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Abstract

Few-shot segmentation (FSS) aims at performing semantic segmentation on novel
classes given a few annotated support samples. With a rethink of recent advances,
we find that the current FSS framework has deviated far from the supervised seg-
mentation framework: Given the deep features, FSS methods typically use an
intricate decoder to perform sophisticated pixel-wise matching, while the super-
vised segmentation methods use a simple linear classification head. Due to the
intricacy of the decoder and its matching pipeline, it is not easy to follow such
an FSS framework. This paper revives the straightforward framework of “fea-
ture extractor + linear classification head” and proposes a novel Feature-Proxy
Transformer (FPTrans) method, in which the “proxy” is the vector representing
a semantic class in the linear classification head. FPTrans has two keypoints for
learning discriminative features and representative proxies: 1) To better utilize the
limited support samples, the feature extractor makes the query interact with the
support features from bottom to top layers using a novel prompting strategy. 2) FP-
Trans uses multiple local background proxies (instead of a single one) because the
background is not homogeneous and may contain some novel foreground regions.
These two keypoints are easily integrated into the vision transformer backbone with
the prompting mechanism in the transformer. Given the learned features and prox-
ies, FPTrans directly compares their cosine similarity for segmentation. Although
the framework is straightforward, we show that FPTrans achieves competitive FSS
accuracy on par with state-of-the-art decoder-based methods. 1

1 Introduction

Few-shot learning is of significant value for semantic segmentation. It is because the semantic
segmentation task requires pixel-wise annotation, which is notoriously cumbersome and expensive [10,
30, 28]. Therefore, learning from very few samples for semantic segmentation has attracted significant
research interest, yielding a popular topic, i.e., few-shot semantic segmentation (FSS). Formally,
FSS aims at performing semantic segmentation on novel classes given only a few (e.g., one or five)
densely-annotated samples (called support images) [5].

With a rethink of recent advances in FSS, we find current FSS methods usually require an intricate
decoder, deviating far from the plain supervised segmentation framework. More concretely, state-of-
the-art FSS methods adopt the “feature extractor + (intricate) decoder” framework (Fig. 1 (a), (b) and
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Figure 1: Comparison between the “feature extractor + intricate decoder” (a, b and c) and the
plain“feature extractor + linear classification head” framework (d and e). (a) The decoder refines the
prior maps (raw segmentation) for final prediction (e.g., FWB [38], CWT [36], SCL [61]). (b) The
decoder concatenates the support prototype and the query features and then further feeds them into
the CNN or transformer (e.g., PFENet [46], ASGNet [27], CyCTR [64]). (c) The decoder conducts
pixel-to-pixel matching from query to support and then applies 4D convolution or transformer to
discover the patterns within the matching score maps (e.g., HSNet [37], VAT [19]). (d) The plain
framework of “feature extractor + linear classification head” in supervised segmentation. (e) The
proposed FPTrans revives the plain framework and makes only one necessary modification (i.e., the
proxies are extracted from the support images on the fly).

(c)), while the supervised segmentation methods usually adopt the “feature extractor + (simple) linear
classification head” framework (Fig. 1 (d)). In FSS frameworks, the decoders perform sophisticated
matching and can be summarized into three types (Fig. 1 (a), (b), and (c)), as detailed in the related
works in Section2.1. Arguably, the intricacy of the decoder and its sophisticated matching pipeline
makes the FSS framework hard to follow. Under this background, we think it is valuable to explore a
relatively straightforward FSS framework.

This paper revives the plain framework of “feature extractor + linear classification head” for FSS and
proposes a novel Feature-Proxy Transformer (FPTrans) method. The term “proxy” denotes the vector
representing a foreground class or the background in the linear classification head. We note that in
Fig. 1 (d), given the extracted feature maps, the supervised segmentation methods simply feed them
into a linear classification head to perform pixel-wise prediction. FPTrans adapts this straightforward
framework to the FSS task with only one modification: instead of fixing the already-learned proxies
in the classification head (Fig. 1 (d)), FPTrans uses support feature maps and the support mask to
generate the proxies on the fly. This modification is necessary for recognizing novel classes and is
consistent with some earlier FSS methods [41, 50].

