L. Vineppo:
Unlocking rl potential for llm reasoning through refined
credit assignment. arXiv preprint arXiv:2410.01679,
2024.

5



275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Title Suppressed Due to Excessive Size

Kojima, T., Gu, S. S., Reid, M., Matsuo, Y., and Iwasawa,
Y. Large language models are zero-shot reasoners. Ad-
vances in neural information processing systems, 35:
22199–22213, 2022.

Lehnert, L., Sukhbaatar, S., Su, D., Zheng, Q., Mcvay, P.,
Rabbat, M., and Tian, Y. Beyond a*: Better planning with
transformers via search dynamics bootstrapping. arXiv
preprint arXiv:2402.14083, 2024.

Lidayan, A., Dennis, M. D., and Russell, S. Bamdp shaping:
a unified framework for intrinsic motivation and reward
shaping. In The Thirteenth International Conference on
Learning Representations.

Lidayan, A., Dennis, M., and Russell, S. Bamdp shaping: a
unified theoretical framework for intrinsic motivation and
reward shaping. arXiv preprint arXiv:2409.05358, 2024.

Lightman, H., Kosaraju, V., Burda, Y., Edwards, H., Baker,
B., Lee, T., Leike, J., Schulman, J., Sutskever, I., and
Cobbe, K. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations,
2023.

Liu, Z., Hu, H., Zhang, S., Guo, H., Ke, S., Liu, B., and
Wang, Z. Reason for future, act for now: A principled
framework for autonomous llm agents with provable sam-
ple efficiency. arXiv preprint arXiv:2309.17382, 2023.

Liu, Z., Chen, C., Li, W., Qi, P., Pang, T., Du, C., Lee,
W. S., and Lin, M. Understanding r1-zero-like training:
A critical perspective. arXiv preprint arXiv:2503.20783,
2025.

Luo, L., Liu, Y., Liu, R., Phatale, S., Lara, H., Li, Y., Shu,
L., Zhu, Y., Meng, L., Sun, J., et al. Improve mathemati-
cal reasoning in language models by automated process
supervision. arXiv preprint arXiv:2406.06592, 2, 2024.

Martin, J. J. Some Bayesian decision problems in a Markov
chain. PhD thesis, Massachusetts Institute of Technology,
1965.

Ng, A. Y., Harada, D., and Russell, S. Policy invariance
under reward transformations: Theory and application
to reward shaping. In Icml, volume 99, pp. 278–287.
Citeseer, 1999.

Qiu, L., Jiang, L., Lu, X., Sclar, M., Pyatkin, V., Bhaga-
vatula, C., Wang, B., Kim, Y., Choi, Y., Dziri, N., et al.
Phenomenal yet puzzling: Testing inductive reasoning ca-
pabilities of language models with hypothesis refinement.
arXiv preprint arXiv:2310.08559, 2023.

Qiu, L., Sha, F., Allen, K., Kim, Y., Linzen, T., and van
Steenkiste, S. Bayesian teaching enables probabilis-
tic reasoning in large language models. arXiv preprint
arXiv:2503.17523, 2025.

Qu, Y., Yang, M. Y., Setlur, A., Tunstall, L., Beeching,
E. E., Salakhutdinov, R., and Kumar, A. Optimizing test-
time compute via meta reinforcement fine-tuning. arXiv
preprint arXiv:2503.07572, 2025.

Schulman, J., Moritz, P., Levine, S., Jordan, M., and Abbeel,
P. High-dimensional continuous control using generalized
advantage estimation. arXiv preprint arXiv:1506.02438,
2015.

Setlur, A., Nagpal, C., Fisch, A., Geng, X., Eisenstein, J.,
Agarwal, R., Agarwal, A., Berant, J., and Kumar, A. Re-
warding progress: Scaling automated process verifiers for
llm reasoning. arXiv preprint arXiv:2410.08146, 2024.

