
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

LEARNING STRUCTURED DEPENDENCIES USING GEN-
ERATIVE COMPUTATIONAL UNITS

Anonymous authors
Paper under double-blind review

ABSTRACT

The ability of neural networks to generalize from data is fundamentally shaped by
the design of their computational units. Common examples include the perceptron
and radial basis function (RBF) units, each of which provides useful inductive bi-
ases. In this work, we introduce a new computational unit, the generative matching
unit (GMU), which is designed to naturally capture structured dependencies in data.
Each GMU contains an internal generative model that infers latent parameters spe-
cific to an input instance X , and then outputs a non-linear function of the generative
error using these parameters. By incorporating generative mechanisms into the
unit itself, GMUs offer a complementary approach to existing computational units.
In this work, we focus on linear GMUs, where the internal generative models are
linear latent variable models, yielding a function form that shares some similarities
with RBF units. We show that linear GMUs are universal approximators like RBFs,
while being able to convey richer information and lessen the impact of the curse of
dimensionality compared to RBFs. Like perceptrons and RBF units, a linear GMU
has its set of weights and biases, and has a closed-form analytical expression, en-
abling fast computation. To evaluate the performance of linear GMUs, we conduct
a set of comprehensive experiments and compare them to multi-layer perceptrons
(MLPs), RBF networks, and ResNets. We construct GMU-ResNets, where the first
feedforward layer is replaced by GMUs, and test on 27 tabular datasets, observing
improved generalization over standard ResNets and competitive performance with
other benchmarks. We also construct GMU-CNNs, which contain convolutional
GMUs in their first layer. Across five vision datasets, GMU-CNNs exhibit better
generalization and significantly better robustness to test-time corruptions. We also
empirically compare linear GMUs, to benchmark networks across more than 30
synthetic classification tasks, encompassing both structured and unstructured data
distributions. We find that GMUs consistently demonstrate superior generalization
to out-of-distribution samples, especially for the structured cases.

1 INTRODUCTION

Computational units serve as the fundamental building blocks of deep learning architectures, shaping
the network’s ability to process and generalize. While the universal approximation theorem provides
insights into the representational capacity of multilayered architectures, the behavior of individual
computational units plays a crucial role in determining the network’s extrapolative and interpolative
properties. Understanding these intrinsic characteristics at a granular level remains essential for
analyzing how a model generalizes beyond its training data and adapts to new inputs.

A widely used computational block in neural architectures is the perceptron unit, which introduces
non-linearity essential for learning complex functions. This unit has remained foundational across
various modern architectures, including transformer variants (Lin et al., 2022) and convolutional
networks (Li et al., 2021). Multi-layered perceptron (MLP) networks are known to be universal
approximators, capable of learning intricate mappings given sufficient complexity and data (Hornik
et al., 1989). Another example of a classical computational unit is the Radial Basis Function (RBF)
unit, which also has universal approximation capabilities. Recent years have seen other computational
units being introduced, such as self-attention, Kolmogorov-Arnold Networks (Liu et al., 2024) and
Capsule networks (Patrick et al., 2022; Hinton et al., 2018). Alternatively, there have been approaches
that preserve the network computational structure, but dynamically adapt the parameters. Some
examples of that include Hypernetworks, where alternative network are used to adjust weights (Ha

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

et al., 2016; Chen et al., 2020), deformable convolution variants (Dai et al., 2017), where both the
convolution weights and location perturbations are learnt simultaneously and spatial transformer
networks, where a differentiable transformation is learnt on the image before forward it to a standard
neural network.

In our work, we undertake a different approach. We use the Bayesian framework to motivate the design
of new computational units, rethinking their properties through a probabilistic lens. Specifically,
given the input X and target label Y , we seek to characterize the class of joint distributions P (X,Y)
under which a single layered network with individual units, coupled with common loss functions like
cross-entropy, can achieve Bayes-optimal classification. This is equivalent to identifying scenarios
when a single-layer network with certain computation units can exactly recover the underlying class
conditionals P (Y |X).

Through this framework, we observe that perceptron units attain Bayes-optimal classification when
the underlying data distribution naturally factorizes into conditionally independent exponential
distributions. However, real-world data often exhibits complex inter-dimensional dependencies
beyond this simplified structure. To emulate this scenario, we use Structural Causal Models (SCMs),
which offer a principled framework for modeling causal mechanisms in data generation, extending
probabilistic models to incorporate causal relationships (Neuberg, 2003). To that end, we introduce a
new generative framework called Class-wise Latent Structural Causal Model (CL-SCM), where each
class has a distinct structural causal model governing input generation. When the data generation
model is a CL-SCM, we identify a novel computational unit that can exactly recover the underlying
class conditionals.

We call our proposed computational unit Generative Matching Units (GMUs), which function
fundamentally differently from traditional computational units. Instead of directly transforming input
features, GMUs reconstruct inputs using an internal generative model, minimizing reconstruction
error within their framework. This bridges the gap between local feedforward units and holistic
structured generative modeling. Importantly, linear GMUs, which is explored in this work, has a
closed form analytical expression, enabling fast and efficient inference. GMUs thus offer a promising
approach for capturing complex data structures in relevant problems.

2 CONTRIBUTIONS

1. We show the correspondence between computational units and Bayes Optimality, and show that
under structured generative settings, a new computational unit emerges. Based on these findings
we introduce the Generative Matching Unit (GMU) and linear GMU variants.

2. We show that GMU networks can be universal approximators under mild constraints (which
are satisfied by linear GMUs) while simultaneously being able to capture richer information in
high-dimensional spaces than RBF networks, lessening the impact of the curse of dimensionality.

3. To study linear GMUs, we conduct an exhaustive comparison of performance between GMU-
ResNets and ResNets on 27 tabular datasets from openML. We find that in the majority of cases
GMU-ResNets generalize better than ResNets, and in some cases they yield state-of-the-art results,
when compared to well-known benchmarks.

4. We test GMU-CNN variants on five standard vision datasets. We find that GMU-CNNs significantly
outperform their vanilla CNN counterparts in terms of robustness to test-time corruptions.

5. GMUs show significantly better out-of-distribution generalization in diverse synthetic data settings.

3 BAYES OPTIMALITY OF COMPUTATIONAL UNITS

In this section, we study when computational units can recover the true conditional probabilities,
thereby achieving Bayes optimal classification. We begin with a simple conditionally independent
setting for perceptrons, and then extend to more structured cases, including class-wise latent models
that can be viewed as instances of switching causal models (Willig et al., 2025), which motivates
our new generative computational unit. Given random variables X and Y denoting inputs and labels,
we consider samples S = {(X1, Y1), . . . , (Xn, Yn)} from P (X,Y). We highlight the connection
between the ground-truth conditional P (Y | X) and the output of a single-layer network with specific
computational units under different sampling processes, as outlined in Figure 1, beginning with the
exponential conditionally independent sampling process.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

(a) ECI Sampling (b) CL-SCM sampling (c) Proposed SCM Block

Figure 1: Comparing ground truth data generation models (a) Exponential Conditionally Independent (ECI)
Sampling, which samples every input dimension xi independently given the label Y and (b) Class-wise latent
structural causal model based sampling (CL-SCM), which maintains a separate SCM for each class. (c) outlines
the SCM in the CL-SCM approach, which can emulate more complex structural dependencies in the data.

Definition 1 (Exponential Conditionally Independent (ECI) Sampling). Let X = [x1, x2, . . . , xd] ∈
Rd and class label Y ∈ {1, . . . ,M}. The data is sampled such that P (Y |X) ∝
P (Y)

∏d
j=1 P (xj |Y), where each feature xj is conditionally independent given Y , and follows

the exponential form P (xj |Y = i) = 1
Zij

exp (αijxj), where Zij is a normalization factor.

A single-layer perceptron trained with cross-entropy recovers P (Y | X) under the ECI assumption.
Proposition 1. Let the RVs (X,Y) follow the ECI sampling process. Consider a single-layer
neural network with computational units pui(X,W, b) :=

∑d
j=1 Wijxj + bi, i ∈ {1, . . . ,M},

followed by a softmax layer which outputs Psoft(Y |X,W∗, b∗, S), where W∗, b∗ are weights and
biases minimizing the cross-entropy loss on S. Then, limn→∞ Psoft(Y |X,W∗, b∗, S) = P (Y |X).
Proposition 2. Let the random variables (X,Y) follow the ECI sampling process, and let S =
{(X1, Y1), . . . , (Xn, Yn)} be i.i.d. samples from this distribution. Consider a single-layer neural
network with computational units pui(X,W,b) :=

∑d
j=1 Wijxj + bi, i ∈ {1, . . . ,M}, followed

by a softmax layer producing output Psoft(Y |X,W,b). Let LCE denote the empirical cross-entropy
loss and assume it is uniformly bounded over the support of P (Y |X). Then, for every (W∗,b∗) ∈
argminW,b LCE(S), limn→∞ KL (P (Y |X) ∥Psoft(Y |X,W∗,b∗)) = 0 almost surely.

While the ECI sampling assumes conditional independence between input dimensions, real-world
data often exhibits intricate dependencies that standard models fail to capture. To address this, we
introduce a structured sampling process that encodes these inter-dimensional relationships, called
Class-wise Latent Structural Causal Model (SCM) sampling.
Definition 2 (Class-wise Latent SCM (CL-SCM) Sampling). Let X = [x1, x2, . . . , xd] ∈ Rd

be generated by one of M latent structural causal models (SCMs) corresponding to each class
Y ∈ {1, . . . ,M}: X = f(θ,WY) + ϵ, ϵ ∼ N (0, σ2I), θ ∼ U([−1, 1]k). i ∈ {1, . . . ,M},
where θ ∈ Rk represents latent confounders influencing X , and Wi corresponds to the structural
parameters of the causal model. U denotes the uniform distribution.

The class-wise latent SCM (CL-SCM) can be viewed as a special case of switching SCMs (Willig
et al., 2025), where different causal mechanisms are activated depending on context and the active
mechanism is determined by the class label Y . In the CL-SCM case, we show a new computational
unit emerges that recovers the true posterior, but only under a MAP approximation.
Proposition 3. Let the random variables (X,Y) follow the CL-SCM sampling process with equal
class priors, and let S = {(X1, Y1), . . . , (Xn, Yn)} be i.i.d. samples from this distribution. Consider
a single-layer neural network with computational units gi(X,W, σ) := − 1

σ2 minθ E[∥f(θ,Wi)−
X∥2] for i ∈ {1, . . . ,M}, followed by a softmax layer producing output Psoft(Y | X,W, σ). Let
LCE denote the empirical cross-entropy loss and assume it is uniformly bounded over the support
of P (Y | X). Then, for every (W∗, σ∗) ∈ argminW,σ LCE(S), we have limn→∞ KL(P (Y |
X) ∥Psoft(Y | X,W∗, σ∗)) = 0 almost surely.

The computational unit gi explicitly performs an internal optimization for every input instance X ,
using an internal generative model f(θ,Wi) to reconstruct X . This directly motivates the need for
generative computational units, which we outline in the following sections.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

(a)

Parameter Choices
θ var(Rk)
b var(Rd) ; [0, 0, .., 0]
W var(Rk×d);

[var(Rk−1×d); J1,d];
[w,w2, ..wk], w : var(Rd)

f WT θ
ϕ(z) e−z;

√
1− z; − log z

η 1; σX−b;
√∑d

i=1 x
2
i /d

σ 1

(b)

Figure 2: (a) A conceptual depiction of a single generative matching unit and (b) Table showing potential
parameter choices for the GMU function in equation 1.

Remark 1. However, we observe the unit gi may not be directly adaptable to real architectures.
When active, its output remains close to zero, whereas when inactive, it can become significantly
negative. To appropriately adjust its range, the final form of the GMU incorporates an additional
activation function ϕ, ensuring that the unit maintains a positive activation when it effectively predicts
the input and approaches zero when it does not.

4 GENERATIVE MATCHING UNITS: VARIANTS AND THEORETICAL RESULTS

We first define the most general form of a GMU as follows.
Definition 3. (Generative Matching Unit:) Let the input to the unit be X = [x1, x2, .., xd] ∈ Rd,
where xi ∈ R. Consider a function family F , such that every function f : Rk → Rd ∈ F can be
parameterized as f(θ,W) + b, where θ ∈ Rk, W ∈ Rk×d, and b ∈ R1×d. W and b represent the
generative weights and biases of the unit, and θ represents the latent generating variables. Then, a
GMU of order k computes:

gmu(X) = ϕ

(
1

σ2d
min
θ∈Rk

∥∥∥∥X − b

η
− f(θ,W)

∥∥∥∥2
)

(1)

ϕ : R → R is the GMU’s activation function. η represents an optional normalization measure to
ensure that 1

d minθ∈Rk∥X−b
η − (f(θ,W))∥2 is bounded. Lastly, σ represents an optional smoothing

factor.

