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ABSTRACT

Mamba has achieved significant advantages in long-context modeling and autore-
gressive tasks, but its scalability with large parameters remains a major limitation
in vision applications. pretraining is a widely used strategy to enhance backbone
model performance. Although the success of Masked Autoencoder in Transformer
pretraining is well recognized, it does not significantly improve Mamba’s visual
learning performance. We found that using the correct autoregressive pretrain-
ing can significantly boost the performance of the Mamba architecture. Based on
this analysis, we propose Masked Autoregressive Pretraining(MAP) to pretrain
a hybrid Mamba-Transformer vision backbone network. This strategy combines
the strengths of both MAE and Autoregressive pretraining, improving the per-
formance of Mamba and Transformer modules within a unified paradigm. Experi-
mental results show that both the pure Mamba architecture and the hybrid Mamba-
Transformer vision backbone network pretrained with MAP significantly outper-
form other pretraining strategies, achieving state-of-the-art performance. We val-
idate the effectiveness of the method on both 2D and 3D datasets and provide
detailed ablation studies to support the design choices for each component.

Figure 1: We propose Masked Autoregressive Pretraining(MAP) to pretrain the hybrid Mamba-
Transformer vision backbones. This strategy combines the strengths of both MAE and Autoregres-
sive, improving the performance of Transformer and Mamba modules within a unified paradigm.

1 INTRODUCTION

The State Space Model(Hamilton, 1994) has demonstrated strong capabilities in long-context lan-
guage modeling. The recent emergence of the variant framework Mamba(Gu & Dao, 2023) has
sparked interest in comparing its abilities with those of Transformers. Due to its linear complex-
ity and selective scanning mechanism, Mamba shows significant advantages in computational effi-
ciency when handling long contexts. However, Mamba-based architectures(Zhu et al., 2024b) are
difficult to scale concerning the number of parameters, which poses a major limitation for vision
applications. To enhance Mamba-based backbones for vision tasks, there’s a trend of combining
Mamba with Transformers to create hybrid backbones(Lieber et al., 2024; Hatamizadeh & Kautz,
2024), leveraging the strengths of both. However, to truly scale up these hybrid vision backbones,
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Figure 2: (a) MAE Pretraining. Its core lies in reconstructing the masked tokens based on the
unmasked tokens to build a global bidirectional contextual understanding. (b) AR Pretraining. It
focuses on building correlations between contexts, and its scalability has been thoroughly validated
in the field of large language models. (c) MAP Pretraining(ours). Our method first randomly
masks the input image, and then reconstructs the original image in a row-by-row autoregressive
manner. This pretraining approach demonstrates significant advantages in modeling contextual fea-
tures of local characteristics and the correlations between local features, making it highly compat-
ible with the Mamba-Transformer hybrid architecture. (d) Performance Gains under different
pretraining strategies on ImageNet-1K. We found MAE pretraining is better suited for Trans-
formers, while AR is more compatible with Mamba. MAP, on the other hand, is more suited for
the Mamba-Transformer backbone. Additionally, MAP also demonstrates impressive performance
when pretraining with pure Mamba or pure Transformer backbones, showcasing the effectiveness
and broad applicability of our method.

a good pretraining strategy is essential for maximizing the combined capabilities of Mamba and
Transformer. Our work aims to take the first step in this direction.

Developing an effective pretraining strategy for Mamba-Transformer vision backbones is challeng-
ing. Even for purely Mamba-based backbones, pretraining methods are still underexplored, and the
optimal approach remains unclear. Additionally, the hybrid structure requires a pretraining strategy
compatible with both computation blocks. This is particularly challenging because the State Space
Model captures visual features very differently from Transformers.

To address these challenges, we conducted extensive pilot studies and identified three key observa-
tions. Firstly, existing popular pretraining strategies for Transformers, such as MAE(He et al., 2022)
and Contrastive Learning(CL)(He et al., 2020), do not yield satisfactory results for Mamba-based
backbones, highlighting the need for a more suitable method. Secondly, Autoregressive Pretrain-
ing(AR)(Ren et al., 2024) can be effective for Mamba-based vision backbones, provided that an
appropriate scanning pattern and token masking ratio are employed. Thirdly, pretraining strategies
suitable for either Mamba or Transformers may not effectively benefit the other, and hybrid back-
bones require a tailored approach to address the learning needs of different computation blocks.

Based on the above observations, we develop a novel pretraining strategy suitable for the Mamba-
Transformer vision backbone named Masked Autoregressive pretraining, or MAP for short. The key
is a hierarchical pretraining objective where local MAE is leveraged to learn good local attention for
the Transformer blocks while global autoregressive pretraining enables the Mamba blocks to learn
meaningful contextual information. Specifically, the pretraining method is supported by two key
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designs. First, we leverage local MAE to enable the hybrid framework, particularly the Transformer
module, to learn local bidirectional connectivity. This requires the hybrid network to predict all
tokens within a local region after perceiving local bidirectional information. Second, we autoregres-
sively generate tokens for each local region to allow the hybrid framework, especially the Mamba
module, to learn rich contextual information. This requires the network to autoregressively generate
subsequent local regions based on the previously decoded tokens.

