
Published in Transactions on Machine Learning Research (02/2026)

Natural Policy Gradient for Average Reward
Non-Stationary Reinforcement Learning

Neharika Jali, Eshika Pathak∗, Pranay Sharma†, Guannan Qu, Gauri Joshi
Carnegie Mellon University
{njali, gqu, gaurij}@andrew.cmu.edu, epathak2@illinois.edu, pranaysh@iitb.ac.in

Reviewed on OpenReview: https: // openreview. net/ forum? id= hBJYNAYtoo

Abstract

We consider the problem of non-stationary reinforcement learning (RL) in the infinite-horizon
average-reward setting. We model it by a Markov Decision Process with time-varying rewards
and transition probabilities, with a variation budget of ∆T . Existing non-stationary RL
algorithms focus on model-based and model-free value-based methods. Policy-based methods
despite their flexibility in practice are not theoretically well understood in non-stationary RL.
We propose and analyze the first model-free policy-based algorithm, Non-Stationary Natural
Actor-Critic (NS-NAC), a policy gradient method with knowledge of the variation budget, a
restart based exploration for change and a novel interpretation of learning rates as adapting
factors. Next, eliminating the requirement of apriori knowledge of variation budget ∆T , we
present a bandit-over-RL based parameter-free algorithm BORL-NS-NAC. We present a
dynamic regret of Õ(|S|1/2|A|1/2∆1/6

T T 5/6) for both algorithms under standard assumptions,
where T is the time horizon, and |S|, |A| are the sizes of the state and action spaces. The
regret analysis leverages a novel adaptation of the Lyapunov function analysis of NAC to
dynamic environments and characterizes the effects of simultaneous updates in policy, value
function estimate and changes in the environment.

1 Introduction

While Reinforcement Learning has traditionally been studied in stationary environments with time-invariant
rewards and state-transitions, this may not always be the case. Consider the examples of a carbon-aware
datacenter job scheduler that tracks the dynamic electricity prices and local weather patterns [1] and
recommendation systems with evolving user preferences [2]. Time-varying environments are also observed in
healthcare [3], ride-sharing [4], and multi-agent systems [5]. Motivated by these applications, we consider the
problem of non-stationary reinforcement learning, modeled by a Markov Decision Process with time-varying
rewards and transition probabilities, in the infinite horizon average reward setting. While many works
consider discounted rewards [3, 6, 7], the more challenging average-reward setting is vital in problems where
the importance of rewards does not decay with time [8, 9, 10, 11]. The key challenges for an agent operating
in a dynamic environment are learning an optimal behavior policy that varies with the environment, devising
an efficient exploration strategy, and effectively incorporating the acquired information into its behavior.

Current algorithms designed for non-stationary MDPs in the average reward setting can be classified broadly
into model-based and model-free value-based methods. Model-based solutions incorporate sliding windows,
forgetting factors, and confidence interval management mechanisms into UCRL [12, 13, 14, 15]. Model-
free value-based methods assimilate restarts and optimism into Q-Learning [16, 17] and LSVI [18, 19]. A
significant gap in literature is absence of model-free policy-based techniques for time-varying environments.

∗Currently at University of Illinois Urbana-Champaign
†Currently at C-MInDS, Indian Insitute of Technology Bombay

1

https://openreview.net/forum?id=hBJYNAYtoo

Published in Transactions on Machine Learning Research (02/2026)

The inherent flexibility of policy-based algorithms makes them suitable for continuous state-action spaces,
efficient parameterization in high-dimensional state-action spaces, and enables effective exploration through
stochastic policy learning [20].

Our Contributions. We tackle the problem of non-stationary reinforcement learning in the challenging
infinite-horizon average reward setting in the following manner.

1. We propose and analyze Non-Stationary Natural Actor-Critic (NS-NAC), a policy gradient method with
knowledge of the variation budget, a restart based exploration for change and a novel interpretation of
learning rates as adapting factors. To the best of our knowledge, this is the first model-free policy-based
method for time-varying environments.

2. We present a bandit-over-RL based parameter-free algorithm BORL-NS-NAC that eliminates the need for
knowing the variation budget ∆T apriori.

3. We present a Õ
(
|S|1/2|A|1/2∆1/6

T T 5/6
)

dynamic regret bound for both algorithms under standard as-
sumptions including uniform ergodicity where T is the time horizon, ∆T represents the variation budget of
rewards and transition probabilities, |S||A| is the size of the state-action space and Õ(·) hides logarithmic
factors. The regret analysis leverages a novel adaptation of the Lyapunov function analysis of NAC to
dynamic environments and characterizes the effects of simultaneous updates in policy, value function
estimate and changes in the environment.

2 Related Work

Non-Stationary RL. Solutions to the non-stationary RL problem can be categorized into passive and
active methods. Active algorithms are designed to actively detect changes in the environment in contrast to
passive ones which implicitly adapt to new environments without distinct recognition of the change. While
we focus our attention on passive techniques with dynamic regret as the performance metric in this work, a
comprehensive survey can be found in [21] and [22]. Model-based solutions in the infinite horizon average
reward setting incorporate into UCRL a sliding window or a forgetting factor for piecewise stationary MDPs
[14], variation aware restarts [13] and a bandit based tuning of sliding window and confidence intervals [12]
for gradual or abrupt changes constrained by a variation budget.

In the episodic setting, model-free value based methods assimilate restarts and optimism into Q-Learning
[16], LSVI [18, 19] and sliding window and optimistic confidence set based exploration into a value function
approximated learning [17]. Further, in the episodic setting, [23] proposes strategically pausing learning as
an effective solution to non-stationarity with forecasts of the future. [24] proposed an algorithm agnostic
black-box approach that finds a non-stationary equivalent to optimal regret stationary MDP algorithms.
[12, 16] also present parameter-free non-stationary RL algorithms that leverage the bandit-over-RL framework
to adaptively tune algorithm without knowledge of the variation budget. Further, [16] presents an information
theoretic lower bound on the dynamic regret and [25] captures the complexity of updating value functions
with any change. We note the distinction between the scope of this work and the body of research on
adversarial MDPs which often allow for only changes in rewards, study the static regret and work with full
information feedback instead of bandit feedback. See Section A for a table of comparison of regret bounds.

Non-Stationary Bandits. A precursor to non-stationary RL, the multi-armed bandit problem with
time-varying rewards was first proposed in [26]. Solutions include UCB with a sliding window or a discounting
factor [26], UCB with adaptive blocks of exploration and exploitation [27], Restart-Exp3 [27], Thompson
Sampling with a discounting factor [28] and bandit based sliding window tuning [29]. Further, while most
existing works assume arbitrarily (constrained by variation budget) changing reward distributions, [30]
achieves an improved regret when the reward distributions change smoothly. Recent work by [31] points
out ambiguities in the definition of non-stationary bandits and how the dynamic regret performance metric
causes over-exploration, and [32] proposes, predictive sampling, an algorithm that deprioritizes acquiring
information that loses usefulness quickly.

2

Published in Transactions on Machine Learning Research (02/2026)

Policy Gradient Algorithms for Stationary RL. [33] presents the first finite time convergence of the
average reward two timescale Advantage Actor-Critic (A2C) to a stationary point. [34] further improved its
rate by leveraging a single timescale algorithm. Convergence to global optima of A2C was analyzed in [35, 36]
which use a two loop structure with the inner loop critic estimation. Further, [37] combines a mirror descent
update with experience replay and characterized global convergence. Natural Policy Gradient (NPG) was
analyzed in the discounted reward case in [38, 39] and with entropy regularization in [40]. NPG in the average
reward setting with exact gradients was characterized in [41]. Most relevant to our work is the Natural Actor
Critic (NAC) analyzed for the discounted reward case in [42] and average reward setting with (compatible)
function approximation in [43].

3 Problem Setting

Notation. Standard typeface (e.g., s) denote scalars and bold typeface (e.g., r, A) denote vectors and
matrices. ∥ · ∥∞ denotes the infinity norm and ∥ · ∥2 denotes the 2-norm of vectors and matrices. Given two
probability measures P and Q, dT V (P, Q) = 1

2
∫

X |P (dx) − Q(dx)| is the total variation distance between
P and Q, while DKL(P∥Q) =

∫
X P (dx) log P (dx)

Q(dx) is the KL-divergence. For two sequences {an} and {bn},
an = O(bn) represents the existence of an absolute constant C such that an ≤ Cbn. Further Õ is used to
hide logarithmic factors. |S| denotes the cardinality of a set S. Given a positive integer T , [T] denotes the
set {0, 1, 2, · · · , T − 1}.

3.1 Preliminaries: Stationary RL

Markov Decision Process. Reinforcement learning tasks can be modeled as discrete-time Markov Decision
Processes (MDPs). An MDP is represented as M = (S,A, P, r) where S and A are, respectively, finite
sets of states and actions, P ∈ R|S||A|×|S| is the transition probability matrix, with P (s′|s, a) ∈ [0, 1], for
s, s′ ∈ S, a ∈ A, and r ∈ R|S||A| is the reward vector with individual entries {r(s, a)} bounded in magnitude
by constant UR > 0. An agent in state s takes an action a ∼ π(·|s) according to a policy π, where for each
state s, π(·|s) is a probability distribution over the action space. The agent then receives a reward r(s, a)
and transitions to the next state s′ ∼ P (·|s, a). We denote the policy by π ∈ R|S||A|, which concatenates
{π(·|s)}s. In a stationary MDP, the transition probabilities P and the rewards r are time-invariant.

Average Reward and Value Functions. In this work, we consider the average reward setting, essential in
modeling problems where the importance of rewards does not decay with time [9, 11]. The time averaged
reward of an ergodic Markov chain following policy π converges to

Jπ := lim
T →∞

E
[∑T −1

t=0 r(st, at)
]

T
= Es∼dπ,P(·),a∼π(·|s) [r(s, a)] ,

where dπ,P is the stationary distribution over states induced by policy π and transition probabilities P. The
relative state-value function defines overall reward accumulated when starting from state s as

V π(s) := E

[∞∑
t=0

(r(st, at)− Jπ)
∣∣∣s0 = s

]
,

where the expectation is over the trajectory rolled out by at ∼ π(·|st) and st+1 ∼ P (·|st, at). Similarly, the
relative state-action value function defines the overall reward accumulated by policy π when starting from
state s and action a as

Qπ(s, a) := E

[∞∑
t=0

(r(st, at)− Jπ) |s0 = s, a0 = a

]
.

Natural Actor-Critic. The goal of an agent is to find a policy that maximizes the average reward

π⋆ = max
π

Jπ = max
π

Es∼dπ,P(·),a∼π(·|s) [r(s, a)] .

3

Published in Transactions on Machine Learning Research (02/2026)

Here, we consider the actor-critic class of policy-based algorithms. While actor-only methods are at a
disadvantage due to inefficient use of samples and high variance and critic-only methods are at a risk of the
divergence from the optimal policy, actor-critic methods provide the best of both worlds [33]. An actor-critic
algorithm learns the policy and the value function simultaneously by gradient methods. Further, the natural
actor-critic leverages the second-order method of natural gradient to establish guarantees of global optimality
[44, 42]. The actor updates the policy πθ parameterized by θ by performing a natural gradient ascent [45]
step

θ ← θ + βF −1
πθ
∇Jπθ , where Fπθ

:= Es∼dπθ ,P(·),a∼πθ(·|s)

[
∇ logπθ(a|s) (∇ logπθ(a|s))⊤

]
.

Fπθ
is called the Fisher Information matrix. The gradient of the average reward is given by the Policy

Gradient Theorem [20, Section 13.2] as

∇Jπθ = Es∼dπθ ,P(·),a∼πθ(·|s) [Qπθ (s, a)∇ logπθ(a|s)] .

The critic enables an approximate policy gradient computation by estimating the Q-Value function Qπ(s, a)
using TD-learning as

Q(s, a)← Q(s, a) + α [r(s, a)− η + Q(s′, a′)−Q(s, a)] ,

where s′ ∼ P (·|s, a), a′ ∼ π(·|s′), and η is an estimate of the average reward Jπ.

3.2 Non-Stationary RL

In this work, we study reinforcement learning with time-varying environments. The MDP is modeled by a
sequence of environments M = {Mt = (S,A, Pt, rt)}T −1

t=0 , with time-varying rewards {rt} and transition
probabilities {Pt}. At each time t, the agent in state st takes action at, receives a reward rt(st, at), and
transitions to the next state st+1 ∼ Pt(·|st, at). The cumulative change in the reward and transition
probabilities is quantified in terms of variation budgets ∆R,T and ∆P,T as

∆R,T =
T −1∑
t=0
∥rt+1 − rt∥∞, ∆P,T =

T −1∑
t=0
∥Pt+1 −Pt∥∞, ∆T = ∆R,T + ∆P,T . (1)

Note that while the overall budgets ∆R,T , ∆P,T may be used as inputs by the agent, the variations at a given
time t, ∥rt+1 − rt∥∞ and ∥Pt+1 −Pt∥∞, are unknown.

We denote the long-term average reward obtained by following policy πt in the environment Mt by

Jπt
t = Es∼dπt,Pt (·),a∼π(·|s) [rt(s, a)] .

Further, the state and state-action value functions at time t are solutions to the Bellman equations

V πt
t (s) =

∑
a∈A

π(a|s)Qπt
t (s, a) and Qπt

t (s, a) = rt(s, a)− Jπt
t +

∑
s′∈S

Pt(s′|s, a)V πt
t (s′).

The set of solutions to the Bellman equations above is Qπt
t = {Qπt

t,E + c1|Qπt

t,E ∈ E, c ∈ R} where E is the
subspace orthogonal to the all ones vector and Qπt

t,E is the unique solution in E [46].

Dynamic Regret. The goal of the agent is to maximize the time-averaged reward
∑T −1

t=0 rt(st, at)/T . We
measure performance using an equivalent metric called the dynamic regret defined as

Dyn-Reg(M, T) := E

[
T −1∑
t=0

J
π⋆

t
t − rt(st, at)

]
, (2)

where π⋆
t = arg maxπ Jπ

t is the optimal policy in the environmentMt = (S,A, Pt, rt) at time t. The optimal
average reward J

π⋆
t

t associated with π⋆
t can be computed by solving the linear program (27) described

in Section D.4. The model of change and notion of dynamic regret considered here are standard in the

4

Published in Transactions on Machine Learning Research (02/2026)

non-stationary RL literature [12, 47, 18, 16, 17]. Note that it is more challenging to analyze and practical
than static regret, which compares the cumulative reward collected by an agent against that of a single
stationary optimal policy [48, 19].

Challenges due to Non-Stationarity. When running policy-gradient methods in stationary RL, the policy
evolves to efficiently learn a fixed environment (P, r). However, in non-stationary case, the environment
(Pt, rt) also changes over time. Therefore, the agent chases a moving target, namely, the time-varying optimal
policy π⋆

t , resulting in the following unique challenges.

• Explore-for-Change vs Exploit: The agent needs to explore more aggressively than in the stationary setting
to adapt to the changing dynamics. As an example, a sub-optimal action at the current timestep may
become optimal at a later timestep, necessitating re-exploration. This is in sharp contrast to stationary
RL, where sub-optimal actions are picked less often as time progresses.

• Forgetting Old Environments: The policy and value function estimates must evolve quickly lest they might
become irrelevant when the environment changes significantly. However, observations are noisy and the
agent needs to collect multiple samples to obtain confident estimates. Hence, an agent has to carefully
balance the rate of forgetting the old environment versus learning a new one.

4 Algorithm: NS-NAC

In this section, we present Non-Stationary Natural Actor-Critic (NS-NAC), a two-timescale natural policy
gradient method with a restart based exploration for change and step-sizes designed to carefully balance
the rate of forgetting the old environment and adapting to a new one. Note that we use the variation
budget ∆T as an input to NS-NAC here. Since the variation budget may not always be known, we present a
parameter-free algorithm BORL-NS-NAC in Section 6 that does not require this.

Algorithm 1 Non-Stationary Natural Actor-Critic (NS-NAC)
1: Input time horizon T ; variation budgets ∆R,T , ∆P,T ; projection radius RQ

2: Set step-sizes of actor β, critic α, average reward γ as function of ∆R,T , ∆P,T ; number of restarts N of
length H = ⌊ T

N ⌋ as function of ∆R,T , ∆P,T ; time t = 0; s0 ∼ some starting distribution
3: for n = 0, 1, 2, . . . , N − 1 do
4: Set policy πt(a|s) = 1

|A| , value function Qt(s, a) = 0 ∀s, a, average reward estimate ηt = 0
5: Take action at ∼ πt(·|st)
6: for h = 0, 1, 2, . . . , H − 1 do
7: Observe reward rt(st, at), next state st+1 ∼ Pt(·|st, at), take action at+1 ∼ πt(·|st+1)
8: ηt+1 ← ηt + γ (rt(st, at)− ηt)
9: Qt+1(st, at)← ΠRQ

[Qt(st, at) + α (rt(st, at)− ηt + Qt(st+1, at+1)−Qt(st, at))]
10: πt+1(a|s)← πt(a|s) exp(βQt(s,a))∑

a′∈A
πt(a′|s) exp(βQt(s,a′))

, ∀s, a

11: t← t + 1
12: end for
13: end for

The NS-NAC algorithm seeks to maximize the total reward received over the time horizon T , given the
variation budgets ∆R,T and ∆P,T . At timestep t, πt denotes the softmax parameterized tabular policy with
parameters θt ∈ R|S||A| where πt(a|s) ≥ 0 ∀a ∈ A and

∑
a πt(a|s) = 1 ∀s ∈ S and represented as

πt = exp[θt]s,a∑
a′∈A exp[θt]s,a′

.

π⋆
t = arg maxπ Jπ

t is the optimal policy in the environment Mt. The estimate of the tabular state-action
value function Qπt

t is denoted by Qt ∈ R|S||A|. ηt denotes the estimate of the average reward Jπt
t .

NS-NAC divides total horizon T into N segments of length H = ⌊T/N⌋ each. At the beginning of each
segment, the algorithm restarts the NAC sub-routine (line 4), thereby ensuring that the algorithm sufficiently

5

Published in Transactions on Machine Learning Research (02/2026)

explores for change. Next, at each time-step t = nH + h ∀n ∈ [N], h ∈ [H], the actor (slower timescale) takes
a natural gradient ascent step [38] towards optimal policy in environment Mt as

θt+1 ← θt + βF −1
πt

Es,a [Qπt
t (s, a)∇ log πt(a|s)] =⇒ πt+1(a|s)← πt(a|s) exp(βQπt

t (s, a))∑
a′∈A πt(a′|s) exp(βQπt

t (s, a′))∀s, a.

In the absence of knowledge of the exact natural gradient, the actor uses an estimate of the value function to
update the policy with tabular softmax parameterization as in line 10.

The critic (faster timescale) estimates the tabular state-action value function of the current policy πt as
Qt using TD-Learning with step-size α (line 9). The projection step in line 9 is defined as ΠRQ

[x] :=
arg min∥y∥2≤RQ

∥x − y∥2 (see Lemma 1 and following discussion on choice of RQ). Further, the average
reward estimate ηt is updated with step-size γ (line 8). Using a two timescale technique with α ≫ β,
NS-NAC thus enables the actor to chase the moving target π⋆

t facilitated by the critic updates of the value
function estimates which adapt to the changed data distribution. In the stationary RL case, this change in
data distribution is induced solely by the evolving actor policy, while in non-stationary RL, the time-varying
environment (Pt, rt) further exacerbates it. Further, as Theorem 1 suggests, a careful selection of the
step-sizes as a function of the variation budgets enables NS-NAC to balance the rate of forgetting the old
environment versus learning a new one.

Function Approximation. While we consider the tabular formulation here for the ease of presentation,
NS-NAC can also be extended to the function approximation setting. Further details in Section E.

5 Regret Analysis: NS-NAC

In this section, we set up notation and assumptions and establish an upper bound on the dynamic regret of
NS-NAC. We further present a sketch of the proof in Section 7.

5.1 Assumptions

Notation. We denote an observation Ot = (st, at, st+1, at+1). If dπt,Pt(·) is the stationary distribution
induced over the states, we define the matrices A(Ot), Āπt,Pt ∈ R|S||A|×|S||A| as

A(Ot)i,j =


−1, if (st, at) ̸= (st+1, at+1), i = j = (st, at)
1, if (st, at) ̸= (st+1, at+1), i = (st, at), j = (st+1, at+1)
0, else

Āπt,Pt = Es∼dπt,Pt (·),a∼πt(·|s),s′∼Pt(·|s,a),a′∼πt(·|s′) [A(s, a, s′, a′)] .

If Dπt,Pt = diag
(
dπt,Pt(s)πt(a|s)

)
and 1 is the all ones vector, then the TD limiting point [42] satisfies

Dπt,Pt (rt − Jπt
t 1) + Āπt,PtQπt

t = 0. (3)
Assumption 1 (Uniform Ergodicity, [33, 43]). A Markov chain generated by implementing policy π and
transition probabilities P is called uniformly ergodic, if there exists m > 0 and ρ ∈ (0, 1) such that

dT V

(
P (sτ ∈ ·|s0 = s), dπ,P) ≤ mρτ ∀τ ≥ 0, s ∈ S,

where dπ,P is the stationary distribution induced over the states. We assume Markov chains induced by all
potential policies πt in all environments Pt, t ∈ [T], are uniformly ergodic with parameters m, ρ. Further, if
π⋆

t denotes the optimal policy for the environment Mt = (S,A, Pt, rt), there exists C > 0 such that

C = inf
s,t,t′,π

dπ,Pt′ (s)
dπ⋆

t ,Pt(s) > 0.

Lemma 1 (Lemma 2, [46]). Under Assumption 1, for all potential policies πt in all environments Pt, t ∈ [T],
Āπt,Pt is negative semi-definite. Define its maximum non-zero eigenvalue as −λ.