We outline all parameter and function choices in equation 1 tested in this paper in Figure 2(b) . In
Figure 2(b), all real number based entries of the form var(Rp×q) denote tensors of size p× q where
all entries are real variables subject to gradient descent. Lastly, Jp,q denotes a constant matrix of
dimensions p× q, where every element is equal to 1. We next discuss the linear GMU variant that is
tested in this work. For notational ease, we denote a GMU of order k by GMU(k).
Remark 2. We provide a conceptual depiction of the computation inside a GMU in Figure 2(a).
Each GMU’s internal generative model can be parameterized by a manifold over the space of the
input X . Subsequently, for every input instance x ∈ Rd, a GMU effectively estimates the distance
between its internal manifold and x, and returns a function (ϕ) of this distance. Ideally, ϕ should be
chosen such that lower distances yield higher activations and vice-versa.
Remark 3. (µ-RBF units) Radial Basis Functions (Buhmann, 2000; Powell, 1987) are a special
case of equation 1 . Specifically, when k = 0,η = 1, ϕ(z) = e−z2

, and f(θ,W) = 0, we have

gmu(X) = ϕ
(

1
σ2d ∥X − b∥2

)
. GMUs contain an additional averaging across dimensions yielding

the d term in the denominator which RBFs don’t have. Furthermore, in our experiments we find that
performance is more stable when we set σ = 1. We denote them as µ-RBF networks, and these units
specifically as µ-RBF units.

4.1 LINEAR GMUS

In this work, we restrict f to linear functions WT θ over the latent generating variables. The resulting
generative structure represents a specific case of linear latent variable models (LLVMs), which have

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

been studied in literature in the context of generative modeling (Reilly, 2025). Here we set σ = 1,
yielding the following expression for a GMU of order k:

gmu(X) = ϕ

(
1

d
min
θ∈Rk

∥∥∥∥X − b

η
−WT θ

∥∥∥∥2
)

(2)

Linear f allows for closed form expressions of equation 2 as it becomes a least squares regression
problem. This eventually yields the following final expression:

gmu(X) = ϕ

1

d

∥∥∥∥∥X − b

η
−WT (WT)†

(
X − b

η

)T
∥∥∥∥∥
2
 , (3)

where A† denotes the pseudo-inverse of A. We denote these as linear GMUs. Note that the generative
manifold of linear GMUs is therefore a linear subspace of dimensionality k. Geometrically, when

η = 1, minθ∈Rk

∥∥∥X−b
η −WT θ

∥∥∥2 becomes the distance between the input point X and a linear

subspace parameterized by WT θ + b (manifold in Figure 2(a)). Lastly, in our experiments, we set
σ = 1, as we find that the 1/d term is enough to avoid collapsing gradients, and learning is stable.
We also find that σ = 1 yields more performant GMUs.

4.2 ARE GMUS UNIVERSAL APPROXIMATORS?
We study the universal approximation abilities of two layered GMU-MLPs, which consists of a
layer containing multiple GMUs followed by a linear perceptron layer. First, let us define the set of
functions Lp(Rd) such that every f ∈ Lp(Rd), where f : Rd → R, is pth power integrable, bounded,
continuous and continuous with compact support. Lp(Rd) encompasses the set of all such functions
which satisfy these constraints. This leads to the universal approximation theorem for GMUs, as an
extension of the result in Park and Sandberg (1991).
Proposition 4. (from Park and Sandberg (1991)) We are given a GMU-MLP, with GMU units in
equation 1 of arbtrary k specified as: η = 1 and ∃Ws.t.f(θ,W) = C∀θ (C is any constant)
and ϕ(z) is any integrable bounded function such that

∫
ϕ(x)dx ̸= 0. Then, this GMU-MLP can

approximate any function f ∈ Lp(Rd).

Note that linear GMUs satisfy the constraints of Proposition 4, and thus are universal approximators.

4.3 COMPARING LINEAR GMUS WITH RBFS

Linear GMUs merit a direct comparison to RBFs in some ways, because both GMUs and RBFs
compute distanced internally, and return a function of this distance. For RBFs, it is the Euclidean
distance ||X1−X2||, whereas for linear GMUs of order k, it is the distance between a k-dimensional
linear subspace and a point. We call this the k-subspace distance, and it is formally defined as follows:
Definition 4 (k-Subspace Distance). The k-subspace distance between two points X1, X2 ∈ Rd with
respect to a generative weight matrix W ∈ Rk×d is given by:

Sk,W (X1, X2) = min
θ∈Rk

∥∥X2 − (WT θ +X1)
∥∥ .

This measures the closest distance between X2 and the k-dimensional affine subspace generated by
W which passes through X1.

We note that the linear GMU function, as seen in equation 2, computes a k-subspace distance. When
k = 0, the above just computes Euclidean distance, which is used in RBFs. As both methods rely on
distance measures, the curse of dimensionality becomes a relevant concern.

Curse of Dimensionality: As dimensionality increases, distance-based metrics tend to lose their
discriminative power. In high-dimensional spaces, most points become nearly equidistant from one
another, causing similarity measures to collapse (Xia et al., 2015). The effectiveness of Euclidean
distance diminishes as variability in measured distances decreases, making tasks like nearest-neighbor
classification or kernel methods more challenging.

This naturally raises the question: is the k-subspace distance inherently more robust to the curse of
dimensionality than Euclidean distance? To address this, we introduce the concept of the coefficient of
Variation (CV), which quantifies how informative a similarity measure remains in high-dimensional
spaces.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

(a) k-subspace Distance (b) Low Intrinsic Dimensionality Data

Figure 3: CV v/s Dimensionality of various distance measures. We compare k-subspace distance used by GMUs
to Euclidean distance (k = 0) which is used by units such as RBFs.

Definition 5. (Coefficient of Variation) We are given a similarity measure S(X1, X2), where
X1, X2 ∈ Rd. Let Id represent the identity matrix of size d × d. Then, the coefficient of variation
(CV) γS(d) of S in d-dimensional space is given by:

γS(d) =
σX1,X2∼N (0,Id)[S(X1, X2)]

µX1,X2∼N (0,Id)[S(X1, X2)]
, (4)

where σ[.] and µ[.] denote the standard deviation and the mean of the random variables within, given
the distributions of X1 and X2 below.

This ratio highlights the degree of variation in a similarity measure. A small γS(d) indicates
low variability and suggests that the measure loses its ability to differentiate between points as
dimensionality increases. In contrast, a high CV signifies greater variability, preserving meaningful
distinctions between points.

Theoretical Results: To investigate whether k-subspace distance is more resistant to the curse of
dimensionality, we compare the CV for Euclidean distance (γE) and k-subspace distance (γSk,W

)
theoretically. We have the following results.
Theorem 4. Let E(X1, X2) = ∥X1 −X2∥, we can show that γE(d+ 1) < γE(d).
Corollary 4.1. We are given the k-subspace distance Sk,W (X1, X2) from X1 to X2. With this,
first, we note that γS0,W

(d) = γE(d), where E denotes the Euclidean distance. Then, we have that
γSk+1,W

(d) > γSk,W
(d), and thus γSk,W

(d) > γE(d).
Proposition 5. We consider the case where the RV X has low intrinsic dimensionality. Let X ∈ Rd

be generated as: X =
∑kID

i=1 aivi, ai ∼ N (0, 1), where {vi}kID
i=1 are orthonormal vectors in

Rd, and kID < d is the intrinsic dimensionality of X . Let us set W = [v1, ..,vk] to be the first k
orthonormal vectors. Then, we have that γE(d) = γE(kID) and γSk,W

(d) = γE(kID − k).
Remark 5. These results provide interesting insights. Proposition 4 reinforces the curse of dimen-
sionality, showing that Euclidean distance loses information as dimensionality increases. In contrast,
Proposition 4.1 demonstrates that k-subspace distance retains a strictly greater CV, enabling more
robust differentiation in high-dimensional spaces. Moreover, higher-order GMUs extract richer struc-
tural information as k increases. Lastly, Proposition 5 highlights that when data in high dimensional
ambient space has a low intrinsic dimension, which is common in real-world datasets, k-subspace
distance can maintain a high CV.

Empirical verification: We conduct a series of experiments to estimate the CV of both Euclidean
distance and k-subspace distance, verifying the theoretical results from Corollary 4.1 and Theorem 4.
For the first experiment, we simulate X1, X2 ∼ N (0, Id) and compute the CVs γE(d) and γSk,W

(d)
as functions of dimensionality d. The results, summarized in Figure 3(a), confirm that k-subspace
distance consistently exhibits higher CV compared to Euclidean distance (k = 0), reinforcing the
idea that GMUs can capture greater structural variability in high-dimensional settings.

Next, we conduct an experiment on data distributions with low intrinsic dimensionality (ID), a
common property of real datasets. We hypothesize that when data lies in a low-dimensional subspace
within Rd, appropriately chosen weights W can enhance the CV of k-subspace distance. To test this,
we generate inputs constrained to 10-dimensional linear subspaces within ambient spaces where d

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Algorithm 1 Sparse Linear Structure Sampling

1: Setup: X ∈ Rd, labels y ∈ {1, . . . , C}, W = [W1,W2, ..,WNtotal] ∈ RNtotal×d

2: For each class y: Select up to Nmax active latent variables from {θi}Ntotal
i=1

3: Generative Process:
4: Sample y ∼ Unif{1, . . . , C}
5: Compute x:

x =

Ny∑
i=1

WT
gy(i)

θgy(i) + ϵ

6: where ϵ ∼ N (0, σ2Id)

varies from 10 to 50, setting the first k rows of W to match the subspace’s generating vectors. As
shown in Figure 3(b), k-subspace distance yields substantial CV improvements for larger k, when the
data distributions are of low ID.

5 EXPERIMENTS

We provide experiments on both synthetic and real datasets. The synthetic experiments are designed
to isolate and stress-test specific structural properties of GMUs, while the real-data experiments
demonstrate their utility in practical supervised learning tasks. Additional details, including theoretical
proofs, extended experiments, and in-depth analysis of GMUs, are provided in the supplementary
materials, along with code for reproducibility.

5.1 SYNTHETIC DATASETS

We design six synthetic sampling scenarios to evaluate GMUs under controlled conditions, each
highlighting a different structural or functional property of the data. These experiments test not
only whether networks can exploit class-specific structural causal models (SCMs) and generalize to
out-of-distribution shifts, but also whether they can capture functional and geometric structure such
as Fourier expansions, k-subspace thresholds, polynomial boundaries, and Gaussian mixtures. Due to
space constraints, we report in the main paper only the Sparse Linear Structure Prediction experiment,
which directly probes the ability of GMUs to recover sparse latent causes that determine both inputs
and labels. The remaining experiments, including Fourier series recovery, k-subspace thresholding,
sparse neural structure sampling, tree-structured sampling, polynomial boundary sampling, and
conditional Gaussian sampling, are presented in the Appendix with full details and results.

5.1.1 SPARSE LINEAR STRUCTURE PREDICTION

Problem Outline. We argue that in many natural data sources, only a sparse subset of latent causes
is active in generating any given observation. This intuition is consistent with prior work in sparse
representation learning (Lee et al., 2006), where sparsity is viewed as a key inductive bias for
capturing real-world structure. To test whether GMUs can leverage this property, we construct a
synthetic scenario in which the set of active latent causes not only generates the observed input
but also directly determines the class label. Concretely, this sampling process is a special case of
the CL-SCM framework (Figure 2), where the class-wise models SCM1, SCM2, . . . , SCMM may
share common latent causes and weight structure. The generative process is formally described in
Algorithm 1.

Experimental Setup. We generate datasets by first sampling the generative weights W from
a standard normal distribution N (0, 1). For each instance, the number of active causes Ny is
drawn uniformly from [1, Nmax], and the corresponding latent variables are activated to produce the
observed input vector x. Unless otherwise specified, Gaussian noise with variance σ2 is added to
each dimension. To probe generalization, we vary the range of the latent variables θly(i) at test time,
thereby creating OOD conditions where the test distribution differs from training. This allows us
to evaluate whether models capture the underlying generative mechanism or merely memorize the
training data.

