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ABSTRACT

The dynamical stability of the iterates during training plays a key role in determin-
ing the minima obtained by training algorithms. For example, stable solutions of
gradient descent (GD) correspond to flat minima, and these have been associated
with favorable features. While prior work often relies on linearization to deter-
mine stability, it remains unclear whether linearized dynamics faithfully capture
the full nonlinear behavior. In this work, we explicitly study the effect of nonlin-
ear terms. For GD, we show that linear analysis can be misleading. The iterates
may stably oscillate near a linearly unstable minimum, and still converge once the
step size decays. Here, we derive an exact condition for such stable oscillations,
which depends on higher-order derivatives of the loss. Extending the analysis to
stochastic gradient descent (SGD), we demonstrate that nonlinear dynamics can
diverge in expectation if even a single batch is unstable. This implies that stability
can be dictated by the worst-case batch, rather than an average effect, as linear
analysis suggests. Finally, we prove that if all batches are linearly stable, then the
nonlinear dynamics of SGD are stable in expectation.

1 INTRODUCTION

Understanding the nature of the minima reached by our training procedures is a central problem
in machine learning and optimization (Neyshabur et al., 2014). A common way to investigate this
issue is by analyzing the stability of the iterates as the algorithm approaches a minimum (Wu et al.,
2018). For example, it has been shown that stable minimizers of gradient descent (GD) correspond
to flat minima (Cohen et al., 2021), and those have been associated with flat predictor functions
(Mulayoff et al., 2021; Nacson et al., 2023) and balanced networks (Mulayoff & Michaeli, 2020).
These highlight the role of dynamical stability in shaping the properties of the obtained solutions.

In dynamical systems theory, stability analysis is often carried out via linearization. Once the iterates
arrive at the vicinity of a fixed point, it is often sufficient to study the linearized system in order
to determine whether convergence occurs (Thompson & Stewart, 2002). This technique has been
widely applied to study GD (Cohen et al., 2021). Extending it to the stochastic regime, Wu et al.
(2018) proposed using linearization to analyze the stability of stochastic gradient descent (SGD) in
the mean-square sense.

This approach has inspired a large body of subsequent research. In particular, Ma & Ying (2021)
demonstrated that the moments of the linearized dynamics evolve independently, and for the second
moment (mean squared error), they provided an implicit expression for the exact stability criterion.
Building on this result, Mulayoff & Michaeli (2024) derived an explicit form of the condition, yield-
ing new insights into the linear stability of SGD. Importantly, the stability threshold of the step size
depends on the curvature of all samples in the training set (see App. B). Despite this progress, how-
ever, it remains unclear whether—and under what conditions—the behavior of linearized iterates
truly reflects the full nonlinear dynamics of SGD.

In this work, we aim to address this gap by studying the effect of nonlinear terms. We begin with the
deterministic case of GD, as we observe that linearized dynamics can be misleading. GD’s iterates
may stably oscillate near a linearly unstable minimum and, after step size decay, eventually converge
to it. This indicates that oscillations must be taken into account while considering minima stability.
Such oscillations correspond to a flip (period doubling) bifurcation of the GD map, in which the
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iterates oscillate along the sharpest direction of the minimum. The stability of this bifurcation is
governed by the first Lyapunov coefficient in its normal form (see Sec. 5.1). Using this understand-
ing, we derive a precise criterion for stable oscillations. This condition depends on the third- and
fourth-order derivatives of the loss at the minimum (see Thm. 1).

We then extend our analysis to the stochastic setting of SGD. Following prior work, we focus on
interpolating minima and assume the loss functions are analytic in a neighborhood of the minimum.
In this setting, linearized dynamics, combined with mean-square analysis, suggest that the stability
threshold of SGD depends on an average curvature over the different mini-batches. In contrast, we
show that if the iterates are unstable even with respect to a single batch, the full nonlinear dynamics
of SGD are unstable in expectation. This result suggests that stability is determined by the worst-
case batch, contradicting prior assumptions about the averaging effect of stochasticity (see Thm. 2).

Finally, we provide a sufficient condition for the stability of SGD. Specifically, we prove that if the
dynamics are linearly stable with respect to all possible batches, then there exists a neighborhood
of the minimum from which the full nonlinear dynamics converge in expectation (see Thm. 3).
Our analysis uses Koopman theory (Koopman, 1931), which allows us to formulate the finite-
dimensional nonlinear dynamics as a linear dynamical system in an infinite-dimensional Hilbert
space. This reformulation yields two notable benefits. First, nonlinear dynamics are reduced to lin-
ear ones, which are significantly more tractable. Second, the transformation provides a deterministic
linear relation between the moments of the dynamics. Then, we use tools from functional analysis
to derive the result. Considering our earlier findings, we see that this sufficient condition can also be
necessary in certain cases, as we demonstrate in Sec. 2.2. Specifically, when unstable oscillations
arise in batches with low stability thresholds. Since it takes only one such batch, and the number of
possible batches is exponentially large, it is quite likely that SGD operates in this regime.

2 WARMUP

In the following, we examine how nonlinear dynamics influence the solutions obtained by gradient-
based methods. We begin with GD, showing that the iterates can stably oscillate near an unstable
minimum. Combined with step size decay, this suggests that convergence to minima is often medi-
ated by stable oscillations. We then turn to SGD, where we find that, contrary to linear predictions,
stability in expectation can be dictated by the worst-case batch rather than an average effect.

2.1 NORMAL FORM OF OSCILLATIONS IN GRADIENT DESCENT

A classical result states that GD with constant step size η converges to a minimizer in the general
case only if it is linearly stable. Specifically, for L : Rd → R with a minimizer x∗, the linear
stability threshold is given by ηlin = 2/λmax(∇2L(x∗)), and x∗ is linearly stable if and only if
η < ηlin. Recently, it has been shown that GD typically operates at the edge of stability (EoS) when
optimizing neural networks (Cohen et al., 2021). In this regime, the top eigenvalue of the Hessian
hovers just above 2/η as the parameters approach a minimum. This implies that GD often encounters
linearly unstable minima. Although the algorithm cannot converge directly to such points, it can
stably oscillate nearby and, after step size decay, eventually converge. Thus, the ability to endure
oscillations near a minimum determines whether the algorithm will eventually converge to it.

In this section, we demonstrate that linear stability cannot predict whether GD will stably oscillate
near a minimum. To illustrate this, we examine GD’s iterates over two univariate functions, depicted
in Fig. 1(a), that share the same curvature at the minimum but differ in higher-order terms:

f+(x) =
1

2
x2 +

1

4
x4, and f−(x) =

1

2
x2 − 1

4
x4. (1)

Both have the same sharpness at the local minimizer x∗ = 0, with f ′′+(0) = f ′′−(0) = 1, yielding a
linear stability threshold of ηlin = 2. The iterates of GD are given by

xt+1 = −(η − 1)xt ± ηx3t . (2)

Let us examine how the asymptotic value of the iterates depends on the step size η. Figures 1(b)
and 1(c) plot the accumulation points of {xt} for various values of η on f+ and f−, where x0 is
chosen at random from the interval (−1, 1). For η < ηlin, both dynamics converge to x∗ = 0.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

−1.0 −0.5 0.0 0.5 1.0

x

0.0

0.1

0.2

f
(x

)

f+

f−

(a) Graphs of f+ and f−

1 2 3 4

η

−1.0

−0.5

0.0

0.5

1.0

x
T Divergence

(b) Bifurcation diagram of f+ (c) Bifurcation diagram of f−

Figure 1: Stable vs. unstable oscillations near a minimum. We apply GD to f+ and f− from (1)
with various step sizes η ∈ (1, 4). The resulting dynamics (2) correspond to the normal form of a flip
bifurcation. Once the step size exceeds the linear stability threshold ηlin = 2, stability is determined
by the sign of the cubic term in the dynamics. Panel (a) shows f+ and f−, whose minima share the
same sharpness. Panel (b) visualizes GD’s output on f+ with various step sizes. When the step size
η crosses ηlin, the minimum x∗ = 0 loses stability, resulting in unstable oscillations, which lead to
divergence. Panel (c) depicts GD’s convergent points on f− for various step sizes. At the threshold,
η = ηlin, the minimizer x∗ = 0 loses stability and the iterates settle into a stable period-2 cycle,
which then undergoes period doubling, chaos, and eventually divergence for η > 4.

However, when η > ηlin, the behavior of the dynamics differs. The iterates on f+ immediately
diverge once the step size crosses ηlin. In contrast, GD on f− exhibits rich nonlinear dynamics,
where it initially settles into stable cycles over a wide range of step sizes while featuring period
doubling bifurcations, before transitioning into chaos, and finally diverging once η > 4. Importantly,
when such stable oscillations occur, decaying the step size below ηlin results in convergence to x∗.

