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ABSTRACT

The ability of neural networks to generalize from data is fundamentally shaped by
the design of their computational units. Common examples include the perceptron
and radial basis function (RBF) units, each of which provides useful inductive bi-
ases. In this work, we introduce a new computational unit, the generative matching
unit (GMU), which is designed to naturally capture structured dependencies in data.
Each GMU contains an internal generative model that infers latent parameters spe-
cific to an input instance X, and then outputs a non-linear function of the generative
error using these parameters. By incorporating generative mechanisms into the
unit itself, GMUs offer a complementary approach to existing computational units.
In this work, we focus on linear GMUs, where the internal generative models are
linear latent variable models, yielding a function form that shares some similarities
with RBF units. We show that linear GMUSs are universal approximators like RBFs,
while being able to convey richer information and lessen the impact of the curse of
dimensionality compared to RBFs. Like perceptrons and RBF units, a linear GMU
has its set of weights and biases, and has a closed-form analytical expression, en-
abling fast computation. To evaluate the performance of linear GMUs, we conduct
a set of comprehensive experiments and compare them to multi-layer perceptrons
(MLPs), RBF networks, and ResNets. We construct GMU-ResNets, where the first
feedforward layer is replaced by GMUs, and test on 27 tabular datasets, observing
improved generalization over standard ResNets and competitive performance with
other benchmarks. We also construct GMU-CNNSs, which contain convolutional
GMU s in their first layer. Across five vision datasets, GMU-CNNs exhibit better
generalization and significantly better robustness to test-time corruptions. We also
empirically compare linear GMUs, to benchmark networks across more than 30
synthetic classification tasks, encompassing both structured and unstructured data
distributions. We find that GMUs consistently demonstrate superior generalization
to out-of-distribution samples, especially for the structured cases.

1 INTRODUCTION

Computational units serve as the fundamental building blocks of deep learning architectures, shaping
the network’s ability to process and generalize. While the universal approximation theorem provides
insights into the representational capacity of multilayered architectures, the behavior of individual
computational units plays a crucial role in determining the network’s extrapolative and interpolative
properties. Understanding these intrinsic characteristics at a granular level remains essential for
analyzing how a model generalizes beyond its training data and adapts to new inputs.

A widely used computational block in neural architectures is the perceptron unit, which introduces
non-linearity essential for learning complex functions. This unit has remained foundational across
various modern architectures, including transformer variants (Lin et al., 2022) and convolutional
networks (Li et al., [2021). Multi-layered perceptron (MLP) networks are known to be universal
approximators, capable of learning intricate mappings given sufficient complexity and data (Hornik
et al.| [1989). Another example of a classical computational unit is the Radial Basis Function (RBF)
unit, which also has universal approximation capabilities. Recent years have seen other computational
units being introduced, such as self-attention, Kolmogorov-Arnold Networks (Liu et al.,[2024) and
Capsule networks (Patrick et al.,|2022; Hinton et al., 2018). Alternatively, there have been approaches
that preserve the network computational structure, but dynamically adapt the parameters. Some
examples of that include Hypernetworks, where alternative network are used to adjust weights (Ha



et al.| 2016}, |Chen et al.,[2020), deformable convolution variants (Dai et al., 2017)), where both the
convolution weights and location perturbations are learnt simultaneously and spatial transformer
networks, where a differentiable transformation is learnt on the image before forward it to a standard
neural network.

In our work, we undertake a different approach. We use the Bayesian framework to motivate the design
of new computational units, rethinking their properties through a probabilistic lens. Specifically,
given the input X and target label Y, we seek to characterize the class of joint distributions P(X,Y")
under which a single layered network with individual units, coupled with common loss functions like
cross-entropy, can achieve Bayes-optimal classification. This is equivalent to identifying scenarios
when a single-layer network with certain computation units can exactly recover the underlying class
conditionals P(Y'|X).

Through this framework, we observe that perceptron units attain Bayes-optimal classification when
the underlying data distribution naturally factorizes into conditionally independent exponential
distributions. However, real-world data often exhibits complex inter-dimensional dependencies
beyond this simplified structure. To emulate this scenario, we use Structural Causal Models (SCMs),
which offer a principled framework for modeling causal mechanisms in data generation, extending
probabilistic models to incorporate causal relationships (Neuberg, |2003)). To that end, we introduce a
new generative framework called Class-wise Latent Structural Causal Model (CL-SCM), where each
class has a distinct structural causal model governing input generation. When the data generation
model is a CL-SCM, we identify a novel computational unit that can exactly recover the underlying
class conditionals.

We call our proposed computational unit Generative Matching Units (GMUs), which function
fundamentally differently from traditional computational units. Instead of directly transforming input
features, GMUs reconstruct inputs using an internal generative model, minimizing reconstruction
error within their framework. This bridges the gap between local feedforward units and holistic
structured generative modeling. Importantly, linear GMUs, which is explored in this work, has a
closed form analytical expression, enabling fast and efficient inference. GMUs thus offer a promising
approach for capturing complex data structures in relevant problems.

2 CONTRIBUTIONS

1. We show the correspondence between computational units and Bayes Optimality, and show that
under structured generative settings, a new computational unit emerges. Based on these findings
we introduce the Generative Matching Unit (GMU) and linear GMU variants.

2. We show that GMU networks can be universal approximators under mild constraints (which
are satisfied by linear GMUs) while simultaneously being able to capture richer information in
high-dimensional spaces than RBF networks, lessening the impact of the curse of dimensionality.

3. To study linear GMUs, we conduct an exhaustive comparison of performance between GMU-
ResNets and ResNets on 27 tabular datasets from openML. We find that in the majority of cases
GMU-ResNets generalize better than ResNets, and in some cases they yield state-of-the-art results,
when compared to well-known benchmarks.

4. We test GMU-CNN variants on five standard vision datasets. We find that GMU-CNNS significantly
outperform their vanilla CNN counterparts in terms of robustness to test-time corruptions.

5. GMUs show significantly better out-of-distribution generalization in diverse synthetic data settings.

3 BAYES OPTIMALITY OF COMPUTATIONAL UNITS

In this section, we study when computational units can recover the true conditional probabilities,
thereby achieving Bayes optimal classification. We begin with a simple conditionally independent
setting for perceptrons, and then extend to more structured cases, including class-wise latent models
that can be viewed as instances of switching causal models (Willig et al., [2025)), which motivates
our new generative computational unit. Given random variables X and Y denoting inputs and labels,
we consider samples S = {(X1,Y1),...,(Xn,Ys)} from P(X,Y’). We highlight the connection
between the ground-truth conditional P(Y | X') and the output of a single-layer network with specific
computational units under different sampling processes, as outlined in Figure|l} beginning with the
exponential conditionally independent sampling process.
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Figure 1: Comparing ground truth data generation models (a) Exponential Conditionally Independent (ECI)
Sampling, which samples every input dimension z; independently given the label Y and (b) Class-wise latent
structural causal model based sampling (CL-SCM), which maintains a separate SCM for each class. (c) outlines
the SCM in the CL-SCM approach, which can emulate more complex structural dependencies in the data.

Definition 1 (Exponential Conditionally Independent (ECI) Sampling). Let X = [x1,Z2,...,Z4] €
RY and class label Y € {1,...,M}. The data is sampled such that P(Y|X) o

P(Y) H;l:1 P(z;|Y), where each feature x; is conditionally independent given Y, and follows
the exponential form P(x;|Y = i) = 2~ exp (a;;x;), where Z;; is a normalization factor.
ij

A single-layer perceptron trained with cross-entropy recovers P(Y | X)) under the ECI assumption.
Proposition 1. Let the RVs (X,Y) follow the ECI sampling process. Consider a single-layer
neural network with computational units pu,(X, W, b) := Z;l:1 Wijx; +b;, i€ {l,...,M},
followed by a softmax layer which outputs Py, (Y| X, W*,b*,S), where W*,b™ are weights and
biases minimizing the cross-entropy loss on S. Then, lim,,_, o Pos(Y| X, W*,b*,S) = P(Y|X).

Proposition 2. Let the random variables (X,Y) follow the ECI sampling process, and let S =
{(X1,Y1),...,(Xn,Yn)} be i.id. samples from this distribution. Consider a single-layer neural

network with computational units pu,(X, W, b) := 2?21 Wijz; +b;, ie{l,..., M}, followed
by a softmax layer producing output Puor, (Y| X, W, b). Let Lcg denote the empirical cross-entropy

loss and assume it is uniformly bounded over the support of P(Y|X). Then, for every (W* , b*) €
arg minw b Lcg(S), lim, 0o KL (P(Y]X) || Post (Y| X, W*,b*)) = 0 almost surely.

While the ECI sampling assumes conditional independence between input dimensions, real-world
data often exhibits intricate dependencies that standard models fail to capture. To address this, we
introduce a structured sampling process that encodes these inter-dimensional relationships, called
Class-wise Latent Structural Causal Model (SCM) sampling.

Definition 2 (Class-wise Latent SCM (CL-SCM) Sampling). Let X = [z1,22,...,74] € R?
be generated by one of M latent structural causal models (SCMs) corresponding to each class
Ye{l,....M}: X = f(O,Wy) +e, e~ N(0,0%0),0 ~ U([-1,1]%). i€ {1,...,M},
where O € R¥ represents latent confounders influencing X, and W; corresponds to the structural
parameters of the causal model. U denotes the uniform distribution.

The class-wise latent SCM (CL-SCM) can be viewed as a special case of switching SCMs (Willig
et al.,|2025), where different causal mechanisms are activated depending on context and the active
mechanism is determined by the class label Y. In the CL-SCM case, we show a new computational
unit emerges that recovers the true posterior, but only under a MAP approximation.

Proposition 3. Let the random variables (X,Y) follow the CL-SCM sampling process with equal
class priors, and let S = {(X1,Y1),...,(Xn, Yn)} be i.i.d. samples from this distribution. Consider
a single-layer neural network with computational units g;(X, W, 0) := — 25 ming E[|| f (6, W;) —
X[ fori € {1,..., M}, followed by a softmax layer producing output Psot,(Y | X, W, o). Let
Lcw denote the empirical cross-entropy loss and assume it is uniformly bounded over the support
of P(Y | X). Then, for every (W*,c*) € argminw , Lcr(S), we have lim,,_,.o KL(P(Y |
X) || Peots (Y | X, W*,0*)) = 0 almost surely.

The computational unit g; explicitly performs an internal optimization for every input instance X,
using an internal generative model f (6, W;) to reconstruct X. This directly motivates the need for
generative computational units, which we outline in the following sections.
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Figure 2: (a) A conceptual depiction of a single generative matching unit and (b) Table showing potential
parameter choices for the GMU function in equationm

Remark 1. However, we observe the unit g; may not be directly adaptable to real architectures.
When active, its output remains close to zero, whereas when inactive, it can become significantly
negative. To appropriately adjust its range, the final form of the GMU incorporates an additional
activation function ¢, ensuring that the unit maintains a positive activation when it effectively predicts
the input and approaches zero when it does not.

4 GENERATIVE MATCHING UNITS: VARIANTS AND THEORETICAL RESULTS

We first define the most general form of a GMU as follows.
Definition 3. (Generative Matching Unit:) Let the input to the unit be X = [x1, 79, ..,14] € RY,
where z; € R. Consider a function family F, such that every function f : R¥ — R? € F can be
parameterized as f(0,W) + b, where 6 € RE, W e RF* and b € RY™. W and b represent the
generative weights and biases of the unit, and 0 represents the latent generating variables. Then, a
GMU of order k computes:

2

> ey

¢ : R = R is the GMU’s activation function. 1 represents an optional normalization measure to
ensure that 5 mingepr | 2= — (f(0,W))||? is bounded. Lastly, o represents an optional smoothing
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factor.
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We outline all parameter and function choices in equation[I]tested in this paper in Figure 2(b)]. In
Figure all real number based entries of the form var(IRP*?) denote tensors of size p X g where
all entries are real variables subject to gradient descent. Lastly, J, ; denotes a constant matrix of
dimensions p x g, where every element is equal to 1. We next discuss the linear GMU variant that is
tested in this work. For notational ease, we denote a GMU of order £ by GMU(k).