Baselines and Models. We compare GMUs against strong feedforward baselines. Specifically, we
evaluate a two-layer MLP with 512 ReLU-activated hidden units (denoted MLP-512) and a ResNet
with two groups, each containing one block of 512 units (denoted ResNet-512-[1,1]). To ensure
fairness, all models are trained with the same optimizer and learning rate schedule. We also evaluate

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Setup Test
Config GMU(1) GMU(2) GMU(3) GMU(4) GMU(5) GMU(6) MLP MLP

(norm.) R-[1,1] R-[1,1]
(norm.)C Ntotal d σ Nmax

20 25 10 0.01 3 same 0.8997 0.9311 0.9654 0.9794 0.9694 0.966 0.9505 0.9728 0.9622 0.9714
20 25 10 0.01 3 ood 0.685 0.84525 0.9735 0.8922 0.928 0.9442 0.5725 0.7087 0.631 0.6525
20 25 100 0.1 3 same 0.944 0.9271 0.9348 0.9488 0.9482 0.9482 0.9197 0.9451 0.946 0.9462
20 25 100 0.1 3 ood 0.8785 0.9005 0.926 0.848 0.8592 0.9092 0.6457 0.733 0.681 0.724
20 25 100 0.01 3 same 0.9471 0.9494 0.9814 0.9874 0.9862 0.9825 0.9545 0.9754 0.9654 0.9788
20 25 100 0.01 3 ood 0.892 0.9215 0.981 0.9335 0.9365 0.9612 0.6282 0.7492 0.693 0.7522
20 25 100 0 3 same 0.9474 0.9565 0.9962 0.9951 0.9974 0.9991 0.9548 0.9797 0.9622 0.9868
20 25 100 0 3 ood 0.892 0.925 0.9977 0.9915 0.9835 0.9905 0.6275 0.7495 0.6842 0.7432
20 25 500 0.01 3 same 0.9502 0.9434 0.9831 0.9891 0.9894 0.9874 0.9537 0.9771 0.9685 0.9845
20 25 500 0.01 3 ood 0.9087 0.9215 0.9845 0.9395 0.948 0.9655 0.59725 0.7677 0.6467 0.7665
20 25 1000 0.01 3 same 0.9111 0.9502 0.9834 0.9957 0.9914 0.996 0.9662 0.9814 0.9762 0.9845
20 25 1000 0.01 3 ood 0.8657 0.9017 0.975 0.9537 0.987 0.983 0.517 0.7525 0.6572 0.7837
20 25 1000 0.01 6 same 0.978 0.9385 0.9791 0.9908 0.9885 0.9951 0.9637 0.9882 0.9757 0.9882
20 25 1000 0.01 6 ood 0.9272 0.6867 0.9462 0.9462 0.9905 0.9997 0.6407 0.9107 0.641 0.904
50 10 1000 0.01 3 ood 0.5752 0.743 0.8997 0.9077 0.891 0.8712 0.5492 0.5575 0.4132 0.5352

Wins/Losses/Ties vs GMU(3) 14/1/0 15/0/0 – 7/7/1 6/9/0 6/9/0 15/0/0 12/3/0 14/1/0 10/5/0
Wilcoxon p-value 1.8e-04 6.1e-05 – 0.432 0.639 0.804 6.1e-05 8.4e-03 4.3e-04 1.8e-02

Table 1: Test accuracy results on the sparse linear structure prediction experiments.

normalized variants of the baselines, where inputs are scale-normalized and mean-adjusted, denoted
with the suffix “(norm.)”. For GMUs, we use a single GMU layer with d inputs and C outputs,
denoted GMU(k), where k indicates the order of the GMU. This design allows us to directly test
whether the inductive bias of GMUs provides an advantage over standard architectures.

Results. The results are summarized in Table 1. GMUs consistently outperform both MLP and
ResNet baselines across parameter settings, with the gap most pronounced in OOD scenarios where
test distributions differ from training. This suggests that GMUs capture aspects of the underlying
generative process better than the other counterparts. We also find that higher-order GMUs (k >
Nmax) perform comparably to k = Nmax, since larger-order GMUs can emulate lower-order ones by
simply setting some weights to zero. The Wilcoxon signed-rank test shows no significant gains once
k exceeds the true number of active causes, indicating that while overparameterization is not harmful,
its benefits saturate beyond the underlying generative complexity.

Discussions. These findings highlight two key points. First, GMUs are well-suited for tasks where
the discriminative signal is tied to a sparse generative structure, a property that is common in many
real-world domains (e.g., vision, genomics, and language). Second, the robustness of GMUs under
OOD shifts suggests that their inductive bias aligns more closely with the true data-generating process
in this scenario. In the Appendix, we extend this analysis to five other synthetic scenarios listed
above, which probe complementary aspects of GMU behavior such as functional approximation
(Fourier series), geometric discrimination (k-subspace thresholding), non-linear causal sampling
(sparse neural structure), hierarchical observed-variable dependencies (tree-structured sampling), and
non-linear decision boundaries (polynomial and Gaussian mixtures). Together, these experiments
provide a broad and rigorous evaluation of GMUs under diverse synthetic conditions.

5.2 TABULAR DATASETS (REAL)
Outline: We test and compare performance on 27 OpenML datasets, selecting a diverse subset
from Kadra et al. (2021), ranging from small-scale (800 samples, 5 dimensions) to medium-scale
(170k samples, 1k dimensions). For the Resnet-512-[1,1] architecture, which performed well in our
synthetic experiments overall, we replace the first layer with four types of GMU units: k = 0, 1, 2, 3.
Each configuration maintains 128 units in the first layer, yielding 512 output units, matching the
Resnet. We denote this network as GMU-Resnet-512-[1,1] (or GMU-S). Since GMU-Resnets are
slightly more parameterized than Resnets, we scaled the Resnets (530 units per layer) to ensure equal
parameter counts. Results are provided in Table 3.

Takeaways: We find that overall, in 23 out of 27 cases, GMU-Resnet-512-[1,1] showcases better
or on-par balanced accuracy. Furthermore, the GMU-Resnet-512-[1,1] performs competitively or
favorably against other state-of-the-art approaches in Kadra et al. (2021) when compared one-to-one
via the Wins/Losses/Ties criterion (please see supplementary materials).

5.3 VISION DATASETS (REAL)
Outline: We construct convolutional GMUs, where we replace every linear operation in convolution
with a GMU, using which we create GMU-CNN architectures, where the first layer is replaced with
only convolutional GMUs and the rest of the network is unchanged. We focus on two aspects: whether
the GMUs show better generalization compared to CNNs with the same architecture and whether
they show better out-of-distribution performance to test-time corrupions. We report our findings

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Models Datasets
credit-g anneal kr-vs-kp mfeat vehicle kc1 phoneme cnae-9 blood Australian car segment jasmine sylvine

R 0.6972 0.8546 0.9969 0.9850 0.8446 0.7104 0.8959 0.9398 0.6304 0.8479 1.0000 0.9254 0.7438 0.9250
GMU-R 0.7036 0.8610 0.9969 0.9800 0.8793 0.6866 0.8882 0.9398 0.6718 0.8726 1.0000 0.9307 0.7520 0.9268

adult nomao bank jungle volkert helena connect-4 higgs numerai walking ldpa aloi skin-seg
R 0.7652 0.9582 0.7261 0.9686 0.6766 0.2213 0.7369 0.6684 0.5066 0.6203 0.6991 0.9617 0.9997
GMU-R 0.7735 0.9599 0.7382 0.9773 0.7003 0.2206 0.7535 0.6781 0.5146 0.6322 0.6777 0.9684 0.9996

Table 3: Balanced Accuracy on 27 Tabular datasets from OpenML.
Dataset: MNIST

Network Standard brightness canny dotted fog glass impulse motion shot spatter zigzag Average
CNN 0.9949 0.2274 0.6149 0.9791 0.1188 0.541 0.4529 0.9675 0.9226 0.9834 0.7826 0.6895

GMU-CNN 0.9954 0.9913 0.8998 0.9896 0.9234 0.8141 0.9377 0.9614 0.9449 0.9759 0.9447 0.9434
Dataset: Fashion-MNIST

CNN 0.9329 0.4535 0.3709 0.8786 0.2712 0.6518 0.2056 0.7188 0.5959 0.8835 0.8131 0.615982
GMU-CNN 0.9356 0.8250 0.7058 0.9118 0.7442 0.5817 0.6703 0.6831 0.48964 0.8868 0.8806 0.755867

(a)

Dataset: smallNORB

Model Test Accuracy
(Uncorrupted)

Test Accuracy
(Corrupted)

CNN 0.954321 0.436872
GMU-CNN (1S-1D) 0.97477 0.546502
GMU-CNN (2D-1S) 0.96642 0.516132
GMU-CNN (3S-1D) 0.96 0.56329

(b)
Dataset: CIFAR-10

Network Standard brightn contrast defocus elastic fog gauss_blur glass impulse motion pixelate saturate shot_noise spatter Average
VGG-16 0.8594 0.83642 0.5952 0.68148 0.71436 0.74422 0.5929 0.44146 0.59338 0.6211 0.6826 0.8147 0.6366 0.7440 0.669109
GMU(3)-VGG 0.8645 0.8540 0.7489 0.7811 0.7493 0.8176 0.741 0.4665 0.6003 0.7142 0.7192 0.8211 0.6372 0.7861 0.725885
GMU(8)-VGG 0.8734 0.86188 0.75478 0.7977 0.7534 0.8311 0.7620 0.4383 0.5608 0.7325 0.7273 0.8298 0.6163 0.7874 0.727174

(c)

Table 4: Test Accuracy on standard and corrupted data on (a) MNIST and Fashion-MNIST (b) smallNORB, and
(c) CIFAR-10 datasets.

across four datasets: MNIST, Fashion-MNIST, CIFAR-10, smallNORB and their corrupted versions.
Results are summarized in Table 4. Additionally, to also showcase that GMUs can be combined with
benchmark approaches for out-of-distribution settings such as test time adaptation (You et al., 2021;
Lim et al., 2023), we provide additional experiments in the supplementary materials.

Takeaways: We find that GMU-CNNs show substantial improvements in terms of robustness
to test-time corruptions in all cases. In all cases, we see that GMU-CNNs show improvements
when compared with their native CNN baselines. On smallNORB, GMU-CNNs reach performance
competitive to other benchmarks such as first generation capsule networks (2.5 vs 2.7% error rate in
Patrick et al. (2022)). We don’t use data-augmentation or any other regularization approach in these
experiments, to focus on the intrinsic generalization performance.

Computation times: We find that GMU-CNNs and GMU-MLPs still maintain instantaneous infer-
ence times per sample, in spite of inverse operations. This is because the size of the matrix being
inverted in equation 3 is k × k, where k is the order of the GMU. In all our experiments k ≤ 8,
which makes this operation efficient. Overall, in the tabular data experiments, the average per-sample
inference time of GMU-Resnets was 0.017 ms compared to 0.004 ms for Resnets, and for the vision
experiments, GMU-CNNs took 0.0265 ms compared to 0.0083 ms for CNNs.

5.4 CROSS-DATASET TESTING (REAL) Table 2: Cross-Dataset Testing

Test Setting GMU Standard
SVHN Only 96.58 95.60
SVHN→MNIST 83.99 67.28
MNIST→ SVHN 54.50 19.95

In this section, we train GMU-ResNets and ResNets (with
the ResNet-18 backbone) on the Street View House Numbers
dataset (SVHN, Netzer et al. (2011)) and then test directly on
MNIST, without any changes to the network. Similarly, we use
trained GMU-CNNs and CNNs on MNIST and test on SVHN. The results are shown in Table 2. We
not only see GMU-Resnet-18 significantly improve over Resnet-18 on native SVHN, but we also see
significant gains in accuracy when directly transferring between datasets.

6 CONCLUSION AND LIMITATIONS

Our work demonstrates the potential advantages of an alternative computational unit that computes
from a generative perspective, imposing a low-complexity constraint on the generation process.
Generative Matching Units showcase better generalization and demonstrate a significantly higher
ability to identify dynamic causal structures in the inputs. On real tabular datasets, Resnets replaced
with GMU layers in the first layer show signifcant performance improvements. Many possibilities
remain open for incorporating GMUs in larger networks across other domains, and also finding ways
to cascade multiple GMU layers.

Limitations: Our experiments focus on GMUs replacing traditional units only in the first layer. This
choice is driven by two factors: First, replacing the first layer already leads to significantly different
network behavior, making it a natural point of study. Second, while GMUs introduce negligible
overhead in the first layer, computational costs increase in deeper layers. We are actively working on
optimizing efficiency to scale GMUs to ImageNet-level datasets without added compute burden.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

REFERENCES

Martin D Buhmann. Radial basis functions. Acta Numerica, 9:1–38, 2000.

Yunpeng Chen, Xianzhi Dai, David R So, and Quoc V Le. Dynamic convolution: Attention over
convolution kernels. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 11030–11039, 2020.

Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong Zhang, Han Hu, and Yichen Wei. Deformable
convolutional networks. In Proceedings of the IEEE international conference on computer vision,
pages 764–773, 2017.

Stefan Falkner, Aaron Klein, and Frank Hutter. Bohb: Robust and efficient hyperparameter opti-
mization at scale. In International conference on machine learning, pages 1437–1446. PMLR,
2018.

David Ha, Jürgen Dai, and Quoc V Le. Hypernetworks. arXiv preprint arXiv:1609.09106, 2016.

Geoffrey E Hinton, Sara Sabour, and Nicholas Frosst. Matrix capsules with em routing. In Interna-
tional conference on learning representations, 2018.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are
universal approximators. Neural networks, 2(5):359–366, 1989.

Arlind Kadra, Marius Lindauer, Frank Hutter, and Josif Grabocka. Well-tuned simple nets excel on
tabular datasets. Advances in neural information processing systems, 34:23928–23941, 2021.

Andreı̆Nikolaevich Kolmogorov. On the representation of continuous functions of several variables by
superpositions of continuous functions of a smaller number of variables. American Mathematical
Society, 1961.

Honglak Lee, Alexis Battle, Rajat Raina, and Andrew Ng. Efficient sparse coding algorithms.
Advances in neural information processing systems, 19, 2006.

Zewen Li, Fan Liu, Wenjie Yang, Shouheng Peng, and Jun Zhou. A survey of convolutional neural
networks: analysis, applications, and prospects. IEEE transactions on neural networks and
learning systems, 33(12):6999–7019, 2021.

Hyesu Lim, Byeonggeun Kim, Jaegul Choo, and Sungha Choi. TTN: A domain-shift aware batch
normalization in test-time adaptation. In The Eleventh International Conference on Learning
Representations, 2023.

Tianyang Lin, Yuxin Wang, Xiangyang Liu, and Xipeng Qiu. A survey of transformers. AI open, 3:
111–132, 2022.