To tackle two FSS challenges (i.e., generalization to novel classes and very few support samples)
under this simple framework, FPTrans has two keypoints for learning discriminative features and rep-
resentative proxies, respectively. 1) To better utilize the limited support samples, the feature extractor
makes the query interact with the support features from the bottom to top layers. Consequently,
the support sample provides extra information/clues for extracting the query features and is thus
beneficial. 2) To promote generalization to novel classes, FPTrans uses multiple local background
proxies instead of a single global proxy for representing the background. This design is important
because, during base training, the background is not homogeneous and may contain some novel
foreground classes. Consequently, it avoids confusing novel classes with the background of the base
data and thus benefits generalization to novel classes.

We implement the above two keypoints with a novel prompting strategy. While using the prompt to
condition a transformer for different tasks [29, 23, 51] or different domains [13] is a common practice,
our prompting strategy is significantly different and has two novel functions, i.e., 1) prompting for
different (foreground or background) proxies and, 2) acting as the intermediate for query-support
interaction. Specifically, FPTrans simultaneously prepends multiple prompts at the input layer,
with one prompt for the foreground and the other prompts for the background. These prompts are
fed into the transformer and finally become the foreground proxy and local background proxies,
respectively. During their flow from the input layer to the output layer, the hidden states of prompts in
all the hidden layers are shared by the query and support for cross-attention (query-prompt attention
and support-prompt attention). Therefore, it significantly reduces the interaction complexity from

2



O(N2) to O(N) (N is the number of pixels on the feature maps). Since the prompting and attention
mechanism are critical for these two keypoints, we use the transformer backbone as a natural choice.

We conduct extensive experiments and show that FPTrans achieves accuracy on par with the decoder-
based FSS methods. For example, on PASCAL-5i [5] with one support sample, FPTrans achieves
68.81% mIoU, setting a new state of the art. With its simple framework and competitive accuracy, we
hope FPTrans can serve as a strong baseline for FSS.

To sum up, our main contributions are summarized as follows: (i) We revive the plain “feature
extractor + linear classification head” framework for FSS. We hope the correspondingly-proposed
method FPTrans can serve as a simple and strong FSS baseline. (ii) We integrate two keypoints
into FPTrans, i.e., learning discriminative features through query-support interaction and learning
representative local background proxies. These two keypoints rely on a novel prompting strategy
of the transformer backbone and correspondingly tackle two FSS challenges, i.e., very few support
samples and generalization to novel classes. (iii) We conduct extensive experiments to validate the
effectiveness of FPTrans. Experimental results show that FPTrans with a plain framework achieves
competitive accuracy, compared with state-of-the-art FSS methods with intricate decoders.

2 Related Work

2.1 Recent Progress on Few-Shot Segmentation

Early FSS methods directly generate class-specific classifier weights and biases [41, 40, 45] or apply
the prototype learning [44, 8, 50, 42]. The recent state-of-the-art methods shift to the decoder-based
framework and can be categorized into three types according to the decoder structure. 1) Some
recent methods[38, 32, 36, 61] (Fig. 1(a)) generate prior maps based on query features and support
features. They further use CNN or transformer to refine the prior maps (which may be viewed as
raw segmentation) into the final segmentation output. 2) Some methods [66, 63, 46, 27, 64, 54, 55,
56, 62] (Fig. 1(b)) concatenate the support prototype vector and the query features and then feed the
concatenated feature maps into a subsequential CNN or transformer for prediction. 3) Some methods
focus on exploring fine-grained knowledge and calculating the pixel-to-pixel matching scores between
support and query features to derive affinity maps [21, 49, 58, 11, 64, 59, 36] (Fig. 1(c)). Some
further apply 4D convolution or transformer [37, 19] to discover the latent patterns within the affinity
maps. Besides, latent information is also investigated to enhance the model [39, 67, 25, 57, 52, 34].

In contrast, this paper abandons the intricate decoder and revives the plain framework of “feature
extractor + linear classification head”. We show that this simple framework can also achieve promising
FSS results. We note that a recent work [2] also uses the plain framework during training. However,
they rely on transductive inference during testing to mitigate the gap between the inconsistent training
and testing schemes. Compared with [2], the proposed FPTrans maintains its simplicity for testing
and achieves superior FSS accuracy.

