
Feature-Proxy Transformer for Few-Shot
Segmentation

Jian-Wei Zhang1∗, Yifan Sun2, Yi Yang3, Wei Chen1†
1 State Key Lab of CAD&CG, Zhejiang University, Hangzhou, China

2 Baidu Research
3 CCAI, College of Computer Science and Technology, Zhejiang University

{zjw.cs,yangyics,chenvis}@zju.edu.cn, sunyf15@tsinghua.org.cn

Abstract

Few-shot segmentation (FSS) aims at performing semantic segmentation on novel
classes given a few annotated support samples. With a rethink of recent advances,
we find that the current FSS framework has deviated far from the supervised seg-
mentation framework: Given the deep features, FSS methods typically use an
intricate decoder to perform sophisticated pixel-wise matching, while the super-
vised segmentation methods use a simple linear classification head. Due to the
intricacy of the decoder and its matching pipeline, it is not easy to follow such
an FSS framework. This paper revives the straightforward framework of “fea-
ture extractor + linear classification head” and proposes a novel Feature-Proxy
Transformer (FPTrans) method, in which the “proxy” is the vector representing
a semantic class in the linear classification head. FPTrans has two keypoints for
learning discriminative features and representative proxies: 1) To better utilize the
limited support samples, the feature extractor makes the query interact with the
support features from bottom to top layers using a novel prompting strategy. 2) FP-
Trans uses multiple local background proxies (instead of a single one) because the
background is not homogeneous and may contain some novel foreground regions.
These two keypoints are easily integrated into the vision transformer backbone with
the prompting mechanism in the transformer. Given the learned features and prox-
ies, FPTrans directly compares their cosine similarity for segmentation. Although
the framework is straightforward, we show that FPTrans achieves competitive FSS
accuracy on par with state-of-the-art decoder-based methods. 1

1 Introduction

Few-shot learning is of significant value for semantic segmentation. It is because the semantic
segmentation task requires pixel-wise annotation, which is notoriously cumbersome and expensive [10,
30, 28]. Therefore, learning from very few samples for semantic segmentation has attracted significant
research interest, yielding a popular topic, i.e., few-shot semantic segmentation (FSS). Formally,
FSS aims at performing semantic segmentation on novel classes given only a few (e.g., one or five)
densely-annotated samples (called support images) [5].

With a rethink of recent advances in FSS, we find current FSS methods usually require an intricate
decoder, deviating far from the plain supervised segmentation framework. More concretely, state-of-
the-art FSS methods adopt the “feature extractor + (intricate) decoder” framework (Fig. 1 (a), (b) and

∗Work done during an internship at Baidu Research.
†Corresponding author.
1Code is available at https://github.com/Jarvis73/FPTrans.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://github.com/Jarvis73/FPTrans


Is Iq

Interaction

FG/BG
Proxies

Refinement

Proxies

Is Iq

CNN / Attention Fusion / Refinement

Prior

Is Iq

Prior

CNN Multi-Scale Fusion / Transformer

Support
Vector

IIs Iq

Affinity Maps

4D Convolution / Transformer

(a) (b) (c) (d) (e)

Feature Extractor Decoder

Ys
Mask Mask

Ys
Mask
Ys

Classification Head

Classify
Ys

Mask

Classify

Figure 1: Comparison between the “feature extractor + intricate decoder” (a, b and c) and the
plain“feature extractor + linear classification head” framework (d and e). (a) The decoder refines the
prior maps (raw segmentation) for final prediction (e.g., FWB [38], CWT [36], SCL [61]). (b) The
decoder concatenates the support prototype and the query features and then further feeds them into
the CNN or transformer (e.g., PFENet [46], ASGNet [27], CyCTR [64]). (c) The decoder conducts
pixel-to-pixel matching from query to support and then applies 4D convolution or transformer to
discover the patterns within the matching score maps (e.g., HSNet [37], VAT [19]). (d) The plain
framework of “feature extractor + linear classification head” in supervised segmentation. (e) The
proposed FPTrans revives the plain framework and makes only one necessary modification (i.e., the
proxies are extracted from the support images on the fly).

(c)), while the supervised segmentation methods usually adopt the “feature extractor + (simple) linear
classification head” framework (Fig. 1 (d)). In FSS frameworks, the decoders perform sophisticated
matching and can be summarized into three types (Fig. 1 (a), (b), and (c)), as detailed in the related
works in Section2.1. Arguably, the intricacy of the decoder and its sophisticated matching pipeline
makes the FSS framework hard to follow. Under this background, we think it is valuable to explore a
relatively straightforward FSS framework.

