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Abstract

Neural Ordinary Differential Equations (NODEs) are a novel neural architecture,
built around initial value problems with learned dynamics. Thought to be inher-
ently more robust against adversarial perturbations, they were recently shown to
be vulnerable to strong adversarial attacks, highlighting the need for formal guar-
antees. In this work, we tackle this challenge and propose GAINS, an analysis
framework for NODEs based on three key ideas: (i) a novel class of ODE solvers,
based on variable but discrete time steps, (ii) an efficient graph representation of
solver trajectories, and (iii) a bound propagation algorithm operating on this graph
representation. Together, these advances enable the efficient analysis and certified
training of high-dimensional NODEs, which we demonstrate in an extensive eval-
uation on computer vision and time-series forecasting problems.

1 Introduction
As deep learning enabled systems are increasingly deployed in safety-critical domains, developing
neural architectures and specialized training methods that increase their robustness against adversar-
ial examples (Szegedy et al., 2014; Biggio et al., 2013) is more important than ever.

Neural Ordinary Differential Equations (NODEs) (Chen et al., 2018) are built around initial
value problems with learned dynamics and have been observed to inherently exhibit such robustness
properties against adversarial attacks (Yan et al., 2020; Kang et al., 2021; Rodriguez et al., 2022).
However, recently Huang et al. (2020) have found this robustness to be greatly diminished against
stronger attacks, tracking it back to a gradient obfuscation effect of adaptive ODE solvers, thus
highlighting the need for formal robustness guarantees.

Robustness Verification has been explored extensively for standard neural networks (Katz et al.,
2017; Tjeng et al., 2019; Singh et al., 2018). However, methods successful in that setting can not
be applied to NODEs as they can not handle the continuous step-size ranges arising for adaptive
solvers. Despite first efforts towards NODE verification (Lopez et al., 2022), both scaling to high-
dimensional problems and taking the effect of ODE solvers into account remain open problems.

This Work (illustrated in Fig. 1) tackles both of these problems, thereby enabling the systematic
verification and study of NODE robustness as follows: (i) We introduce controlled adaptive ODE
solvers (CAS) with step-sizes restricted to an exponentially spaced grid, yielding a finite number of
time/step-size trajectories with minimal impact on solver efficiency. (ii) We introduce an efficient
graph representation of these trajectories, allowing them to be merged and reducing their number
from exponentially to quadratically many in the integration time. (iii) We extend the popular DEEP-
POLY verifier (Singh et al., 2019) to efficiently operate on this trajectory graph by handling trajectory
splitting in linear instead of exponential time. Combining these core ideas, we propose GAINS, a
novel framework for the certified training and verification of NODEs.
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Figure 1: Given a learned NODE (a), we introduce controlled adaptive solvers (CAS) with discrete step-sizes
(b). This enables us to construct the discrete trajectory graph (c), which our NODE analysis framework GAINS
is based on. To operate on this graph representation, we introduce CURLS to efficiently solve the arising linear
constraint aggregation problem (d). For example, in the time-series forecasting setting, GAINS computes all
possible outputs (blue error bars), for inputs in the red input ranges (e).

2 Background
Adversarial Robustness We consider time series forecasting models f : R(d+1)×L′+1 7→ Rd that,
given a time-series xL

′
= {(xj , tj)}L

′

j=1 of L′ data points xj ∈ Rd and times tj and a prediction-
time tL predict the values of the last data point xL. We call f ν-δ-robust on an `p-norm ball Bεpp (x)

of radius εp around the original data points xL
′

if the worst-case mean absolute error MAErob(x′)

for x′ ∈ Bεpp (xL
′
) is linearly bounded by the original input’s MAE(xL

′
) as

MAErob(x) < (1 + ν) MAE(x) + δ, with MAErob(xL
′
) = max

x′∈Bεpp (xL′ )
MAE(x′). (1)

Neural Network Verification aims to decide whether a robustness property holds. Here, we con-
sider bound propagation methods, i.e., methods determining a lower and upper bound l, u for each
neuron l ≤ x ≤ u, either by propagating hyper-boxes (dimensionwise intervals) (Gehr et al., 2018;
Mirman et al., 2018) or linear constraints (Singh et al., 2019; Zhang et al., 2018), where every layer’s
neurons xi are lower- and upper-bounded depending only on the previous layer’s neurons:

A−i xi−1 + c−i =: li ≤ xi ≤ ui := A+
i xi−1 + c+

i . (2)
Given these linear constraints, we can recursively substitute xi−1 with its linear bounds in terms of
xi−2 until we have obtained bounds depending only on the input x0. This allows us to compute
concrete bounds l and u on any linear expression over network neurons.

Neural Ordinary Differential Equations are built around an initial value problem (IVP), defined
by an input state z(0) = z0 and a neural network g, defining the dynamics of an ordinary differential
equation (ODE) ∇tz(t) = g(z(t), t). We obtain its solution at time Tend by evaluating z(Tend) =

z(0) +
∫ Tend

0
g(z(t), t) dt with an ODE solver at the predefined integration time Tend.

3 Controlled Adaptive ODE Solvers

Time

Step Size

Figure 2: Reachable
time/step-size tuples for
CAS and adaptive solvers
after one ( , ) and two
solver steps ( , ).

Adaptive step-size solvers (AS) control their step-size to efficiently solve
an ODE up to a predefined error τ (Dormand & Prince, 1980; Bogacki
& Shampine, 1989). They use two methods of different order p to com-
pute the proposal solutions z1 and z2, derive a normalized error estimate
δ = ‖z

1−z2

τ ‖1, and update their step size to h← hδ−
1/p. However, this

dependence of the step-size h on the error estimate δ yields infinitely
many trajectories for continuous input regions, making their abstraction
intractable. To obtain solvers amenable to certification, we propose con-
trolled adaptive solvers (CAS) by restricting possible step-sizes to a dis-
crete set. To implement this change, we modify the step-size update rule
of any AS to

h←


h · α, if δ ≤ τα,
h, if τα < δ ≤ 1,

h/α, otherwise.
δ =

∥∥∥∥ ẑ1(t+ h)− ẑ2(t+ h)

τ

∥∥∥∥
1

,

with update factor α ∈ R>1, and the α-induced decision threshold τα = α−p. Intuitively, we
increase the step size by a factor α if we expect the error after this increase to still be acceptable,
i.e., δ ≤ α−p, we decrease the step size by a factor α and repeat the step if the error exceeds our
tolerance, i.e., δ > 1, and we keep the same step size otherwise. For more details, see App. D.1.
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(Details in App. D.2)

We contrast the reachable time/step-size states of CAS and AS solvers in
Fig. 2. Initialized with the same state ( ), the CAS solver can reach exactly
three states after one ( ) and nine states after two steps ( ). The AS solver,
in contrast, can reach increasingly large continuous state spaces after one
( ) and two ( ) steps.