Shao, Z., Wang, P., Zhu, Q., Xu, R., Song, J., Zhang, M.,
Li, Y., Wu, Y., and Guo, D. Deepseekmath: Pushing
the limits of mathematical reasoning in open language
models. arXiv preprint arXiv:2402.03300, 2024.

Singh, A., Co-Reyes, J. D., Agarwal, R., Anand, A., Patil,
P., Garcia, X., Liu, P. J., Harrison, J., Lee, J., Xu, K.,
et al. Beyond human data: Scaling self-training for
problem-solving with language models. arXiv preprint
arXiv:2312.06585, 2023.

Snell, C., Lee, J., Xu, K., and Kumar, A. Scaling llm test-
time compute optimally can be more effective than scal-
ing model parameters. arXiv preprint arXiv:2408.03314,
2024.

Tang, Z., Zhang, X., Wang, B., and Wei, F. Mathscale:
Scaling instruction tuning for mathematical reasoning.
arXiv preprint arXiv:2403.02884, 2024.

Uesato, J., Kushman, N., Kumar, R., Song, F., Siegel, N.,
Wang, L., Creswell, A., Irving, G., and Higgins, I. Solv-
ing math word problems with process-and outcome-based
feedback. arXiv preprint arXiv:2211.14275, 2022.

Wang, H., Hao, S., Dong, H., Zhang, S., Bao, Y., Yang,
Z., and Wu, Y. Offline reinforcement learning for llm
multi-step reasoning. arXiv preprint arXiv:2412.16145,
2024a.

Wang, P., Li, L., Shao, Z., Xu, R., Dai, D., Li, Y., Chen,
D., Wu, Y., and Sui, Z. Math-shepherd: Verify and
reinforce llms step-by-step without human annotations.
arXiv preprint arXiv:2312.08935, 2023a.

Wang, R., Zelikman, E., Poesia, G., Pu, Y., Haber, N., and
Goodman, N. D. Hypothesis search: Inductive reasoning
with language models. arXiv preprint arXiv:2309.05660,
2023b.

Wang, Z., Li, Y., Wu, Y., Luo, L., Hou, L., Yu, H., and
Shang, J. Multi-step problem solving through a verifier:
An empirical analysis on model-induced process supervi-
sion. arXiv preprint arXiv:2402.02658, 2024b.

6



330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Title Suppressed Due to Excessive Size

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi,
E., Le, Q. V., Zhou, D., et al. Chain-of-thought prompting
elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837,
2022.

Wei, Y., Duchenne, O., Copet, J., Carbonneaux, Q., Zhang,
L., Fried, D., Synnaeve, G., Singh, R., and Wang, S. I.
Swe-rl: Advancing llm reasoning via reinforcement
learning on open software evolution. arXiv preprint
arXiv:2502.18449, 2025.

Xiang, V., Snell, C., Gandhi, K., Albalak, A., Singh, A.,
Blagden, C., Phung, D., Rafailov, R., Lile, N., Mahan,
D., et al. Towards system 2 reasoning in llms: Learning
how to think with meta chain-of-though. arXiv preprint
arXiv:2501.04682, 2025.

Yang, A., Zhang, B., Hui, B., Gao, B., Yu, B., Li, C., Liu, D.,
Tu, J., Zhou, J., Lin, J., Lu, K., Xue, M., Lin, R., Liu, T.,
Ren, X., and Zhang, Z. Qwen2.5-math technical report:
Toward mathematical expert model via self-improvement.
arXiv preprint arXiv:2409.12122, 2024.

Yeo, E., Tong, Y., Niu, M., Neubig, G., and Yue, X. Demys-
tifying long chain-of-thought reasoning in llms. arXiv
preprint arXiv:2502.03373, 2025.

Yu, L., Jiang, W., Shi, H., Yu, J., Liu, Z., Zhang, Y., Kwok,
J. T., Li, Z., Weller, A., and Liu, W. Metamath: Boot-
strap your own mathematical questions for large language
models. arXiv preprint arXiv:2309.12284, 2023.