Assumption 1 is standard in literature [41, 33, 49]. Also note, we set the projection radius RQ = 2URλ−1 in
line 9 because ∥

(
Āπt,Pt

)† ∥2 ≤ λ−1 where † represents the pseudo-inverse.

6

Published in Transactions on Machine Learning Research (02/2026)

5.2 Bounds on Regret

Theorem 1. If Assumption 1 is satisfied, the step-sizes are chosen as 0 < α, β, γ < 1/2 and number of
restarts as 0 < N < T in Algorithm 1, then we have

Dyn-Reg(M, T) = E

[
T −1∑
t=0

J
π⋆

t
t − rt(st, at)

]
≤ Õ

(
N

β

)
+ Õ

(√
NT

α

)
︸ ︷︷ ︸

effect of initialization

+ Õ
(

βT

α

)
+ Õ

(
T
√

β
)

︸ ︷︷ ︸
cumulative change

in policy over horizon T

+ Õ
(

βT

γ

)
+ Õ (T√γ) + Õ

(√
NT

γ

)
︸ ︷︷ ︸
error in average reward estimate at critic

+ Õ
(
T
√

α
)︸ ︷︷ ︸

cumulative change
in critic estimates

+ Õ
(∆T T

N

)
+ Õ

(
∆1/3

T T 2/3
√

α
+ ∆1/3

T T 2/3
√

γ

)
︸ ︷︷ ︸

error due to non-stationarity

,

(4)

where ∆T = ∆R,T + ∆P,T , Õ(·) hides the constants and logarithmic dependence on the time horizon T .
Choosing optimal α⋆ = γ⋆ =

(∆T

T

)1/3, β⋆ =
(∆T

T

)1/2 and N⋆ = ∆5/6
T T 1/6, the resulting regret (with explicit

dependence on the size of the state-action space |S|, |A|) is

Dyn-Reg(M, T) ≤ Õ
(
|S|1/2|A|1/2∆1/6

T T 5/6
)

. (5)

We provide a sketch of the proof in Section 7 and the full proof in Section D. Further, extension of NS-NAC to
the function approximation setting can be found in Section E.

Effect of Non-Stationarity. The variation budget ∆T (1) represents the extent of non-stationarity of the
environment. In Theorem 1, as the variation budget increases, so do the optimal choice of step-sizes and
number of restarts, and the regret incurred (5). This observation is consistent with the intuition that in a
rapidly changing environment, the algorithm must adapt quickly and explore more (hence, larger step-sizes
and more restarts). However, as a result, the algorithm cannot exploit its current policy and value-function
estimates, which soon become outdated (hence, higher regret). Also, in environments with larger state/action
spaces, the agent requires proportionately more samples to detect changes and learn a good policy.

Remark. Define the mixing time [33] as τmix := min{i ≥ 0|mρi−1 ≤ min{α, β}} with m, ρ as in Assumption 1.
The explicit dependence of the upper bound, tracked in Section D, on τmix and λ can be stated as

Dyn-Reg(M, T) ≤ Õ
(
|S|1/2|A|1/2 τmix

λ
∆1/6

T T 5/6
)

.

We choose not to include this explicit dependence in Theorem 1 to maintain focus on the dependence of
regret on the variation budget and prevent confusion by direct comparison to the diameter D of an MDP.
Theorem 2 ([16], Proposition 1). For any learning algorithm, there exists a non-stationary MDP such that
the dynamic regret of the algorithm is at least Ω(|S|1/3|A|1/3D2/3∆1/3

T T 2/3) where D is the diameter.

Gap between Bounds. To the best of our knowledge, this is the first bound on dynamic regret for
model-free policy-based algorithm in the infinite horizon average reward setting. Observe that the infinite
horizon setting (only one sample per environment available) is harder than the episodic setting (environment
remains stationary during the episode) and necessitates a single loop algorithm with the policy being updated
at every timestep. We conjecture that the gap between the bounds results from a slack in the analysis
of the underlying Natural Actor-Critic (NAC) algorithm. The best-known regret bounds for NAC for an
infinite horizon stationary MDP in the (compatible) function approximation setting with a two timescale
algorithm is Õ(T 3/4) [42]. Analysis of the actor involves the norm of the critic estimation error ∥Qt −Qπt

t ∥
(Proposition 1) whereas guarantees for critic establish a bound on norm-squared of the error ∥Qt −Qπt

t ∥2

(Proposition 2). This mismatch, which underlies the sub-optimality of the current best stationary infinite
horizon NAC analysis, is exacerbated in non-stationary environments resulting in the gap between the upper
and the lower bounds. 1 Note that mismatch of the value function estimation error between actor and critic
doesn’t occur in the analysis of model-based methods which use Hoeffding style high probability bounds.

1The term characterizing the difference in value functions at consecutive timesteps ∥Qπt+1
t+1 − Qπt

t ∥ is the cause for the

bottleneck Õ
(

∆1/3
T T 2/3

(
1√
α

+ 1√
γ

))
term (see I4, I5, I6 in Proposition 2).

7

Published in Transactions on Machine Learning Research (02/2026)

6 Unknown Variation Budgets: BORL-NS-NAC

NS-NAC required knowledge of the variation budget to achieve sub-linear regret by choosing the optimal
step-sizes and number of restarts as described in Theorem 1 which is not always possible in practice. To
overcome this limitation, in this section, we propose a parameter-free algorithm that adaptively learns the
variation budget when it is unknown a priori. Inspired by the bandit-over-RL (BORL) framework in [16, 12],
we present BORL-NS-NAC that does not require prior knowledge of the variation budget ∆T yet achieves
sub-linear dynamic regret. Further, utilizing the EXP3.P analysis from [50], we present a regret upper bound.

Algorithm 2 Bandit-over-RL Non-Stationary Natural Actor-Critic (BORL-NS-NAC)
1: Input time horizon T , projection radius RQ

2: Initialize u0,j = 0, p0,j = 1
⌈ln T ⌉ ∀j ∈ [⌈ln T ⌉], epoch length W

3: Set ξ = 0.95
√

⌈ln T ⌉
⌈ln T ⌉⌈T/W ⌉ , σ =

√
⌈ln T ⌉

⌈ln T ⌉⌈T/W ⌉ , ζ = 1.05
√

⌈ln T ⌉⌈ln T ⌉
⌈T/W ⌉

4: for i = 0, 1, . . . , ⌊T/W ⌋ do
5: Sample ji ∼ pi where pi,j = (1− ζ) exp (ξui,j)∑

j
exp (ξui,j)

+ ζ
⌈ln T ⌉

6: Set step-sizes βi =
(

T ji/⌊ln T ⌋

T

)1/2
, αi = γi =

(
T ji/⌊ln T ⌋

T

)1/3
and restarts Ni = W

(
T ji/⌊ln T ⌋

T

)5/6

7: Run NS-NAC (Algorithm 1) for W time-steps and observe cumulative reward Ri,ji
=

(i+1)W −1∑
t=iW

rt(st, at)

8: Update posterior as ui+1,j = ui,j + σ+Ij=ji
·Ri,ji

/W

pi,j

9: end for

BORL-NS-NAC works by leveraging the adversarial bandit framework to tune the variation budget dependent
parameters, i.e. step-sizes and number of restarts, in NS-NAC and hedges against changes in rewards and
transition probabilities. Algorithm 2 runs the EXP3.P algorithm [50] over ⌈T/W ⌉ epochs with NS-NAC as a
sub-routine in each epoch. In each epoch, an arm of the bandit is pulled to choose the parameters of the
sub-routine and the cumulative rewards received are used to update the posterior. The space of all possible
parameters is discretized and the arms of the bandit are considered to be T = {T 0, T 1/⌊ln T ⌋, T 2/⌊ln T ⌋, . . . , T}.
In each epoch i, arm ji is pulled/sampled from the distribution pi (line 5) as

pi,j = (1− ζ) exp (ξui,j)∑
j exp (ξui,j) + ζ

⌈ln T ⌉
,

and step-sizes and number of restarts for the NS-NAC sub-routine as chosen as a function of ji as described
in line 6. The cumulative reward Ri,ji

observed in epoch i is used to update the posterior (line 8) as

ui+1,j = ui,j + σ + Ij=ji
·Ri,ji

/W

pi,j
.

We now present an upper bound on the dynamic regret with the proof adapted from [16, 12] which present
parameter-free non-stationary model-free value-based and model-based algorithms respectively. While we
defer the proof to Section F, we would like to highlight the additional cost of Õ

(
W
√

ln T · T

W

)
incurred by

running the EXP3.P algorithm to hedge against the unknown variation budgets and an extra constant factor
in the other terms. Note that for the optimal choice of parameters as discussed below, this additional regret
term continues to be of the same order as the other terms Õ

(
∆1/6

T T 5/6
)

and hence BORL-NS-NAC continues
to have the same order of regret as NS-NAC.

8

Published in Transactions on Machine Learning Research (02/2026)

Theorem 3. If Assumption 1 is satisfied, the time horizon T is divided into epochs of length W = O(T 2/3)
in Algorithm 2, then we have for any j† ∈ {0, 1, · · · , ⌊ln T ⌋}

Dyn-Reg(M, T) ≤ Õ

(
W

√
ln T · T

W

)
︸ ︷︷ ︸

cost of hedging by EXP3.P

+ Õ
(

T N†

W β†

)
+ Õ

(
T

W

√
N†W

α†

)
︸ ︷︷ ︸

effect of initialization

+ Õ
(

β†T

α†

)
+ Õ

(
T
√

β†
)

︸ ︷︷ ︸
cumulative change

in policy over horizon T

(6)

+ Õ
(

β†T

γ†

)
+ Õ

(
T
√

γ†
)

+ Õ
(

T

W

√
N†W

γ

)
︸ ︷︷ ︸

error in average reward estimate at critic

+ Õ
(

T
√

α†
)

︸ ︷︷ ︸
cumulative change
in critic estimates

+ Õ
(∆T W

N†

)
+ Õ

(
∆1/3

T T 2/3
√

α†
+ ∆1/3

T T 2/3√
γ†

)
︸ ︷︷ ︸

error due to non-stationarity

,

where ∆T = ∆R,T + ∆P,T , α† = γ† =
(

T j†/⌊ln T ⌋

T

)1/3
, β† =

(
T j†/⌊ln T ⌋

T

)1/2
, N† = W

(
T j†/⌊ln T ⌋

T

)5/6
and Õ(·)

hides constants and logarithmic dependence on time horizon T. Choosing optimal value of j† and resulting
optimal parameters as α⋆ = γ⋆ =

(∆T

T

)1/3, β⋆ =
(∆T

T

)1/2 and N⋆T
W = ∆5/6

T T 1/6, we upper bound the regret as

Dyn-Reg(M, T) ≤ Õ
(
|S|1/2|A|1/2∆1/6

T T 5/6
)

. (7)

7 Proof Sketch of Theorem 1

We now present a sketch of the proof of Theorem 1 that presents an upper bound on regret of NS-NAC and
address the following theoretical challenges that non-stationarity poses. (a) Stationary environment NAC
analyses use the KL-divergence to the optimal policy as a Lyapunov function. What is an appropriate
function for dynamic environments where the optimal policy varies with time? (b) How do the simultaneously
varying environment and evolving policy affect the estimation of the average reward and state-action value
function? (c) How do the time-varying transition probabilities affect the martingale-based argument used to
analyze the Markovian noise?

Regret Decomposition. We start by decomposing as

Dyn-Reg(M, T) =
T −1∑
t=0

E
[
J

π⋆
t

t − Jπt
t

]
︸ ︷︷ ︸

I1:difference of optimal versus
actual average reward

+ E [Jπt
t − rt(st, at)]︸ ︷︷ ︸

I2:difference of actual versus
instantaneous reward

, (8)

where I1 measures the performance difference between the average reward of the actual policy πt at time t
relative to the optimal policy π⋆

t . The second term I2 analyzes the gap between the average reward and the
actual rewards received due to the stochasticity of the Markovian sampling process.

Actor (Proposition 1). We first bound I1 in (8) by adapting the Natural Policy Gradient analysis for
average-reward stationary MDPs in [41] to non-stationary environments. NPG in the stationary case is
analyzed by characterizing the drift of the policy towards the optimal policy using an appropriate Lyapunov
function. In non-stationary case we innovatively separate out and analyze the change in the environment
from the drift of the policy as follows. We start by dividing the total horizon T into N restarted segments of
length H each and split I1 as

I1 = E

[
N−1∑
n=0

H−1∑
h=0

(
J

π⋆
nH+h

nH+h − J
π⋆

nH

nH

)
︸ ︷︷ ︸

I3: optimal avg. reward
across two environments

+
(

J
π⋆

nH

nH − J
πnH+h

nH

)
︸ ︷︷ ︸

I4: avg. reward
sub-optimality

+
(
J

πnH+h

nH − J
πnH+h

nH+h

)︸ ︷︷ ︸
I5: avg. reward with same

policy in two environments

]
.

We benchmark policies learned in each segment n ∈ [N] against the optimal average reward at the initial
timestep nH i.e. J

π⋆
nH

nH . We bound I4 by mirror descent style analysis for each segment n with t =

9

Published in Transactions on Machine Learning Research (02/2026)

{nH, . . . , (n + 1)H − 1} by the Lyapunov function adapted to non-stationarity as

W (πt) =
∑

s

dπ⋆
nH ,PnH (s)DKL(π⋆

nH(·|s)∥πt(·|s)).

In addition, since NS-NAC does not have access to the exact value functions Qπt
t , I4 also depends on the

critic estimation error ∥Qπt
t −Qt∥∞.

We analyze the change in the environment next. We bound I3, the difference in optimal average rewards
in two different environments, in terms of corresponding changes in the environment ∥rnH+h − rnH∥∞
and ∥PnH+h − PnH∥∞ (Lemma 5) by a clever use of the linear programming formulation of an MDP.
Similarly, we deftly bound I5, the difference in average rewards when following the same policy πnH+h in two
different environments, in terms of the environment change (Lemma 6). The number of restarts N balances
exploration-for-change and learning a good policy and we optimize it in Theorem 1 to minimize regret.

Critic (Proposition 2). We bound the critic estimation error ψt = ΠE [Qt −Qπt
t] 2 for each restarted

segment n ∈ [N] where t = {nH, . . . , (n + 1)H − 1} by adapting the critic analysis used in stationary MDPs
[33, 42, 46] to non-stationary environments. If Ot = (st, at, st+1, at+1), we can decompose the error as

∥ψt+1∥2
2 ≲ (1− α)∥ψt∥2

2 + αψ⊤
t

[
(rt(Ot)− Jπt

t (Ot) + A(Ot)Qπt
t) +

(
A(Ot)− Āπt,Pt

)
ψt

]︸ ︷︷ ︸
I6:error due to Markov noise

+ α (Jπt
t (Ot)− ηt(Ot))2︸ ︷︷ ︸

I7:avg. reward estimation error

+ 1
α
∥ΠE

[
Qπt

t −Qπt+1
t+1

]
∥2

2︸ ︷︷ ︸
I8:value function drift

+ α2∥rt(Ot)− ηt(Ot) + A(Ot)Qt∥2
2︸ ︷︷ ︸

I9:variance term

. (9)

I6 is the error induced by the Markovian noise which is analyzed leveraging the auxiliary Markov chain
described below. I7 describes the error due to an inaccurate estimation of the average reward which is
bounded below. I8, the change in the true value function is caused by drifting policies and environments,
and can be neatly bounded in terms of the change in policy, rewards and transition probabilities (Lemma 9).
Finally, I10 is the variance term.

Bound on Markovian Noise. For each restarted segment n ∈ [N], consider time indices (n + 1)H >
t > τ > nH. Consider the auxiliary Markov chain starting from st−τ constructed by conditioning on
Ft−τ = {st−τ ,πt−τ−1, Pt−τ} and rolling out by applying πt−τ−1, Pt−τ as

st−τ
πt−τ−1−−−−−→ at−τ

Pt−τ−−−→ s̃t−τ+1
πt−τ−1−−−−−→ ãt−τ+1

...→ s̃t
πt−τ−1−−−−−→ ãt

Pt−τ−−−→ s̃t+1
πt−τ−1−−−−−→ ãt+1.

Recall that the original Markov chain is

st−τ
πt−τ−1−−−−−→ at−τ

Pt−τ−−−→ st−τ+1
πt−τ−−−→ at−τ+1

...→ st
πt−1−−−→ at

Pt−−→ st+1
πt−→ at+1.

This enables us to characterize properties of original Markov chain compared to the auxiliary chain as
dT V (P (Ot ∈ ·|Ft−τ), P (Õt ∈ ·|Ft−τ)) where Õt = (s̃t, ãt, s̃t+1, ãt+1). We do this by bounding the effects of
drifting policies and transition probabilities in the original chain and leveraging uniform ergodicity in the
auxiliary chain. While prior works use auxiliary Markov chains for stationary environments [49, 33, 43], ours
is the first adaptation to a non-stationary environment. Observe that the time-varying transition probabilities
Pt add an extra layer of complexity, unlike the stationary case where only the policy changes over time.

Average Reward Estimation Error (Proposition 4). To bound I7 in (9), i.e., the error in the average
reward estimate ϕt = ηt − Jπt

t , we can decompose the error as

ϕ2
t+1 ≲ (1− γ)ϕ2

t + γ(rt(Ot)− Jπt
t)2︸ ︷︷ ︸

I10:error due to Markov noise

+ 1
γ

(Jπt
t − J

πt+1
t+1)2︸ ︷︷ ︸

I11:avg reward at consecutive
timesteps

+ γ2(rt(Ot)− ηt)2︸ ︷︷ ︸
I12:variance term

.6

2ΠE [x] = arg miny∈E ∥x − y∥2 is the projection to E, the subspace orthogonal to the all ones vector 1.

10

Published in Transactions on Machine Learning Research (02/2026)

0.0 0.5 1.0 1.5 2.0 2.5

Time Step ×105

0

10000

20000

30000

40000

50000

D
yn

am
ic

R
eg

re
t

NS-NAC

BORL-NS-NAC

SW-UCRL2-CW

Var-UCRL2

RestartQ-UCB

(a) |S| = 50, |A| = 4, ∆T ∼ 300

1056× 104 2× 105

T

2× 104

3× 104

4× 104

D
yn

am
ic

R
eg

re
t

NS-NAC

BORL-NS-NAC

SW-UCRL2-CW

Var-UCRL2

RestartQ-UCB

(b) |S| = 50, |A| = 4, ∆T ∼ 300

101 102 103

∆T

104

1.2× 104

1.4× 104

1.6× 104

1.8× 104

D
yn

am
ic

R
eg

re
t

NS-NAC

BORL-NS-NAC

SW-UCRL2-CW

Var-UCRL2

RestartQ-UCB

(c) |S| = 50, |A| = 4, T = 5 × 103

Figure 1: Performance of NS-NAC and baseline algorithms across various settings. (a) Dynamic regret for a
single instance with T = 25× 104 steps. Log-log plots showing the effect of varying: (b) time horizon T , and
(c) variation budget ∆T .

I10 is analyzed using the auxiliary Markov chain construction. I11 quantifies the difference in average rewards
at consecutive timesteps, and is neatly bounded in Lemma 6 in terms of the corresponding changes in policies,
rewards, and transition probabilities. I12 is again the variance term.

Finally, I2 in (8) characterizes the difference between the average reward and the instantaneous reward at
any time, and is analyzed in Proposition 3 using the auxiliary Markov chain to bound the bias occurring due
to Markovian sampling. This concludes the proof sketch.

8 Simulations

We empirically evaluate the performance of our algorithms on a synthetic non-stationary MDP (see Section G),
comparing it with three baseline algorithms: SW-UCRL2-CW [51], Var-UCRL2 [13], and RestartQ-UCB
[16]. SW-UCRL2-CW is a model-based algorithm that adapts to non-stationarity by maintaining a sliding
window of recent observations, applying extended value iteration, and adjusting confidence intervals to track
changing dynamics. Var-UCRL2, also model-based, adjusts its confidence intervals dynamically based on the
observed variations in rewards and transitions. Model-free RestartQ-UCB periodically restarts Q-learning and
resets its upper confidence bounds to adapt to non-stationarity. While there is a gap between our theoretical
regret analysis and those of the baseline methods, we empirically observe in Figure 1 that NS-NAC and
BORL-NS-NAC strongly match their performance achieving sub-linear dynamic regret across all settings.
Further, we observe in Figure 1(b) and Figure 1(c) the sub-linear effect of varying time-horizon T and
variation budget ∆T on the dynamic regret. See Section G for more experimental analysis.

9 Conclusion

We consider the problem of non-stationary reinforcement learning in the infinite-horizon average-reward setting
and model it as an MDP with time-varying rewards and transition probabilities. We propose and analyze
the first model-free policy-based algorithm, Non-Stationary Natural Actor-Critic. A two-timescale natural
policy gradient based method, NS-NAC utilizes restarts to explore for change and learning rates as adapting
factors to balance forgetting old and learning new environments. Further, we present a bandit-over-RL based
parameter-free algorithm BORL-NS-NAC that does not require prior knowledge of the variation budget and
adaptively tunes step-sizes and number of restarts. Both algorithms achieve a sub-linear dynamic regret,
thus, theoretically validating policy gradient methods often used in practice in continual non-stationary RL.

11

Published in Transactions on Machine Learning Research (02/2026)

References
[1] Christopher Yeh, Victor Li, Rajeev Datta, Julio Arroyo, Nicolas Christianson, Chi Zhang, Yize Chen,

Mohammad Mehdi Hosseini, Azarang Golmohammadi, Yuanyuan Shi, et al. Sustaingym: Reinforcement
learning environments for sustainable energy systems. Neural Information Processing Systems, 2024.

