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Abstract
Large language models are deployed as either
closed-source, providing superior performance
with limited customization, or open-source, en-
suring full transparency at the risk of asset loss.
Grey-box approaches, which privatize parts of
the model while exposing others, strike a balance
between asset protection and customization but
are vulnerable to grey-box extraction attacks that
aim to replicate model functionality. In this pa-
per, we explore privatization schemes that ensure
the resilience of grey-box models against extrac-
tion attacks. First, we theoretically prove that
an infinitely deep transformer contains a transi-
tion layer where earlier layers offer substantial
resilience. We introduce EX-Priv, a simple base-
line that identifies a small amount of earlier layers
for privatization. We validate the effectiveness
of EX-Priv across 3 architectures on 16 bench-
marks and observe that privatizing a single de-
coder layer identified by EX-Priv yields compara-
ble resilience to privatizing the entire model with
32 decoder layers on Llama2-7B. We also provide
some insights on the effectiveness.

1. Introduction
Large Language Models (LLMs) have exhibited profound
capabilities in addressing a range of complex tasks (Thoppi-
lan et al., 2022; Achiam et al., 2023; Le Scao et al., 2023;
Abdin et al., 2024), with their deployment primarily catego-
rized into two paradigms: closed-source and open-source.
Closed-source models, such as GPT-4 (Achiam et al., 2023),
generally exhibit superior performance compared to their
open-source counterparts, yet they restrict customization
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and transparency for downstream users due to the privati-
zation of the entire model. Conversely, open-source models
like Llama2 (Touvron et al., 2023) make the entire model
public, offering greater customization freedom but also
leading to proprietary asset loss for their developers.

To balance better asset protection and greater customiza-
tion freedom in LLM, grey-box approaches have become a
middle path. These approaches privatize certain parts of the
model, while keeping the rest public. For instance, the ref-
erence (Zanella-Beguelin et al., 2021) describes a grey-box
LLM featuring a publicly accessible pretrained encoder cou-
pled with a customized classification head. However, these
grey-box models are vulnerable to a severe security threat
known as the grey-box extraction attack, where attackers
aim to replicate the model functionality by extracting its pri-
vate components. For example, attackers can algebraically
deduce the parameters of private linear components by lever-
aging both the outputs and the public encoder embedding
in the model (Zanella-Beguelin et al., 2021). Additionally,
attackers can employ learning-based techniques (Krishna
et al., 2019; Keskar et al., 2020; Rolnick & Kording, 2020),
to create functionally equivalent replicas, by fine-tuning
similarly structured open-source models with outputs from
the victim model (Zanella-Beguelin et al., 2021; He et al.,
2021; Dziedzic et al., 2023; Lyu et al., 2021).
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Figure 1. The performance scores af-
ter an extraction attack under differ-
ent privatization schemes. Smaller
scores imply better resilience.

In this paper, we in-
vestigate the problem
of designing privati-
zation schemes to en-
hance the resilience
of grey-box models
against extraction at-
tacks. We start from
a simple experiment
where we privatize
the first and 30th de-
coder layers individu-
ally, as well as the en-
tire model, and then
expose these configurations to extraction attacks to evaluate
their resilience. Our findings, depicted in Figure 1, reveal
that privatizing just the first layer achieves resilience compa-
rable to the fully privatized model, significantly surpassing
that achieved by privatizing the 30th layer. Specifically,
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the recovery performance of the model with the first layer
privatized closely matches that of the fully privatized model.
Given that the lower recovery performance indicates the
better resilience, privatizing the first layer seems to be more
effective than 30th layer. These preliminary observation
foster the hope of achieving the same level of resilience
as full privatization by privatizing only a small number of
parameters, yet this also prompts a further question:

How can we find a small privatization set to ensure

the resilience against grey-box extraction?

To address this question, we begin with a theoretical analysis
of decoder-only LLMs, revealing that earlier layers provide
stronger resilience compared to the later layers. Informed
by this theoretical insight, we introduce EX-Priv, a sim-
ple baseline algorithm designed to identify a small number
of consecutive decoder layers needed for privatization to
guarantee model resilience, starting from the first layer. To
further determine the appropriate number of consecutive
layers, we introduce the “resilience score”, a computational
efficient metric that can estimate the performance of each
privatization scheme without fine-tuning.
Our contributions are as follows: (1) We theoretically
demonstrate the existence of a transition layer in LLMs
such that privatizing early layers preceding this layer of-
fers resilience comparable to that of full privatization, while
later layers offer limited resilience. (2) We introduce the
“resilience score” to estimate privatization performance with-
out fine-tuning. Based on this, we propose the simple base-
line EX-Priv to identify a small number of consecutive lay-
ers needed for ensuring model resilience. (3) We tested
EX-Priv on 3 architectures and evaluated the recovered per-
formance on 16 benchmarks. EX-Priv consistently matches
the resilience of full privatization in all settings. Addition-
ally, we provide insights on how transition layers in LLMs
and the strong correlation between resilience and recovery
performance influence effectiveness.

2. Preliminaries
2.1. Security Threat: Grey-box Model Extraction

Grey-box LLMs. Let X ∈ Rn×d denote the input data
matrix, where each row corresponds to a d-dimensional fea-
ture vector representing a single token. Let f : Rn×d → Y
denote a victim large language model, capable of processing
the feature matrix X and producing an element in the set
Y as output. Modern LLMs typically adopt a multi-layer
architecture to capture complex patterns in the input data.
Specifically, f is a composition of multiple decoder lay-
ers, i.e., f(X;θ) = φL ◦ ... ◦ φ1(X). All decoder layers
φ1, ..., φL share the same the architecture but each layer is
equipped with distinct parameters. The parameters of all
layers are denoted by the vector θ. We consider a grey-
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Figure 2. Workflow of grey-box extraction attack

box setting, in line with prior work (Zanella-Beguelin et al.,
2021; Xu et al., 2021; Li et al., 2024), where certain layers
of the LLM are privatized while others remain publicly ac-
cessible. Let the privatization set I ⊆ {1, . . . , L} denote
the index set containing the private layer indices, while the
complement Ic contains the public layer indices.

Grey-box Model Extraction. In the grey-box extraction
process, as illustrated in Figure 2, an adversary is able to
interact with the victim LLM and possesses access to the
architecture and parameters of its public layers. The ad-
versary’s objective is to emulate the behavior of the victim
LLM by learning the architecture and parameters associated
with the private layers. This task is accomplished through a
structured procedure comprising three main steps. (1) Attack
Dataset Construction: The adversary begins by querying the
victim model, thereby gathering an attack dataset D contain-
ing samples representing the capabilities of the victim LLM.
(2) Parameter Initialization: Next, the adversary randomly
initializes the parameters associated with the private lay-
ers, setting the stage for subsequent model fine-tuning. (3)
Model Fine-Tuning: Leveraging the dataset D obtained in
the first step, the adversary fine-tunes the parameters of the
entire model, iteratively adjusting the parameters to better
align with the observed behavior of the victim LLM. Let
θFT(I,D) denote the recovered parameters under the attack
dataset D and privatization set I . Prior work has shown
that this approach enables the adversary to replicate the
functionality of the grey-box LLMs, despite limited access.