Yu, Q., Zhang, Z., Zhu, R., Yuan, Y., Zuo, X., Yue, Y., Fan,
T., Liu, G., Liu, L., Liu, X., et al. Dapo: An open-source
llm reinforcement learning system at scale. arXiv preprint
arXiv:2503.14476, 2025.

Yuan, Z., Yuan, H., Li, C., Dong, G., Lu, K., Tan, C., Zhou,
C., and Zhou, J. Scaling relationship on learning math-
ematical reasoning with large language models. arXiv
preprint arXiv:2308.01825, 2023.

Yue, X., Qu, X., Zhang, G., Fu, Y., Huang, W., Sun, H., Su,
Y., and Chen, W. Mammoth: Building math generalist
models through hybrid instruction tuning. arXiv preprint
arXiv:2309.05653, 2023.

Zelikman, E., Wu, Y., Mu, J., and Goodman, N. Star: Boot-
strapping reasoning with reasoning. Advances in Neural
Information Processing Systems, 35:15476–15488, 2022.

Zelikman, E., Harik, G., Shao, Y., Jayasiri, V., Haber, N.,
and Goodman, N. D. Quiet-star: Language models can
teach themselves to think before speaking. arXiv preprint
arXiv:2403.09629, 2024.

Zeng, W., Huang, Y., Liu, Q., Liu, W., He, K., Ma, Z.,
and He, J. Simplerl-zoo: Investigating and taming zero
reinforcement learning for open base models in the wild.
arXiv preprint arXiv:2503.18892, 2025.

Zhang, S., Yu, D., Sharma, H., Zhong, H., Liu, Z., Yang,
Z., Wang, S., Hassan, H., and Wang, Z. Self-exploring
language models: Active preference elicitation for online
alignment. arXiv preprint arXiv:2405.19332, 2024.

Zhong, H., Yin, Y., Zhang, S., Xu, X., Liu, Y., Zuo, Y., Liu,
Z., Liu, B., Zheng, S., Guo, H., et al. Brite: Bootstrapping
reinforced thinking process to enhance language model
reasoning. arXiv preprint arXiv:2501.18858, 2025.

7



385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Title Suppressed Due to Excessive Size

A Related Work

LLM Reasoning. As an emerging capability of model scale, LLMs can generate intermediate CoTs to solve complex
reasoning tasks (Wei et al., 2022; Kojima et al., 2022) and scale test-time performance by allocating more thinking tokens
(Snell et al., 2024; Brown et al., 2024). Early efforts enhanced LLM reasoning via supervised fine-tuning on human-
annotated data (Cobbe et al., 2021; Yue et al., 2023; Yu et al., 2023) or linearized search traces (Lehnert et al., 2024; Gandhi
et al., 2024). However, due to the distribution shift between LLM responses and curated data, LLM-generated data has
proven effective through rejection sampling (Dong et al., 2023; Yuan et al., 2023) by filtering out low-quality rationales
(Zelikman et al., 2022; 2024) or with EM iterations (Singh et al., 2023; Zhong et al., 2025). Recently, RL has gained
increasing interest for improving reasoning (Aksitov et al., 2023; Havrilla et al., 2024; Wang et al., 2024a; Shao et al., 2024).
Process rewards (Uesato et al., 2022; Lightman et al., 2023) with Monte Carlo unrolls (Kazemnejad et al., 2024; Wang et al.,
2023a; 2024b; Luo et al., 2024) offer finer-grained feedback but are computationally expensive. Outcome-reward RL (Guo
et al., 2025) demonstrates emergent deliberative reasoning abilities such as self-reflection. Yet, limited work has investigated
the underlying mechanisms of such behaviors. In fact, recent findings suggest that reflections do not consistently emerge
from RL training and exhibit weak correlation with performance (Liu et al., 2025). Similar to our work, (Xiang et al., 2025;
Qu et al., 2025) also study the generalization of LLMs, from a meta-RL (Duan et al., 2016) perspective: (Xiang et al., 2025)
justify deliberative reasoning as providing extra contexts, and (Qu et al., 2025) use progress reward (Setlur et al., 2024) to
reduce regret in outcome-reward RL. Our method differs from (Xiang et al., 2025) in that we ground reflective reasoning in
environment rewards, rather than relying solely on the internal CoT states generated by the model itself. Compared to (Qu
et al., 2025), which rewards golden strategies that make progress towards the correct answer, BARL additionally encourages
exploring plausible strategies under the Bayesian framework, allowing it to account for uncertainty during both training and
testing. We experimentally compare with a variant of (Qu et al., 2025) that estimates progress using answer probability
differences. Besides, unlike (Wang et al., 2023b; Qiu et al., 2023) that manually design hypothesis proposal–selection
pipelines, our method achieves this through more principled RL optimization.