[2] Shi-Yong Chen, Yang Yu, Qing Da, Jun Tan, Hai-Kuan Huang, and Hai-Hong Tang. Stabilizing
reinforcement learning in dynamic environment with application to online recommendation. In ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, 2018.

[3] Yash Chandak, Georgios Theocharous, Shiv Shankar, Martha White, Sridhar Mahadevan, and Philip
Thomas. Optimizing for the future in non-stationary mdps. In International Conference on Machine
Learning, 2020.

[4] Yash Kanoria and Pengyu Qian. Blind dynamic resource allocation in closed networks via mirror
backpressure. Management Science, 2024.

[5] Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. Multi-agent reinforcement learning: A selective
overview of theories and algorithms. Handbook of reinforcement learning and control, 2021.

[6] Maximilian Igl, Gregory Farquhar, Jelena Luketina, Wendelin Boehmer, and Shimon Whiteson. Transient
non-stationarity and generalisation in deep reinforcement learning. arXiv preprint arXiv:2006.05826,
2020.

[7] Erwan Lecarpentier and Emmanuel Rachelson. Non-stationary markov decision processes, a worst-case
approach using model-based reinforcement learning. Neural Information Processing Systems, 2019.

[8] Sridhar Mahadevan. Average reward reinforcement learning: Foundations, algorithms, and empirical
results. Machine learning, 1996.

[9] Jan Peters, Sethu Vijayakumar, and Stefan Schaal. Reinforcement learning for humanoid robotics. In
IEEE-RAS International Conference on Humanoid Robots, 2003.

[10] Neharika Jali, Guannan Qu, Weina Wang, and Gauri Joshi. Efficient reinforcement learning for routing
jobs in heterogeneous queueing systems. In International Conference on Artificial Intelligence and
Statistics, 2024.

[11] Bai Liu, Qiaomin Xie, and Eytan Modiano. Rl-qn: A reinforcement learning framework for optimal
control of queueing systems. ACM Transactions on Modeling and Performance Evaluation of Computing
Systems, 2022.

[12] Wang Chi Cheung, David Simchi-Levi, and Ruihao Zhu. Reinforcement learning for non-stationary
markov decision processes: The blessing of (more) optimism. In International Conference on Machine
Learning, 2020.

[13] Ronald Ortner, Pratik Gajane, and Peter Auer. Variational regret bounds for reinforcement learning. In
Uncertainty in Artificial Intelligence, 2020.

[14] Pratik Gajane, Ronald Ortner, and Peter Auer. A sliding-window algorithm for markov decision processes
with arbitrarily changing rewards and transitions, 2018.

[15] Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-optimal regret bounds for reinforcement learning.
Journal of Machine Learning Research, 2010.

[16] Weichao Mao, Kaiqing Zhang, Ruihao Zhu, David Simchi-Levi, and Tamer Basar. Model-free nonstation-
ary reinforcement learning: Near-optimal regret and applications in multiagent reinforcement learning
and inventory control. In Management Science, 2024.

[17] Songtao Feng, Ming Yin, Ruiquan Huang, Yu-Xiang Wang, Jing Yang, and Yingbin Liang. Non-stationary
reinforcement learning under general function approximation. In International Conference on Machine
Learning, 2023.

12

Published in Transactions on Machine Learning Research (02/2026)

[18] Huozhi Zhou, Jinglin Chen, Lav R Varshney, and Ashish Jagmohan. Nonstationary reinforcement
learning with linear function approximation. arXiv preprint arXiv:2010.04244, 2020.

[19] Ahmed Touati and Pascal Vincent. Efficient learning in non-stationary linear markov decision processes.
arXiv preprint arXiv:2010.12870, 2020.

[20] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT Press, 2018.

[21] Sindhu Padakandla. A survey of reinforcement learning algorithms for dynamically varying environments.
ACM Computing Surveys (CSUR), 2021.

[22] Khimya Khetarpal, Matthew Riemer, Irina Rish, and Doina Precup. Towards continual reinforcement
learning: A review and perspectives. Journal of Artificial Intelligence Research, 2022.

[23] Hyunin Lee, Ming Jin, Javad Lavaei, and Somayeh Sojoudi. Pausing policy learning in non-stationary
reinforcement learning. In International Conference on Machine Learning, 2024.

[24] Chen-Yu Wei and Haipeng Luo. Non-stationary reinforcement learning without prior knowledge: An
optimal black-box approach. In Conference on learning theory, 2021.

[25] Binghui Peng and Christos Papadimitriou. The complexity of non-stationary reinforcement learning. In
International Conference on Algorithmic Learning Theory, 2024.

[26] Aurélien Garivier and Eric Moulines. On upper-confidence bound policies for non-stationary bandit
problems. arXiv preprint arXiv:0805.3415, 2008.

[27] Omar Besbes, Yonatan Gur, and Assaf Zeevi. Stochastic multi-armed-bandit problem with non-stationary
rewards. Neural Information rocessing systems, 27, 2014.

[28] Vishnu Raj and Sheetal Kalyani. Taming non-stationary bandits: A bayesian approach. arXiv preprint
arXiv:1707.09727, 2017.

[29] Wang Chi Cheung, David Simchi-Levi, and Ruihao Zhu. Learning to optimize under non-stationarity. In
International Conference on Artificial Intelligence and Statistics, 2019.

[30] Su Jia, Qian Xie, Nathan Kallus, and Peter I Frazier. Smooth non-stationary bandits. In International
Conference on Machine Learning, 2023.

[31] Yueyang Liu, Xu Kuang, and Benjamin Van Roy. A definition of non-stationary bandits. arXiv preprint
arXiv:2302.12202, 2023.

[32] Yueyang Liu, Benjamin Van Roy, and Kuang Xu. Nonstationary bandit learning via predictive sampling.
In International Conference on Artificial Intelligence and Statistics, 2023.

[33] Yue Frank Wu, Weitong Zhang, Pan Xu, and Quanquan Gu. A finite-time analysis of two time-scale
actor-critic methods. Neural Information Processing Systems, 2020.

[34] Xuyang Chen and Lin Zhao. Finite-time analysis of single-timescale actor-critic. Neural Information
Processing Systems, 2023.

[35] Qinbo Bai, Washim Uddin Mondal, and Vaneet Aggarwal. Regret analysis of policy gradient algorithm for
infinite horizon average reward markov decision processes. In AAAI Conference on Artificial Intelligence,
2024.

[36] Yashaswini Murthy, Mehrdad Moharrami, and R Srikant. Performance bounds for policy-based average
reward reinforcement learning algorithms. Neural Information Processing Systems, 2023.

[37] Nevena Lazic, Dong Yin, Yasin Abbasi-Yadkori, and Csaba Szepesvari. Improved regret bound and
experience replay in regularized policy iteration. In International Conference on Machine Learning, 2021.

13

Published in Transactions on Machine Learning Research (02/2026)

[38] Alekh Agarwal, Sham M. Kakade, Jason D. Lee, and Gaurav Mahajan. On the theory of policy gradient
methods: optimality, approximation, and distribution shift. Journal of Machine Learning Research,
2021.

[39] Sajad Khodadadian, Prakirt Raj Jhunjhunwala, Sushil Mahavir Varma, and Siva Theja Maguluri. On the
linear convergence of natural policy gradient algorithm. In IEEE Conference on Decision and Control,
2021.

[40] Shicong Cen, Chen Cheng, Yuxin Chen, Yuting Wei, and Yuejie Chi. Fast global convergence of natural
policy gradient methods with entropy regularization. Operations Research, 2022.

[41] Yashaswini Murthy and R. Srikant. On the convergence of natural policy gradient and mirror descent-like
policy methods for average-reward mdps. In 2023 62nd IEEE Conference on Decision and Control
(CDC), 2023.

[42] Sajad Khodadadian, Thinh T Doan, Justin Romberg, and Siva Theja Maguluri. Finite-sample analysis
of two-time-scale natural actor–critic algorithm. IEEE Transactions on Automatic Control, 2022.

[43] Yudan Wang, Yue Wang, Yi Zhou, and Shaofeng Zou. Non-asymptotic analysis for single-loop (Natural)
actor-critic with compatible function approximation. In International Conference on Machine Learning,
2024.

[44] Shalabh Bhatnagar, Richard S Sutton, Mohammad Ghavamzadeh, and Mark Lee. Natural actor-critic
algorithms. Automatica, 2009.

[45] James Martens. New insights and perspectives on the natural gradient method. Journal of Machine
Learning Research, 2020.

[46] Sheng Zhang, Zhe Zhang, and Siva Theja Maguluri. Finite sample analysis of average-reward td learning
and q-learning. In Neural Information Processing Systems, 2021.

[47] Yingjie Fei, Zhuoran Yang, Zhaoran Wang, and Qiaomin Xie. Dynamic regret of policy optimization in
non-stationary environments. Neural Information Processing Systems, 2020.

[48] Eyal Even-Dar, Sham M Kakade, and Yishay Mansour. Online markov decision processes. Mathematics
of Operations Research, 2009.

[49] Shaofeng Zou, Tengyu Xu, and Yingbin Liang. Finite-sample analysis for sarsa with linear function
approximation. Neural Information Processing Systems, 2019.

[50] Sébastien Bubeck, Nicolo Cesa-Bianchi, et al. Regret analysis of stochastic and nonstochastic multi-armed
bandit problems. Foundations and Trends in Machine Learning, 2012.

[51] Wang Chi Cheung, David Simchi-Levi, and Ruihao Zhu. Nonstationary reinforcement learning: The
blessing of (more) optimism. Management Science, 2023.

[52] Ofir Nachum, Mohammad Norouzi, Kelvin Xu, and Dale Schuurmans. Bridging the gap between value
and policy based reinforcement learning. Neural Information Processing Systems, 2017.

[53] Omar Domingues, Pierre Menard, Matteo Pirotta, Emilie Kaufmann, and Michal Valko. A kernel-based
approach to non-stationary reinforcement learning in metric spaces. In International Conference on
Artificial Intelligence and Statistics, 2021.

[54] Amir Beck. First-order methods in optimization. SIAM, 2017.

[55] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. John
Wiley & Sons, 2014.

[56] A Yu Mitrophanov. Sensitivity and convergence of uniformly ergodic markov chains. Journal of Applied
Probability, 2005.

14

Published in Transactions on Machine Learning Research (02/2026)

[57] Long-Fei Li, Peng Zhao, and Zhi-Hua Zhou. Dynamic regret of adversarial linear mixture mdps. Advances
in Neural Information Processing Systems, 2023.

[58] Peng Zhao, Long-Fei Li, and Zhi-Hua Zhou. Dynamic regret of online markov decision processes. In
International Conference on Machine Learning, 2022.

[59] Yingying Li, Aoxiao Zhong, Guannan Qu, and Na Li. Online markov decision processes with time-varying
transition probabilities and rewards. In ICML workshop on Real-world Sequential Decision Making,
volume 3, 2019.

[60] Carl D. Meyer, Jr. The condition of a finite markov chain and perturbation bounds for the limiting
probabilities. SIAM Journal on Algebraic Discrete Methods, 1980.

[61] Dimitri Bertsekas. Dynamic programming and optimal control: Volume I, volume 4. Athena scientific,
2012.

[62] Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient methods for
reinforcement learning with function approximation. In Neural Information Processing Systems, 1999.

[63] Vijay R. Konda and John N. Tsitsiklis. On actor-critic algorithms. SIAM Journal on Control and
Optimization, 2003.

15

Published in Transactions on Machine Learning Research (02/2026)

10 Appendix

Contents

1 Introduction 1

2 Related Work 2

3 Problem Setting 3

3.1 Preliminaries: Stationary RL . 3

3.2 Non-Stationary RL . 4

4 Algorithm: NS-NAC 5

5 Regret Analysis: NS-NAC 6

5.1 Assumptions . 6

5.2 Bounds on Regret . 7

6 Unknown Variation Budgets: BORL-NS-NAC 8

7 Proof Sketch of Theorem 1 9

8 Simulations 11

9 Conclusion 11

10 Appendix 16

A Additional Related Work 18

B Notation 19

C Symbol Reference 20

D Regret Analysis: NS-NAC 21

D.1 Actor . 22

D.2 Critic . 24

D.3 Average Reward Estimation . 27

D.4 Technical Lemmas . 30

D.4.1 Actor . 30

D.4.2 Critic . 33

D.4.3 Average Reward Estimation . 36

D.5 Auxiliary Lemmas . 36

16

Published in Transactions on Machine Learning Research (02/2026)

D.5.1 Actor . 36

D.5.2 Critic . 37

D.5.3 Average Reward Estimation . 39

D.6 Preliminary Lemmas . 41

D.7 Universal Dynamic Regret . 43

E NS-NAC with Function Approximation 44

F Regret Analysis: BORL-NS-NAC 45

G Simulations 47

17

Published in Transactions on Machine Learning Research (02/2026)

A Additional Related Work

Table 1: Regret comparison across Non-Stationary and Stationary RL algorithms with variation budget ∆T ,
time horizon T , episode length H, size of the state-action space |S|, |A|, maximum diameter of MDP D,
dimension of feature space d and dynamic Bellman Eluder dimension d̃.

Setting Algorithm Regret
Model
Free

Policy
Based

Lower Bound Ω
(
|S| 13 |A| 13 D

2
3 ∆

1
3
T T

2
3

)
- -

[15] Õ
(
|S||A| 12 DL

1
3 T

2
3

)
× -

Non-Stationary [14] Õ
(
|S| 23 |A| 13 D

2
3 L

1
3 T

2
3

)
× -

Infinite Horizon [13] Õ
(
|S||A| 12 D∆

1
3
T T

2
3

)
× -

Average Reward [12] Õ
(
|S| 23 |A| 12 D∆

1
4
T T

3
4

)
× -

[24] Õ
(

∆
1
3
T T

2
3

)
× -

This Work Õ
(
|S| 12 |A| 12 ∆

1
6
T T

5
6

)
✓ ✓

Lower Bound Ω
(
|S| 13 |A| 13 ∆

1
3
T H

2
3 T

2
3

)
- -

[53] Õ
(
|S||A| 12 ∆

1
3
T H

4
3 T

2
3

)
✓ ×

Non-Stationary [24] Õ
(

∆
1
3
T T

2
3

)
✓ ×

Episodic [17] Õ
(

d̃
1
2 H2T

1
2

)
✓ ×

[16] Õ
(
|S| 13 |A| 13 ∆

1
3
T HT

2
3

)
✓ ×

Non-Stationary [18] Õ
(

d
4
3 ∆

1
3
T H

4
3 T

2
3

)
✓ ×

Episodic Linear MDP [19] Õ
(

d
5
4 ∆

1
4
T H

5
4 T

3
4

)
✓ ×

Stationary
Infinite Horizon

Discounted Reward
[42] Õ

(
T

5
6

)
✓ ✓

Stationary
Infinite Horizon
Average Reward

[43] Õ
(

T
2
3

)
✓ ✓

18

Published in Transactions on Machine Learning Research (02/2026)

B Notation

Variation Budgets

∆R,T =
T −1∑
t=0
∥rt+1 − rt∥∞; ∆R,t−τ+1,t =

t∑
i=t−τ+1

∥ri − ri−1∥∞,

∆P,T =
T −1∑
t=0
∥Pt+1 −Pt∥∞; ∆P,t−τ+1,t =

t∑
i=t−τ+1

∥Pi −Pi−1∥∞,

∆T = ∆R,T + ∆P,T .

The critic update (line 9 in Algorithm 1) can be defined in vector form using the following notation. Note
that we use a one-to-one mapping f : S ×A → {1, 2, . . . , |S||A|}, to map state-action pairs (s, a) ∈ S ×A to
vector/matrix entries. However, for ease of notation, we denote the index of each entry by (s, a), instead of
the more accurate f(s, a).

Ot = (st, at, st+1, at+1)
rt(Ot) = [0; · · · ; 0; rt(st, at); 0; · · · ; 0]⊤ ∈ R|S||A|

ηt(Ot) = [0; · · · ; 0; ηt; 0; · · · ; 0]⊤ ∈ R|S||A|

Jπ
t (Ot) = [0; · · · ; 0; Jπ

t ; 0; · · · ; 0]⊤ ∈ R|S||A|

A(O) ∈ R|S||A|×|S||A| such that

A(O)i,j = A(s, a, s′, a′)i,j =


−1 if (s, a) ̸= (s′, a′), i = j = (s, a)
1 if (s, a) ̸= (s′, a′), i = (s, a), j = (s′, a′)
0 else

As a result, we get the critic update

Qt+1 =
∏
RQ

[Qt + α (rt(Ot)− ηt(Ot) + A(Ot)Qt)] .

For the purpose of analysis, we define the following quantities.

Āπ,P = Es∼dπ,P(·),a∼π(·|s),s′∼P(·|s,a),a′∼π(·|s′) [A(s, a, s′, a′)]
Qπ,P,r = Q associated with π, P, r

Jπ,P,r =
∑

s

dπ,P(s)
∑

a

π(a|s)r(s, a)

ΠE [x] = arg min
y∈E

∥x− y∥2 where E is the subspace orthogonal to the all ones vector 1

ψt = ΠE [Qt −Qπt
t] (Error in the value-function estimate)

Γ(π, P, r,ψ, O) = ψ⊤ (r(O)− Jπ,P,r(O) + A(O)Qπ,P,r)+ψ⊤ (A(O)− Āπ,P)ψ
ϕt = ηt − Jπt

t (Error in the average reward estimate)
Λ(π, P, r, η, O) = (η − Jπ,P,r)(r(s, a)− Jπ,P,r)

Given time indices t > τ > 0, consider the auxiliary Markov chain starting from st−τ constructed by
conditioning on st−τ ,πt−τ−1, Pt−τ and rolling out by applying πt−τ−1, Pt−τ as

st−τ
πt−τ−1−−−−−→ at−τ

Pt−τ−−−→ s̃t−τ+1
πt−τ−1−−−−−→ ãt−τ+1

Pt−τ−−−→ . . . s̃t
πt−τ−1−−−−−→ ãt

Pt−τ−−−→ s̃t+1
πt−τ−1−−−−−→ ãt+1.

Recall that the original Markov chain is

st−τ
πt−τ−1−−−−−→ at−τ

Pt−τ−−−→ st−τ+1
πt−τ−−−→ at−τ+1

Pt−τ+1−−−−−→ . . . st
πt−1−−−→ at

Pt−−→ st+1
πt−→ at+1.

19

Published in Transactions on Machine Learning Research (02/2026)

C Symbol Reference

Constant First Appearance
UR Section 3.1
UQ Lemma 24

N, H Algorithm 1
C = inf

s,t,t′,π

dπ,P
t′ (s)

d
π⋆

t
,Pt (s)

Assumption 1

m, ρ Assumption 1
M = ⌈logρ m−1⌉+ 1

1−ρ Lemma 22
λ Lemma 1

W1 = (3G2
R)1/3(4U2

Q)2/3 Proposition 2
W2 = (3G2

P)1/3(4U2
Q)2/3 Proposition 2

D1 = LπB2 + 4UR

√
|S||A|B2 + 4UR Proposition 3

D2 = 4UR + LP Proposition 3
D3 = 4URF6 + 8U2

R Proposition 4
D4 = 9L2

πB2
2 Proposition 4

W3 = (3)1/3(4U2
R)2/3 Proposition 4

W4 = (3L2
P)1/3(4U2

R)2/3 Proposition 4
B1 = 2

√
|A|U2

Q Lemma 2
B2 = UQ Lemma 3

B3 = (F1π + Gπ + F3
√
|S||A|+ F4)B2 Lemma 10

B4 = F2(2UR + 2UQ) Lemma 10
B5 = F2GR Lemma 10

B6 = F1P + F2GP + F3 Lemma 10
B7 = (F5Lπ + F7

√
|S||A|+ F8)B2 Lemma 11

B8 = F7 + F5LP Lemma 11
Lπ = 4UR(M + 1)

√
|S||A| Lemma 6

LP = 4URM Lemma 6
Gπ = 2UQ

√
|S||A| Lemma 7

GR = 2λ−1
√
|S||A| Lemma 8

GP = (λ−1LP + 4URλ−1M + 4URλ−2(M + 1))
√
|S||A| Lemma 8

F1π = 2UQLπ + 4UQGπ + 8U2
Q(M + 2)|S||A| Lemma 13

F1P = 2UQLP + 4UQGP + 8U2
Q(M + 1)

√
|S||A| Lemma 13

F2 = 2UR + 18UQ Lemma 14
F3 = 16URUQ + 24U2

Q

√
|S||A| Lemma 15

F4 = 8URUQ + 24U2
Q

√
|S||A| Lemma 16

F5 = 4UR Lemma 18
F6 = 2UR Lemma 19
F7 = 8U2

R Lemma 20
F8 = 8U2

R Lemma 21

20

Published in Transactions on Machine Learning Research (02/2026)

D Regret Analysis: NS-NAC

Theorem 4. If Assumption 1 is satisfied and the step-sizes are chosen as 0 < α, β, γ, ϵ < 1/2 and number of
restarts as 0 < N < T in Algorithm 1, then we have

Dyn-Reg(M, T) = E

[
T −1∑
t=0

J
π⋆

t
t − rt(st, at)

]
≤ Õ

(
N

β

)
+ Õ

(√
NT

α

)
︸ ︷︷ ︸

effect of initialization

+ Õ
(

βT

α

)
+ Õ

(
T
√

β
)

︸ ︷︷ ︸
cumulative change

in policy over horizon T

+ Õ
(

βT

γ

)
+ Õ (T√γ) + Õ

(√
NT

γ

)
︸ ︷︷ ︸
error in average reward estimate at critic

+ Õ
(
T
√

α
)︸ ︷︷ ︸

cumulative change
in critic estimates

+ Õ
(∆T T

N

)
+ Õ

(
∆1/3

T T 2/3
√

α
+ ∆1/3

T T 2/3
√

γ

)
︸ ︷︷ ︸

error due to non-stationarity

,

where ∆T = ∆R,T + ∆P,T , Õ(·) hides the constants and logarithmic dependence on the time horizon T .
Choosing optimal α⋆ = γ⋆ =

(∆T

T

)1/3, β⋆ =
(∆T

T

)1/2 and N⋆ = ∆5/6
T T 1/6, the resulting regret (with explicit

dependence on the size of the state-action space |S|, |A|) is

Dyn-Reg(M, T) ≤ Õ
(
|S|1/2|A|1/2∆1/6

T T 5/6
)

.