2.2. Problem Formulation

In this paper, we consider the performance of a large
language model within a defined distribution, denoted as
PX×Y , representing the relationship between the input ma-
trix X and corresponding label Y . We assume that the
victim LLM f(X;θ) performs well within this distribution.
Additionally, we presume the attack set D consists of inde-
pendent and identically distributed (i.i.d.) samples drawn
from PX×Y . To assess the alignment between the outputs
of LLM and ground-truth labels, we use a scoring function,
denoted as s : Y × Y → R+. For any privatization index
set I ⊆ [L], we introduce the concept of a “recovery ratio”
R(I). This ratio measures the extent to which the recovered
model θFT(I,D) can replicate the behavior of the victim
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model f(X;θ), expressed as

R(I) =
E[s(f(X;θFT(I,D)), Y )]

E[s(f(X;θ), Y )]
. (1)

Here, E in the numerator reflects the expectation computed
over random samples (X, Y ) drawn from PX×Y , the ran-
dom attack set D, and the random initialization of parame-
ters within the private layers during fine-tuning. Conversely,
the term E in the denominator solely considers the expec-
tation over random samples. With this definition, the term
R([L]) denotes the recovery ratio of the recovered model
under full privatization, where [L] = {1, ..., L}. Hence, we
propose the following question:

Given ε > 0, what is the smallest privatization set I

for which R(I) ≤ (1 + ε)R([L])?

This question essentially asks whether it is feasible to iden-
tify a minimal privatization index set I , such that, under this
privatization scheme, the resulting recovered model exhibits
similarity to the model recovered under full privatization. In
other words, the recovery score does not surpass that of full
privatization by more than a factor of (1 + ε).

3. Methodology
3.1. Resilience Transition Layer in Infinitely Deep

Transformers

In this section, we investigate the importance of different
layers in providing the resilience against extraction attacks.
Our goal is to identify a series of layers that significantly
impacts resilience levels.

Model Overview. Let us revisit our large language model
composed of L layers, denoted as f(X;θ) = φL ◦ ... ◦
φ1(X). Recall that the each row of the feature matrix
X ∈ Rn×d represents a d-dimensional vector for an in-
put token. We treat each layer φi as a transformer layer,
where each layer processes an n× d dimensional matrix as
input and outputs another n × d matrix. Thus, the model
f outputs a matrix of n rows and d columns, indicating
that the large language model output a feature vector for
each token. Moreover, we assume that each layer contains a
normalized residual self-attention function, defined as

φi (X;Ki, Qi) = X+softmax

(
XQi(XKi)

⊤√
dQ∥X∥2

)
X, (2)

where Qi ∈ Rd×dQ and Ki ∈ Rd×dQ are projection param-
eter matrices for the Q and K matrices in the transformer,
respectively. Additionally,

√
dQ and the matrix norm ∥X∥

denote normalization factors provided by the normalization
layer. We consider the scheme of privatizing the αL−th
layer with α ∈ [0, 1] and αL ∈ N while keeping other layers

public. After the grey-box extraction, we assume parame-
ters of the recovered model in the public layers are identical
to the victim model, while those in the private layer deviate.
Let K̂αL and Q̂αL denote the recovered weight matrix of the
private layer. Let φ̂αL denote the function of the recovered
private layer, i.e., the αL−th layer, in the recovered model.
In this subsection, we consider the normalized output of a
infinitely deep model whose αL-th layer is set private and
subject to the attack. The output of the recovered model is

f̂∞(X) = lim
L→∞

φL ◦ ...φαL+1 ◦ φ̂αL ◦ φαL−1 ◦ ... ◦ φ1(X)

∥φL ◦ ...φαL+1 ◦ φ̂αL ◦ φαL−1 ◦ ... ◦ φ1(X)∥F
,

where ∥ · ∥F denotes the Frobenius norm of a given matrix.
Next, we present the following theorem to illustrate the
existence of a critical value α∗ such that if α < α∗, the
recovered LLM outputs the identical feature vectors for all
tokens. Conversely, if α > α∗, the output feature vectors
may vary across tokens.

Theorem 1. Assume that PX×Y is defined on a countable
domain X × Y with 0n×d /∈ X . Assume that parameter
matrices {Ki, Qi}i≥1 in the victim model f have uniform
bounded norms, i.e., ∥Ki∥ ≤ D and ∥Qi∥ ≤ D for some
D > 0. There exists an α∗ ∈ (0, 1) depending on D such
that the following two statements are true.

(1) If α < α⋆, there exists a set K ⊂ Rn×d and Q ⊂ Rn×d

of zero measure such that for any parameter matrix se-
quence {Ki, Qi}i≥1 in the victim model, for any recovered
parameter matrices K̂αL /∈ K, Q̂αL /∈ Q and for any input
X ∈ X , the row vectors in the matrix f̂∞(X) are identical.

(2) If α > α⋆, there exists a victim model with parameter
matrix sequence {Ki, Qi}i≥1 such that for any recovered
parameter matrices K̂αL and Q̂αL, the row vectors in the
matrix f̂∞(X) are not entirely the same for some input
feature matrix X ∈ X .

Remark 1: The proof is presented in Appendix B. This
theorem demonstrates that privatizing earlier layers (i.e.,
α < α∗) leads to a recovered model that outputs the same
feature vector for each token, indicating poor performance
due to its inability to differentiate between input tokens.
Conversely, privatizing later layers (i.e., α > α∗) results
in a recovered model assigning distinct feature vectors to
tokens, suggesting that privatization closer to the input in
an infinitely deep transformer enhances resilience against
grey-box extraction.

Remark 2: Statement (1) shows that if parameter matrices
in the private layer (αL-th layer) do not belong to a specific
zero-measure set, then all row vectors of the output ma-
trix will be identical. This typically occurs when matrices
K̂αL and Q̂αL are generated using random model extrac-
tion techniques like stochastic gradient descent or Adam,
which start with parameters drawn from a distribution sup-
ported on Rn×d. Hence, matrices recovered through these
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methods are likely random matrices not belonging to any
zero-measure subset of Rn×d.

Remark 3: The theorem relies on the assumption that the
distribution is defined over a countable domain, X × Y ,
typically satisfied by inputs such as sentences or images.
We show in the proof that for each input matrix X ∈ X ,
there are two zero-measure sets K(X) and Q(X) such that
the recovered matrices must avoid to maintain the theo-
rem. Hence, the countable unions K =

⋃
X∈X K(X) and

Q =
⋃

X∈X Q(X) are also zero-measure sets, ensuring that
when recovered matrices do not belong to these sets, the
conditions in the theorem are met for any input matrix X in
the input space.

3.2. EX-Priv: A Grey-box EXtraction-resilient
Privatization Algorithm

Our theoretical analysis suggests that privatizing layers
closer to the input improves resistance to grey-box extrac-
tion attacks. Starting with the first layer is an effective ap-
proach, yet finding the minimal number of layers to privatize
to achieve R(I) ≤ (1 + ε)R([L]) remains a challenge. A
straightforward way is privatizing layers sequentially from
the first to the last, then fine-tuning and assessing the recov-
ery ratio R({1, ..., l}) to determine the least l that satisfies
R({1, ..., l}) ≤ (1 + ε)R([L]). This extensive fine-tuning
process is time-consuming, prompting the critical question:
Can we create a resilience metric that predicts LLM per-
formance under grey-box extraction attacks without fine-
tuning? Our goal is to establish a metric directly correlated
with the recovery ratio.