This simple example demonstrates that exceeding the linear stability threshold does not necessarily
imply that GD escapes the minimum. Interestingly, under mild assumptions, the behavior of any
nonlinear dynamics along the critical manifold near a linearly unstable fixed point can be reduced to
this simple one-dimensional map, called normal form (see Sec. 5.1). Then, as the example illustrates,
the sign of the cubic term in this normal form can be used to determine whether stable oscillations
arise. In Sec. 3 we extend this analysis to higher dimensions and derive a general condition for stable
oscillations of GD at the edge of stability.

2.2 WORST CASE STABILITY IN STOCHASTIC GRADIENT DESCENT

Linearized analyses of SGD in expectation predict stability by averaging curvature information
across all samples (see App. B). In particular, under mean-square analysis, the distance of the it-
erates to a minimizer remains bounded as long as the step size η is below a threshold determined by
an average sharpness of the loss. Here, we show that the full nonlinear dynamics behave differently.
Stability in expectation may be governed by the worst-case batch rather than by an average.

To illustrate this discrepancy, we examine the dynamics of SGD on the following functions:

f+(x) =
1

2
x2 +

1

4
x4, and fa(x) =

a

2
x2, (3)

where a ∈ (0, 1) is a fixed parameter. More specifically, we consider the minimization of the
average of f+ and fa, where at each iteration, SGD takes a gradient step with respect to one of these
functions, chosen at random. Here x∗ = 0 is an interpolating minimizer, i.e., it minimizes each
function individually. The sharpness of these functions at x∗, given by their second derivative, is
h+ = f ′′+(0) = 1 and ha = f ′′a (0) = a. Consequently, the linear stability thresholds for optimizing
each function separately are η+ = 2/h+ = 2 and ηa = 2/ha = 2/a. Under the linearized mean-
square analysis of SGD, the combined stability threshold equals (see App. B)

ηlin = 2
h+ + ha
h2+ + h2a

= 2
1 + a

1 + a2
> 2. (4)

We now compare this prediction with the actual SGD dynamics. Proposition 1 shows that whenever
η > 2, the nonlinear SGD iterates diverge in expectation (see proof in App. C).
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Proposition 1 (Worst case batch) Let {xt} be SGD’s iterates on f+ and fa from (3), s.t. x0 ̸= 0.
If η > 2 then E

[
|xt − x∗|

]
−→
t→∞

∞.

In other words, because one of the two losses (f+) becomes unstable at η > 2, the entire stochastic
process diverges despite the linearized analysis predicting stability up to ηlin > 2. This simple
example shows that nonlinear SGD can be governed by the least stable batch rather than by an
average stability criterion. In Sec.4, we formalize this observation and provide general necessary
and sufficient conditions for nonlinear stability of SGD.

3 OSCILLATIONS IN GRADIENT DESCENT

In this section, we present a general condition for stable oscillations of GD near a minimum. As
noted earlier, GD typically exhibits the edge-of-stability (EoS) phenomenon when optimizing neural
networks (Cohen et al., 2021). During the early stages of training, a phase called progressive sharp-
ening, the landscape becomes sharper as the top eigenvalue of the Hessian increases until it reaches
the linear stability threshold of 2/η (Wang et al., 2022). Beyond this point, the sharpness remains
slightly above 2/η for the rest of the training. Consequently, as the iterates approach a minimum, GD
often encounters minima whose sharpness marginally exceeds the linear stability threshold. While
direct convergence to such minimizers is impossible, the iterates can stably oscillate in their vicin-
ity. Then, once the step size decays, these oscillations vanish, allowing the method to settle into the
minimum. Thus, understanding the behavior of GD at the edge of stability in the vicinity of minima
is critical for determining to which minima it converges. Here we have the following result, which
uses the kth order derivative in multilinear form, denoted as Dk.

Theorem 1 (Stable oscillations) Let L : Rd → R and x∗ be its local minimizer, such that L is
four times differentiable at x∗. Assume ∇2L(x∗) is strictly positive and let v be a top eigenvector
corresponding to the maximal eigenvalue. Suppose GD on L with step size η operates at the edge of
stability, i.e., λmax

(
∇2L(x∗)

)
= 2/η, and that λmax has multiplicity one. Then a stable period-2

cycle exists at the vicinity of x∗ if and only if

D3L(x∗)[v,v, q] > D4L(x∗)[v,v,v,v], (5)

where
q ≜

[
∇2L(x∗)

]−1

∇vD3L(x∗)[v,v,v]. (6)

This theorem states that GD can stably oscillate near a minimum if and only if the condition in (5)
holds. This condition is composed of high-order derivatives of the loss. Intuitively, it suggests
that when the third derivative dominates over the fourth across the sharpest direction, we have stable
oscillations and vice versa. The expression for q has a Newton-like structure, where the inverse Hes-
sian is applied to a gradient. However, this gradient acts only on the cubic term in the Taylor expan-
sion of the loss, not on the full objective. Obviously, ∇vD3L(x∗)[v,v,v] equals 3D3L(x∗)[v,v],
and thus v’s scale and polarity do not affect the condition. When the condition is satisfied, step sizes
slightly above 2/λmax produce stable periodic oscillations, whose amplitude grows with η, while
smaller step sizes converge to the minimum. Conversely, if the condition is not met, any step size
larger than 2/λmax leads the iterates to escape the small neighborhood of the minimum. The proof
outline, along with additional information about bifurcations, are given in Sec. 5.

To illustrate Thm. 1, we consider a simple example, shown in Fig. 2. Let

fα(x) =
1

2
x2 +

α

6
x3 +

1

8
x4, (7)

with minimizer at x∗ = 0. Figure 2(a) depicts fα near the minimum for a few values of α. The
linear stability threshold of GD around x∗ is ηlin = 2, at which the update rule becomes

xt+1 = −xt − αx2t − x3t . (8)

In this case, the condition for stable oscillations (5) simplifies to |α| > 1 (see App. E). Figure 2(b)
presents the accumulation points of the iterates for a range of α. When |α| > 1, GD’s iterates con-
verge to stable period-2 cycles, whereas for |α| < 1, the iterates diverge. This example demonstrates
that Thm. 1 captures the precise phase transition from stable to unstable oscillations.
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Figure 2: Demonstration of Thm. 1. Consider fα(x) = 1
2x

2 + α
6 x

3 + 1
8x

4, whose linear stability
threshold under GD is ηlin = 2. At this step size, the update rule becomes xt+1 = −xt −αx2t − x3t .
According to Thm. 1, GD oscillates stably around the minimum x∗ = 0 if and only if |α| > 1 (see
App. E). Panel (a) plots fα near x∗ for three choices of α, highlighting the asymmetry introduced
by the cubic term. Panel (b) shows the long-term value xT across a range of α. When |α| > 1, GD
converges to a stable period-2 cycle, whereas for |α| < 1 the iterates diverge. This confirms that
condition (5) precisely captures the transition from stability to instability.

4 STABILITY OF NONLINEAR DYNAMICS IN SGD

In this section, we present our results on the stability of nonlinear dynamics in SGD. Let fi : Rd→ R
be analytic for all i ∈ [n]. We define the loss function and its batch approximation as

L(x) = 1

n

n∑
i=1

fi(x), and L̂B(x) =
1

B

∑
i∈B

fi(x), (9)

where B ⊆ [n] is a batch (set) of size |B| = B. The iterates of SGD are given by

xt+1 = xt − η∇L̂Bt
(xt). (10)

Here, Bt refers to a stochastic batch sampled at iteration t. We assume that the batches {Bt} are
drawn without replacement, independently across iterations. Namely, there are distinct samples
within each batch and possible repetitions between different batches.

Our analysis focuses on the dynamics of SGD near interpolating minimizers. This setting has been
extensively studied by prior work, particularly in the context of dynamical stability and overparam-
eterized models (Wu et al., 2018; Ma & Ying, 2021; Mulayoff & Michaeli, 2024).

Definition 1 (Interpolating minimizer) We say that x∗ ∈ Rd is an interpolating minimizer of L if
∀i ∈ [n] ∇fi(x∗) = 0 and ∇2fi(x

∗) ≻ 0 (positive definite). (11)

To gain intuition about the stability of SGD near interpolating minimizers, it is useful to examine
the dynamics of the iterates across all possible batches. Concretely, consider running GD separately
on every batch. For a given step size, some batches may converge, while others may exhibit stable
oscillations or even diverge. To capture the average behavior of the algorithm, we adopt the notion of
stability in expectation (Ma & Ying, 2021). A popular instance of this approach is the mean-square
(Wu et al., 2018), whose stability threshold in the linear setting aggregates curvature information
from all samples (Mulayoff & Michaeli, 2024). However, as shown in Sec. 2, nonlinear dynamics
behave differently. Instability of even a single batch can be enough to cause the mean to diverge.