Our experiments demonstrate that hybrid Mamba-Transformer models pretrained with MAP outper-
form other pretraining strategies by a significant margin. MAP with the hybrid Mamba-Transformer
and pure Mamba backbone can both achieve impressive results on the ImageNet-1k(Deng et al.,
2009a) classification task and other 3D vision tasks(Yi et al., 2016; Wu et al., 2015; Uy et al., 2019b).
Furthermore, we tried different hybrid integration strategies for combining Mamba and Transformer
layers showing that placing Transformer layers at regular intervals within Mamba layers led to a
substantial boost in downstream task performance.

Our contributions are threefold:
Firstly, we propose a novel method for pretraining the Hybrid Mamba-Transformer Vision Back-
bone for the first time, enhancing the performance of hybrid backbones as well as pure Mamba and
pure Transformer backbones within a unified paradigm.
Secondly, we conduct an in-depth analysis of the key components of Mamba with autoregressive
pretraining, revealing that the effectiveness hinges on maintaining consistency between the pretrain-
ing order and the Mamba scanning order, along with an appropriate token masking ratio.
Thirdly, we demonstrate that our proposed method, MAP, significantly improves the performance
of both Mamba-Transformer and pure Mamba backbones across various 2D and 3D datasets.

2 RELATED WORK

Vision Mambas and Vision Transformers. Vision Mamba(Vim)(Zhu et al., 2024a) is an efficient
model for visual representation learning, leveraging bidirectional state space blocks to outperform
traditional vision transformers like DeiT in both performance and computational efficiency. The
VMamba(Liu et al., 2024) architecture, built using Visual State-Space blocks and 2D Selective
Scanning, excels in visual perception tasks by balancing efficiency and accuracy. Autoregressive
pretraining(ARM)(Ren et al., 2024) further boosts Vision Mamba’s performance, enabling it to
achieve superior accuracy and faster training compared to conventional supervised models. Nev-
ertheless, why autoregression is effective for Vision Mamba and what the key factors are remains
an unresolved question. In this paper, we explore the critical design elements behind the success
of Mamba’s autoregressive pretraining for the first time. Vision Transformers(ViT)(Dosovitskiy,
2020) adapt transformer architectures to image classification by treating image patches as sequential
tokens. Swin Transformer(Liu et al., 2021) introduces a hierarchical design with shifted windows,
effectively capturing both local and global information for image recognition. MAE (He et al.,
2022) enhances vision transformers through self-supervised learning, where the model reconstructs
masked image patches using an encoder-decoder structure, enabling efficient and powerful pretrain-
ing for vision tasks. However, the MAE pretraining strategy is not effective for Mamba, which
hinders our ability to pretrain the hybrid Mamba-Transformer backbones.

Self-Supervised Visual Representation Learning. Self-Supervised Visual Representation Learn-
ing is a machine learning approach that enables the extraction of meaningful visual features from
large amounts of unlabeled data. This methodology relies on pretext tasks, which serve as a means
to learn representations without the need for explicit labels. GPT-style AR(Han et al., 2021) models
predict the next part of an image or sequence given the previous parts, encouraging the model to un-
derstand the spatial or temporal dependencies within the data. MAE(He et al., 2022) methods mask
out random patches of an input image and train the model to reconstruct these masked regions. This
technique encourages the model to learn contextual information and global representations. Con-
trastive Learning(CL)(He et al., 2020) techniques involve contrasting positive and negative samples
to learn discriminative features. It typically involves creating pairs of positive and negative examples
and training the model to distinguish between them. However, we found that existing pretraining
strategies fail to fully unlock the potential of the hybrid framework, which motivated us to explore a
new pretraining paradigm for hybrid Mamba-Transformer backbones.
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3 PILOT STUDY: HOW TO PRE-TRAIN THE VISUAL MAMBA BACKBONES?

In this Section, we first conduct experiments to investigate the differences in pretraining strategies
for ViT and Vim. The success of the MAE strategy on the ViT architecture is well acknowledged,
while the Vim pretraining strategy remains in its early stages. We are interested in determining
whether the MAE strategy is equally applicable to Vim or if the AR strategy is more suitable. To
explore this, we conduct experiments on the classification task using the ImageNet-1K dataset. The
results are shown in Table 1.

