
NTK-DFL: Enhancing Decentralized Federated Learning in Heterogeneous
Settings via Neural Tangent Kernel

Gabriel Thompson 1 Kai Yue 1 Chau-Wai Wong 1 2 Huaiyu Dai 1

Abstract
Decentralized federated learning (DFL) is a col-
laborative machine learning framework for train-
ing a model across participants without a central
server or raw data exchange. DFL faces chal-
lenges due to statistical heterogeneity, as partici-
pants often possess data of different distributions
reflecting local environments and user behaviors.
Recent work has shown that the neural tangent ker-
nel (NTK) approach, when applied to federated
learning in a centralized framework, can lead to
improved performance. We propose an approach
leveraging the NTK to train client models in the
decentralized setting, while introducing a synergy
between NTK-based evolution and model aver-
aging. This synergy exploits inter-client model
deviation and improves both accuracy and con-
vergence in heterogeneous settings. Empirical
results demonstrate that our approach consistently
achieves higher accuracy than baselines in highly
heterogeneous settings, where other approaches
often underperform. Additionally, it reaches tar-
get performance in 4.6 times fewer communica-
tion rounds. We validate our approach across
multiple datasets, network topologies, and hetero-
geneity settings to ensure robustness and general-
ization. Source code for NTK-DFL is available at
https://github.com/Gabe-Thomp/ntk-dfl.

1. Introduction
Federated learning (FL) is a machine learning paradigm
in which multiple clients train a global model without the
explicit communication of training data. In most FL scenar-
ios, clients communicate with a central server that performs

1Electrical and Computer Engineering, NC State Uni-
versity 2Secure Computing Institute, NC State Univer-
sity, Raleigh, USA. Correspondence to: Chau-Wai Wong
<chauwai.wong@ncsu.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

model aggregation. In the popular federated averaging (Fe-
dAvg) algorithm (McMahan et al., 2017), clients perform
multiple rounds of stochastic gradient descent (SGD) on
their own local data, then send this new weight vector to a
central server for aggregation. As FL gains popularity in
both theoretical studies and real-world applications, numer-
ous improvements have been made to address challenges,
including communication efficiency, heterogeneous data
distributions, and security concerns (Sattler et al., 2020; Li
et al., 2020b; Zhu et al., 2019). To handle the performance
degradation caused by data heterogeneity, many works have
proposed mitigation strategies for FedAvg (Karimireddy
et al., 2020; Li et al., 2020b). Notably, some researchers
have introduced the neural tangent kernel (NTK), replacing
the commonly-used SGD in order to improve the model
convergence (Yu et al., 2022; Yue et al., 2022).

Despite these advancements, the centralized nature of tradi-
tional FL schemes introduces the possibility for client data
leakage, computational bottlenecks at the server, and high
communication bandwidth demand (Kairouz et al., 2021).
Decentralized federated learning (DFL) has been proposed
as a solution to these issues (Martı́nez Beltrán et al., 2023).
In DFL, clients may communicate with each other along
an undirected graph, where each node represents a client
and each edge represents a communication channel between
clients. While DFL addresses some of the issues inherent
to centralized FL, both frameworks grapple with the chal-
lenge of statistical heterogeneity across clients. Although
mixing data on a central server could readily resolve this
issue, transmitting raw, private training data from clients in-
troduces privacy concerns, making FL and DFL approaches
good candidates to address this challenge (Yuan et al., 2024).
This paper focuses on the following research question: How
can we design a DFL approach that effectively addresses
statistical heterogeneity?

We propose a method that exploits the NTK to evolve
weights. We denote this paradigm NTK-DFL. Our approach
combines the advantages of NTK-based optimization with
the decentralized structure of DFL. The NTK-DFL weight
evolution scheme makes use of the communication of client
Jacobians, allowing for more expressive updates than tra-
ditional weight vector transmissions and improving per-

1

https://github.com/Gabe-Thomp/ntk-dfl

NTK-DFL: Enhancing DFL in Heterogeneous Settings via NTK

formance under heterogeneity. Complementing this NTK-
based evolution, we utilize a model averaging step that ex-
ploits inter-client model deviation, creating a global model
with much better generalization than any local model. We
demonstrate that NTK-DFL maintains high performance
even under aggressive compression measures. Through
reconstruction attack studies, we also analyze how this com-
pression affects data privacy. The contributions of this paper
are threefold.

1. The proposed NTK-DFL method achieves convergence
with 4.6 times fewer communication rounds than existing
approaches in heterogeneous settings. To the best of our
knowledge, this is the first work leveraging NTK-based
weight evolution for decentralized federated training.

2. The effective synergy between NTK-based evolution and
DFL demonstrates superior resilience to data heterogene-
ity with model averaging.