Remark 2. We provide a conceptual depiction of the computation inside a GMU in Figure 2(a))
Each GMU’s internal generative model can be parameterized by a manifold over the space of the
input X. Subsequently, for every input instance x € R%, a GMU effectively estimates the distance
between its internal manifold and x, and returns a function (¢) of this distance. Ideally, ¢ should be
chosen such that lower distances yield higher activations and vice-versa.

Remark 3. (u-RBF units) Radial Basis Functions (Buhmann, |2000; |Powell, |1987)) are a special

case of equation. Specifically, when k = 0,n = 1, ¢(z) = e=*, and f(O, W) = 0, we have
gmu(X) = ¢ (451X — b||2). GMUs contain an additional averaging across dimensions yielding

the d term in the denominator which RBFs don’t have. Furthermore, in our experiments we find that
performance is more stable when we set o = 1. We denote them as p-RBF networks, and these units
specifically as p-RBF units.

4.1 LINEAR GMUSs

In this work, we restrict f to linear functions W70 over the latent generating variables. The resulting
generative structure represents a specific case of linear latent variable models (LLVMs), which have



been studied in literature in the context of generative modeling (Reilly}, |2025). Here we set o = 1,
yielding the following expression for a GMU of order k:
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Linear f allows for closed form expressions of equation 2]as it becomes a least squares regression
problem. This eventually yields the following final expression:

gmu(X) =¢ <1 min

emu(X) =6 [

pi ; 3

T 2
X=b ey <X—b)
1 1

where AT denotes the pseudo-inverse of A. We denote these as linear GMUs. Note that the generative
manifold of linear GMUs is therefore a linear subspace of dimensionality k. Geometrically, when

2
n = 1, mingege % — WTHH becomes the distance between the input point X and a linear

subspace parameterized by W70 + b (manifold in Figure 2(a)). Lastly, in our experiments, we set
o =1, as we find that the 1/d term is enough to avoid collapsing gradients, and learning is stable.
We also find that ¢ = 1 yields more performant GMUs.

4.2 ARE GMUS UNIVERSAL APPROXIMATORS?

We study the universal approximation abilities of two layered GMU-MLPs, which consists of a
layer containing multiple GMUs followed by a linear perceptron layer. First, let us define the set of
functions LP(Rd) such that every f € L”(Rd), where f : R* — R, is p!" power integrable, bounded,
continuous and continuous with compact support. LP(R?) encompasses the set of all such functions
which satisfy these constraints. This leads to the universal approximation theorem for GMUs, as an
extension of the result in [Park and Sandberg| (1991).

Proposition 4. (from Park and Sandberg (1991)) We are given a GMU-MLP, with GMU units in
equation |l| of arbtrary k specified as: n = 1 and IWs.t.f(0,W) = CV6 (C is any constant)
and §(z) is any integrable bounded function such that [ ¢(x)dx # 0. Then, this GMU-MLP can

approximate any function f € LP(R?).
Note that linear GMUs satisfy the constraints of Propositiond} and thus are universal approximators.

4.3 COMPARING LINEAR GMUSs wITH RBFs

Linear GMUs merit a direct comparison to RBFs in some ways, because both GMUs and RBFs
compute distanced internally, and return a function of this distance. For RBFs, it is the Euclidean
distance || X1 — X3||, whereas for linear GMUs of order k, it is the distance between a k-dimensional
linear subspace and a point. We call this the k-subspace distance, and it is formally defined as follows:
Definition 4 (k-Subspace Distance). The k-subspace distance between two points X1, X5 € R with
respect to a generative weight matrix W € RF*4 is given by:

Skw (X1, Xo) = min [ X2 — (W60 + X1)]|.

This measures the closest distance between Xo and the k-dimensional affine subspace generated by
W which passes through X;.

We note that the linear GMU function, as seen in equation 2] computes a k-subspace distance. When
k = 0, the above just computes Euclidean distance, which is used in RBFs. As both methods rely on
distance measures, the curse of dimensionality becomes a relevant concern.

Curse of Dimensionality: As dimensionality increases, distance-based metrics tend to lose their
discriminative power. In high-dimensional spaces, most points become nearly equidistant from one
another, causing similarity measures to collapse (Xia et al.,|2015). The effectiveness of Euclidean
distance diminishes as variability in measured distances decreases, making tasks like nearest-neighbor
classification or kernel methods more challenging.

This naturally raises the question: is the k-subspace distance inherently more robust to the curse of
dimensionality than Euclidean distance? To address this, we introduce the concept of the coefficient of
Variation (CV), which quantifies how informative a similarity measure remains in high-dimensional
spaces.
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Figure 3: CV v/s Dimensionality of various distance measures. We compare k-subspace distance used by GMUs
to Euclidean distance (k = 0) which is used by units such as RBFs.

Definition 5. (Coefficient of Variation) We are given a similarity measure S(X1, Xs), where
X1, Xy € R Let I; represent the identity matrix of size d x d. Then, the coefficient of variation
(CV) vs(d) of S in d-dimensional space is given by:

N S(X1, X
'YS(d)_ 0X1,Xo ./\/(O,Id)[ ( 1 2)] (4)

Ty XN (0,10 S (X1, X))

where o[.] and y|.] denote the standard deviation and the mean of the random variables within, given
the distributions of X1 and X5 below.

This ratio highlights the degree of variation in a similarity measure. A small yg(d) indicates
low variability and suggests that the measure loses its ability to differentiate between points as
dimensionality increases. In contrast, a high CV signifies greater variability, preserving meaningful
distinctions between points.

Theoretical Results: To investigate whether k-subspace distance is more resistant to the curse of
dimensionality, we compare the CV for Euclidean distance (7yg) and k-subspace distance (vs, )
theoretically. We have the following results.

Theorem 4. Let (X1, X5) = || X1 — Xa2||, we can show that yg(d + 1) < yg(d).

Corollary 4.1. We are given the k-subspace distance Sy w (X1, X2) from X1 to Xo. With this,
first, we note that ~ys, ., (d) = vg(d), where E denotes the Euclidean distance. Then, we have that
75k+1,w(d) > ’ysk,W<d)’ and thus VSk,w (d) > ’YE(d)

Proposition 5. We consider the case where the RV X has low intrinsic dimensionality. Let X € R¢
be generated as: X = Ef;’f aivi, a; ~ N(0,1), where {v;}¥'2 are orthonormal vectors in
RY and kip < d is the intrinsic dimensionality of X. Let us set W = [vq, .., V] to be the first k
orthonormal vectors. Then, we have that yg(d) = vg(kip) and s,  (d) = ve(kip — k).
Remark 5. These results provide interesting insights. Proposition{|reinforces the curse of dimen-
sionality, showing that Euclidean distance loses information as dimensionality increases. In contrast,
Proposition demonstrates that k-subspace distance retains a strictly greater CV, enabling more
robust differentiation in high-dimensional spaces. Moreover, higher-order GMUs extract richer struc-
tural information as k increases. Lastly, Proposition 5| highlights that when data in high dimensional
ambient space has a low intrinsic dimension, which is common in real-world datasets, k-subspace
distance can maintain a high CV.

Empirical verification: We conduct a series of experiments to estimate the CV of both Euclidean
distance and k-subspace distance, verifying the theoretical results from Corollary 4.1 and Theorem [4]
For the first experiment, we simulate X1, Xo ~ A(0, I;) and compute the CVs v (d) and g, ,, (d)
as functions of dimensionality d. The results, summarized in Figure confirm that k-subspace
distance consistently exhibits higher CV compared to Euclidean distance (¥ = 0), reinforcing the
idea that GMUs can capture greater structural variability in high-dimensional settings.

Next, we conduct an experiment on data distributions with low intrinsic dimensionality (ID), a
common property of real datasets. We hypothesize that when data lies in a low-dimensional subspace
within R?, appropriately chosen weights W can enhance the CV of k-subspace distance. To test this,
we generate inputs constrained to 10-dimensional linear subspaces within ambient spaces where d



Algorithm 1 Sparse Linear Structure Sampling

1: Setup: X € R% labelsy € {1,...,C}, W = [Wy, Wa, .., Wy,,,] € RNoaxd
2: For each class y: Select up to Ny, active latent variables from {6, } f\f{“‘

: Generative Process:

Sample y ~ Unif{1,...,C}

Compute x:

DA

Ny
_ T
T = Z Wy @)bg, ) T €
1=1

6: where € ~ N(0,0%1,)

varies from 10 to 50, setting the first k£ rows of W to match the subspace’s generating vectors. As
shown in Figure [3(b)] k-subspace distance yields substantial CV improvements for larger k£, when the
data distributions are of low ID.

5 EXPERIMENTS

We provide experiments on both synthetic and real datasets. The synthetic experiments are designed
to isolate and stress-test specific structural properties of GMUs, while the real-data experiments
demonstrate their utility in practical supervised learning tasks. Additional details, including theoretical
proofs, extended experiments, and in-depth analysis of GMUs, are provided in the supplementary
materials, along with code for reproducibility.

5.1 SYNTHETIC DATASETS

We design six synthetic sampling scenarios to evaluate GMUSs under controlled conditions, each
highlighting a different structural or functional property of the data. These experiments test not
only whether networks can exploit class-specific structural causal models (SCMs) and generalize to
out-of-distribution shifts, but also whether they can capture functional and geometric structure such
as Fourier expansions, k-subspace thresholds, polynomial boundaries, and Gaussian mixtures. Due to
space constraints, we report in the main paper only the Sparse Linear Structure Prediction experiment,
which directly probes the ability of GMUs to recover sparse latent causes that determine both inputs
and labels. The remaining experiments, including Fourier series recovery, k-subspace thresholding,
sparse neural structure sampling, tree-structured sampling, polynomial boundary sampling, and
conditional Gaussian sampling, are presented in the Appendix with full details and results.

5.1.1 SPARSE LINEAR STRUCTURE PREDICTION

Problem Outline. We argue that in many natural data sources, only a sparse subset of latent causes
is active in generating any given observation. This intuition is consistent with prior work in sparse
representation learning (Lee et al., [2006), where sparsity is viewed as a key inductive bias for
capturing real-world structure. To test whether GMUs can leverage this property, we construct a
synthetic scenario in which the set of active latent causes not only generates the observed input
but also directly determines the class label. Concretely, this sampling process is a special case of
the CL-SCM framework (Figure E]), where the class-wise models SCM;, SCMs, ..., SCM); may
share common latent causes and weight structure. The generative process is formally described in
Algorithm T}

Experimental Setup. We generate datasets by first sampling the generative weights W from
a standard normal distribution N'(0,1). For each instance, the number of active causes N, is
drawn uniformly from [1, Npax], and the corresponding latent variables are activated to produce the
observed input vector 2. Unless otherwise specified, Gaussian noise with variance o2 is added to
each dimension. To probe generalization, we vary the range of the latent variables 0, ;) at test time,
thereby creating OOD conditions where the test distribution differs from training. This allows us
to evaluate whether models capture the underlying generative mechanism or merely memorize the
training data.