Theorem 2 (Necessary condition) Let x∗ be an interpolating minimizer of L, x0 ∈ Rd, and B∗ be
a batch of size B. Denote GD’s iterates with step size η over L̂B∗ by x(B∗)

t . If

t
√∥∥x(B∗)

t − x∗
∥∥ −→

t→∞
∞, (12)

then SGD’s iterates {xt} of (10) with step size η diverge in expectation, i.e., E
[
∥xt−x∗∥

]
−→
t→∞

∞.
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In simple terms, this theorem states that if GD on even a single batch diverges at a rate higher than
linear, then SGD as a whole will also diverge in expectation (see proof in App. F). Section 2.1
provides a concrete example, where GD’s iterates on the function f+ in (1) diverge superlinearly
(see App. C). Consequently, if the finite-sum loss L contains a batch loss L̂B = f+, then SGD will
diverge in expectation. This is the underlying principle behind the observation in Sec. 2.2.

What can we learn from this result? Suppose the iterates reach a neighborhood of a minimizer x∗,
and let ηB = 2/λmax(∇2L̂B(x∗)) denote the linear stability threshold of a batch loss L̂B. Clearly,
for small enough neighbourhood, GD can diverge only if the step size satisfies η ≥ ηB. Notably, if
the condition for stable oscillations in Thm. 1 is violated, then superlinear divergence may already
occur at the threshold η = ηB. In this case, the stability threshold of SGD is effectively capped
by ηB. This naturally raises the following question. Under what conditions can we guarantee the
stability of SGD? The result below addresses this point (see proof in App. 5.2).

Theorem 3 (Sufficient condition) Let x∗ be an interpolating minimizer of L, and consider SGD’s
iterates (10) denoted by {xt}. If

η < min
B:|B|=B

2

λmax

(
∇2L̂B(x∗)

) , (13)

then there exists a neighborhood {x0 :∥x0−x∗∥ < ρ} s.t. E
[
∥xt−x∗∥kk

]
ρ−k −→

t→∞
0 for all even k.

This result shows that if the step size is linearly stable with respect to all batches, then the full
nonlinear dynamics of SGD are stable in expectation. As demonstrated in Sec. 2.2, this sufficient
condition can also be necessary in certain cases. Specifically, when unstable oscillations leading to
superlinear divergence arise in batches with low linear stability thresholds. Since it takes only one
such batch, and the number of possible batches is exponentially large, it is quite likely that SGD
operates in this regime.

5 DERIVATIONS

5.1 GRADIENT DESCENT OSCILLATIONS AS A FLIP BIFURCATION

In this section, we give a brief review of bifurcations and formulate GD’s dynamics in this frame-
work. For a comprehensive overview of bifurcations, see Kuznetsov (1998). Consider the parameter-
dependent nonlinear system xt+1 = ψ(xt, η) with fixed point x∗, i.e., ψ(x∗, η) = x∗. In general,
bifurcations of fixed points occur when a parameter changes its value, while affecting the stability
of the dynamics. The special case of flip bifurcation, also called period-doubling, happens when the
fixed point x∗ loses stability as the parameter η changes, and a period-2 cycle emerges. Mathemat-
ically, let us define the critical value of the parameter ηc such that the dominant1 eigenvalue of the
Jacobian Dxψ(x

∗, ηc) equals −1. Then a flip bifurcation takes place while this eigenvalue crosses
minus one on the real line as η exceeds ηc. Here ηc is the linear stability threshold.

In this case, for η < ηc, the fixed point x∗ is stable, and if the iterates happen to arrive close by, they
will be attracted to it. If the Jacobian has full rank, the iterates will in fact converge to x∗. However,
when η is slightly above ηc, the fixed point x∗ is no longer stable, and a period-2 cycle appears as

ψ
(
x(1), η

)
= x(2), and ψ

(
x(2), η

)
= x(1). (14)

The stability of the resulting period-2 cycle is governed by the coefficient of the cubic term in
the corresponding normal form of the bifurcation. This form provides a canonical (standard) dy-
namics to which any flip bifurcation can be reduced. Concretely, consider the dynamics along the
one-dimensional critical manifold, tangent to the dominant eigenvector of the Jacobian. Then this
dynamics can be transformed into (Kuznetsov, 1998, Sec 5.4)

ξt+1 = −ξt + C0ξ
3
t +O

(
ξ4t
)
, (15)

where C0 is the first Lyapunov coefficient. When C0 > 0, the resulting cycle is stable (supercritical
bifurcation), and the dynamics in the long run will alternate between x(1) and x(2). Whereas for

1Dominant eigenvalue is an eigenvalue that has maximal absolute value. Here we assume that it is unique.
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C0 < 0, the cycle is unstable (subcritical bifurcation) and the iterates will diverge from x∗. The
expression for C0, involving the second- and third-order derivatives of ψ at x∗, is given in App. D.

We now turn to apply this theory to prove Thm. 1. In the context of GD’s iterates near a minimum,
the dynamics evolve according to the update rule

xt+1 = xt − η∇L(xt) ≜ ψt(xt, η), (16)

where L is an objective function to be minimized, and η is the step size. Obviously, minimizers of L
are the fixed points of ψ, as the gradient vanishes at these points. The Jacobian of the GD map is

Dxψ(x, η) = I − η∇2L(x). (17)

Note that the eigenvalues of the Jacobian are given by {1−ηλi(∇2L)}. Let x∗ be a minimizer of L,
then the critical value of η is the well known linear stability threshold

ηlin =
2

λmax

(
∇2L(x∗)

) . (18)

Thus, as η exceeds ηlin, the dominant eigenvalue of the Jacobian crosses −1 on the real axis, match-
ing the scenario of the flip bifurcation. Assuming ∇2L(x∗) is strictly positive and λmax(∇2L(x∗))
has multiplicity one, the stability of oscillations in the small neighborhood of x∗ is governed by C0.
Overall, we see that oscillations near a minimum x∗ are stable if and only if C0 is positive. In
App. D we show that a positive Lyapunov coefficient is equivalent to the condition in (5).

5.2 SUFFICIENT CONDITION FOR STABILITY OF SGD

In this section, we derive Thm. 3. SGD update rule with step size η is given by

xt+1 = xt − η∇L̂Bt
(xt) ≜ ψ̂Bt

(xt), (19)

where ψ̂Bt
: Rd → Rd is the SGD map. As x∗ is an interpolating minimizer of L, we have

ψ̂Bt
(x∗) = x∗ w.p. 1. (20)

Since {fi} are analytic, we can use the Taylor expansions of ψ̂Bt
at x∗ to get

ψ̂Bt(x) = ψ̂Bt(x
∗) +

∞∑
k=1

1

k!
Dk
ψ̂Bt

(x∗)(x− x∗)⊗k, (21)

where Dk is the kth order derivative in matrix form (not to be confused with Dk). Let

∆xk
t ≜ (xt − x∗)⊗k ∈ Rdk

(22)

be the kth Kronecker power of the distance to the minimum2. Then from the update rule in (19)

E [∆xt+1] = E

[ ∞∑
k=1

1

k!
Dk
ψ̂Bt

(x∗)∆xk
t

]
=

∞∑
k=1

1

k!
E
[
Dk
ψ̂Bt

(x∗)
]
E
[
∆xk

t

]
, (23)

where we used the fact that {Dkψ̂Bt(x
∗)}∞k=1 and xt are statistically independent. We see that

the evolution of the first moment of the distance to the minimum, E[∆x], depends linearly on all
higher-order moments {E[∆xk]}∞k=1. Consequently, analyzing the stability of SGD in expectation
requires studying the joint dynamics of all moments. In App. H, we show that the evolution of
the kth moment over time is

E
[
∆xk

t+1

]
= E

[
(∆xt+1)

⊗k
]
= E

( ∞∑
p=1

1

p!
Dp
ψ̂Bt

(x∗)∆xp
t

)⊗k
 =

∞∑
p=k

Ψk,pE [∆xp
t ] , (24)

where explicit expression for Ψk,p ∈ Rdk×dp

is given in App. H. Once again, we obtain a linear
relation between the moments at successive times. This motivates us to express the mapping from
{E[∆xk

t ]}∞k=1 to {E[∆xk
t+1]}∞k=1 as a linear operator on the infinite-dimensional Hilbert space ℓ2.

