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Abstract

A common problem encountered in many real-world applications is level set estimation
where the goal is to determine the region in the function domain where the function is above
or below a given threshold. When the function is black-box and expensive to evaluate, the
level sets need to be found in a minimum set of function evaluations. Existing methods
often assume a discrete search space with a finite set of data points for function evaluations
and estimating the level sets. When applied to a continuous search space, these methods
often need to first discretize the space which leads to poor results while needing high
computational time. While some methods cater for the continuous setting, they still lack a
proper guarantee for theoretical convergence. To address this problem, we propose a novel
algorithm that does not need any discretization and can directly work in continuous search
spaces. Our method suggests points by constructing an acquisition function that is defined
as a measure of confidence of the function being higher or lower than the given threshold. A
theoretical analysis for the convergence of the algorithm to an accurate solution is provided.
On multiple synthetic and real-world datasets, our algorithm successfully outperforms state-
of-the-art methods.

Keywords: Active learning; Level set estimation; Bayesian Optimization.

1. Introduction

In many real-world problems, it is necessary to find a region in a search space S of a
function f such that f is above/below a certain threshold of interest. Defined as the level
set estimation (LSE) problem (Gotovos et al. (2013)), it becomes challenging when the
function is black-box and its evaluation is expensive. An example of such a problem is the
design process of vehicle structure in which the goal is to find the designs that are safe,
which is ensured by a Head Injury Criterion (HIC) being lower than a predefined threshold.
LS-DYNA, a multi-physics simulator (Hallquist and Manual (1998)), is run to find a set of
designs that meet the above criteria before the actual vehicles are built and tested. Both
running the simulator and actual vehicle tests are expensive, so it is important to sample-
efficiently find a set of designs in advance such that they have a higher chance of satisfying
the HIC threshold. Another example of the LSE problem is algorithmic assurance for
machine learning (Gopakumar et al. (2018)), where the goal is to find the operating scenarios
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(e.g. the brightness of input images for image classification or the camera angle for object
detection) where a pre-trained machine learning algorithm will retain its performance above
a user-specified accuracy level. Since testing the machine learning algorithm with a large
set of scenarios is computationally expensive, it is important to accurately obtain the level
sets with as few evaluations as possible.
Related Works

Previous works on sample-efficient LSE problems use an active learning scheme where
the information about f is acquired by sequentially querying it at a set of points in the
search space (Bryan et al. (2005); Gotovos et al. (2013); Bogunovic et al. (2016); Zanette
et al. (2019)). To accurately and quickly determine the level set, both exploring the search
space and exploiting data points near the threshold boundary are required (Zanette et al.
(2019)). To achieve this goal, most algorithms propose optimizing an acquisition function
that balances both factors to suggest the next query point. The LSE algorithm (Gotovos
et al. (2013)), TruVar (Bogunovic et al. (2016)), Straddle heuristic (Bryan et al. (2005)),
and RMILE (Zanette et al. (2019)) are among the most well-known algorithms for the active
LSE problem. Although the search space often involves multiple continuous variables, most
of the methods estimate the level sets only for a finite discretization of the search space
through an online classification scheme.

The LSE algorithm in Gotovos et al. (2013) utilized confidence intervals to perform
online classification for a finite subset of data points. Its acquisition function considers
the uncertainty at a point x about whether it is in the superlevel (i.e. function value
being higher than the given threshold) or sublevel (i.e. function value being lower than
the given threshold) sets. Search space warping was used in Senadeera et al. (2020) to
improve the performance of the LSE algorithm. Another online classification algorithm is
TruVar (Bogunovic et al. (2016)) which was proposed to unite both Bayesian optimization
and the LSE problem under point-wise cost and heteroscedastic noise settings. Both the
LSE algorithm and TruVar were related to the GP-UCB algorithm (Srinivas et al. (2009))
which is a popular acquisition function for Bayesian optimization. While these level set
methods are well analyzed and come with some form of convergence guarantees, they are
only designed for finite search spaces and cannot handle continuous search spaces, which is
often required in many practical applications. When forced to work with continuous search
spaces, these methods use a discretization, and the accuracy of these methods depends on
the granularity of the discretization, and given a black-box function, it is difficult to set
the correct granularity in advance. In addition, although existing methods may achieve
accurate level set estimation by operating on a very densely discretized search space, such
a discretization substantially increases the computational complexity as the acquisition
function needs to be evaluated at all unclassified points on the grid.