Reinforcement Learning. Conventional RL explores only during training, e.g. via ϵ-greedy noise, and exploits the
optimal deterministic policy when deployed. Exceptions include works that explicitly optimize maximum entropy objectives
(Haarnoja et al., 2018) to learn stochastic policies, primarily to accelerate training convergence in settings where evaluation
remains in-distribution, such as robotic control. Bayes-Adaptive RL (Bellman & Kalaba, 1959; Duff, 2002; Guez et al.,
2012; Ghavamzadeh et al., 2015; Lidayan et al., 2024; Zhang et al., 2024; Liu et al., 2023) has been studied to pursue
the optimal exploration-exploitation trade-off in uncertain environments to improve generalizability. When the true MDP
identity is latent and must be inferred from interaction (states, actions, rewards), Bayesian RL connects naturally to Partially
Observable MDPs (Duff, 2001; Ghosh et al., 2021). Exact solutions of the Bayesian RL objective are often intractable,
prompting the development of approximate methods (Guez et al., 2012; Arumugam & Singh; Chen et al., 2024). In our
work, we adopt policy gradient that operates over candidate answers, which differs from (Ghosh et al., 2022) that leverage
value ensembles in offline RL and (Qiu et al., 2025) that applies SFT on an oracle Bayesian model’s outputs.

B Problem Formulation
LLM Reasoning via RL. To enable the LLM policy πθ to reason, we first consider the finite-horizon MDP defined
by the state space S, action space A, horizon T , and reward function r(s, a), where s ∈ S and a ∈ A. Here, the initial
state s0 is the prompt, and the action at is the t-th step of the CoT, which can be either separated by special tokens (Wang
et al., 2023a) or defined as a fixed length of reasoning tokens (Luo et al., 2024). We adopt the latter definition due to its
simplicity. The state transition is deterministic by appending the new reasoning step, i.e., st+1 = st + at. Prior work
(Uesato et al., 2022; Guo et al., 2025) employs an outcome-level reward verifier(sT , y∗s0), which uses a verifier to perform a
regular expression match (either 0 or 1) between sT and the ground-truth answer y∗s0 corresponding to the prompt s0. We
extend this sparse-reward setting by incorporating a progress reward (Setlur et al., 2024; Qu et al., 2025), which quantifies
the increase of the model’s probability of outputting y∗s0 after appending a at the CoT s, i.e., for 0 ≤ t ≤ T − 1:

r(st, at) = πθ(y
∗
s0 | st + at + ¡/think¿)− πθ(y

∗
s0 | st + ¡/think¿), (B.1)

where ¡/think¿ is the end sign of thinking, such as the answer elicitation prompt “Based on the above reasoning, the
answer is \boxed” that we adopt. Compared to Monte-Carlo process rewards (Luo et al., 2024; Qu et al., 2025), (B.1)
is computationally efficient by avoiding multiple branched rollouts at each step, and the KV cache of s0:T from CoT
generations can also be reused.