Method ViT ViT+MAE ViT+AR ViT+CL
Accuracy 82.3 83.6(+1.4) 82.5(+0.2) 82.5(+0.2)
Method Vim Vim+MAE Vim+AR Vim+CL

Accuracy 81.2 81.4(+0.2) 82.6(+1.4) 81.1(-0.1)
Table 1: Pilot Study. We use ViT-B and Vim-B as the default configurations. The AR strategy
processes the image tokens in a row-first order, while the MAE operates according to the default
settings. For contrastive learning, we only used crop and scale data augmentation and used the
MoCov2 for pretraining. All experiments are conducted at a resolution of 224x224. The number
of mask tokens for AR is set to 40 tokens (20%). Experiments show that MAE is more suitable for
Transformer pretraining, while AR is better suited for Mamba pretraining.

We observe that the MAE strategy significantly enhances the performance of ViT. However, for Vim,
the MAE strategy does not yield the expected improvements, while the AR strategy substantially
boosts its performance. This indicates that for the ViT architecture, applying the MAE strategy is
essential to establish bidirectional associations between tokens, thereby improving performance. In
contrast, for Vim, it is more important to model the continuity between preceding and succeeding
tokens. Based on this observation, we conducted an in-depth analysis of the various components
involved in AR pretraining for Mamba and discovered that consistent autoregression pretraining
with scanning order and proper masking ratio is the key to pretraining Mamba.

Relationship between AR and Scanning Order. Since the goal of AR pretraining is to learn
a high-quality conditional probability distribution, enabling the model to generate new sequences
based on previously generated content, we first explore how the prediction order in auto-regressive
models affects the pretraining of Vim. Different prediction orders can significantly impact how
the model captures image features and the effectiveness of sequence generation. By adjusting the
prediction order, we can gain deeper insights into Vim’s behavior in sequence generation tasks
and how to effectively model dependencies between elements in an image. Further analysis of
the role of prediction order will help optimize AR pretraining for Vim, exploring how the model
can better capture the continuity and relationships of image information under different contextual
conditions. We conduct ablation studies on Vim by allowing it to perform both row-first and column-
first scanning. We then pretrain it with row-first and column-first AR orders, respectively, to compare
their performance. Figure 3 shows different orders for AR pretraining and Mamba scanning.

Method Vim(R) Vim(R) + AR(C) Vim(R) + AR(R)
Accuracy 79.7 79.9(+0.2) 82.6(+2.9)
Method Vim(C) Vim(C) + AR(C) Vim(C) + AR(R)

Accuracy 79.5 82.5(+3.0) 79.9(+0.4)
Table 2: The impact of AR pretraining order on downstream tasks. Vim(R) refers to Vim with row-first
scanning. Vim(C) refers to Vim with column-first scanning. AR(R) refers to row-first autoregressive pretrain-
ing. AR(C) refers to column-first autoregressive pretraining. The results indicate that the best performance is
achieved when the auto-regressive pretraining design aligns with Mamba’s scanning order.

The results are shown in Table 2. We observe that employing a pretraining strategy consistent with
the scanning order significantly enhances Vim’s performance. This suggests that when designing
pretraining strategies, they should be aligned with the downstream scanning order.

Masking Ratio of Autoregression Pretraining. Since the success of MAE is primarily attributed
to the use of an appropriate masking ratio, we are inspired to conduct experiments to verify whether
different auto-regressive masking ratios will affect the quality of pretraining. We found that during
AR pretraining, masking a certain number of tokens at the end of the sequence is crucial. Masking
a single token follows the traditional AR paradigm, while masking n tokens transforms the task
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Figure 3: Different orders for AR pretraining and Mamba scanning. The row-first and column-first
orders allow the network to perceive local information in different ways and sequences.

into an inpainting problem, as the input and output sequence lengths remain equal. In this context,
varying the auto-regressive masking ratios effectively adjusts the inpainting ratio, influencing the
model’s predictions beyond just the sequence length. Our pretraining sequence length was set to
196 tokens, and we masked 1 token (0.5%), 20 tokens (10%), 40 tokens (20%), 60 tokens (30%),
100 tokens (50%), and 140 tokens (70%), respectively, while also recording the results of fine-tuning
on downstream tasks. Figure 4 shows the pipeline of AR Pretraining under different mask ratios.

Masked tokens 1 (0.5%) 20 (10%) 40 (20%)
Accuracy 81.7 82.0 82.6

Masked tokens 60 (30%) 100 (50%) 140 (70%)
Accuracy 82.5 82.2 81.9

Table 3: The impact of Masking Ratio on AR pretraining. We masked 1 token (0.5%), 20 tokens
(10%), 40 tokens (20%), 60 tokens (30%), 100 tokens (50%), and 140 tokens (70%), respectively,
while also recording the results of fine-tuning on downstream tasks. The experiment shows that an
appropriate masking ratio is important for autoregressive pretraining.