2.2 Backbone for Few-Shot Segmentation

Previous FSS methods usually adopt CNNs (e.g., VGG [43], ResNet [17]) as the backbone (i.e.,
feature extractor) and typically fix the pretrained backbone parameters [63, 46, 64, 61, 52, 36, 27,
37, 19]. However, fixing the backbone is prone to a side-effect, i.e., insufficient adaptation to the
segmentation training data. Some recent methods finetune the CNN backbone along with FSS training
with sophisticated techniques (e.g., model ensemble or transductive inference [26, 2]) to tackle the
problem of insufficient adaptation.

In contrast, this paper adopts the vision transformer [9, 18, 53, 35] as the backbone because we
rely on the attention mechanism and a novel prompting technique for query-support interaction.
Moreover, the proposed FPTrans benefits from fine-tuning the backbone parameters without bells and
whistles. We note that using the transformer backbone does NOT necessarily improve FSS, because
the ablation studies (in Table 5) show that replacing the CNN backbone with a transformer does
NOT bring improvements to the decoder-based FSS methods [46, 64]. Therefore, we attribute the
superiority of our method mainly to the two unique keypoints in FPTrans.
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3 Methods

3.1 Problem Formulation

Few-shot segmentation aims at tackling the semantic segmentation problem on novel classes under a
low data regime. Specifically, FSS usually provides a training set with categories Ctrain and a testing
set with novel categories Ctest (Ctrain ∩ Ctest = ∅). The mainstream setting [63, 64, 46] adopts
the episodic training and testing scheme: Each episode corresponds to a single class c (c ∈ Ctrain
during training and c ∈ Ctest during testing), and provides a query sample {Iq, Yq} and K support
samples {I(k)s , Y

(k)
s }Kk=1 (I is the image and Y is the label). The superscript k will be omitted unless

necessary. Within each episode, the model is expected to use {Is, Ys} and Iq to predict the query
label. In this paper, we follow this popular episodic training and testing scheme.

3.2 Preliminaries on Vision Transformer and Prompt Learning

The proposed FPTrans uses the vision transformer as its backbone and integrates a novel prompting
strategy. Therefore, we first revisit the vision transformer and the prompting mechanism.

Vision Transformer [9](ViT) is designed for computer vision tasks based on transformer [48] which
is originally designed for sequential data [7, 3, 33]. It is composed of a patch embedding module, a
transformer encoder, and an MLP head. Given an RGB image as the input, ViT first reshape it into
N patches {ap ∈ R3×P×P |p = 1, 2, . . . , N} (P is the patch size) and then projects the flattened
image patches into C-Dimensional embeddings by xp = Embed(ap) ∈ RC , p = 1, 2, . . . , N . We
denote the collection of these embedding tokens as X0 = {xp}Np=1 ∈ RN×C . ViT has L stacked
transformer blocks, each one of which consists of a Multiheaded Self-Attention module and an MLP
module (See supplementary Section A for details). Given X0 (the collection of embedding tokens),
ViT concatenates it with a classification token x0

cls ∈ RC and then inputs them into the stacked
transformer blocks, which is formulated as:

[xl
cls,X

l] = Bl([x
l−1
cls ,Xl−1]), l = 1, 2, . . . , L, (1)

where xl
cls and Xl are the outputs of the l-th block Bl, and [·, ·] is the concatenate operation.

Prompting was first introduced in NLP tasks to identify different tasks by inserting a few hint
words into input sentences [12, 24, 4, 31]. More generally, prompting techniques can efficiently
condition the transformer to different tasks [29, 14, 20, 16, 51] or domains [13] without changing
any other parameters of the transformer. To this end, prompting techniques typically prepend some
prompt tokens P0 to the input layer. Correspondingly, Eqn (1) transforms into [xl

cls,X
l,Pl] =

Bl([x
l−1
cls ,xl−1,Pl−1]). It can be seen that changing the prompt simultaneously changes the mapping

function of the transformer, even if all the transformer blocks Bl remain unchanged.

Our prompting strategy in FPTrans is significantly different from the prior prompting techniques.
In contrast to the popular prompting for different tasks or different domains, FPTrans prepends
multiple prompts to simultaneously activate multiple different proxies (i.e., the foreground and local
background proxies), as well as to facilitate efficient query-support interactions. Moreover, in prior
works, the prompts in the hidden layers are dependent on a single input sample. In contrast, in
FPTrans, the prompts in the hidden layers are shared by the query and support images through a
synchronization procedure. We will illustrate these points in the following section.