2The first power ∆x1
t is denoted simply ∆xt.
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This formulation is meaningful only if the sequence has finite norm and the operator is bounded. To
ensure this, we introduce a radius ρ > 0 and analyze a scaled version of the moments. Let

µ̄k
t ≜ E

[(
xt − x∗

ρ

)⊗k
]
= ρ−kE

[
∆xk

t

]
. (25)

Therefore,

µ̄k
t+1 = ρ−kE

[
∆xk

t+1

]
=

∞∑
p=k

ρ−kΨk,pE [∆xp
t ] =

∞∑
p=k

ρp−kΨk,pE
[
ρ−p∆xp

t

]
=

∞∑
p=k

ρp−kΨk,pµ̄
k
t .

(26)
Define the linear operator Ψρ in Hilbert space ℓ2 and the moments vector µ̄t as

µ̄t =


µ̄1

t

µ̄2
t

µ̄3
t

...

 and Ψρ =


Ψ1,1 ρΨ1,2 ρ2Ψ1,3 · · ·
0 Ψ2,2 ρΨ2,3 · · ·
0 0 Ψ3,3 · · ·
...

...
...

. . .

 , (27)

then
µ̄t+1 = Ψρµ̄t. (28)

This relation is valid only when Ψρ is bounded. Intuitively, taking smaller values of ρ can help
bound the operator. Assuming the operator is bounded, (28) unfolds as µ̄t = Ψt

ρµ̄0. To impose a
condition on the initial point x0, observe that µ̄0 ∈ ℓ2, and thus must be square-summable. Hence,

∥µ̄0∥2 =

∞∑
k=1

∥∥µ̄k
0

∥∥2 =

∞∑
k=1

∥∥∥∥∥
(
x0 − x∗

ρ

)⊗k
∥∥∥∥∥
2

=

∞∑
k=1

(∥x0 − x∗∥
ρ

)2k

. (29)

The above expression is finite if and only if ∥x0−x∗∥ < ρ, which defines the neighborhood around
the minimum where our analysis applies. We see that choosing a smaller ρ to ensure boundedness
of the operator correspondingly shrinks this neighborhood.

For stable dynamics in expectation, the linear system in (28) must be stable. Note that under Ψρ,
moment vectors map naturally to moment vectors. Thus, to get the exact stability threshold, we
would need the response of Ψρ to be smaller than one on this restricted set. Instead, we relax this
constraint to obtain a sufficient condition, requiring stability for any vector in ℓ2. In App. I, we prove
that under the condition (13), there exists a value of ρ > 0 ensuring boundedness of the operator.
Then, in App. K we show that once the operator is bounded, its spectral radius is strictly less than
one. Therefore, ∥µ̄t∥ → 0 as t tends to infinity (see App. G). Hence, each normalized moment
also tends to zero elementwise, i.e., µ̄k

t → 0. Since µ̄k
t contains all degree-k monomials of the

components of ∆xt, denoted {∆xt,i}di=1, summing over the subset of single-variable terms we get
d∑

i=1

E
[
(∆xt,i)

k
]
= E

[
d∑

i=1

(xt,i − x∗
i )

k

]
ρ−k −→

t→∞
0. (30)

Restricting this to even order moments (even k), we get E
[
∥xt − x∗∥kk

]
ρ−k −→

t→∞
0.

6 RELATED WORK

Bifurcation, oscillations and EoS in GD. Cohen et al. (2021) examined the behavior of GD,
and showed that it typically happens at the edge of stability. Wang et al. (2022) proved progressive
sharpening for a two-layer network and analyzed the EOS dynamics through four phases, depending
on the change in the sharpness value. Zhu et al. (2022) gave a simple example that exhibits EoS. Ma
et al. (2022) analyzed EoS under the assumption of subquadratic growth of the loss. Ahn et al. (2022)
illustrated that unstable convergence is possible in specific cases. Damian et al. (2023) showed how
GD self-stabilizes. Specifically, they demonstrated that during the momentary divergence of the
iterates along the sharpest eigenvector direction of the Hessian, the iterates also move along the
negative direction of the gradient of the curvature, which leads to stabilizing the sharpness to 2/η.
Kreisler et al. (2023); Song & Yun (2023) proved that under EoS, different GD trajectories align
on a specific bifurcation diagram independent of initialization. Ghosh et al. (2025) analyzed the
dynamics of deep linear networks, focusing on 2-period cycle, while showing that oscillations occur
within a small subspace, where the dimension of the subspace is controlled by the step size. Chen
et al. (2024) studied GD dynamics on quadratic loss from stability up to the chaos phase.
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Stability of SGD. Empirically, Keskar et al. (2016); Jastrzębski et al. (2017); Jastrzębski et al.
(2019; 2020) have shown that SGD with a large step size or small batch size leads to flatter minima.
Cohen et al. (2021, App. G) found that with large batches, the sharpness behaves similarly to full-
batch gradient descent. Gilmer et al. (2022) studied how the curvature of the loss affects the training
dynamics in multiple settings.

On the theoretical side, Wu et al. (2018) analyzed stability in the mean-square sense and provided
an implicit sufficient condition. Granziol et al. (2022) used random matrix theory to characterize the
maximal stable learning rate as a function of batch size, under certain assumptions on Hessian noise.
Velikanov et al. (2023) studied SGD with momentum and derived an implicit upper bound on the
learning rate using spectrally expressible approximations and a moment-generating function. Ma &
Ying (2021) investigated higher-order moments of SGD and established an implicit necessary and
sufficient stability condition. Wu et al. (2022) proposed a necessary condition based on an alignment
property, though a general analytic bound for this property is missing. Ziyin et al. (2023) examined
stability in probability rather than in mean square, showing that SGD can in theory converge with
high probability to linearly unstable minima for GD, i.e., where η ≫ 2/λmax(∇2L). However,
this prediction was not observed empirically. Mulayoff et al. (2021) considered non-differentiable
minima and derived a necessary condition for strong stability, meaning SGD remains within a ball
around the minimum. Finally, Mulayoff & Michaeli (2024) provided the exact stability criterion
explicitly in closed-form expression for the linearized dynamics.

Additionally, Liu et al. (2021) analyzed the covariance matrix of the stationary distribution of iterates
near minima, and Ziyin et al. (2022) extended these results by deriving an implicit relation between
this covariance and that of the gradient noise. However, both works leave open the question of
when the dynamics actually converge to a stationary state. Recently, Lee & Jang (2023) examined
the stability of SGD along its trajectory and established an explicit exact condition for objective
decrease via a descent lemma in expectation.

7 CONCLUSION, LIMITATIONS AND FUTURE DIRECTIONS

In this paper, we investigated the nonlinear stability of gradient descent GD and SGD. For GD, we
derived an explicit condition characterizing when stable oscillations arise at the edge of stability,
namely, when the cubic term dominates the quartic term in the local Taylor expansion of the objec-
tive. For SGD, we showed that the instability of even a single batch can be sufficient to render the
entire dynamics unstable in expectation, implying that stability is dictated by the worst-case batch
rather than by an average effect. Finally, we proved that if the step size is stable with respect to all
batches, then all moments of the full nonlinear SGD dynamics remain stable in a neighborhood of
the minimizer. Together, these results reveal that nonlinear effects can fundamentally reshape the
stability landscape compared with standard linear analyses.

Limitations and future directions. Our analysis of oscillations in GD focuses on isolated minima,
where the Jacobian of the dynamical system has a single critical eigenvalue. In deep learning,
however, minima often form low-dimensional manifolds with multiple near-critical directions. This
can lead to richer local dynamics, including combinations of fold and flip behaviors, and a more
complex stability picture. Extending our results to this setting, potentially via generalized fold-flip
bifurcations (Kuznetsov et al., 2004), is an important direction for future work.

For our analysis of SGD we assume an interpolating setting in which all mini-batches share the
same minimizer. This allows us to prove that stability of each batch implies stability of the full
dynamics. In practice, however, batches may have distinct or only approximately aligned minima.
In such cases, SGD cannot converge exactly to the minimizer; even if the dynamics are stable, the
algorithm exhibits an inherent bias in expectation (Défossez & Bach, 2015). In this work we adopt a
convergence-in-expectation perspective for SGD, but in non-interpolating settings the limiting point
may be biased or correspond to a different minimum. Developing a principled notion of nonlinear
stability that captures this behavior remains an important direction for future research.
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APPENDICES

A LARGE LANGUAGE MODEL (LLM) USAGE DISCLOSURE

In this paper we used LLMs only to polish the text. The LLM was given a text written by the authors,
and it suggested alternative ways of writing. These suggestions, if accepted, were further refined by
the authors and not been used as is. Specifically, LLMs were not used to generate any text from
scratch, or to suggest research direction or to derive the results.