This paper revives the plain framework of “feature extractor + linear classification head” for FSS and
proposes a novel Feature-Proxy Transformer (FPTrans) method. The term “proxy” denotes the vector
representing a foreground class or the background in the linear classification head. We note that in
Fig. 1 (d), given the extracted feature maps, the supervised segmentation methods simply feed them
into a linear classification head to perform pixel-wise prediction. FPTrans adapts this straightforward
framework to the FSS task with only one modification: instead of fixing the already-learned proxies
in the classification head (Fig. 1 (d)), FPTrans uses support feature maps and the support mask to
generate the proxies on the fly. This modification is necessary for recognizing novel classes and is
consistent with some earlier FSS methods [41, 50].

To tackle two FSS challenges (i.e., generalization to novel classes and very few support samples)
under this simple framework, FPTrans has two keypoints for learning discriminative features and rep-
resentative proxies, respectively. 1) To better utilize the limited support samples, the feature extractor
makes the query interact with the support features from the bottom to top layers. Consequently,
the support sample provides extra information/clues for extracting the query features and is thus
beneficial. 2) To promote generalization to novel classes, FPTrans uses multiple local background
proxies instead of a single global proxy for representing the background. This design is important
because, during base training, the background is not homogeneous and may contain some novel
foreground classes. Consequently, it avoids confusing novel classes with the background of the base
data and thus benefits generalization to novel classes.

We implement the above two keypoints with a novel prompting strategy. While using the prompt to
condition a transformer for different tasks [29, 23, 51] or different domains [13] is a common practice,
our prompting strategy is significantly different and has two novel functions, i.e., 1) prompting for
different (foreground or background) proxies and, 2) acting as the intermediate for query-support
interaction. Specifically, FPTrans simultaneously prepends multiple prompts at the input layer,
with one prompt for the foreground and the other prompts for the background. These prompts are
fed into the transformer and finally become the foreground proxy and local background proxies,
respectively. During their flow from the input layer to the output layer, the hidden states of prompts in
all the hidden layers are shared by the query and support for cross-attention (query-prompt attention
and support-prompt attention). Therefore, it significantly reduces the interaction complexity from

2



O(N 2) to O(N ) (N is the number of pixels on the feature maps). Since the prompting and attention
mechanism are critical for these two keypoints, we use the transformer backbone as a natural choice.

We conduct extensive experiments and show that FPTrans achieves accuracy on par with the decoder-
based FSS methods. For example, on PASCAL-5i [5] with one support sample, FPTrans achieves
68.81% mIoU, setting a new state of the art. With its simple framework and competitive accuracy, we
hope FPTrans can serve as a strong baseline for FSS.

To sum up, our main contributions are summarized as follows: (i) We revive the plain “feature
extractor+ linear classi�cation head” framework for FSS. We hope the correspondingly-proposed
method FPTrans can serve as a simple and strong FSS baseline. (ii) We integrate two keypoints
into FPTrans,i.e., learning discriminative features through query-support interaction and learning
representative local background proxies. These two keypoints rely on a novel prompting strategy
of the transformer backbone and correspondingly tackle two FSS challenges,i.e., very few support
samples and generalization to novel classes. (iii) We conduct extensive experiments to validate the
effectiveness of FPTrans. Experimental results show that FPTrans with a plain framework achieves
competitive accuracy, compared with state-of-the-art FSS methods with intricate decoders.

2 Related Work

2.1 Recent Progress on Few-Shot Segmentation

Early FSS methods directly generate class-speci�c classi�er weights and biases [41, 40, 45] or apply
the prototype learning [44, 8, 50, 42]. The recent state-of-the-art methods shift to the decoder-based
framework and can be categorized into three types according to the decoder structure.1) Some
recent methods[38, 32, 36, 61] (Fig. 1(a)) generate prior maps based on query features and support
features. They further use CNN or transformer to re�ne the prior maps (which may be viewed as
raw segmentation) into the �nal segmentation output.2) Some methods [66, 63, 46, 27, 64, 54, 55,
56, 62] (Fig. 1(b)) concatenate the support prototype vector and the query features and then feed the
concatenated feature maps into a subsequential CNN or transformer for prediction.3) Some methods
focus on exploring �ne-grained knowledge and calculating the pixel-to-pixel matching scores between
support and query features to derive af�nity maps [21, 49, 58, 11, 64, 59, 36] (Fig. 1(c)). Some
further apply 4D convolution or transformer [37, 19] to discover the latent patterns within the af�nity
maps. Besides, latent information is also investigated to enhance the model [39, 67, 25, 57, 52, 34].