Ziming Liu, Yixuan Wang, Sachin Vaidya, Fabian Ruehle, James Halverson, Marin Soljačić,
Thomas Y Hou, and Max Tegmark. Kan: Kolmogorov-arnold networks. arXiv preprint
arXiv:2404.19756, 2024.

Alfredo Nazabal, Nikolaos Tsagkas, and Christopher KI Williams. Inference and learning for
generative capsule models. Neural Computation, 35(4):727–761, 2023.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Baolin Wu, Andrew Y Ng, et al.
Reading digits in natural images with unsupervised feature learning. In NIPS workshop on deep
learning and unsupervised feature learning, volume 2011, page 4. Granada, 2011.

Leland Gerson Neuberg. Causality: models, reasoning, and inference, by judea pearl, cambridge
university press, 2000. Econometric Theory, 19(4):675–685, 2003.

Jooyoung Park and Irwin W Sandberg. Universal approximation using radial-basis-function networks.
Neural computation, 3(2):246–257, 1991.

Mensah Kwabena Patrick, Adebayo Felix Adekoya, Ayidzoe Abra Mighty, and Baagyire Y Edward.
Capsule networks–a survey. Journal of King Saud University-computer and information sciences,
34(1):1295–1310, 2022.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

MJD Powell. Radial basis functions for multivariable interpolation: a review. Clarendon Press,
1987.

James Reilly. Linear Least Squares Estimation, pages 167–223. Springer Nature Switzerland,
Cham, 2025. ISBN 978-3-031-68915-4. doi: 10.1007/978-3-031-68915-4_7. URL https:
//doi.org/10.1007/978-3-031-68915-4_7.

Sara Sabour, Geoffrey Frosst, and Geoffrey E Hinton. Dynamic routing between capsules. Advances
in neural information processing systems, 30, 2017.

Jing-Feng Tian and Zhenhang Yang. Asymptotic expansions of gurland’s ratio and sharp bounds for
their remainders. Journal of Mathematical Analysis and Applications, 493(2):124545, 2021.

Jing Wang, Jiayuan Ding, J Zico Kolter, and Nathan Umbach. Test-time adaptation via self-training.
arXiv preprint arXiv:2103.15802, 2021.

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention with
linear complexity. arXiv preprint arXiv:2006.04768, 2020.

Moritz Willig, Tim Tobiasch, Florian Peter Busch, Jonas Seng, Devendra Singh Dhami, and Kristian
Kersting. Systems with switching causal relations: A meta-causal perspective. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.
net/forum?id=J9VogDTa1W.

Shuyin Xia, Zhongyang Xiong, Yueguo Luo, Guanghua Zhang, et al. Effectiveness of the euclidean
distance in high dimensional spaces. Optik, 126(24):5614–5619, 2015.

Fuming You, Jingjing Li, and Zhou Zhao. Test-time batch statistics calibration for covariate shift.
arXiv preprint arXiv:2110.04065, 2021.

11

https://doi.org/10.1007/978-3-031-68915-4_7
https://doi.org/10.1007/978-3-031-68915-4_7
https://openreview.net/forum?id=J9VogDTa1W
https://openreview.net/forum?id=J9VogDTa1W

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

APPENDIX TABLE OF CONTENTS

• Vision: Comparing with Test-Time Adaptation .13

• Additional Experiments . 14

– Fourier Series v/s Noise . 14

– k-subspace distance thresholding . 15

– Sparse Neural Structure Sampling . 15

– Polynomial Boundary Sampling . 19

– Conditional Gaussian Sampling . 20

• Discussions: Contextualizing GMUs in Literature . 21

• Details on GMU Function and Integration . 22

• Additional Empirical Details . 23

• Proofs of Theoretical Results . 26

A SUMMARY OF SUPPLEMENTARY MATERIALS

In this document we share additional experiments and analyses, empirical details and theoretical
proofs and any further clarifications. Code is provided here, which includes a GUI based demonstra-
tion of the performance of trained GMU-CNNs for digit classification and Fashion item classification.
Instructions for the demo are available here.

12

https://anonymous.4open.science/r/GMU-B86C/README.md
https://streamable.com/anox59

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

B VISION: COMPARING WITH TEST-TIME ADAPTATION

Corruption Type Standard (CNN) TTA (CNN) Standard (GMU-CNN) TTA (GMU-CNN)
Brightness 0.2274 0.9887 0.9913 0.9933
Canny Edges 0.6149 0.9431 0.8998 0.9813
Dotted Line 0.9791 0.9873 0.9896 0.9902
Fog 0.1188 0.6074 0.9234 0.9609
Impulse Noise 0.4529 0.9098 0.9377 0.9683
Motion Blur 0.9675 0.9858 0.9614 0.9666
Shot Noise 0.9226 0.9677 0.9449 0.9757
Spatter 0.9834 0.9857 0.9759 0.9755
Zigzag 0.7826 0.8707 0.9447 0.9608
Average 0.67213333 0.916244 0.952078 0.974733

Table 5: Accuracy comparison of standard (no TTA) and Test-Time Adaptation (TTA) approaches across various
corruption types on the MNIST dataset.

Corruption Type Standard (CNN) TTA (CNN) Standard (GMU-CNN) TTA (GMU-CNN)
Brightness 0.4535 0.8281 0.8250 0.8550
Canny Edges 0.3709 0.5322 0.7058 0.7575
Dotted Line 0.8786 0.8953 0.9118 0.9161
Fog 0.2712 0.6060 0.7442 0.8373
Impulse Noise 0.2056 0.6614 0.6703 0.7837
Motion Blur 0.7188 0.7865 0.6831 0.7830
Shot Noise 0.5959 0.7059 0.4896 0.6870
Spatter 0.8835 0.8902 0.8868 0.8908
Zigzag 0.8131 0.8606 0.8806 0.8941
Average 0.6159 0.7518 0.7558 0.8227

Table 6: Accuracy comparison of standard (no TTA) and Test-Time Adaptation (TTA) approaches across various
corruption types on the Fashion-MNIST dataset.

Corruption Type Standard (VGG) TTA (VGG) Standard (GMU(3)) TTA (GMU(3)) Standard (GMU(8)) TTA (GMU(8))
Brightness 0.83642 0.82376 0.8540 0.85266 0.86188 0.86362
Contrast 0.5952 0.74014 0.7489 0.8016 0.75478 0.81086
Defocus Blur 0.68148 0.79334 0.7811 0.82878 0.7977 0.83792
Elastic Transform 0.71436 0.74232 0.7493 0.7808 0.7534 0.78318
Fog 0.74422 0.77798 0.8176 0.8283 0.8311 0.8393
Frost 0.7386 0.7386 0.7410 0.77508 0.7620 0.78332
Gaussian Blur 0.5929 0.77528 0.7410 0.81844 0.7620 0.82662
Impulse Noise 0.59338 0.65226 0.6003 0.75382 0.5608 0.73398
Motion Blur 0.6211 0.74056 0.7142 0.79238 0.7325 0.79896
Pixelate 0.6826 0.7591 0.7192 0.80666 0.7273 0.81328
Saturate 0.8147 0.81246 0.8211 0.8283 0.8298 0.83882
Shot Noise 0.6366 0.72318 0.6372 0.77136 0.6163 0.76632
Spatter 0.7440 0.73732 0.7861 0.79432 0.7874 0.7989
Average 0.691966 0.7551 0.747 0.8025 0.752074 0.807314

Table 7: Accuracy comparison of standard (no TTA) and Test-Time Adaptation (TTA) approaches across various
corruption types on the CIFAR-10 dataset.

We extend our analysis to include test-time adaptation (TTA) and summarize the statistical compar-
isons in Table 8. The table reports wins, losses, and ties across corruption types, along with Wilcoxon
signed-rank p-values for GMU-CNN versus standard CNN (or VGG in the case of CIFAR-10), both
under standard evaluation and with TTA. Several clear trends emerge. First, under standard evaluation,
GMU-CNN significantly outperforms the baseline on MNIST and CIFAR-10, and shows a positive
but not statistically significant trend on Fashion-MNIST. Second, when TTA is applied, both standard
and GMU-based models benefit substantially, confirming that adaptive batch normalization improves
robustness to distribution shifts. Crucially, GMU-based architectures continue to hold an advantage
even after TTA is applied to both models: on Fashion-MNIST and CIFAR-10, the improvements
are statistically significant (p = 0.01953 and p = 0.00012, respectively), while on MNIST the trend
remains favorable though not significant (p = 0.06445). Finally, higher-order GMU variants (e.g.,
GMU(8) on CIFAR-10) show that the benefits of TTA and GMU are complementary, leading to
consistent wins across all corruptions. These results demonstrate that GMU-based architectures not
only integrate seamlessly with existing TTA methods but also preserve their relative advantage over
conventional networks under test-time distribution shifts.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Dataset Standard With TTA
Wins Losses Wilcoxon p Wins Losses Wilcoxon p

MNIST 9 2 0.00488 7 2 0.06445
Fashion-MNIST 8 3 0.08740 7 2 0.01953
CIFAR-10 11 3 0.00336 13 0 0.00012

Table 8: Comparison of GMU-CNN vs CNN across datasets. Left: standard evaluation. Right: test-time
adaptation (TTA). Wins/losses are counted per corruption type; p-values are from the one-sided Wilcoxon
signed-rank test (GMU-CNN > CNN).

C ADDITIONAL EXPERIMENTS

In this section, we demonstrate the versatility of GMUs in achieving good generalization performance
in diverse synthetic settings. We include the following experimental setups:

1. Fourier series function v/s Noise Differentiation: We show how single-layered GMU archi-
tectures can learn underlying function structures in the data, when the functions are represented
generally as a Fourier series.

2. k-subspace distance based thresholding: We show that the problem that is the most natural test
for a single-layered GMU architecture, k-subspace distance based thresholding, is significantly
harder for other networks.

3. Sparse Neural Structure Sampling: Linear GMUs are motivated from a linear structural causal
model’s sampling process, as observed in Section 3. So, it is natural to ask whether the linear
structure assumption in linear GMUs can still impart any benefits when the underlying data is
generated non-linearly. Specifically, following the CL-SCM sampling as defined in Section 3, the
generating function f in the SCM of Figure 1 (c) is set to a 2-layered neural network.

4. Tree-structured sampling: We evaluate GMUs on data generated via a synthetic SCM in which
the generating causes are the observed input dimensions themselves; each class is associated with
a distinct tree over the observed variables, and samples are generated by propagating from a root
variable with additive noise.

5. Polynomial Boundary Sampling: Here, we consider the underlying ground truth distribution to
be separable by a non-linear, polynomial decision boundary. Linear decision boundaries are not
realistic for most natural datasets, and thus this provides a natural scalability test for GMUs.

6. Conditional Gaussian Sampling: This is a well-known and studied setting where the conditional
distributions P (X|Y = i) are all Gaussian. We vary the overlap between the Gaussians and test
whether GMUs can robustly learn in this setting.

C.1 FOURIER SERIES FUNCTION V/S NOISE DIFFERENTIATION

Problem Setup: We consider a scenario where x ∈ Rd can belong to two categories: fourier series
function or noise. In the noise category, x is generated as x ∼ U(−0.5, 0.5)d, where U(a, b) denotes
the uniform distribution sampled from the range (a, b). In the fourier series function category, the
ith dimension of x, xi is generated as xi = a0 +

∑K
j=1 ajsin(10 ∗ i/d) + bjcos(10 ∗ i/d). Here

a0, a1, ..aK and b1, b2, .., bK are coefficients of the fourier series representation of X . Thus, when x
is a fourier series function, the dimensions of x are essentially sampled from the outputs of a fourier
series representation. We consider K = 2 for our experiments. The objective of this experiment is to
identify if x is a noisy signal, or has a function pattern via a fourier series representation.

GMU construction: We design a GMU as follows.

gmu(x,w) = exp

(
−min

θ
Ei

[
(f(θ, wi)− xi)

2
])

,

where f(θ, wi) = θ0 +
∑k

j=1(wi)
jθj . This GMU, in a nutshell, can find to what degree the input

dimensions of x = [x1, x2, .., xd] can be represented as a polynomial function xi = f(θ, wi) of the
weights.

Results: We compare the performance of a single GMU-k unit, where k is its order, with a single
perceptron unit, a 2-layer µ-RBF networks having 512 µ-RBF units in the first layer 1, a relu-activated

1Note that we tried training with the additional σ term, but we got best results without it.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

(a) (b)
Figure 4: Comparing test accuracy of a single GMU with other approaches on a Fourier series function v/s noise
differentiation and b k-subspace distance based thresholding experiments. The parameter counts for each model
are given within the brackets.

single hidden layer neural network with 256 units (MLP-256) and with 512 units (MLP-512). The
results are shown in Figure 4a. We also report the parameter counts for comparison. Overall, we find
that GMU-4 and GMU-5 quickly capture the underlying structure, achieving 100% test accuracy with
only 50 samples. In contrast, we see that the MLP and RBF variants need more data and parameters
to achieve similar performance.