B BACKGROUND ON LINEAR STABILITY OF SGD

Analyzing the full dynamics of SGD can be hard. Therefore, many works opt to study the lin-
earized dynamic near minima (Wu et al., 2018; Ma & Ying, 2021; Mulayoff et al., 2021; Mulayoff
& Michaeli, 2024), as it is common in the analysis of nonlinear systems. In our paper we focus on
interpolating minimizers, defined in Def. 1. In this case, the linearized dynamics is defined below.

Definition 2 (Linearized dynamics) Let L form (9), and x∗ be its interpolating minimizer, s.t. L
is twice differentiable at x∗. Then the linearized dynamics of SGD near x∗ are given by

x̃t+1 = x̃t −
η

B

∑
i∈Bt

∇2fi(x
∗)(x̃t − x∗). (31)

The linearized dynamics can be viewed as SGD on the second-order approximation of L at x∗,

L̃(x) = L(x∗) +
1

2
(x− x∗)T∇2L(x∗)(x− x∗). (32)

Therefore, linear dynamics analysis is exact only when {fi} are all quadratic potentials.

There are few traditional ways to define the convergence of random processes, such as the iterates
of SGD. One prominent choice is to use the mean square sense of convergence to define stability.
For univariate optimization, the mean square linear stability threshold is as follows. Generalization
to higher dimensions and non-interpolating minima can be found in Mulayoff & Michaeli (2024).

Theorem 4 (Univariate linear stability threshold, Wu et al. (2018)) Let fi : R → R be twice
differentiable functions and let x∗ be an interpolating minimum of the loss, i.e.,

∀ 1 ≤ i ≤ n f ′i(x
∗) = 0 and hi ≜ f ′′i (x

∗) > 0. (33)

Define

h =
1

n

n∑
i=1

hi, s2 =
1

n

n∑
i=1

(hi − h)2, and p =
n−B

B(n− 1)
. (34)

Consider the iterates of the linearized SGD {x̃t} in (31). Then, E[(x̃t−x∗)2] is bounded if and only
if η ≤ ηlin, where

ηlin ≜
2h

h2 + ps2
. (35)

From this result, we see that the linear stability threshold ηlin takes into account the sharpness of all
functions {fi}. When the batch size B equals one, we get p = 1 and then

ηlin =
2h

h2 + s2
= 2

∑n
i=1 hi∑n
i=1 h

2
i

. (36)

C PROOF OF PROPOSITION 1

Let
f+(x) =

1

2
x2 +

1

4
x4. (37)
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Here we show that when GD is applied on f+ with step size η > 2, its iterates diverge in rate higher
than linear. In this case, Thm. 2 tell us that SGD dynamics also diverge.

The GD map on f+ is
ψ(x) = x− ηf ′+(x) = (1− η)x− ηx3. (38)

Define
ψt = ψ ◦ · · · ◦ ψ ◦ ψ︸ ︷︷ ︸

t times

. (39)

Assume that η > 2, and note that for all x ∈ R

|ψ(x)| = |(1− η)x− ηx3| = (η − 1)|x|+ η|x|3 = |ψ(|x|)|. (40)

Let ψ̃(x) = |ψ|(|x|), then
|ψt(x0)| = ψ̃t(|x0|). (41)

Since ψ̃ : R+ → R+ is monotonically increasing on R+, we have that its composition ψ̃t of any
order is also monotonically increasing. Furthermore, we can bound ψ̃ from below with

ψ̃(x) = (η − 1)|x|+ η|x|3 ≥ max{(η − 1)|x|, η|x|3} ≜ φ(x). (42)

Thus,
|xt| = |ψt(x0)| ≥ φt(x0) ≜ χt. (43)

Again, φ : R+ → R+ is monotonically increasing, and therefore any composition with itself is also
monotonically increasing on R+. Obviously,

φ(x) ≥ (η − 1)|x| and φ(x) ≥ η|x|3. (44)

Then we can bound χt by
χt ≥ (η − 1)t|x0|. (45)

Since η > 2, there exists T ∈ N such that

χT ≥ (η − 1)T |x0| > 2. (46)

Now, for all t > T we have
χt = φt−T (χT ). (47)

Here, we will use the second bound, i.e., φ(x) ≥ η|x|3, t− T times as

χt = η|η| · · · η|χT |3 · · · |3|3︸ ︷︷ ︸
t−T times

= η(3
t−T−1)/2|χT |3

t−T

≥ 2(3
t−T−1)/223

t−T

= 2(3
t−T+1−1)/2. (48)

Therefore, χt diverges with superlinear rate and so does |xt|.

D CONDITION FOR STABLE OSCILLATIONS IN GD

In Sec. 5.1 we formulate the oscillations of GD as a flip bifurcation. We saw that the first Lyapunov
coefficient C0 controls the stability of the oscillations. For a general nonlinear map ψ(x, η), this
coefficient is given by (Kuznetsov, 1998, Sec. 5.4)

C0 =
1

6

〈
u,D3

xψ(x
∗, η)[v,v,v]

〉
− 1

2

〈
u,D2

xψ(x
∗, η)[v,p]

〉
, (49)

where u and v are normalized left and right eigenvectors of the Jacobian Dxψ(x
∗, η) corresponding

to the eigenvalue −1, such that ⟨u,v⟩ = 1, and

p =
[
Dxψ(x

∗, η)− I
]−1D2

xψ(x
∗, η)[v,v]. (50)
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We would like to write these expressions in terms of the loss function L for the GD dynamics. In
this case, ψ(x, η) = x− η∇L(x), and we have that the Jacobian is

Dxψ(x
∗, η) = I − η∇2L(x∗). (51)

Since this Jacobian is systematic, v equals u. Moreover, it is easy to see that v is the top eigenvector
of the Hessian, corresponding to λmax(∇2L(x∗)). Additionally,

D2
xψ(x

∗, η)[v,v] = −ηD3L(x∗)[v,v] = −η
3
∇vD3L(x∗)[v,v,v]. (52)

Thus,

p =
[
− η∇2L(x∗)

]−1
(
−η
3
∇vD3L(x∗)[v,v,v]

)
=

1

3

[
∇2L(x∗)

]−1∇vD3L(x∗)[v,v,v]

=
1

3
q, (53)

where
q =

[
∇2L(x∗)

]−1∇vD3L(x∗)[v,v,v]. (54)

Next we have,〈
u,D2

xψ(x
∗, η)[v,p]

〉
=

1

3

〈
v,D2

xψ(x
∗, η)[v, q]

〉
= −η

3
D3L(x∗)[v,v, q]. (55)

And the first term in C0 is〈
u,D3

xψ(x
∗, η)[v,v,v]

〉
=
〈
v,−ηD4L(x∗)[v,v,v]

〉
= −ηD4L(x∗)[v,v,v,v]. (56)

Overall,
C0 = −η

6
D4L(x∗)[v,v,v,v] +

η

6
D3L(x∗)[v,v, q]. (57)

A period-2 cycle near x∗ is stable if and only if C0 > 0 (Kuznetsov, 1998), which results in the
condition

D3L(x∗)[v,v, q] > D4L(x∗)[v,v,v,v]. (58)

Originally, the scale of v was important for the magnitude of C0. However, the scale of v has no
effect on the sign of C0, and thus has no impact on this condition.

E ANALYTIC EXAMPLE OF THEOREM 1

In this section we consider the oscillations of GD at the edge of stability on the function

fα(x) =
1

2
x2 +

α

6
x3 +

1

8
x4. (59)

To apply Thm. 1, we denote L = fα, and therefore

v = 1, f ′′α(0) = 1, f (3)α (0) = α, f (4)α (0) = 3. (60)

Then,

q =
[
f ′′α(0)

]−1 d

dv

(
f (3)α (0)v3

) ∣∣∣
v=1

= 3αv2
∣∣∣
v=1

= 3α. (61)

Overall,

D3L(x∗)[v, v, q] = f (3)α (0)v2q = α · 3α = 3α2. (62)

D4L(x∗)[v, v, v, v] = f (4)α (0)v4 = 3. (63)

Thus, the stability condition for oscillations is

D3L(x∗)[v, v, q] > D4L(x∗)[v, v, v, v] ⇐⇒ 3α2 > 3 ⇐⇒ |α| > 1. (64)
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F PROOF OF THEOREM 2

Let {Bi}Ni=1 be all possible different batches of size B form the dataset {fi}ni=1, where N =
(
n
B

)
.