In contrast, this paper abandons the intricate decoder and revives the plain framework of “feature
extractor + linear classi�cation head”. We show that this simple framework can also achieve promising
FSS results. We note that a recent work [2] also uses the plain framework during training. However,
they rely on transductive inference during testing to mitigate the gap between the inconsistent training
and testing schemes. Compared with [2], the proposed FPTrans maintains its simplicity for testing
and achieves superior FSS accuracy.

2.2 Backbone for Few-Shot Segmentation

Previous FSS methods usually adopt CNNs (e.g., VGG [43], ResNet [17]) as the backbone (i.e.,
feature extractor) and typically �x the pretrained backbone parameters [63, 46, 64, 61, 52, 36, 27,
37, 19]. However, �xing the backbone is prone to a side-effect,i.e., insuf�cient adaptation to the
segmentation training data. Some recent methods �netune the CNN backbone along with FSS training
with sophisticated techniques (e.g., model ensemble or transductive inference [26, 2]) to tackle the
problem of insuf�cient adaptation.

In contrast, this paper adopts the vision transformer [9, 18, 53, 35] as the backbone because we
rely on the attention mechanism and a novel prompting technique for query-support interaction.
Moreover, the proposed FPTrans bene�ts from �ne-tuning the backbone parameters without bells and
whistles. We note that using the transformer backbone does NOT necessarily improve FSS, because
the ablation studies (in Table 5) show that replacing the CNN backbone with a transformer does
NOT bring improvements to the decoder-based FSS methods [46, 64]. Therefore, we attribute the
superiority of our method mainly to the two unique keypoints in FPTrans.

3



3 Methods

3.1 Problem Formulation

Few-shot segmentation aims at tackling the semantic segmentation problem on novel classes under a
low data regime. Speci�cally, FSS usually provides a training set with categoriesCtrain and a testing
set with novel categoriesCtest (Ctrain \ C test = ; ). The mainstream setting [63, 64, 46] adopts
the episodic training and testing scheme: Each episode corresponds to a single classc (c 2 Ctrain
during training andc 2 Ctest during testing), and provides a query samplef I q; Yqg andK support
samplesf I (k )

s ; Y (k )
s gK

k=1 (I is the image andY is the label). The superscriptk will be omitted unless
necessary. Within each episode, the model is expected to usef I s; Ysg andI q to predict the query
label. In this paper, we follow this popular episodic training and testing scheme.

3.2 Preliminaries on Vision Transformer and Prompt Learning

The proposed FPTrans uses the vision transformer as its backbone and integrates a novel prompting
strategy. Therefore, we �rst revisit the vision transformer and the prompting mechanism.

Vision Transformer [9](ViT) is designed for computer vision tasks based on transformer [48] which
is originally designed for sequential data [7, 3, 33]. It is composed of a patch embedding module, a
transformer encoder, and an MLP head. Given an RGB image as the input, ViT �rst reshape it into
N patchesf ap 2 R3� P � P jp = 1 ; 2; : : : ; N g (P is the patch size) and then projects the �attened
image patches intoC-Dimensional embeddings byxp = Embed(ap) 2 RC ; p = 1 ; 2; : : : ; N . We
denote the collection of these embedding tokens asX 0 = f xpgN

p=1 2 RN � C . ViT hasL stacked
transformer blocks, each one of which consists of a Multiheaded Self-Attention module and an MLP
module (See supplementary Section A for details). GivenX 0 (the collection of embedding tokens),
ViT concatenates it with a classi�cation tokenx0

cls 2 RC and then inputs them into the stacked
transformer blocks, which is formulated as:

[x l
cls ; X l ] = B l ([x l � 1

cls ; X l � 1]); l = 1 ; 2; : : : ; L; (1)

wherex l
cls andX l are the outputs of thel-th blockB l , and[�; �] is the concatenate operation.

Prompting was �rst introduced in NLP tasks to identify different tasks by inserting a few hint
words into input sentences [12, 24, 4, 31]. More generally, prompting techniques can ef�ciently
condition the transformer to different tasks [29, 14, 20, 16, 51] or domains [13] without changing
any other parameters of the transformer. To this end, prompting techniques typically prepend some
prompt tokensP 0 to the input layer. Correspondingly, Eqn(1) transforms into[x l

cls ; X l ; P l ] =
B l ([x l � 1

cls ; x l � 1; P l � 1]). It can be seen that changing the prompt simultaneously changes the mapping
function of the transformer, even if all the transformer blocksB l remain unchanged.