Comparison to Adaptive Solvers CAS solvers can be seen as adaptive
solvers with discretized step-sizes of the same order. Due to the exponen-
tially spaced step-sizes, CAS will (under mild assumptions) need at most
α-times as many steps as an adaptive solver and empirically sometimes ac-
tually fewer. We illustrate this on a conventional non-linear ODE in Fig. 3.

4 Verification of Neural Ordinary Differential Equations
Both AS and CAS compute the state z(t+ h), given a step size h, the state z(t), and the (learned)
dynamics g(z(t), t), as a weighted sum of g(ẑi, t + ĥi) for iteratively constructed ẑi. They can
thus be abstracted using standard bound propagation methods. We call this an abstract solver step.
While we could thus compute bounds for each of the exponentially many discrete trajectories of a
CAS solver, this would be intractably slow. We instead introduce the analysis framework GAINS,
short for Graph based Abstract Interpretation for NODEs, which leverages a trajectory graph repre-
sentation to compute bounds efficiently. Given a NODE with input Z , we represent all trajectories
Γ(z′0) for z′0 ∈ Z in a trajectory graph G(Z) = (V, E) as follows. Each node v ∈ V represents a
solver state (t, h) with time t, step-size h, and interval bounds on z(t). Each directed edge e ∈ E
connects two states appearing consecutively in a possible solver trajectory. This representation al-
lows states z(t) with identical time and step-size to be merged, leaving only quadratically many
(O(T 2

end log2(Tend)), see App. D.3) solver steps to be considered, thus making the analysis tractable.

Trajectory Graph Construction We initialize the trajectory graph with a node for the initial state
(0, h0) and proceed as follows: Among all nodes without outgoing edges, we chose the one with the
smallest time t and largest step-size h (in that order). We apply an abstract solver step to this state,
computing interval bounds on the error estimate δ(t,h) and determining possible step-size updates
(increase, accept, or decrease). If multiple updates are possible, we call this trajectory splitting. For
each possible update, we obtain a new state (t′, h′) and add a corresponding node to V and an edge
from (t, h) to (t′, h′) to E . If the node (t′, h′) already existed, we update the bounds on state z(t)
to contain the newly computed ones. We repeat this procedure until all trajectories have reached the
termination node (Tend, 0), yielding a complete trajectory graph and interval bounds for z(Tend).

t0

t1

t2

Tend y

y ≤ A1z1 + c1

y ≤ A2z2 + c2

y ≤ u1 := A1z0 + c1

y ≤ u2 := A2z0 + c2

y ≤ u1,2

Figure 4: Backsubstitution (blue ar-
rows) of upper bounds on y=z(Tend)
via GAINS, yields an LCAP at t0.

Verification with Linear Bounds We can derive more pre-
cise, linear bounds on z(Tend) in terms of the NODE input
z0 by recursively substituting bounds through the trajectory
graph. Starting with the bounds for (Tend, 0), we backsubsti-
tute them along the solver steps represented by every incom-
ing edge using standard DEEPPOLY (Singh et al., 2019) primi-
tives and yielding a set of bounds in every preceding node. We
recursively repeat this procedure until we arrive at the input
node. We illustrate this in Fig. 4, where we backsubstitute y
to t1 and t2, obtaining bounds in terms of z1 and z2, respec-
tively. After another backsubstitution step to t0, we obtain two
bounds, u1 and u2, on y, both in terms of z0. We now have to merge them into a single linear
bound. We call this the linear constraint aggregation problem (LCAP).

Linear Constraint Aggregation Problem Consider m upper bounds {uj}mj=1 on y = z(Tend),
that are linear in z0 ∈ Z . We now wish to aggregate them into a single linear upper bound y ≤
u∗ := az0 + c minimizing the volume between u∗ and the y = 0 plane over z0 ∈ Z . Solving
this problem optimally with a linear program (LP) by considering the constraints induced by all
2d corners of Z becomes intractable even in modest dimensions. We, thus, propose Constraint
Unification via ReLU Simplification (CURLS), translating the max{uj}mj=1 into a composition
of ReLUs, efficiently handled by DEEPPOLY. For a pair of constraints u1

i ,u
2
i we rewrite their

maximum as maxj∈1,2 u
j
i = u1

i +max(0,u2
i−u1

i ) = u1
i +ReLU(u2

i−u1
i ). Form > 2 constraints,

we apply this rewrite multiple times. We note that lower bounds can be merged analogously.
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Table 1: Mean absolute errors for the unperturbed samples (Std. MAE) and certifiable (Cert.) ν-δ-robustness with ν = 0.1 and δ = 0.01.

Setting Training Method εt Std. MAE [×10−2]
ε = 0.05 ε = 0.10 ε = 0.20

Adv. [%] Cert. [%] Adv. [%] Cert. [%] Adv. [%] Cert. [%]

12h
Standard 48.8±0.2 72.9±1.3 0.0±0.0 23.4±3.6 0.0±0.0 5.6±1.0 0.0±0.0

GAINS 0.1 53.6±2.2 98.2±0.6 94.1±0.2 78.5±2.1 57.6±4.2 33.2±4.1 20.5±2.9

0.2 54.6±2.1 98.8±0.3 97.6±0.5 88.6±0.3 80.5±2.9 48.9±1.9 36.8±1.9

5 Experimental Evaluation

See App. F for the experimental setup and App. C for a significantly expanded empirical evaluation.

Time-Series Forecasting We consider PHYSIO-NET (see App. F) and predict the last measure-
ment L, without having access to the preceding 12 hours of data (typically leaving 36 hours). In
Table 1, we report the resulting mean absolute prediction error (MAE) for the unperturbed samples
and ν-δ-robustness (see Eq. (1)) for a relative and absolute error tolerance of ν = 0.1 and δ = 0.01,
respectively, at perturbation magnitudes ε = {0.05, 0.1, 0.2}. With a normally trained latent ODE,
we obtain an MAE of 0.49, but observe that it is vulnerable to adversarial attacks and robustness
can not be certified even for the smallest perturbation radii (ε = 0.05). To improve robustness, we
use GAINS to compute a bound on the worst-case loss and optimize that instead of the standard
loss. This so-called certified training with radius εt results in a small increase in standard MAE, but
a significant increase in adversarial robustness, certifying as much as 97.6% of the samples. We thus
conclude that GAINS can successfully train provably robust NODEs and prove their robustness.

Table 2: Portion of successfully ma-
nipulated trajectories for 1000 MNIST
image classification tasks.

Training εt Attack Success [%]

ε = 0.1 ε = 0.2

Standard 98.9±0.3 100.0±0.0

GAINS 0.11 73.4±3.5 95.5±1.8

0.22 65.2±7.5 82.2±5.0

Trajectory Sensitivity We investigate whether the solver
trajectory, i.e. the chosen step-sizes, of CAS solvers are still
susceptible to adversarial attacks, reporting the portion of tra-
jectories that could be manipulated in Table 2. We observe that
for normally trained NODEs, almost all trajectories can be ma-
nipulated, even with moderate perturbations (ε = 0.1). While
training with GAINS reduces this susceptibility notably, it re-
mains significant. This highlights the need to consider solver
effects on robustness, motivating both the use of CAS solvers
and the trajectory graph-based approach of GAINS.
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Figure 5: Comparison of th CURLS and linear pro-
gramming (LP) solution to the LCAP with respect to
normalized volume (left) and runtime (right).