Figure 4: Masking Ratio of Autoregression Pretraining. We showcased the autoregressive training
process at various masking ratios. Notably, in autoregressive pretraining, different masking ratios
effectively control not only the prediction step size but also the length of the input sequence.
The results shown in Table 3 indicate that a proper masking ratio contributes to training stability,
helping to avoid excessive noise interference. In auto-regressive pretraining, as the Masking Ratio
increases, the performance of the Mamba improves. This is because a higher Masking Ratio en-
courages the model to learn more complex and rich feature representations, thereby enhancing its
generative ability and adaptability. However, an excessively high Masking Ratio may lead to insta-
bility during the training process and result in incomplete information perception. We found there
exists a sweet spot around 20% on the ImageNet-1K classification task. In such cases, the model may
struggle to make accurate predictions due to a lack of sufficient contextual information, negatively
impacting its pretraining effectiveness. Therefore, when designing auto-regressive pretraining tasks,
finding an appropriate masking ratio is crucial to strike a balance between performance improvement
and training stability.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Given that MAE is more suitable for Transformers while AR is better suited for Mamba, how should
we approach the pretraining of a hybrid Mamba-Transformer model? We need a new pretraining
strategy that is effective for both Transformers and Mamba to support the pretraining of hybrid
models. In the next Section, we will provide a detailed explanation of how to pretrain the hybrid
Mamba-Transformer backbones.

4 MASKED AUTOREGRESSIVE PRETRAINING FOR HYBRID BACKBONES

Our approach represents a general paradigm applicable to data across various domains, with 2D
image data as an example. Our method can be easily extended to large language models (LLMs) and
the fields of image video and point cloud video. Our method optimizes the synergy between Mamba
and Transformer within a unified framework, allowing both models to fully leverage their strengths.
In the Mamba-Transformer hybrid architecture, this approach effectively enhances the cooperation
between the models, resulting in significant performance improvements. Specifically, our approach
includes a masking strategy, a hybrid Mamba-Transformer encoder, and a Transformer decoder. The
hybrid Mamba-Transformer encoder is responsible for mapping the signals into latent space, while
the Transformer decoder autoregressively reconstructs the features back into the original image. The
following section will introduce the specific design components of the framework. The subsequent
experiments in this section are conducted using the base-sized model on the ImageNet-1K dataset.

Masking. Consistent with MAE, we first tokenize the image and then apply random masking to a
portion of the tokens. We experimented with different masking strategies, including random, sequen-
tial, and diagonal masking. Our experiments show that random masking delivers the best results. We
attribute this to the fact that sequential and diagonal masking can hinder the Transformer’s ability
to establish contextual relationships. Random masking not only promotes bidirectional modeling
for Transformers but also enhances Mamba’s generalization and representation capabilities in se-
quence modeling. Additionally, we explored the effects of different masking ratios and found that a
50% masking ratio yielded the best results. This conclusion aligns with intuition: while MAE per-
forms optimally on Transformers with a 75% masking ratio, previous experiments showed that AR
achieves the best results on Mamba with a 20% ratio. Therefore, a 50% ratio serves as a balanced
number, leveraging the strengths of both paradigms.

Figure 5: Different Masking Strategies. The random masking strategy produces the best results.
Masking Design From Scratch Random Masking Sequential Masking Diagonal Masking

Accuracy 83.1 84.9 84.0 83.8
Masking Ratio 0% 25% 50% 75%

Accuracy 83.3 84.5 84.9 84.2
Table 4: Random masking with a 50% masking ratio performs the best.

MAP Hybrid Mamba-Transformer Encoder. We designed a series of hybrid Mamba-Transformer
vision backbones and compared their performance when trained from scratch. The results indicate
that the hybrid approach using MMMTMMMT performs the best. When comparing Mamba-R*
with MMMMMMTT, we found that adding a Transformer after Mamba enhances its long-context
modeling capabilities, leading to improved performance. However, when comparing MMMM-
MMTT with TTMMMMMM, we observed that simply appending Transformers after Mamba does
not fully leverage the architecture’s potential. This suggests that incorporating Transformers at the
beginning is crucial for extracting sufficient local features. We believe that the MMMTMMMT ap-
proach effectively balances local feature extraction and contextual modeling enhancement, making
it our default configuration.
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Figure 6: Different Hybrid Model Design. (d) achieves the best results and is set as default.
Design DeiT* Mamba-R* MMMMMMTT