In the recovery ratio R(I), each I has the same denominator,
so our focus is on a metric related to the numerator, specif-
ically E[s(f(X;θFT(I,D)), Y )], which measures the aver-
age performance score of the recovered model. We know
that the testing loss of the model E[ℓ(f(X;θFT(I,D)), Y )]
generally inversely correlates with its performance. How-
ever, calculating this requires all parameters in the recov-
ered model that are obtained through fine-tuning. Instead,
we consider gradient descent starting from θ0(I) where
privatized layers are randomly initialized. Use the Taylor
Expansion (Linnainmaa, 1976), we find

E [ℓ (f(X;θFT(I,D)), Y )] =

E [ℓ (f(X;θ0(I)), Y )] +O(∥θFT(I,D)− θ0(I)∥2).

Previous research suggests the difference ∥θFT(I,D) −
θ0(I)∥2 is minor for large networks compared to the dataset
size |D|. For example, for a model like a single-layer ReLU
network (Anthony et al., 1999; Zou et al., 2020), the dif-
ference ∥θFT(I,D) − θ0(I)∥2 is of order O

(
|D|√
N

)
(Jacot

et al., 2018; Wei et al., 2019), with N being the number of
model parameters, which are much larger than the dataset
size in LLMs. Hence, the first term dominates, suggesting

it as a viable metric for predicting recovery ratio without
requiring fine-tuning. Thus, we define the initial expected
loss, or the “resilience score” (RS(I)), as:

RS(I) = EX,Y,θ0(I) [ℓ (f(X;θ0(I), Y )] (3)

This score, which can be approximated using a sample aver-
age, reflects the post-extraction performance of the recov-
ered model when specific layers I are privatized. A higher
RS(I) indicates worse recovery performance and thus fur-
ther indicates a smaller recovery ratio R(I). Based on this,
our proposed EX-Priv algorithm begins by sampling evalua-
tion data from the underlying distribution, then sequentially
testing each privatization set Il = {1, ..., l} for l = 1, ..., L,
until finding the smallest set where RS(Il) ≥ (1 − ε)
RS([L]), thereby minimizing the need for extensive model
tuning.

4. Experiments
4.1. Experimental Settings

In this subsection, we introduce the capability groups and
metrics used to evaluate the performance and resilience of
the recovered models. Implementation details of EX-Priv
and experimental setups can be found in Appendix C.1.

Recovery Evaluation Benchmarks. We follow the Llama-
2 report (Touvron et al., 2023) to evaluate the recovered
model, including 16 benchmarks, which are categorized into
6 groups: (1) Commonsense Reasoning (Rsn.); (2) Reading
Comprehension (Read.); (3) World Knowledge (Knl.); (4)
Code; (5) Math; (6) General Ability (Gen.). The categoriza-
tion details of these benchmarks and the specific evaluation
frameworks employed are elaborated in Appendix C.4.

Recovery Ratio R. We adopt four metrics as the score func-
tion to calculate the recovery ratio across benchmarks: Ac-
curacy, Exact Match (Rajpurkar et al., 2018), F1 scores (Ra-
jpurkar et al., 2018), and Pass@1 (Chen et al., 2021), as de-
tailed in Appendix C.4. For each privatization set I , we first
compute the recovery ratio for each benchmark and aver-
age the performance scores across all benchmarks to obtain
the Average Recovery Ratio (ARR), denoted as ARR(I).
ARR(I) evaluates the relative performance of the recovered
model compared to the original target model and a smaller
ARR(I) suggests enhanced resilience provided by the pri-
vatization set I . Additionally, we introduce ∆ARR(I),
defined as ∆ARR(I) = ARR(I)− ARR([L]), to compare
the resilience under privatization set I and full privatization.
A smaller ∆ARR value suggests similar resilience levels
provided by privatization set I and the entire model.

4.2. Main Results

In this subsection, we evaluate the efficacy of EX-Priv and
provide some insights on its effectiveness. More results of
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Table 1. Recovery ratios on various capability benchmarks (EX-
Priv (%) | Full Privatization (%)). The reported data are averaged
based on three seeds. A lower recovery ratio indicates better re-
silience against grey-box extraction. Privatization Ratio shows the
proportion of the privatized parameters. More details are available
in Appendix C.5.

Benchmark Llama2-7B Mistral-7B Falcon-7B

Rsn.

PIQA 64.6 | 64.5 64.2 | 60.2 69.8 | 64.9
Winogrande 75.5 | 75.6 67.7 | 68.3 76.9 | 73.5
ARC-easy 35.1 | 34.9 37.6 | 32.0 48.0 | 36.6
ARC-challenge 45.8 | 50.9 42.5 | 44.5 50.4 | 51.1
Hellaswag 34.3 | 35.0 31.5 | 31.3 37.3 | 32.3

Read.

LAMBADA 0.02 | 0.01 0.41 | 0.01 5.60 | 0.00
BoolQ 47.5 | 59.5 45.5 | 54.7 82.7 | 65.8
SQuADv2-EM 0.00 | 0.00 0.00 | 0.00 0.01 | 0.00
SQuADv2-F1 0.88 | 0.82 0.60 | 0.93 4.00 | 0.64
OBQA 53.9 | 59.2 59.3 | 56.3 53.8 | 59.5

Knl. NaturalQuestions 0.04 | 0.18 0.00 | 0.07 0.10 | 0.00
TriviaQA 0.00 | 0.04 0.02 | 0.01 0.00 | 0.00

Code MBPP 0.00| 0.00 0.00 | 0.00 0.00 | 0.00
HumanEval 0.00| 0.00 0.00 | 0.00 0.00 | 0.00

Math GSM8K 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00

Gen. MMLU 52.3 | 53.3 38.8 | 37.2 88.2 | 84.2
BBH 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00

Average Recovery Ratio 29.6| 31.4 26.2 | 26.1 35.2 | 31.1
Privatization Proportion 3.13 3.13 3.13

EX-Priv and its sensitivity to ε can be found in Appendix D

EX-Priv vs. Full Privatization. To verify the effectiveness
of EX-Priv in enhancing model resilience, we compare the
recovery ratios of models recovered under partial privatiza-
tion identified by EX-Priv with those under full privatization.
Specifically, we use EX-Priv to privatize a small number
of layers within each model, while keeping the remaining
layers public. We then subject these partially privatized
models to grey-box extraction attacks, calculate their recov-
ery ratios across various capability groups, and compare
these outcomes to those observed under full privatization.

Our results, illustrated in Table 1 of Appendix D, demon-
strate that the resilience enhanced by our algorithm is similar
to that of full privatization. For example, on Llama2-7B, we
discover that privatizing merely 3.13% of the parameters as
identified by EX-Priv leads to an ARR of 24.1%. This ratio
is comparable to the 25.6% observed in the fully privatized
model when subjected to attack. These results imply that
it is possible to privatize a small amount of parameters to
enhance the resilience against grey-box extraction attacks.
This pattern of effectiveness is consistently observed across
other models, irrespective of their structural differences.
Additionally, we observe that the average recovery ratios
consistently remain below 36%, demonstrating a significant
performance gap for models subjected to grey-box extrac-
tion attacks compared to the victim models.

Table 2. Correlation coefficients (Spearman | Pearson) between
recovery ratio and resilience score.