Linear Constraint Aggregation To evaluate
CURLS, we compare it against a linear pro-
gramming (LP) based approach (see App. H)
for solving the Linear Constraint Aggregation
Problem (LCAP). In Fig. 5, we illustrate nor-
malized abstraction volumes volLP / volCURLS

and runtimes for the two methods on randomly
generated constraint sets in d = [5, 100] dimen-
sions. While the LP-based solutions are more
precise for up to 75-dimensional problems, they
take around 5 orders of magnitude longer to compute. For higher dimensional problems, CURLS
is both faster and more precise. As certification of a single input involves multiple hundred high-
dimensional LCAP problems, CURLS is essential to make verification with GAINS tractable.

6 Conclusion

In this work, we propose the analysis framework GAINS, Graph based Abstract Interpretation for
NODEs, which, for the first time, allows the verification and certified training of high dimensional
NODEs based on the following key ideas: i) We introduce CAS solvers which retain the efficiency
of adaptive solvers but are restricted to discrete instead of continuous step-sizes. ii) We leverage
CAS solvers to construct efficient graph representations of all possible solver trajectories given an
input region. iii) We build on linear bound propagation based neural network analysis and propose
new algorithms to efficiently operate on these graph representations. Combined, these advances
enable GAINS to analyze NODEs under consideration of solver effects in polynomial time.
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Figure 6: Visualization of the latent ODE with ODE-RNN encoder. Due to the NODE layer in the decoder the
model is able to estimate the data point of the time-series at any desired time. Figure inspired by (Chen et al.,
2018; Rubanova et al., 2019).
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Figure 7: GRU-update for the ODE-RNN architecture, where� denotes the hadamard product (componentwise
multiplication) of two vectors and fz, fu, fr, fs are auxiliary NNs.

A Latent ODEs for Time-Series Forcasting

For time-series forecasting, we use an encoder-decoder architecture called latent ODE (Rubanova
et al., 2019) and illustrated in Fig. 6. The encoder eθ is an ODE-RNN, yielding an embedding sL′

of the data points observed until tL′ , where the series is processed in reversed time order. The core
idea is to describe the evolution of a hidden state with a NODE and update it using a GRU unit
(Cho et al., 2014) (described in App. A.1) to account for new observations. This embedding is then
passed through a one layer MLP to yield the posterior distribution p(z|xL′

ts ) = N (µ,σ) over the
initial state of the decoder z(0). The decoder dθ then estimates x̂L as a linear transform of the
solution z(tL) of the IVP with initial state z(0) at time tL. Note that in testing we use z(0) = µ
and omit the sampling.

The latent ODE is trained to maximize the evidence lower bound (ELBO) (Kingma & Welling,
2014) an minimize the absolute error of the final predictions weighted with γ:

Lf (xLts, L
′) = γ · ‖x̂L − xL‖1 − ELBO(xLts, L

′) (3)

ELBO(xLts, L
′) = Ez′∼pN [log (dθ (z′, tL))]−DKL [pN ||p] . (4)

A.1 GRU update

In Fig. 7 we show the update of the hidden state si−1 of the ODE-RNN (Rubanova et al., 2019)
architecture after feeding the i-th entry (xi, ti) as input. The update uses a NODE layer to represent
fz , where the integration domain of the NODE layer is [ti−1, ti].
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B Provable NODE Training

In this section, we describe our GAINS-based training procedure. We consider the setting with data
distribution (x, y) ∼ D and we compute the NODE input z0 (either z0 := x or via some encoder)
with the corresponding bounds Z . Our procedure builds on top of standard provable training, which
aims to minimize the expected worst case loss, i.e. it chooses the following network parametrization:

θrob = arg min
θ

ED
[

max
x′∈Bεpp (x)

L(fθ(x′), y)
]
. (5)

Note, that the inner maximization problem is generally intractable, but it can be upper bounded
using bound propagation methods (Mirman et al., 2018; Gowal et al., 2018). However, in the case of
NODEs, the calculation of the upper bound is still computationally demanding due to the required
full over-approximation of the trajectory graph G(Z) (discussed in §4) for each sample in training.
Thus, we only sample up to κ selected trajectories from G(Z).

Trajectory Exploration During the sampling, we balance exploration of the full trajectory graph
and staying close to the reference trajectory, which is the trajectory Γ(z0) of the solver with unper-
turbed input z0. A visualization of the selection process is depicted in Fig. 8.

We select trajectories as follows: We start the propagation ofZ through the NODE layer. Recall that,
for a concrete input at each step the CAS solver will either (i) increase, (d) decrease or (a) accept,
i.e., keep, the current step size h. For an abstract solver step we may need to keep track of multiple
decisions (trajectory splitting). Thus, for each abstract solver step we check whether or not trajectory
splitting occurs and as long as no trajectory split occurs, we are following the reference trajectory.
If, however, multiple updates are possible, i.e., we encounter trajectory splitting, we choose a single
path u via random sampling (details below), and add the corresponding state to the branching point
set C. Afterward, we check whether or not we have reached Tend, where if Tend is reached, we save
the resulting trajectory to a set S. Moreover, we repeat the process with a checkpoint C ∈ C, as long
as there is still a checkpoint in C, i.e. |C| > 0, and we have not already collected κ trajectories, i.e.
|S| < κ.

Loss Computation Finally, we compute the BOX output of the NODE layer as the over-
approximation of the final states form all saved trajectories S . Then, for provable training we use a
loss term of the following form:

L(z0,Z, y) = (1− ω1ε
′/εt)Lstd(z0, y) + ω1ε

′/εtLrob(Z, y) + ω2‖uout − lout‖1, (6)
where Lstd is the standard loss (depending on the task) evaluated on the unperturbed sample, and
Lrob is an over-approximation of Lstd based on the abstraction obtained from S. The term uout −
lout regularizes the bound width of the corresponding output region. During training, we anneal ε,
gradually increasing ε′ from 0 to εt, thereby shifting focus from the standard to the robust loss term.
In the classification setting, we use the cross entropy loss and in time series forecasting we use a
latent ODE specific loss, combining the MAE and ELBO term, defined in Eq. (3).

Sampling Updates For a state (t, h) we let V(t,h) denote the set of vertices which where traversed
from initial vertex (0, h0) to (t, h). Moreover, for any vertex v = (t̃, h̃) we define its reference
vertex v′ = (t̃′, h̃′) as the vertex with the smallest `1-distance to the vertex v among the vertices in
the reference trajectory Γ(z0), i.e.

v′ = (t̃′, h̃′) = arg min
(t̂,ĥ)∈Γ(z0)

|t̃− t̂|+ |h̃− ĥ|. (7)

Furthermore, for any vertex v ∈ V(t,h) we let u(v) denote the update ((i) increase, (d) decrease or
(a) accept) taken to leave state v in the given trajectory. Analogously, we define for any v′ ∈ Γ(z0)
u′(v′) as the performed update in Γ(z0) after vertex v′.