Proof. Recall that Algorithm 1 divides the total time horizon T into N segments of length H = ⌊ T
N ⌋.

E

[
T −1∑
t=0

J
π⋆

t
t − rt(st, at)

]
= E

[
T −1∑
t=0

J
π⋆

t
t − Jπt

t

]
+ E

[
T −1∑
t=0

Jπt
t − rt(st, at)

]
(a)
≤ Õ

(∆T T

N

)
+ Õ

(
N

β

)
+ Õ (βT) + 2

N−1∑
n=0

H−1∑
h=0

E
[
∥ΠE

[
QπnH+h

nH+h −QnH+h

]
∥∞

]
+ E

[
T −1∑
t=0

Jπt
t − rt(st, at)

]

≤ Õ
(∆T T

N

)
+ Õ

(
N

β

)
+ Õ (βT) + 2

N−1∑
n=0

H1/2

(
H−1∑
h=0

E
[
∥ΠE

[
QπnH+h

nH+h −QnH+h

]
∥2

2

])1/2

+ E

[
T −1∑
t=0

Jπt
t − rt(st, at)

]
(b)
≤ Õ

(∆T T

N

)
+ Õ

(
N

β

)
+ Õ (βT) + 2

N−1∑
n=0

[
Õ
(√

H
)

+ Õ
(√

H

α

)
+ Õ

(√
αH
)

+ Õ
(

βH

α

)
+ Õ

(√
βH
)

+ Õ
(

βH

γ

)
+ Õ (√γH) + Õ

(√
H

γ

)
+ Õ

(
∆1/3

nH,(n+1)H
H2/3

√
α

)

+ Õ
(

∆1/3
nH,(n+1)H

H2/3

√
γ

)]
+ E

[
T −1∑
t=τT

Jπt
t − rt(st, at)

]
(c)
≤ Õ

(∆T T

N

)
+ Õ

(
N

β

)
+ Õ (βT) + Õ

(
N
√

H
)

+ Õ
(√

NT

α

)
+ Õ

(
T
√

α„
)

+ Õ
(

βT

α

)
+ Õ

(
T
√

β
)

+ Õ
(

βT

γ

)
+ Õ (T√γ) + Õ

(√
NT

γ

)
+ Õ

(
∆1/3

T T 2/3
√

α

)
+ Õ

(
∆1/3

T T 2/3
√

γ

)
+ Õ (1) + Õ (βT) + Õ (∆P,T) ,

21

Published in Transactions on Machine Learning Research (02/2026)

where (a) is due to Proposition 1, (b) is by Proposition 2 and ∆nH,(n+1)H = ∆R,nH,(n+1)H + ∆P,nH,(n+1)H ,
(c) is by Jensen’s inequality, ∆T = ∆R,T + ∆P,T and Proposition 3. We further have τH = O(log T). Note
that Õ(·) hides constants and logarithmic terms.

D.1 Actor

The next result bounds the performance difference, measured by the average reward, between the optimal
policies π⋆

t and the current policy πt.
Proposition 1. If Assumption 1 holds, we have

E

[
T −1∑
t=0

J
π⋆

t
t − Jπt

t

]
≤
(

2 + 2GR + 1
C

)
T∆R,T

N
+
(

UQ + LP + 2GP + LP

C

)
T∆P,T

N︸ ︷︷ ︸
error due to non-stationarity

+ 2
N−1∑
n=0

H−1∑
h=0

E
[
∥ΠE

[
QπnH+h

nH+h −QnH+h

]
∥∞

]
︸ ︷︷ ︸

critic estimation error

+ N · log |A|
β︸ ︷︷ ︸

N×bias of
initialization

+ B1βT

C︸ ︷︷ ︸
cumulative

change in policy

+ UR

C︸︷︷︸
constant

,

where ∆R,T =
T −1∑
t=0
∥rr+1 − rt∥∞, ∆P,T =

T −1∑
t=0
∥Pt+1 −Pt∥∞, C is defined in Assumption 1, T is the total

time horizon and N is the number of restarts. The remaining constants are defined in Section C.

Proof. Recall that Algorithm 1 divides the total time horizon T into N segments of length H = ⌊ T
N ⌋. In

each segment (indexed by n ∈ [N]), we use J
π⋆

nH

nH as an anchor against which to compare the performance of
the learned policies.

E

[
T −1∑
t=0

J
π⋆

t
t − Jπt

t

]
≤ E

[
N−1∑
n=0

H−1∑
h=0

(
J

π⋆
nH+h

nH+h − J
π⋆

nH

nH

)
+
(

J
π⋆

nH

nH − J
πnH+h

nH

)
+
(
J

πnH+h

nH − J
πnH+h

nH+h

)]
(a)
≤ E

[
N−1∑
n=0

H−1∑
h=0

(2∥rnH+h − rnH∥∞ + (UQ + LP)∥PnH+h −PnH∥∞) +
(

J
π⋆

nH

nH − J
πnH+h

nH

)]
(b)
≤

N−1∑
n=0

H−1∑
h=0

H (2∥rnH+h − rnH+h−1∥∞ + (UQ + LP)∥PnH+h −PnH+h−1∥∞) +
(

J
π⋆

nH

nH − J
πnH+h

nH

)
≤ H (2∆R,T + (UQ + LP)∆P,T) + E

[
N−1∑
n=0

H−1∑
h=0

J
π⋆

nH

nH − J
πnH+h

nH

]
, (10)

where (a) is by Lemma 5 and Lemma 6 and (b) is by triangle inequality. We now bound the last term as
N−1∑
n=0

H−1∑
h=0

J
π⋆

nH

nH − J
πnH+h

nH

(c)=
N−1∑
n=0

H−1∑
h=0

1
β

∑
s

∑
a

dπ⋆
nH ,PnH (s)π⋆

nH(a|s)
[
βQ

πnH+h

nH (s, a)− βV
πnH+h

nH (s)
]

=
∑

n,h,s,a

dπ⋆
nH ,PnH (s)π⋆

nH(a|s)
β

[
βQ

πnH+h

nH+h (s, a)− βV
πnH+h

nH+h (s) + βQnH+h(s, a)− βQnH+h(s, a)
]

+
∑

n,h,s,a

dπ⋆
nH ,PnH (s)π⋆

nH(a|s)
β

[
βQ

πnH+h

nH (s, a)− βQ
πnH+h

nH+h (s, a) + βV
πnH+h

nH+h (s)− βV
πnH+h

nH (s)
]

=
∑

n,h,s,a

dπ⋆
nH ,PnH (s)π⋆

nH(a|s)
β

[
βQ

πnH+h

nH+h (s, a)− βV
πnH+h

nH+h (s) + βQnH+h(s, a)− βQnH+h(s, a)
]

22

Published in Transactions on Machine Learning Research (02/2026)

+
∑

n

∑
h

2∥QπnH+h

nH −QπnH+h

nH+h ∥∞

(d)
≤

∑
n,h,s,a

dπ⋆
nH ,PnH (s)π⋆

nH(a|s)
β

[
βQ

πnH+h

nH+h (s, a)− βV
πnH+h

nH+h (s) + βQnH+h(s, a)− βQnH+h(s, a)
]

+
N−1∑
n=0

H−1∑
h=0

2GR∥rnH − rnH+h∥∞ + 2GP ∥PnH −PnH+h∥∞

(e)=
∑

n

∑
h

1
β

∑
s

∑
a

dπ⋆
nH ,PnH (s)π⋆

nH(a|s)
[

log ZnH+h(s)− βV
πnH+h

nH+h (s)︸ ︷︷ ︸
I1

]

+
∑

n,h,s,a

dπ⋆
nH ,PnH (s)π⋆

nH(a|s)
β

[
log πnH+h+1(a|s)

πnH+h(a|s)︸ ︷︷ ︸
I2

+ βQ
πnH+h

nH+h (s, a)− βQnH+h(s, a)︸ ︷︷ ︸
I3

]

+ (H − 1)(2GR∆R,T + 2GP ∆P,T) (11)

where (c) follows from the Performance Difference Lemma 4, (d) follows from Lemma 8 and (e) from the
actor update equation (line 10 in Algorithm 1) and Zt(s) =

∑
a′∈A πt(a′|s) exp(βQt(s, a′)). Next, we bound

each of I1, I2, I3. Using Lemma 2, we have

I1 =
∑

n

∑
h

∑
s

dπ⋆
nH ,PnH (s)

[
log ZnH+h(s)

β
− V

πnH+h

nH+h (s)
]∑

a

π⋆
nH(a|s)︸ ︷︷ ︸
=1

≤
∑

n

∑
h

[
J

πnH+h+1
nH+h+1 − J

πnH+h

nH+h

C
+ ∥QπnH+h

nH+h −QnH+h∥∞ + B1β

C

+ ∥rnH+h+1 − rnH+h∥∞

C
+ LP ∥PnH+h+1 − PnH+h∥∞

C

]
. (12)

Next, we establish a bound on I2 as

I2 = 1
β

∑
n

∑
h

∑
s

∑
a

dπ⋆
nH ,PnH (s)π⋆

nH(a|s) log πnH+h+1(a|s)
πnH+h(a|s)

≤ 1
β

∑
n=0

∑
h

∑
s

dπ⋆
nH ,PnH (s) [DKL (π⋆

nH(·|s)∥πnH+h(·|s))−DKL (π⋆
nH(·|s)∥πnH+h+1(·|s))]

= 1
β

∑
n

∑
s

dπ⋆
nH ,PnH (s)

[
DKL (π⋆

nH(·|s)∥πnH(·|s))−DKL
(
π⋆

nH(·|s)∥π(n+1)H

)]
(f)
≤ 1

β

∑
n

∑
s

dπ⋆
nH ,PnH (s)DKL (π⋆

nH(·|s)∥πnH(·|s))

(g)
≤ 1

β

∑
n

∑
s

dπ⋆
nH ,PnH (s) log |A|1 ≤ N log |A|

β
(13)

where (f) is because of non-negativity of KL-divergence and (g) is due to the restart in line 4 of Algorithm 1.
Lastly, I3 can be bounded as

I3 =
∑

n

∑
h

∑
s

∑
a

dπ⋆
nH ,PnH (s)π⋆

nH(a|s)
[
Q

πnH+h

nH+h (s, a)−QnH+h(s, a)
]

≤
∑

n

∑
h

∥QπnH+h

nH+h −QnH+h∥∞. (14)

We substitute the bounds on I1, I2, I3 from (12)-(14) in (11) and then combine with (10). Recall that the
set of solutions to the Bellman equations is Qπt

t = {Qπt

t,E + c1|Qπt

t,E ∈ E, c ∈ R} where E is the subspace

23

Published in Transactions on Machine Learning Research (02/2026)

orthogonal to the all ones vector and Qπt

t,E is the unique solution in E [46]. Finally, we use the equivalence
∥Qπt

t −Qt∥∞ = ∥ΠE [Qπt
t −Qt] ∥∞ to get the result.

D.2 Critic

In this section, we characterize the error in the critic estimation.
Proposition 2. For any n ∈ [N], if Assumption 1 is satisfied and 0 < γ < 1/2, then we have

nH+H−1∑
t=nH+τH

E
[
∥ΠE [Qt −Qπt

t] ∥2
2
]

≤ Õ
(

1
α

)
︸ ︷︷ ︸
effect of

initialization

+ Õ

∆2/3
R,nH,(n+1)HH1/3

α

+ Õ

∆2/3
P,nH,(n+1)HH1/3

α


︸ ︷︷ ︸

error due to non-stationarity

+ Õ (γH) + Õ
(

1
γ

)
+ Õ

(
β2H

γ2

)
+ Õ

∆2/3
R,nH,(n+1)HH1/3

γ

+ Õ

∆2/3
P,nH,(n+1)HH1/3

γ


︸ ︷︷ ︸

error in average reward estimate at critic

+ Õ (βT) + Õ
(

β2H

α2

)
︸ ︷︷ ︸

cumulative change
in policy over horizon T

+ Õ (αH)︸ ︷︷ ︸
cumulative change
in critic estimates

,

where Õ(·) hides constants and logarithmic terms which can be found in Equation (17) and ∆R,nH,(n+1)H =∑(n+1)H
t=nH ∥rt+1 − rt∥∞, and ∆P,nH,(n+1)H =

∑(n+1)H
t=nH ∥Pt+1 −Pt∥∞.

Proof. Recall that ψt = ΠE [Qt −Qπt
t], E is the subspace orthogonal to the all ones vector 1 and

the critic update equation (line 9 in Algorithm 1) can be expressed in vector form as Qt+1 =
ΠRQ

[Qt + α (rt(Ot)− ηt(Ot) + A(Ot)Qt)]. Recall the notations rt, ηt, A(Ot), Āπt,Pt , Jt(Ot), Γ(·), ϕt from
Section B. We therefore have

∥ψt+1∥2
2 = ∥ΠE

[
Qt+1 −Qπt+1

t+1
]
∥2

2

≤ ∥ΠE

[
Qt + α (rt(Ot)− ηt(Ot) + A(Ot)Qt)−Qπt+1

t+1
]
∥2

2

= ∥ΠE

[
ψt + α (rt(Ot)− ηt(Ot) + A(Ot)Qt) + Qπt

t −Qπt+1
t+1

]
∥2

2

≤ ∥ψt∥2
2 + 2αψ⊤

t (rt(Ot)− ηt(Ot)) + A(Ot)Qt

+ 2ψ⊤
t ΠE

[
Qπt

t −Qπt+1
t+1

]
+ 2α2∥rt(Ot)− ηt(Ot) + A(Ot)Qt∥2

2 + 2∥ΠE

[
Qπt

t −Qπt+1
t+1

]
∥2

2

≤ ∥ψt∥2
2 + 2αψ⊤

t

(
rt(Ot)− ηt(Ot) + A(Ot)Qt − Āπt,Ptψt

)
+ 2αψ⊤

t Āπt,Ptψt

+ 2ψ⊤
t ΠE

[
Qπt

t −Qπt+1
t+1

]
+ 2α2∥rt(Ot)− ηt(Ot) + A(Ot)Qt∥2

2 + 2∥ΠE

[
Qπt

t −Qπt+1
t+1

]
∥2

2

≤ ∥ψt∥2
2 + 2αψ⊤

t (rt(Ot)− ηt(Ot) + A(Ot)Qπt
t) + 2αψ⊤

t

(
A(Ot)− Āπt,Pt

)
ψt + 2αψ⊤

t Āπt,Ptψt

+ 2ψ⊤
t ΠE

[
Qπt

t −Qπt+1
t+1

]
+ 2α2∥rt(Ot)− ηt(Ot) + A(Ot)Qt∥2

2 + 2∥ΠE

[
Qπt

t −Qπt+1
t+1

]
∥2

2

≤ ∥ψt∥2
2 + 2αΓ(πt, Pt, rt,ψt, Ot) + 2αψ⊤

t (Jπt
t (Ot)− ηt(Ot)) + 2αψ⊤

t Āπt,Ptψt

+ 2ψ⊤
t ΠE

[
Qπt

t −Qπt+1
t+1

]
+ 2α2∥rt(Ot)− ηt(Ot) + A(Ot)Qt∥2

2 + 2∥ΠE

[
Qπt

t −Qπt+1
t+1

]
∥2

2
(a)
≤ ∥ψt∥2

2 + 2αΓ(πt, Pt, rt,ψt, Ot) + 2α∥ψt∥2 ∥Jπt
t (Ot)− ηt(Ot)∥2 + 2αψ⊤

t Āπt,Ptψt

+ 2∥ψt∥2∥ΠE

[
Qπt

t −Qπt+1
t+1

]
∥2 + 2α2∥rt(Ot)− ηt(Ot) + A(Ot)Qt∥2

2 + 2∥ΠE

[
Qπt

t −Qπt+1
t+1

]
∥2

2
(b)
≤ ∥ψt∥2

2 + 2αΓ(πt, Pt, rt,ψt, Ot) + 2α∥ψt∥2|Jπt
t − ηt| − 2αλ∥ψt∥2

2

+ 2∥ψt∥2∥ΠE

[
Qπt

t −Qπt+1
t+1

]
∥2 + 2α2∥rt(Ot)− ηt(Ot) + A(Ot)Qt∥2

2 + 2∥ΠE

[
Qπt

t −Qπt+1
t+1

]
∥2

2

24

Published in Transactions on Machine Learning Research (02/2026)

≤ (1− 2αλ)∥ψt∥2
2 + 2αΓ(πt, Pt, rt,ψt, Ot) + 2α∥ψt∥2|Jπt

t − ηt|
+ 2∥ψt∥2∥ΠE

[
Qπt

t −Qπt+1
t+1

]
∥2 + 2α2(2UR + 2UQ)2 + 2∥ΠE

[
Qπt

t −Qπt+1
t+1

]
∥2

2

≤ (1− 2αλ)∥ψt∥2
2 + 2αΓ(πt, Pt, rt,ψt, Ot) + 2α∥ψt∥2|Jπt

t − ηt|+ 2∥ψt∥2∥ΠE

[
Qπt

t −Qπt
t+1
]
∥2

+ 2∥ψt∥2∥ΠE

[
Qπt

t+1 −Qπt+1
t+1

]
∥2 + 2α2(2UR + 2UQ)2 + 2∥ΠE

[
Qπt

t −Qπt+1
t+1

]
∥2

2,

where (a) is due to Cauchy-Schwarz inequality, (b) follows from ψt ∈ E and Lemma 1.

Taking expectation, rearranging the terms, setting τ = τH = min{i ≥ 0|mρi−1 ≤ min{β, α}} and summing
over time, we have

nH+H−1∑
t=nH+τH

λE
[
∥ψt∥2

2
]

≤
nH+H−1∑
t=nH+τH

E[∥ψt∥2
2 − ∥ψt+1∥2

2]
2α︸ ︷︷ ︸

I1

+
nH+H−1∑
t=nH+τH

E [Γ(πt, Pt, rt,ψt, Ot)]︸ ︷︷ ︸
I2

+
nH+H−1∑
t=nH+τH

E [|ϕt|∥ψt∥2]︸ ︷︷ ︸
I3

+
nH+H−1∑
t=nH+τH

E
[
∥ψt∥2∥ΠE

[
Qπt

t −Qπt
t+1
]
∥2
]

α︸ ︷︷ ︸
I4

+
nH+H−1∑
tnH+τH

E
[
∥ψt∥2∥ΠE

[
Qπt

t+1 −Qπt+1
t+1

]
∥2
]

α︸ ︷︷ ︸
I5

+ α(2UR + 2UQ)2(T − τT) +
nH+H−1∑
t=nH+τH

E
[
∥ΠE

[
Qπt

t −Qπt+1
t+1

]
∥2

2
]

α︸ ︷︷ ︸
I6

. (15)

We now bound each of the terms starting with the first term as

I1 = E[∥ψnH+τH
∥2

2 − ∥ψnH+H∥2
2]

2α
≤

2U2
Q

α
.

By Lemma 10, we have

I2 ≤
nH+H−1∑
t=nH+τH

B3β(τH + 1)2 + B4ατH + B5∆R,t−nH−τH +1,t + B6τH∆P,t−nH−τH +1,t

≤ B3β(τH + 1)2(H − τH) + B4ατH(H − τH) + B5τH∆R,nH,(n+1)H + B6τ2
H∆P,nH,(n+1)H .

By the Cauchy-Schwarz inequality, we have

I3 ≤
nH+H−1∑
t=nH+τH

√
E[ϕ2

t]
√
E[∥ψt∥2

2] ≤
(

nH+H−1∑
t=nH+τH

E[ϕ2
t]
)1/2(nH+H−1∑

t=nH+τH

E[∥ψt∥2
2]
)1/2

,

where
∑nH+H−1

t=nH+τH
E[ϕ2

t] can be further bounded using Proposition 4.

Using Lemma 8, we have

I4 ≤
2UQ

α

nH+H−1∑
t=nH+τH

∥Qπt
t −Qπt

t+1∥2 ≤
2UQ

α

nH+H−1∑
t=nH+τH

GR∥rt+1 − rt∥∞ + GP ∥Pt+1 −Pt∥∞

≤ 2UQ

α
(GR∆R,nH,(n+1)H + GP ∆P,nH,(n+1)H).

25

Published in Transactions on Machine Learning Research (02/2026)

Using the Cauchy-Schwarz inequality and Lemma 7, we have

I5 ≤

(
nH+H−1∑
t=nH+τH

E[∥ΠE

[
Qπt

t+1 −Qπt+1
t+1

]
∥2

2]
α2

)1/2(nH+H−1∑
t=nH+τH

E[∥ψt∥2
2]
)1/2

≤
(

G2
πB2

2β2H

α2

)1/2(nH+H−1∑
t=nH+τH

E[∥ψt∥2
2]
)1/2

.

We now the final term I6 as follows. For timesteps with small changes in the environment, we use Lemma 9,
and for timesteps with large changes in the environment, we use a naive upper bound. Define the set of
timesteps TQ := {t : ∥rt+1 − rt∥∞ ≤ δR, ∥Pt+1 −Pt∥∞ ≤ δP }.