Groups Llama2-7B Mistral-7B Falcon-7B

Rsn. -0.83 | -0.97 -0.83 | -0.89 -0.95 | -0.93
Read. -0.77 | -0.96 -0.72 | -0.91 -0.95 | -0.94
Knl. -0.83 | -0.95 -0.82 | -0.94 -0.90 | -0.87
Code & Math -0.85 | -0.90 -0.78 | -0.95 -0.94 | -0.87
Gen. -0.82 | -0.93 -0.55 | -0.87 -0.73 | -0.64
Avg. -0.80 | -0.98 -0.67 | -0.92 -0.95 | -0.92

Existence of Transition Layer in LLMs. Theorem 1 shows
the existence of the transition layer in providing resilience.
To validate this, we calculate the recovery ratio of each
privatization set within various LLMs of size 7B. On these
models, the smallest privatization set identified by EX-Priv
contains only a single decoder layer. Consequently, for each
even-indexed layer k, we first privatize this single layer, then
expose the partially privatized model to grey-box extraction
attacks, and finally calculate the ∆ARR(k) of layer k to
quantify its resilience.
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Figure 3. Resilience transition
under different privatization set
across models of size 7B.

Our findings, illustrated in
Figure 3, show the dis-
tinct transition layers in
all three models of size
7B. For instance, the tran-
sition layer in Llama2-7B
is at the 14th layer. For
layers preceding the 14th
layer, ∆ARR remains near
0, suggesting that privatiz-
ing any single layer up to
this layer yields resilience comparable to that of the fully
privatized model. However, privatizing layers beyond the
14th layer results in a decrease in resilience, as indicated by
increasing ∆ARR values. Similar patterns are observed in
Falcon-7B and Mistral-7B, with transition layers identified
at the 2nd and 24th positions, respectively. These consistent
trends across different architectures demonstrate that priva-
tizing any layer prior to the transition layer can effectively
enhance the resilience against grey-box extraction attacks.

Correlation Between Resilience Score and ARR. To as-
sess the efficacy of the resilience score RS in estimating
the performance of the recovered model, we calculate the
Pearson and Spearman correlation coefficients between RS
and ARR across different capability groups. The results,
shown in Table 2, indicate a negative correlation between
the resilience score and average recovery ratio. For exam-
ple, in Llama2-7B, both Pearson and Spearman coefficients
register below -0.78, with the Pearson coefficient peaking at
-0.98. We observe similar phenomena in other models with
varying architectures and sizes, confirming RS as a reliable
predictor of recovered model performance and the efficacy
of EX-Priv. Further analysis can be found in Appendix C.6
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5. Conclusion
In this paper, we show that privatizing early layers in LLMs
provides strong resilience, whereas later layers yields lesser
protection. Future work includes extending this idea to
smaller models and discussing the limitations of EX-Priv.
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A. Related Work
A.1. Model Extraction Attack

In model extraction attacks (Tramèr et al., 2016; Jagielski
et al., 2020; Orekondy et al., 2019b; Chandrasekaran et al.,
2020; Milli et al., 2019; Wu et al., 2023; Juuti et al., 2019;
Krishna et al., 2019; Wallace et al., 2020; Keskar et al.,
2020; He et al., 2021), attackers typically employ black-box
access to replicate the functionality of a victim model via
iterative API queries. Specifically in the context of natu-
ral language models, studies (Krishna et al., 2019; Wallace
et al., 2020; Keskar et al., 2020; He et al., 2021) have illus-
trated that transfer learning can significantly streamline the
model extraction process. For instance, (Krishna et al., 2019;
Keskar et al., 2020) have successfully leveraged open-source
pre-trained large language models (LLMs) to facilitate the
extraction, bypassing the need to train an LLM from scratch
with data from the target model. Additionally, there is re-
search on grey-box attack scenarios (Zanella-Beguelin et al.,
2021; He et al., 2021) where (He et al., 2021) hypothesizes
that the target model is an adaptation of BERT, and thus
uses BERT as the base for accelerating extraction via API
queries. Another approach outlined in (Zanella-Beguelin
et al., 2021) suggests that the target natural language model
combines a public encoder layer with a private, task-specific
linear classification head, employing fine-tuning and a mix
of algebraic and learning-based methods to effectively du-
plicate the model’s functionality. In this paper, we propose
a new grey-box model extraction attack. Contrary to the
private-public partitioning in (Zanella-Beguelin et al., 2021),
our approach involves the initial layers of the grey-box tar-
get model being designated as private, while the parameters
of the subsequent layers remain public. This distinction
renders the attack methods described in (Zanella-Beguelin
et al., 2021) inapplicable to our setting.

A.2. Defenses against Model Extraction

Defenses against model extraction attacks can be broadly
classified into two categories based on the timing of their
deployment: (1) pre-attack defenses and (2) post-attack
defenses. Pre-attack defenses are strategies designed to
prevent attacks from occurring. Studies such as (Orekondy
et al., 2019a; Mazeika et al., 2022) have focused on pre-
diction poisoning, a method that integrates noise into the
outputs of model predictions to diminish the effectiveness
of training a replica model. Other researches (Kariyappa &
Qureshi, 2020), emphasize the detection and mitigation of
anomalous and malicious query requests, thereby directly
countering model extraction activities. Recent studies, such
as (Wang et al., 2024), advocate for enhancing a model’s
inherent robustness against extraction attacks by embedding
input perturbations during the training phase. Post-attack
defenses are geared towards identifying and validating the
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occurrence of model theft post-compromise, employing
techniques such as watermark-based (Jia et al., 2021; Zhang
et al., 2020; 2021) and fingerprint-based methods (Guan
et al., 2022; Lukas et al., 2020). These approaches are
critical in establishing evidence of theft and potentially aid-
ing in the recovery of stolen intellectual property. While
these strategies provide robust defenses under black-box
assumptions, they may not fully address the nuances of at-
tacks under grey-box conditions where attackers have partial
knowledge of the model’s internal workings. To address this
gap, our study introduces the EX-Priv algorithm, focused
on grey-box assumptions for large language models.

A.3. Key Parameters Identification in LLM

Model pruning(LeCun et al., 1989) is commonly used for
identifying key parameters in models. This technique in-
volves removing non-critical parameters using structured or
unstructured strategies, aiming to reduce the model’s size
while striving to maintain its performance stability as much
as possible(Ma et al., 2023; Chen et al., 2023; Sun et al.,
2023; Zafrir et al., 2021; Hou et al., 2020; Kurtic et al., 2022;
Xia et al., 2022; Paul et al., 2022). Recent studies indicate
that the capabilities of large language models are unevenly
distributed across their various layers (Chen et al., 2023),
with the first and last layers having a profound impact on the
model’s performance (Ma et al., 2023). Drawing on these
insights, our work focuses on identifying and privatizing
specific layers to enhance the resilience of model against
model extraction attacks.

B. Proof of Theorem 1
In this section, we prove Theorem 1. We first revisit the our
model, present several important lemmas and finally present
the proof.

B.1. Model Overview

The recovered model f(X;θ) is structured as a sequence of
L transformer layers,

f(X) = φL ◦φL−1 ◦ ...◦φαL+1 ◦ φ̂αL ◦αL−1 ◦...◦φ1(X),
(4)

where X ∈ Rn×d represents the input, interpreted as an
assembly of n tokens, each possessing d hidden dimensions.
Each transformer layer, indexed by 1 ≤ i ≤ L, is repre-
sented by φi, which maps Rn×d to Rn×d and can be defined
as follows,

φi (X;Ki, Qi) =

[
In + softmax

(
XQi(XKi)

⊤√
dQ∥X∥2

)]
X,

(5)
where Qi ∈ Rd×dQ , Ki ∈ Rd×dQ represent projection
parameter matrices. Here, the αL-th layer is the recovered
layer and the others are the public layers. For simplicity, we
use the function φ̂αL to denote mapping of the recovered
layer, i.e., φ̂αL(X) = φαL(X; K̂αL, Q̂αL).