3.3 Feature-Proxy Transformer

3.3.1 Overview

The proposed Feature-Proxy Transformer (FPTrans) consists of three major steps, i.e., 1) prompt
generation, 2) feature and proxy extraction, and 3) training the classification head and inference, as
illustrated in Figure 2. The prompts are extracted from the support images within a (training or testing)
episode and contain a foreground prompt and multiple local background prompts (Section 3.3.2).
Afterward, FPTrans concatenates these prompts with the image patch tokens and forwards them into
the stacked transformer blocks to extract both the features and proxies (Section 3.3.3). Different
from the popular prompting technique, FPTrans shares the hidden states of the prompt tokens for the
query and its support images, using a prompt synchronization operation. It facilitates efficient feature
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Figure 2: Overview of the proposed Feature-Proxy Transformer (FPTrans). (a) Given a support image,
we generate a foreground prompt and multiple local background prompts. Each prompt consists of
multiple tokens. (b) The feature extractor consists of L transformer blocks. It takes patch tokens
from the query and support images, as well as the prompts as its input. After every transformer block,
FPTrans synchronizes the prompt tokens from the query and support branches to facilitate efficient
query-support interactions. The classification head uses two types of proxies (the feature-based and
the prompt-based proxies) for training and uses the feature-based proxies for inference.

interactions between support and query features. Finally, given the extracted features and proxies, we
elaborate on how to use them for training the classification head and for inference in Section 3.3.4.

3.3.2 Prompt Generation

Prompt generation is illustrated in Fig. 2 (a). Within each episode, FPTrans uses the support image(s)
to extract class-aware prompts and share them for the support and query images. The prompts are
class-aware because we respectively extract prompts from the foreground and background.

To this end, we first use a pretrained plain vision transformer (Eqn. (1)) to extract deep features from
the support image and get F∗

s ∈ RC×H×W , in which H and W are the feature height and width,
and the subscript s indicates the “support”. Afterward, we use the support mask to crop out the
foreground regions and background regions from F∗

s . While the foreground regions are cropped
out as a whole, the background regions are cropped and partitioned into multiple (S) local regions,
because the background is likely not to be homogeneous. To this end, we employ a Voronoi-based
method [1] to partition the background into S regions (See supplementary Section B.1 for details).

According to the background partition results, we generate S local masks for the background,
i.e., {Bn}Sn=1 with Bn ∈ {0, 1}H×W . A partition example of S = 3 is illustrated in Fig. 2(a).
Consequently, we calculate the mean feature of the foreground u∗

f ∈ RC and the local mean feature
of background u∗

n ∈ RC by masked average pooling:

u∗
f =

1

|Ỹs|

HW∑
i=1

F∗
s,iỸs,i, u∗

n =
1

|Bn|

HW∑
i=1

F∗
s,iBn,i, n = 1, . . . , S, (2)

where Ỹs ∈ {0, 1}H×W is the down-sampled foreground mask of the support image.

Based on the mean features, we further expand each C-dimensional mean feature vector (u∗
f ∈ RC

and u∗
n ∈ RC) into a corresponding G× C token and then add it with extra learnable tokens by:

pf = E(u∗
f ) + zf , pn = E(u∗

n) + zn, n = 1, . . . , S, (3)
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where E is the expansion from C-dimensional vector to G × C-dimensional token, and zf , zn ∈
RG×C are the learnable tokens. Adding these learnable tokens makes prompts gain extra diversity
and become more discriminative [60]. See supplementary Section B.2 for more details on this prompt
augmentation technique. Consequently, after the expansion and augmentation, we get a foreground
prompt token pf ∈ RG×C and S local background prompt tokens pn ∈ RG×C(n = 1, 2, · · · , S).