Accuracy 82.80 82.70 82.88
Design TTMMMMMM TMMMTMMM MMMTMMMT

Accuracy 82.93 83.01 83.12
Table 5: Hybrid Design of Mamba-Transformer backbone. All experiments are trained from scratch.
Mamba-R* means 24 Mamba-R(Wang et al., 2024) Mamba layers plus 8 additional Mamba layers.
DeiT* means 24 DeiT(Touvron et al., 2021) Transformer layers plus 8 additional Transformer layers.
MMMMMMTT represents 24 Mamba layers followed by 8 Transformer layers. TTMMMMMM
represents 8 Transformer layers followed by 24 Mamba layers. TMMMTMMM represents a unit
consisting of 1 Transformer layer and 3 Mamba layers, repeated 8 times. MMMTMMMT represents
a unit of 3 Mamba layers followed by 1 Transformer layer, repeated 8 times.
MAP Transformer Decoder. To reconstruct the original image, we utilize a masked Transformer
for signal recovery. Our decoder, while consistent with MAE, employs a distinct row-wise decoding
strategy that allows autoregressive decoding of one row of tokens at a time, enhancing the network’s
ability to capture local features and contextual relationships among regions. Experiments show that
this method significantly outperforms the original AR, MAE, and local MAE decoding strategies.
Notably, in the hybrid framework, local MAE performs comparably to standard MAE, emphasizing
the significance of local feature learning. Our MAP method improves local feature modeling while
leveraging autoregressive techniques to capture contextual relationships across regions, resulting in
superior performance.

Figure 7: Different Decoder Mask. Green represents activation. White represents non-activation.

Decoder Mask Autoregressive(AR) MAE local MAE MAP (ours)
Accuracy 83.7 84.1 84.2 84.9

Table 6: Decoder Mask Design. Our MAP decoder strategy achieves the best results.

Reconstruction Target. Consistent with MAE, we reconstructed normalized original pixels as the
target and employed MSE loss. Inspired by MAR(Li et al., 2024) to use reconstruction output
as a conditional signal for diffusion models to improve generation quality, we explored whether
pretraining with diffusion loss could enhance performance. However, this approach did not yield
significant improvements. This may be due to the decoder’s increased capacity negatively impacting
the encoder’s pretraining effectiveness, suggesting that the quality of reconstructed images is not
directly linked to encoder pretraining success.

Reconstruction Target From Scratch Diffusion Loss MSE Loss (ours)
Accuracy 83.1 83.3 84.9

Table 7: Reconstruction Target. Results indicate that the quality of the reconstructed image is not
directly related to the pretraining effectiveness.
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Model Img. size #Params Throughput Mem Acc. (%)

Pure Convolutional networks:
ResNet-50 (He et al., 2016) 2242 25M 2388 6.6G 76.2
ResNet-152 (He et al., 2016) 2242 60M 1169 12.5G 78.3
EfficientNet-B3 (Tan & Le, 2019) 3002 12M 496 19.7G 81.6
ConvNeXt-T (Liu et al., 2022b) 2242 29M 701 8.3G 82.1
ConvNeXt-S (Liu et al., 2022b) 2242 50M 444 13.1G 83.1
ConvNeXt-B (Liu et al., 2022b) 2242 89M 334 17.9G 83.8

Pure Vision Transformers:
ViT-B/16 (Dosovitskiy et al., 2021) 2242 86M 284 63.8G 77.9
ViT-L/16 (Dosovitskiy et al., 2021) 2242 307M 149 - 76.5
Pretrained Vision Transformers:
ViT-B/16 + MAE (Dosovitskiy et al., 2021) 2242 86M 284 63.8G 83.6
ViT-L/16 + MAE (Dosovitskiy et al., 2021) 2242 307M 149 - 85.9
ViT-B/16 + MAP 2242 86M 284 63.8G 83.6
ViT-L/16 + MAP 2242 307M 149 - 86.1
Pure Mamba architecture:
Vim-T (Zhu et al., 2024a) 2242 7M 1165 4.8G 76.1
Vim-S (Zhu et al., 2024a) 2242 26M 612 9.4G 80.5
MambaR-T (Wang et al., 2024) 2242 9M 1160 5.1G 77.4
MambaR-S (Wang et al., 2024) 2242 28M 608 9.9G 81.1
MambaR-B (Wang et al., 2024) 2242 99M 315 20.3G 82.9
MambaR-L (Wang et al., 2024) 2242 341M 92 55.5G 83.2
Pretrained Mamba architecture:
ARM-B (Mamba+AR) (Ren et al., 2024) 2242 85M 325 19.7G 83.2
ARM-L (Mamba+AR) (Ren et al., 2024) 2242 297M 111 53.1G 84.5
MambaR-B+MAP 2242 99M 315 20.3G 84.0
MambaR-L+MAP 2242 341M 92 55.5G 84.8
Hybrid 2D convolution + Mamba:
VMamba-T (Liu et al., 2024) 2242 31M 464 7.6G 82.5
VMamba-S (Liu et al., 2024) 2242 50M 313 27.6G 83.6
VMamba-B (Liu et al., 2024) 2242 89M 246 37.1G 83.9

Hybrid 2Dconvolution + Mamba + Transformer architecture: (with down-sampling)
MambaVision-T (Hatamizadeh & Kautz, 2024) 2242 35M 1349 10.7G 82.7
MambaVision-S (Hatamizadeh & Kautz, 2024) 2242 51M 1058 36.6G 83.3
MambaVision-B (Hatamizadeh & Kautz, 2024) 2242 97M 826 50.8G 84.2
MambaVision-L (Hatamizadeh & Kautz, 2024) 2242 241M 229 78.6G 85.3