Additionally, we define the auxiliary mapping gn : {d, a, i} → {0, 1, 2}, where gn(d) =
0, gn(a) = 1 and gn(i) = 2. Using the previous definitions we define the location index of V(t,h) as
n(V(t,h)) =

∑
v∈V(t,h)

gn(u(v)) − gn(u′(v′)). If the location index is bigger than zero, we assume
to be traversing a trajectory that has performed steps with bigger step sizes than the reference trajec-
tory Γ(z0). On the other hand, for a location index smaller than zero the opposite is true, whereas if
the location index is zero we are close to the reference trajectory Γ(z0).
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Figure 8: Selection process of S, which contains at most κ trajectories starting with initial step size h0 and
final integration time Tend and the branching point set C.

Finally, when sampling an update u we choose from the categorical distribution Pu(pd, pa, pi) de-
pending on n(V(t,h)), u

′(v′) for the current state (t, h) and hyperparameters q1 and q2. The definition
of the probabilities pd, pa and pi can be seen in Table 3.

In the definition of the sample probabilities, the update that pushes the location index the most to-
ward zero occurs always with probability 1− q1 − q2, whereas the event occurring with probability
q1 pushes the location index away from zero. Hence, depending on which probability is higher, we
either prefer to select trajectories close to the reference trajectory or trajectories that are distributed
over the entire trajectory graph. In order to have a combination of both, we use an annealing process
for the hyperparameters q1 and q2. In the early stages of training, we choose selection hyperparam-
eters such that 1− q1− q2 ≥ q2 ≥ q1, i.e. stay close to the reference trajectory, and towards the end
of the training the chain of inequalities should be reversed, i.e. cover the entire trajectory graph and
not just a region.

Checkpoint Selection Criterion We use the following decision criterion to select C∗ from C

C∗ = arg max
C={VC}∈C

|n(VC)− nS |
2

− |VC | − σout[VC ], (8)

where the vertex set VC contains all traversed vertices until the creation of the checkpoint C and
we denote by nS the average location index of the already stored trajectories in S . Observe, that
the decision criterion is designed such that checkpoints in under-explored regions of the trajectory
graph and checkpoints arising early in the trajectory graph are favored, where the former statement
is captured by the first term in Eq. (8), whereas the remaining two terms capture the latter statement.

Table 3: The definition of the probabilities pd, pa and pi depending on the location index n(V ),
reference update u′ and hyperparameters q1, q2.

n(V ) u′ pd pa pi

n = 0 a q1+q2
2 1− q1 − q2

q1+q2
2

n = 0 d
1− q1 − q2 q2 q1n > 0 {d, a, i}

n = 0 i
q1 q2 1− q1 − q2n < 0 {d, a, i}

C Additional Experiments

Experimental Setup We implement GAINS in PyTorch (Paszke et al., 2019) and evaluate all
benchmarks using single NVIDIA RTX 2080Ti. We conduct experiments on MNIST (LeCun et al.,
1998), FMNIST (Xiao et al., 2017), and PHYSIO-NET (Silva et al., 2012). For image classification
we use an architecture consisting of two convolutional and one NODE layer (see Table 6 in App. E
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Table 4: Mean and standard deviations of the standard (Std.), adversarial (Adv.), and certified (Cert.) accuracy obtained with
GAINS depending on the training method and evaluated on the first 1000 test set samples.

Dataset Training Method εt Std. [%]
ε = 0.10 ε = 0.15 ε = 0.20

Adv. [%] Cert. [%] Adv. [%] Cert. [%] Adv. [%] Cert. [%]

MNIST

Standard 98.8±0.4 23.2±3.5 0.0±0.0 2.5±1.6 0.0±0.0 0.3±0.2 0.0±0.0

Adv. 0.11 99.2±0.1 95.4±0.4 0.0±0.0 88.3±0.6 0.0±0.0 59.4±3.2 0.0±0.0

GAINS 0.11 95.5±0.1 91.5±0.6 83.9±1.3 84.0±2.7 17.7±9.0 21.4±1.8 0.0±0.0

0.22 91.8±1.3 88.5±1.8 82.7±3.4 86.8±2.1 69.4±6.5 84.5±3.2 50.9±9.1

FMNIST

Standard 88.6±1.2 0.1±0.1 0.0±0.0 0.0±0.0 0.0±0.0

Adv. 0.11 80.9±0.7 70.2±0.5 0.0±0.0 47.1±3.7 0.0±0.0

GAINS 0.11 75.1±1.2 65.7±1.0 56.3±1.4 21.1±5.9 8.4±2.3

0.16 71.5±1.7 64.0±2.7 54.7±2.5 60.1±3.5 42.7±1.4

for more details). For time-series forecasting we use a latent ODE (see Table 7 in App. F for more
details). We provide detailed hyperparameter choices in App. E and F.

Adversarial Robustness in Classification We consider classification models f : Rd 7→ Rc that,
given an input x ∈ X ⊆ Rd, predict c numerical values y := f(x), interpreted as class confidences.
We call f adversarially robust on an `p-norm ball Bεpp (x) of radius εp, if it predicts target class t for
all perturbed inputs x′ ∈ Bεpp (x). More formally, we define adversarial robustness as:

arg max
j

h(x′)j = t, ∀x′ ∈ Bεpp (x) := {x′ ∈ X | ‖x− x′‖p ≤ εp}. (9)

C.1 Classification

We train NODE based networks with standard, adversarial, and provable training (εt ∈ {0.11, 0.22}
for MNIST and εt ∈ {0.11, 0.16} for FMNIST) and certify robustness to `∞-norm bounded per-
turbations of radius ε as defined in Eq. (9). We report means and standard deviations across three
runs at different perturbation levels (ε ∈ {0.1, 0.15, 0.2}) depending on the training method in Ta-
ble 4. Both for MNIST and FMNIST, adversarial accuracies are low (0.0% to 23.2%) for standard
trained NODEs, agreeing well with recent observations showing vulnerabilities to strong attacks
(Huang et al., 2020). While adversarial training can significantly improve robustness even against
these stronger attacks, we can not certify any robustness. Using provable training with GAINS
significantly improves certifiable accuracy (to up to 84% depending on the setting) while reduc-
ing standard accuracy only moderately. This trade-off becomes more pronounced as we consider
increasing perturbation magnitudes for training and certification.