Our prompting strategy in FPTrans is signi�cantly different from the prior prompting techniques.
In contrast to the popular prompting for different tasks or different domains, FPTrans prepends
multiple prompts to simultaneously activate multiple different proxies (i.e., the foreground and local
background proxies), as well as to facilitate ef�cient query-support interactions. Moreover, in prior
works, the prompts in the hidden layers are dependent on a single input sample. In contrast, in
FPTrans, the prompts in the hidden layers are shared by the query and support images through a
synchronization procedure. We will illustrate these points in the following section.

3.3 Feature-Proxy Transformer

3.3.1 Overview

The proposed Feature-Proxy Transformer (FPTrans) consists of three major steps,i.e., 1) prompt
generation, 2) feature and proxy extraction, and 3) training the classi�cation head and inference, as
illustrated in Figure 2. The prompts are extracted from the support images within a (training or testing)
episode and contain a foreground prompt and multiple local background prompts (Section 3.3.2).
Afterward, FPTrans concatenates these prompts with the image patch tokens and forwards them into
the stacked transformer blocks to extract both the features and proxies (Section 3.3.3). Different
from the popular prompting technique, FPTrans shares the hidden states of the prompt tokens for the
query and its support images, using a prompt synchronization operation. It facilitates ef�cient feature

4



Figure 2: Overview of the proposed Feature-Proxy Transformer (FPTrans).(a) Given a support image,
we generate a foreground prompt and multiple local background prompts. Each prompt consists of
multiple tokens.(b) The feature extractor consists ofL transformer blocks. It takes patch tokens
from the query and support images, as well as the prompts as its input. After every transformer block,
FPTrans synchronizes the prompt tokens from the query and support branches to facilitate ef�cient
query-support interactions. The classi�cation head uses two types of proxies (the feature-based and
the prompt-based proxies) for training and uses the feature-based proxies for inference.

interactions between support and query features. Finally, given the extracted features and proxies, we
elaborate on how to use them for training the classi�cation head and for inference in Section 3.3.4.

3.3.2 Prompt Generation

Prompt generation is illustrated in Fig. 2 (a). Within each episode, FPTrans uses the support image(s)
to extract class-aware prompts and share them for the support and query images. The prompts are
class-aware because we respectively extract prompts from the foreground and background.

To this end, we �rst use a pretrained plain vision transformer (Eqn.(1)) to extract deep features from
the support image and getF �

s 2 RC � H � W , in which H andW are the feature height and width,
and the subscripts indicates the “support”. Afterward, we use the support mask to crop out the
foreground regions and background regions fromF �

s . While the foreground regions are cropped
out as a whole, the background regions are cropped and partitioned into multiple (S) local regions,
because the background is likely not to be homogeneous. To this end, we employ a Voronoi-based
method [1] to partition the background intoS regions (See supplementary Section B.1 for details).

According to the background partition results, we generateS local masks for the background,
i.e., f Bn gS

n =1 with Bn 2 f 0; 1gH � W . A partition example ofS = 3 is illustrated in Fig. 2(a).
Consequently, we calculate the mean feature of the foregroundu �

f 2 RC and the local mean feature
of backgroundu �

n 2 RC by masked average pooling:

u �
f =

1

j ~Ys j

HWX

i =1

F �
s;i

~Ys;i ; u �
n =

1
jBn j

HWX

i =1

F �
s;i Bn;i ; n = 1 ; : : : ; S; (2)

where~Ys 2 f 0; 1gH � W is the down-sampled foreground mask of the support image.

Based on the mean features, we further expand eachC-dimensional mean feature vector (u �
f 2 RC

andu �
n 2 RC ) into a correspondingG � C token and then add it with extra learnable tokens by:

p f = E(u �
f ) + zf ; pn = E(u �

n ) + zn ; n = 1 ; : : : ; S; (3)

5


	Introduction
	Related Work
	Recent Progress on Few-Shot Segmentation
	Backbone for Few-Shot Segmentation

	Methods
	Problem Formulation
	Preliminaries on Vision Transformer and Prompt Learning
	Feature-Proxy Transformer
	Overview
	Prompt Generation
	Feature and Proxy Extraction
	Training and Inference


	Experiments
	Implementation Details
	Comparison with State-of-the-Art Methods
	Ablation Study

	Conclusion