Recall that ψ̂B denotes the of GD transform on batch B, i.e., taking a single gradient step with
respect to L̂B (see (19)). Moreover, let ψ̂t

B denote the application of ψ̂B for t times. Namely,

ψ̂t
B = ψ̂B ◦ · · · ◦ ψ̂B ◦ ψ̂B︸ ︷︷ ︸

t times

. (65)

For a stochastic batch Bt, ψ̂Bt is distributed uniformly over {ψ̂Bi}, i.e., for any x ∈ Rd

ψ̂Bi(x) ∼ U
({
ψ̂Bi(x)

}N

i=1

)
. (66)

Given an initial point x0 ∈ Rd, assume that for some batch Bi∗ (with index i∗) GD’s iterates,
denoted by {x(Bi∗ )

t }, diverge with superlinear rate. That is∥∥x(Bi∗ )

t − x∗∥∥ 1
t −→

t→∞
∞, (67)

Using our notation, we have x(Bi∗ )

t = ψ̂t
Bi∗

(x0). Let us look at the expectation of the distance
between SGD iterates {xt} form (10) and the minimizer x∗

E [∥xt − x∗∥] = 1

N t

∑
(i1,i2,...,it)∈{1,...,N}t

∥∥ψ̂Bit
◦ · · · ◦ ψ̂Bi2

◦ ψ̂Bi1
(x0)− x∗∥∥

≥ 1

N t

∥∥ψ̂Bit
◦ · · · ◦ ψ̂Bi2

◦ ψ̂Bi1
(x0)− x∗∥∥∣∣∣

i1=i2=···=it=i∗

=
1

N t

∥∥ψ̂t
Bi∗

(x0)− x∗∥∥
= exp

{
log
(∥∥ψ̂t

Bi∗
(x0)− x∗∥∥)− t log(N)

}
= exp

{
t

[
1

t
log
(∥∥ψ̂t

Bi∗
(x0)− x∗∥∥)− log(N)

]}
= exp

{
t
[
log
(∥∥x(Bi∗ )

t − x∗∥∥ 1
t

)
− log(N)

]}
−→
t→∞

∞. (68)

G INTRODUCTION TO SPECTRAL ANALYSIS OF LINEAR OPERATORS

Let us start with the following definitions.

Definition 3 (Operator norm) LetA be a linear operator over a vector space V , then its operator
norm is given by

∥A∥ = inf{c ≥ 0 : ∥Av∥ ≤ c∥v∥ for all v ∈ V }. (69)

Definition 4 (Spectrum) Let A be a linear operator over a Banach space V , then its spectrum is
given by

σ(A) = {λ ∈ C : A− λI is not bijective}, (70)
where I is the identity operator.

Definition 5 (Spectral radius) The spectral radius of an operatorA is given by

r(A) = sup
λ∈σ(A)

|λ|. (71)

Consider the following linear system
µt+1 = Aµt, (72)

where A is a bounded linear operator. We want to have some condition such that the iterates are
bounded or converging. Here, we can unfold the equation to get an explicit formula for any µt as

µt = A
tµ0. (73)

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A naive way to ensure convergence, i.e., µt → 0 as t → ∞, is by taking the operator norm of A to
be less than one, i.e., ∥A∥ < 1. Then

∥µt∥ =
∥∥Atµ0

∥∥ ≤ ∥A∥t ∥µ0∥ → 0. (74)

However, this is quite restrictive and will give us a loss condition. Note that we only like to know if
∥At∥ is bounded or shrinks to zero. In special cases, we can easily computeAt. For example, in the
finite-dimensional case, whereA = PDP−1 is diagonalizable (e.g., symmetric or normal). Then,

µt = A
tµ0 =

(
PDP−1

)t
µ0 = PDtP−1µ0. (75)

Here, the system is stable if and only if the spectral radius ofA is less or equal to one. If it is strictly
less than one, then µt → 0.

In the general case, we can use Gelfand’s formula for bounded linear operators on Banach spaces.
Let r(A) denote the spectral radius ofA, then Gelfand’s formula is

r(A) = lim
t→∞

∥∥At
∥∥ 1

t = inf
t∈N

∥∥At
∥∥ 1

t . (76)

From this formula, we can see that if r(A) < 1, then µt → 0.

H COMPUTATION OF THE OPERATOR BLOCKS

In this section we give the missing steps from (24). To this end, denote

Yt,k =
1

k!
Dk
ψ̂Bt

(x∗) ∈ Rd×dk

. (77)

Then, the evolution over time of the kth moment is

E

( ∞∑
p=1

1

p!
Dp
ψ̂Bt

(x∗)∆xp
t

)⊗k


= E

( ∞∑
p=1

Yt,p∆x
p
t

)⊗k


= E

 ∞∑
p=k

∑
1≤κ1,··· ,κk≤p−k+1
κ1+κ2+···+κk=p

(Yt,κ1∆x
κ1
t )⊗ (Yt,κ2∆x

κ2
t )⊗ · · · ⊗ (Yt,κk

∆xκk
t )



= E

 ∞∑
p=k

∑
1≤κ1,··· ,κk≤p−k+1
κ1+κ2+···+κk=p

(Yt,κ1 ⊗ · · · ⊗ Yt,κk
) (∆xκ1

t ⊗ · · · ⊗∆xκk
t )



= E

 ∞∑
p=k

∑
1≤κ1,··· ,κk≤p−k+1
κ1+κ2+···+κk=p

(Yt,κ1
⊗ Yt,κ2

⊗ · · · ⊗ Yt,κk
)
(
∆x

∑k
i=1 κi

t

)

= E

 ∞∑
p=k

∑
1≤κ1,··· ,κk≤p−k+1
κ1+κ2+···+κk=p

(Yt,κ1
⊗ Yt,κ2

⊗ · · · ⊗ Yt,κk
)∆xp

t



= E

 ∞∑
p=k

 ∑
1≤κ1,··· ,κk≤p−k+1
κ1+κ2+···+κk=p

Yt,κ1
⊗ Yt,κ2

⊗ · · · ⊗ Yt,κk

∆xp
t


16
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=

∞∑
p=k

E

 ∑
1≤κ1,··· ,κk≤p−k+1
κ1+κ2+···+κk=p

Yt,κ1
⊗ Yt,κ2

⊗ · · · ⊗ Yt,κk

E [∆xp
t ]

=

∞∑
p=k

Ψk,pE [∆xp
t ] , (78)

where

Ψk,p = E

 ∑
1≤κ1,··· ,κk≤p−k+1
κ1+κ2+···+κk=p

Yt,κ1
⊗ Yt,κ2

⊗ · · · ⊗ Yt,κk

 ∈ Rdk×dp

, (79)

I BOUNDING THE OPERATOR

In this section, we assume that the condition of Thm. 3 holds. Then, we show that there exists a
ρ > 0 such that Ψρ is bounded. For this, we use the following result (see proof in App. L).

Theorem 5 Let T be an operator defined on ℓ2 space. Denote by {Ti,j} a division of T into blocks,
such that ∀i, j Ti,j ∈ Rdi×dj where {di}∞i=1 is a some sequence. Assume that

∀j ∈ N
∞∑
i=1

∥Ti,j∥ ≤ α and ∀i ∈ N
∞∑
j=1

∥Ti,j∥ ≤ β. (80)

Then T is a bounded linear operator and

∥T ∥2 ≤
√
αβ. (81)

Let us apply Thm. 5 to Ψρ. Using the definition of the blocks {Ψk,p} given in (79) we have

∥Ψk,p∥ =

∥∥∥∥∥∥∥∥E
 ∑
1≤κ1,··· ,κk≤p−k+1
κ1+κ2+···+κk=p

Yt,κ1
⊗ Yt,κ2

⊗ · · · ⊗ Yt,κk


∥∥∥∥∥∥∥∥

≤ E

 ∑
1≤κ1,··· ,κk≤p−k+1
κ1+κ2+···+κk=p

∥∥Yt,κ1 ⊗ Yt,κ2 ⊗ · · · ⊗ Yt,κk

∥∥


= E

 ∑
1≤κ1,··· ,κk≤p−k+1
κ1+κ2+···+κk=p

∥∥Yt,κ1

∥∥∥∥Yt,κ2

∥∥ · · · ∥∥Yt,κk

∥∥
 , (82)

where Yt,p is given in (77). Let {Bm}Nm=1 be all possible different batches of sizeB form the dataset
{fm}nm=1, where N =

(
n
B

)
. Since {fm} are analytic and {L̂Bm

} are finite sum losses, then also
{ψ̂Bm} are analytic. Then, using Gevrey class theory, for each batch Bm there exists Cm > 0 such
that

max
i,j

∣∣∣∣[Dp
ψ̂Bm

(x∗)
]
i,j

∣∣∣∣ ≤ Cp+1
m p! ∀p ≥ 1, (83)

where [Dpψ̂Bm(x∗)]i,j are the elements of in the matrix Dpψ̂Bm(x∗), which are all the (mixed)
partial derivatives of degree p. Setting

C = max
m∈[N ]

Cm, (84)

we get for a random batch Bt

max
i,j

∣∣∣∣[Dp
ψ̂Bt

(x∗)
]
i,j

∣∣∣∣ ≤ Cp+1p! w.p. 1 ∀p ≥ 1. (85)
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Now that we have a uniform bound on all elements in the matrix, we can bound its norm. Specif-
ically, it is well known that for a matrix A ∈ Rm×n with elements |Ai,j | ≤ M , we have
∥A∥ ≤ M

√
mn (a simple application of Thm. 5 can give this result as well). Using this, and

the fact that Dpψ̂Bt(x
∗) ∈ Rd×dp

we get

∥Yt,p∥ =
1

p!