I6 =
nH+H−1∑
t=nH+τH

E
[
∥ΠE

[
Qπt

t −Qπt+1
t+1

]
∥2

2
]

α

(c)
≤
∑

t∈TQ

E
[
∥ΠE

[
Qπt

t −Qπt+1
t+1

]
∥2

2
]

α
+
∑

t/∈TQ

4U2
Q

α

(d)
≤
∑

t∈TQ

3G2
Rδ2

R

α
+ 3G2

P δ2
P

α
+ 3G2

πB2
2β2

α
+
∑

t/∈TQ

4U2
Q

α

(e)
≤ 3G2

Rδ2
RH

α
+ 3G2

P δ2
P H

α
+ 3G2

πB2
2β2H

α
+

4U2
Q∆R,nH,(n+1)H

αδR
+

4U2
Q∆P,nH,(n+1)H

αδP

(f)
≤

W1∆2/3
R,nH,(n+1)HH1/3

α
+

W2∆2/3
P,nH,(n+1)HH1/3

α
+ 3G2

πB2
2β2H

α
(16)

where (c) follows from the Lemma 24, (d) follows from Lemma 9 and (e) is obtained by choosing

δR =
(

4U2
Q∆R,nH,(n+1)H

3G2
R

H

)1/3
and δP =

(
4U2

Q∆P,nH,(n+1)H

3G2
P

H

)1/3
and defining W1 = (3G2

R)1/3(4U2
Q)2/3,

W2 = (3G2
P)1/3(4U2

Q)2/3.

We substitute the bounds on I1, . . . , I6 (using Proposition 4) into (15) and use the squaring trick from Section
C.3 in [33]. The above equation is of the form, X ≤ Y + Z

√
X. Completing the squares and rearranging, we

get X ≤ 2Y + Z2. Hence, we get the final result as

nH+H−1∑
t=nH+τH

E
[
∥ψt∥2

2
]

≤
4U2

Q

αλ
+ 2B3β(τH + 1)2H

λ
+

2α(B4 + 8U2
R + 8U2

Q)τHH

λ
+

2B5τH∆R,nH,(n+1)H

λ

+
2B6τ2

H∆P,nH,(n+1)H

λ
+ 8U2

R

γλ2 + 4B7β(τH + 1)2H

λ2 + 2D3γτHH

λ2

+
4B8(τH + 1)2∆P,nH,(n+1)H

λ2 + 2D4β2H

γ2λ2 +
8W3∆2/3

R,nH,(n+1)HH1/3

γλ2

+
8W4∆2/3

P,nH,(n+1)HH1/3

γλ2 +
4UQGR∆R,nH,(n+1)H

αλ
+

4UQGP ∆P,nH,(n+1)H

αλ
+ G2

πB2
2β2H

α2λ2

+
2W1∆2/3

R,nH,(n+1)HH1/3

αλ
+

2W2∆2/3
P,nH,(n+1)HH1/3

αλ
+ 6G2

πB2
2β2H

αλ
(17)

≤ Õ
(

1
α

)
+ Õ (βH) + Õ (αH) + Õ

(
∆R,nH,(n+1)H

)
+ Õ

(
∆P,nH,(n+1)H

)
+ Õ (γH) + Õ

(
1
γ

)

+ Õ
(

β2H

γ2

)
+ Õ

∆2/3
R,nH,(n+1)HH1/3

γ

+ Õ

∆2/3
P,nH,(n+1)HH1/3

γ


26

Published in Transactions on Machine Learning Research (02/2026)

+ Õ

∆2/3
R,nH,(n+1)HH1/3

α

+ Õ

∆2/3
P,nH,(n+1)HH1/3

α

+ Õ
(

β2H

α2

)
,

where Õ(·) hides constants and logarithmic terms.

D.3 Average Reward Estimation

In this section, we first analyze the gap between the average rewards and the rewards accumulate by
NS-NAC in Proposition 3. We then characterize the error in the average reward estimation in Proposition 4.
Proposition 3. For any n ∈ [N], if Assumption 1 is satisfied, then the following holds true

nH+H−1∑
t=nH+τH

E [Jπt
t − rt(st, at)] ≤ D1β(τH + 1)2(H − τH) + D2(τH + 1)2∆P,nH,(n+1)H

where D1 = LπB2 + 4UR

√
|S||A|B2 + 4UR, D2 = 4UR + LP and ∆P,nH,(n+1)H =

∑(n+1)H
t=nH ∥Pt+1 −Pt∥∞.

Proof. Given time indices t > τ > 0, recall the auxiliary Markov chain starting from st−τ constructed by
conditioning on st−τ ,πt−τ−1, Pt−τ and rolling out by applying πt−τ−1, Pt−τ as

st−τ
πt−τ−1−−−−−→ at−τ

Pt−τ−−−→ s̃t−τ+1
πt−τ−1−−−−−→ ãt−τ+1

Pt−τ−−−→ . . . s̃t
πt−τ−1−−−−−→ ãt

Pt−τ−−−→ s̃t+1
πt−τ−1−−−−−→ ãt+1.

Also, recall that the original Markov chain is

st−τ
πt−τ−1−−−−−→ at−τ

Pt−τ−−−→ st−τ+1
πt−τ−−−→ at−τ+1

Pt−τ+1−−−−−→ . . . st
πt−1−−−→ at

Pt−−→ st+1
πt−→ at+1.

Further, recall Jπt−τ−1,Pt−τ ,rt :=
∑

s,a dπt−τ−1,Pt−τ (s)πt−τ−1(a|s)rt(s, a).

We start by decomposing the term as

E [Jπt
t − rt(st, at)] (18)

= E
[
Jπt

t − Jπt−τ−1,Pt−τ ,rt
]︸ ︷︷ ︸

I1

+E [rt(s̃t, ãt)− rt(st, at)]︸ ︷︷ ︸
I2

+E
[
Jπt−τ−1,Pt−τ ,rt − rt(s̃t, ãt)

]︸ ︷︷ ︸
I3

.

(19)

Note that I1 is the difference in the average rewards between the two policies πt,πt−τ−1 in two different
environments (Pt, rt) and (Pt−τ , rt) that share the same reward function. Hence, using Lemma 6 and
Lemma 3 successively, we get

I1 ≤ E [Lπ∥πt − πt−τ−1∥2 + LP ∥Pt −Pt−τ∥∞]

≤ E

[
Lπ

t∑
i=t−τ

∥πi − πi−1∥2 + LP

t∑
i=t−τ+1

∥Pi −Pi−1∥∞

]
≤ LπB2β(τ + 1) + LP ∆P,t−τ+1,t, (20)

where ∆P,t−τ+1,t =
∑t

i=t−τ+1 ∥Pi −Pi−1∥∞.

For I2, by Lemma 23 and Lemma 12 successively, we get

I2 ≤ 2UR · 2dT V (P ((st, at) ∈ ·|Ft−τ), P ((s̃t, ãt) ∈ ·|Ft−τ))

≤ 4UR

√
|S||A||E

[
t∑

i=t−τ

∥πi − πt−τ−1∥2

∣∣∣Ft−τ

]
+ 4UR

t∑
i=t−τ

∥Pi −Pt−τ∥∞

27

Published in Transactions on Machine Learning Research (02/2026)

≤ 4UR

√
|S||A|B2β(τ + 1)2 + 4URτ∆P,t−τ+1,t. (21)

Finally, we bound I3 using Lemma 17 as

I3 ≤ 4URmρτ . (22)

Plugging the bounds on I1, I2, I3 into Equation (19) and setting τ = τH = min{i ≥ 0|mρi−1 ≤ min{β, α}},

nH+H−1∑
t=nH+τH

E [Jπt
t − rt(st, at)] ≤

nH+H−1∑
t=nH+τH

LπB2β(τH + 1) + LP ∆P,t−nH−τH +1,t

+ 4UR

√
|S||A|B2β(τH + 1)2 + 4URτH∆P,t−nH−τH +1,t + 4URmρτH

≤ (Lπ + 4UR

√
|S||A|)B2β(τH + 1)2(H − τH) + (4UR + LP)(τH + 1)2∆P,nH,(n+1)H

+ 4URβ(H − τH).

Proposition 4. For any n ∈ [N], if Assumption 1 holds and 0 < γ < 1/2, then we have the following

nH+H−1∑
t=nH+τH

E
[
(Jπt

t − ηt)2] ≤ 4U2
R

γ
+ 2B7β(τH + 1)2H + D3γτHH + 2B8(τH + 1)2∆P,nH,(n+1)H

+ D4β2H

γ2 +
4W3∆2/3

R,nH,(n+1)HH1/3

γ
+

4W4∆2/3
P,nH,(n+1)HH1/3

γ

where D3 = 4URF6 + 8U2
R, D4 = 9L2

πB2
2 , ∆R,nH,(n+1)H =

∑(n+1)H
t=nH ∥rt+1 − rt∥∞, ∆P,nH,(n+1)H =∑(n+1)H

t=nH ∥Pt+1 −Pt∥∞, W3 = (3)1/3(4U2
R)2/3 and W4 = (3L2

P)1/3(4U2
R)2/3.

Proof. Recall that ϕt := ηt− Jπt
t . Using the average reward update equation (line 8 in Algorithm 1), we have

ϕ2
t+1 =

(
ηt + γ(rt(st, at)− ηt)− J

πt+1
t+1

)2

=
(
ϕt + Jπt

t − J
πt+1
t+1 + γ(rt(st, at)− ηt)

)2

≤ ϕ2
t + 2γϕt(rt(st, at)− ηt) + 2ϕt(Jπt

t − J
πt+1
t+1) + 2(Jπ

t − J
πt+1
t+1)2 + 2γ2(rt(st, at)− ηt)2

= (1− 2γ)ϕ2
t + 2γϕt(rt(st, at)− Jπt

t) + 2ϕt(Jπt
t − J

πt+1
t+1)

+ 2(Jπ
t − J

πt+1
t+1)2 + 2γ2(rt(st, at)− ηt)2

= (1− 2γ)ϕ2
t + 2γΛ(πt, Pt, rt, ηt, Ot) + 2ϕt(Jπt

t − J
πt+1
t+1)

+ 2(Jπ
t − J

πt+1
t+1)2 + 2γ2(rt(st, at)− ηt)2

= (1− 2γ)ϕ2
t + 2γΛ(πt, Pt, rt, ηt, Ot)+2ϕt(Jπt

t − Jπt
t+1) + 2ϕt(Jπt

t+1 − J
πt+1
t+1)

+ 2(Jπ
t − J

πt+1
t+1)2 + 2γ2(rt(st, at)− ηt)2.

Rearranging and setting τ = τH = min{i ≥ 0|mρi−1 ≤ min{β, α}}, we have

nH+H−1∑
t=nH+τH

E[ϕ2
t] ≤

nH+H−1∑
t=nH+τH

E[ϕ2
t − ϕ2

t+1]
2γ︸ ︷︷ ︸

I1

+
nH+H−1∑
t=nH+τH

E[Λ(πt, Pt, rt, ηt, Ot)]︸ ︷︷ ︸
I2

+
nH+H−1∑
t=nH+τH

E[ϕt(Jπt
t − Jπt

t+1)]
γ︸ ︷︷ ︸

I3

+
nH+H−1∑
t=nH+τH

E[ϕt(Jπt
t+1 − J

πt+1
t+1)]

γ︸ ︷︷ ︸
I4

28

Published in Transactions on Machine Learning Research (02/2026)

+
nH+H−1∑
t=nH+τH

E[(Jπt
t − J

πt+1
t+1)2]

γ︸ ︷︷ ︸
I5

+
nH+H−1∑
t=nH+τH

γE[(rt(st, at)− ηt)2]︸ ︷︷ ︸
I6

.

We now analyze each of these terms starting with the first term as

I1 =
E[ϕ2

nH+τH
− ϕ2

nH+H]
2γ

≤ 2U2
R

γ
.

By Lemma 11 and the average reward update equation, we have

I2 ≤
nH+H−1∑
t=nH+τH

B7β(τH + 1)2 + F6|ηt − ηt−nH−τH
|+ F7τ∆P,t−nH−τH +1,t

≤ B7β(τH + 1)2(H − τH) + 2URF6γτH(H − τH) + B8(τH + 1)2∆P,nH,(n+1)H .

By Lemma 6, we have

I3 ≤
2UR

γ

(
nH+H−1∑
t=nH+τH

∥rt+1 − rt∥∞ + LP ∥Pt+1 −Pt∥∞

)
≤

2UR∆R,nH,(n+1)H

γ
+

2UR∆P,(n+1)H

γ
.

By Lemma 6 and Cauchy-Schwartz inequality, we have

I4 ≤

(
nH+H−1∑
t=nH+τH

E[ϕ2
t]
)1/2(nH+H−1∑

t=nH+τH

E[(Jπt+1
t+1 − Jπt

t)2]
γ2

)1/2

≤

(
nH+H−1∑
t=nH+τH

E[ϕ2
t]
)1/2(

L2
πB2

2β2H

γ2

)1/2

.

We now bound I5 as follows. For timesteps with small changes in the environment, we use Lemma 6, and for
timesteps with large changes in the environment, we use a naive upper bound. Define the set of timesteps
TJ := {t : ∥rt+1 − rt∥∞ ≤ δR, ∥Pt+1 −Pt∥∞ ≤ δP }.

I5 =
nH+H−1∑
t=nH+τH

E
[
(Jπt+1

t+1 − Jπt
t)2]

γ

≤
∑
t∈TJ

E
[
(Jπt+1

t+1 − Jπt
t)2]

γ
+
∑
t/∈TJ

4U2
R

γ

(a)
≤
∑
t∈TJ

3δ2
R

γ
+ 3L2

P δ2
P

γ
+ 3L2

πB2
2β2

γ
+
∑
t/∈TJ

4U2
R

γ

(b)
≤ 3δ2

RH

γ
+ 3L2

P δ2
P H

γ
+ 3L2

πB2
2β2H

γ
+

4U2
R∆R,nH,(n+1)H

γδR
+

4U2
R∆P,nH,(n+1)H

γδP

≤
W3∆2/3

R,nH,(n+1)HT 1/3

γ
+

W4∆2/3
P,nH,(n+1)HT 1/3

γ
+ 3L2

πB2
2β2T

γ
(23)

where (a) follows from Lemma 6 and (b) is obtained by choosing δR =
(

4U2
R∆R,nH,(n+1)H

3T

)1/3
and δP =(

4U2
R∆P,nH,(n+1)H

3L2
P

T

)1/3
and defining W3 = (3)1/3(4U2

R)2/3, W2 = (3L2
P)1/3(4U2

R)2/3.

29

Published in Transactions on Machine Learning Research (02/2026)

For the final term, we have

I6 ≤ 4U2
Rγ(H − τH).

Putting everything together, we have

nH+H−1∑
t=nH+τH

E[ϕ2
t]

≤ 2U2
R

γ
+ B7β(τH + 1)2(H − τH) + 2URF6γτH(H − τH) + B8(τH + 1)2∆P,nH,(n+1)H

+
2UR∆R,nH,(n+1)H

γ
+

2UR∆P,nH,(n+1)H

γ
+
(

nH+H−1∑
t=nH+τH

E[ϕ2
t]
)1/2(

L2
πB2

2β2H

γ2

)1/2

+
W3∆2/3

R,nH,(n+1)HH1/3

γ
+

W4∆2/3
P,nH,(n+1)HH1/3

γ
+ 3L2

πB2
2β2H

γ
+ 4U2

Rγ(H − τH).

Now, we use the squaring trick from Section C.3, [33]. The above equation is of the form, X ≤ Y + Z
√

X.
Completing the squares and rearranging, we get X ≤ 2Y + Z2. Hence,

nH+H−1∑
t=nH+τH

E[ϕ2
t]

≤ 4U2
R

γ
+ 2B7β(τH + 1)2(H − τH) + 4URF6γτH(H − τH) + 2B8(τH + 1)2∆P,nH,(n+1)H

+
4UR∆R,nH,(n+1)H

γ
+

4UR∆P,nH,(n+1)H

γ
+ 9L2

πB2
2β2H

γ2

+
2W3∆2/3

R,nH,(n+1)HH1/3

γ
+

2W4∆2/3
P,nH,(n+1)HH1/3

γ
+ 8U2

Rγ(H − τH)

≤ 4U2
R

γ
+ 2B7β(τH + 1)2(H − τH) + 4URF6γτH(H − τH) + 2B8(τH + 1)2∆P,nH,(n+1)H

+9L2
πB2

2β2H

γ2 +
4W3∆2/3

R,nH,(n+1)HH1/3

γ
+

4W4∆2/3
P,nH,(n+1)HH1/3

γ
+ 8U2

Rγ(H − τH).

D.4 Technical Lemmas

D.4.1 Actor

Lemma 2. If Assumption 1 holds, for any t, t′ ≥ 0, we have∑
s

dπ⋆
t′ ,Pt′ (s)

[
log Zt(s)

β
− V πt

t (s)
]
≤

J
πt+1
t+1 − Jπt

t

C
+ ∥Qπt

t −Qt∥∞ + B1β

C

+ ∥rt+1 − rt∥∞

C
+ LP ∥Pt+1 −Pt∥∞

C

where Zt(s) =
∑

a′∈A πt(a′|s) exp(βQt(s, a′)), C is defined in Assumption 1 and other constants in Section C.

Proof. We have

J
πt+1
t+1 − Jπt

t

30

Published in Transactions on Machine Learning Research (02/2026)

= J
πt+1
t+1 − J

πt+1
t + J

πt+1
t − Jπt

t

(a)= J
πt+1
t+1 − J

πt+1
t +

∑
s,a

dπt+1,Pt(s)πt+1(a|s) [Qπt
t (s, a)− V πt

t (s) + Qt(s, a)−Qt(s, a)]

(b)= J
πt+1
t+1 − J

πt+1
t +

∑
s,a

dπt+1,Pt(s)πt+1(a|s)
[

Qπt
t (s, a)− V πt

t (s)

+ log Zt(s)
β

+ 1
β

log πt+1(a|s)
π t

(a|s)−Qt(s, a)
]

(c)
≥ J

πt+1
t+1 − J

πt+1
t +

∑
s,a

dπt+1,Pt(s)πt+1(a|s)
[

Qπt
t (s, a)− V πt

t (s) + log Zt(s)
β

−Qt(s, a)
]

≥ J
πt+1
t+1 − J

πt+1
t +

∑
s,a

dπt+1,Pt(s)πt(a|s)
[

log Zt(s)
β

−Qt(s, a)
]

︸ ︷︷ ︸
I1

+
∑
s,a

dπt+1,Pt(s)(πt+1(a|s)− πt(a|s)) [Qπt
t (s, a)−Qt(s, a)]︸ ︷︷ ︸

I2

(24)

where (a) follows from Lemma 4, (b) follows from the actor update (line 10 in Algorithm 1), and (c) is due to
the non-negativity of KL-Divergence.

Next, we bound the last two terms in (24). Under Assumption 1, we have

I1 =
∑
s,a

dπ⋆
t′ ,Pt′ (s)

(
dπt+1,Pt(s)
dπ⋆

t′ ,Pt′ (s)

)
πt(a|s)

[
log Zt(s)

β
−Qt(s, a)

]

≥ C
∑
s,a

dπ⋆
t′ ,Pt′ (s)πt(a|s)

[
log Zt(s)

β
−Qt(s, a)

]

≥ C
∑

s

dπ⋆
t′ ,Pt′ (s)

[
log Zt(s)

β
− V πt

t (s)
]

+ C
∑
s,a

dπ⋆
t′ ,Pt′ (s)πt(a|s) [Qπt

t (s, a)−Qt(s, a)] (25)

Further, we have by 1-Lipschitzness of the tabular softmax policy

I2 ≥ −2UQ

∑
s,a

dπt+1,Pt(s)(πt+1(a|s)− πt(a|s)) ≥ −2UQ · βUQ

√
|A| ≥ −B1β. (26)

Plugging the bounds from (25) and (26) into (24) and rearranging, we have∑
s

dπ⋆
t′ ,Pt′ (s)

[
log Zt(s)

β
− V πt

t (s)
]

≤
J

πt+1
t+1 − Jπt

t

C
+
∑
s,a

dπ⋆
t′ ,Pt′ (s)πt(a|s) [Qt(s, a)−Qπt

t (s, a)] + B1β

C
+

J
πt+1
t − J

πt+1
t+1

C

≤
J

πt+1
t+1 − Jπt

t

C
+ ∥Qπt

t −Qt∥∞ + B1β

C
+ ∥rt+1 − rt∥∞

C
+ LP ∥Pt+1 −Pt∥∞

C

where the last inequality follows from Lemma 6.

Lemma 3. For t ≥ 0, policy πt satisfies

∥πt+1 − πt∥2 ≤ B2β

where B2 = UQ.

31

Published in Transactions on Machine Learning Research (02/2026)

Proof. By 1-Lipschitzness of the softmax parameterization of the actor [54] and Lemma 24, we have

∥πt+1 − πt∥2 ≤ ∥βQt∥2 ≤ βUQ.

Lemma 4 (Average-Reward Performance Difference Lemma [41]). The average rewards for any two policies
π,π′ at time t satisfy

Jπ
t − Jπ′

t =
∑
s∈S

dπ,Pt(s)
∑
a∈A

π(a|s)
[
Qπ′

t (s, a)− V π′

t (s)
]

.

Lemma 5. For any t, t′ ≥ 0, it holds that

J
π⋆

t
t − J

π⋆
t′

t′ ≤ ∥rt − rt′∥∞ + UQ∥Pt −Pt′∥∞.

where π⋆
t represents the optimal policy for MDP Mt(S,A, Pt, rt).