3.3.3 Feature and Proxy Extraction

Feature Extraction. The process for extracting features is illustrated in Fig. 2(b). Without loss
of generality, we take the 1-shot setting as the example for clarity. (See supplementary Section C
for K-shot settings) Within each episode, a query image Iq and a support image Is are split into N
patches and then flattened as {aq,p}Np=1 and {as,p}Np=1, respectively. An embedding layer projects
these patches into query and support patch tokens, i.e., X0

q ∈ RN×C and X0
s ∈ RN×C . We recall that

in Section 3.3.2, we already get multiple prompt tokens, i.e., P0 = [pf ,p0,p1, · · · ,pS ]. The patch
tokens from a single image and the prompt tokens are concatenated as the query input and support
input, i.e., [X0

q,P
0] and [X0

s,P
0]. The query and support inputs are processed by the transformer

blocks, which are formulated by:

[Xl
q,P

l
q] = Bl([X

l−1
q ,Pl−1]), (4)

[Xl
s,P

l
s] = Bl([X

l−1
s ,Pl−1]), (5)

Pl = (Pl
q +Pl

s)/2, (6)
where l = 1, 2, · · · , L enumerates all the transformer blocks.

There is a novel and unique prompt synchronization (Eqn. (6)) in FPTrans. Specifically, Eqn. (6)
averages the query and support prompt tokens after every transformer block. It makes the synced
prompt token Pl absorb information from both the query and support patch tokens. Therefore, in the
subsequential (l + 1)-th block, the synced prompt token Pl passes the support information to the
query tokens [Xl+1

q ,Pl+1
q ] and vice versa. In a word, this simple prompt synchronization facilitates

efficient interaction between query and support features.

Proxy Extraction. As the results of Eqn. (4) to Eqn. (6), the feature extractor outputs support
features XL

s , query features XL
q , as well as the deep states of prompts PL. FPTrans uses the support

features XL
s and the deep states of prompts PL to extract two types of proxies, i.e., the feature-based

proxies and the prompt-based proxies, respectively.

• Feature-based proxies. FPTrans uses the downsampled foreground mask Ỹs and the partitioned
background masks Bn (which are already provided in Section 3.3.2) to extract the feature-based
proxies by: uf = 1

|Ỹs|

∑
i Fs,iỸs,i, un = 1

|Bn|
∑

i Fs,iBn,i n = 1, . . . , S.

• Prompt-based proxies. Moreover, FPTrans uses the deep states of prompts PL to get the prompt-
based proxies by: vf = 1

G

∑G
j=1 p

L
f,j and vn = 1

G

∑G
j=1 p

L
n,j .

These two types of proxies are both used for training FPTrans. In contrast, during testing, FPTrans
only uses feature-based proxies.

3.3.4 Training and Inference

FPTrans uses two classification losses (one for the feature-based proxies and the other for the
prompt-based proxies) and a pairwise loss for training.

Classification losses. Since segmentation can be viewed as a pixel-wise classification problem,
FPTrans directly compares the similarity of each query feature vector (Fq,i) and the proxies for
linear classification. We elaborate on the classification loss with the feature-based proxy (and the
process with the prompt-based proxies is similar). The predicted probability of Fq,i belonging to the
foreground is formulated as:

P(Fq,i) =
exp(sim(Fq,i,uf )/τ)

exp (sim(Fq,i,uf )/τ) + maxn(exp (sim(Fq,i,un/τ)))
, n = 1, 2, · · · , S (7)

where sim(·, ·) is the cosine similarity between two vectors, τ is a temperate coefficient. The max
operation is critical because it facilitates comparing a feature to its closest background proxy.

6



Table 1: Comparison with state-of-the-art methods on PASCAL-5i. We report 1-shot and 5-shot
results using the mean IoU (%).

Backbone Method 1-shot 5-shot

S0 S1 S2 S3 Mean S0 S1 S2 S3 Mean

Res-50

RPMM [56] 55.2 66.9 52.6 50.7 56.3 56.3 67.3 54.5 51.0 57.3
PFENet [46] 61.7 69.5 55.4 56.3 60.8 63.1 70.7 55.8 57.9 61.9
CyCTR [64] 67.8 72.8 58.0 58.0 64.2 71.1 73.2 60.5 57.5 65.6
HSNet [37] 64.3 70.7 60.3 60.5 64.0 70.3 73.2 67.4 67.1 69.5
BAM [26] 69.0 73.6 67.6 61.1 67.8 70.6 75.1 70.8 67.2 70.9