B.2. Bounds on Different Orthogonal Components

Lemma 1. For any 1 ≤ l ≤ L, 1 ≤ p ≤ d, any X ∈ Rn×d,
we have

max
v:∥v∥2=1,v⊥In

∣∣v⊤φl (X;Kl, Ql) [p]
∣∣

≤ (1 + βD) max
v:∥v∥2=1,v⊥In

∣∣v⊤X[p]
∣∣ , (6)

where In is a column vector with dimensions n × 1 and
each element is 1, X[p] is the p-th column of the input
X, φl (X;Kl, Ql) [p] is the p-th column of the l-th self-
attention output, the coefficient βD satisfies 0 < βD <
1 and it is related to the upper bound of the L2-norm of
matrices Kl, Ql.

Proof. Let u =
{
ul,1 = In√

n
,ul,2, . . . ,ul,n

}
denote

the eigenvectors of softmax

(
XQl(XKl)

⊤√
dQ∥X∥2

)
. As-

sume σl,1, σl,2, . . . , σl,n denote the eigenvalues of

softmax

(
XQi(XKi)

⊤√
dQ∥X∥2

)
and −1 < σl,n < βD for any l, n.
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Thus we have

v⊤φl (X;Kl, Ql) [p] (7a)

= v⊤

[
In + softmax

(
XQl(XKl)

⊤√
dQ∥X∥2

)]
X[p] (7b)

= v⊤

[
In + softmax

(
XQl(XKl)

⊤√
dQ∥X∥2

)]
n∑

k=1

αpkul,k (7c)

= v⊤
n∑

k=1

αpk(1 + σl,k)ul,k (7d)

≤ max
v:∥v∥2=1,v⊥In

∣∣∣∣∣
n∑

k=2

αpk(1 + σl,k)v
⊤ul,k

∣∣∣∣∣ (7e)

=

∥∥∥∥∥
n∑

k=2

αpk(1 + σl,k)ul,k

∥∥∥∥∥
2

(7f)

=

[
n∑

k=2

α2
pk(1 + σl,k)

2

]1/2
(7g)

≤ (1 + βD) max
v:∥v∥2=1,v⊥In

∣∣∣v⊤X[p]
∣∣∣ , (7h)

where

βD = max
∥Kl∥2≤D,∥Ql∥2≤D

max
v:∥v∥2=1,v⊥In

∥∥∥∥∥softmax

(
XQl(XKl)

⊤√
dQ∥X∥2

)
v

∥∥∥∥∥
2

< 1.

The equation (7d) is due to ul,k are the eigenvectors of

softmax

(
XQl(XKl)

⊤√
dQ∥X∥2

)
. The inequality (7f) is because

when v =
∑n

k=2 αpk(1+σl,k)ul,k

∥∑n
k=2 αpk(1+σl,k)ul,k∥

2

, we have the maximum

value.

Lemma 2. For any Kl, Ql ∈ Rd×s and any X ∈ Rn×d,
the following equation always holds:∣∣I⊤nφi (X;Ki, Qi) [p]

∣∣ = 2
∣∣I⊤nX[p]

∣∣ , (8)

where X[p] is the p-th column of the input X,
φi (X;Ki, Qi) [p] is the p-th column of the l-th self-
attention output.

Proof. Assume that a set of orthogonal basis for Rn is
{u1,u2, . . . ,un}, where u1 = In√

n
. Then we can rewrite

X[p] as X[p] =
∑n

j=1 αpjuj , where αpj(1 ≤ p ≤ d) are
the corresponding coefficients for the p-th column of X un-
der the orthogonal basis. Next, we calculate

∣∣I⊤n f(X)[p]
∣∣

and
∣∣I⊤nX[p]

∣∣, respectively. Note that I⊤nuj = 0 for all
j ̸= 1. Therefore, we can obtain that,

I⊤nX[p] =
√
nαp1. (9)

Then we can get ∣∣I⊤nX[p]
∣∣ = |

√
nαp1|. (10)

Let σi1, σi2, . . . , σin denote the eigenvalues of

softmax

(
XQi(XKi)

⊤√
dQ∥X∥2

)
. Applying the Perron–Frobenius

theorem for Markov matrices (Lemmens & Nuss-
baum, 2012), we deduce that for the matrix

softmax

(
XQl(XKi)

⊤√
dQ∥X∥2

)
, there exists only one eigen-

value equal to 1, while all other eigenvalues in absolute
value are strictly less than 1. Without loss of generality, we
assume σi1 = 1, implying |σij | < 1 for j ̸= 1. Recalling
the definition of φi (X;Ki, Qi) and considering the linear
operation, we can rewrite it as follows:

φi (X;Ki, Qi) [p] =

n∑
j=1

αpj (1 + σij)uj . (11)

Then we calculate the term
∣∣I⊤nφi (X;Ki, Qi) [p]

∣∣ as fol-
lows,

∣∣I⊤nφi (X;Ki, Qi) [p]
∣∣ =

∣∣∣∣∣∣I⊤n (
n∑

j=1

αpj (1 + σij)uj

∣∣∣∣∣∣
(12a)

=
∣∣√n (αp1(1 + σi1))

∣∣ (12b)

= 2|
√
nαp1|, (12c)

where (12a) is induced by substituting the equation (11)
into

∣∣I⊤nφi (X;Ki, Qi) [p]
∣∣, (12b) is due to I⊤nuj = 0 for

all j ̸= 1, (12c) follows the fact that σi1 = 1 .

B.3. Proof of Theorem 1

We first prove the following result. For simplicity of nota-
tions, we use f(X) [p] to denote the p-th (1 ≤ p ≤ d) col-
umn of the the recovered model f(X), where the parameters
in the αL-th layer is replaced with the matrices K̂αL and
Q̂αL. We use the function φ̂αL(X) = φαL(X; K̂αL, Q̂αL)
to denote the mapping of the (αL)-th layer. Then we
are going to show that there exists α⋆ = log2

2
1+βD

and
0 < βD < 1 makes the following equations hold.