The active LSE methods that are designed to directly work in continuous spaces are
limited. The Straddle heuristic (Bryan et al. (2005)), one of the earliest LSE works, employs
Gaussian Process to construct an acquisition function on the continuous search space with a
goal to perform global exploration and sampling close to the level threshold boundary. While
this algorithm has been shown to work in practice, there is no theoretical understanding
of its convergence or its sample efficiency. A recent algorithm (RMILE) utilizing expected
improvement was proposed in Zanette et al. (2019). RMILE can be used for continuous
spaces, however, its convergence behavior has only been analyzed for a finite grid. Further,
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due to the need for one step look-ahead, this algorithm is computationally very expensive.
Recent extensions of RMILE to incorporate input uncertainty (Iwazaki et al. (2020)), cost
dependency (Inatsu et al. (2020)), and uncontrollable environmental variables (Inatsu et al.
(2021)) suffer from the same drawback. Another work that was proposed for level set
estimation in high dimensional spaces uses a Bayesian Neural Network (Ha et al. (2021)),
which is also capable of operating on continuous search spaces. However, this method does
not come with any analysis of its convergence or sample efficiency. Ha et al. (2021) also
acknowledged a worse performance on low-dimensional search spaces compared to GP-based
approaches.

Thus, designing an active LSE method that can work in continuous spaces and has a
theoretical guarantee of its convergence and sample efficiency is an open problem. To address
this problem, we propose Confidence-based Continuous Level Set Estimation (C2LSE), a
novel algorithm that directly performs level set estimation on a continuous search space by
improving the confidence of classifying points into the superlevel/sublevel sets while also
balancing the exploration-exploitation trade-off. At each iteration, our algorithm queries
a point where the difference of probabilities of the function being higher and lower than
the threshold level is minimum. This is done through a simple yet effective design of our
acquisition function. Our algorithm does not rely on the density of any finite discretization,
which allows for better classification performance compared to those that operate on such
discretized spaces. We also theoretically analyze our algorithm and provide proof of its
convergence and its sample efficiency for the active LSE problem. We perform experiments
on multiple level set tasks to demonstrate the competitive performance of our method
compared to the state-of-the-art baselines.

In summary, the contributions of our work are as follows:

• We propose C2LSE, a novel algorithm for actively estimating the level set of a function
in continuous search spaces.

• We theoretically analyze our algorithm and provide a proof of its convergence and its
sample efficiency.

• We apply C2LSE on many LSE tasks covering both synthetic and real-world applica-
tions, and show superior performance over the current state-of-the-art methods.

2. Background

When the number of available data is limited with respect to the whole search space S,
Gaussian Process (GP) is often used to model the unknown function f due to the fact that
such a nonparametric probabilistic model can give both prediction and uncertainty about
f at any point in S.
Gaussian Process A GP prior assumed over f is defined by its mean function µ(x) and
its kernel k(x,x′). Given t noisy observations yt = [y1, ..., yt]

T of f at {xi}ti=1 where
yi = f(xi)+ ηi and ηi ∼ N (0, σ2) for i = 1, ..., t, the posterior distribution of f is also a GP
whose mean and variance can be computed as follows:

µt(x) = kt(x)
T (Kt + σ2I)−1yt

σ2
t (x) = k(x,x)− kt(x)

T (Kt + σ2I)−1kt(x)
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where kt(x) = [k(xi,x)]
t
i=1, Kt = [k(xi,xj)]

t
i,j=1. At each iteration, the posterior mean

µt(x) gives an estimate of f(x) while the posterior variance σ2
t (x) indicates the uncertainty

about the estimate.

3. Proposed Method

3.1. Problem Statement

We first state the problem of level set estimation in an active learning setting as follows:
Active Level Set Estimation Problem: Given a black-box function f : S → R with
S ⊂ Rd, level set estimation problem aims to classify any point x ∈ S into two sets: a
superlevel set H = {x ∈ S|f(x) > h} and a sublevel set L = {x ∈ S|f(x) < h}, where
h ∈ R is a given threshold level.

A common way to solve the LSE problem is to query f multiple times to obtain the func-
tion values and then build a model (e.g. a GP) based on the queried points to approximate
f . In an active learning setting, the aim is to query f as few times as possible.

Assuming a GP prior over the given black-box function f , our algorithm is motivated
by the idea of sampling where the GP is the least confident in classifying x. We provide
below a definition of level set classification confidence using GP.