For the Markovian RL objective JRL(πθ) := Es0,πθ
[
∑T−1

t=0 r(st, at) + verifier(sT , y∗s0)], this reward definition allows us to

8



440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Title Suppressed Due to Excessive Size

use telescoping in a way similar to reward shaping (Ng et al., 1999) to obtain

argmax
πθ

JRL(πθ) = argmax
πθ

Es0,πθ

[
πθ(y

∗
s0 | s0 + a0:T−1 + ¡/think¿) + verifier(sT+1, y

∗
s0)

]
,

i.e., the optimal Markovian policy generates a0:T−1 to maximize the likelihood of the ground-truth y∗s0 and its verifier-
evaluated correctness. The gradients for Markovian policies are

∇θJRL(πθ) = Es0,πθ

[T−1∑
t=0

∇θ log πθ(at | st) ·Qπθ (st, at)

]
, (B.2)

where Qπθ is the state-action value or advantage function (Schulman et al., 2015). The above setups consider the case when
the environment is predefined with certainty. The definitions naturally extend to any MDP M := (S,A, rM, T ) where rM
is defined w.r.t. the answer yMs0 . The Q-value is then

Qπθ

M(st, at) = Eπθ

[T−1∑
t′=t

rM(st′ , at′) + verifier(sT , y∗s0)
]

(B.3)

= Eπθ

[
πθ(y

M
s0 | st + at:T−1 + ¡/think¿)− πθ(y

M
s0 | st + ¡/think¿) + verifier(sT , y∗s0)

]
.

𝑠1 𝑠4

𝑠2 𝑠3 𝑠5 𝑠6

𝑠0

Figure 1. An example of
reflective reasoning.

Reflective Exploration. We define reflective exploration as the pattern in which the LLM back-
tracks to a prior state after an exploratory step to take different actions at that state. Specifically,
a natural language reflective reasoning step such as “Let’s reconsider the geometric relationship”
corresponds to a backtracking action that semantically disregards the previous one or more steps.
We illustrate this using a binary search tree as in the right figure: for the trajectory s0s1s2s1s3,
s1s2 is an exploration step, s2s1 is a reflective step that signals the strategy switch from s2 to
s3, and the “geometric relationship” in the above example originates from s1.

C Proof of Theorem 2.2

Proof. Consider a full binary tree of depth T ∗, with leaf set L of size |L| = 2T
∗
. The states are

the tree nodes, with the initial state fixed as the root node. The actions include the moves from the parent nodes to the child
nodes as well as a resetting action from the leaf node to the root node. The rewards are not known and differ in different
MDP hypotheses. Specifically, the reward is defined as rMi

(s) = 1(s = si), where si is a unique leaf node for Mi. The
prior of MDPs is p(Mi) = 1/|L|, where i = 1, · · · , |L|. The cumulative return is undiscounted with the minimum traverse
steps as the horizon T . The episode terminates once the agent receives a 1 reward.

For any Markovian policy π, define f(s) = p(∃t ≥ 0 : st = s | π). We define ps as the probability that π goes
left at an internal node s. By the Markov property, for any left and right children sL and sR of node s, it holds that
f(sL) = f(s)ps and f(sR) = f(s)(1 − ps). Thus, f(sL) + f(sR) = f(s). By a simple induction on depth, it
follows that at every depth d,

∑
s:depth(s)=d f(s) = 1. In particular,

∑
l∈L f(l) = 1. Since the total return under Mi is

V (π | Mi) = p(π ends at leaf li) = f(li), the expected return for the optimal Markovian policy is

1

|L|

|L|∑
i=1

V (π | Mi) =
1

2T∗

∑
l∈L

f(l) =
1

2T∗ .