Baselines and Models. We compare GMUs against strong feedforward baselines. Specifically, we
evaluate a two-layer MLP with 512 ReLU-activated hidden units (denoted MLP-512) and a ResNet
with two groups, each containing one block of 512 units (denoted ResNet-512-[1,1]). To ensure
fairness, all models are trained with the same optimizer and learning rate schedule. We also evaluate



Setup Test MLP R-[1,1]

T — 5N | Config | GMU(D GMUQ@)  GMUG) GMU@) GMU(S) GMU(©) | MLP £ R(LIT o
20 25 10 00l 3 same | 0.8997 09311 09654 09794 09694  0.966 09505 09728 09622 09714
20 25 10 001 3 ood | 0.685 0.84525 09735 08922  0.928 09442 | 05725 07087 0.631  0.6525
20 25 100 01 3 same | 0.944 09271 09348 09488 09482 09482 | 09197 09451 0946  0.9462

20 25 100 01 3 ood 0.8785 09005  0.926 0.848 08592 09092 |0.6457 0733 0681 0724
20 25 100 001 3 same | 0.9471 09494 09814 09874 09862 09825 | 09545 09754 09654 0.9788
20 25 100 001 3 ood | 0.892 09215  0.981 09335 09365 09612 | 0.6282 07492 0693  0.7522
20 25 100 0 3 same | 0.9474 09565 09962 09951 09974 09991 | 09548 09797 09622 0.9868
20 25 100 0 3 ood | 0.892 0.925 09977 09915 09835 09905 | 0.6275 07495 0.6842 0.7432
20 25 500 001 3 same | 09502 09434 09831 09891 09894 09874 | 09537 09771 09685 0.9845
20 25 500 001 3 ood | 09087 09215 09845 09395  0.948 09655 | 0.59725 07677 0.6467 0.7665
20 25 1000 001 3 same | 09111 09502 09834 09957 09914  0.996 09662 09814 09762 0.9845
20 25 1000 001 3 ood | 08657 09017 0975 09537  0.987 0.983 0517 07525 06572 0.7837
20 25 1000 001 6 same | 0.978 09385 09791 09908 09885 09951 | 09637 09882 09757 0.9882

20 25 1000 001 6 ood | 09272 06867 09462 09462 09905 09997 | 0.6407 09107 0.641 0904
50 10 1000 001 3 ood 05752 0.743 0.8997 09077  0.891 0.8712 | 05492 05575 04132 05352
Wins/Losses/Ties vs GMU(Q3) @10 15000 - kel 6/970 6/970 1500 12/3/0 14710 10/5/0
Wilcoxon p-value 1.8¢-04  6.1e-05 - 0.432 0.639 0.804 6.1¢-05  8.4e-03 4.3e-04 1.8¢-02

Table 1: Test accuracy results on the sparse linear structure prediction experiments.

normalized variants of the baselines, where inputs are scale-normalized and mean-adjusted, denoted
with the suffix “(norm.)”. For GMUs, we use a single GMU layer with d inputs and C' outputs,
denoted GMU(k), where k indicates the order of the GMU. This design allows us to directly test
whether the inductive bias of GMUs provides an advantage over standard architectures.

Results. The results are summarized in Table [I} GMUs consistently outperform both MLP and
ResNet baselines across parameter settings, with the gap most pronounced in OOD scenarios where
test distributions differ from training. This suggests that GMUSs capture aspects of the underlying
generative process better than the other counterparts. We also find that higher-order GMUs (k >
Npax) perform comparably to k = Ny ., since larger-order GMUs can emulate lower-order ones by
simply setting some weights to zero. The Wilcoxon signed-rank test shows no significant gains once
k exceeds the true number of active causes, indicating that while overparameterization is not harmful,
its benefits saturate beyond the underlying generative complexity.

Discussions. These findings highlight two key points. First, GMUs are well-suited for tasks where
the discriminative signal is tied to a sparse generative structure, a property that is common in many
real-world domains (e.g., vision, genomics, and language). Second, the robustness of GMUs under
OOD shifts suggests that their inductive bias aligns more closely with the true data-generating process
in this scenario. In the Appendix, we extend this analysis to five other synthetic scenarios listed
above, which probe complementary aspects of GMU behavior such as functional approximation
(Fourier series), geometric discrimination (k-subspace thresholding), non-linear causal sampling
(sparse neural structure), hierarchical observed-variable dependencies (tree-structured sampling), and
non-linear decision boundaries (polynomial and Gaussian mixtures). Together, these experiments
provide a broad and rigorous evaluation of GMUSs under diverse synthetic conditions.

5.2 TABULAR DATASETS (REAL)

Outline: We test and compare performance on 27 OpenML datasets, selecting a diverse subset
from [Kadra et al.| (2021)), ranging from small-scale (800 samples, 5 dimensions) to medium-scale
(170k samples, 1k dimensions). For the Resnet-512-[1,1] architecture, which performed well in our
synthetic experiments overall, we replace the first layer with four types of GMU units: k£ = 0,1, 2, 3.
Each configuration maintains 128 units in the first layer, yielding 512 output units, matching the
Resnet. We denote this network as GMU-Resnet-512-[1,1] (or GMU-S). Since GMU-Resnets are
slightly more parameterized than Resnets, we scaled the Resnets (530 units per layer) to ensure equal
parameter counts. Results are provided in Table 3]

Takeaways: We find that overall, in 23 out of 27 cases, GMU-Resnet-512-[1,1] showcases better
or on-par balanced accuracy. Furthermore, the GMU-Resnet-512-[1,1] performs competitively or
favorably against other state-of-the-art approaches in [Kadra et al.|(2021) when compared one-to-one
via the Wins/Losses/Ties criterion (please see supplementary materials).

5.3 VISION DATASETS (REAL)

Outline: We construct convolutional GMUSs, where we replace every linear operation in convolution
with a GMU, using which we create GMU-CNN architectures, where the first layer is replaced with
only convolutional GMUs and the rest of the network is unchanged. We focus on two aspects: whether
the GMUs show better generalization compared to CNNs with the same architecture and whether
they show better out-of-distribution performance to test-time corrupions. We report our findings



Models - - Datasets - - - -
credit-g anneal kr-vs-kp mfeat  vehicle kel phoneme cnae-9  blood  Australian car segment jasmine  sylvine
R 0.6972  0.8546  0.9969 0.9850 0.8446 0.7104  0.8959  0.9398 0.6304 0.8479 1.0000 09254  0.7438  0.9250
GMU-R | 0.7036 0.8610 0.9969 0.9800 0.8793 0.6866 0.8882 0.9398  0.6718 0.8726 1.0000 0.9307 0.7520  0.9268
adult  nomao bank jungle volkert helena connect-4 higgs numerai  walking 1dpa aloi skin-seg
R 07652 09582 0.7261 0.9686 0.6766 0.2213  0.7369  0.6684  0.5066 0.6203 0.6991 09617  0.9997
GMU-R | 0.7735 0.9599 0.7382 0.9773 0.7003 0.2206 0.7535 0.6781 0.5146 0.6322 0.6777  0.9684 0.9996

Table 3: Balanced Accuracy on 27 Tabular datasets from OpenML.

Dataset: MNIST Dataset: smalINORB
Network | Standard | brightness canny  dotted fog glass  impulse motion shot spatter  zigzag | Average Model Test Accuracy  Test Accuracy
CNN ‘ 0.9949 0.2274 0.6149 09791 0.1188  0.541 0.4529  0.9675 09226 0.9834 0.7826 0.6895 (Uncorrupted) (Corrupted)
GMU-CNN | 0.9954 0.9913 0.8998 09896 0.9234 0.8141  0.9377 09614  0.9449  0.9759 0.9447 0.9434 CNN 0.954321 0.436872
Dataset: Fashion-MNIST GMU-CNN (1S-1D) 0.97477 0.546502
CNN ‘ 0.9329 0.4535 03709 0.8786 02712 0.6518 02056 0.7188 0.5959 0.8835 0.8I31 [ 0.615982 GMU-CNN (2D-18) 0.96642 0.516132
GMU-CNN | 0.9356 0.8250 0.7058 09118 0.7442 0.5817  0.6703  0.6831 0.48964 0.8868 0.8806 | 0.755867 GMU-CNN (3S-1D) 0.96 0.56329
(a) (b)
Dataset: CIFAR-10
Network Standard | brightn  contrast defocus elastic fog gauss_blur  glass impulse motion pixelate saturate shot_noise spatter | Average
VGG-16 0.8594 0.83642 0.5952  0.68148 0.71436 0.74422  0.5929 0.44146  0.59338  0.6211 0.6826  0.8147  0.6366 0.7440 | 0.669109
GMU(3)-VGG | 0.8645 0.8540 07489  0.7811  0.7493  0.8176  0.741 0.4665  0.6003 07142 07192  0.8211  0.6372 0.7861 | 0.725885
GMU(8)-VGG | 0.8734 0.86188 0.75478 0.7977  0.7534  0.8311  0.7620 0.4383  0.5608  0.7325 0.7273  0.8298  0.6163 0.7874 | 0.727174
(©

Table 4: Test Accuracy on standard and corrupted data on (a) MNIST and Fashion-MNIST (b) smalINORB, and
(c) CIFAR-10 datasets.

across four datasets: MNIST, Fashion-MNIST, CIFAR-10, smalINORB and their corrupted versions.
Results are summarized in Table E} Additionally, to also showcase that GMUs can be combined with
benchmark approaches for out-of-distribution settings such as test time adaptation (You et al., 2021}
Lim et al., [2023)), we provide additional experiments in the supplementary materials.

Takeaways: We find that GMU-CNNs show substantial improvements in terms of robustness
to test-time corruptions in all cases. In all cases, we see that GMU-CNNs show improvements
when compared with their native CNN baselines. On smalINORB, GMU-CNNSs reach performance
competitive to other benchmarks such as first generation capsule networks (2.5 vs 2.7% error rate in
Patrick et al.|(2022)). We don’t use data-augmentation or any other regularization approach in these
experiments, to focus on the intrinsic generalization performance.

Computation times: We find that GMU-CNNs and GMU-MLPs still maintain instantaneous infer-
ence times per sample, in spite of inverse operations. This is because the size of the matrix being
inverted in equation [3|is k£ x k, where k is the order of the GMU. In all our experiments k < 8,
which makes this operation efficient. Overall, in the tabular data experiments, the average per-sample
inference time of GMU-Resnets was 0.017 ms compared to 0.004 ms for Resnets, and for the vision
experiments, GMU-CNNs took 0.0265 ms compared to 0.0083 ms for CNNss.

5.4 CROSS-DATASET TESTING (REAL) Table 2: Cross-Dataset Testing
In this section, we train GMU-ResNets and ResNets (with _Test Setting GMU Standard
SVHN Only 96.58  95.60

the ResNet-18 backbone) on the Street View House Numbers

dataset (SVHN, [Netzer et al.|(2011))) and then test directly on ﬁﬁ;‘t}g‘gg gi:gg ?;52
MNIST, without any changes to the network. Similarly, we use
trained GMU-CNNs and CNNs on MNIST and test on SVHN. The results are shown in Table 2l We
not only see GMU-Resnet-18 significantly improve over Resnet-18 on native SVHN, but we also see
significant gains in accuracy when directly transferring between datasets.

6 CONCLUSION AND LIMITATIONS

Our work demonstrates the potential advantages of an alternative computational unit that computes
from a generative perspective, imposing a low-complexity constraint on the generation process.
Generative Matching Units showcase better generalization and demonstrate a significantly higher
ability to identify dynamic causal structures in the inputs. On real tabular datasets, Resnets replaced
with GMU layers in the first layer show signifcant performance improvements. Many possibilities
remain open for incorporating GMUs in larger networks across other domains, and also finding ways
to cascade multiple GMU layers.