Definition 1 Suppose that f is approximated by a posterior GP where the posterior mean
and variance of GP at x ∈ S is given by µGP(x) and σ2

GP(x) respectively. The level set
classification confidence of a point x ∈ S is CGP(x) = |P (f(x) > h)− P (f(x) < h)|.

With Φ being the standard normal CDF, we know that:

CGP(x) = 2Φ(
|µGP(x)− h|

σGP(x)
)− 1

= 2Φ(
1

ZGP(x)
)− 1 with ZGP(x) =

σGP(x)

|µGP(x)− h|

The point at which CGP(x) is the smallest is where the GP is the least confident for
level set estimation. Since Φ is monotonically increasing, it is also the point that maximizes
ZGP(x). In practice, ZGP(x) cannot be used directly as an acquisition function because
the algorithm may get “stuck” to points where the function value is extremely close to h
(i.e. where CGP(x) ≈ 0) even though the GP uncertainty σGP(x) is already small at those
points. This leads to poor exploration behavior for the algorithm. To avoid this problem,
we use a small hyperparameter ϵ > 0 in our acquisition function which allows the algorithm
to continue its explorations. Our acquisition function at iteration t is as follows:

at(x) =
σt−1(x)

max(ϵ, |µt−1(x)− h|)
(1)

with ϵ being a small positive hyperparameter and µt−1(x) and σ2
t−1(x) being the posterior

mean and variance respectively given by the GP that models f after t− 1 iterations. With
this acquisition function, the next query point is then xt = argmaxx∈S(at(x)). We account
for ϵ in our theoretical analysis and show how this parameter influences the convergence of
our algorithm.



C2LSE

We refer to our method as Confidence-based Continuous Level Set Estimation (C2LSE),
summarized in Algorithm 1.

Algorithm 1: C2LSE for Active Level Set Estimation

Input: GP prior (µ0, k, σ0), threshold h, budget T , exploration parameter ϵ,
parameter β.

D0 ← ∅; t← 1;
while t < T do

xt = argmaxx∈S(at(x));
Observe yt = f(xt) + ηi;
Dt = Dt−1 ∪ (xt, yt);
Update GP with Dt;
t = t+ 1;

end
Output:
Ĥ = {x ∈ S : µT (x)− βσT (x) > h};
L̂ = {x ∈ S : µT (x) + βσT (x) < h};
M̂ = {x ∈ S : µT (x)− βσT (x) ≤ h ≤ µT (x) + βσT (x)};

The main goal of the LSE problem is being able to classify x ∈ S into the correct level
set. For this purpose, the classification rule is applied after running the algorithm for the
given budget of T iterations. Any point x ∈ S can be classified into the predicted superlevel
set Ĥ, sublevel set L̂, and unclassified set M̂ . However, online classification with the same
rule can also be employed after each iteration although a certain number of iterations are
required for confident and accurate classification as analyzed in the following section. We
will also show in the next section that the unclassified points in M̂ will be limited to points
close to the threshold boundary given a sufficient budget.

4. Theoretical Analysis

In this section, we present a theoretical analysis of our algorithm C2LSE and provide a
lower bound on the number of iterations needed for C2LSE to be able to classify a data
point into the superlevel/sublevel set with a given level of confidence.

4.1. Preliminaries

The information gain about f after observing yt (Cover and Thomas (2006)) plays a crucial
role in analyzing the convergence of C2LSE.

Definition 2 After t noisy observations yt, the information gain about f is:

I(yt, f) = H(yt)−H(yt|f)

Lemma 3 For a GP, the information gain I(y1:t, f) has the following lower bound:

I(yt, f) ≥
log(1 + σ−2)

2

T∑
t=1

σ2
t−1(xt) (2)
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Proof The proof is similar to Lemma 5.4 in Srinivas et al. (2009).

Definition 4 The maximum information gain γt over all possible sets of t noisy observa-
tions is:

γt = max
yt

I(yt, f) (3)

4.2. Theoretical results

As mentioned in section 3, C2LSE’s acquisition function at(x) is indicative of the GP’s
confidence in classifying the point x into the superlevel set or the sublevel set. Thus, the
analysis will focus on showing the number of iterations needed for the acquisition function
to reach a threshold that is connected to the confident classification of any x. We will
first show an upper bound for the value of at(xt) using information-theoretic terms, and
devise the number of iterations needed to reach a certain level of classification confidence.
In addition, we show that C2LSE also achieves highly accurate classification by connecting
the lower bound of the classification confidence with the definition of accuracy in an LSE
problem.