Res-101

DAN [49] 54.7 68.6 57.8 51.6 58.2 57.9 69.0 60.1 54.9 60.5
RePRI [2] 59.6 68.6 62.2 47.2 59.4 66.2 71.4 67.0 57.7 65.6
PFENet [46] 60.5 69.4 54.4 55.9 60.1 62.8 70.4 54.9 57.6 61.4
CyCTR [64] 69.3 72.7 56.5 58.6 64.3 73.5 74.0 58.6 60.2 66.6
HSNet [37] 67.3 72.3 62.0 63.1 66.2 71.8 74.4 67.0 68.3 70.4

ViT-B/16 Baseline 62.9 69.1 62.2 53.0 61.8 70.5 76.0 74.2 65.5 71.5
FPTrans 67.1 69.8 65.6 56.4 64.7 73.5 75.7 77.4 68.3 73.7

DeiT-B/16 Baseline 68.2 69.4 61.7 60.5 64.9 75.3 78.1 76.1 73.7 75.8
FPTrans 72.3 70.6 68.3 64.1 68.8 76.7 79.0 81.0 75.1 78.0

Given the predicted probability and the ground-truth label, FPTrans uses the standard cross-entropy
loss Lce for supervising the pixel-wise classification. In parallel to Lce, FPTrans uses the prompt-
based proxies in a similar procedure and derives another classification loss L′

ce.

Pairwise loss. In addition to the classification losses, FPTrans further employs a pairwise loss to
pull close all the foreground features from the query and support samples, as well as to push the
foreground and background features far away from each other. The pairwise loss is formulated as:

Lpair =
1

Z

∑
(Yq,i+Ys,j)≥1

BCE(σ(sim(Fq,i,Fs,j)/τ),1[Yq,i = Ys,j ]), (8)

where Z = |(Yq,i + Ys,j) ≥ 1| is the normalization factor and BCE is the binary cross-entropy loss.
σ is a Sigmoid layer and 1[·] is the indicator function. If two features both belong to the background
((Yq,i + Ys,j) = 0), this pairwise loss function will NOT pull them close. Ablation studies show
that pulling two foreground features close substantially improves FSS (Table 4) while pulling two
background features actually compromises the FSS accuracy, as evidenced in the supplementary
Section E.2.

Overall, FPTrans sums all the three losses for training:

L = Lce + L′
ce + λLpair, (9)

where λ is a hyperparameter. For inference, FPTrans simply uses the query feature and the feature-
based proxies for the final prediction (Eqn. (7))

4 Experiments

4.1 Implementation Details

Datasets and Metrics. We use two popular FSS benchmarks PASCAL-5i [41] and COCO-20i [46]
for evaluation. PASCAL-5i combines PASCAL VOC 2012 [10] and SBD [15], and includes 20
classes. Following prior works [46, 26], we split the dataset into four splits with each split 15 classes
for training and 5 classes for testing. COCO-20i is constructed with COCO 2014 [30] and includes
80 classes. It is divided into 4 splits with each split 60 classes for training and 20 classes for testing.
To compare with previous methods, we report mean IoU (mIoU) averaged on test classes [46, 64, 26].

Training Details. All the images are resized and cropped to 480 × 480 and augmented follow-
ing [46]. We evaluate the proposed method on two vision transformer backbones, ViT-B/16 [9] and
DeiT-B/16 [47]. These two backbones are both pretrained on Imagenet-1k [6]. The cross-entropy
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Table 2: Comparison with state-of-the-art methods on COCO-20i. We report 1-shot and 5-shot results
using the mean IoU (%).

Backbone Method 1-shot 5-shot

S0 S1 S2 S3 Mean S0 S1 S2 S3 Mean

Res-50
RePRI [2] 32.0 38.7 32.7 33.1 34.1 39.3 45.4 39.7 41.8 41.6
HSNet [37] 36.3 43.1 38.7 38.7 39.2 43.3 51.3 48.2 45.0 46.9
BAM [51] 43.4 50.6 47.5 43.4 46.2 49.3 54.2 51.6 49.6 51.2

Res-101
DAN [49] - - - - 24.4 - - - - 29.6
PFENet [46] 34.3 33.0 32.3 30.1 32.4 38.5 38.6 38.2 34.3 37.4
HSNet [37] 37.2 44.1 42.4 41.3 41.2 45.9 53.0 51.8 47.1 49.5