C.2 Time-Series Forecasting

For time-series forecasting, we consider the PHYSIO-NET Silva et al. (2012) dataset, containing
8 000 time-series of up to 48 hours of 35 irregularly sampled features. We rescaling most features
to mean µ = 0 and standard deviation σ = 1 (before applying perturbations) and refer to App. F for
more details. We consider three settings, where we predict the last measurement L, without having
access to the preceding 6, 12, or 24 hours of data. In Table 5, we report the mean absolute prediction
error (MAE) for the unperturbed samples and ν-δ-robustness (see Eq. (1)) for a relative and absolute
error tolerances of ν = 0.1 and δ = 0.01 at perturbation magnitudes ε = {0.05, 0.1, 0.2}. We ob-
serve only a minimal drop in standard precision, when certifiably training with GAINS at moderate
perturbation magnitudes (εt = 0.1) while increasing both adversarial and certified accuracies sub-
stantially. Further, while we can again not verify any robustness for standard trained NODEs, they
exhibit non-vacuous empirical robustness. However, without guarantees it remains unclear whether
this is due to adversarial examples being harder to find or NODEs being inherently more robust in
the time-series forecasting setting. Interestingly, MAEs are smallest for the 12h setting, despite a
longer forecast horizon than in the 6h setting. We hypothesize that this is due to the larger num-
ber of input points and thus abstracted embedding steps leading to increased approximation errors.
Across settings, we observe that training with larger perturbation magnitudes leads to slightly worse
performance on unperturbed data, but significantly improves robustness.
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Table 5: Mean absolute errors for the unperturbed samples (Std. MAE) and certifiable (Cert.) ν-δ-robustness with ν = 0.1 and δ = 0.01.

Setting Training Method εt Std. MAE [×10−2]
ε = 0.05 ε = 0.10 ε = 0.20

Adv. [%] Cert. [%] Adv. [%] Cert. [%] Adv. [%] Cert. [%]

6h
Standard 51.9±0.7 61.0±5.0 0.0±0.0 17.7±2.6 0.0±0.0 4.1±1.2 0.0±0.0

GAINS 0.1 51.6±1.9 96.1±1.0 90.8±1.7 70.4±4.2 50.2±3.1 28.4±1.3 16.9±1.1

0.2 63.2±1.6 99.9±0.1 99.9±0.1 99.8±0.2 99.6±0.4 97.2±0.2 97.0±0.2

12h
Standard 48.8±0.2 72.9±1.3 0.0±0.0 23.4±3.6 0.0±0.0 5.6±1.0 0.0±0.0

GAINS 0.1 53.6±2.2 98.2±0.6 94.1±0.2 78.5±2.1 57.6±4.2 33.2±4.1 20.5±2.9

0.2 54.6±2.1 98.8±0.3 97.6±0.5 88.6±0.3 80.5±2.9 48.9±1.9 36.8±1.9

24h
Standard 54.8±0.3 83.3±0.6 0.0±0.0 38.7±0.8 0.0±0.0 10.1±1.4 0.0±0.0

GAINS 0.1 54.9±0.4 97.8±0.0 95.3±0.7 78.6±1.9 68.3±3.5 34.2±3.4 24.2±2.0

0.2 56.3±0.5 99.4±0.2 99.0±0.4 89.3±1.4 84.9±1.1 57.6±5.5 47.2±2.9

D Experimental Details

We have used the ODE solvers from the torchdiffeq package1 (Chen et al., 2018), where we have
extended the package to contain controlled adaptive ODE solvers. Moreover, we have used the
PGD adversarial attack from the torchattacks package2 (Kim, 2020). The annealing processes of
the perturbation ε use the implementation of the smooth scheduler from3 Xu et al. (2020), which we
denote as Smooth(εt, estart, eend,mid). The first three arguments of the Smooth scheduler represent
the target perturbation, the starting epoch of the scheduler, and the epoch in which the process
reaches the target perturbation. The additional mid parameter of the schedule is fixed to mid = 0.6
and anything else is used unaltered.

Moreover, we use the annealing process Sin(qstart, qend, e1, e2), for the hyperparameters q1, q2

occurring in the sampling process of the construction of the selection set S in App. B. The value q
of the annealing process Sin(qstart, qend, e1, e2) in epoch e is given by

q ←


qstart, if e ≤ e1,

sin
(
π e−emide2−e1

)
· qend−qstart2 + qend+qstart

2 , else if e1 < e ≤ e2,

qend, otherwise,

(10)

where we use emid = e2+e1
2 .

D.1 CAS Details

When using a CAS, we have used in all experiments update factor α = 2, momentum factor β =
0.1, absolute error tolerance τ = 0.005 and the individual ODE solver steps where performed using
the dopri5 (Dormand & Prince, 1980) solver. Additionally, we have introduced a minimal allowed
step size constraint and a maximal number of allowed rejections after clipping for the CAS, where
the minimum step size is fixed to hmin = 0.02 and the maximal number of allowed rejections
after clipping is 2. In our experiments on the MNIST, FMNIST, and PHYSIO-NET datasets the
constraints only became active in early stages of training. Note that only after rejecting a step with
step size h the aforementioned events can occur, in which case the solver indicates that the desired
error tolerance will not be satisfied and terminates the integration by fixing the step size to h and
accepting each following step without performing any step size updates anymore.

Initial Step-Size The initial step size h0 is obtained differently in the training and testing setting.
In training, a proposal initial step size h̃0 is calculated using

h̃0 =

{
‖z0‖1

100∗‖gθ(0,z0)‖1 , if ‖g0‖1 ≥ 10−5 ∗ γ and ‖gθ (0, z0)‖1 ≥ 10−5 ∗ γ,
10−5, otherwise,

(11)

where γ = b ∗ τ is determined by the batch size b and the absolute error tolerance τ . Afterward,
a solver step is performed using the proposal step size h̃0, and the step size update rule of stan-
dard adaptive step size solvers is used in order to produce the initial step size h0. Note that by

1https://github.com/rtqichen/torchdiffeq
2https://github.com/Harry24k/adversarial-attacks-pytorch
3https://github.com/KaidiXu/auto_LiRPA/blob/master/auto_LiRPA/eps_scheduler.py
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applying the standard update rule, the solver starts the integration process with a step size for which
step acceptance is expected. Moreover, during training, the solver keeps track of an exponentially
weighted average η of the initial step sizes, where it is updated using momentum factor β, i.e.
η ← (1− β)η + β ∗ h0.

During testing, the current η is set as the initial step size, i.e. h0 = η. Observe, that in NN verifi-
cation the division in Eq. (11) is avoided, for which there exist only loose abstract transformations
in the DEEPPOLY abstract domain. Therefore, the proposed initial step size scheme decreases the
approximation error in the DEEPPOLY abstract domain at the cost of storing and keeping track of η.

D.2 CAS Comparison

In Fig. 2 we compare the reachable states, e.g. (t, h)-pairs, of the unmodified dopri5 (Dormand &
Prince, 1980) adaptive solver (AS) and the dopri5-based CAS (as described in the previous para-
graph) after at most two steps. In order to simplify the computation of the reachable states, we have
assumed that δ(t, h) ∈

[
2−6, 22

]
∀t, h.