Consider the following deterministic Bayes-adaptive policy. At the root node, the policy picks any leaf l with positive
posterior, i.e., p(Ml | ht) > 0, then follows the unique shortest path to l. Two possible outcomes can occur: if the
ground-truth reward r(l) = 1, then the episodes terminates with the collected reward; if r(l) = 0, then the agent eliminates
the hypothesis Ml from the posterior by setting p(Ml | ht:t+T∗) = 0, and returns to the root to repeat the process on
the remaining leaves. By construction, the expected return of this Bayes-Adaptive policy is 1, which is an exponential
improvement in T ∗ over the 1/2T

∗
return of the optimal Markovian policy.

9



495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Title Suppressed Due to Excessive Size

D Experiment Details

D.1 Experiment Setups

In addition to the synthetic experiment in Section 4, we evaluate BARL on LLM math problem-solving tasks. We implement
BARL across various models, including Qwen2.5-Math-1.5B, Qwen2.5-Math-7B (Yang et al., 2024), and DeepSeek-R1-
Distill-Llama-8B (Guo et al., 2025). Training is conducted on the Big-Math dataset (Albalak et al., 2025), and evaluation
is performed on four benchmarks: GSM8K (Cobbe et al., 2021), MATH (Hendrycks et al., 2021), CollegeMath (Tang
et al., 2024), and OlympiadBench (He et al., 2024). During training, the maximum prompt length is set to 512 and the
maximum response length is set to 1024. We exclude AIME and AMC from evaluation due to their substantially longer
context requirements, e.g., DeepSeek-R1-Distill-Llama-8B has average response lengths of 2008 and 1886 tokens on AIME
2024 and AMC 2023, respectively. For BARL, we set β = 1 and |M| = 5.

We compare BARL against two Markovian RL baselines that span outcome-reward and process-reward RL. For the outcome-
reward GRPO baseline, we set its group size to 5 for a fair comparison with BARL and, after performing a grid search
over the KL-divergence coefficients [0, 0.001, 0.005, 0.01], adopt 0.005 as it yields the best overall performance across all
benchmarks. For the process-reward baseline, we adapt a variant of MRT (Qu et al., 2025) by integrating the progress
reward defined in (B.1) into the outcome reward, which we refer to as progress in the following sections. For all algorithms,
we set the training and rollout batch sizes to 128 and 1024, respectively. We train the Qwen and Llama models for 110 and
60 iterations, respectively, defined w.r.t. the rollout batches. The temperature during online sampling is 1.0 and is 0.0 during
evaluation. For both BARL and the progress baseline, we set the number of tokens for each reasoning step as 128.

D.2 Ablation Studies

0 1 2 3 4 5 6
Difficulty Level

0.00

0.05
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Figure 2. Results on GSM8K (dashed)
and MATH (solid).

Reflective Reasoning Behaviors. To qualitatively assess the improved token ef-
ficiency of BARL, we analyze the frequency of reflective behaviors across problems
of varying difficulty levels, as shown in Figure 2. For each problem, we sample
6 responses per model and define its difficulty level by the number of incorrect
responses. We use keyword-based detections (Liu et al., 2025; Yeo et al., 2025) to
identify whether self-reflections appear in a response, and a problem is considered
to exhibit self-reflection if at least one of its responses is identified. It can be ob-
served that both models display fewer reflections on easier problems, and the base
model exhibits a higher frequency of reflections despite achieving lower accuracies.
This result reveals the weak correlation between the performance of LLMs and the
response length or the frequency of reflections. Rather, the effectiveness of thinking
tokens and the efficiency of explorations are the determining factors, which we study in the following ablation.

Effectiveness of CoTs. We measure the effectiveness of the CoTs produced by different models by calculating the average
Bayesian state-action values at each timestep, which naturally captures both the exploration and the exploitation aspects of
the actions. Specifically, the Bayesian value is defined as Qπ(bt, st, at) = Eπ,M∼bt [rM(st, at) +Qπ(bt+1, st+1, at+1)],
where the belief bt = p(M|ht). Unlike standard Q-values, the Bayesian Q-value not only incorporates the expected returns
(exploitation) but also captures the value of information gained through belief updates (exploration).
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Figure 3. Ablation on how effective the CoTs explore and exploit, measured by the Bayesian values.