Limitations: Our experiments focus on GMUSs replacing traditional units only in the first layer. This
choice is driven by two factors: First, replacing the first layer already leads to significantly different
network behavior, making it a natural point of study. Second, while GMUs introduce negligible
overhead in the first layer, computational costs increase in deeper layers. We are actively working on
optimizing efficiency to scale GMUs to ImageNet-level datasets without added compute burden.
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A  SUMMARY OF SUPPLEMENTARY MATERIALS

In this document we share additional experiments and analyses, empirical details and theoretical
proofs and any further clarifications. Code is provided here, which includes a GUI based demonstra-
tion of the performance of trained GMU-CNNS for digit classification and Fashion item classification.
Instructions for the demo are available here.
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B  VISION: COMPARING WITH TEST-TIME ADAPTATION

Corruption Type | Standard (CNN) TTA (CNN) | Standard (GMU-CNN) TTA (GMU-CNN)
Brightness 0.2274 0.9887 0.9913 0.9933
Canny Edges 0.6149 0.9431 0.8998 0.9813
Dotted Line 0.9791 0.9873 0.9896 0.9902
Fog 0.1188 0.6074 0.9234 0.9609
Impulse Noise 0.4529 0.9098 0.9377 0.9683
Motion Blur 0.9675 0.9858 0.9614 0.9666
Shot Noise 0.9226 0.9677 0.9449 0.9757
Spatter 0.9834 0.9857 0.9759 0.9755
Zigzag 0.7826 0.8707 0.9447 0.9608
Average 0.67213333 0.916244 0.952078 0.974733

Table 5: Accuracy comparison of standard (no TTA) and Test-Time Adaptation (TTA) approaches across various
corruption types on the MNIST dataset.

Corruption Type | Standard (CNN) TTA (CNN) | Standard (GMU-CNN) TTA (GMU-CNN)
Brightness 0.4535 0.8281 0.8250 0.8550
Canny Edges 0.3709 0.5322 0.7058 0.7575
Dotted Line 0.8786 0.8953 09118 0.9161
Fog 0.2712 0.6060 0.7442 0.8373
Impulse Noise 0.2056 0.6614 0.6703 0.7837
Motion Blur 0.7188 0.7865 0.6831 0.7830
Shot Noise 0.5959 0.7059 0.4896 0.6870
Spatter 0.8835 0.8902 0.8868 0.8908
Zigzag 0.8131 0.8606 0.8806 0.8941
Average 0.6159 0.7518 0.7558 0.8227

Table 6: Accuracy comparison of standard (no TTA) and Test-Time Adaptation (TTA) approaches across various
corruption types on the Fashion-MNIST dataset.

Corruption Type | Standard (VGG) TTA (VGG) | Standard (GMU(3)) TTA (GMU(3)) | Standard (GMU(8)) TTA (GMU(8))
Brightness 0.83642 0.82376 0.8540 0.85266 0.86188 0.86362
Contrast 0.5952 0.74014 0.7489 0.8016 0.75478 0.81086
Defocus Blur 0.68148 0.79334 0.7811 0.82878 0.7977 0.83792
Elastic Transform 0.71436 0.74232 0.7493 0.7808 0.7534 0.78318
Fog 0.74422 0.77798 0.8176 0.8283 0.8311 0.8393
Frost 0.7386 0.7386 0.7410 0.77508 0.7620 0.78332
Gaussian Blur 0.5929 0.77528 0.7410 0.81844 0.7620 0.82662
Impulse Noise 0.59338 0.65226 0.6003 0.75382 0.5608 0.73398
Motion Blur 0.6211 0.74056 0.7142 0.79238 0.7325 0.79896
Pixelate 0.6826 0.7591 0.7192 0.80666 0.7273 0.81328
Saturate 0.8147 0.81246 0.8211 0.8283 0.8298 0.83882
Shot Noise 0.6366 0.72318 0.6372 0.77136 0.6163 0.76632
Spatter 0.7440 0.73732 0.7861 0.79432 0.7874 0.7989
Average 0.691966 0.7551 0.747 0.8025 0.752074 0.807314

Table 7: Accuracy comparison of standard (no TTA) and Test-Time Adaptation (TTA) approaches across various
corruption types on the CIFAR-10 dataset.

We extend our analysis to include test-time adaptation (TTA) and summarize the statistical compar-
isons in Table[8] The table reports wins, losses, and ties across corruption types, along with Wilcoxon
signed-rank p-values for GMU-CNN versus standard CNN (or VGG in the case of CIFAR-10), both
under standard evaluation and with TTA. Several clear trends emerge. First, under standard evaluation,
GMU-CNN significantly outperforms the baseline on MNIST and CIFAR-10, and shows a positive
but not statistically significant trend on Fashion-MNIST. Second, when TTA is applied, both standard
and GMU-based models benefit substantially, confirming that adaptive batch normalization improves
robustness to distribution shifts. Crucially, GMU-based architectures continue to hold an advantage
even after TTA is applied to both models: on Fashion-MNIST and CIFAR-10, the improvements
are statistically significant (p = 0.01953 and p = 0.00012, respectively), while on MNIST the trend
remains favorable though not significant (p = 0.06445). Finally, higher-order GMU variants (e.g.,
GMU(8) on CIFAR-10) show that the benefits of TTA and GMU are complementary, leading to
consistent wins across all corruptions. These results demonstrate that GMU-based architectures not
only integrate seamlessly with existing TTA methods but also preserve their relative advantage over
conventional networks under test-time distribution shifts.
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Standard With TTA

Dataset Wins Losses Wilcoxonp Wins Losses Wilcoxon p
MNIST 9 2 0.00488 7 2 0.06445
Fashion-MNIST 8 3 0.08740 7 2 0.01953
CIFAR-10 11 3 0.00336 13 0 0.00012

Table 8: Comparison of GMU-CNN vs CNN across datasets. Left: standard evaluation. Right: test-time
adaptation (TTA). Wins/losses are counted per corruption type; p-values are from the one-sided Wilcoxon
signed-rank test (GMU-CNN > CNN).

C ADDITIONAL EXPERIMENTS

In this section, we demonstrate the versatility of GMUSs in achieving good generalization performance
in diverse synthetic settings. We include the following experimental setups:

1. Fourier series function v/s Noise Differentiation: We show how single-layered GMU archi-
tectures can learn underlying function structures in the data, when the functions are represented
generally as a Fourier series.

2. k-subspace distance based thresholding: We show that the problem that is the most natural test
for a single-layered GMU architecture, k-subspace distance based thresholding, is significantly
harder for other networks.

3. Sparse Neural Structure Sampling: Linear GMUs are motivated from a linear structural causal
model’s sampling process, as observed in Section[3] So, it is natural to ask whether the linear
structure assumption in linear GMUs can still impart any benefits when the underlying data is
generated non-linearly. Specifically, following the CL-SCM sampling as defined in Section 3] the
generating function f in the SCM of Figure[I|(c) is set to a 2-layered neural network.

4. Tree-structured sampling: We evaluate GMUs on data generated via a synthetic SCM in which
the generating causes are the observed input dimensions themselves; each class is associated with
a distinct tree over the observed variables, and samples are generated by propagating from a root
variable with additive noise.

5. Polynomial Boundary Sampling: Here, we consider the underlying ground truth distribution to
be separable by a non-linear, polynomial decision boundary. Linear decision boundaries are not
realistic for most natural datasets, and thus this provides a natural scalability test for GMUs.

6. Conditional Gaussian Sampling: This is a well-known and studied setting where the conditional
distributions P(X|Y = ¢) are all Gaussian. We vary the overlap between the Gaussians and test
whether GMUs can robustly learn in this setting.

C.1 FOURIER SERIES FUNCTION V/S NOISE DIFFERENTIATION

Problem Setup: We consider a scenario where z € R? can belong to two categories: fourier series
function or noise. In the noise category, x is generated as x ~ U(—0.5,0.5), where U(a, b) denotes
the uniform distribution sampled from the range (a, b). In the fourier series function category, the
it" dimension of z, x; is generated as x; = ag + Z]K:1 a;sin(10 x i/d) + bjcos(10 * i/d). Here
ag, a1, ..ax and by, ba, .., b are coefficients of the fourier series representation of X. Thus, when x
is a fourier series function, the dimensions of = are essentially sampled from the outputs of a fourier
series representation. We consider /' = 2 for our experiments. The objective of this experiment is to
identify if x is a noisy signal, or has a function pattern via a fourier series representation.

GMU construction: We design a GMU as follows.
gmu(z, w) = exp ( min, [(7(6.,) - m"‘}) ,

where f(0,w;) = 6y + Z?Zl (w;)76;. This GMU, in a nutshell, can find to what degree the input
dimensions of x = [x1, 3, .., 4] can be represented as a polynomial function z; = f(6,w;) of the
weights.

Results: We compare the performance of a single GMU-k unit, where k is its order, with a single
perceptron unit, a 2-layer p-RBF networks having 512 -RBF units in the first layerﬂ arelu-activated

"Note that we tried training with the additional o term, but we got best results without it.
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Figure 4: Comparing test accuracy of a single GMU with other approaches on@Fourier series function v/s noise
differentiation and [b] k-subspace distance based thresholding experiments. The parameter counts for each model
are given within the brackets.

single hidden layer neural network with 256 units (MLP-256) and with 512 units (MLP-512). The
results are shown in Figure[#a] We also report the parameter counts for comparison. Overall, we find
that GMU-4 and GMU-5 quickly capture the underlying structure, achieving 100% test accuracy with
only 50 samples. In contrast, we see that the MLP and RBF variants need more data and parameters
to achieve similar performance.

C.2 k-SUBSPACE DISTANCE BASED THRESHOLDING

Problem Setup: Just as a single-layer perceptron aligns with problems where the underlying
distribution is linearly separable, and similarly, a single RBF neuron can perfectly classify data when
the distribution is separable by a sphere, GMUs address an equivalent problem in a different geometric
sense. We consider a supervised classification problem where the datapoint 2 € R? is categorized
according to the distance it has to a k-dimensional subspace (i.e., k-subspace distance in Section
, represented by the basis vectors as U = Span{uy,us, .., ux}, where u; € R<. Let the distance
between U and z be denoted by d(x, U). Then, given a threshold distance d;s, We categorize x as
the category 0 if d(x, U) < dipres and the category 1 if otherwise. To construct the training data,
we sample z from the uniform distribution = ~ 2/(0, 1)% and each element of uy, us, .., uy is also
chosen randomly from 2/(0, 1). Then, d;p.s is chosen such the number of samples per class are
same for both categories. We use single-layer linear GMU networks for classification. In this case,
the shape of the decision boundary exactly aligns with thresholding the single GMU output.

Results: We compare the performance of a single linear GMU- unit, with a single perceptron unit,
2-layer pu-RBF networks having 512 u-RBF units in the first layer, a relu-activated single hidden
layer neural network with 256 units (MLP-256) and another one with 512 units (MLP-512). The
results are shown in Figure[db] Unsurprisingly, we find that GMU-3 significantly outperforms all
other approaches for all sample sizes. Interestingly, although we see the ;-RBF catching up to the
GMUs performance with more data, but the MLP-variants still show significant drop in terms of
accuracy, demonstrating the hardness of this function fitting task from the perspective of MLPs.

Takeaways: These results highlight the hardness of the task for traditional architectures. While GMU-
3 consistently achieves high classification accuracy, MLP variants struggle to generalize, exhibiting
a significant accuracy drop even with more data. Overfitting remains a concern, particularly for
deeper networks, as they fail to capture the structured geometric separability essential for robust
generalization.