ViT-B/16 Baseline 37.3 39.6 41.5 35.3 38.4 48.2 53.5 52.9 48.8 50.8
FPTrans 39.7 44.1 44.4 39.7 42.0 49.9 56.5 55.4 53.2 53.8

DeiT-B/16 Baseline 41.8 45.4 48.8 40.3 44.1 53.9 60.1 58.9 54.4 56.8
FPTrans 44.4 48.9 50.6 44.0 47.0 54.2 62.5 61.3 57.6 58.9

Table 3: Evaluation (Mean IoU (%)) under the
domain shift from COCO-20i to PASCAL-5i.

Method Backbone COCO→PASCAL
1-shot 5-shot

PFENet [46] Res-50 61.1 63.4
RePRI [2] 63.2 67.7

HSNet [37] Res-101 64.1 70.3

FPTrans ViT-B/16 67.6 76.9
DeiT-B/16 69.7 79.3

Table 4: Ablation studies. “Pair Loss”, “Prompts”
and “Proxies” control using (or not using) the
pairwise loss, the prompts, and the multiple local
background proxies, respectively.

Pair Loss Prompts Proxies PASCAL COCO

61.8 38.4
✓ 62.9 38.8
✓ ✓ 63.9 41.5
✓ ✓ 64.0 40.3
✓ ✓ ✓ 64.7 42.0

losses are optimized with boundary-enhanced weight maps introduced by [65]. We use the SGD
optimizer with a momentum of 0.9, a weight decay of 5e-5, and a constant learning rate of 1e-3.
Using 4 A100 GPUs, we train 60 epochs with ViT and 30 epochs with DeiT backbone, using a batch
size 4 for PASCAL-5i and 16 for COCO-20i (batch size 8 in 5-shot due to the memory limitation).
When we generate the local background prompts (and the feature-based proxies), the background of
each support image is partitioned into 5 local parts, i.e., S = 5. Each prompt consists of 12 tokens,
i.e., G = 12. The weight factor λ for balancing the classification loss and pairwise loss (Eqn. (9)) is
set as 2e-2 for PASCAL-5i and 1e-4 for COCO-20i. Our baseline is implemented as the plain vision
transformer.

4.2 Comparison with State-of-the-Art Methods

Main results. Table 1 evaluates the proposed FPTrans on PASCAL-5i, from which we draw two
observations as follows:

First, FPTrans consistently improves the baseline on two backbones. For example, when using the
ViT-B/16 as its baseline, FPTrans surpasses the baseline by +2.9% and +2.2% mIoU on 1-shot and
5-shot settings, respectively. We note that compared with the baseline, FPTrans has three major
differences, i.e., query-support interactions to better utilize the limited support samples, multiple local
background proxies to promote novel-class generalization, and an additional pairwise loss function
to pull close foreground features. Ablation studies in Table 4 confirm these advantages as the main
reasons that improve the baseline.

Second, comparing FPTrans against state-of-the-art methods, we find that FPTrans achieves competi-
tive FSS accuracy. Under the 1-shot setting, FPTrans on DeiT-B/16 surpasses the most competitive
BAM [26] by 1.0% mIoU. Under the 5-shot setting, the superiority of FPTrans is even larger, i.e.,
+2.8% based on ViT-B/16 and +7.1% based on DeiT-B/16.
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Table 5: Performance (Mean IoU (%)) of pre-
vious methods with transformer backbones.
Experiments are conducted on PASCAL-5i.

Method Res-50 Res-101 ViT DeiT

PFENet [46] 60.8 60.1 58.7 57.7
CyCTR [64] 64.2 64.3 60.1 61.0

Baseline - - 61.8 64.9
FPTrans - - 64.7 68.8

Table 6: Results (Mean IoU (%)) of the different
number of background proxies S with the proposed
methods (Ours) or mixture model (Mix.) [56].

S 1 3 5 7 9

PASCAL-5i Ours 63.9 64.4 64.7 64.4 64.0
Mix. - 64.2 64.1 - -

COCO-20i Ours 41.5 41.9 42.0 41.7 41.2
Mix. - 40.9 40.6 - -

Table 2 summarizes the results on COCO-20i. The major observations are consistent as on PASCAL-
5i. FPTrans on ViT-B/16 and DeiT-B/16 both surpass the prior state of the art by a clear margin,
setting a new state of the art.