First, an upper bound for the average acquisition function’s value is established as
follows:

Lemma 5 Let xt (where 1 ≤ t ≤ T ) be the data point selected by C2LSE at iteration t.
With C1 =

2
log(1+σ−2)

, it holds that:

1

T

T∑
t=1

at(xt) ≤
√

C1γT
Tϵ2

, (4)

Proof For any T > 0, we know that:

TC1γT ≥ TC1I(yt, f) (using Eq. 3)

≥ T
T∑
t=1

σ2
t−1(xt) (using Ineq. 2)

≥ (
T∑
t=1

σt−1(xt))
2 (by Cauchy-Schwarz)

= (

T∑
t=1

at(xt)max(ϵ, |µt−1(x)− h|))2 (by Eq. 1)

≥ ϵ2(

T∑
t=1

at(xt))
2

This lemma holds as a result.
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As the algorithm becomes more confident in classifying the level sets with more itera-
tions, its convergence rate is given below:

Theorem 6 Using a Gaussian Process with a smooth kernel, C2LSE can classify any point
x in the search space with a confidence of at least 2Φ(β) − 1 if it is run for at least T
iterations such that:

T

γT
≥ β2C1

ϵ2
(5)

and that

aT (xT ) ≤ at(xt),∀t ≤ T (6)

Proof By definition:

at(x) =
σt−1(x)

max(ϵ, |µt−1(x)− h|)
≤ σt−1(x)

ϵ

Given a smooth kernel, σ2
t−1(x) will be a Lipschitz continuous function, so |σt−1(x) −

σt−1(x
′)| ≤ L||x − x′||1 ∀x,x′ ∈ S. Using the idea of covering numbers (e.g. Lemma

5.7 in Srinivas et al. (2010)), we can discretize the continuous search space S as St at
iteration t such that ||x− [x]t||1 ≤ c

t2
for a constant c with [x]t being the closest point to x

in St. This means |σt−1(x)− σ([x]t)| ≤ L||x− [x]t||1 = O( 1
t2
). Our algorithm will visit all

points in any arbitrarily dense finite grid as visiting only a subset of the grid will eventually
lead to zero acquisition value (due to zero variance) for points within the subset and points
outside the subset will be preferred. This means σt−1([x])t tends to zero as t → ∞, so we

can say limt→∞
σt−1(xt)

ϵ = 0. Since at(xt) ≥ 0 ∀t, it follows that limt→∞ at(xt) = 0 by
Squeeze Theorem.

For any smooth kernel employed by the GP prior of C2LSE, without loss of generality
we have σ0(x1) = 1, which means a1(x1) > 0 and consequently a1(x1) > limt→∞ at(xt) = 0.
As the sequence of {at(xt)}t≥1 converges to 0 from a positive number with increasing t, there
exists an iteration T such that aT (xT ) ≤ at(xt) ∀t ≤ T , which results in:

aT (xT ) ≤
1

T

T∑
t=1

at(xt) (7)

≤
√

C1γT
Tϵ2

If T also satisfies Ineq. 5, we have aT (xT ) ≤ 1
β and also aT (x) ≤ 1

β ∀x ∈ S. Since

CT (x) ≈ 2Φ( 1
aT (x))− 1 for small ϵ, this leads to CT (x) ≥ 2Φ(β)− 1. The theorem holds as

a result.
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Remark 7 Given that {at(xt)}t≥1 is a positive sequence converging to 0, Ineq. 6 is always
satisfied for increasing T , and since Ineq. 5 will eventually be met, C2LSE is guaranteed to
converge while the convergence rate is determined by the two conditions in Ineq. 5 and Ineq.
6. In fact, Ineq. 6 is an overly strict condition because most positive sequences converging
to 0 like {at(xt)}t≥1 will satisfy it with increasing T . Moreover, Ineq. 6 is the worst-case
condition with the goal to satisfy Ineq. 7, so there exists T such that Ineq. 7 is satisfied but
Ineq. 6 is not (i.e. it is not necessary for the last item of a sequence to be the smallest in
order for the last item to be smaller than the sequence average). Therefore, the convergence
rate of C2LSE is usually quantified by Ineq. 5.