In Fig. 3 we compare the dopri5 AS and dopri5-based CAS with eleven different absolute error
tolerances τ ∈ {10−6, 4.7·10−6, 2.2·10−5, 10−4, 5·10−4, 2.3·10−3, 0.01, 0.05, 0.24, 1, 2.42} on the
one-dimensional nonlinear ODE∇tz = z ·cos

(
0.8 · cos(t)2 + t

)
. For each absolute error tolerance

value, we sample 2000 initial states z(0) ∼ U(−2.5, 2.5) (continuous uniform distribution) and
solve the resulting IVP until T = 5, where we report the average number of performed solver steps
and the absolute error of the solver. The absolute error is calculated via |z(5) − zd8(5)|, where
z(5) is the solution of either the considered AS or CAS and zd8(5) is the solution of the high-order
adaptive solver dopri8 with absolute error tolerance τd8 = 10−7.

D.3 Trajectory Graph Complexity

The complexity expression is derived via the maximum number of edges in the trajectory graph.
We organize the graph into rows corresponding to the step-sizes h and observe that each col-
umn contains at most Tend/hmin vertices, where hmin is the minimum step size (see App. D.1).
Furthermore, note that the largest possible step size is Tend. Therefore, due to the exponen-
tially spaced grid of possible step-sizes with growth rate α, it follows that there are at most
(log(Tend) − log(hmin))/log(α) different step sizes and hence rows in our graph. Consequently
there are at most Tend/hmin(log(Tend) − log(hmin))/log(α) or after dropping the constants
O(Tend log(Tend)) vertices in the graph. For the final result, note that a simple graph with v ver-
tices has at most v(v− 1)/2 edges. Therefore, since all edges in the graph represent a solver step, it
follows that at most O(T 2

endlog
2(Tend)) solver steps need to be considered.

E Classification Experiments

In this section, we extend the experimental details from App. D with emphasize on the classification
experiments on the MNIST and FMNIST datasets.

Preprocessing We have rescaled the data in both datasets such that the values are in [0, 1]. After-
wards, we have standardized the data using µ = 0.1307, σ = 0.3081 on the MNIST dataset and
µ = 0.286, σ = 0.353 on the FMNIST dataset, e.g. for input x we have x← x−µ

σ .

Neural Network Architecture In Table 6, the neural network architecture we use in classification
is shown. The four arguments of the Conv2d layer in Table 6 represent the input channel, output
channel, kernel size, and the stride. The two arguments of the Linear layer represents the input
dimension and the output dimension. The NODE layer has Tend = 1 and ODE dynamics gθ.
Moreover, the ConcatConv2d layer takes as input a state x and time t, where it concatenates t along
the channel dimension of x before applying a standard Conv2d layer. The five arguments of the
ConcatConv2d layer represent the input channel, output channel, kernel size, stride and the padding.

Training Details We used the ADAM (Kingma & Ba, 2015) optimizer with learning rate 1e-3 and
weight decay 1e-4 as well as batch size b = 512 and all the training samples in training and we have
used Lstd = LCE in Eq. (6).
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Table 6: The neural network architecture used in classification on the MNIST and FMNIST
datasets.

Classification neural network fθ
Conv2d(1, 32, 5, 2) + ReLU
Conv2d(32, 32, 5, 2) + ReLU

NODE (gθ, 1)
AdaptiveAvgPool2d

Linear(32,10)

ODE dynamics gθ
[ConcatConv2d(33, 32, 3, 1, 1) + ReLU ] x2

In provable training, we have used a warm-up training session, in which we have trained the model
for 50 epochs using the fixed step size ODE solver euler with h = 1

2 . Moreover, in the warm-up
training session, we used the scheduler Smooth( 1

255 , 10, 40) for the annealing of the perturbation ε.
Afterward, in the actual training session, the NODE layer uses a CAS as described in App. D.
Furthermore, we train for 100 epochs using the Smooth(εt, 0, 60) schedule with εt ∈ {0.11, 0.22}
on the MNIST dataset and εt ∈ {0.11, 0.16} on the FMNIST dataset. The approximation of the
abstract transformer of the NODE layer uses κ = 2 in epochs 1 until 25, κ = 8 in epochs 51 until
65 and κ = 4 in all the other epochs. Moreover, we set q1 = q2 and use the annealing process
Sin(0.15, 0.33, 10, 80) in order to increase the value of q1. The neural network is trained using the
loss function defined in Eq. (6) with ω1 = 2

3 and ω2 = 0.01.

In the standard training baseline, we have trained the neural network for 100 epochs using the loss
function defined in Eq. (6) with ω1 = ω2 = 0.

In the adversarial training baseline we have trained the neural network for 100 epochs, where the
samples from the dataset are attacked using PGD(ε,N = 10, α = ε

5 ,LCE) prior to being fed into
the model as input. Moreover, we use Smooth(εt, 5, 65) for the annealing of ε and εt = 0.11 on both
datasets. We use the loss function in Eq. (6) with ω1 = ω2 = 0 in training.

Furthermore, we want to emphasize that whenever we are considering abstract input regions, e.g. in
provable training and adversarial training, we do not allow perturbations outside of the [0,1] interval.

Evaluation Details In order to obtain the adversarial accuracies reported in Table 4, we have used
the PGD(ε,N = 200, α = 1

40 ,LCE) attack with ε ∈ {0.1, 0.15, 0.2} on the MNIST dataset and
ε ∈ {0.1, 0.15} on the FMNIST dataset.

F Further Details for Time-Series Forecasting Experiments

In this section, we extend the experimental details from App. D with emphasize on the time-series
forecasting task on the PHYSIO-NET dataset. Moreover, we have made use of the code provided by
Rubanova et al. (2019)4 for the fetching of the dataset and parts of the latent ODE architecture.

PHYSIO-NET Preprocessing The PHYSIO-NET dataset contains data from the first 48 hours of a
patients stay in intensive care unit (ICU). The dataset consists of 41 possible features per observed
measurement, where the measurements are made at irregular times and not all possible features are
measured. We round up the time steps to three minutes, which results in the length of the time-series
being at most 48 · 20 + 1 = 961.

Moreover, we remove four time-invariant features and additionally two categorical features from the
series, namely the Gender, Age, Height, ICUType, GCS, and MechVent. The removed features are
inserted in an initial state x0 ∈ R6 of the time-series, which is used to initialize the hidden state of
the encoder. Note that there is exactly one measurement for the features Gender, Age, Height, and
ICUType, which we used unaltered as the first four entries of the initial state x0. On the other hand,
in the case where we want to predict a value in the future while only using the first L′ entries of an

4https://github.com/YuliaRubanova/latent_ode
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input series, there can be multiple or no measurements for the GCS and MechVent features among
the first L′ entries of the series. If there are measurements made for the GCS feature, we use the
average of the observed values as the fifth entry of x0, whereas if there are measurements for the
MechVent feature we set the sixth entry of x0 to 1. Otherwise, if there are no measurements for the
two aforementioned features their corresponding entry in x0 is set to zero.

Additionally, we clip the measurements for features with high noise or atypical values. Concretely,
we clip the Temp feature to the [32,45] interval, the Urine feature to the [0,2000] interval, the WBC
feature to the [0,60] interval, and the pH feature to the [0,14] interval.