(1) Assume α < α⋆. For any X, ∥Ki∥2 ≤ D, ∥Qi∥2 ≤ D,
there exists a zero measure set K(X) and Q(X) such that

lim
L→∞

∥∥∥∥ f(X) [p]

∥f(X) [p]∥2
− In√

n

∥∥∥∥
2

= 0. (13)

(2) For any α > α⋆, there exists a sequence of matrix
{Ki, Qi}i≥1 such that for any recovered matrix KαL and
QαL, we have ∥Ki∥2 ≤ D, ∥Qi∥2 ≤ D, we have,

lim
L→∞

∥∥∥∥ f(X) [p]

∥f(X) [p]∥2
− In√

n

∥∥∥∥
2

=
√
2. (14)
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Proof. Based on Lemma (1), we obtain that

max
v:∥v∥2=1,v⊥In

∣∣v⊤f (X) [p]
∣∣

≤ (1 + β)L max
v:∥v∥2=1,v⊥In

∣∣v⊤X[p]
∣∣ . (15)

Based on Lemma (2), we know that∣∣I⊤n f(X)[p]
∣∣

= 2(1−α)L−1
∣∣I⊤n φ̂αL ◦ φαL−1 ◦ · · · ◦ φ1(X)[p]

∣∣ . (16)

We firstly prove the equation (13). When∣∣I⊤n f(X)[p]
∣∣

= 2(1−α)L−1
∣∣I⊤n φ̂αL ◦ φαL−1 ◦ · · · ◦ φ1(X)[p]

∣∣
̸= 0,

(17)

then we have
∥∥∥∥∥ f(X) [p]

∥f(X) [p]∥2
−

In
√
n

∥∥∥∥∥
2

(18a)

=

2 −
2I⊤n f(X)[p]

√
n

√
(I⊤n f(X)[p])2

n
+ (v⊤f(X)[p])2)


1/2

(18b)

=
√

2

1 −
1√

1 +
n(v⊤f(X)[p])2

(I⊤n f(X)[p])2


1/2

(18c)

≤
√
2

1 −
1√

1 +
n(1+β)2L|v⊤X[p]|2

22[(1−α)L−1]
∣∣∣I⊤n φ̂αL◦φαL−1◦···◦φ1(X)[p]

∣∣∣2


1/2

(18d)

≤ 2
√
2n

(
1 + β

21−α

)L

∣∣∣v⊤X[p]
∣∣∣∣∣I⊤n φ̂αL ◦ φαL−1 ◦ · · · ◦ φ1(X)[p]

∣∣ , (18e)

where the inequality (18d) is based on the inequality (15)
and (16). The inequality (18e) is based on Lemma (3).
Therefore, if α < log2

2
1+βD

and
∣∣I⊤n f(X)[p]

∣∣ ̸= 0, then

we have limL→∞

(
1+βD

21−α

)L
= 0. Now we can consider

when
∣∣I⊤n f(X)[p]

∣∣ = 0. In fact, it is easy to show that this
can only happens when K̂αL and Q̂αL belong to certain
sets making

∣∣I⊤n f(X)[p]
∣∣ = 0, which corresponds to zero

measure set K(X) and Q(X) depending on the input X.
Since the input space is countable, therefore, the union
∪X∈XK(X) and ∪X∈XQ(X) are also zero-measure sets.

To prove equation (14), let K⋆, Q⋆ with ∥K⋆∥2 ≤
D, ∥Q⋆∥2 ≤ D satisfy the following condition,

max
v:∥v∥2=1,v⊥In

∥∥∥∥∥softmax

(
XQl(XKl)

⊤√
dQ∥X∥2

)
v

∥∥∥∥∥
2

= βD.

(19)
Let v⋆ be the solver of the above optimization problem
(19) and consider the Kl = K⋆, Ql = Q⋆ and X⋆ =

[v⋆,v⋆, · · · ,v⋆]. Clearly, v⋆ ⊥ In. Assume there exists
u : ∥u⋆∥2 = 1 satisfying u⋆ ⊥ In, u⋆ ⊥ v⋆, therefore we
can rewrite f(X⋆) [p] as follows,

f(X⋆) [p] =
I⊤n√
n
f(X⋆)

In√
n
+ v⋆⊤f(X⋆)v⋆ + u⋆⊤f(X⋆)u⋆.

(20)

For any 1 ≤ l ≤ L, based on Lemma (1), we know that∣∣v∗⊤f (X⋆) [p]
∣∣ = (1 + βD)L

∣∣v∗⊤X⋆[p]
∣∣ . (21)

Since∣∣I⊤n f (X⋆) [p]
∣∣ = 2L

∣∣I⊤nX⋆[p]
∣∣ = |I⊤n v⋆| = 0 (22)

and∣∣v∗⊤f (X⋆) [p]
∣∣ = (1 + βD)L

∣∣v∗⊤X⋆[p]
∣∣ ̸= 0, (23)

then we have∥∥∥∥∥ f(X⋆) [p]

∥f(X⋆) [p]∥2
−

In
√
n

∥∥∥∥∥
2

(24a)

=

[
2 −

2I⊤n f(X⋆)[p]
√
n ∥f(X⋆) [p]∥2

]1/2
(24b)

=

2 −
2I⊤n√

n

f(X⋆)[p]√
1
n
(I⊤n f(X⋆)[p])2 + (v⋆⊤f(X⋆)[p])2 + (u⋆⊤f(X⋆)[p])2


1/2

(24c)

≥

2 −
2I⊤n√

n

f(X⋆)[p]√
1
n
(I⊤n f(X⋆)[p])2 + (v⋆⊤f(X⋆)[p])2


1/2

(24d)

=

2 − 2

I⊤n f(X⋆)[p]
√

n
∣∣∣v⋆⊤f(X⋆)[p]

∣∣∣√√√√1 +

∣∣∣I⊤n f(X⋆)[p]
∣∣∣2

n
∣∣∣v⋆⊤f(X⋆)[p])

∣∣∣2



1/2

(24e)

=

2 − 2

2(1−α)L−1
∣∣∣I⊤n φ̂αL◦φαL−1◦···◦φ1(X⋆)[p]

∣∣∣
√

n(1+βD)L
∣∣∣v⋆⊤X⋆[p]

∣∣∣√√√√1 + 22[(1−α)L−1]

n(1+βD)2L

∣∣∣I⊤n φ̂αL◦φαL−1◦···◦φ1(X⋆)[p]
∣∣∣2∣∣∣v⋆⊤X⋆[p]

∣∣∣2



1/2

,

(24f)

where equation (24c) is based on (20), equation (24f)
is based on (23) and (16). When α > log2

2
1+βD

,

we have limL→∞

(
21−α

1+βD

)L
= 0. Thus we have

limL→∞

∥∥∥ f(X⋆)[p]
∥f(X⋆[p]∥2

− In√
n

∥∥∥
2
=

√
2. This indicates that

the p-th column of the output matrix f(X⋆) is not parallel
to In for any p. This further indicates that the output matrix
does not have the identical vector in each row.

B.4. Technical Lemma

Lemma 3. For any x ∈ (0, 1), it always holds[
1− 1√

1+x2

]1/2
≤ x.

Proof. To establish the inequality
[
1− 1√

1+x2

]1/2
≤ x,
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we begin by proving,

1− 1√
1 + x2

≤ x2. (25)

To demonstrate (25), we equivalently show

1− x2 ≤ 1√
1 + x2

. (26)

Subsequently, it suffices to verify

(1− x2)(
√

1 + x2) ≤ 1. (27)

This is equivalent to proving

(1− x2)2(1 + x2) ≤ 1. (28)

Thus, our focus shifts to demonstrating

(1− x2)(1− x4) ≤ 1. (29)

Clearly, (29) holds true for any x ∈ (0, 1).

C. Experiments
Our code is available at: https://github.com/OTTO-
OTO/EX-Priv-GreyBoxResilience.

C.1. Experimental setups

Foundation Large Language Model. To demonstrate the
efficacy of EX-Priv in enhancing the resilience of LLMs
against grey-box extraction, we conduct experiments with 3
open-source, decoder-only structured LLMs with various ar-
chitectures, including Llama2-7B (Touvron et al., 2023),
Mistral-7B (Jiang et al., 2023), Falcon-7B (Almazrouei
et al., 2023). We designated these pre-trained models as the
victim models and assess the resilience of each privatization
scheme.