Theorem 6 shows that C2LSE can confidently classify any point with a high probability
in a continuous search space given sufficient iterations. Next, we will show that these highly
confident classifications are also correct in a similar manner compared to the definition of
ϵ-accuracy introduced in Bogunovic et al. (2016).

Definition 8 A solution of a level set estimation problem with f, S, h is ϵ-accurate if it can
classify any point x into Ĥ, L̂ and M̂ such that:

• f(x) > h if x ∈ Ĥ

• f(x) < h if x ∈ L̂

• |f(x)− h| ≤ ϵ if x ∈ M̂

Note that the above is defined on the whole continuous search space while ϵ-accuracy
in Bogunovic et al. (2016) is defined only for a finite set of data points. We will show that
C2LSE guarantees a 2ϵ-accurate solution as follows:

Theorem 9 If C2LSE is run for at least T iterations as per Theorem 6, it will reach a
2ϵ-accurate solution with probability at least 2Φ(β)− 1 for any point x.
Proof Conditioned on f(x) ∼ N (µt−1(x), σt−1(x)), we know that

f(x) ∈ [µt−1(x)− βσt−1(x), µt−1(x) + βσt−1(x)],

with probability 2Φ(β)− 1. Given our classification rule in Algorithm 1, any point in either
Ĥ and L̂ satisfies the first and second requirements of Definition 8 with probability at least
2Φ(β)− 1.

When T
γT
≥ β2C1

ϵ2
, we know that:

1

β
≥ aT (xT ) ≥ aT (x) =

σT−1(x)

max(ϵ, |µT−1(x)− h|)
(8)

The classification rule for M̂ is equivalent to having |µT−1(x) − h| ≤ βσT−1(x) for x.
From Ineq. 8, if |µT−1(x)−h| > ϵ, we then have |µT−1(x)−h| ≥ βσT−1(x) which contradicts
the classification rule of x in M̂ . Therefore, any point x ∈ M̂ satisfies |µT−1(x) − h| ≤
βσT−1(x) ≤ ϵ. The result is that:

h− ϵ ≤ µT−1(x) ≤ h+ ϵ

=⇒ h− 2ϵ ≤ µT−1(x)− βσT−1(x) < µT−1(x) + βσT−1(x) ≤ h+ 2ϵ

=⇒ |f(x)− h| ≤ 2ϵ
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with probability at least 2Φ(β)− 1. With all three conditions of a 2ϵ-accurate solution sat-
isfied, the theorem holds.

Theorem 9 states that the points in Ĥ and L̂ are classified correctly with high probabil-
ity while those in M̂ are within 2ϵ from the threshold boundary with also a high probability.
This analysis demonstrates the sample-efficiency of our method in acquiring accurate esti-
mation of the level sets.

We note that our theoretical analysis applies to any kernel in the Gaussian Process.
The key term that depends on the kernel is γT which has been related to T in Srinivas et al.
(2009). For popular kernels such as square-exponential and Matern, γT is sublinear in T .

5. Experimental Results

This section studies the empirical performance of C2LSE on both synthetic functions and
real-world applications compared to state-of-the-art algorithms.

5.1. Experiment Setup

Baselines C2LSE is compared against the state-of-the-art baselines:

• STR: the Straddle heuristic (Bryan et al. (2005))

• LSE: the LSE algorithm (Gotovos et al. (2013))

• TRV: the TruVar algorithm (Bogunovic et al. (2016))

• RMILE: the RMILE algorithm (Zanette et al. (2019))

The classification accuracy of each algorithm is reported in terms of average F1-score with
respect to the true superlevel/sublevel set. The experiments were randomly initialized and
averaged over 10 runs. We note that full-grid ground truth data are for evaluation purposes
only. Our algorithm can find the level sets in fewer number of function queries and directly
works in continuous search spaces without requiring any grid.
Synthetic Functions

We use the following synthetic functions for the evaluation of C2LSE:

• MC2D (multi-circle 2D): f(x) = e(sinx1)2×(sinx2)2

The goal is to find the superlevel set at which f(x) > 2.2 for x1, x2 ∈ [0, 9]. The
ground-truth superlevel and sublevel sets are constructed by uniformly sampling a
grid of 100× 100 data points.