C.2 k-SUBSPACE DISTANCE BASED THRESHOLDING

Problem Setup: Just as a single-layer perceptron aligns with problems where the underlying
distribution is linearly separable, and similarly, a single RBF neuron can perfectly classify data when
the distribution is separable by a sphere, GMUs address an equivalent problem in a different geometric
sense. We consider a supervised classification problem where the datapoint x ∈ Rd is categorized
according to the distance it has to a k-dimensional subspace (i.e., k-subspace distance in Section
4.3), represented by the basis vectors as U = Span{u1, u2, .., uk}, where ui ∈ Rd. Let the distance
between U and x be denoted by d(x, U). Then, given a threshold distance dthres, we categorize x as
the category 0 if d(x, U) ≤ dthres and the category 1 if otherwise. To construct the training data,
we sample x from the uniform distribution x ∼ U(0, 1)d and each element of u1, u2, .., uk is also
chosen randomly from U(0, 1). Then, dthres is chosen such the number of samples per class are
same for both categories. We use single-layer linear GMU networks for classification. In this case,
the shape of the decision boundary exactly aligns with thresholding the single GMU output.

Results: We compare the performance of a single linear GMU-k unit, with a single perceptron unit,
2-layer µ-RBF networks having 512 µ-RBF units in the first layer, a relu-activated single hidden
layer neural network with 256 units (MLP-256) and another one with 512 units (MLP-512). The
results are shown in Figure 4b. Unsurprisingly, we find that GMU-3 significantly outperforms all
other approaches for all sample sizes. Interestingly, although we see the µ-RBF catching up to the
GMUs performance with more data, but the MLP-variants still show significant drop in terms of
accuracy, demonstrating the hardness of this function fitting task from the perspective of MLPs.

Takeaways: These results highlight the hardness of the task for traditional architectures. While GMU-
3 consistently achieves high classification accuracy, MLP variants struggle to generalize, exhibiting
a significant accuracy drop even with more data. Overfitting remains a concern, particularly for
deeper networks, as they fail to capture the structured geometric separability essential for robust
generalization.

C.3 SPARSE NEURAL STRUCTURE SAMPLING

Problem Outline: We consider the case when the underlying data follows a CL-SCM sampling
process (Figure 1 (b)). However, unlike the sparse linear structure experiments in the main paper
where the generating function f of the SCMs is linear, we consider non-linear f . In particular,
we consider the case when f is a two layered neural network with tanh activations in each layer.
Following the CL-SCM structure, each class has its own neural network weights it uses to generate
the input. We formally outline the sampling process in Algorithm 2.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Algorithm 2 Sparse Neural Structure Sampling

1: Setup: X ∈ Rd, labels y ∈ {1, . . . , C}, class-specific weights W (1)
y ∈ RNtotal×h, W (2)

y ∈ Rh×d,
latent variables θ ∈ RNtotal

2: Latent Variable Sampling: θi ∼ U(0, 1) for all i ∈ {1, . . . , Ntotal}
3: Generative Process:
4: Sample y ∼ Unif{1, . . . , C}
5: Compute x:

x = tanh
(
W (2)

y tanh
(
W (1)

y θ
))

+ ϵ

6: where ϵ ∼ N (0, σ2Id)

Experiments: Here, we focus on testing and comparing the scalability of GMUs with MLPs, RBFs
and Resnet baselines, in two different settings. For each setting we consider two layered neural
network SCMs with 32 hidden units (h = 32 in Algorithm 2), σ = 0.01, d = 10 and C = 20. In the
first setting, we consider a total of 2 latent generating variables (i.e., Ntotal = 2 in Algorithm 2) and
consider Ntotal = 5 for the second setting.

To rigorously assess whether the networks are truly learning the underlying function, we introduce
a structured distribution shift: during training, latent variables θi are sampled from U(0, 0.5) or
U(0.5, 1.0), while in testing, they are drawn from the opposite interval. This avoids any data overlap
and thus prevents memorization as a reliable strategy to improve performance. In each setting, we
plot the test accuracy trends in response to dataset size, and also plot the test accuracy trends of all
networks w.r.t their complexity (parameter count). For the dataset size trends, each network’s number
of hidden neurons per layer was fixed to 256. The results are shown in Figure 5.

Observations: We find that GMU-MLPs show better scaling to data size in this scenario, when
compared to the other baselines. Furthermore, we find that higher order GMUs showcase better
performance overall. Interestingly, we see that the response to data size increase can even be negative
for MLPs (e.g. when Ntotal = 5), which highlights the hardness of the generalization problem in this
case. When considering the accuracy versus model complexity plots, we see that GMU architectures
are closest to the pareto front, although there is a visible decrease in accuracy that accompanies GMU
architectures when the parameter count increases beyond a point. Interestingly, the results hint at an
optimal range of parameter count for the GMU architectures to significantly outperform the baselines.

C.4 TREE-STRUCTURED SAMPLING

Problem Setup. This synthetic experiment is a classification benchmark designed to probe GMUs
under structured dependencies in which observed variables themselves act as causal nodes. Each
class y is associated with a distinct directed spanning tree Gy defined over the d observed input
coordinates in X = [x1, . . . , xd]. Samples are generated by propagating a value sampled at the
class-specific root down the directed edges with additive edge noise (Algorithm 3). This setting
contrasts with latent-only CL-SCM setups because the causal graph is explicit over input dimensions;
consequently the sampling process induces hierarchical linear relations among observed features that
we expect GMUs to exploit. Unless stated otherwise we fix the root variance σ0 = 0.1 and set the
nominal edge coefficients αi = 1.

Tree construction and branching factor. Each class tree Gc is constructed at the start of a run by
selecting a root uniformly from {1, . . . , d} and growing a directed spanning tree in a breadth-first
fashion. The branching factor ∆ controls how many children a node may receive during construction:
larger ∆ yields shallower, wider trees while smaller ∆ yields deeper, narrower trees. We record the
parent map pa(·, Gc) for each class and fix the tree topology per seed. Specifying ∆ alongside d (as
in Table 10) removes ambiguity about tree shape and clarifies how path length and noise accumulation
vary across experiments.

Generative process and configurations. A datum is generated by sampling a class label y ∼
Unif{1, . . . , Ny}, sampling the root value xr(Gy) ∼ N (0, σ2

0), and then for each non-root node i in
topological order setting

xi ← αi xpa(i,Gy) + ϵi,

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

(a) Accuracy vs. dataset size (Ntotal = 2). (b) Accuracy vs. model complexity (Ntotal = 2).

(c) Accuracy vs. dataset size (Ntotal = 5). (d) Accuracy vs. model complexity (Ntotal = 5).

Figure 5: Scalability studies in two experimental settings in the class-wise sparse neural structure sampling
experiments. The underlying SCM here is a 2-layered tanh-activated neural network. We report accuracy trends
in response to training dataset size changes in (a) and (c), and in response to parameter count changes in (b) and
(d). Please note that only the MLP and Resnet baselines are represented via dashed lines.

with ϵi ∼ Pϵ. The experimental difficulty and the types of distributional shifts we evaluate are
controlled via the choice of Pϵ and whether the edge coefficients αi are fixed or resampled. Table X
(below) lists the abbreviations used throughout (G, GS, GM1, GM2, MG, MGN) and their precise
sampling rules; for example, G denotes Gaussian edge noise with ϵi ∼ N (0, 0.1), while GM1 and
GM2 introduce multiplicative scaling by resampling αi at each generative pass from broader Normal
distributions (see table for exact parameters). All shift configurations preserve the tree topology
while changing effective coupling strengths or variances along edges, producing class-conditional but
distributionally shifted test data.

Train/Test nomenclature and reproducibility. The Train/Test columns in Table 10 indicate the
generative configuration used for the corresponding split (for instance, Train = G, Test = GM1). When
an experiment fixes αi during training but resamples or perturbs it at test time we indicate this using
the MG/MGN abbreviations described in the table. Trees {G1, . . . , GNy

} are resampled for each
experimental seed and then held fixed within that seed to ensure repeatability of class-conditional
structure across samples.

Experimental protocol. For the results reported in Table 10 we fix Ny = 10, σ0 = 0.1, and generate
500 training and 3500 test samples per configuration. We compare GMU(k)-MLP-512 (a single GMU
layer whose outputs feed a 512-unit linear head), MLP-512, ResNet-512-[2,1], and ResNet-512-[2,2].
All models are trained discriminatively using supervised cross-entropy; GMUs are not trained with

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Abbrv. Description
G Gaussian: ϵi ∼ N (0, 0.1)

GS Skewed Gaussian: ϵi ∼ 0.1 · SN(0, 1, 4)

GM1 Gaussian with multiplicative scaling:
ϵi ∼ N (0, 0.1) and αi ∼ N (0, 1) (randomly sampled in each generative pass)

GM2 Gaussian with multiplicative scaling:
ϵi ∼ N (0, 0.1) and αi ∼ N (0, 4) (randomly sampled in each generative pass)

MG Gaussian with fixed multiplicative scaling:
ϵi ∼ N (0, 0.1), αi ∼ N (0, 1) (Fixed)

MGN Gaussian with noise-added multiplicative scaling:
ϵi ∼ N (0, 0.1), αi ∼ αtrain

i +N (0, 1) where αtrain
i is the αi fixed at training time

Table 9: Table of Abbreviations for the Dynamic tree prediction experiments.

Algorithm 3 Tree-structured sampling (SCM over observed variables)

1: Setup: input dimension d, number of classes C, branching factor ∆ ∈ N, edge coefficients
α ∈ Rd, root variance σ2

0 , edge-noise distribution Pϵ

2: Tree construction (per class c):
3: Pick a root node rc uniformly from {1, . . . , d}
4: Initialize frontier F ← {rc}, visited Vc ← {rc}
5: while |Vc| < d do
6: Pop node u from F
7: Sample b ∼ min(∆, d− |Vc|) (number of children for u)
8: Select b nodes uniformly at random from {1, . . . , d} \ Vc and add directed edges (u→ v) to

Ec

9: Add selected nodes to Vc and append them to F
10: end while
11: Ensure Gc = (Vc, Ec) is a directed spanning tree over {1, . . . , d}
12: Generative process (sample one datapoint):
13: Sample class label y ∼ Unif{1, . . . , C}
14: Sample root value xry ∼ N (0, σ2

0)
15: for each non-root node i in topological order of Gy do
16: Sample noise ϵi ∼ Pϵ

17: Set xi ← αi xpa(i,Gy) + ϵi
18: end for
19: Return: (X = [x1, . . . , xd], y)

any reconstruction objective in these experiments. Reported accuracies are averages over random
seeds (tree topology, noise draws, and any sampled αi variations) and the table explicitly lists the
branching factor ∆ used for each run.

Why ∆, tree shape and shift types matter. The branching factor and resulting tree geometry deter-
mine path lengths over which signal and noise accumulate: deeper trees propagate root information
through more multiplicative steps, making downstream coordinates more sensitive to edge-wise
scaling and noise; wider trees distribute signal across many shallow branches, changing how dis-
criminative information is localized. The different abbreviations (G, GS, GM1, GM2, MG, MGN)
correspond to structured perturbations that either alter noise skew/scale or resample multiplicative
edge coefficients at train or test time (see the abbreviations table). These controlled variations let

Setup (Ny = 10, σ0 = 0.1) GMU(0)
-MLP

GMU(1)
-MLP

GMU(2)
-MLP

GMU(3)
-MLP

GMU(4)
-MLP

GMU(5)
-MLP

GMU(6)
-MLP

GMU(7)
-MLP

GMU(8)
-MLP MLP R-

[2,1]
R-

[2,2]d ∆ Train Test
10 2 G G 0.5548 0.564 0.5608 0.5574 0.5608 0.5597 0.5605 0.5568 0.5571 0.576 0.5188 0.502
10 4 G G 0.4362 0.4371 0.4277 0.4248 0.4265 0.4331 0.4342 0.44 0.4394 0.4345 0.3657 0.3525
50 4 G G 0.6943 0.9286 0.9371 0.9420 0.9394 0.9403 0.9406 0.9394 0.9440 0.7965 0.8128 0.758
50 8 G G 0.6403 0.8471 0.8686 0.8617 0.8649 0.8680 0.8651 0.8714 0.8686 0.7048 0.7194 0.6802

100 8 G G 0.4503 0.9623 0.9703 0.9769 0.9769 0.9806 0.9797 0.9797 0.9783 0.7617 0.7931 0.7568
500 8 G G 0.2371 0.9991 0.9991 0.9983 0.9980 0.9989 0.9997 0.9994 1.0000 0.7437 0.8102 0.772
500 8 GS G 0.3980 0.7154 0.7829 0.5966 0.7009 0.7806 0.7777 0.8477 0.8917 0.4157 0.4122 0.3448
500 8 G GM1 0.1583 0.7760 0.8054 0.7783 0.7883 0.7463 0.7963 0.8374 0.8374 0.29 0.2691 0.2317
500 8 G GM2 0.2237 0.9929 0.9960 0.9954 0.9960 0.9943 0.9954 0.9971 0.9983 0.6531 0.6974 0.6551
500 8 MG MGN 0.2071 0.9657 0.9586 0.9697 0.9551 0.9771 0.9789 0.9740 0.9803 0.6394 0.6471 0.6

Table 10: Test accuracy results on the dynamic tree structure prediction experiments.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

(a) Accuracy vs. dataset size (C = 2). (b) Accuracy vs. model complexity (C = 2).