Proof. Consider the linear programming formulation of an MDP M(S,A, P, r) [55]

min
J,V (s)

J

such that J + V (s) ≥ r(s, a) +
∑

s′

P (s′|s, a)V (s′) ∀s ∈ S, a ∈ A. (27)

If the optimal solution for Mt′(S,A, Pt′ , rt′) is J⋆
t′ , V⋆

t′ , we have

J⋆
t′1 ≥ rt′ + (Pt′ − I)V⋆

t′ .

Now for Mt(S,A, Pt, rt), we know

J⋆
t ≤ ∥rt + (Pt − I)V⋆

t′∥∞

≤ ∥rt′ + (Pt′ − I)V⋆
t′ + (rt − rt′) + (Pt −Pt′)V⋆

t′∥∞

≤ ∥J⋆
t′1∥∞ + ∥rt − rt′∥∞ + ∥(Pt −Pt′)V⋆

t′∥∞.

Hence, we have

J⋆
t − J⋆

t′ ≤ ∥rt − rt′∥∞ + ∥ (Pt −Pt′) V⋆
t′∥∞

J
π⋆

t
t − J

π⋆
t′

t′ ≤ ∥rt − rt′∥∞ + UQ∥Pt −Pt′∥∞.

Lemma 6. There exist constants Lπ = 4UR(M + 1)
√
|S||A| and LP = 4URM such that for all policies π,π′

and timesteps t, t′, it holds that

Jπ
t − Jπ′

t′ ≤ Lπ∥π − π′∥2 + ∥rt − rt′∥∞ + LP ∥Pt −Pt′∥∞.

Proof.
Jπ

t − Jπ′

t′ = Jπ
t − Jπ′

t︸ ︷︷ ︸
T1

+ Jπ′

t − Jπ′

t′︸ ︷︷ ︸
T2

, (28)

where T1 is the difference in the average rewards between two policies π,π′ under the same environments
(rt, Pt), while T2 is the difference in the average rewards with the same policy π′, but under two different
environments (rt, Pt) and (rt′ , Pt′).

T1 = Jπ
t − Jπ′

t = Es∼dπ,Pt ,a∼π,s′∼dπ′,Pt ,a′∼π′ [rt(s, a)− rt(s′, a′)]

32

Published in Transactions on Machine Learning Research (02/2026)

= 4URdT V

(
dπ,Pt ⊗ π, dπ′,Pt ⊗ π′

)
(a)
≤ Lπ∥π − π′∥2, (29)

where (a) follows from Lemma 22, where ⊗ denotes the Kronecker product. Next, we bound T2.

T2 = Jπ′

t − Jπ′

t′ =
∑
s,a

dπ′,Pt(s)π′(a|s)rt(s, a)− dπ′,Pt′ (s)π′(a|s)rt′(s, a)

≤
∑
s,a

∣∣∣dπ′,Pt(s)π′(a|s)rt(s, a)− dπ′,Pt(s)π′(a|s)rt′(s, a)
∣∣∣

+
∑
s,a

∣∣∣dπ′,Pt(s)π′(a|s)rt′(s, a)− dπ′,Pt′ (s)π′(a|s)rt′(s, a)
∣∣∣

≤ ∥rt − rt′∥∞ + 4URdT V (dπ′,Pt ⊗ π′, dπ′,Pt′ ⊗ π′)
(b)
≤ ∥rt − rt′∥∞ + LP ∥Pt −Pt′∥∞ (30)

where (b) also follows from Lemma 22. Substituting the bounds from (29) and (30) into (28), we get the
result.

D.4.2 Critic

Lemma 7. For any policies π,π′, we have

∥Qπ
t −Qπ′

t ∥2 ≤ Gπ∥π − π′∥2

where Gπ = 2UQ

√
|S||A|.

Proof.
Qπ

t (s, a) (a)= rt(s, a)− Jπ
t + Es′∼Pt(·|s,a) [V π

t (s′)]

⇒ ∂Qπ
t (s, a)
∂π

= −∂Jπ
t

∂π
+
∑
s′∈S

Pt(s′|s, a)∂V π
t (s′)
∂π∥∥∥∥∂Qπ

t (s, a)
∂π

∥∥∥∥
2
≤ 2

∥∥∥∥∂Jπ
t

∂π

∥∥∥∥
2

(31)∥∥∥∥∂Qπ
t (s, a)
∂π

∥∥∥∥
2

(b)
≤ 2

∥∥dπ,Pt(s)Qπ
t (s, a)

∥∥
2 ≤ 2UQ (32)

It follows from mean-value theorem that

|Qπ
t (s, a)−Qπ′

t (s, a)| ≤ 2UQ∥π − π′∥2, for all s, a

⇒ ∥Qπ
t −Qπ′

t ∥2 ≤ Gπ∥π − π′∥2,

where (a) is by using the Bellman equation, and (b) follows from Policy Gradient Theorem [20] and
Lemma 24.

Lemma 8. For any timesteps t, t′ ≥ 0, we have

∥ΠE [Qπ
t −Qπ

t′] ∥2 ≤ GR∥rt − rt′∥∞ + GP ∥Pt −Pt′∥∞

where GR = 2λ−1
√
|S||A| and GP = (λ−1LP + 4URλ−1M + 4URλ−2(M + 1))

√
|S||A|.

Proof. Recall the diagonal matrix Dπ,Pt = diag
(
dπ,Pt(s)π(a|s)

)
, where dπ,Pt(·) denotes the stationary

distribution induced over the states, while 1 denotes the all ones vector. E denotes the subspace orthogonal
to the all ones vector. Pseudo-inverse of a matrix is represented by X†. Now, we have

∥ΠE [Qπ
t −Qπ

t′] ∥2
(a)
≤ ∥(Āπ,Pt)†Dπ,Pt(Jπ

t 1− rt)− (Āπ,Pt′)†Dπ,Pt′ (Jπ
t′ 1− rt′)∥2

33

Published in Transactions on Machine Learning Research (02/2026)

≤ ∥(Āπ,Pt)†Dπ,Pt(Jπ
t 1− rt)− (Āπ,Pt)†Dπ,Pt′ (Jπ

t′ 1− rt′)∥2

+ ∥(Āπ,Pt)†Dπ,Pt′ (Jπ
t′ 1− rt′)− (Āπ,Pt′)†Dπ,Pt′ (Jπ

t′ 1− rt′)∥2

≤ ∥(Āπ,Pt)†∥2
(
∥Dπ,PtJπ

t 1−Dπ,Pt′ Jπ
t′ 1∥2 + ∥Dπ,Ptrt −Dπ,Pt′ rt′∥2

)
+ ∥(Āπ,Pt)†Dπ,Pt′ (Jπ

t′ 1− rt′)− (Āπ,Pt′)†Dπ,Pt′ (Jπ
t′ 1− rt′)∥2

(b)
≤ λ−1 (∥Dπ,Pt(Jπ

t − Jπ
t′)1∥2 + ∥(Dπ,Pt −Dπ,Pt′)Jπ

t′ 1∥2 + ∥Dπ,Ptrt −Dπ,Pt′ rt′∥2
)

+ ∥(Āπ,Pt)†Dπ,Pt′ (Jπ
t′ 1− rt′)− (Āπ,Pt′)†Dπ,Pt′ (Jπ

t′ 1− rt′)∥2

≤ λ−1
(√
|S||A|∥Dπ,Pt∥2|Jπ

t − Jπ
t′ |+ ∥Dπ,Pt −Dπ,Pt′∥2 · UR

√
|S||A|+ ∥Dπ,Ptrt −Dπ,Pt′ rt′∥2

)
+ ∥(Āπ,Pt)†Dπ,Pt′ (Jπ

t′ 1− rt′)− (Āπ,Pt′)†Dπ,Pt′ (Jπ
t′ 1− rt′)∥2

(c)
≤ λ−1

√
|S||A|

(
∥rt − rt′∥∞ + LP ∥Pt −Pt′∥∞ + 2URdT V (dπ,Pt ⊗ π, dπ,Pt′ ⊗ π)

)
+ λ−1∥Dπ,Ptrt −Dπ,Pt′ rt′∥2 (33)
+ ∥(Āπ,Pt)†Dπ,Pt′ (Jπ

t′ 1− rt′)− (Āπ,Pt′)†Dπ,Pt′ (Jπ
t′ 1− rt′)∥2

(d)
≤ λ−1

√
|S||A| (∥rt − rt′∥∞ + LP ∥Pt −Pt′∥∞ + 2URM∥Pt −Pt′∥∞)

+ λ−1∥Dπ,Ptrt −Dπ,Pt′ rt′∥2 (34)
+ ∥(Āπ,Pt)†Dπ,Pt′ (Jπ

t′ 1− rt′)− (Āπ,Pt′)†Dπ,Pt′ (Jπ
t′ 1− rt′)∥2

(e)
≤ λ−1

√
|S||A| (2∥rt − rt′∥∞ + LP ∥Pt −Pt′∥∞ + 4URM∥Pt −Pt′∥∞)

+ ∥(Āπ,Pt)†Dπ,Pt′ (Jπ
t′ 1− rt′)− (Āπ,Pt′)†Dπ,Pt′ (Jπ

t′ 1− rt′)∥2

≤ λ−1
√
|S||A| (2∥rt − rt′∥∞ + LP ∥Pt −Pt′∥∞ + 4URM∥Pt −Pt′∥∞)

+ ∥(Āπ,Pt)† − (Āπ,Pt′)†∥2 · 2UR

(f)
≤ λ−1

√
|S||A| (2∥rt − rt′∥∞ + LP ∥Pt −Pt′∥∞ + 4URM∥Pt −Pt′∥∞)

+ 2URλ−2∥Āπ,Pt − Āπ,Pt′ ∥2

(g)
≤ λ−1

√
|S||A| (2∥rt − rt′∥∞ + LP ∥Pt −Pt′∥∞ + 4URM∥Pt −Pt′∥∞)

+ 2URλ−2 · 2(M + 1)
√
|S||A|∥Pt −Pt′∥∞

≤ GR∥rt − rt′∥∞ + GP ∥Pt −Pt′∥∞

where (a) is because E [r(O)− J(O) + A(O)Qπ] = 0 (see TD limiting point (3) in Section 5.1) (b) is from
Lemma 1, (c) is by Lemma 6, (d) is due to Lemma 22, (e) is using the same process as the last step for
the second term, (f) is because ∥X† −Y†∥2 ≤ ∥X†(X −Y)Y†∥2 ≤ ∥X†∥2∥X −Y∥2∥Y†∥2 and (g) is by
Lemma 24 and Lemma 22.

Lemma 9. For any t ≥ 0, we have

∥ΠE

[
Qπt+1

t+1 −Qπt
t

]
∥2 ≤ GR∥rt+1 − rt∥∞ + GP ∥Pt+1 −Pt∥∞ + GπB2β.

See Section C for constants.

Proof.
∥ΠE

[
Qπt+1

t+1 −Qπt
t

]
∥2 ≤ ∥ΠE

[
Qπt+1

t+1 −Qπt+1
t

]
∥2 + ∥ΠE

[
Qπt+1

t −Qπt
t

]
∥2

(a)
≤ GR∥rt+1 − rt∥∞ + GP ∥Pt+1 −Pt∥∞ + Gπ∥πt+1 − πt∥2

(b)
≤ GR∥rt+1 − rt∥∞ + GP ∥Pt+1 −Pt∥∞ + GπB2β

where (a) is by Lemma 8 and Lemma 7 and (b) is from Lemma 3.

34

Published in Transactions on Machine Learning Research (02/2026)

Lemma 10. If Assumption 1 holds, for any t > τ , we have

E [Γ(πt, Pt, rt,ψt, Ot)] ≤ B3β(τ + 1)2 + B4ατ + B5∆R,t−τ+1,t + B6τ∆P,t−τ+1,t

where B3 = (F1π +F2Gπ +F3
√
|S||A|+F4)B2, B4 = F2(2UR +2UQ), B5 = F2GR and B6 = F1P +F2GP +F3,

∆R,t−τ+1,t =
∑t

i=t−τ+1 ∥ri − ri−1∥∞ and ∆P,t−τ+1,t =
∑t

i=t−τ+1 ∥Pi −Pi−1∥∞.

Proof. Recall from Section B, the definition

Γ(π, P, r,ψ, O) = ψ⊤ (r(O)− Jπ,P,r(O) + A(O)Qπ,P,r)+ψ⊤ (A(O)− Āπ,P)ψ.

We first decompose Γ(·) into the following four terms

E [Γ(πt, Pt, rt,ψt, Ot)] ≤ E [Γ(πt, Pt, rt,ψt, Ot)− Γ(πt−τ−1, Pt−τ , rt,ψt, Ot)]︸ ︷︷ ︸
I1

+ E [Γ(πt−τ−1, Pt−τ , rt,ψt, Ot)− Γ(πt−τ−1, Pt−τ , rt,ψt−τ , Ot)]︸ ︷︷ ︸
I2

+ E
[
Γ(πt−τ−1, Pt−τ , rt,ψt−τ , Ot)− Γ(πt−τ−1, Pt−τ , rt,ψt−τ , Õt)

]︸ ︷︷ ︸
I3

+ E
[
Γ(πt−τ−1, Pt−τ , rt,ψt−τ , Õt)

]︸ ︷︷ ︸
I4

.

We now bound each term as follows.

I1
(a)
≤ F1πE [∥πt − πt−τ−1∥2] + F1P∥Pt −Pt−τ∥∞

≤ F1πE

[
t∑

i=t−τ

∥πi − πi−1∥2

]
+ F1P

t∑
i=t−τ+1

∥Pi −Pi−1∥∞

(b)
≤ F1πB2β(τ + 1) + F1P∆P,t−τ+1,t

where (a) is by Lemma 13 and (b) is due to Lemma 12. For the second term, we have

I2
(c)
≤ F2E [∥ψt −ψt−τ] ∥2 ≤ F2E

[
t∑

i=t−τ+1
∥ψi −ψi−1∥2

]
(d)
≤ F2

[
t∑

i=t−τ+1
(2UR + 2UQ)α + GR∥ri − ri−1∥∞ + GP ∥Pi −Pi−1∥∞ + GπB2β

]
≤ F2(2UR + 2UQ)ατ + F2GR∆R,t−τ+1,t + F2GP ∆P,t−τ+1,t + F2GπB2βτ

where (c) is by Lemma 14, (d) follows from Lemma 24, ∥Qt+1 −Qt∥2 ≤ β(UR + UQ) by the critic update
equation (9), Lemma 9 and Lemma 12. We also define ∆R,t−τ+1,t =

∑t
i=t−τ+1 ∥ri−ri−1∥∞ and ∆P,t−τ+1,t =∑t

i=t−τ+1 ∥Pi −Pi−1∥∞.

For the third term, we have

I3
(e)
≤ F3

√
|S||A|E

[
t∑

i=t−τ

∥πi − πt−τ−1∥2

∣∣∣Ft−τ

]
+ F3

t∑
i=t−τ

∥Pi −Pt−τ∥∞

(f)
≤ F3

√
|S||A|B2β(τ + 1)2 + F3τ∆P,t−τ+1,t.

where (e) is due to Lemma 15 and (f) follows from Lemma 12. For the last term, by Lemma 16, we have

I4 ≤ F4mρτ .

We get the final result by putting all the four terms together.

35

Published in Transactions on Machine Learning Research (02/2026)

D.4.3 Average Reward Estimation

Lemma 11. If Assumption 1 holds, for any t > τ , we have

E[Λ(πt, Pt, rt, ηt, Ot)] ≤ B7β(τ + 1)2 + F6|ηt − ηt−τ |+ B8τ∆P,t−τ+1,t

where B7 = (F5Lπ + F7
√
|S||A|+ F8)B2, B8 = F7 + F5LP and ∆P,t−τ+1,t =

∑t
i=t−τ+1 ∥Pi −Pi−1∥∞.

Proof. Recall from Section B, the definition

Λ(π, P, r, η, O) = (η − Jπ,P,r)(r(s, a)− Jπ,P,r)

We first decompose Λ(πt, Pt, rt, ηt, Ot) into the following four terms

E[Λ(πt, Pt, rt, ηt, Ot)] = E[Λ(πt, Pt, rt, ηt, Ot)− Λ(πt−τ−1, Pt−τ , rt, ηt, Ot)]︸ ︷︷ ︸
I1

+ E[Λ(πt−τ−1, Pt−τ , rt, ηt, Ot)− Λ(πt−τ−1, Pt−τ , rt, ηt−τ , Ot)]︸ ︷︷ ︸
I2

+ E[Λ(πt−τ−1, Pt−τ , rt, ηt−τ , Ot)− Λ(πt−τ−1, Pt−τ , rt, ηt−τ , Õt)]︸ ︷︷ ︸
I3

+ E[Λ(πt−τ−1, Pt−τ , rt, ηt−τ , Õt)]︸ ︷︷ ︸
I4

.

We now bound each term as follows.

I1
(a)
≤ F5LπE [∥πt − πt−τ−1∥2] + F5LP ∥Pt −Pt−τ∥∞

≤ F5LπE

[
t∑

i=t−τ

∥πi − πi−1∥2

]
+ F5LP

t∑
i=t−τ+1

∥Pi −Pi−1∥∞

(b)
≤ F5LπB2β(τ + 1) + F5LP ∆P,t−τ+1,t

where (a) follows from Lemma 18, and (b) is due to Lemma 12. For the second term I2, we have

I2
(c)
≤ F6|ηt − ηt−τ |

where (c) is by Lemma 19. For the third term I3, we have

I3
(d)
≤ F7

√
|S||A|E

[
t∑

i=t−τ

∥πi − πt−τ−1∥2

∣∣∣Ft−τ

]
+ F7

t∑
i=t−τ

∥Pi −Pt−τ∥∞

(e)
≤ F7

√
|S||A|B2β(τ + 1)2 + F7∆P,t−τ+1,t.

where (d) is due to Lemma 20 and (e) follows from Lemma 12. For the last term, by Lemma 21, we have

I4 ≤ F8mρτ .

We get the final result by putting all the four terms together.

D.5 Auxiliary Lemmas

D.5.1 Actor

Lemma 12. For any timesteps t > τ > 0, the policies generated by Algorithm 1 satisfy
t∑

i=t−τ

∥πi − πt−τ−1∥2 ≤ B2β(τ + 1)2

36

Published in Transactions on Machine Learning Research (02/2026)

and reward and transition probability matrices satisfy

t∑
i=t−τ

∥ri − rt−τ∥∞ ≤ τ

t∑
i=t−τ+1

∥ri − ri−1∥∞

t∑
i=t−τ

∥Pi −Pt−τ∥∞ ≤ τ

t∑
i=t−τ+1

∥Pi −Pi−1∥∞.

Proof. By triangle inequality, we have

t∑
i=t−τ

∥πi − πt−τ−1∥2 ≤
t∑

i=t−τ

∥
i∑

j=t−τ

πj − πj−1∥2

≤
t∑

i=t−τ

i∑
j=t−τ

∥πj − πj−1∥2

(a)
≤ B2β(τ + 1)2

where (a) is by Lemma 3. The rest follow similarly using triangle inequality.

D.5.2 Critic

Lemma 13. For any π,π′, P, P′, r,ψ and O = (s, a, s′, a′), we have

|Γ(π, P, r,ψ, O)− Γ(π′, P′, r,ψ, O)| ≤ F1π∥π − π′∥2 + F1P∥P−P′∥∞

where F1π = 2UQLπ + 4UQGπ + 8U2
Q(M + 2)|S||A|, F1P = 2UQLP + 4UQGP + 8U2

Q(M + 1)
√
|S||A|.

Proof.
|Γ(π, P, r,ψ, O)− Γ(π′, P′, r,ψ, O)|

= |ψ⊤(Jπ′,P′,r(O)− Jπ,P,r(O)) +ψ⊤A(O)
(

Qπ,P,r −Qπ′,P′,r
)

+ψ⊤
(

Āπ′,P′
− Āπ,P

)
ψ|

(a)
≤ ∥ψ∥∞|Jπ′,P′,r − Jπ,P,r|+ ∥ψ∥2 ∥A(O)∥2

∥∥∥Qπ,P,r −Qπ′,P′,r
∥∥∥

2

+ ∥ψ∥∞

∥∥∥Āπ′,P′
− Āπ,P

∥∥∥
∞
∥ψ∥1

(b)
≤ 2UQLπ∥π − π′∥2 + 2UQLP ∥P−P′∥∞ + ∥ψ∥2 ∥A(O)∥2

∥∥∥Qπ,P,r −Qπ′,P′,r
∥∥∥

2

+ ∥ψ∥∞

∥∥∥Āπ′,P′
− Āπ,P

∥∥∥
∞
∥ψ∥1

(c)
≤ 2UQLπ∥π − π′∥2 + 2UQLP ∥P−P′∥∞ + 4UQ ·Gπ∥π − π′∥2 + 4UQGP ∥P−P′∥∞

+ ∥ψ∥∞

∥∥∥Āπ′,P′
− Āπ,P

∥∥∥
∞
∥ψ∥1

(d)
≤ 2UQLπ∥π − π′∥2 + 2UQLP ∥P−P′∥∞ + 4UQGπ∥π − π′∥2 + 4UQGP ∥P−P′∥∞

+ 2UQ · 2dT V

(
dπ′,P′

⊗ π′ ⊗P′ ⊗ π′, dπ,P ⊗ π ⊗P⊗ π
)
· 2UQ

√
|S||A|

(e)
≤ 2UQLπ∥π − π′∥2 + 2UQLP ∥P−P′∥∞ + 4UQGπ∥π − π′∥2 + 4UQGP ∥P−P′∥∞

+ 8U2
Q(M + 2)|S||A|∥π − π′∥2 + 8U2

Q(M + 1)
√
|S||A|∥π − π′∥∞

where (a) follows from Holder’s inequality; (b) is due to Lemma 6; (c) is by Lemma 9 and Lemma 24
(∥A(O)∥1 ≤ 1); (d) is by Lemma 24 and (e) uses Lemma 22.