Hybrid Mamba + Transformer architecture: (without down-sampling)
HybridMH-T 2242 12M 910 7.6G 77.7
HybridMH-S 2242 37M 512 14.6G 81.3
HybridMH-B 2242 128M 244 30.0G 83.1

3842 128M 244 76.1G 84.5
HybridMH-L 2242 443M 63 78.3G 83.2

3842 443M 63 - 84.6
Pretrained Hybrid architecture:
HybridMH-T + MAP 2242 12M 910 7.6G 78.6
HybridMH-S + MAP 2242 37M 512 14.6G 82.5
HybridMH-B + MAE 2242 128M 244 30.0G 83.9
HybridMH-B + AR 2242 128M 244 30.0G 83.8
HybridMH-B + CL 2242 128M 244 30.0G 83.1
HybridMH-B + MAP 2242 128M 244 30.0G 84.9

3842 128M 244 76.1G 85.5
HybridMH-L + MAP 2242 443M 63 78.3G 85.0

3842 443M 63 - 86.2
Table 8: ImageNet-1k classification results. The throughput is computed on an A100 GPU. The
memory overhead is measured with a batch size of 128 on single GPU. Our results are highlighted
in blue . Our proposed MAP method significantly improves the performance of the hybrid Mamba-
Transformer backbones. Additionally, we verified that our MAP method also significantly improves
the performance of both the pure Mamba framework and the pure Transformer backbone. Our MAP
method also significantly outperforms MAE, AR, and CL pretraining on hybrid networks.
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Hybrid Ratio 3M1T 3M1T+MAP 1M3T 1M3T+MAP 2M2T 2M2T+MAP
Accuracy 83.1 84.9 83.3 85.1 83.5 84.9

Table 9: Results on Different Hybrid Ratio. 3M1T denotes a ratio of 3:1 for Mamba and Transformer,
while 3M1T+MAP indicates that it undergoes MAP pretraining first. The results reveal minimal per-
formance differences among the various hybrid ratios after pertaining. Considering computational
efficiency and memory savings, we use the 3:1 hybrid ratio as our default configuration.

5 EXPERIMENTS

5.1 2D EXPERIMENTS ON IMAGENET-1K CLASSIFICATION TASK

Settings. We pretrained on the training set of the ImageNet-1K(Deng et al., 2009b) dataset and then
fine-tuned on its classification task. We report the top-1 validation accuracy of a single 224x224 crop,
and in some settings, we also report the results for a 384x384 crop. During the pretraining phase,
we applied a random masking strategy with a 50% masking ratio, using only random cropping as
the data augmentation strategy. We utilized AdamW as the optimizer and trained for 1600 epochs
across all settings. Additionally, we pretrained using the MAP paradigm on pure Mamba and pure
Transformer networks, demonstrating that this paradigm is effective for both frameworks. In the
fine-tuning phase, we directly fine-tune for 400 epochs and report the results.

Results. Results are shown in Table 8. The results indicate that the hybrid framework achieves a
balance between performance and computational overhead. However, simply training the hybrid
architecture from scratch does not lead to significant performance improvements compared to pure
Mamba and Transformer backbone. Our proposed pretraining method significantly enhances the
performance of the hybrid Mamba-Transformer framework. Additionally, we verified that our MAP
method also significantly improves the performance of both the pure Mamba framework and the
pure Transformer backbone. Furthermore, when comparing models of the base size with other
pretraining methods, we observed that contrastive learning pretraining does not yield performance
improvements. The original MAE and AR methods also fail to fully exploit the capabilities of the hy-
brid Mamba-Transformer backbone, with their results significantly lower than our MAP pretraining
method. This further demonstrates the effectiveness of our method for the hybrid framework.

Results with Different Hybrid Ratio for Mamba and Transformer. In our experiments, we
used a 3:1 hybrid ratio of Mamba to Transformer. We also explored other hybrid ratios, and the
results, as shown in Table 9, indicate that there are no significant performance differences among
the hybrid models with varying ratios after MAP pretraining. Considering computational efficiency
and memory savings, we opted to adopt the 3:1 hybrid ratio as our default configuration.