∥∥∥Dp
ψ̂Bt

(x∗)
∥∥∥ ≤ Cp+1d

p+1
2 w.p. 1. (86)

Define

Qt,p =

{∥Yt,1∥, p = 1,

Cp+1d
p+1
2 , otherwise.

(87)

Then for all p ≥ 1 and t ∈ N
∥Yt,p∥ ≤ Qt,p w.p. 1, (88)

and

∥Ψk,p∥ ≤ E

 ∑
1≤κ1,··· ,κk≤p−k+1
κ1+κ2+···+κk=p

Qt,κ1
Qt,κ2

· · ·Qt,κk

 . (89)

Let us apply Thm. 5 on Ψρ, while assuming that ρ < 1
C
√
d

. For the sum of the row block we have

∞∑
p=k

ρp−k∥Ψk,p∥ ≤
∞∑
p=k

ρp−kE

 ∑
1≤κ1,··· ,κk≤p−k+1
κ1+κ2+···+κk=p

Qt,κ1
Qt,κ2

· · ·Qt,κk



= ρ−kE

 ∞∑
p=k

 ∑
1≤κ1,··· ,κk≤p−k+1
κ1+κ2+···+κk=p

Qt,κ1
Qt,κ2

· · ·Qt,κk

 ρp


= ρ−kE

( ∞∑
p=1

Qt,pρ
p

)k


= ρ−kE

(∥Yt,1∥ρ+
∞∑
p=2

Cp+1d
p+1
2 ρp

)k


= ρ−kE

(∥Yt,1∥ρ+ C
√
d

∞∑
p=2

(
C
√
dρ
)p)k


= ρ−kE

[(
∥Yt,1∥ρ+ C

√
d

C2dρ2

1− C
√
dρ

)k
]

= E

[(
∥Yt,1∥+

C3d3/2ρ

1− C
√
dρ

)k
]
, (90)

where in the sixth step we used
∞∑
p=2

qp =
q2

1− q
, (91)

for 0 < q = C
√
dρ < 1. Here we assume the condition in (13) holds and that {∇2L̂Bi

(x∗)} have
full rank. This means that for every batch Bi

0 < ηλmin

(
∇2L̂Bi(x

∗)
)
< ηλmax

(
∇2L̂Bi(x

∗)
)
< 2. (92)
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Recall that Dψ̂Bi
(x∗) = I − η∇2L̂Bi

(x∗). Then it is easy to show that there exists ε ∈ (0, 1) such
that

max
i∈[N ]

∥∥∥Dψ̂Bi
(x∗)

∥∥∥ = max
i∈[N ]

∥∥∥I − η∇2L̂Bi
(x∗)

∥∥∥
= max

i∈[N ]

{
max

{
1− ηλmin

(
∇2L̂Bi

(x∗)
)
, ηλmax

(
∇2L̂Bi

(x∗)
)
− 1
}}

= 1− ε. (93)

This meaning that

∥Yt,1∥ ≤ max
i∈[N ]

∥∥∥Dψ̂Bi
(x∗)

∥∥∥ = 1− ε w.p. 1. (94)

Note that C3d3/2ρ

1−C
√
dρ

≥ 0, then we can further bound (90) by

E

[(
∥Yt,1∥+

C3d3/2ρ

1− C
√
dρ

)k
]
≤
(
1− ε+

C3d3/2ρ

1− C
√
dρ

)k

. (95)

In ordrer for this to be bounded for any k ∈ N, we will require

1− ε+
C3d3/2ρ

1− C
√
dρ

< 1

⇔ C3d3/2ρ

1− C
√
dρ

< ε

⇔ C3d3/2ρ+ εC
√
dρ < ε

⇔ ρ <
ε

C3d3/2 + εC
√
d
≜ ρ∗. (96)

Therefore, under the condition of ρ < ρ∗ there exists γ ∈ (0, 1) (for example, γ = 1− ε+ C3d3/2ρ

1−C
√
dρ

)
such that

∞∑
p=k

ρp−k∥Ψk,p∥ ≤ γk. (97)

This means that the rows sum is uniformly bounded. Now, for the column sums, under the same
assumptions we get

sup
p

p∑
k=1

ρp−k∥Ψk,p∥ ≤
∞∑
p=1

p∑
k=1

ρp−k∥Ψk,p∥

=

∞∑
k=1

∞∑
p=k

ρp−k∥Ψk,p∥

≤
∞∑
k=1

γk

=
γ

1− γ
, (98)

where the change of summation order in second step is justified since all elements are non-negative.
Hence, under the same assumptions, the absolute columns sum is also uniformly bounded.

Overall, we see that the conditions of Thm. 3 are sufficient to find a neighborhood around the min-
imum, {x0 : ∥x0 − x∗∥ < ρ}, such that the operator Ψρ is bounded. For completeness, in App. J,
we show that the condition in (13) is also necessary. Namely, if this condition is violated, Ψρ is not
bounded.
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J NECESSARY CONDITION FOR BOUNDNESS

In this section we show that the condition in (13) is also necessary to bound the operator Ψρ. We
bring this only to give a complete theoretical understanding, yet we do not use this derivation to
prove our results.

For Ψρ to be bounded, all of its submatrices must be bounded. Note that the diagonal blocks of this
operator {Ψk,k}∞k=1 are independent of ρ. Therefore, we should have a condition, independent of
ρ, for these submatrices to be bounded. These blocks are given by

Ψk,k = E
[(

Dψ̂Bt
(x∗)

)⊗k
]
. (99)

Note that
Dψ̂Bt

(x∗) = D
(
x− η∇L̂Bt

(x)
) ∣∣∣

x=x∗
= I − η∇2L̂Bt

(x∗). (100)

For ease of reading and better interpretability, let

HB ≜ ∇2L̂B(x
∗) (101)

denote the Hessian of the batch B. Then

Ψk,k = E
[
(I − ηHBt)

⊗k
]
. (102)

Moreover, denote byHmax the batch that has the largest maximal eigenvalue, that is

Hmax = argmax
B:|B|=B

{
λmax

(
HB
)}
, (103)

and by vmax its corresponding eigenvector (normalized). Note that Ψk,k is symmetric for all k ∈ N,
therefore

∥Ψk,k∥ = max
u∈Rdk : ∥u∥=1

∣∣uTΨk,ku
∣∣ . (104)

Since ∥v⊗k
max∥ = ∥vmax∥k = 1, we have that

∥Ψk,k∥ ≥
∣∣∣(v⊗k

max

)T
Ψk,kv

⊗k
max

∣∣∣
=
∣∣∣(v⊗k

max

)T E
[
(I − ηHBt

)
⊗k
]
v⊗k
max

∣∣∣
=
∣∣∣E [(v⊗k

max

)T
(I − ηHBt

)
⊗k
v⊗k
max

]∣∣∣
=
∣∣∣E [(1− ηvTmaxHBt

vmax

)k]∣∣∣ . (105)

Assume that
η >

2

λmax(Hmax)
. (106)

Since λmax(Hmax) = v
T
maxHmaxvmax, under the assumption above, we have that

P
(
ηvTmaxHBt

vmax > 2
)
> 0. (107)

Therefore, continuing from (105)

∥Ψk,k∥ ≥
∣∣∣E [(1− ηvTmaxHBtvmax

)k]∣∣∣
=
∣∣∣P (ηvTmaxHBtvmax > 2

)
E
[(
1− ηvTmaxHBtvmax

)k∣∣∣ηvTmaxHBt
vmax > 2

]
+ P

(
ηvTmaxHBt

vmax ≤ 2
)
E
[(
1− ηvTmaxHBt

vmax

)k∣∣∣ηvTmaxHBt
vmax ≤ 2

]∣∣∣
≥ P

(
ηvTmaxHBt

vmax > 2
)
E
[(
ηvTmaxHBt

vmax − 1
)k∣∣∣ηvTmaxHBt

vmax > 2
]

− P
(
ηvTmaxHBt

vmax ≤ 2
) ∣∣∣E [(1− ηvTmaxHBt

vmax

)k∣∣∣ηvTmaxHBt
vmax ≤ 2

]∣∣∣ ,
(108)
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where in the second step we used the law of total expectation, and in last step we used the triangle in-
equality. Since x∗ is an interpolating minimum, thenHBt

is PSD w.p. one, and 0 ≤ vTmaxHBt
vmax.