Domain shift scenario. Few-shot learning has been studied under a domain shift scenario [22].
Therefore, we also evaluate the proposed FPTrans on the domain shift scenario for semantic seg-
mentation, where the base training data and the testing data have a significant domain gap. We
use COCO-20i for training and use PASCAL-5i for testing, following previous works [2, 37] for
comparison. The training classes (in COCO-20i) and the novel testing classes (in PASCAL-5i) are
not overlapped. We summarize the average results on 4 COCO-trained models in Table 3. FPTrans
outperforms HSNet [37] by +5.6% and +9.0% on the 1-shot and 5-shot settings, respectively. It
confirms the effectiveness of FPTrans under the domain shift scenario.

4.3 Ablation Study

To better understand the proposed methods, we conduct ablation studies on FPTrans components.
Experiments are conducted with a ViT-B/16 backbone on the 1-shot setting unless specified otherwise.

Ablations on some major components. We recall that FPTrans has multiple keypoints / important
designs, i.e., an additional pairwise loss for training, a novel prompting strategy, and multiple local
proxies. The corresponding ablations are shown in Table 4, from which we draw three observations.
First, the pairwise loss improves the baseline by +1.1% gains on PASCAL-5i and +0.4% on COCO-
20i. Second, adding prompts further brings +1.0% and +2.7% gains while adding multiple background
proxies further brings +1.1% and +1.5% gains on PASCAL-5i and COCO-20i, respectively. Third,
compared with the baseline, the full FPTrans equipped with all the three components achieves overall
improvements of +2.9% and 3.6% on PASCAL-5i and COCO-20i, respectively.

Transformer backbone for decoder-based method. Based on two competitive decoder-based
methods PFENet [46] and CyCTR [64], we replace their CNN backbones with the ViT-B/16 and
DeiT-B/16 backbones, as shown in Table 5. We observe that these two methods undergo considerable
accuracy decreases after the backbone replacement. It suggests that replacing the CNN backbone
with a transformer does not necessarily improve FSS, although the transformer backbone fits our
plain FSS framework.

Support Query FG Map BG Map 1 BG Map 2 BG Map 3

Figure 3: Visualization of predicted score maps. Each
background proxy focus on the partial background.

Investigation of the local background
proxies. We investigate the local back-
ground proxies by varying their numbers S
in Table 6. It is observed that using 5 back-
ground proxies achieves the highest accu-
racy on both PASCAL-5i and COCO-20i

for our method. Moreover, we compare our
method with another multi-proxy method
(“Mix.”) proposed in RPMM [56]. RPMM
online trains mixture models to generate
multiple background proxies. In contrast,
our approach for achieving multiple back-
ground is relatively simple (by partitioning
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the background) and superior (e.g., +0.6% gains on PASCAL-5i and +1.4% gains on COCO-20i

when S = 5. We infer that our partition-based background proxies are more representative because it
considers a realistic factor, i.e., the far-away regions of the background are likely to be inhomogeneous
to each other. Fig. 3 visualizes the activation maps of different proxies (one foreground proxy and
three local background proxies). It confirms that the local background proxies well accommodate the
inhomogeneous background.

5 Conclusion

This paper revives the plain framework “feature extractor + linear classification head” and cor-
respondingly proposes a novel Feature-Proxy Transformer (FPTrans) for few-shot segmentation.
During feature extraction, FPTrans makes the query interact with support features in all the trans-
former blocks, therefore well utilizing the limited support samples. During proxy extraction, FPTrans
encodes the complex background into multiple local background proxies, therefore improving the
generalization towards novel classes. Given the discriminative features and the representative proxies,
FPTrans directly uses a linear classification head to compare their cosine similarity and achieves
state-of-the-art performance. With its simplicity and competitive accuracy, we hope FPTrans can
serve as a strong baseline for few-shot segmentation.

Limitations and future works. Currently, FPTrans relies on a pretrained model for generating
prompts, which consumes extra computation resources. However, we find that FPTrans is robust
to the model for extracting the prompts (see supplementary Section F for details) to some extent.
Therefore, we will seek more lightweight prompt-generating models in future works.
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