(c) Accuracy vs. dataset size (C = 10). (d) Accuracy vs. model complexity (C = 10).

Figure 6: Scalability studies in two experimental settings in the polynomial boundary sampling experiments.
The underlying data distribution is separable via a non-linear decision boundary that is a polynomial function of
the data dimensions. We report accuracy trends in response to training dataset size changes in (a) and (c), and in
response to parameter count changes in (b) and (d). Please note that only the MLP and Resnet baselines are
represented via dashed lines.

Setup GMU(0) GMU(1) GMU(2) GMU(3) GMU(0)
-MLP

GMU(1)
-MLP

GMU(2)
-MLP

GMU(3)
-MLP Linear MLP

p
1 0.8223 0.8406 0.8583 0.8643 0.9843 0.9763 0.9743 0.97 0.983 0.9823
2 0.9363 0.9363 0.9363 0.9363 0.9816 0.9873 0.986 0.982 0.9763 0.9801
3 0.7916 0.803 0.816 0.8336 0.9596 0.975 0.974 0.9746 0.9456 0.9606

Table 11: Test accuracy results on the polynomial boundary sampling experiments.

us separate robustness to noise shape (e.g., symmetric vs skewed) from robustness to multiplicative
coupling changes.

Summary of empirical behavior. As reported in Table 10, higher-order GMUs consistently outper-
form lower-order variants and standard feedforward baselines, with gains growing at larger d and
under several shift types. Notably, under structure-preserving but distribution-shifting perturbations
(e.g., Train: G, Test: GM1/GM2), higher-order GMUs retain substantially more accuracy than MLPs
and ResNets. Intuitively, the GMU’s internal projection onto low-dimensional generative subspaces
is better aligned with the hierarchical linear relations imposed by the tree, producing discriminative
signals that are more stable when edge-wise couplings or variances change while the overall SCM
topology remains unchanged.

C.5 POLYNOMIAL BOUNDARY SAMPLING

Problem Setup: We consider the scenario where ground truth labels y are assigned based on a set of
polynomial functions, with one function corresponding to each class. Given an input X , the label is
chosen as the one whose polynomial function attains the highest value.
Definition 6. (Polynomial Boundary Sampling) Let X ∈ Rd ∼ Unif(0, 1)d, and y ∈
{1, 2, 3, . . . , C}. We define a set of weight matrices {W1,W2, . . . ,Wd}, where Wi ∈ RNy×p.
Each class yi is associated with a polynomial function:

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Setup GMU(0)
-MLP

GMU(1)
-MLP

GMU(2)
-MLP

GMU(3)
-MLP Linear MLP R-

[1,1]
R-

[2,2]Ny d σµ

2 10 0.01 0.9942 0.9888 0.9914 0.9825 0.6474 0.9848 0.9817 0.9782
10 10 0.01 0.2714 0.2608 0.244 0.2405 0.1262 0.1908 0.1582 0.1462
10 10 0.1 0.8888 0.8511 0.8254 0.8091 0.3862 0.7685 0.7585 0.7511
2 100 0.01 0.7151 0.704 0.6902 0.6851 0.5577 0.6077 0.5694 0.5594
2 100 0.1 0.9414 0.9428 0.9462 0.946 0.782 0.9248 0.9031 0.89

10 100 0.1 0.5145 0.4985 0.4897 0.4897 0.2234 0.4068 0.3214 0.2674
2 500 0.1 0.7377 0.7411 0.7388 0.7454 0.6751 0.7285 0.6905 0.6848
2 500 1 0.986 0.9911 0.99514 0.9951 0.9891 0.9928 0.972 0.9794

Table 12: Test accuracy results on the conditional Gaussian sampling experiments.

G(yi|X) =

d∑
j=1

Wji[Xj , X
2
j , . . . , X

p
j]

T . (5)

The label assignment follows a deterministic selection rule as follows:

y∗ = argmax
i∈{1,2,3,...,C}

G(yi|X). (6)

Here, y∗ denotes the assigned label based on the evaluated polynomials.
Remark 6. We consider the binary case, where two polynomial functions define the class boundaries.
The label assignment follows: y = 1 if G(y1|X)−G(y2|X) > 0, and y = 2 otherwise. Since both
G(y1|X) and G(y2|X) are polynomials of order p, their difference is also a polynomial of order p.
This establishes a decision boundary that is a polynomial function of order p, thus yielding non-linear
decision boundaries.

This is why we refer to the method as polynomial boundary sampling, as the underlying data
distribution is separated by non-linear, polynomial decision boundaries.

Experiments: Each element in the weight matrices {Wi} is randomly initialized from N (0, 1).
We vary the polynomial order p while keeping d = 10 fixed. The following models are compared:
GMU(k), GMU(k)-MLP-512 (GMU layer with 512 hidden units followed by a linear layer), a single
linear layer, and MLP-512. Results are presented in Table 11. Interestingly, we find that as the
polynomial order increases, GMU-MLPs of non-zero order show significant improvements on other
baselines. To perform a deeper analysis, we conduct scalability studies for the higher order case
p = 3 as follows.

Scalability Analysis: Similar to the sparse neural structure setting, we conduct experiments here
to test the performance of networks in response to changes in scale of the dataset and the network
complexity itself. We consider two settings. In both settings, we set the order of the polynomial
p = 3 and input dimensionality d = 10. For the first setting, we set C = 2 and we set C = 10 for the
second setting. Due to polynomial decision boundaries C = 10 should yield a harder classification
problem. The results are shown in Figure 6.

We find that GMU-MLPs show significantly higher generalization performance in this case. For the
datasize scaling experiments, we see performance of all networks improve in response to increasing
data size, however, the GMU-MLP variants always show a clear improvement. Similarly, for the
parameter count versus test accuracy plots, we see that for the same parameter count, GMU-MLPs
show significantly higher test accuracy and seem to establish the pareto front. These results highlight
the flexibility of GMUs in learning non-linear decision boundaries.

C.6 CONDITIONAL GAUSSIAN SAMPLING

Problem Setup: We conduct a simple experiment where the conditional distributions P (X|y) are
Gaussian, where X ∈ Rd and y ∈ {1, 2, .., C}. Specifically, we generate P (X|y) ∼ N (µy,Σ).
For each dataset, we choose the class-wise mean values by randomly generating them as µy ∼
N (0, σ2

µId). Similarly, we pick a randomly generated covariance matrix via Σ = ATA where
A ∼ Unif(0, 1)d×d.

Experiments: We pick a range of parameter choices for the sampling process, and compare the
following networks: GMU(k)-MLP-512 (GMU layer with 512 hidden units followed by a linear
layer), MLP-512, Resnet-512-[2,1] and Resnet-512-[2,2]. The results are shown in Table 12, for a

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

(a) Accuracy vs. dataset size. (b) Accuracy vs. model complexity.

Figure 7: Scalability studies for the conditional Gaussian sampling experiments. The underlying data distribution
of each class is a Gaussian distribution with randomly set covariance matrix and mean. We report accuracy
trends in response to training dataset size changes in (a) and in response to parameter count changes in (b).
Please note that only the MLP and Resnet baselines are represented via dashed lines.

wide range of parametric choices. We find that overall, µ-RBF networks (GMU(0)-MLP) showcase
superior performance. This is unsurprising, as the distance based µ-RBF units are closely aligned with
the underlying problem. We also see that for higher dimensionality scenarios, GMU-MLPs can often
outperform µ-RBFs. Furthermore, we see that in most cases, GMU-MLP performance for non-zero
order is competitive with µ-RBFs, which can also be explained via the universal approximation ability
of GMU-MLPs (Proposition 4).

Scalability Analysis: Similar to the previous settings, we conduct experiments here to test the
performance of networks in response to changes in scale of the dataset and the network complexity
itself. We consider the setting where the input dimensionality d = 100, σµ = 0.5 and the number of
output classes C = 10. The results are shown in Figure 7.

We find that GMU-MLPs and µ-RBFs show better performance than the other baselines. For the
datasize scaling experiments, we see performance of all networks improve in response to increasing
sample size, and the performance seems to converge for larger sample size. Interestingly, µ-RBF’s
test accuracy seems to plateau for larger data sizes, whereas GMU-MLPs continue to increase. For the
parameter count versus test accuracy plots, we again see that for the same parameter count, µ-RBFs
and GMU-MLPs showcase significantly better performance overall. Interestingly, we see that the
best performance is actually achieved for lower parameter counts in this setting, and GMU-MLPs
showcase slightly better test accuracy than µ-RBFs.

D DISCUSSIONS: CONTEXTUALIZING GMUS IN LITERATURE

In this section, we discuss GMUs in the context of existing architectures for supervised learning
beyond perceptron-based neural networks. Capsule networks have been proposed in recent years as
an alternative learner incorporating feedback. Each hidden node is a capsule that contains a vector of
activations, and routing iterations adjust the coupling coefficients, directing inputs to hidden units
with greater agreement. While this introduces a feedback mechanism, it does not function as the
internal generative model like GMUs. Furthermore, after routing iterations, the forward computation
remains linear, followed by squashing normalization, meaning the complexity bias is still present in
the forward pass (Sabour et al., 2017).

Another interesting alternative to multi-layer perceptrons (MLPs) is Kolmogorov-Arnold Networks
(KANs), which leverage the Kolmogorov-Arnold approximation theorem (Kolmogorov, 1961) to
construct more expressive units. However, KANs primarily focus on function approximation and
retain a fundamentally feedforward computational paradigm, contrasting with GMUs, which primarily
look for dynamic generative structures in the input.

GMUs are also distinct from architectures that rely on weight adaptation mechanisms, such as
hypernetworks (Ha et al., 2016) or dynamic convolution (Chen et al., 2020). Unlike these approaches,
which dynamically adjust weights, GMUs are designed to reconstruct the input based on projections
onto internal k-dimensional subspaces, effectively representing reconstruction errors. This makes

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

GMUs complementary to these models rather than functionally equivalent, as hypernetworks, steer-
able filters, and similar methods can be used in conjunction with GMUs, just as they would with
perceptron or radial basis function (RBF) networks.

Furthermore, GMUs differ structurally from linear self-attention mechanisms (Wang et al., 2020),
which primarily focus on relational mappings within sequences via inner products between embed-
ding components. In contrast, GMUs emphasize the structured generative properties of the input,
distinguishing them conceptually from attention-based mechanisms. Similarly, test-time adaptation
(TTA) techniques (Wang et al. (2021)) aim to modify statistics based on real-time test distributions
but do not introduce fundamentally new computational units rather, and TTA methods can be applied
to GMU-based networks to enhance their adaptability across domains, as we’ve seen in our work.

Generative Capsule Models (GCMs): Generative Capsule Models (GCMs, Nazabal et al. (2023))
provide an interesting point of comparison to GMUs, since both involve latent linear models for
capturing appearance variability. However in GCMs, part-based appearance templates and geometric
transformation components are optimized jointly to minimize reconstruction error across samples,
yielding structured generative representations. GMUs, by contrast, are not trained to minimize a
reconstruction loss at all; their weights are updated exclusively through backpropagation from a
supervised objective such as cross-entropy, making them inherently discriminative units. The internal
generative model within a GMU serves only as a mechanism for producing its activation signal, and
the inferred latent variables (θ) are discarded after the forward pass. This distinction highlights a
fundamental difference in purpose: GCMs are designed for unsupervised generative modeling, where
the goal is faithful reconstruction of inputs, while GMUs are designed for supervised function fitting,
where the goal is predictive performance. Moreover, GCMs rely on more computationally expensive
variational inference schemes (such as ELBO optimization) to handle both appearance and geometric
variability, whereas GMUs work with a one-shot solution that emerges from a MAP approximation
under a CL-SCM sampling framework, allowing them to integrate efficiently into standard supervised
pipelines. Thus, while both models have latent linear structures that do sample-wise inference, their
optimization paradigms and roles in learning are fundamentally different.

E DETAILS ON GMU FUNCTION AND INTEGRATION

(a) MLP (b) GMU-MLP

Figure 8: MLPs versus GMU-MLPs: Demonstration of how GMUs are integrated into architectures. Here, we
replace the first network layer with GMU computational units.

E.1 INTEGRATING GMUS INTO ARCHITECTURES

GMU-MLPs As shown in Figure 8, GMU integration into an MLP is direct, and only involves
replacing the computational units with GMU units. Like perceptron units, linear GMU units have
their own weights and biases, which are visualized in Figure 8. The network is trained via standard
backpropagation, which in our case is handled by Pytorch’s autograd framework.

GMU-CNNs When replacing a convolution layer with GMUs, we replace each linear convolutional
operation with a convolutional GMU. The operation of a convolutional GMU is shown in Figure 9.
Xa

ij represents the input patch of size a × a, which is the input to the GMU, the output of which

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Figure 9: Diagram showing the operations within a convolutional GMU. Here, the convolutional weights W are
applied to the input X yielding the output Z. For the purposes of this figure, we assume that the convolution is
appropriately padded such that X and Z are of the same size.

is simply the GMU’s output gmu(Xa
ij ,W), where W are its internal weights. As the operation

is a convolution, this function is repeated across all patches centered at all (i, j) pairs in the input
image, yielding an output image of the same size (assuming padding is used). Mathematically, we
can represent the convolutional GMU operation as gmu(.,W) ∗X .