Thus, ∣∣∣E [(1− ηvTmaxHBt
vmax

)k∣∣∣ηvTmaxHBt
vmax ≤ 2

]∣∣∣ ≤ 1. (109)

However,

E
[(
ηvTmaxHBt

vmax − 1
)k∣∣∣ηvTmaxHBt

vmax > 2
]
−→
k→∞

∞. (110)

This means that under the condition in (106), we have that {Ψk,k} are unbounded. Therefore, a
necessary condition for boundness is

η ≤ 2

λmax(Hmax)
. (111)

K SPECTRAL ANALYSIS

In App.I we proved that, under the condition in (13) of Thm. 3, we can find a neighborhood ∥x0 −
x∗∥ < ρ such that the operator Ψρ is bounded. In this section we show that under the same
condition, the spectral radius of Ψρ, denoted by r(Ψρ), is less than one. To do this, we first show that
the operator is compact, which means that all the non-zero elements in its spectrum are eigenvalues
(point spectrum). For this end, we define the following sequence of finite rank approximations
(truncations) {Ψk

ρ}, comprised of the first k × k blocks of Ψρ. Namely,

Ψk
ρ =



Ψ1,1 ρΨ1,2 ρ2Ψ1,3 · · · ρk−1Ψ1,k 0 · · ·
0 Ψ2,2 ρΨ2,3 · · · ρk−2Ψ2,k 0 · · ·
0 0 Ψ3,3 · · · ρk−3Ψ3,k 0 · · ·
...

...
...

. . .
... 0 · · ·

0 0 0 0 Ψk,k 0 · · ·
0 0 0 0 0 0 · · ·
...

...
...

...
...

...
. . .


. (112)

Furthermore, define Ψ̃i,j as the embedding of the block Ψi,j to the full space, i.e.

Ψ̃i,j =



0 · · · 0 0 0 · · ·
...

. . .
...

...
... · · ·

0 · · · 0 0 0 · · ·
0 · · · 0 Ψi,j 0 · · ·
0 · · · 0 0 0 · · ·
...

...
...

...
...

. . .


, (113)

such that

Ψρ =

∞∑
i=1

∞∑
j=i

ρj−iΨ̃i,j and Ψk
ρ =

k∑
i=1

k∑
j=i

ρj−iΨ̃i,j . (114)

Then,

∥∥Ψρ −Ψk
ρ

∥∥ =

∥∥∥∥∥∥
∞∑
i=1

∞∑
j=i

ρj−iΨ̃i,j −
k∑

i=1

k∑
j=i

ρj−iΨ̃i,j

∥∥∥∥∥∥
=

∥∥∥∥∥∥
∞∑

i=k+1

∞∑
j=i

ρj−iΨ̃i,j +

k∑
i=1

∞∑
j=k+1

ρj−iΨ̃i,j

∥∥∥∥∥∥
≤

∞∑
i=k+1

∞∑
j=i

ρj−i
∥∥∥Ψ̃i,j

∥∥∥+ k∑
i=1

∞∑
j=k+1

ρj−i
∥∥∥Ψ̃i,j

∥∥∥
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=

∞∑
i=k+1

∞∑
j=i

ρj−i ∥Ψi,j∥+
k∑

i=1

∞∑
j=k+1

ρj−i ∥Ψi,j∥

=

∞∑
i=1

∞∑
j=i

ρj−i ∥Ψi,j∥ −
k∑

i=1

k∑
j=1

ρj−i ∥Ψi,j∥ −→
k→∞

0, (115)

where in the third step we used the fact that
∞∑
i=1

∞∑
j=i

ρj−i
∥∥∥Ψ̃i,j

∥∥∥ =

∞∑
i=1

∞∑
j=i

ρj−i ∥Ψi,j∥ (116)

is bounded (see (98)). Therefore, Ψk
ρ

∥·∥−→ Ψρ as k → ∞, and thus Ψρ is compact. This means that
the non-zero elements in the spectrum of Ψρ are comprised of its eigenvalues only (point spectrum).

In the following we use a known result about the convergence of the spectrum of finite rank approx-
imations.

Lemma 1 (Dunford & Schwartz (1964, Cp. XI.9 Lemma 5)) Let {Tk} and T be compact oper-

ators, such that Tk
∥·∥−→ T . Let λm(T ) be an enumeration of the non-zero eigenvalues of T , each

repeated according to its multiplicity. Then there exist enumerations λm(Tk) of the non-zero eigen-
values of {Tk}, with the repetitions according to multiplicity, such that

lim
k→∞

λm(Tk) = λm(T ), m ≥ 1, (117)

where the limit is uniform in m.

Let σ(·) denote the spectrum of an operator. Here, each Ψk
ρ , when restricted to its square support, is

a block upper triangular matrix. Hence, its spectrum3 is given by the union of the eigenvalues of the
blocks in the diagonal. Namely,

σ
(
Ψk

ρ

)
=

k⋃
j=1

σ (Ψj,j) . (118)

Thus, according to Lemma 1 we have that the non-zero spectrum of Ψρ is

σ (Ψρ) \{0} = lim
k→∞

σ
(
Ψk

ρ

)
\{0} =

∞⋃
k=1

σ (Ψk,k) \{0}. (119)

Now that we have the spectrum of Ψρ we turn to show that under the condition of Thm. 3 in (13),
the spectral radius r(Ψρ) is less than one. Due to (119), it is sufficient to show that for all k ∈ N we
have r(Ψk,k) ≤ c < 1, for some constant c ∈ (0, 1). Recall that

Ψk,k = E
[(

Dψ̂Bt
(x∗)

)⊗k
]
, (120)

where Dψ̂Bt
(x∗) = I − η∇2L̂Bt

(x∗) is symmetric. Therefore, Ψk,k is also symmetric, and we
have that r(Ψk,k) = ∥Ψk,k∥. Thus, using Jensen’s inequality

r (Ψk,k) = ∥Ψk,k∥

=

∥∥∥∥E [(Dψ̂Bt
(x∗)

)⊗k
]∥∥∥∥

≤ E
[∥∥∥∥(Dψ̂Bt

(x∗)
)⊗k

∥∥∥∥]
= E

[∥∥∥Dψ̂Bt(x
∗)
∥∥∥k] . (121)

3Without the zero eigenvalue.
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Note that under the conditions of Thm. 3 we have
∥∥∥Dψ̂Bt

(x∗)
∥∥∥ ≤ 1− ε w.p. 1 for some ε ∈ (0, 1)

(see (94), and the discussion above it). Therefore,

r (Ψk,k) ≤ E
[∥∥∥Dψ̂Bt

(x∗)
∥∥∥k] ≤ (1− ε)k. (122)

Overall,
r (Ψρ) = sup

k∈N
r (Ψk,k) ≤ sup

k∈N
(1− ε)k = 1− ε < 1. (123)

L PROOF OF THEOREM 5

Let T be an operator defined on ℓ2 space. Assume that T consists of blocks {Ti,j}, such that
∀i, j Ti,j ∈ Rdi×dj where {di}∞i=1 is a given sequence. Additionally, assume that

∀j ∈ N
∞∑
i=1

∥Ti,j∥ ≤ α and ∀i ∈ N
∞∑
j=1

∥Ti,j∥ ≤ β. (124)

Furthermore, for any u ∈ ℓ2, denote by ui its ith segment, such that ui ∈ Rdi . Then we have

∥Tu∥2 =

∞∑
i=1

∥∥∥∥∥∥
∞∑
j=1

Ti,juj

∥∥∥∥∥∥
2

≤
∞∑
i=1

 ∞∑
j=1

∥Ti,j∥∥uj∥

2

=

∞∑
i=1

 ∞∑
j=1

√
∥Ti,j∥

√
∥Ti,j∥∥uj∥

2

≤
∞∑
i=1

 ∞∑
j=1

∥Ti,j∥

 ∞∑
j=1

∥Ti,j∥∥uj∥2


≤
∞∑
i=1

β

 ∞∑
j=1

∥Ti,j∥∥uj∥2


= β

∞∑
j=1

∥uj∥2
∞∑
i=1

∥Ti,j∥

≤ β

∞∑
j=1

∥uj∥2α

= αβ∥u∥2, (125)

where in the second step we used the triangle inequality, the fourth step is due to Cauchy-Schwarz
inequality, and in the sixth step we used the fact that all summands are non-negative, and therefore
we can change summation order.
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