C.3 SPARSE NEURAL STRUCTURE SAMPLING

Problem Outline: We consider the case when the underlying data follows a CL-SCM sampling
process (Figure [T] (b)). However, unlike the sparse linear structure experiments in the main paper
where the generating function f of the SCMs is linear, we consider non-linear f. In particular,
we consider the case when f is a two layered neural network with tanh activations in each layer.
Following the CL-SCM structure, each class has its own neural network weights it uses to generate
the input. We formally outline the sampling process in Algorithm 2}
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Algorithm 2 Sparse Neural Structure Sampling

I: Setup: X € R% labels y € {1,...,C}, class-specific weights Wél) € RNowxh W3§2) € Rhx4,
latent variables § € RNow
Latent Variable Sampling: 0, ~ /(0,1) forall i € {1,..., N }
Generative Process:
Sample y ~ Unif{1,...,C}
Compute z:

z = tanh (Wf) tanh (W;l)e)) + €
6: where € ~ N(0,0%1,)

Experiments: Here, we focus on testing and comparing the scalability of GMUs with MLPs, RBFs
and Resnet baselines, in two different settings. For each setting we consider two layered neural
network SCMs with 32 hidden units (h = 32 in Algorithm , o =0.01,d =10 and C = 20. In the
first setting, we consider a total of 2 latent generating variables (i.e., Niotq; = 2 in Algorithm@) and
consider Ni,:q; = b for the second setting.

To rigorously assess whether the networks are truly learning the underlying function, we introduce
a structured distribution shift: during training, latent variables 6, are sampled from /(0,0.5) or
U(0.5,1.0), while in testing, they are drawn from the opposite interval. This avoids any data overlap
and thus prevents memorization as a reliable strategy to improve performance. In each setting, we
plot the test accuracy trends in response to dataset size, and also plot the test accuracy trends of all
networks w.r.t their complexity (parameter count). For the dataset size trends, each network’s number
of hidden neurons per layer was fixed to 256. The results are shown in Figure 5]

Observations: We find that GMU-MLPs show better scaling to data size in this scenario, when
compared to the other baselines. Furthermore, we find that higher order GMUs showcase better
performance overall. Interestingly, we see that the response to data size increase can even be negative
for MLPs (e.g. when Nyoqi = 5), which highlights the hardness of the generalization problem in this
case. When considering the accuracy versus model complexity plots, we see that GMU architectures
are closest to the pareto front, although there is a visible decrease in accuracy that accompanies GMU
architectures when the parameter count increases beyond a point. Interestingly, the results hint at an
optimal range of parameter count for the GMU architectures to significantly outperform the baselines.

C.4 TREE-STRUCTURED SAMPLING

Problem Setup. This synthetic experiment is a classification benchmark designed to probe GMUs
under structured dependencies in which observed variables themselves act as causal nodes. Each
class y is associated with a distinct directed spanning tree G, defined over the d observed input
coordinates in X = [x1,...,24]. Samples are generated by propagating a value sampled at the
class-specific root down the directed edges with additive edge noise (Algorithm [3). This setting
contrasts with latent-only CL-SCM setups because the causal graph is explicit over input dimensions;
consequently the sampling process induces hierarchical linear relations among observed features that
we expect GMUs to exploit. Unless stated otherwise we fix the root variance oy = 0.1 and set the
nominal edge coefficients o; = 1.

Tree construction and branching factor. Each class tree G, is constructed at the start of a run by
selecting a root uniformly from {1,...,d} and growing a directed spanning tree in a breadth-first
fashion. The branching factor A controls how many children a node may receive during construction:
larger A yields shallower, wider trees while smaller A yields deeper, narrower trees. We record the
parent map pa(-, G..) for each class and fix the tree topology per seed. Specifying A alongside d (as
in Table[I0) removes ambiguity about tree shape and clarifies how path length and noise accumulation
vary across experiments.

Generative process and configurations. A datum is generated by sampling a class label y ~
Unif{1,..., N,}, sampling the root value (¢, ~ N'(0,03), and then for each non-root node 4 in
topological order setting

Tj &= O Tpa(i,G,) T €
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Figure 5: Scalability studies in two experimental settings in the class-wise sparse neural structure sampling
experiments. The underlying SCM here is a 2-layered tanh-activated neural network. We report accuracy trends
in response to training dataset size changes in (a) and (c), and in response to parameter count changes in (b) and
(d). Please note that only the MLP and Resnet baselines are represented via dashed lines.

with ¢; ~ P.. The experimental difficulty and the types of distributional shifts we evaluate are
controlled via the choice of P, and whether the edge coefficients a; are fixed or resampled. Table X
(below) lists the abbreviations used throughout (G, GS, GM1, GM2, MG, MGN) and their precise
sampling rules; for example, G denotes Gaussian edge noise with €; ~ A(0,0.1), while GM1 and
GM2 introduce multiplicative scaling by resampling «; at each generative pass from broader Normal
distributions (see table for exact parameters). All shift configurations preserve the tree topology
while changing effective coupling strengths or variances along edges, producing class-conditional but
distributionally shifted test data.

Train/Test nomenclature and reproducibility. The Train/Test columns in Table [T0]indicate the
generative configuration used for the corresponding split (for instance, Train = G, Test = GM1). When
an experiment fixes a; during training but resamples or perturbs it at test time we indicate this using
the MG/MGN abbreviations described in the table. Trees {G1,..., G, } are resampled for each
experimental seed and then held fixed within that seed to ensure repeatability of class-conditional
structure across samples.

Experimental protocol. For the results reported in Tablefllilwe fix NV, = 10, o9 = 0.1, and generate
500 training and 3500 test samples per configuration. We compare GMU(k)-MLP-512 (a single GMU
layer whose outputs feed a 512-unit linear head), MLP-512, ResNet-512-[2,1], and ResNet-512-[2,2].
All models are trained discriminatively using supervised cross-entropy; GMUs are not trained with

17



Abbrv. | Description

G Gaussian: ¢; ~ N(0,0.1)

GS Skewed Gaussian: ¢; ~ 0.1 - SN(0, 1,4)

Gaussian with multiplicative scaling:

GMI €; ~N(0,0.1) and o;; ~ N (0,1) (randomly sampled in each generative pass)
GM2 Gaussian with multiplicative scaling:
€; ~N(0,0.1) and o;; ~ N (0,4) (randomly sampled in each generative pass)
MG Gaussian with fixed multiplicative scaling:
€; ~N(0,0.1), a; ~ N(0, 1) (Fixed)
MGN Gaussian with noise-added multiplicative scaling:

€ ~ N(0,0.1), a; ~ o™ + N(0, 1) where o™ is the ; fixed at training time

Table 9: Table of Abbreviations for the Dynamic tree prediction experiments.

Algorithm 3 Tree-structured sampling (SCM over observed variables)

1:

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:

Setup: input dimension d, number of classes C, branching factor A € N, edge coefficients
a € R4, root variance 08, edge-noise distribution P
Tree construction (per class c):
Pick a root node 7. uniformly from {1,...,d}
Initialize frontier F' < {r.}, visited V. < {r.}
while |V;| < d do
Pop node u from F’
Sample b ~ min(A, d — |V.|) (number of children for w)
Select b nodes uniformly at random from {1, ...,d} \ V. and add directed edges (u — v) to
E.
Add selected nodes to V. and append them to F'
end while
Ensure G, = (V,, E.) is a directed spanning tree over {1, ...,d}
Generative process (sample one datapoint):
Sample class label y ~ Unif{1,...,C}
Sample root value z,, ~ N(0,03)
for each non-root node  in topological order of G, do
Sample noise €¢; ~ P,
Setz; « @ Tpq(i,a,) T €
end for
Return: (X = [z1,...,24],9)

any

reconstruction objective in these experiments. Reported accuracies are averages over random

seeds (tree topology, noise draws, and any sampled «; variations) and the table explicitly lists the
branching factor A used for each run.

Why A, tree shape and shift types matter. The branching factor and resulting tree geometry deter-
mine path lengths over which signal and noise accumulate: deeper trees propagate root information
through more multiplicative steps, making downstream coordinates more sensitive to edge-wise
scaling and noise; wider trees distribute signal across many shallow branches, changing how dis-
criminative information is localized. The different abbreviations (G, GS, GM1, GM2, MG, MGN)
correspond to structured perturbations that either alter noise skew/scale or resample multiplicative
edge coefficients at train or test time (see the abbreviations table). These controlled variations let

Setp (V, = 10, 09 = 0.1) | GMU(®) GMU(I) GMU(2) GMUB) GMU® GMUG) GMUG) GMU(7) GMU®) | pno R R
d A Tram Test | -MLP -MLP -MLP -MLP -MLP -MLP -MLP -MLP  -MLP 21 [22]
0 2 G G 05548 0564 05608 05574 05608 05597 035605 05568 05571 | 0576 05188 0502
0 4 G G 04362 04371 04277 04248 04265 04331 04342 044 04394 | 04345 03657 03525
50 4 G G 06043 09286 09371 09420 09394 09403 09406 09394  0.9440 | 0.7965 08128 0.758
50 8 G G 0.6403 08471 08686 08617 08649 08680 08651  0.8714 08686 | 0.7048 0.7194 0.6802
100 8 G G 04503 09623 09703 09769 09769 09806 09797 09797 09783 | 0.7617 0.7931 0.7568

50 8 G G 02371 09991 09991 09983 09980 09989 09997 09994  1.0000 | 0.7437 08102 0.772

500 8 GS G 03980 07154 07829 05966 07009  0.7806 07777  0.8477  0.8917 | 04157 04122 03448

500 8 G GMI | 01583 07760 08054 07783 07883 07463 07963  0.8374  0.8374 | 029 02691 02317

500 8 G GM2 | 02237 09929 09960 09954 09960 09943 09954 09971  0.9983 | 0.6531 0.6974 0.6551

500 8 MG MGN | 02071 09657 09586 09697 09551 09771 09789 09740  0.9803 | 0.6394 06471 0.6

Table 10: Test accuracy results on the dynamic tree structure prediction experiments.
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Figure 6: Scalability studies in two experimental settings in the polynomial boundary sampling experiments.
The underlying data distribution is separable via a non-linear decision boundary that is a polynomial function of
the data dimensions. We report accuracy trends in response to training dataset size changes in (a) and (c), and in
response to parameter count changes in (b) and (d). Please note that only the MLP and Resnet baselines are
represented via dashed lines.

Set GMU®) GMU() GMUQ) GMUQ) |
=50 amuo) eMumy eMue) eMue) | gy o s T s Tgpp) | Linear ML
[ | 08223 08406 08583 0.8643 | 09843 09763 09743 097 | 0983 09823

2 | 09363 09363 09363 09363 | 09816 09873 0986 0982 | 09763 0.9801

3 | 07916 0.803 0816 08336 | 09596 0975 0974 09746 | 0.9456 0.9606

Table 11: Test accuracy results on the polynomial boundary sampling experiments.

us separate robustness to noise shape (e.g., symmetric vs skewed) from robustness to multiplicative
coupling changes.

Summary of empirical behavior. As reported in Table |10} higher-order GMUs consistently outper-
form lower-order variants and standard feedforward baselines, with gains growing at larger d and
under several shift types. Notably, under structure-preserving but distribution-shifting perturbations
(e.g., Train: G, Test: GM1/GM2), higher-order GMUs retain substantially more accuracy than MLPs
and ResNets. Intuitively, the GMU’s internal projection onto low-dimensional generative subspaces
is better aligned with the hierarchical linear relations imposed by the tree, producing discriminative
signals that are more stable when edge-wise couplings or variances change while the overall SCM
topology remains unchanged.