E.2 LINEAR GMUS: CLOSED FORM EXPRESSION

Here, we summarize the least square based approach that yields the closed-form expression of a
linear GMU’s output in equation 3. The minimization in equation 1 can be represented as

min
θ∈Rk

∥∥∥∥X − b

η
−WT θ

∥∥∥∥ (7)

Note that as X ∈ Rd, the above minimization represents the least squares solution to a set of d
equations, one for each dimension of X . The solution to it is as follows

argmin
θ∈Rk

∥∥∥∥X − b

η
−WT θ

∥∥∥∥ = (WWT)−1W

(
X − b

ηX

)T

(8)

Note that here X−b
ηX

denotes a matrix of size d× 1. With this, each GMU unit’s output in equation 1
can be represented as

ϕ

 1

σd

∥∥∥∥∥X − b

η
−WT (WWT)−1W

(
X − b

η

)T
∥∥∥∥∥
2
 (9)

Note that the above is the output of a single GMU, which only depends on the input to the unit X ,
the weights and biases W, b, and other parameters such as the normalizer η, the scaling parameter σ
and the dimensionality of input d.

F ADDITIONAL EMPIRICAL DETAILS

F.1 SYNTHETIC EXPERIMENTS

Please refer to Figure 2(b) for the detailed jargon in defining GMU types.

Sparse Linear Structure Prediction: For the GMU(k) variants, we used a unit without normalization
and bias. ϕ(z) = − log z (to counter-act the softmax function that follows) and W = var(Rk×d). For
the out-of-distribution (ood) columns, we set the training θly(i) ranges to either between Unif(0, 0.5)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

or Unif(0.5, 1) chosen at random. For the test data, we change the range for each θly(i) in such a
manner that if its training configuration was Unif(0, 0.5) it is set to Unif(0.5, 1) and vice-versa.
This ensures that at test-time the network sees values of the latent generating variables which it hasn’t
seen before.

Dynamic Tree Structure Prediction: To generate the random trees, first, we sample the root node
from a uniform distribution over all dimensions, and then sample left and right nodes uniformly from
the rest of the dimensions. The process is then repeated for the children of all leaf nodes. Once the
children of all leaf nodes at a certain depth have been sampled, the process is repeated for the children
of the subsequent depth of the tree.

For the GMU(k)-MLP variants, for the GMU units, we used units with normalization η = σ(X) and
bias. ϕ(z) =

√
1− z and W = [var(Rk−1×d); J1,d]. To have a fair comparison, each datapoint was

also normalized using zero-mean and unit variance for the MLP variants.

Sparse Neural Structure Sampling: For the GMU units in the GMU(k)-MLP variants, we used
units without normalization, but non-zero bias. ϕ(z) = − log z and W = var(Rk×d).

Polynomial Boundary Sampling: For both the GMU(k)-MLP and the GMU(k) variants, for the
GMU units, we used units without normalization, but non-zero bias. ϕ(z) = e−z and W =
var(Rk×d).

Conditional Gaussian Sampling: For the GMU units in the GMU(k)-MLP variants, we used units
without normalization, but non-zero bias. ϕ(z) = e−z and W = var(Rk×d).

F.2 TABULAR EXPERIMENTS

In addition to the GMU results shown in the main paper (GMU-S), we test another low-parameter
configuration of GMUs called GMU-D. Using the jargon in Figure 2(b), the details are as follows.

GMU-S: We choose non-zero bias b and the normalization factor η = σX−b. The activation function
is set to ϕ(z) = e−z . The weights are W = var(Rk×d)

GMU-D: We choose non-zero bias b and the normalization factor η = σX−b. The activation function
is set to ϕ(z) = e−z . The weights are W = [w,w2, ..wk], w : var(Rd).

Dataset #Ins./#Feat. XGB. ASK-G. TabN. AutoGL. S Resnet-530
(1.2M)

GMU-S
(1.195M)

GMU-D
(1.159M)

credit-g 1000 / 21 0.6893 0.7119 0.6119 0.6964 0.6972 0.7036 0.7262
anneal 898/39 0.8542 0.9000 0.8425 0.8000 0.8546 0.8610 0.8583
kr-vs-kp 3196/37 0.9985 0.9985 0.9325 0.9969 0.9969 0.9969 0.9969
mfeat-factors 2000/217 0.9800 0.9750 0.9725 0.9800 0.9850 0.9800 0.9825
vehicle 846/19 0.7497 0.8017 0.7965 0.8379 0.8446 0.8793 0.8493
kc1 2109/22 0.6685 0.6335 0.5252 0.6727 0.7104 0.6866 0.6824
phoneme 5404/6 0.8797 0.8834 0.8682 0.8394 0.8959 0.8882 0.9039
cnae-9 1080/857 0.9491 0.9352 0.8935 0.9259 0.9398 0.9398 0.9306
blood 748/5 0.6228 0.6499 0.6433 0.6725 0.6304 0.6718 0.5987
Australian 690/15 0.8972 0.8859 0.8528 0.8825 0.8479 0.8726 0.8692
car 1728/7 0.9238 1.0000 0.9870 0.9968 1.0000 1.0000 1.0000
segment 2310/20 0.9372 0.9307 0.9178 0.9199 0.9254 0.9307 0.9351
jasmine 2984/145 0.8055 0.7888 0.7669 0.8005 0.7438 0.7520 0.7688
sylvine 5124/21 0.9307 0.9336 0.8360 0.9375 0.9250 0.9268 0.9268
adult 48842/15 0.7982 0.7983 0.7716 0.8056 0.7652 0.7735 0.7622
nomao 34465/119 0.9687 0.9722 0.9543 0.9642 0.9582 0.9599 0.9575
bank 45211/17 0.7266 0.7228 0.7064 0.7948 0.7261 0.7382 0.729
jungle_chess 44819/7 0.8733 0.8307 0.7343 0.9302 0.9686 0.9773 0.9897
volkert 58310/181 0.6417 0.6343 0.5941 0.7020 0.6766 0.7003 0.7096
helena 65196/28 0.2199 0.2114 0.1903 0.2712 0.2213 0.2206 0.2137
connect-4 67557/43 0.7237 0.7265 0.7205 0.7562 0.7369 0.7535 0.743
higgs 98050/29 0.7294 0.7293 0.7204 0.7380 0.6684 0.6781 0.6808
numerai28.6 96320/22 0.5236 0.5242 0.5160 0.5171 0.5066 0.5146 0.5071
walking-activity 149332/5 0.6162 0.6276 0.5680 0.6080 0.6203 0.6322 0.6026
ldpa 164860/8 0.9901 0.6895 0.5482 0.5302 0.6991 0.6777 0.6621
aloi 108000/129 0.9534 0.1353 0.9359 0.9742 0.9617 0.9684 0.9622
skin-seg 245057/4 0.9997 0.9997 0.9996 0.9997 0.9997 0.9996 0.9996
Wins/losses/ties GMU-S vs 13/11/3 13/11/3 23/3/1 11/13/3 18/4/5 –
Wilcoxon p GMU-S vs 0.3533 0.4750 2.3e-05 0.732 0.0089 0.224
Wins/losses/ties GMU-D vs 12/14/1 12/13/2 22/4/1 12/13/2 13/8/5 –
Wilcoxon p GMU-D vs 1.000 0.968 3.2e-04 0.657 0.407 0.224

Table 13: Performance Comparison of Various Models on Different Datasets. Parameter counts are given in
brackets in the top-row. Please note that we scaled the original Resnet-512 to Resnet-530 to match parameter
counts with the GMU-Resnet models.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

The networks were trained in the same manner as in Kadra et al. (2021), using weighted cross-entropy
loss, and for evaluation we also report the balanced accuracy, same as them. We compare GMU-
Resnet-512-[1,1] with Resnet-512-[1,1]. We set the same hyperparameters for all experiments, and
don’t perform any additional hyperparameter optimization. In addition to the GMU configuration
described in Section 5.2, we also construct another GMU with less trainable parameters as follows.
Note that the other approaches’ results are after extensive hyperparameter optimization using BOHB
(Falkner et al., 2018). Note that Kadra et al. (2021) uses a different Shaped Resnet architecture and
therefore we don’t directly compare with their MLP results, and we find in some datasets our Resnet
performs significantly better than theirs and vice-versa. Furthermore the MLP+C approach in Kadra
et al. (2021) employs an extensive suite of regularization approaches, including data augmentation,
so we don’t include their results for this study. Similarly, the MLP-Dropout in Kadra et al. (2021)
also uses hyperparameter optimization for the dropout levels and locations for each dataset.

We add a single dropout layer (of 0.2) at the penultimate layer for both Resnet-512-[1,1] variants, as
we found it led to more stable training overall. . Apart from this, there is no regularization or data
augmentation performed, and networks are trained in the same manner for all datasets. The average
parameter count for each approach is given below the network names in Table 13.

The categorical variables within the data were one-hot encoded, and the other variables were normal-
ized to the range (0,1), with the statistics computed only from the training split. The training-test splits
are exactly the same as in Kadra et al. (2021), which is an 80-20 split, with the same random seed
values set by them. This was made possible by their code, and the fact that each dataset corresponded
to a specific task as numbered in Table 9 in Kadra et al. (2021).

F.3 VISION EXPERIMENTS

GMU Details: Using the jargon in Figure 2(b), the details are as follows. We set bias to zero b = 0
and the normalization factor η = σX . The activation function is set to ϕ(z) = e−z . The weights
are W = [var(Rk−1×d); J1,d], same as what was used in the dynamic tree structure prediction
experiment.

Architectures: We train a four-layer CNN for MNIST and Fashion-MNIST, with the archi-
tecture 64C(3,Padding=1)-2MP-128C(3,Padding=1)-2MP-128C(3,Padding=1)-2MP(Padding=1)-
128C(3,Padding=1)-4MP-FC128-FC10, where C(k,Padding=j) denotes k × k convolutional layers
with a padding of j in either direction, MP denotes max pooling layers, and FC denotes fully con-
nected layers. The first convolutional layer is replaced with convolutional GMUs of order 3. For
CIFAR-10, we use VGG-16 as the base network, replacing the first convolutional layer with convolu-
tional GMU-3 units while keeping the same number of output nodes. Similarly, for smallNORB, we
resize images to 64x64 and train a four-layer CNN: 64C(5,Padding=0)-2MP-128C(5,Padding=0)-
2MP-128C(3,Padding=0)-2MP-128C(3,Padding=0)-4MP-FC10, with the first convolutional layer
replaced with convolutional GMUs. Note that for smallNORB, we test GMUs of varying orders (1
and 3), the results of which are reported in Table 4 of the main paper.

For SVHN, we train a ResNet-18 architecture, replacing the first convolutional layer with convolu-
tional GMU units of order 3 and kernel size 7x7, maintaining the original receptive field. We applied
standard data augmentation (for all baselines) involving rotations and translations. Note that no data
augmentation was applied to any of the other datasets.

F.4 OPTIMIZATION

We summarize the optimization details for the experiments on the Tabular and Vision datasets. We
use Adam optimizer for all experiments. All networks are trained for 200-300 epochs, with an
exponential learning rate scheduler lr = initlr × 0.5epoch/50, where initlr is the initial learning rate.
For the GMU runs, we found that picking the network with the lowest training loss yielded more
stable performance, so we stick with this approach for all experiments in the Tabular and Vision
datasets. For the MLP/Resnet runs, we didn’t see any such improvement, so we use the standard
approach of training for a fixed number of epochs. A reason why this would be the case is that
GMU-MLPs’/GMU-CNNs’ losses are slightly more fluctuating in nature than MLP/Resnet’s losses,
so if the training stopped at an epoch which had higher fluctuations of training loss, that could be a
detriment to performance.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Dataset Dimension GMU-Resnet Time (ms) Resnet Time (ms)
credit-g 63 0.0181 0.0036
anneal 72 0.0171 0.0041
kr-vs-kp 74 0.0188 0.0045
mfeat-factors 216 0.0149 0.0036
vehicle 18 0.0183 0.0044
kc1 21 0.0214 0.0051
phoneme 5 0.0167 0.0040
cnae-9 856 0.0398 0.0067
blood transfusion 4 0.0205 0.0048
australian 42 0.0221 0.0054
car 21 0.0177 0.0042
segment 16 0.0197 0.0047
jasmine 280 0.0159 0.0037
sylvine 20 0.0182 0.0043
adult 105 0.0154 0.0036
nomao 174 0.0156 0.0037
bank marketing 51 0.0156 0.0037
jungle chess 6 0.0153 0.0036
volkert 180 0.0155 0.0037
helena 27 0.0155 0.0037
connect-4 126 0.0155 0.0036
higgs 28 0.0154 0.0037
numerai28.6 21 0.0154 0.0037
walking activity 4 0.0153 0.0037
ldpa 14 0.0153 0.0036
aloi 128 0.0185 0.0036
skin segmentation 3 0.0153 0.0036
Average - 0.0179 0.0041

Table 14: Per-sample Inference Times in tabular datasets (in milliseconds)

Dataset GMU-1 GMU-3 GMU-5 GMU-8 CNN
MNIST - 0.0183 - - 0.0088

Fashion-MNIST - 0.0193 - - 0.0045
CIFAR-10 - 0.0232 0.0232 0.0244 0.0089

Small-NORB 0.0440 0.0456 - - 0.0111
ImageNet (ResNet-50) 14.263 13.085 13.728 14.395 8.841

Table 15: Per-sample inference times (milliseconds) in vision datasets.