The results are reported in Figure 3. We observe that the actions from the BARL model exhibit consistently higher Bayesian
values compared to those of the GRPO and base models, indicating more effective exploration and exploitation. On more
challenging benchmarks such as OlympiadBench, exploratory gains peak midway through the CoTs after an early phase of
uncertainty reduction. Moreover, the result also explains our earlier observations on token efficiency and reflective behaviors.
Although the base model exhibits more self-reflections, these are likely superficial or stylistic patterns due to their low
exploration efficiency for gathering informative contexts during evaluation.
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Figure 4. Training accuracies, lengths and eval results.

Markovian RL Optimality. We train a length-
controlled (LC) GRPO with a maximum 32 response
length over multiple epochs. Figure 4 shows the evo-
lution of the training accuracy and response length.
The rapidly decreasing length of GRPO LC indicates
that it learns to skip CoT generation and emit only the
final answer. Its asymptotic training accuracy matches
that of GRPO (max length 1024). This result supports
Theorem 2.1: Markovian RL can achieve optimality by merely memorizing solutions without reflective reasoning. Such
policies, however, generalize poorly during evaluation.

Key Experiment Findings

BARL consistently outperforms Markovian RL baselines with superior token efficiency. Performance correlates
with the effectiveness of reflective explorations, rather than their frequency. Optimality in Markovian RL can be
attained by policies that memorize training solutions yet fail to generalize, with no guarantees on the emergence of
self-reflections.

D.3 Evaluation Results: Accuracies

In this section, we provide the evaluation accuracy results for Qwen2.5-Math-1.5B, Qwen2.5-Math-7B, and DeepSeek-R1-
Distill-Llama-8B in Figure 5, 6, and 7, respectively. In addition to the benchmark scores in Table ??, we also report the
performance of the models on AIME 2024 and AMC 2023. It can be observed that BARL outperforms Markovian RL
baselines in terms of both accuracy and convergence rate on most of the reported benchmarks. Again, the performance on
AIME and AMC benchmarks may be further enhanced by choosing harder training data with increased response length,
especially for R1-Distill-Llama-8B fine-tuned models whose initial average response lengths on AIME and AMC (2008 and
1886, respectively) exceed the maximum training length (1024).
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Figure 5. Average evaluation accuracies over training iterations for Qwen2.5-Math-1.5B models.
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Figure 6. Average evaluation accuracies over training iterations for Qwen2.5-Math-7B models.

12



660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Title Suppressed Due to Excessive Size

0 10 20 30 40 50 60
Iteration

81

82

83

84

85

86

Ac
cu

ra
cy

GSM8K

GRPO
Progress
BARL

0 10 20 30 40 50 60
Iteration

64

66

68

70

72

74

Ac
cu

ra
cy

MATH

GRPO
Progress
BARL

0 10 20 30 40 50 60
Iteration

36

37

38

39

40

41

Ac
cu

ra
cy

CollegeMath

GRPO
Progress
BARL

0 10 20 30 40 50 60
Iteration

25.0

27.5

30.0

32.5

35.0

37.5

Ac
cu

ra
cy

OlympiadBench

GRPO
Progress
BARL

0 10 20 30 40 50 60
Iteration

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Ac
cu

ra
cy

AIME 2024

GRPO
Progress
BARL

0 10 20 30 40 50 60
Iteration

40

45

50

55

60

65

Ac
cu

ra
cy

AMC 2023

GRPO
Progress
BARL

Figure 7. Average evaluation accuracies over training iterations for R1-Distill-Llama-8B models.