C.5 POLYNOMIAL BOUNDARY SAMPLING

Problem Setup: We consider the scenario where ground truth labels y are assigned based on a set of
polynomial functions, with one function corresponding to each class. Given an input X, the label is
chosen as the one whose polynomial function attains the highest value.

Definition 6. (Polynomial Boundary Sampling) Let X € R? ~ Unif(0,1)% and y €
{1,2,3,...,C}. We define a set of weight matrices {Wy,Ws, ..., Wa}, where W; € RNvxP,
Each class y; is associated with a polynomial function:
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R

Setup GMU(0) GMU(1) GMU(2) GMU@3) R -
[2.2]

N, d o, -MLP _-MLP  -MLP  -mLp | Mnear MLP 0,
2 10 001 | 09942 09888 09914 09825 | 0.6474 09848 0817 0.9782
10 10 001 | 02714 02608 0244 02405 | 0.1262 0.1908 0.1582 0.1462
10 10 0.1 | 08888 08511 08254 08091 | 03862 07685 0.7585 0.7511
2100 001 | 07151 0704  0.6902  0.6851 | 05577 0.6077 0.5694 0.5594
2100 0.1 | 09414 09428 09462 0946 | 0.782 09248 09031  0.89
10 100 0.1 | 05145 04985 04897 04897 | 02234 04068 03214 0.2674
2500 0.1 | 07377 07411 07388  0.7454 | 0.6751 0.7285 0.6905 0.6848
2 500 1 | 098 09911 099514 09951 | 0.9891 0.9928 0972 0.97%

Table 12: Test accuracy results on the conditional Gaussian sampling experiments.

j=1

The label assignment follows a deterministic selection rule as follows:

y* = argmax G(y;]|X). (6)
i€{1,2,3,...,C}

Here, y* denotes the assigned label based on the evaluated polynomials.

Remark 6. We consider the binary case, where two polynomial functions define the class boundaries.
The label assignment follows: y = 1 if G(y1|X) — G(y2|X) > 0, and y = 2 otherwise. Since both
G(y1|X) and G(y2| X)) are polynomials of order p, their difference is also a polynomial of order p.
This establishes a decision boundary that is a polynomial function of order p, thus yielding non-linear
decision boundaries.

This is why we refer to the method as polynomial boundary sampling, as the underlying data
distribution is separated by non-linear, polynomial decision boundaries.

Experiments: Each element in the weight matrices {W;} is randomly initialized from A/(0, 1).
We vary the polynomial order p while keeping d = 10 fixed. The following models are compared:
GMU(k), GMU(k)-MLP-512 (GMU layer with 512 hidden units followed by a linear layer), a single
linear layer, and MLP-512. Results are presented in Table [T1] Interestingly, we find that as the
polynomial order increases, GMU-MLPs of non-zero order show significant improvements on other
baselines. To perform a deeper analysis, we conduct scalability studies for the higher order case
p = 3 as follows.

Scalability Analysis: Similar to the sparse neural structure setting, we conduct experiments here
to test the performance of networks in response to changes in scale of the dataset and the network
complexity itself. We consider two settings. In both settings, we set the order of the polynomial
p = 3 and input dimensionality d = 10. For the first setting, we set C' = 2 and we set C' = 10 for the
second setting. Due to polynomial decision boundaries C' = 10 should yield a harder classification
problem. The results are shown in Figure [6]

We find that GMU-MLPs show significantly higher generalization performance in this case. For the
datasize scaling experiments, we see performance of all networks improve in response to increasing
data size, however, the GMU-MLP variants always show a clear improvement. Similarly, for the
parameter count versus test accuracy plots, we see that for the same parameter count, GMU-MLPs
show significantly higher test accuracy and seem to establish the pareto front. These results highlight
the flexibility of GMUs in learning non-linear decision boundaries.

C.6 CONDITIONAL GAUSSIAN SAMPLING

Problem Setup: We conduct a simple experiment where the conditional distributions P(X |y) are
Gaussian, where X € R? and y € {1,2,..,C}. Specifically, we generate P(X|y) ~ N (i, ).
For each dataset, we choose the class-wise mean values by randomly generating them as p, ~
N(0, 03] 4). Similarly, we pick a randomly generated covariance matrix via ¥ = AT A where

A~ Unif(0,1)4%4,

Experiments: We pick a range of parameter choices for the sampling process, and compare the
following networks: GMU(k)-MLP-512 (GMU layer with 512 hidden units followed by a linear
layer), MLP-512, Resnet-512-[2,1] and Resnet-512-[2,2]. The results are shown in Table[T2] for a
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Figure 7: Scalability studies for the conditional Gaussian sampling experiments. The underlying data distribution
of each class is a Gaussian distribution with randomly set covariance matrix and mean. We report accuracy
trends in response to training dataset size changes in (a) and in response to parameter count changes in (b).
Please note that only the MLP and Resnet baselines are represented via dashed lines.

wide range of parametric choices. We find that overall, u-RBF networks (GMU(0)-MLP) showcase
superior performance. This is unsurprising, as the distance based p-RBF units are closely aligned with
the underlying problem. We also see that for higher dimensionality scenarios, GMU-MLPs can often
outperform p-RBFs. Furthermore, we see that in most cases, GMU-MLP performance for non-zero
order is competitive with y-RBFs, which can also be explained via the universal approximation ability
of GMU-MLPs (Proposition ).

Scalability Analysis: Similar to the previous settings, we conduct experiments here to test the
performance of networks in response to changes in scale of the dataset and the network complexity
itself. We consider the setting where the input dimensionality d = 100, o, = 0.5 and the number of
output classes C' = 10. The results are shown in Figure[7]

We find that GMU-MLPs and p-RBFs show better performance than the other baselines. For the
datasize scaling experiments, we see performance of all networks improve in response to increasing
sample size, and the performance seems to converge for larger sample size. Interestingly, -RBF’s
test accuracy seems to plateau for larger data sizes, whereas GMU-MLPs continue to increase. For the
parameter count versus test accuracy plots, we again see that for the same parameter count, ;-RBFs
and GMU-MLPs showcase significantly better performance overall. Interestingly, we see that the
best performance is actually achieved for lower parameter counts in this setting, and GMU-MLPs
showcase slightly better test accuracy than p-RBFs.

D DISCUSSIONS: CONTEXTUALIZING GMUS IN LITERATURE

In this section, we discuss GMUs in the context of existing architectures for supervised learning
beyond perceptron-based neural networks. Capsule networks have been proposed in recent years as
an alternative learner incorporating feedback. Each hidden node is a capsule that contains a vector of
activations, and routing iterations adjust the coupling coefficients, directing inputs to hidden units
with greater agreement. While this introduces a feedback mechanism, it does not function as the
internal generative model like GMUs. Furthermore, after routing iterations, the forward computation
remains linear, followed by squashing normalization, meaning the complexity bias is still present in
the forward pass (Sabour et al.| 2017).

Another interesting alternative to multi-layer perceptrons (MLPs) is Kolmogorov-Arnold Networks
(KANSs), which leverage the Kolmogorov-Arnold approximation theorem (Kolmogorov, [1961) to
construct more expressive units. However, KANs primarily focus on function approximation and
retain a fundamentally feedforward computational paradigm, contrasting with GMUs, which primarily
look for dynamic generative structures in the input.

GMUs are also distinct from architectures that rely on weight adaptation mechanisms, such as
hypernetworks (Ha et al.,2016) or dynamic convolution (Chen et al.,2020). Unlike these approaches,
which dynamically adjust weights, GMUs are designed to reconstruct the input based on projections
onto internal k-dimensional subspaces, effectively representing reconstruction errors. This makes
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GMUs complementary to these models rather than functionally equivalent, as hypernetworks, steer-
able filters, and similar methods can be used in conjunction with GMUs, just as they would with
perceptron or radial basis function (RBF) networks.

Furthermore, GMUs differ structurally from linear self-attention mechanisms (Wang et al., [2020),
which primarily focus on relational mappings within sequences via inner products between embed-
ding components. In contrast, GMUs emphasize the structured generative properties of the input,
distinguishing them conceptually from attention-based mechanisms. Similarly, test-time adaptation
(TTA) techniques (Wang et al.| (2021)) aim to modify statistics based on real-time test distributions
but do not introduce fundamentally new computational units rather, and TTA methods can be applied
to GMU-based networks to enhance their adaptability across domains, as we’ve seen in our work.

Generative Capsule Models (GCMs): Generative Capsule Models (GCMs, |[Nazabal et al.| (2023)))
provide an interesting point of comparison to GMUSs, since both involve latent linear models for
capturing appearance variability. However in GCMs, part-based appearance templates and geometric
transformation components are optimized jointly to minimize reconstruction error across samples,
yielding structured generative representations. GMUSs, by contrast, are not trained to minimize a
reconstruction loss at all; their weights are updated exclusively through backpropagation from a
supervised objective such as cross-entropy, making them inherently discriminative units. The internal
generative model within a GMU serves only as a mechanism for producing its activation signal, and
the inferred latent variables (6) are discarded after the forward pass. This distinction highlights a
fundamental difference in purpose: GCMs are designed for unsupervised generative modeling, where
the goal is faithful reconstruction of inputs, while GMUs are designed for supervised function fitting,
where the goal is predictive performance. Moreover, GCMs rely on more computationally expensive
variational inference schemes (such as ELBO optimization) to handle both appearance and geometric
variability, whereas GMUs work with a one-shot solution that emerges from a MAP approximation
under a CL-SCM sampling framework, allowing them to integrate efficiently into standard supervised
pipelines. Thus, while both models have latent linear structures that do sample-wise inference, their
optimization paradigms and roles in learning are fundamentally different.

E DETAILS ON GMU FUNCTION AND INTEGRATION

) = gmu(X, w,)
= ] Z O: relu (Z waiXi+ bz) O " Waa
W 7 Input . L = e
Input W XeR® - . Hidden
da . ) = oo : . Layers
XER : Hidden
’ / * Layers O
@ O =gmux,wy)
‘D:relu (Z w_‘\,,xi+by> Wij E RkX1,
w;j €R ‘ W; = [wy wiz - wiy] € R4

(a) MLP (b) GMU-MLP

Figure 8: MLPs versus GMU-MLPs: Demonstration of how GMUs are integrated into architectures. Here, we
replace the first network layer with GMU computational units.

E.1 INTEGRATING GMUS INTO ARCHITECTURES

GMU-MLPs As shown in Figure [} GMU integration into an MLP is direct, and only involves
replacing the computational units with GMU units. Like perceptron units, linear GMU units have
their own weights and biases, which are visualized in Figure[8] The network is trained via standard
backpropagation, which in our case is handled by Pytorch’s autograd framework.

GMU-CNNs When replacing a convolution layer with GMUs, we replace each linear convolutional
operation with a convolutional GMU. The operation of a convolutional GMU is shown in Figure[9]
X represents the input patch of size a x a, which is the input to the GMU, the output of which
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Convolutional GMU

|
jop” X W: Convolution weights
(]kaaz )

O\,\Wut

Zij = gmu(X[‘]‘-,W)

Z= gmu(.,W)*X

Figure 9: Diagram showing the operations within a convolutional GMU. Here, the convolutional weights W are
applied to the input X yielding the output Z. For the purposes of this figure, we assume that the convolution is
appropriately padded such that X and Z are of the same size.

is simply the GMU’s output gmu(Xi“j7 W), where W are its internal weights. As the operation
is a convolution, this function is repeated across all patches centered at all (7, j) pairs in the input
image, yielding an output image of the same size (assuming padding is used). Mathematically, we
can represent the convolutional GMU operation as gmu(., W) x X.