F.5 COMPUTATION TIMES

We document the per-sample inference times of GMU-based architectures and compare to the standard
counterparts in each case. First, we report the per-sample inference times (in milliseconds) in all our
tabular datasets tested in Table 14. Overall, although the standard counterparts are faster, we find that
GMUs only take about 0.0017 milliseconds (ms) on average for per-sample inference, retaining their
feasibility for real-time inference and fast training.

We also report the per-sample inference times for the GMU-CNNs tested in MNIST, Fashion-MNIST,
CIFAR-10 in Table 15. To see the feasibility of scaling GMUs to Imagenet level datasets, we also
include per-sample inference times of a pre-trained Resnet-50 on 224x224x3 sized Imagenet inputs.
Following the main paper, the first layer of the original networks were replaced by convolutional
GMUs. We find that the compute times stay insignificant for all datasets. For Imagenet, the compute
times for GMU-Resnets are larger (> 10 ms), but still feasible for real-time inference, and comparable
to the standard Resnet.

G PROOFS OF THEORETICAL RESULTS

Proposition 1. Let the random variables (X,Y) follow the ECI sampling process, and let S =
{(X1, Y1), . . . , (Xn, Yn)} be i.i.d. samples from this distribution. Consider a single-layer neural
network with computational units pui(X,W,b) :=

∑d
j=1 Wijxj + bi, i ∈ {1, . . . ,M}, followed

by a softmax layer producing output Psoft(Y |X,W,b). Let LCE denote the empirical cross-entropy
loss and assume it is uniformly bounded over the support of P (Y |X). Then, for every (W∗,b∗) ∈
argminW,b LCE(S), limn→∞ KL (P (Y |X) ∥Psoft(Y |X,W∗,b∗)) = 0 almost surely.

Proof. Using Bayes’ rule,

P (Y |X) =
P (Y)

∏d
j=1 P (xj |Y)∑M

i=1 P (Y = i)
∏d

j=1 P (xj |Y = i)
,

and substituting the ECI form P (xj |Y = i) = 1
Zij

exp(αijxj) gives

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

P (Y |X) =
P (Y)

∏d
j=1

1
Zij

exp(αijxj)∑M
i=1 P (Y = i)

∏d
j=1

1
Zij

exp(αijxj)
.

This is of the same functional form as the softmax output, since the neural network logits are defined
by

pui(X,W,b) =

d∑
j=1

Wijxj + bi,

and by setting Wij = αij and bi = logP (Y)−
∑d

j=1 logZij we have logP (Y |X) ∝ pui(X,W,b),
so that

Psoft(Y |X,W∗,b∗, S) =
exp(pui(X))∑M
i=1 exp(pui(X))

.

Since the cross-entropy loss L = −EP (Y |X)[logPsoft(Y | X)] differs from the KL divergence only
by the entropy of P (Y | X), minimizing cross-entropy is equivalent to minimizing DKL(P (Y |
X) ∥Psoft(Y | X)). Because both P (Y | X) and Psoft(Y | X) share the same functional form
under the ECI assumption, the minimum is attained when this KL divergence is zero. By the
strong law of large numbers, since the samples are i.i.d. and the loss is uniformly bounded, the
empirical cross-entropy converges almost surely to its population expectation as n → ∞. Thus,
limn→∞ DKL(P (Y | X) ∥Psoft(Y | X,W∗,b∗)) = 0 almost surely.

Proposition 2. Let the random variables (X,Y) follow the CL-SCM sampling process with equal
class priors, and let S = {(X1, Y1), . . . , (Xn, Yn)} be i.i.d. samples from this distribution. Consider
a single-layer neural network with computational units gi(X,W, σ) := − 1

σ2 minθ E[∥f(θ,Wi)−
X∥2] for i ∈ {1, . . . ,M}, followed by a softmax layer producing output Psoft(Y | X,W, σ). Let
LCE denote the empirical cross-entropy loss and assume it is uniformly bounded over the support
of P (Y | X). Then, for every (W∗, σ∗) ∈ argminW,σ LCE(S), we have limn→∞ KL(P (Y |
X) ∥Psoft(Y | X,W∗, σ∗)) = 0 almost surely.
Remark 1. Please note that we assume the classes are equiprobable a priori, which is not there in
the submitted main paper version of this result.

Proof. Under the CL–SCM sampling process, the generative model is

X = f(θ,Wi) + ϵ, ϵ ∼ N (0, σ2I), θ ∼ U([−1, 1]k).

As we’re assuming a MAP estimate of posteriors, we have

P (X | Y = i) = max
θ

P (X | Y = i, θ)P (θ).

Since P (θ) is uniform (i.e. constant), this reduces to maximizing P (X | Y = i, θ), and we have

P (X | Y = i) =
1

Vθ(σ
√
2π)d

exp
(
− 1

2σ2
min
θ
∥X − f(θ,Wi)∥2

)
,

where Vθ is the volume of θ’s support space. By Bayes’ rule we can write P (Y = i | X) = P (Y =

i)P (X | Y = i)/
∑M

j=1 P (Y = j)P (X | Y = j).

Given gi(X,W, σ) we note that exp gi(X,W, σ) has the same function form as the numerator in
the expression of P (Y = i|X) (after cancelling out the constants), and subsequently, a single-layer
neural network with softmax computes

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Psoft(Y = i | X,W∗, σ∗, S) =
exp
(
gi(X,W, σ)

)∑M
j=1 exp

(
gj(X,W, σ)

) ,
which is the same function form as P (Y = i|X). Since minimizing the cross-entropy loss is
equivalent to minimizing DKL(P (Y | X) ∥Psoft(Y | X)), and as P (Y | X) and Psoft(Y | X) share
the same functional form under the CL-SCM assumption, the minimum is attained when this KL
divergence is zero. By the strong law of large numbers, since the samples are i.i.d. and the loss is
uniformly bounded, the empirical cross-entropy converges almost surely to its population expectation
as n→∞. Thus, limn→∞ DKL(P (Y | X) ∥Psoft(Y | X,W∗, σ∗)) = 0 almost surely.

Proposition 3. (from Park and Sandberg (1991)) We are given a GMU-MLP, with GMU units in
equation 1 specified as: k = 0, η = 1, f(θ,W) is such that ∃Ws.t.f(θ,W) = 0 and ϕ(z) is any
integrable bounded function such that

∫
ϕ(x)dx ̸= 0. Then, this GMU-MLP can approximate any

function f ∈ Lp(Rd).

Proof. First, we note that the set of functions approximable by the GMU-MLP under the constraint
∃Ws.t.f(θ,W) = C is a subset of the set of functions that the GMU-MLP can approximate without
that constraint. Next, we note that when we set the weights of the GMU such that f(θ,W) = C,
setting σ′2 = σ2d, and η = 1 yields an RBF unit as the bias b can be adjusted as b′ = b− C to yield
the original RBF form. By Theorem 1 in Park and Sandberg (1991), it is known that RBF-based
networks achieve universal approximation in Lp(Rd), thus proving the result.

Theorem 2. Let E(X1, X2) = ∥X1 −X2∥, we can show that γE(d+ 1) < γE(d).

Proof. Since X1, X2 ∼ N (0, Id), we have X1 −X2 ∼ N (0, 2Id), so that ∥X1 −X2∥ =
√
2χd,

where χd is a random variable with the chi distribution with d degrees of freedom. Its mean

is E[χd] =
√
2
Γ
(
d+1
2

)
Γ
(
d
2

) and its variance is Var(χd) = d −

(
√
2
Γ
(
d+1
2

)
Γ
(
d
2

))2

. Therefore, the

mean of E(X1, X2) = ∥X1 − X2∥ is µE =
√
2E[χd] = 2

Γ(d+1
2)

Γ(d
2)

and its standard deviation is

σE =

√
2
(
d− 2

Γ
(

d+1
2

)2
Γ
(

d
2

)2).
Defining the CV as γE(d) = σE/µE , we obtain

γE(d)
2 =

d
2 Γ
(
d
2

)2
Γ
(
d+1
2

)2 − 1.

Thus, showing that γE(d) < γE(d− 1) is equivalent to proving

Γ
(
d+1
2

)
Γ
(
d−1
2

)
Γ
(
d
2

)2 >

√
d

d− 1
, (10)

The above follows from the result using Gurland’s ratio in equation 1.1 of Tian and Yang (2021),
where it states:

Γ(x)Γ(x+ 2u)

Γ(x+ u)2
> 1 +

u2

x
(11)

Setting x = (d− 1)/2 and u = 1/2, we get:

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Γ
(
d+1
2

)
Γ
(
d−1
2

)
Γ
(
d
2

)2 > 1 +
1

2(d− 1)
(12)

Squaring the RHS, we get:
(
1 + 1

2(d−1)

)2
= 1 + 1

d−1 + 1
4(d−1)2 > d

d−1 . Thus we have,

Γ
(
d+1
2

)
Γ
(
d−1
2

)
Γ
(
d
2

)2 >

√
d

d− 1
, (13)

yielding the result.

Proposition 4. We are given the k-subspace distance Sk,W (X1, X2) from X1 to X2. With this,
first, we note that γS0,W

(d) = γE(d), where E denotes the Euclidean distance. Then, we have that
γSk+1,W

(d) > γSk,W
(d), and thus γSk,W

(d) > γE(d).

Proof. The proof directly follows by realizing that for a fixed k-subspace, the closest distance to a
point is equivalent to the squared root of sum of square of d− k dimensions x1, x2, .., xd−k in the
Euclidean space, where each dimension xi ∼ N (0, 1) as the original data is also distributed this way.

This holds simply because one can rotate the space to align its unit vectors with the orthogonal
directions of the k-subspace, leaving only the other d− k to have degrees of freedom.

With this, it directly follows that γSk,W
(d) = γE(d − k) < γE(d − k − 1) = γSk+1,W

(d). And it
naturally follows that γSk,W

(d) = γE(d− k) > γE(d).

Proposition 5. We consider the case where the RV X has low intrinsic dimensionality. Let X ∈ Rd

be generated as: X =
∑kID

i=1 aivi, ai ∼ N (0, 1), where {vi}kID
i=1 are orthonormal vectors in

Rd, and kID < d is the intrinsic dimensionality of X . Let us set W = [v1, ..,vk] to be the first k
orthonormal vectors. Then, we have that γE(d) = γE(kID) and γSk,W

(d) = γE(kID − k).

Proof. It is trivial to show that γE(d) = γE(kID). The result directly follows from the fact that
X lies in a kID dimensional linear subspace with all Gaussian distributed dimension components
N (0, 1). Thus, we have that σ[S(X1, X2)] = σX′

1,X
′
2∼N (0,Id)[S(X

′
1, X

′
2)], where X ′

1 and X ′
2 are

the kID dimensional. Ssimilarly, it follows that µ[S(X1, X2)] = µX′
1,X

′
2∼N (0,Id)[S(X

′
1, X

′
2)]. Thus,

we obtain γE(d) = γE(kID).

Let X1 =
∑kID

i=1 aivi and X2 =
∑kID

i=1 a′ivi. As W is constructed using the first k components of
the linear subspace that contains X , the k-subspace distance Sk,W (X1, X2) can be expressed as:

Sk,W (X1, X2) = min
β
||

kID∑
i=1

aivi +

k∑
i=1

βivi −
kID∑
i=1

a′ivi|| (14)

= min
β

√√√√ k∑
i=1

(ai + βi − a′i)
2 +

kID∑
i=k+1

(ai − a′i)
2 (15)

=

√√√√ kID∑
i=k+1

(ai − a′i)
2 (16)

where the minimum is reached when ai + βi − a′i = 0 for all i = {1, 2, .., k}. Subsequently we
note that the resulting distance is simply the distance between two kID − k dimensional vectors, the
entries of which are generated via the Gaussian distribution N (0, 1). Thus, the k-subspace distance
here is equivalent to taking a distance in a lower dimensional space of dimension kID − k, the CV of
which is γE(kID − k). This proves the second part of the result.

29

	Introduction
	Contributions
	Bayes Optimality of Computational Units
	Generative Matching Units: Variants and Theoretical Results
	Linear GMUs
	Are GMUs Universal Approximators?
	Comparing Linear GMUs with RBFs

	Experiments
	Synthetic Datasets
	Sparse Linear Structure Prediction

	Tabular Datasets (Real)
	Vision Datasets (Real)
	Cross-Dataset Testing (Real)

	Conclusion and Limitations
	Summary of Supplementary Materials
	Vision: Comparing with Test-Time Adaptation
	Additional Experiments
	Fourier series function v/s Noise Differentiation
	k-subspace distance based thresholding
	Sparse Neural Structure Sampling
	Tree-structured sampling
	Polynomial Boundary Sampling
	Conditional Gaussian Sampling

	Discussions: Contextualizing GMUs in Literature
	Details on GMU Function and Integration
	Integrating GMUs into architectures
	Linear GMUs: Closed Form Expression

	Additional Empirical Details
	Synthetic Experiments
	Tabular Experiments
	Vision Experiments
	Optimization
	Computation Times

	Proofs of Theoretical Results