D.4 Evaluation Results: Response Lengths

In this section, we present the evolution of evaluation response lengths over training iterations for Qwen2.5-Math-1.5B,
Qwen2.5-Math-7B, and DeepSeek-R1-Distill-Llama-8B, shown in Figures 8, 9, and 10, respectively. Across most bench-
marks, response lengths tend to decrease as training progresses for all algorithms. The response length during training
has a very similar trend to that during evaluation. This trend arises because all three models exhibit reflective behaviors,
such as self-evaluation and backtracking, that introduce redundant tokens and lengthen responses. As shown in Figure 3,
these behaviors are likely superficial or stylistic patterns with limited effectiveness. An exception is AIME, where some
models maintain consistently long responses due to the benchmark’s intrinsic requirement for extended reasoning, even
under optimal non-reflective policies.
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Figure 8. Average evaluation response lengths over training iterations for Qwen2.5-Math-1.5B models.
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Figure 9. Average evaluation response lengths over training iterations for Qwen2.5-Math-7B models.

Since the models used in the main experiments already exhibit lengthy CoTs with reflective patterns, we further implement
BARL on the Llama-3.2-3B-Instruct model, which displays fewer self-reflections. The results are presented in Figure 11.
Initially, the response length decreases as the base model tends to produce excessively long reasoning traces, often exceeding
ten steps, which are pruned during early training. Subsequently, the response length increases, as a result of plausible
strategy stitching.

D.5 Token Efficiency without Greedy Decoding Outputs

In Figure 12, we present the pass@k accuracies from an ablation similar to Section D.2, except that greedy decoding outputs
are excluded when computing token counts and accuracies. We observe that the base and GRPO models are less robust
under a sampling temperature of 1.0, resulting in significantly lower pass@1 accuracies compared to greedy decoding. This
degradation may stem from the fragility of their CoTs, which often exhibit stylistic but unproductive self-reflection and
backtracking behaviors.

D.6 Some Unsuccessful Attempts

As a straightforward implementation of the Bayes-Adaptive RL policy gradient in (3.1), we explored using value ensembles
to estimate the posterior-weighted value EM∼p(M|ht)[Q

πθ

M(st, at)]. Specifically, we trained an ensemble of state-action
value functions to capture epistemic uncertainty. We experimented with two approaches to constructing the ensemble:
(1) fine-tuning multiple linear value heads on disjoint data subsets, each paired with chain-of-thought (CoT) trajectories
and outcome rewards; and (2) applying Bayesian LoRA. However, both methods failed to effectively capture epistemic
uncertainty, likely because they fine-tune only a small subset of LLM parameters, which is insufficient to fully represent the
uncertainty. While maintaining independent value models may better capture this uncertainty, doing so incurs substantial
computational cost. We leave the development of more efficient implementations to future work.

E Conclusion

Large Language Models (LLMs) trained via Reinforcement Learning (RL) have exhibited emergent behaviors such as
self-reflective reasoning. Yet in conventional Markovian RL, exploration is confined to the training phase to identify action
sequences that maximize cumulative reward, and resorts to pure exploitation at test time. Besides, the Markov assumption
indicates the dependency on history only through the state. Thus, Markovian RL neither ensures the emergence of reflective
exploration nor explains its benefits during testing. We propose to fill this gap with Bayes-Adaptive RL, which explicitly
considers test-time performance by maximizing the expected return under a posterior of MDPs. Within this framework,
we propose BARL, a novel algorithm for LLM reasoning that provides principled guidance for when and how to engage
in reflective exploration. BARL enables efficient exploration through hypothesis elimination and strategy switching. Our
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Figure 10. Average evaluation response lengths over training iterations for R1-Distill-Llama-8B models.
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Figure 11. Results of BARL fine-tuned on Llama-3.2-3B-Instruct. (Left) Training accuracy and (Middle) response length. (Right)
Evaluation results.

experiments are conducted on both synthetic and mathematical reasoning tasks, where we show that BARL outperforms
Markovian RL algorithms at test time and its exploration is more efficient. As future work, we plan to extend our approach
to broader domains, such as coding and agentic tasks.
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Figure 12. Ablation on token efficiency and pass@k accuracies with sampling temperature= 1. GRPO and the base models are less robust
to temperatures.
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