• MC3D (multi-circle 3D): f(x) = e(sinx1)2×(sinx2)2×(sinx3)2

The goal is to find the superlevel set at which f(x) > 1.6 for x1, x2, x3 ∈ [0, 6]. The
ground-truth superlevel and sublevel sets are constructed by uniformly sampling a
grid of 30× 30× 30 data points.
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(a) MC2D (b) SIN2D (c) CC2D

Figure 1: The superlevel set (white) and sublevel set (gray) of two-dimensional data for
evaluation

• SIN2D (Sinusoidal 2D): f(x) = sin(10x1) + cos(4x2)− cos(3x1x2)

The goal is to find the superlevel set at which f(x) > 0.5 for x1 ∈ [0, 2] and x2 ∈ [0, 3].
The ground-truth superlevel and sublevel sets are constructed by uniformly sampling
a grid of 100× 100 data points.

Besides SIN2D which is popularly used for evaluation in previous works (Bryan et al.
(2005); Zanette et al. (2019)), MC2D and MC3D are introduced to challenge C2LSE and
the baselines. Given appropriate thresholds, both contain multiple small and separated
subregions in the superlevel set. This is considered harder to estimate the level sets than a
search space where either the superlevel set or the sublevel set is dominant and spans over
a largely connected subregion. Figure 1a and Figure 1b show the true level sets of MC2D
and SIN2D respectively.
Real-world Data

Besides synthetic functions, C2LSE is also evaluated on three real-world datasets intro-
duced below:

• AA (Algorithmic Assurance): The algorithmic assurance problem, as introduced in
Gopakumar et al. (2018), tries to efficiently discover scenarios where a machine learn-
ing algorithm deviates the most from its gold standard. Instead of finding the max-
imum deviation, we will find the scenarios where the performance of the machine
learning algorithm stays above a given threshold.

In particular, the goal of this experiment is to find the level of image distortions for
which a LENET-5 (Lecun et al. (1998)) trained on raw MNIST training digits has
classification error less than 4%. Number 9 is removed from the training and test
data to avoid confusion with number 6 (due to rotation distortion involved). LENET-
5 was trained for 20 epochs with a learning rate of 10−3. Three image distortions are
employed, namely scaling Sc ∈ [0.5, 1.5], rotation R ∈ [0, 340], and shear Shx, Shy ∈
[0, 20], in this exact order. A set of distortion x = (Sc,R, Shx, Shy) will be applied to
all raw MNIST test digits where the trained LENET-5 will be evaluated on, which will
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(a) MC2D (b) MC3D (c) SIN2D

Figure 2: The level set classification performances of C2LSE and the baselines on synthetic
functions.

result in the corresponding classification error. The step sizes for (Sc,R, Shx, Shy)
are 0.1, 20, 2, and 2 respectively, and the ground truth superlevel and sublevel sets
contain 23,958 data points.

• CC2D (Car Crashworthiness 2D): This application of level set estimation for car
design focuses on finding the set of design parameters of a car such that its Head
injury criterion (HIC) is less than 250. There are two design parameters: tbumper
(mass of the front bumper) and thood (mass of the front, hood, and underside of
the bonnet). Both parameters range from 1 to 5. The ground truth superlevel and
sublevel sets contain 1,681 data points as a 41×41 grid of the two input parameters.

• CC6D (Car Crashworthiness 6D): This is another car design application with 6 design
parameters: thood (thickness of the hood), tgrill (thickness of the grill), troof (thick-
ness of the roof), tbumper (thickness of the bumper), trailf (thickness of the front of
rails) and trailb (thickness of the back of rails). All input parameters range from 1 to
5, and form the ground truth superlevel and sublevel sets of 15,625 data points with
a step size of 1 for each parameter. The goal is to find the set of input parameters for
which the torsional mode frequency is less than 1.9Hz.

Figure 1c shows the true level sets of CC2D.
Parameter choice and kernel’s hyperparameter tuning The parameter ϵ is selected
from {0.01, 0.02, 0.05, 0.1, 0.2}. All parameters/hyperparameters of the baselines are set
according to the recommended values in the original works. Hyperparameters of a Matern-5
kernel (Rasmussen and Williams (2005)) are fitted via maximum likelihood estimation.

5.2. Results and Discussion

5.2.1. Main result on synthetic functions and real-world datasets

Figure 2 and Figure 3 show the classification performance of C2LSE and the baseline al-
gorithms on synthetic and real-world datasets respectively. As seen, C2LSE consistently



Ngo Nguyen Phan-Trong Gupta

(a) AA (b) CC2D (c) CC6D

Figure 3: The level set classification performances of C2LSE and the baselines on real-world
applications.

outperforms other algorithms across all six datasets with continuous search spaces includ-
ing MC3D, AA, and CC6D which are higher dimensional. Other algorithms also have more
varied classification performances compared to C2LSE due to their inconsistent global ex-
ploration among different runs as a result of those algorithms getting “stuck” at a discovered
boundary region and failing to further discover other unknown regions.