Datasets. For the attack dataset aimed at maximiz-
ing model recovery, we merge data from the MMLU
benchmark (Hendrycks et al., 2021) with the Alpaca 52k
dataset (Wang et al., 2022), maintaining a 1:1 ratio. This
integration yields a combined set, consisting of 51k sam-
ples for training and a separate validation set with 1.5k test
instances. These datasets, designed to cover diverse model
capabilities, have been tailored for instruction-following
fine-tuning. Meanwhile, we construct another evaluation
dataset with 1.5k samples from the same sources to select
the privatization scheme in our algorithm.

EX-Priv Algorithm. We apply the EX-Priv algorithm to
identify the smallest privatization set I such that R(I) ≤
(1 + ε)R([L]). In the following experiments, the tolerance
magnitude ε is set to 0.2 to limit the gap between R(I) and
R([L]). To further show the sensitivity of EX-Priv to ε, we

select ε values evenly from 0.1 to 1, incrementing by 0.1. To
calculate the resilience score (RS) in EX-Priv, we randomly
initialize the parameter matrices in the privatized layers and
average the testing loss of model on the evaluation dataset
under three different seeds. The sensitivity of EX-Priv to ε
can be found in Appendix D.

C.2. Model Details

The pretrained models we use in our experiments are se-
lected from open-source repositories, and Table 3 shows the
basic information of the models and their sources. Specif-
ically, we employ the fine-tuned version of Llama2-7B,
known as Llama2-7B-chat1, Mistral-7B-v0.12, and Falcon-
7B3, each featuring 7 billion parameters and 32 decoder
layers.

Table 3. Model Info.
Model Size Decoder Layers

Llama2-7B-chat 7B 32
Mistral-7B-v0.1 7B 32
Falcon-7B 7B 32

C.3. Datasets

51k Training Dataset. To ensure the extensive coverage
and reliability of our attack datasets, we employ a balanced
approach by utilizing data from both the MMLU auxiliary
training set4 and the alpaca dataset5 at a 1:1 ratio (both can
be found at their GitHub repository). Specifically, we extract
50% of the data from each source in the MMLU set, totaling
approximately 25.5k data samples. Observing the clustered
arrangement of task-specific data in the alpaca dataset, we
similarly extract another 25.5k samples using a step size of
2 to enhance the diversity of our dataset. Next, we convert
the dataset into a format suitable for model training. For the
Alpaca data within the training set, we apply the training
prompt from (Taori et al., 2023), as shown in Table 4. For
the MMLU auxiliary training data (Hendrycks et al., 2021),
we utilize Prompt in Table 5.

Table 4. Prompts for Alpaca data

Alpaca with input

Below is an instruction that describes a task,
paired with an input that provides further context.
Write a response that appropriately completes the
request.

Alpaca with no answers
Below is an instruction that describes a task.
Write a response that appropriately completes the
request.

Validation Datasets. Table 6 presents a detailed composi-

1https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
2https://huggingface.co/mistralai/Mistral-7B-v0.1
3https://huggingface.co/tiiuae/falcon-7b
4https://github.com/hendrycks/test
5https://github.com/tatsu-lab/stanford_alpaca/blob/main

/alpaca_data.json
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Table 5. Prompts for MMLU auxiliary training data

Question Answering
Below is a question with no choices. Write the
correct answer that appropriately solves the ques-
tion.

Multiple Choice
The following is a multiple choice question,
paired with choices. Answer the question in for-
mat: "Choice:content".

tion of the validation dataset employed in the experiments.
For comprehensive task coverage, we systematically ex-
tracted 50% of the entries from each of the 57 sub-datasets
included in the MMLU validation set, corresponding to
the 57 distinct tasks. Subsequently, a corresponding quan-
tity of data entries is systematically selected from the al-
paca dataset using a step size of 751 to construct Validation
Dataset . This dataset, integral to our experiments, encom-
passes approximately 1.5k instances. This validation dataset
is employed in the training phase with 51k training sets.

Table 6. Composition of validation datasets of different sizes
Raw Data Set Validation Set

Alpaca 765
MMLU validation set 751

Total Length 1516

Evaluation Datasets. To calculate the model’s resilience
score under various privatization strategies, we crafted an
1.5k Evaluation Set covering a wide range of tasks. This
set includes a distinct 50% of entries from each of the 57
sub-datasets in the MMLU validation dataset, intentionally
different from those in Validation Set. Additionally, we
chose a matching number of entries from the alpaca dataset
with a step size of 751, guaranteeing that there is no overlap
with Validation Set.

C.4. Capability Benchmarks and Model Recovery

Evaluation on Capability Benchmarks. We follow the
Llama-2 report (Touvron et al., 2023) to evaluate the recov-
ered model, including 16 benchmarks, which are catego-
rized into 6 groups: (1) Commonsense Reasoning (Rsn.)
consists of PIQA (Bisk et al., 2020), HellaSwag (Zellers
et al., 2019), WinoGrande (Sakaguchi et al., 2019), ARC
easy and challenge (Clark et al., 2018); (2) Reading Com-
prehension (Read.) group consists of OpenBookQA (Mi-
haylov et al., 2018), LAMBADA (Paperno et al., 2016),
BoolQ (Clark et al., 2019) and SQuADv2 (Rajpurkar et al.,
2018); (3) World Knowledge (Knl.) group consists of
NaturalQuestions (Kwiatkowski et al., 2019) and Trivi-
aQA (Joshi et al., 2017); (4) Code group consists of Hu-
manEval (Chen et al., 2021) and MBPP (Austin et al., 2021);
(5) Math group consists of GSM8K (Cobbe et al., 2021);
(6) General Ability (Gen.) group consists of two bench-
marks MMLU (Hendrycks et al., 2021) and BBH (Suzgun
et al., 2022). Following the established evaluation frame-

works (Gao et al., 2023)6 and (Ben Allal et al., 2022)7, our
model ranks choices in multiple-choice tasks and generates
answers for open-ended generation tasks.

Table 7 details the set of capability benchmarks used in the
experiments as well as the corresponding test methods and
performance metrics. We adopt the lm-evaluation suite, in
conjunction with the big-code platform. The lm-evaluation
suite facilitated a battery of tests that included, but are not
limited to, Commonsense Reasoning, Reading Comprehen-
sion, and Mathematical Problem Solving. We also leveraged
the computational power of the big-code platform to handle
the intensive processing requirements of training and evalu-
ating our models. These benchmarks are categorized into 6
groups in total.

Rsn. We assess zero-shot classification accuracy on
PIQA (Bisk et al., 2020), HellaSwag (Zellers et al., 2019),
WinoGrande (Sakaguchi et al., 2019), ARC easy and
challenge (Clark et al., 2018).
Read. Zero-shot accuracy evaluations are conducted on
OpenBookQA (Mihaylov et al., 2018), LAMBADA (Pa-
perno et al., 2016), and BoolQ (Clark et al., 2019).
Additionally, a two-shot exact_match and f1 score
evaluation is performed on the ‘hasAnswer’ subset of
SQuADv2 (Rajpurkar et al., 2018).
Knl. We perform five-shot task exact_match evaluation
on NaturalQuestions (Kwiatkowski et al., 2019) and
TriviaQA (Joshi et al., 2017).
Code. The model’s coding capability is verified using
pass@1 scores through zero-shot tests on HumanEval (Chen
et al., 2021) and one-shot evaluation on MBPP (Austin
et al., 2021)
Math. An eight-shot exact_match evaluation method is
employed to gauge the model’s mathematical ability on the
GSM8K benchmark (Cobbe et al., 2021).
Gen. We perform five-shot accuracy evaluation on
MMLU (Hendrycks et al., 2021) and three-shot accuracy
evaluation on BBH (Suzgun et al., 2022).