5.2 3D EXPERIMENTS ON MODELNET40, SCANOBJECTNN AND SHAPENETPART

Settings. We pretrained using the ShapeNet(Chang et al., 2015) dataset, employing random rotation
and translation scaling as data augmentation techniques. Each point cloud consists of 1024 points
and is divided into 64 patches, with each patch containing 32 points. We also used a hybrid ratio
of Mamba to Transformer at 3:1, randomly masking 50% of the patches. Since point clouds are
unordered, the concept of rows does not apply here; instead, we randomly generate 32 patches each
time and complete the reconstruction process in an autoregressive manner. Similar to Mamba3DHan
et al. (2024), we did not adopt any special sorting strategies but ensured that the order of pretraining
matches that of the actual Mamba scans. We conducted pretraining on both the hybrid framework
and the original Mamba3D to validate their performance advantages in both the pure Mamba frame-
work and the hybrid framework. During pretraining and downstream fine-tuning, we employed
the AdamW optimizer with a cosine decay strategy for 300 epochs. For the ModelNet40Wu et al.
(2015) fine-tuning experiments, we used translation and scaling as data augmentation, while on
ScanObjectNNUy et al. (2019a), we applied random rotation as data augmentation. Additionally, I
also performed experiments in few-shot settings and on ShapeNet part(Yi et al., 2016) segmentation.

Results.The experiments demonstrate that our method significantly enhances the performance of
both the hybrid framework and the pure Mamba framework on 3D tasks. This suggests that our
approach can be easily adapted to other domains and data types, such as LLMs and video data.
Notably, in the part segmentation task, the performance of the hybrid framework trained from scratch
is inferior to that of the pure Mamba framework. However, after pretraining, the advantages of the
hybrid framework are fully realized, significantly surpassing the performance of the pure Mamba
framework. This further proves that our method can simultaneously harness the potential of both
Mamba and Transformer to achieve better performance.
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Method PT #P ↓ #F ↓
ScanObjectNN ModelNet40

OBJ_BG ↑ OBJ_ONLY ↑ PB_T50_RS ↑ 1k P ↑

Supervised Learning Only: Dedicated Architectures

PointNet(Qi et al., 2017a) × 3.5 0.5 73.3 79.2 68.0 89.2
PointNet++(Qi et al., 2017b) × 1.5 1.7 82.3 84.3 77.9 90.7
DGCNN(Wang et al., 2019) × 1.8 2.4 82.8 86.2 78.1 92.9
PointCNN(Li et al., 2018) × 0.6 - 86.1 85.5 78.5 92.2
DRNet (Qiu et al., 2021) × - - - - 80.3 93.1
SimpleView(Goyal et al., 2021) × - - - - 80.5±0.3 93.9
GBNet(Qiu et al., 2022) × 8.8 - - - 81.0 93.8
PRA-Ne(Cheng et al., 2021) × - 2.3 - - 81.0 93.7
MVTN(Hamdi et al., 2021) × 11.2 43.7 92.6 92.3 82.8 93.8
PointMLP(Ma et al., 2022) × 12.6 31.4 - - 85.4±0.3 94.5
PointNeXt(Qian et al., 2022) × 1.4 3.6 - - 87.7±0.4 94.0
P2P-HorNet(Wang et al., 2022) ✓ - 34.6 - - 89.3 94.0
DeLA(Chen et al., 2023) × 5.3 1.5 - - 90.4 94.0

Supervised Learning Only: Transformer or Mamba-based Models

Transformer × 22.1 4.8 79.86 80.55 77.24 91.4
PCT(Guo et al., 2021) × 2.9 2.3 - - - 93.2
PointMamba × 12.3 3.6 88.30 87.78 82.48 -
PCM(Zhang et al., 2024) × 34.2 45.0 - - 88.10±0.3 93.4±0.2
SPoTr(Park et al., 2023) × 1.7 10.8 - - 88.60 -
PointConT(Liu et al., 2023) × - - - - 90.30 93.5
Mamba3d w/o vot. × 16.9 3.9 92.94 92.08 91.81 93.4
Mamba3d w/ vot. × 16.9 3.9 94.49 92.43 92.64 94.1
HybridMT3D w/o vot. × 19.3 4.4 92.81 92.28 91.97 93.5
HybridMT3D w/ vot. × 19.3 4.4 94.50 92.58 92.66 94.3

With Self-supervised pretraining

Transformer OcCo 22.1 4.8 84.85 85.54 78.79 92.1
Point-BERT IDPT 22.1+1.7† 4.8 88.12 88.30 83.69 93.4
MaskPoint MaskPoint 22.1 4.8 89.30 88.10 84.30 93.8
PointMamba Point-MAE 12.3 3.6 90.71 88.47 84.87 -
Point-MAE IDPT 22.1+1.7† 4.8 91.22 90.02 84.94 94.4
Point-M2AE Point-M2AE 15.3 3.6 91.22 88.81 86.43 94.0
Mamba3d w/o vot. Point-BERT 16.9 3.9 92.25 91.05 90.11 94.4
Point-MAE Point-MAE 22.1 4.8 90.02 88.29 85.18 93.8
Mamba3d w/o vot. Point-MAE 16.9 3.9 93.12 92.08 92.05 94.7
Mamba3d w/ vot. Point-MAE 16.9 3.9 95.18 94.15 93.05 95.4
Mamba3d w/o vot. MAP 16.9 3.9 93.62 92.75 92.65 95.1
Mamba3d w/ vot. MAP 16.9 3.9 95.64 94.87 93.76 95.6
HybridMT3D w/o vot. MAP 19.3 4.4 93.88 93.03 92.95 95.4
HybridMT3D w/ vot. MAP 19.3 4.4 95.84 94.97 93.87 95.9

Table 10: Results on 3D classification tasks. Our results are highlighted in blue .