In the MC2D experiment and somewhat in the MC3D experiment, C2LSE strictly dom-
inates other algorithms by a significant margin. These are both difficult scenarios where
the superlevel set is not one single large region (as is the case for CC2D) but scatters all
over the search space. An additional challenge is data imbalance when only a small fraction
of the search space belongs to the superlevel set. In MC2D, the superlevel set accounts for
approximately 7.8% of the search space, and in MC3D, the ratio is about 7.5%. On the
other hand, C2LSE shows only a slight improvement over the baselines in CC2D and SIN2D.
CC2D and SIN2D are less scattered than MC2D and MC3D and are also less imbalanced
with 32.8% and 31.52% of the data in the targeted level sets respectively. The targeted level
sets of both AA and CC6D are a contiguous range in the search space which also explains
the smaller improvement. Thus, C2LSE holds the advantage in the challenging scenario of
an LSE problem when multiple small and disconnected superlevel/sublevel sets exist in the
search space which is harder to fully explore.

5.2.2. Comparison with the LSE algorithm at different discretization
levels

Designed to work on finite search spaces, the classification performance of the LSE algorithm
(Gotovos et al. (2013)) depends on the sparsity of the discretized search space. Figure 4
shows the classification performance of C2LSE in comparison with the LSE algorithm on
different sizes for MC2D, MC3D, and SIN2D. We note that for both C2LSE and the LSE
algorithm, the evaluation is performed using the same level set ground truth as was used
in Figure 2.
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(a) MC2D (b) MC3D (c) SIN2D

Figure 4: Comparing the classification performances of C2LSE with the LSE algorithm on
different levels of discretization.

(a) MC2D (b) MC3D (c) SIN2D

Figure 5: Comparing the computational cost of C2LSE with the LSE algorithm on different
levels of discretization.

On all three datasets, the LSE algorithm becomes less accurate when the input grid is
more sparse. On the other hand, C2LSE does not depend on the resolution of the input set
as it can be operated on a continuous search space. To achieve accurate classification, the
LSE algorithm requires a densely superimposed grid (i.e. increasing the size of the finite
search space). As a result, the number of GP inferences required to compute the acquisition
function’s values for all points in the grid is significantly larger than for C2LSE and for more
coarse grids as can be seen in Figure 5.

5.2.3. Ablation study

We also study the impact of different values for ϵ on the performance of C2LSE in this
section. C2LSE is run with different values for ϵ with the classification performance shown
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(a) MC2D (b) MC3D (c) SIN2D

Figure 6: Effect of ϵ on the result of C2LSE

(a) ϵ = 0.01 (b) ϵ = 0.1 (c) ϵ = 0.5

Figure 7: Effect of ϵ on the sampling behavior of C2LSE on MC2D. Again, the superlevel
set is shown in white and the sublevel set is in gray. The black dots show the
points queried by C2LSE after 20 iterations.

in Figure 6. For large ϵ values, the focus is on global exploration with queried points far
away from the threshold boundary as can be seen in Figure 7c when ϵ = 0.5. For small ϵ
values, the focus is on exploitation where points closest to the boundary are preferred as can
be seen in Figure 7a. While classification will be highly accurate near the discovered regions
in the case of good exploitation, the algorithm may not sufficiently explore when multiple
disconnected superlevel/sublevel sets exist (e.g. the case of MC2D). Both exploration and
exploitation are balanced when ϵ = 0.1 with one region discovered and two more queried
nearby as can be seen in Figure 7b.

6. Conclusion

To tackle the problem of active LSE on a continuous search space, we proposed C2LSE with
the goal of suggesting new data points that are informative to the level set classification
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at each time step. Our algorithm aims to query where the current model is the least
confident in classifying whether the point belongs to the superlevel or the sublevel sets.
This confidence is reflected in our acquisition function which requires minimal computational
cost. We theoretically analyzed the convergence rate of our algorithm showing its behavior
in classifying any point in the continuous search space with not only high confidence but
also high accuracy. The superior performance of C2LSE is demonstrated through several
numerical experiments on both synthetic and real-world datasets with small associated
computational costs.
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