Model Recovery Training Set. In model recovery, we em-
ploy the AdamW optimizer, a cosine learning rate scheduler
with an initial learning rate of 2 × 10−5, a weight decay
of 0.1, a global batch size of 128, a maximum training
sequence length of 512 tokens and the bfloat16 training
precision adhering to the configurations outlined in (Taori
et al., 2023) and (Touvron et al., 2023).Our training setup,
adapted from the llama-recipes8 GitHub repository, involves
full parameter fine-tuning over 5 epochs, conducted across
3 different seeds.

6https://github.com/EleutherAI/lm-evaluation-harness
7https://github.com/bigcode-project/bigcode-evaluation-

harness
8https://github.com/meta-llama/llama-recipes
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Table 7. The benchmark datasets used in the experiment

Benchmark Metric n-shot

Rsn.

PIQA Accuracy 0
Hellaswag Accuracy 0

Winogrande Accuracy 0
ARC_easy Accuracy 0

ARC_challenge Accuracy 0

Read.

OpenBookQA Accuracy 0
LAMBADA Accuracy 0

BoolQ Accuracy 0
SQuADv2 HasAns_EM 2
SQuADv2 HasAns_F1 2

Knl. NaturalQuestions Exact Match 5
TriviaQA Exact Match 5

Code HumanEval Pass@1 0
MBPP Pass@1 1

Math GSM8K Exact Match 8

Gen. MMLU Accuracy 5
BBH Accuracy 3

Table 8. Standard errors across different groups on 7B model (Par-
tial Privatization | Full Privatization)

Benchmark Llama-7B Mistral-7B Falcon-7B

Rsn.

PIQA 0.372 | 0.285 1.016 | 0.165 0.506 | 0.497
Hellaswag 0.547 | 0.338 0.300 | 0.104 2.904 | 0.756

Winogrande 1.982 | 1.568 2.140 | 1.512 3.010 | 2.906
ARC_easy 1.050 | 0.962 1.540 | 1.006 2.009 | 1.101

ARC_challenge 2.036 | 0.832 3.010 | 2.011 2.009 | 2.011

Read.

OpenBookQA 4.619 | 2.260 5.316 | 4.010 3.015 | 2.713
LAMBADA 0.017 | 0.010 0.013 | 0.010 0.008 | 0.005

BoolQ 0.085 | 0.087 0.070 | 0.073 0.103 | 0.089
SQuADv2_EM 0.000 | 0.000 0.000 | 0.000 0.000 | 0.000
SQuADv2_F1 0.669 | 0.738 0.903 | 0.821 0.387 | 0.202

Knl. NaturalQuestions 0.077 | 0.189 0.017 | 0.034 0.000 | 0.031
TriviaQA 0.000 | 0.025 0.000 | 0.050 0.000 | 0.015

Code HumanEval 0.000 | 0.000 0.000 | 0.000 0.000 | 0.000
MBPP 0.000 | 0.000 0.000 | 0.000 0.000 | 0.000

Math GSM8K 0.000 | 0.000 0.000 | 0.000 0.000 | 0.000

Gen. MMLU 0.822 | 0.309 1.352 | 0.810 0.981 | 0.736
BBH 0.000 | 0.000 0.000 | 0.000 0.000 | 0.000

The evaluation and training are performed on servers
equipped with a variety of Nvidia GPUs—specifically,
the 4090 24G, 6000 Ada 48G, and A100 80G—utilizing
bfloat16 training precision during the finetuning process.
To ensure the consistency and reliability of the results,
all experiments are replicated across three different seeds,
with the outcomes averaged. The experimental setup ran
on Ubuntu 20.04.6 LTS, with PyTorch version 2.2.0 and
NVIDIA CUDA 11.8.

C.5. Standard Deviation on Benchmarking Results

We conduct experiments with three distinct random seeds
to ensure the robustness of our findings. Each experiment
evaluated the model’s performance across various tasks. The
results, as presented in Table 8, are reported with the mean
performance metrics standard errors (StdErr) across the
three trials. A smaller StdErr indicates that the model’s
performance metrics are more stable.

C.6. Scatter Plots for Correlations in Models

Figure 4 presents scatter plots illustrating the relationship
between ∆ARR and the resilience scores across six mod-
els, alongside the corresponding Spearman and Pearson
correlation coefficients. The resilience scores are obtained
from section 4.2. As shown in Figure 4, we observe a dis-
cernible trend: an increase in ∆ARR is associated with a
decrease in model scores across all examined models. This
inverse relationship is robustly supported by both Spearman
and Pearson correlation coefficients, which consistently ex-
hibit strong negative values. The most pronounced negative
correlations are observed in the Falcon-7B model, indicat-
ing a significant reduction in model scores with increasing
∆ARR.
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(c) Falcon-7B

Figure 4. Correlation Analysis of ∆ARR and Resilience Score
Across Different Models
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Figure 5. Effectiveness on various capability benchmarks.

Effectiveness on Various Capability Benchmarks. To ex-
plore the efficacy of EX-Priv across various capabilities, we
visualize the Table 1 in Figure 5 to analyze the significant
variance in recovery ratios among different capability bench-
marks. Notably, in tasks related to commonsense reasoning
like PIQA and Winogrande, recovery ratios consistently
surpass 70% across all models. However, in technical do-
mains such as code and math tasks like HumanEval and
GSM8K, recovery ratios uniformly drop to 0%. This indi-
cates the notable challenge in recovering capabilities within
these specialized areas. This discrepancy can be due to the
inherent characteristics of each benchmark. For example,
tasks like PIQA, with only two choices provided, allow for
a random guess to achieve a 50% success rate, thereby ar-
tificially inflating the recovery ratio. In contrast, code and
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math tasks require a higher degree of precision and logical
rigor, which the models may struggle to achieve, resulting
in a 0% recovery ratio.

Sensitivity of EX-Priv to ε. To evaluate the sensitivity of
EX-Priv to tolerance magnitude ε, we incrementally adjust
ε from 0.1 to 1 in steps of 0.1 and calculate the ∆ARR of
six recovered models under EX-Priv privatization. Figure 6
illustrates that EX-Priv exhibits low sensitivity to changes
in ε. For instance, the ∆ARRs tend to stabilize across all
models as ε increases. This stability may come from the
requirement for a smaller privatization set at larger ε values
to meet the condition R(I) ≤ (1+ε)R([L]). In other words,
as ε rises, the need for extensive privatization diminishes,
enabling fewer layers to satisfy this criterion. Moreover,
we observe that the increment in ∆ ARR as ε increases is
comparatively smaller in larger models. This is in line with
the observation that privatizing more parameters above a
threshold only provides limited improvement in resilience.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Magnitude (ε)

0

1

2

3

∆
A

R
R

(%
)

Sensitivity to Tolerance

Llama2-7B

Mistral-7B

Falcon-7B

Figure 6. Sensitivity of EX-Priv to ε on models of size 7B.
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