Furthermore, we randomly split the dataset into a training set containing 7200 time-series, validation
set containing 400 time-series, and testing set containing 400 time-series.

We normalize the features to be normally distributed, where we estimate the mean and standard
deviation of each feature using the training set. The normalization is used for all features except
the categorical features (Gender, ICUType, GCS, MechVent) and the features Fi02 and Sa02, which
represent a ratio. The categorical features are used unaltered, whereas the ratios are rescaled in order
to be in the [0,1] interval.

Finally, we introduce three different data modes 6h, 12h and 24h, which we consider for the
time-series forecasting task. The data modes differ in the number of entries L′ which are used
as input in order to estimate the final data point of a series. When considering the time-series
xLts = {(x(i), t(i))}Li=1 and the data mode 6h, the number of entries used as input isL′6 = maxi∈[L] i
such that t(i) ≤ t(L) − 6, i.e. we try to predict at least six hours into the future. The data modes 12h
and 24h are defined in the same way, where we try to predict at least 12 or 24 hours into the future.
Furthermore, for a fixed time-series it follows that L′6 ≥ L′12 ≥ L′24.

Time-Series Forecasting Architecture In Table 7, we show the main components of the latent
ODE architecture, which we use for the time-series forecasting task on the PHYSIO-NET dataset.
In the NODE layer of the encoder eθ we use a one-step euler ODE solver, where the step size h
depends on the measured time points in the input time-series. On the other hand, the NODE layer
in the decoder dθ uses the CAS as specified in App. D and the final integration time depends on the
time-series point we want to estimate, e.g. if we estimate x(L) we use Tend = t(L).

Training Details We have used batch size b = 128 and Lstd = Lf in Eq. (6) with Lf defined in
Eq. (3) and γ = 30000. Moreover, we assume that the initial state of the generative model of the
time series has prior distribution N (0, 1). What is more, since not all feature values are observed
in each measurement, we want to emphasize that only the observed features are used to evaluate
any metric. For example, if the final data point xL has measured features at the entries in the set
M ⊆ [35] and we obtain the estimate x̂L, the MAE is given by

MAE(xL, x̂L) =
1

|M |
∑
j∈M
|xL,j − x̂L,j |. (12)

Additionally, as our validation metric, we use the MAE with concrete inputs in all experiments in
order to evaluate the performance of the model on the validation set. We have trained the models on
the random seeds 100, 101, and 1025.

Moreover, observe that in a batched input setting the sequence length of the individual time-series
can be different, and also the time in which measurements are made differs. In order to circumvent
this issue and allow batched training, we take the union of the time points and extend each individual
series to contain all time points observed in the batch, where we add data points with no measured
features to each series. Furthermore, in batched training, the GRU-unit of latent ODE only performs
an update to the hidden state to those inputs in the batch, for which at least one feature was observed
in the data point at the currently considered time.

In standard training, we have trained the latent ODE for at most 120 epochs, where after each epoch
we evaluate the performance of the model on the validation set and use the model with the best
performance on the validation set in testing. Note, that if the performance on the validation does not
improve for 10 epochs we apply early stopping. Furthermore, ADAM (Kingma & Ba, 2015) was

5GAINS with εt = 0.2 in Table 1 was only trained with seed 100 and 101 due to time constraints.
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Table 7: The main components of the latent ODE architecture used in time-series forecasting on the
PHYSIO-NET dataset.

Encoder eθ
Linear(6,80) + ReLU

GRU-Unit fGRU
θ

Linear(80,100) + ReLU
Linear(100,40)

GRU-Unit fGRU
θ

fz NODE (geθ)

fu, fr Linear(115,50) + ReLU
Linear(50,40) + Sigmoid

fs Linear(115,50) + ReLU
Linear(50,80)

ODE dynamics geθ
[Linear(40,40) + ReLU ] x3

Linear(40,40)

Decoder dθ

NODE(gdθ )
Linear(20,35)

ODE dynamics gdθ
Linear(20,40) + ReLU

[Linear(40,40) + ReLU ] x2
Linear(40,20)

used as optimizer with learning rate 1e-3 and weight decay 1e-4 and we have used ω1 = ω2 = 0 in
Eq. (6).

In provable training, we have trained the latent ODE for 120 epochs, where we have used the sched-
uler Smooth(εt, 5, 65) for the perturbation with εt ∈ {0.1, 0.2}. The approximation of the abstract
transformer of the NODE layer in the decoder dθ uses κ = 1 in all epochs, whereas the NODE layer
in the encoder eθ has due to the chosen ODE solver always only one possible trajectory. Moreover,
in the NODE layer of dθ, we set q1 = q2 and use the annealing process Sin(0.15, 0.33, 10, 80) in
order to increase the value of q1. Furthermore, the abstract ratio ρ is initialized as ρ = 0.1 and we in-
crease its value by 0.05 at the end of epochs {10, 15} and by 0.1 at the end of epochs {10+5 · i}9i=2.
Moreover, ADAM was used as optimizer with learning rate 1e-3 and weight decay 1. Furthermore,
as soon as the target perturbation is reached (ε′ = εt), we evaluate the performance of the model on
the validation set after each epoch and use the model with the best performance on the validation set
in verification.

Evaluation Details In order to obtain the adversarial accuracies reported in Table 1, we have used
the PGD(ε,N = 200, α = 1

40 ,MAE) attack with ε ∈ {0.05, 0.1, 0.2} on all data modes of the
PHYSIO-NET dataset.

G Trajectory Attacks

In order to describe the used attacking procedure, let us denote by δ1 the local error estimate of the
solver in the first step, e.g. δ1 = δ(0, h0), and by δ2 the local error estimate from the second step.
Moreover, assume that we use a CAS with update factor α.

We describe the attack for a single δi with i = 1, 2 first and afterward how to combine them. The
loss function Latt(z0) we try to maximize during the attack, depends on the value of δi, where in
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the case that δi ∈ [0, τα] ∪ [ τα+1
2 , 1], we have Li(z0) = δi, whereas otherwise Li(z0) = −δi is

used. Hence, we try to decrease or increase the error estimate δi depending on the closest decision
boundary, such that a different update is performed.

The attacks are performed by using the {PGD(ε, 100, 1
40 ,Latt,m)}5i=−1 attacks with ε ∈

{0.1, 0.15, 0.2} and we define Latt,m next. The parameter m specifies how to combine the
loss functions for the individual local error estimates δ1 and δ2, where for m = −1 we use
Latt,−1(z0) = L1(z0), for m = 0 we use Latt,0(z0) = L1(z0) + L2(z0) and for m ≥ 1 we use in
PGD iteration j the loss Latt,i(z0) = L2(z0) if j mod m = 0 and otherwise Latt,i(z0) = L1(z0).

In our experiments, we use the attacks with −1 ≤ m ≤ 5 for the same input z0 and as soon as
we have successfully found z′0 ∈ Bε(z0) such that Γ(z0) 6= Γ(z′0) holds, the attack is stopped and
considered to be successful.