Method
5-way 10-way

10-shot ↑ 20-shot ↑ 10-shot ↑ 20-shot ↑
Supervised Learning Only

DGCNN (Wang et al., 2019) 31.6 ± 2.8 40.8 ± 4.6 19.9 ± 2.1 16.9 ± 1.5

Transformer (Vaswani et al., 2017) 87.8 ± 5.2 93.3 ± 4.3 84.6 ± 5.5 89.4 ± 6.3

Mamba3D (Han et al., 2024) 92.6 ± 3.7 96.9 ± 2.4 88.1 ± 5.3 93.1 ± 3.6

HybridMT3D 92.8 ± 3.2 97.0 ± 1.8 88.4 ± 4.3 93.1 ± 3.8

with Self-supervised pretraining

DGCNN+OcCo(Wang et al., 2021) 90.6 ± 2.8 92.5 ± 1.9 82.9 ± 1.3 86.5 ± 2.2

OcCo (Wang et al., 2021) 94.0 ± 3.6 95.9 ± 2.7 89.4 ± 5.1 92.4 ±4.6

PointMamba (Liang et al., 2024) 95.0 ± 2.3 97.3 ± 1.8 91.4 ± 4.4 92.8 ± 4.0

MaskPoint (Liu et al., 2022a) 95.0 ± 3.7 97.2 ± 1.7 91.4 ± 4.0 93.4 ± 3.5

Point-BERT (Yu et al., 2022) 94.6 ± 3.1 96.3 ± 2.7 91.0 ± 5.4 92.7 ± 5.1

Point-MAE (Pang et al., 2022) 96.3 ± 2.5 97.8± 1.8 92.6 ±4.1 95.0 ± 3.0

Mamba3d+P-B (Yu et al., 2022) 95.8 ± 2.7 97.9 ± 1.4 91.3 ± 4.7 94.5 ± 3.3

Mamba3d+P-M (Pang et al., 2022) 96.4 ± 2.2 98.2 ±1.2 92.4 ± 4.1 95.2 ± 2.9

Mamba3d+MAP 97.1 ± 3.1 98.7 ±1.3 92.8 ± 2.1 95.8 ± 3.1

HybridMT3D+MAP 97.3 ±2.8 98.7 ±0.8 93.0 ± 3.6 96.0 ± 2.7

Method mIoUC (%) ↑ mIoUI (%) ↑ #P ↓ #F ↓
Supervised Learning Only

PointNet (Qi et al., 2017a) 80.4 83.7 3.6 4.9
PointNet++ (Qi et al., 2017b) 81.9 85.1 1.0 4.9
DGCNN (Wang et al., 2019) 82.3 85.2 1.3 12.4
Transformer (Vaswani et al., 2017) 83.4 85.1 27.1 15.5
Mamba3D(Han et al., 2024) 83.7 85.7 23.0 11.8
HybridMT3D 83.5 85.6 25.1 12.9

with Self-supervised pretraining

OcCo (Wang et al., 2021) 83.4 84.7 27.1 -
PointContrast (Xie et al., 2020) - 85.1 37.9 -
CrossPoint (Afham et al., 2022) - 85.5 - -

Point-MAE (Pang et al., 2022) 84.2 86.1 27.1 15.5
PointMamba (Liang et al., 2024) 84.4 86.0 17.4 14.3
Point-BERT (Yu et al., 2022) 84.1 85.6 27.1 10.6
Mamba3d+P-B (Yu et al., 2022) 84.1 85.7 21.9 9.5
Mamba3d+P-M (Pang et al., 2022) 84.3 85.8 23.0 11.8
Mamba3d+MAP 84.5 86.0 23.0 11.8
HybridMT3D+MAP 84.7 86.3 25.1 12.9

Table 11: (Left) Few-shot classification on ModelNet40 dataset. (Right) Part segmentation on
ShapeNetPart dataset. Our results are highlighted in blue .

6 CONCLUSION
In this paper, we begin with an in-depth analysis of the key factors that contribute to the success of
autoregressive pretraining for Mamba. Based on this, We introduce a pretraining strategy specifically
designed for the Mamba-Transformer hybrid framework for the first time. This strategy is effective
not only for the hybrid backbones but also for pure Mamba and pure Transformer backbones. We
have validated the effectiveness of our approach on both 2D and 3D datasets.
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