E.2 LINEAR GMUSs: CLOSED FORM EXPRESSION

Here, we summarize the least square based approach that yields the closed-form expression of a

linear GMU’s output in equation [3] The minimization in equation[I]can be represented as

X-b

— —-w"y
n

min
OERF

‘ N

Note that as X € R, the above minimization represents the least squares solution to a set of d
equations, one for each dimension of X. The solution to it is as follows

X —
J_WTQ
n

arg min

T
‘z (wwh='w (X_b> ®)
0ERF

Nx

Note that here % denotes a matrix of size d x 1. With this, each GMU unit’s output in equation
can be represented as

1 2
9| 5a

X — X -b\"
2w (22

©))

Note that the above is the output of a single GMU, which only depends on the input to the unit X,
the weights and biases W, b, and other parameters such as the normalizer 7, the scaling parameter o
and the dimensionality of input d.

F ADDITIONAL EMPIRICAL DETAILS

F.1 SYNTHETIC EXPERIMENTS
Please refer to Figure for the detailed jargon in defining GMU types.

Sparse Linear Structure Prediction: For the GMU(k) variants, we used a unit without normalization
and bias. ¢(z) = — log z (to counter-act the softmax function that follows) and W = var(R**4). For
the out-of-distribution (0od) columns, we set the training 6; ;) ranges to either between Uni f (0,0.5)
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or Unif(0.5,1) chosen at random. For the test data, we change the range for each 9zy(¢) in such a
manner that if its training configuration was Uni f (0, 0.5) it is set to Unif(0.5,1) and vice-versa.
This ensures that at test-time the network sees values of the latent generating variables which it hasn’t
seen before.

Dynamic Tree Structure Prediction: To generate the random trees, first, we sample the root node
from a uniform distribution over all dimensions, and then sample left and right nodes uniformly from
the rest of the dimensions. The process is then repeated for the children of all leaf nodes. Once the
children of all leaf nodes at a certain depth have been sampled, the process is repeated for the children
of the subsequent depth of the tree.

For the GMU(k)-MLP variants, for the GMU units, we used units with normalization 7 = (X ) and
bias. ¢(z) = /1 —zand W = [var(R¥~1*4); J; ;1. To have a fair comparison, each datapoint was
also normalized using zero-mean and unit variance for the MLP variants.

Sparse Neural Structure Sampling: For the GMU units in the GMU(k)-MLP variants, we used
units without normalization, but non-zero bias. ¢(z) = —log z and W = var(RF*4).

Polynomial Boundary Sampling: For both the GMU(k)-MLP and the GMU(k) variants, for the
GMU units, we used units without normalization, but non-zero bias. ¢(z) = e % and W =
var(RF*4),

Conditional Gaussian Sampling: For the GMU units in the GMU(k)-MLP variants, we used units
without normalization, but non-zero bias. ¢(z) = e~* and W = var(R¥*9).
F.2 TABULAR EXPERIMENTS

In addition to the GMU results shown in the main paper (GMU-S), we test another low-parameter
configuration of GMUs called GMU-D. Using the jargon in Figure 2(b)] the details are as follows.

GMU-S: We choose non-zero bias b and the normalization factor 7 = ox ;. The activation function
is set to ¢(z) = e~*. The weights are W = var(RF*?)

GMU-D: We choose non-zero bias b and the normalization factor = ox_p. The activation function
is set to ¢(z) = e~*. The weights are W = [w, w?, ..w*], w : var(R?).

Dataset #lns/#Feat. | XGB. ASK-G. TabN. AutoGL.s | ROPSUS0 ) G| GBI
creditg 1000721 | 0.6893 07119 06119 0694 | 06972 | 07036 | 0.7262
anneal 89830 | 0.8542 09000 08425  0.8000 | 08546 | 08610 | 08583
Kkr-vs-kp 319637 | 09985 09985 09325 09969 | 09969 | 09969 | 0.9969
mfeatfactors 20002217 | 0.9800 09750 09725 09800 | 09850 | 09800 | 09825
vehicle $46/19 | 07497 08017 0795 08379 | 08446 | 08793 | 08493
kel 210022 | 06685 06335 05252 06727 | 07104 | 06866 | 0.6824
phoneme 54046 | 0.8797 08834 08682  0.8394 | 08959 | 08852 | 0.9039
cnac-9 1080/857 | 0.9491 09352 08935 09259 | 09398 | 09398 | 09306
blood 7485 | 06228 06499 06433  0.6725 | 06304 | 0.6718 | 05987
Australian 690/15 | 0.8972 08859 08528  0.8825 | 08479 | 08726 | 08692
car 17287 | 09238 10000 09870 09963 | 10000 | 10000 | 1.0000
segment 231020 | 09372 09307 09178 0919 | 09254 | 09307 | 09351
jasmine 2084/145 | 0.8055 07888 07669 08005 | 07438 | 07520 | 07688
sylvine 512421 | 09307 09336 08360 09375 | 09250 | 09268 | 0.9268
adult 4884215 | 07982 07983 07716 08056 | 07652 | 07735 | 07622
nomao 34465119 | 09687 09722 09543 09642 | 09582 | 09599 | 09575
bank 4521117 | 07266 07228 07064 07948 | 07261 | 07382 | 0729
jungle_chess 481977 | 08733 08307 07343 09302 | 09686 | 09773 | 09897
volkert SS310/181 | 06417 06343 05941 07020 | 06766 | 07003 | 07096
helena 6519628 | 02199 02114 01903 02712 | 02213 | 02206 | 02137
conneet-4 6755743 | 07237 07265 07205 07562 | 07369 | 07535 | 0743
higes 9805029 | 07204 07203 07204 07380 | 06684 | 06781 | 0.6808
mmerai286 9632022 | 0.5236  0.5242 05160 05171 | 05066 | 05146 | 05071
walking-activity  149332/5 | 06162 0.6276  0.5680 06080 | 06203 | 0.6322 | 06026
1dpa 1643608 | 0.9901 06895 05482 05302 | 0691 | 0.6777 | 06621
aloi 108000/120 | 0534 01353 09359 09742 | 09617 | 09684 | 09622
skin-seg 245057/4 | 0.9997 09997 09996 09997 | 09997 | 09996 | 09996
Wins/losses/fies GMU-Svs | 13/113 13113 2331 11/33 18745 -

Wilcoxonp  GMU-Svs | 03533 04750 2305 0732 00089 0224
Wins/lossesfiies  GMU-Dvs | 12/14/1 12132 2247 12132 13785 -

Wilcoxonp  GMU-Dvs | 1000 0968 32e04  0.657 0407 0224

Table 13: Performance Comparison of Various Models on Different Datasets. Parameter counts are given in
brackets in the top-row. Please note that we scaled the original Resnet-512 to Resnet-530 to match parameter
counts with the GMU-Resnet models.
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The networks were trained in the same manner as in|Kadra et al.|(2021)), using weighted cross-entropy
loss, and for evaluation we also report the balanced accuracy, same as them. We compare GMU-
Resnet-512-[1,1] with Resnet-512-[1,1]. We set the same hyperparameters for all experiments, and
don’t perform any additional hyperparameter optimization. In addition to the GMU configuration
described in Section[5.2] we also construct another GMU with less trainable parameters as follows.
Note that the other approaches’ results are after extensive hyperparameter optimization using BOHB
(Falkner et al.l 2018])). Note that Kadra et al.|(2021) uses a different Shaped Resnet architecture and
therefore we don’t directly compare with their MLP results, and we find in some datasets our Resnet
performs significantly better than theirs and vice-versa. Furthermore the MLP+C approach in Kadra
et al.[(2021)) employs an extensive suite of regularization approaches, including data augmentation,
so we don’t include their results for this study. Similarly, the MLP-Dropout in|Kadra et al.| (2021)
also uses hyperparameter optimization for the dropout levels and locations for each dataset.

We add a single dropout layer (of 0.2) at the penultimate layer for both Resnet-512-[1,1] variants, as
we found it led to more stable training overall. . Apart from this, there is no regularization or data
augmentation performed, and networks are trained in the same manner for all datasets. The average
parameter count for each approach is given below the network names in Table [I3]

The categorical variables within the data were one-hot encoded, and the other variables were normal-
ized to the range (0,1), with the statistics computed only from the training split. The training-test splits
are exactly the same as in|Kadra et al.[(2021]), which is an 80-20 split, with the same random seed
values set by them. This was made possible by their code, and the fact that each dataset corresponded
to a specific task as numbered in Table 9 in|Kadra et al.|(2021).

F.3 VISION EXPERIMENTS

GMU Details: Using the jargon in Figure[2(b)] the details are as follows. We set bias to zero b = 0
and the normalization factor 7 = ox. The activation function is set to ¢(z) = e~ %. The weights
are W = [var(RF=1%4); J; 4], same as what was used in the dynamic tree structure prediction
experiment.

Architectures: We train a four-layer CNN for MNIST and Fashion-MNIST, with the archi-
tecture 64C(3,Padding=1)-2MP-128C(3,Padding=1)-2MP-128C(3,Padding=1)-2MP(Padding=1)-
128C(3,Padding=1)-4MP-FC128-FC10, where C(k,Padding=j) denotes k x k convolutional layers
with a padding of j in either direction, MP denotes max pooling layers, and FC denotes fully con-
nected layers. The first convolutional layer is replaced with convolutional GMUs of order 3. For
CIFAR-10, we use VGG-16 as the base network, replacing the first convolutional layer with convolu-
tional GMU-3 units while keeping the same number of output nodes. Similarly, for smalINORB, we
resize images to 64x64 and train a four-layer CNN: 64C(5,Padding=0)-2MP-128C(5,Padding=0)-
2MP-128C(3,Padding=0)-2MP-128C(3,Padding=0)-4MP-FC10, with the first convolutional layer
replaced with convolutional GMUs. Note that for smalINORB, we test GMUs of varying orders (1
and 3), the results of which are reported in Table [ of the main paper.

For SVHN, we train a ResNet-18 architecture, replacing the first convolutional layer with convolu-
tional GMU units of order 3 and kernel size 7x7, maintaining the original receptive field. We applied
standard data augmentation (for all baselines) involving rotations and translations. Note that no data
augmentation was applied to any of the other datasets.

F.4 OPTIMIZATION

We summarize the optimization details for the experiments on the Tabular and Vision datasets. We
use Adam optimizer for all experiments. All networks are trained for 200-300 epochs, with an
exponential learning rate scheduler Ir = init;, X 0.5¢Poch/50 where inity, is the initial learning rate.
For the GMU runs, we found that picking the network with the lowest training loss yielded more
stable performance, so we stick with this approach for all experiments in the Tabular and Vision
datasets. For the MLP/Resnet runs, we didn’t see any such improvement, so we use the standard
approach of training for a fixed number of epochs. A reason why this would be the case is that
GMU-MLPs’/GMU-CNNSs’ losses are slightly more fluctuating in nature than MLP/Resnet’s losses,
so if the training stopped at an epoch which had higher fluctuations of training loss, that could be a
detriment to performance.
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Dataset Dimension | GMU-Resnet Time (ms) | Resnet Time (ms)
credit-g 63 0.0181 0.0036
anneal 72 0.0171 0.0041
kr-vs-kp 74 0.0188 0.0045
mfeat-factors 216 0.0149 0.0036
vehicle 18 0.0183 0.0044
kel 21 0.0214 0.0051
phoneme 5 0.0167 0.0040
cnae-9 856 0.0398 0.0067
blood transfusion 4 0.0205 0.0048
australian 42 0.0221 0.0054
car 21 0.0177 0.0042
segment 16 0.0197 0.0047
jasmine 280 0.0159 0.0037
sylvine 20 0.0182 0.0043
adult 105 0.0154 0.0036
nomao 174 0.0156 0.0037
bank marketing 51 0.0156 0.0037
jungle chess 6 0.0153 0.0036
volkert 180 0.0155 0.0037
helena 27 0.0155 0.0037
connect-4 126 0.0155 0.0036
higgs 28 0.0154 0.0037
numerai28.6 21 0.0154 0.0037
walking activity 4 0.0153 0.0037
1dpa 14 0.0153 0.0036
aloi 128 0.0185 0.0036
skin segmentation 3 0.0153 0.0036
Average - 0.0179 0.0041
Table 14: Per-sample Inference Times in tabular datasets (in milliseconds)
Dataset GMU-1 | GMU-3 | GMU-5 | GMU-8 | CNN
MNIST - 0.0183 - - 0.0088
Fashion-MNIST - 0.0193 - - 0.0045
CIFAR-10 - 0.0232 | 0.0232 | 0.0244 | 0.0089
Small-NORB 0.0440 | 0.0456 - - 0.0111
ImageNet (ResNet-50) | 14.263 13.085 13.728 14.395 | 8.841

Table 15: Per-sample inference times (milliseconds) in vision datasets.