37

Published in Transactions on Machine Learning Research (02/2026)

Lemma 14. For any π, P, r,ψ,ψ′ and O = (s, a, s′, a′), we have

|Γ(π, P, r,ψ, O)− Γ(π, P, r,ψ′, O)|≤ F2∥ψ −ψ′∥2

where F2 = 2UR + 18UQ.

Proof.
|Γ(π, P, r,ψ, O)− Γ(π, P, r,ψ′, O)|
≤
(
∥r(O)∥2 + ∥Jπ,P,r(O)∥2 + ∥A(O)∥2∥Qπ,P,r∥2

)
∥ψ −ψ′∥2

+ ∥A(O)− Āπ,P∥2∥ψ −ψ′∥2 (∥ψ∥2 + ∥ψ′∥2)
≤ (2UR + 18UQ)∥ψ −ψ′∥2.

Lemma 15. Consider an observation from the original Markov chain by Ot = (st, at, st+1, at+1) and auxiliary
Markov chain by Õt = (s̃t, ãt, s̃t+1, ãt+1). Conditioned on Ft−τ = {st−τ ,πt−τ−1, Pt−τ}, we have

E
[
Γ(πt−τ−1, Pt−τ , rt,ψt−τ , Ot)− Γ(πt−τ−1, Pt−τ , rt,ψt−τ , Õt)

∣∣Ft−τ

]
≤ F3

√
|S||A|E

[
t∑

i=t−τ

∥πi − πt−τ−1∥2

∣∣∣Ft−τ

]
+ F3

t∑
i=t−τ

∥Pi −Pt−τ∥∞

where F3 = 16URUQ + 24U2
Q

√
|S||A|.

Proof. Consider the original and auxiliary Markov chains whose construction is described in Section B.

E
[
Γ(πt−τ−1, Pt−τ , rt,ψt−τ , Ot)− Γ(πt−τ−1, Pt−τ , rt,ψt−τ , Õt)

∣∣Ft−τ

]
= ψ⊤

t−τE
[
rt(Ot)− rt(Õt) + Jπt−τ−1,Pt−τ ,rt(Õt)− Jπt−τ−1,Pt−τ ,rt,(Ot)

∣∣Ft−τ

]
+ψ⊤

t−τE
[(

A(Ot)−A(Õt)
)

Qπt−τ−1,Pt−τ ,rt
∣∣Ft−τ

]
+ψ⊤

t−τE
[(

A(Ot)−A(Õt)
) ∣∣Ft−τ

]
ψt−τ

≤ ∥ψt−τ∥∞
∥∥E [rt(Ot)− rt(Õt) + Jπt−τ−1

t (Õt)− Jπt−τ−1
t (Ot)

∣∣Ft−τ

]∥∥
1

+ ∥ψt−τ∥∞
∥∥E [A(Ot)−A(Õt)

∣∣Ft−τ

]∥∥
1 ∥Q

πt−τ−1,Pt−τ ,rt∥1

+ ∥ψt−τ∥∞
∥∥E [A(Ot)−A(Õt)

∣∣Ft−τ

]∥∥
1 ∥ψt−τ∥1

≤ 2UQ · 4UR · 2dT V

(
P (Ot ∈ ·|Ft−τ), P (Õt ∈ ·|Ft−τ)

)
+ 2UQ · 4dT V

(
P (Ot ∈ ·|Ft−τ), P (Õt ∈ ·|Ft−τ)

)
· UQ

√
|S||A|

+ 2UQ · 4dT V

(
P (Ot ∈ ·|Ft−τ), P (Õt ∈ ·|Ft−τ)

)
· 2UQ

√
|S||A|

≤ (16URUQ + 24U2
Q

√
|S||A|)

(√
|S||A|E

[
t∑

i=t−τ

∥πi − πt−τ−1∥2

∣∣∣Ft−τ

]
+

t∑
i=t−τ

∥Pi −Pt−τ∥∞

)

where the last inequality is from Lemma 23.

Lemma 16. Consider an observation from the original Markov chain by Ot = (st, at, st+1, at+1) and auxiliary
Markov chain by Õt = (s̃t, ãt, s̃t+1, ãt+1). Conditioned on Ft−τ = {st−τ ,πt−τ−1, Pt−τ}, we have

E
[
Γ(πt−τ−1, Pt−τ , rt,ψt−τ , Õt)

∣∣Ft−τ

]
≤ F4mρτ

where F4 = 8URUQ + 24U2
Q

√
|S||A|.

Proof. Consider the original and auxiliary Markov chains whose construction is described in Section B.
Also, consider the observation tuple O′

t = (s′
t, a′

t, s′
t+1, a′

t+1) where s′
t ∼ dπt−τ−1,Pt−τ (·), a′

t ∼ πt−τ−1(·|s′
t),

38

Published in Transactions on Machine Learning Research (02/2026)

s′
t+1 ∼ Pt−τ (·|s′

t, a′
t) and a′

t+1 ∼ πt−τ−1(·|s′
t+1). From the definition of Γ(·) and the TD limit point equation

(3), it follows that

E
[
Γ(πt−τ−1, Pt−τ , rt,ψt−τ , O′

t)
∣∣Ft−τ

]
= 0

Hence, we have

E
[
Γ(πt−τ−1, Pt−τ , rt,ψt−τ , Õt)

∣∣Ft−τ

]
≤ E

[
Γ(πt−τ−1, Pt−τ , rt,ψt−τ , Õt)− Γ(πt−τ−1, Pt−τ , rt,ψt−τ , O′

t)
∣∣Ft−τ

]
≤ ∥ψt−τ∥∞

∥∥E [rt(Õt)− Jπt−τ−1,Pt−τ ,rt(Õt)− rt(O′
t) + Jπt−τ−1,Pt−τ ,rt(O′

t)
∣∣Ft−τ

]∥∥
1

+ ∥ψt−τ∥∞
∥∥E [(A(Õt)−A(O′

t)
)

Qπt−τ−1,Pt−τ ,rt
∣∣Ft−τ

]∥∥
1

+ ∥ψt−τ∥∞
∥∥E [(A(Õt)−A(O′

t)
)
ψt−τ

∣∣Ft−τ

]∥∥
1

≤ 2UQ · 4UR · 2dT V

(
P (Õt ∈ ·|Ft−τ), P (O′

t ∈ ·|Ft−τ)
)

+ 2UQ · 4dT V

(
P (Õt ∈ ·|Ft−τ), P (O′

t ∈ ·|Ft−τ)
)
· UQ

√
|S||A|

+ 2UQ · 4dT V

(
P (Õt ∈ ·|Ft−τ), P (O′

t ∈ ·|Ft−τ)
)
· 2UQ

√
|S||A|

= F4
∑

s,a,s′,a′

|P (s̃t = s|Ft−τ)πt−τ−1(a|s)Pt−τ (s′|s, a)πt−τ−1(a′|s′)

− P (s′
t = s|Ft−τ)πt−τ−1(a|s)Pt−τ (s′|s, a)πt−τ−1(a′|s′)|

= F4
∑

s,a,s′,a′

πt−τ−1(a|s)P (s′|s, a)πt−τ−1(a′|s′)|P (s̃t = s|Ft−τ)− P (s′
t = s|Ft−τ)|

= F4
∑

s

|P (s̃t = s|Ft−τ)− P (s′
t = s|Ft−τ)|

≤ F4mρτ

where the last inequality follows from Assumption 1.

D.5.3 Average Reward Estimation

Lemma 17. Consider an observation from the original Markov chain by Ot = (st, at, s′
t, a′

t) and auxiliary
Markov chain by Õt = (s̃t, ãt, s̃t+1, ãt+1). Conditioned on Ft−τ = {st−τ ,πt−τ−1, Pt−τ}, we have

E
[
Jπt−τ−1,Pt−τ ,rt − rt(s̃t, ãt)|Ft−τ

]
≤ 4URmρτ

where Jπt−τ−1,Pt−τ ,rt =
∑

s,a dπt−τ−1,Pt−τ (s)πt−τ−1(a|s)rt(s, a).

Proof. Consider the observation tuple O′
t = (s′

t, a′
t, s′

t+1, a′
t+1) where s′

t ∼ dπt−τ−1,Pt−τ (·), a′
t ∼ πt−τ−1(·|s′

t),
s′

t+1 ∼ Pt−τ (·|s′
t, a′

t) and a′
t+1 ∼ πt−τ−1(·|s′

t+1). Then, by definition of Jπt−τ−1,Pt−τ ,rt , we have

E
[
Jπt−τ−1,Pt−τ ,rt − rt(s′

t, a′
t)|Ft−τ

]
= 0.

Hence, we have

E
[
Jπt−τ−1,Pt−τ ,rt − rt(s̃t, ãt)|Ft−τ

]
= E

[
Jπt−τ−1,Pt−τ ,rt − rt(s′

t, a′
t)− rt(s̃t, ãt) + rt(s′

t, a′
t)|Ft−τ

]
= E [rt(s′

t, a′
t)− rt(s̃t, ãt)|Ft−τ]

≤ 2UR · 2dT V

(
dπt−τ−1,Pt−τ ⊗ πt−τ−1, P ((s̃t, ãt) ∈ ·|Ft−τ)

)
(a)
≤ 4URdT V

(
dπt−τ−1,Pt−τ , P (s̃t ∈ ·|Ft−τ)

)
(b)
≤ 4URmρτ

where (a) follows from Lemma B.1 in [33] and (b) is by Assumption 1.

39

Published in Transactions on Machine Learning Research (02/2026)

Lemma 18. For any π,π′, P, P′, r, η, and O = (s, a, s′, a′), we have

|Λ(π, P, r, η, O)− Λ(π′, P′, r, η, O)| ≤ F5Lπ∥π − π′∥2 + F5LP ∥P−P′∥∞,

where F5 = 4UR.

Proof.
|Λ(π, P, r, η, O)− Λ(π′, P′, r, η, O)|
≤ |(η − Jπ,P,r)(r(s, a)− Jπ,P,r)− (η − Jπ′,P′,r)(r(s, a)− Jπ′,P′,r)|
≤ |(η − Jπ,P,r)(r(s, a)− Jπ,P,r)− (η − Jπ,P,r)(r(s, a)− Jπ′,P′,r)|

+ |(η − Jπ,P,r)(r(s, a)− Jπ′,P′,r)− (η − Jπ′,P′,r)(r(s, a)− Jπ′,P′,r)|

≤ 4UR|Jπ,P,r − Jπ′,P′,r|
(a)
≤ 4URLπ∥π − π′∥2 + 4URLP ∥P−P′∥∞

where (a) follows from Lemma 6.

Lemma 19. For any π, P, r, η, η′ and O = (s, a, s′, a′), we have

|Λ(π, P, r, η, O)− Λ(π, P, r, η′, O)| ≤ F6|η − η′|

where F6 = 2UR.

Proof. Recall the definition of Λ(·) in Section B. It is straightforward to see that

|Λ(π, P, r, η, O)− Λ(π, P, r, η′, O)| ≤ 2UR|η − η′|

Lemma 20. Consider an observation from the original Markov chain by Ot = (st, at, st+1, at+1) and auxiliary
Markov chain by Õt = (s̃t, ãt, s̃t+1, ãt+1). Conditioned on Ft−τ = {st−τ ,πt−τ−1, Pt−τ}, we have

E
[
Λ(πt−τ−1, Pt−τ , rt, ηt−τ , Ot)− Λ(πt−τ−1, Pt−τ , rt, ηt−τ , Õt)

∣∣Ft−τ

]
≤ F7

√
|S||A|E

[
t∑

i=t−τ

∥πi − πt−τ−1∥2

∣∣∣Ft−τ

]
+ F7

t∑
i=t−τ

∥Pi −Pt−τ∥∞

where F7 = 8U2
R.

Proof.
E
[
Λ(πt−τ−1, Pt−τ , rt, ηt−τ , Ot)− Λ(πt−τ−1, Pt−τ , rt, ηt−τ , Õt)

∣∣Ft−τ

]
= (ηt−τ − Jπt−τ−1,Pt−τ ,rt)E

[
rt(st, at)− rt(s̃t, ãt)

∣∣Ft−τ

]
≤ 2UR · 4URdT V

(
P (Ot ∈ ·|Ft−τ), P (Õt ∈ ·|Ft−τ)

)
(a)
≤ F7

√
|S||A|E

[
t∑

i=t−τ

∥πi − πt−τ−1∥2

∣∣∣Ft−τ

]
+ F7

t∑
i=t−τ

∥Pi −Pt−τ∥∞

where (a) follows from Lemma 23.

Lemma 21. Consider an observation from the original Markov chain by Ot = (st, at, st+1, at+1) and auxiliary
Markov chain by Õt = (s̃t, ãt, s̃t+1, ãt+1). Conditioned on Ft−τ = {st−τ ,πt−τ−1, Pt−τ}, we have

E
[
Λ(πt−τ−1, Pt−τ , rt, ηt−τ , Õt)

∣∣Ft−τ

]
≤ F8mρτ

where F8 = 8U2
R.

40

Published in Transactions on Machine Learning Research (02/2026)

Proof. Consider the observation tuple O′
t = (s′

t, a′
t, s′

t+1, a′
t+1) where s′

t ∼ dπt−τ−1,Pt−τ (·), a′
t ∼ πt−τ−1(·|s′

t),
s′

t+1 ∼ Pt−τ (·|s′
t, a′

t) and a′
t+1 ∼ πt−τ−1(·|s′

t+1).

We know

E
[
Λ(πt−τ−1, Pt−τ , rt, ηt−τ , O′

t)
∣∣Ft−τ

]
= 0.

Hence, we have

E
[
Λ(πt−τ−1, Pt−τ , rt, ηt−τ , Õt)

∣∣Ft−τ

]
= E

[
Λ(πt−τ−1, Pt−τ , rt, ηt−τ , Õt)

∣∣− Λ(πt−τ−1, Pt−τ , rt, ηt−τ , O′
t)
∣∣Ft−τ

]
= E

[
(ηt−τ − Jπt−τ−1,Pt−τ ,rt)(rt(s̃t, ãt)− rt(s′

t, a′
t))
∣∣Ft−τ

]
≤ 2UR · 4URdT V

(
dπt−τ−1,Pt−τ ⊗ πt−τ−1, P ((s̃t, ãt) ∈ ·|Ft−τ)

)
(a)
≤ 2UR · 4URdT V

(
dπt−τ−1,Pt−τ , P (s̃t ∈ ·|Ft−τ)

)
(b)
≤ 8U2

Rmρτ

where (a) follows from Lemma B.1 in [33] and (b) is by Assumption 1.

D.6 Preliminary Lemmas

Lemma 22. For any policies π,π′ and transition probabilities matrices P, P′, it holds that

dT V

(
dπ,P, dπ′,P′

)
≤M

√
|S||A|||π − π′||2 + M ||P−P′||∞,

dT V

(
dπ,P ⊗ π, dπ′,P′

⊗ π′
)
≤ (M + 1)

√
|S||A|∥π − π′∥2 + M∥P−P′∥∞,

dT V

(
dπ,P ⊗ π ⊗P, dπ′,P′

⊗ π′ ⊗P′
)
≤ (M + 1)

√
|S||A|∥π − π′∥2 + (M + 1)∥P−P′∥∞,

dT V

(
dπ,P ⊗ π ⊗P⊗ π, dπ′,P′

⊗ π′ ⊗P′ ⊗ π′
)
≤ (M + 2)

√
|S||A|∥π − π′∥2 + (M + 1)∥P−P′∥∞

where ⊗ denotes the Kronecker product, and M :=
(
⌈logρ m−1⌉+ 1

1−ρ

)
.

Proof. Recall that dπ,P(·) is the stationary distribution induced over the states by a Markov chain with
transition probabilities P following policy π. Define the matrices K, K′ ∈ R|S|×|S| such that K(s, s′) =∑

a∈A P (s′|s, a)π(a|s) and K′(s, s′) =
∑

a∈A P ′(s′|s, a)π′(a|s). Further denote the total variation norm as
|| · ||T V . Note that ∥P−P′∥∞ = max

s,a

∑
s′ |P (s′|s, a)− P ′(s′|s, a)|.

From Theorem 3.1 in [56], we have,

dT V

(
dπ,P, dπ′,P′

)
≤M sup

∥q∥T V =1

∥∥∥∥∫
S

q(ds)(K−K′)(s, ·)
∥∥∥∥

T V

≤M sup
∥q∥T V =1

∫
S

∣∣∣∣∫
S

q(ds)(K−K′)(s, ds′)
∣∣∣∣

≤M sup
∥q∥T V =1

∫
S

∫
S
|q(ds)|

∣∣∣∣∣∑
a∈A

P (ds′|s, a)π(a|s)− P ′(ds′|s, a)π′(a|s)
∣∣∣∣∣

≤M sup
∥q∥T V =1

∫
S

∫
S

∑
a

|q(ds)| |P (ds′|s, a)π(a|s)− P (ds′|s, a)π′(a|s)|

+ M sup
∥q∥T V =1

∫
S

∫
S

∑
a

|q(ds)| |P (ds′|s, a)π′(a|s)− P ′(ds′|s, a)π′(a|s)|

41

Published in Transactions on Machine Learning Research (02/2026)

≤M
√
|S||A|||π − π′||2 + M ||P−P′||∞.

For the second inequality, we have,

dT V

(
dπ,P ⊗ π, dπ′,P′

⊗ π′
)
≤ 1

2

∫
S

∑
a

∣∣∣dπ,P(ds)π(a|s)− dπ′,P′
(ds)π′(a|s)

∣∣∣
≤ 1

2

∫
S

∑
a

∣∣dπ,P(ds)π(a|s)− dπ,P(ds)π′(a|s)
∣∣

+ 1
2

∫
S

∑
a

∣∣∣dπ,P(ds)π′(a|s)− dπ′,P′
(ds)π′(a|s)

∣∣∣
≤
√
|S||A|∥π − π′∥2 + dT V

(
dπ,P, dπ′,P′

)
≤ (M + 1)

√
|S||A|∥π − π′∥2 + M∥P−P′∥∞.

The rest follow in a similar manner.

Lemma 23. Consider observations Ot = (st, at, st+1, at+1) and Õt = (s̃t, ãt, s̃t+1, ãt+1) and define Ft−τ :=
{st−τ ,πt−τ−1, Pt−τ}. We have

dT V

(
P (Ot ∈ ·|Ft−τ), P (Õt ∈ ·|Ft−τ)

)
≤
√
|S||A|

t∑
i=t−τ

E
[
∥πi − πt−τ−1∥2

∣∣∣Ft−τ

]
+ ∥Pi −Pt−τ∥∞.

Proof.
dT V

(
P (Ot ∈ ·|Ft−τ), P (Õt ∈ ·|Ft−τ)

)
= 1

2
∑

s,a,s′,a′

|P (
Ht︷ ︸︸ ︷

st = s, at = a, st+1 = s′, at+1 = a′|Ft−τ)− P (s̃t = s, ãt = a, s̃t+1 = s′, ãt+1 = a′|Ft−τ)|

= 1
2
∑

s,a,s′,a′

|P (st = s, at = a|Ft−τ)Pt(s′|s, a)E [πt(a′|s′)|Ft−τ ,Ht]

− P (s̃t = s, ãt = a|Ft−τ)Pt−τ (s′|s, a)πt−τ−1(a′|s′)|

≤ 1
2
∑

s,a,s′,a′

|P (st = s, at = a|Ft−τ)Pt(s′|s, a)E [πt(a′|s′)|Ft−τ ,Ht]

− P (s̃t = s, ãt = a|Ft−τ)Pt(s′|s, a)πt−τ−1(a′|s′)|

+ 1
2
∑

s,a,s′,a′

|P (s̃t = s, ã = a|Ft−τ)Pt(s′|s, a)πt−τ−1(a′|s′)

− P (s̃t = s, ãt = a|Ft−τ)Pt−τ (s′|s, a)πt−τ−1(a′|s′)|

= 1
2
∑

s,a,s′,a′

Pt(s′|s, a)P (st = s, at = a|Ft−τ)|E [πt(a′|s′)|Ft−τ ,Ht]− πt−τ−1(a′|s′)|

+ 1
2
∑
s,a

|P (st = s, at = a|Ft−τ)− P (s̃t = s, ãt = a|Ft−τ)|

+ 1
2
∑

s,a,s′,a′

P (s̃t = s, ãt = a|Ft−τ)πt−τ−1(a′|s′)|Pt(s′|s, a)− Pt−τ (s′|s, a)|

≤
√
|S||A|E

[
∥πt − πt−τ−1∥2

∣∣∣Ft−τ

]
+ dT V

(
P (Ot−1 ∈ ·|Ft−τ), P (Õt−1 ∈ ·|Ft−τ)

)
+ ∥Pt −Pt−τ∥∞.

Finally, recursing backwards until τ yields the result.

Lemma 24. If an observation is denoted as O = (s, a, s′, a′), then the following hold for all t, t′

42

Published in Transactions on Machine Learning Research (02/2026)

1. ∥Qπ
t ∥2 ≤ UQ; ∥Qt∥2 ≤ RQ = UQ

2. ∥A(O)∥∞ ≤ 2; ∥A(O)∥2 ≤
√

2

3. ∥Āπ,P − Āπ′,P′∥∞ ≤ 2dT V

(
dπ,P ⊗ π ⊗P⊗ π, dπ′,P′ ⊗ π′ ⊗P′ ⊗ π′

)
4. ∥ψt+1 −ψt∥2 ≤ ∥Qt+1 −Qt∥2 + ∥Qπt+1

t+1 −Qπt
t ∥2

Proof. We have the following.
1. See the projection operator ΠRQ

(·) used in Algorithm 1 and discussed further in Section 5.1.