H Additional Details on the LCAP Problem

Recall the LCAP problem of soundly merging a set of different linear constraints bounding the same
variable. We consider a variable y for which we have m upper bounds {uj}mj=1 linear in x, which
in turn can take values in the hyper-box region Z . In this case, we want to obtain a single linear
upper bound y ≤ ax + c that minimizes the volume between the constraint and the y = 0 plane
over x ∈ Z , while soundly over-approximating all constraints. More formally, we want to solve:

arg min
a,c

∫
Z
ax+ cdx s.t. ax+ c ≥ max

j
ajx+ cj , ∀x ∈ Z. (13)

or equivalently

arg min
a,c

a
l+ u

2
+ c s.t. ax+ c ≥ max

i
aix+ ci, ∀x ∈ V (Z) (14)

where V (Z) are the 2d corners of the hyper-boxZ and showing soundness on V (Z) is sufficient due
to the linearity of all constraints. While we can thus encode the LCAP as an LP, we have to consider
exponentially many soundness constraints (one per corner), making the exact solution intractable.

In this section, we provide additional details on the experiment comparing an LP-based solution to
the LCAP to our CURLS approach. In particular, we will describe the generation of the LCAP toy
dataset and the LP baseline used in §5. In order to do so, we define the discrete uniform distribution
U(X ) over a setX = {xi}ni=1 and the continuous uniform distribution U(a, b) on a bounded domain
[a, b], i.e. −∞ < a < b < ∞. The former distribution is a categorical distribution with pi = 1

n

∀ i ∈ [n], whereas the latter distribution has probability density function pU (x) = 1
b−a ∀x

′ ∈ [a, b]

and pU (x) = 0 otherwise.

LCAP Toy Dataset To generate m different linear constraints in order to describe a random
relation between activation y ∈ R and activations x ∈ Rd. We only describe the process for
the upper bounds of the linear constraints, since the construction of the lower bounding con-
straint follows analogously. Additionally, we define the cosine similarity between two vectors as

sim(a, b) =
∑d
i=1 ai·bi
‖a‖2‖b‖2 with ‖a‖2 =

(∑d
i=1 a

2
i

) 1
2

. We ensure that the average cosine similarity
among the produced upper bounds is within [0.975, 0.99]. The lower bound on the similarity is in-
cluded since we assume that all linear constraints describe the same relation and therefore we expect
them to be similar. On the other hand, the upper bound on the similarity is included such that there
are at least some differences between the constraints and the LCAP is harder to solve.

Furthermore, we define the functions g1(d) = 5 ·
(

min
(

1, 20
d+1

))2

, g2(d) = β ·

min
(

1, 5
d+1 ·

⌈
d+1
50

⌉)
with β = 3 and the ceiling function dze = min{n ∈ N|n ≥ z}, and

gα(x) =
∑d
j=1 αj · xj + αd+1 for any α ∈ Rd+1.

First, we construct the abstract input domain X , where for each entry xj we sample z1, z2 ∼
U(−g1(d), g1(d)) and set lxj = min(z1, z2) and uxj = max(z1, z2).
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Afterwards, we sample the coefficients aj ∼ U
(
−β2 ,

β
2

)
∀j ∈ [d+ 1] and fix the relation between

x and y as y = ga(x). Next, we sample the coefficients w0
j ∼ U(−β, β) ∀j ∈ [d + 1] and define

the proposal upper bound gw0(x). We apply an upper bounding update to the bias term if it is not a
proper upper bound, i.e. w0

d+1 ← w0
d+1 −minx′∈X gw0−a(x′) if minx′∈X gw0−a(x′) < 0. The

proposal upper bound is accepted as the upper bound if |w0
d+1| ≤ 2 · β and otherwise we repeat the

procedure until we have an accepted upper bound.

Afterward, we initialize the upper bounding set U = {}, which is iteratively augmented until its
cardinality is m. In the first iteration we sample ∆1

j ∼ U(−g2(d), g2(d)) ∀j ∈ [d + 1] and define
w1 = w0 +∆1. Moreover, the bias term of gw1 is corrected using the upper bounding update, such
that we have gw1(x′) ≥ ga(x′) ∀x′ ∈ X . We include w1 to U if |w1

d+1| ≤ 2 · β, and otherwise
repeat until the iteration is accepted.
In the i-th iteration,wi is obtained by applying the same procedure as in the first iteration. However,
wi is only included toU if |wid+1| ≤ 2·β and 1

|U |
∑|U |
k=1 sim(wi,wk) ≥ 0.975, otherwise we repeat

the calculation of wi.

As soon as the cardinality of U equals m, we calculate the average similarity of the vectors in U and
accept the set U if the similarity is less than 0.99, i.e. 1

(m−1)·(m−2)

∑m
i=1

∑m
k=i+1 sim(wi,wk) ≤

0.99. Otherwise, the set is rejected and we reinitialize the process from the beginning. If the set is
accepted, we define the linear upper bounding constraints using ui = gwi for i ∈ [m].

Observe that the generation process is probabilistic and we often reject proposal coefficients and
sets. Hence, in order to avoid a non-terminating process, we limit the number of sampled vectors to
35000.

LP Baseline We have used LP(8, 50, 40) as a baseline for the LCAP toy dataset experiment, where
for a LCAP with m different constraints that describe the relation between z ∈ Z ⊆ Rd and y ∈ R
the baseline works as follows. The LP baseline initially defines the set Z ′ = {z′(j)}

8·d
j=1 with z′(j) ∼

U(∂Z) ∀j ∈ [8 · d], where ∂Z are the corners of Z , and solves the resulting optimization problem
when replacingZ withZ ′ in Eq. (13). We denote the optimal solution of the simplified optimization
problem by uZ

′
, which is obtained by using a commercial linear program solver (GUROBI (Gurobi

Optimization, LLC, 2022)). Note that due to the linear form of all the constraints, it is enough to
only consider the 2d points in ∂Z in the optimization constraint of Eq. (13).

Observe that since we have loosened the restrictions, we may have that uZ
′

is unsound in ∂Z , i.e. it
exists some z′ ∈ ∂Z and i ∈ [m] such that uZ

′
(z′) < ui(z′).

If uZ
′

is sound it is used as the solution of the LP baseline, otherwise for all i ∈ [m] that violate
the soundness check, we add ẑi = arg minz′∈∂Z u

Z′
(z′) − ui(z′) to the current Z ′. Moreover,

for each ẑi we produce the corner points {zi,k}40−1
k=1 and add them to Z ′ as well, where we have

zi,kj = ẑij with probability 0.75 and else zi,kj = lzj + uzj − ẑij ∀k ∈ [40− 1], ∀j ∈ [d].

This process is repeated at most 50 times and if the solution uZ
′

is still unsound after 50 iterations,
we add maxi∈[m],z′∈∂Z u

i(z′)− uZ′
(z′) as a correction bias.
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