F.5 COMPUTATION TIMES

We document the per-sample inference times of GMU-based architectures and compare to the standard
counterparts in each case. First, we report the per-sample inference times (in milliseconds) in all our
tabular datasets tested in Table Overall, although the standard counterparts are faster, we find that
GMUs only take about 0.0017 milliseconds (ms) on average for per-sample inference, retaining their
feasibility for real-time inference and fast training.

We also report the per-sample inference times for the GMU-CNNSs tested in MNIST, Fashion-MNIST,
CIFAR-10 in Table[T3] To see the feasibility of scaling GMUs to Imagenet level datasets, we also
include per-sample inference times of a pre-trained Resnet-50 on 224x224x3 sized Imagenet inputs.
Following the main paper, the first layer of the original networks were replaced by convolutional
GMUs. We find that the compute times stay insignificant for all datasets. For Imagenet, the compute
times for GMU-Resnets are larger (> 10 ms), but still feasible for real-time inference, and comparable
to the standard Resnet.

G PROOFS OF THEORETICAL RESULTS

Proposition 1. Let the random variables (X,Y) follow the ECI sampling process, and let S =
{(X1,Y1),...,(Xn,Yn)} be i.i.d. samples from this distribution. Consider a single-layer neural

network with computational units pu,(X, W, b) := Z?:l Wisx; +b;, ie€{l,...,M}, followed
by a softmax layer producing output Pss (Y | X, W, b). Let Lcg denote the empirical cross-entropy

loss and assume it is uniformly bounded over the support of P(Y|X). Then, for every (W*,b*) €
arg minw b Lcg(S), limy, o0 KL (P(Y|X) || Psott (Y|X, W*, b*)) = 0 almost surely.

Proof. Using Bayes’ rule,

P(Y) [}, P(;]Y)
YL P(Y =) [T, P,y = i)

P(Y|X) =

and substituting the ECI form P(xz;|Y = i) = 3 exp(a;;z;) gives
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d
B P(Y)[Tj—1 7 exp(ovz;)
- M . d :
> PV =) [T5-1 7 exp(asjz;)

PY]X)

This is of the same functional form as the softmax output, since the neural network logits are defined
by

d
pu (X, W,b) = " Wiz + b,

Jj=1

and by setting W;; = «;; and b; = log P(Y)—Z;.l:1 log Z;; we have log P(Y'| X)) o pu,; (X, W, b),
so that

e, (X))
Zi\il exp(pu; (X))

Since the cross-entropy loss £ = —Ep(y|x)[log Psost (Y | X)] differs from the KL divergence only
by the entropy of P(Y | X), minimizing cross-entropy is equivalent to minimizing Dk, (P(Y |
X) || Psots(Y | X)). Because both P(Y | X) and Pis (Y | X) share the same functional form
under the ECI assumption, the minimum is attained when this KL divergence is zero. By the
strong law of large numbers, since the samples are i.i.d. and the loss is uniformly bounded, the
empirical cross-entropy converges almost surely to its population expectation as n — oo. Thus,
limy, 00 DL (P(Y | X) || Poott (Y | X, W*,b*)) = 0 almost surely.

]Dsoft(Y|X7W*ab*7S) =

O

Proposition 2. Let the random variables (X,Y) follow the CL-SCM sampling process with equal
class priors, and let S = {(X1,Y1), ..., (X, Y,,)} be i.i.d. samples from this distribution. Consider
a single-layer neural network with computational units g;(X, W, o) := — 5 ming E[|| f (6, W;) —
X2 fori € {1,..., M}, followed by a softmax layer producing output Psot,(Y | X, W, o). Let
Lcg denote the empirical cross-entropy loss and assume it is uniformly bounded over the support
of P(Y | X). Then, for every (W*,0*) € argminw » Lcr(S), we have lim,,_,.c KL(P(Y |
X) || Psots (Y | X, W*,0*)) = 0 almost surely.

Remark 1. Please note that we assume the classes are equiprobable a priori, which is not there in
the submitted main paper version of this result.

Proof. Under the CL-SCM sampling process, the generative model is

X =fO0,W)+e, e~N(0,0I), 0~U-1,1]%).

As we’re assuming a MAP estimate of posteriors, we have
PX|Y=1i)= max P(X|Y =1i,0)P(6).
Since P(0) is uniform (i.e. constant), this reduces to maximizing P(X | Y =4, ), and we have

e — 1 e~ i x — Nk
POX|Y =) = o exp( =gy min X = S0, W) ),

where Vj is the volume of 6’s support space. By Bayes’ rule we can write P(Y =i | X) = P(Y =
DP(X | Y =i)/ XM, P(Y = j)P(X | Y = j).

Given g;(X, W, o) we note that exp ¢; (X, W, o) has the same function form as the numerator in
the expression of P(Y = i|X) (after cancelling out the constants), and subsequently, a single-layer
neural network with softmax computes
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exp(g;(X, W, 0))
Zjle exp(g; (X, W,0)) ,

P (Y =i | X, W* o%,5) =

which is the same function form as P(Y = ¢|X). Since minimizing the cross-entropy loss is
equivalent to minimizing Dy, (P(Y | X) || Psott(Y | X)), and as P(Y | X) and Pso (Y | X) share
the same functional form under the CL-SCM assumption, the minimum is attained when this KL
divergence is zero. By the strong law of large numbers, since the samples are i.i.d. and the loss is
uniformly bounded, the empirical cross-entropy converges almost surely to its population expectation
as n — 0o. Thus, lim, oo DkL(P(Y | X) || Peott (Y | X, W*,0*)) = 0 almost surely.

O

Proposition 3. (from Park and Sandberg (1991)) We are given a GMU-MLP, with GMU units in
equationspeciﬁed as: k=0,n=1, f(8,W) is such that IW s.t.f(0, W) = 0 and ¢(z) is any
integrable bounded function such that [ ¢(x)dx # 0. Then, this GMU-MLP can approximate any
function f € LP(R?).

Proof. First, we note that the set of functions approximable by the GMU-MLP under the constraint
IWs.t.f(6,W) = C is a subset of the set of functions that the GMU-MLP can approximate without
that constraint. Next, we note that when we set the weights of the GMU such that (0, W) = C,
setting 0’> = 02d, and 1 = 1 yields an RBF unit as the bias b can be adjusted as b’ = b — C to yield
the original RBF form. By Theorem 1 in|Park and Sandberg| (1991)), it is known that RBF-based
networks achieve universal approximation in L (R?), thus proving the result. O

Theorem 2. Let E(X7,X5) = || X1 — Xo

, we can show that yg(d + 1) < yg(d).

Proof. Since X1, X5 ~ N(0,1,), we have X; — Xo ~ N(0,21,), so that | X; — Xs|| = v/2 xa»
where x4 is a random variable with the chi distribution with d degrees of freedom. Its mean
d+1
r(%)
d
r'(s)
r(5)

T(2) and its standard deviation is
g

~ N

is E[xa) = v2 () and its variance is Var(yy) = d — | V2
2

mean of E(X1, Xz) = || X1 — Xzl is pe = V2E[x4] = 2

N e N
E \/2(d 2 () ).

2

2
) . Therefore, the

Defining the CV as yg(d) = o /pgE, we obtain

Thus, showing that vg(d) < vg(d — 1) is equivalent to proving

A1\ (d=1
F(2)5£2)> dfl’ (10)
r(g)

The above follows from the result using Gurland’s ratio in equation 1.1 of [Tian and Yang|(2021)),
where it states:

>14— (11)
X

Setting x = (d — 1)/2 and u = 1/2, we get:
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NCONGCD ! )
( 2

Squaring the RHS, we get: (1 + 2((1_1)> =1+ ﬁ + 4(di1)2 > d 7. Thus we have,

I (4T (45 d

yielding the result.
O

Proposition 4. We are given the k-subspace distance Sy w (X1, X2) from X; to Xo. With this,
first, we note that ~ys, ., (d) = vg(d), where E denotes the Euclidean distance. Then, we have that

’ysk+1,w(d) > ’ysk,W(d)’ and thus YSk,w (d) > ’YE(d)

Proof. The proof directly follows by realizing that for a fixed k-subspace, the closest distance to a
point is equivalent to the squared root of sum of square of d — k dimensions x1, 22, .., £4_ in the
Euclidean space, where each dimension z; ~ A(0, 1) as the original data is also distributed this way.

This holds simply because one can rotate the space to align its unit vectors with the orthogonal
directions of the k-subspace, leaving only the other d — k to have degrees of freedom.

With this, it directly follows that vs, , (d) = Ye(d — k) < ye(d —k — 1) = vs,,,  (d). And it
naturally follows that vs, .. (d) = ve(d — k) > yg(d). O

Proposition 5. We consider the case where the RV X has low intrinsic dimensionality. Let X € R¢
be generated as: X = Zkl? aivi, a; ~ N(0,1), where {v;}¥'? are orthonormal vectors in

RY, and kip < d is the intrinsic dimensionality of X. Let us set W = [v1, .., v to be the first k
orthonormal vectors. Then, we have that yp(d) = ve(kip) and vs,  (d) = ye(kip — k).

Proof. Tt is trivial to show that vg(d) = vg(krp). The result directly follows from the fact that
X lies in a k;p dimensional linear subspace with all Gaussian distributed dimension components
N(0,1). Thus, we have that o[S(X1, X2)] = 0x1,x5~n7(0,14) [S (X1, X5)], where X{ and X are
the k7 p dimensional. Ssimilarly, it follows that u[S(X1, X2)] = p1x7, x5~A7(0,14) [S (X1, X3)]. Thus,
we obtain vg(d) = ve(kip).

kip

Let X; = fol’ a;v; and Xy = Zl 1 aiv;. As W is constructed using the first £ components of
the linear subspace that contains X, the k subspace distance Sy w (X1, X2) can be expressed as:

k[D k?ID
Sk (X1, X2) m1n||Zazvz+Zﬁzvl Za ;] (14)
krip
—mm Z a; + B —a})? + Z (a; — a})? (15)
i=1 i=k+1

(16)

where the minimum is reached when a; + §8; — a; = 0 for all i = {1,2,..,k}. Subsequently we
note that the resulting distance is simply the distance between two k;p — k dimensional vectors, the
entries of which are generated via the Gaussian distribution A(0, 1). Thus, the k-subspace distance
here is equivalent to taking a distance in a lower dimensional space of dimension k;p — k, the CV of
which is yg(krp — k). This proves the second part of the result. O
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