2. Follows from the definition of A(O) in Section 5.1

3. Follows from the definition of Āπ,P in Section 5.1 and

∥Āπ,P − Āπ′,P′
∥∞ = max

s,a

∑
s′,a′

|dπ,P(s, a)π(a|s)P(s′|s, a)π(a′|s′)

− dπ′,P′
(s, a)π′(a|s)P′(s′|s, a)π′(a′|s′)|

4. By the definition of ψt = ΠE [Qt −Qπt
t] and triangle inequality

D.7 Universal Dynamic Regret

While dynamic regret as defined in Equation (2) remains the predominant metric of performance in non-
stationary RL literature [12, 47, 18, 16, 17], we additionally consider the universal dynamic regret often used
in the adversarial learning literature [57, 58, 59] for completeness. We now present an upper bound on the
universal dynamic regret defined as the difference between the optimal total reward that can be obtained in
T time-steps and the reward accumulated by our algorithm as follows

U-Dyn-Reg(M, T) = max
{πc

t }T −1
t=0

Eac
t ∼πc

t (·|sc
t)

[
T −1∑
t=0

rt(sc
t , ac

t)
]
− E

[
T −1∑
t=0

rt(st, at)
]

. (35)

Observe that this notion of regret is slightly different from the dynamic regret defined previously in Equation (2)
which compares against the sum of average rewards J

π⋆
t

t obtained by the policies π⋆
t .

We make the following additional assumptions on the structure of the MDP. The condition number captures
the sensitivity of the stationary distribution to the change in probabilities and the recurrent coefficient
captures how often a state is visited.
Assumption 2 (Bounded Condition Number, [60]). The condition number of a Markov chain following π
induced by the transition probability matrix Pπ ∈ R|S|×|S| is defined as the maximum norm of the Drazin
inverse of I −Pπ as

κ(Pπ) = ∥(I −Pπ)#∥max

where B# represents the Drazin inverse of matrix B and ∥B∥max = maxi,j Bi,j . We assume that for all
environments t ∈ [T], there exists a κ > 0, such that the condition numbers of Markov chain Mt following
the optimal policy π⋆

t are bounded as

κ(Pπ⋆
t

t) ≤ κ.

43

Published in Transactions on Machine Learning Research (02/2026)

Assumption 3 (Bounded Recurrent Coefficient, [61]). Denote the first passage time of state j from state i

in an MDP M(S,A, P, r) following policy π as Y π,P
i,j . The recurrent coefficient of state j, denoted by νj , is

defined as the probability that the first passage time Y π
i,j of state j from any state i following any policy π is

smaller than the number of states as

νj(M) = min
i,π

Prob(Y π
i,j ≤ |S|).

We assume that for all environments t ∈ [T] and all states j ∈ S, there exists a ν, such that the recurrent
coefficients νj(Mt) are bounded as

νj(Mt) ≥ ν.

Corollary 1. If Assumption 1, Assumption 2, Assumption 3 are satisfied in Algorithm 1 with appropriate
choice of parameters, then

U-Dyn-Reg(M, T) = max
{πc

t }T −1
t=0

E

[
T −1∑
t=0

rt(sc
t ,πc

t)
]
− E

[
T −1∑
t=0

rt(st, at)
]
≤ Õ

(
|S|1/2|A|1/2∆1/6

T T 5/6
)

.

Proof. We decompose the regret as

U-Dyn-Reg(M, T) = max
{πc

t }T −1
t=0

E

[
T −1∑
t=0

rt(sc
t ,πc

t)
]
− E

[
T −1∑
t=0

rt(st, at)
]

=
(

max
{πc

t }T −1
t=0

E

[
T −1∑
t=0

rt(sc
t ,πc

t)
]
− E

[
T −1∑
t=0

J
π⋆

t
t

])
+
(
E

[
T −1∑
t=0

J
π⋆

t
t

]
− E

[
T −1∑
t=0

rt(st, at)
])

(a)
≤ Õ

(κ

ν2 ∆T

)
+
(
E

[
T −1∑
t=0

J
π⋆

t
t

]
− E

[
T −1∑
t=0

rt(st, at)
])

(b)
≤ Õ

(κ

ν2 ∆T

)
+ Õ

(
|S|1/2|A|1/2∆1/6

T T 5/6
)

where (a) follows from Lemma 1 (b), Corollary 2, Theorem 1 in [59] and (b) follows from Theorem 4.

E NS-NAC with Function Approximation

In this section, we present the NS-NAC algorithm with function approximated policy and the state-action
value function and the associated regret bound. Consider the policy πθ parameterized by θ ∈ Rd. Consider
the state-action value function Qπθ (s, a) approximated as a linear function fT

θ (s, a)ω where fθ(s, a) denotes
the feature vector and ω ∈ Rd. We assume the actor and the critic function approximations to be compatible
as fθ(s, a) = ∇θ logπθ(a|s) [62, 63]. The natural policy gradient [20] can hence be expressed as

θt+1 ← θt + βF −1
θt

Es,a

[
fθt

(s, a)(fT
θt

(s, a)ω⋆
θt

)
]

where ω⋆
θt

= arg min
ω

E
[
(Qπθt

t (s, a)− fT
θt

(s, a)ω)2] . In the absence of the information of the exact gradient,
the actor update step corresponding to line 10 thus becomes

θt+1 ← θt + βωt.

The TD update step of the critic in line 9 can be written as

ωt+1 ← ωt + α
[
rt(st, at)− ηt + fT

t (st+1, at+1)ωt − fT
t (st, at)ωt

]
ft(st, at).

We now detail the assumptions under which the following upper bound on the dynamic regret of NS-NAC with
function approximation holds.

44

Published in Transactions on Machine Learning Research (02/2026)

Assumption 4 (Uniform Ergodicity). A Markov chain generated by implementing policy πθ and transition
probabilities P is called uniformly ergodic, if there exists m > 0 and ρ ∈ (0, 1) such that

dT V

(
P (sτ ∈ ·|s0 = s), dπθ,P) ≤ mρτ ∀τ ≥ 0, s ∈ S,

where dπθ,P is the stationary distribution induced over the states. We assume Markov chains induced by all
potential policies πθt

in all environments Pt, t ∈ [T], are uniformly ergodic.
Assumption 5. For all potential parameters θt in all environments Pt, t ∈ [T], the maximum eigenvalue of
matrix Āπθt ,Pt = Es,a,s′,a′

[
ft(s, a)(ft(s′, a′)− ft(s, a))T

]
is −λ.

Assumption 6 (Smoothness and Boundedness). For any θ,θ′ ∈ Rd and any state-action pair s ∈ S, a ∈ A,
there exist positive constants LA, LC such that

1. ∥fθ∥2 ≤ 1,

2. ∥fθ(s, a)− fθ′(s, a)∥ ≤ LC∥θ − θ′∥2, and

3. ∥πθ(·|s)− πθ′(·|s)∥T V ≤ LA∥θ − θ′∥2.

Definition 1. Define the compatible linear function approximation error as

ϵapp := max
θ

min
ω

Es∼dπθ ,Pt ,a∼πθ

[
∥Qπ

t (s, a)− fT
θ (s, a)ω∥2

2
]

.

The dynamic regret achieved by NS-NAC with function approximation described above can be upper bounded
as follows.
Proposition 5. If assumptions 4, 5 and 6 are satisfied, ϵapp is the function approximation error defined in 1
and the parameters of NS-NAC with d-dimensioned function approximation are chosen optimally, then

Dyn-Reg(M, T) = E

[
T −1∑
t=0

J
π⋆

t
t − rt(st, at)

]
= Õ

(
d1/2∆1/6

T T 5/6
)

+ Õ
(

d1/2ϵappT
)

.

Proof. Function approximation has been used commonly in actor-critic [34, 33] and natural actor-critic [43]
algorithms in the infinite-horizon average reward setting. For the sake of brevity, we choose not to repeat the
proof here and instead we point the readers to [43] for the technique to incorporate function approximation
into our analysis of NS-NAC detailed in Section D-Section D.6 above. Note that the structure of the proof
including the methods of actor, critic and average reward analyses remains the same with the only difference
lying in accounting for the function approximation error ϵapp.

F Regret Analysis: BORL-NS-NAC

Theorem 5. If Assumption 1 is satisfied, the time horizon T is divided into epochs of length W = O(T 2/3)
in Algorithm 2, then we have for any j† ∈ {0, 1, · · · , ⌊ln T ⌋}

Dyn-Reg(M, T) ≤ Õ

(
W

√
ln T · T

W

)
︸ ︷︷ ︸

cost of hedging by EXP3.P

+ Õ
(

T N†

W β†

)
+ Õ

(
T

W

√
N†W

α†

)
︸ ︷︷ ︸

effect of initialization

+ Õ
(

β†T

α†

)
+ Õ

(
T
√

β†
)

︸ ︷︷ ︸
cumulative change

in policy over horizon T

(36)

+ Õ
(

β†T

γ†

)
+ Õ

(
T
√

γ†
)

+ Õ
(

T

W

√
N†W

γ

)
︸ ︷︷ ︸

error in average reward estimate at critic

+ Õ
(

T
√

α†
)

︸ ︷︷ ︸
cumulative change
in critic estimates

+ Õ
(∆T W

N†

)
+ Õ

(
∆1/3

T T 2/3
√

α†
+ ∆1/3

T T 2/3√
γ†

)
︸ ︷︷ ︸

error due to non-stationarity

,

45

Published in Transactions on Machine Learning Research (02/2026)

where ∆T = ∆R,T + ∆P,T , α† = γ† =
(

T j†/⌊ln T ⌋

T

)1/3
, β† =

(
T j†/⌊ln T ⌋

T

)1/2
, N† = W

(
T j†/⌊ln T ⌋

T

)5/6
and Õ(·)

hides constants and logarithmic dependence on time horizon T. Choosing optimal value of j† and resulting
optimal parameters as α⋆ = γ⋆ =

(∆T

T

)1/3, β⋆ =
(∆T

T

)1/2 and N⋆T
W = ∆5/6

T T 1/6, we upper bound the regret as

Dyn-Reg(M, T) ≤ Õ
(
|S|1/2|A|1/2∆1/6

T T 5/6
)

.

Proof. We start by decomposing the regret, for any j† ∈ {0, 1, · · · , ⌊ln T ⌋} and corresponding step-sizes
α†, γ†, β† and number of restarts N†, as follows

Dyn-Reg(M, T) =
⌊T/W ⌋∑

i=0
E

(i+1)W −1∑
t=iW

J
π⋆

t
t − rt(st, at)


=

⌊T/W ⌋∑
i=0

E

(i+1)W −1∑
t=iW

J
π⋆

t
t

−Ri,j†

+
⌊T/W ⌋∑

i=0
E
[
Ri,j† −Ri,ji

]
(a)
≤

⌊T/W ⌋∑
i=0

E

(i+1)W −1∑
t=iW

J
π⋆

t
t

−Ri,j†

+ Õ
(

W

√
ln T · T

W

)

(b)
≤

[⌊T/W ⌋∑
i=0

Õ
(

N†

β†

)
+ Õ

(√
N†W

α†

)
+ Õ

(
β†W

α†

)
+ Õ

(
W
√

β†
)

+ Õ
(

β†W

α†

)
+ Õ

(
W
√

γ†
)

+ Õ

√N†W

γ†

+ Õ
(

W
√

α†
)

+ Õ
(∆iW,(i+1)W W

N†

)
+ Õ

∆1/3
iW,(i+1)W W 2/3

√
α†


+ Õ

∆1/3
iW,(i+1)W W 2/3√

γ†

]+ Õ
(

W

√
ln T · T

W

)
(c)
≤ Õ

(
TN†

Wβ†

)
+ Õ

(
T

W

√
N†W

α†

)
+ Õ

(
β†T

α†

)
+ Õ

(
T
√

β†
)

+ Õ
(

β†T

γ†

)
+ Õ

(
T
√

γ†
)

+ Õ

 T

W

√
N†W

γ†

+ Õ
(

T
√

α†
)

+ Õ
(

∆T W

N†

)
+ Õ

(
∆1/3

T T 2/3
√

α†

)

+ Õ
(

∆1/3
T T 2/3√

γ†

)
+ Õ

(
W

√
ln T · T

W

)

where (a) follows from the EXP3.P regret bound of an ⌈ln T ⌉-armed bandit with rewards in [0, W · UR] as
detailed in Section 3.2 of [50], (b) follows from Theorem 4 and (c) follows from Jensen’s inequality.

Further, there exists some j† such that(
T j†/⌊ln T ⌋

T

)1/2

≤ β⋆ =
(

∆T

T

)1/2
≤

(
T (j†+1)/⌊ln T ⌋

T

)1/2

,

(
T j†/⌊ln T ⌋

T

)1/3

≤ α⋆ = γ⋆ =
(

∆T

T

)1/3
≤

(
T (j†+1)/⌊ln T ⌋

T

)1/3

,

(
T j†/⌊ln T ⌋

)5/6
T 1/6 ≤ N⋆T

W
= ∆5/6

T T 1/6 ≤
(

T (j†+1)/⌊ln T ⌋
)5/6

T 1/6.

We conclude the proof by adapting β⋆, α⋆, γ⋆, N⋆ to β†, α†, γ†, N† in the above regret expression and observing
that T 1/⌊ln T ⌋ = O(1) results in the final upper bound presented in the theorem.

46

Published in Transactions on Machine Learning Research (02/2026)

G Simulations

Synthetic Environment. We empirically evaluate the performance of our algorithms on a synthetic
non-stationary MDP, comparing it with three baseline algorithms: SW-UCRL2-CW [51], Var-UCRL2 [13],
and RestartQ-UCB ([16]). The synthetic MDP environment simulates non-stationary dynamics by alternating
between two sets of transition matrices and reward functions over the time horizon T . The switching frequency,
controlled by nswitches, determines the degree of non-stationarity and the variation budget ∆P,T for transitions
and ∆R,T for rewards. The MDP consists of |S| states and |A| actions per state, with two sets of transition
probabilities and rewards sampled at initialization. Further, to benchmark the effect of the dynamic changes,
the optimal policy is recalculated at each switching step tswitch by solving a linear programming problem [55].

The environment alternates between these two sets of transitions and rewards, (P1, r1) and (P2, r2), every
T/nswitches steps. The transition probabilities, P1 and P2, are drawn from a Dirichlet distribution with a
concentration parameter set to 0.5, ensuring a moderate degree of randomness in the state transitions. The
first reward matrix r1 is drawn from a Beta distribution with shape parameters α = 0.5 and β = 0.5, leading
to rewards spread across the interval [0, 1], with a higher probability near the extremes of 0 and 1. The second
reward matrix r2 is sampled from a Beta distribution with shape parameters α = 0.2 and β = 0.9, producing
rewards skewed toward lower values, introducing diversity in the reward structure. We use 5 random seeds to
initialize the matrices, with standard deviation capturing variability across these runs.

Varying T . We evaluate the performance of different algorithms in the synthetic environment with |S| = 50
and |A| = 4 under varying time horizons T . Specifically, the time horizon T is varied over the values
50×103, 70×103, 100×103, 150×103, 180×103, 200×103, and 250×103. For each T , we set nswitches = 1000,
resulting in a transition variation budget ∆P,T = 303, indicating significant environmental changes across
the time horizon. The reward function is kept stationary (no switching between r1 and r2), and therefore
∆R,T = 0.

Varying ∆T . We investigate the impact of changing variation budget by adjusting the number of switches
nswitches while keeping the number of states |S| = 50, actions |A| = 4, and the time horizon T = 50× 103

constant. The number of switches is varied across 10, 45, 100, and 1000, with both the reward function and
the transition dynamics being non-stationary. The observed variation in rewards ∆R,T is 9, 48, 98, and 1000,
respectively, and the observed variation in transitions ∆P,T is 4, 14, 30, and 303, respectively, corresponding
to different levels of non-stationarity.

102 150 175 200

|S|

1.1× 104

1.2× 104

1.3× 104

1.4× 104

1.5× 104

1.6× 104

D
yn

am
ic

R
eg

re
t

NS-NAC

SW-UCRL2-CW

Var-UCRL2

RestartQ-UCB

(a) |A| = 4, T = 5 × 103, ∆T = 14

1015 20 25

|A|

1.2× 104

1.4× 104

1.6× 104

1.8× 104

2× 104

2.2× 104

2.4× 104

D
yn

am
ic

R
eg

re
t

NS-NAC

SW-UCRL2-CW

Var-UCRL2

RestartQ-UCB

(b) |S| = 50, T = 5 × 103, ∆T = 14

Figure 2: Log-log plots showing the effect of varying: (a) number of
states |S|, and (b) number of actions |A|.

0 1 2 3 4

Time Step ×103

0

500

1000

1500

2000

D
yn

am
ic

R
eg

re
t

α = β = γ = 0.001

α = β = γ = 0.05

α = β = γ = 0.1

α = β = γ = 0.5

α = β = γ = 0.9

(a) |S| = 50, |A| = 50, ∆T = 7

Figure 3: Performance of NS-
NAC with different step-sizes in
an environment with 17 abrupt,
randomly scheduled switches over
T = 4× 103 steps.

Varying |S|. We study the effect of varying the number of states while keeping the time horizon T , number
of actions, and variation budget ∆T constant. Specifically, the time horizon T is fixed at 50× 103 steps, and

47

Published in Transactions on Machine Learning Research (02/2026)

the number of states is varied across the values 100, 150, 175, and 200, corresponding to environments with
different state sizes while keeping the number of actions fixed at 4. The nswitches is adjusted to 75, 100, 120,
and 150, respectively, in order to maintain a consistent ∆P,T of around 14 for all environments. The reward
function is kept stationary with ∆R,T = 0 (no switching between r1 and r2).

Varying |A|. We examine the effect of varying the number of actions while keeping the time horizon T ,
number of states, and variation budget ∆T constant. Specifically, the time horizon T is fixed at 50× 103

steps, and the number of actions is varied across the values 5, 10, 20, and 25, corresponding to environments
with different action sizes while keeping the number of states fixed at 50. The nswitches is kept constant at 45
across all experiments to maintain a consistent variation budget ∆P,T of around 14 for all environments. The
reward function is kept stationary with ∆R,T = 0 (no switching between r1 and r2).

Parameters. The true variation budgets, ∆P,T and ∆R,T , are provided to each algorithm, while the
remaining hyperparameters are configured according to the optimal expressions derived in their respective
papers. For SW-UCRL2-CW, the parameters include the window size W∗ and the confidence widening
parameter η∗, both set using the optimal expressions given in the paper, and the confidence parameter
δ = 0.05. For Var-UCRL2, the true values of the variation budgets for transitions probabilities ∆P,T and
rewards ∆R,T , along with the confidence parameter δ = 0.05, are used. In RestartQ-UCB, the ending times
of the stages L, confidence parameter δ = 0.05, initial number of samples N0, and number of epochs D
are configured as described in the original paper with H = 1 (to adapt from episodic setting for which the
algorithm is designed to infinite horizon setting in our work). For NS-NAC, we tune the step-sizes and
number of restarts by grid search. The effect of different choices of step-sizes can be observed in Figure 3.
Further, for BORL-NS-NAC, we set the number of epochs as W = ⌊T 2/3⌋.

0.0 0.2 0.4 0.6 0.8 1.0

Time Step ×104

0

500

1000

1500

2000

2500

3000

D
yn

am
ic

R
eg

re
t

NS-NAC

SW-UCRL2-CW

Var-UCRL2

RestartQ-UCB

(a) |S| = 50, |A| = 4, ∆T = 15

0.0 0.2 0.4 0.6 0.8 1.0

Time Step ×104

0

500

1000

1500

2000

2500

3000

D
yn

am
ic

R
eg

re
t

NS-NAC

SW-UCRL2-CW

Var-UCRL2

RestartQ-UCB

(b) |S| = 50, |A| = 4, ∆T = 0.06

Figure 4: Performance of NS-NAC and baseline algorithms in various non-stationary settings. (a) Dynamic
regret for a single instance over T = 1× 104 steps in an environment with 50 abrupt, randomly scheduled
switches. (b) Dynamic regret for a single instance over T = 1 × 104 steps in an environment with small,
continuous changes.

Additional Environments.

We conducted further experiments to evaluate the adaptability of NS-NAC and baseline algorithms across
diverse non-stationary settings. Figure 4(a) illustrates performance in an environment with 50 abrupt and
randomly scheduled switches (between P1 and P2), simulating scenarios with non-periodic unpredictability.
Figure 4(b) captures performance in a continuously changing environment, where the transition from P1 to P2
occurred gradually over T = 105 steps resulting ∆T = 0.06. This scenario reflects real-world conditions where
systems experience smooth drift rather than abrupt changes. The results highlight NS-NAC’s effectiveness in
handling both abrupt and gradual changes, consistently matching the performance of baseline methods.

48

	Introduction
	Related Work
	Problem Setting
	Preliminaries: Stationary RL
	Non-Stationary RL

	Algorithm: NS-NAC
	Regret Analysis: NS-NAC
	Assumptions
	Bounds on Regret

	Unknown Variation Budgets: BORL-NS-NAC
	Proof Sketch of maintheorem:regretUpperBound
	Simulations
	Conclusion
	Appendix
	Additional Related Work
	Notation
	Symbol Reference
	Regret Analysis: NS-NAC
	Actor
	Critic
	Average Reward Estimation
	Technical Lemmas
	Actor
	Critic
	Average Reward Estimation

	Auxiliary Lemmas
	Actor
	Critic
	Average Reward Estimation

	Preliminary Lemmas
	Universal Dynamic Regret

	NS-NAC with Function Approximation
	Regret Analysis: BORL-NS-NAC
	Simulations