3. The NTK-DFL aggregated model exhibits robust perfor-
mance across various network topologies, datasets, data
distributions, and compression measures. This perfor-
mance is further supported by theoretical bounds demon-
strating improved convergence rates.

2. Related Work
Federated Learning (FL) FL was introduced by McMa-
han et al. (2017) as a machine learning approach that enables
training a model on distributed datasets without sharing raw
data. It attempts to address key issues such as data privacy,
training on decentralized data, and data compliance for more
heavily regulated data (e.g., medical imaging) (Zhang et al.,
2021). Despite its advantages, the centralized topology of
FL introduces several challenges. These include potential
privacy risks at the central server, scalability issues due to
computational bottlenecks, and high communication over-
head from frequent model updates between clients and the
server (Mothukuri et al., 2021).

Decentralized Federated Learning (DFL) DFL aims
to eliminate the need for a central server by connecting
clients in a fully decentralized topology. Sun et al. (2021)
adapted the FedAvg approach of multiple local SGD itera-
tions to the decentralized setting. Our NTK-DFL method
may be viewed as building on this foundation, using the
neural tangent kernel for more effective weight updates.
Dai et al. (2022) proposed a method of DFL where each
client possesses their own sparse mask personalized to their
specific data distribution. Shi et al. (2023) employed the
sharpness-aware minimization optimizer to reduce the in-
consistency of local models, whereas we tackle this issue
through per-round averaging and final model aggregation.
DFL approaches can aim to train one global model, such

as the case of many hospitals training a model for tumor
classification with local, confidential images (Shiri et al.,
2022). They may also aim to train a personalized model
for each client to perform better on the local data distribu-
tion. For example, different groups of smartphone users may
use different emojis and would benefit from a personalized
model (Tan et al., 2023). Our method focuses on training a
high-performing global model that generalizes well across
all clients, offering improved convergence and resilience to
data heterogeneity compared to existing DFL methods.

Neural Tangent Kernel (NTK) NTK has primarily been
used for the analysis of neural networks (Golikov et al.,
2022), though it has recently seen use in the training of
neural networks for FL (Yue et al., 2022). Introduced by
Jacot et al. (2018), it shows that the evolution of an infinitely
wide neural network converges to a kernelized model. This
approach has enabled the analytical study of models that
are well approximated by this infinite width limit (Liu et al.,
2020). NTK has also been extended to other model types,
such as the recurrent neural network (Alemohammad et al.,
2021) and convolutional neural network (Arora et al., 2019).
We instead use the linearized model of the NTK approxi-
mation as a tool for weight evolution. Some studies have
explored the integration of NTKs with FL. For instance,
Huang et al. (2021) applied the NTK analysis framework
to study the convergence properties of FedAvg, while Yu
et al. (2022) extended NTK applications beyond theoretical
analysis by training a convex neural network. Moreover,
Yue et al. (2022) replaced traditional SGD-based optimiza-
tion with NTK-based evolution in a federated setting, where
clients transmit Jacobian matrices to a central server that
performs weight updates using NTK.

3. Proposed Method: NTK-Based
Decentralized Federated Learning

3.1. Problem Statement

We begin with a brief overview of centralized FL. The
goal of centralized FL is to train a global model w
across M clients with their private, local data Di =
{(xi,j ,yi,j)}Ni

j=1, where Ni is the number of training
examples of the ith client. FL algorithms aim to nu-
merically solve the sample-wise optimization problem
of minw F (w), where F (w) = 1

M

∑M
i=1 NiFi(w) and

Fi(w) = 1
Ni

∑Ni

j=1 ℓ(w;xi,j ,yi,j).

In the decentralized setting, an omnipresent global weight w
is not available to clients in each communication round.
Rather, each client possesses their own model wi that
is trained in the update process. Following related DFL
work (Shi et al., 2023; Sun et al., 2021), we seek a global
model w that benefits from the heterogeneous data stored
locally across clients and generalizes better than any indi-

2

NTK-DFL: Enhancing DFL in Heterogeneous Settings via NTK

clients
evolve
weights

via
NTKs

clients
compute

client neighbors

inter-client
weight
exchange

exchange
of averaged
weights

clients compute
for neighbors

clients
construct

① ②

③④

Figure 1. NTK-DFL process: ① Clients exchange weights,
② Average weights with neighbors, ③ Compute and exchange Ja-
cobians, labels, and function evaluations, ④ Construct local NTK
and evolve weights [Eq. (5a)]. This decentralized approach en-
ables direct client collaboration and NTK-driven model evolution
without a central server.

vidual client model wi. A global or aggregated model may
take the form w = 1

N

∑M
i=1 Niwi, where N =

∑M
i=1 Ni.

Notation Formally, we have a set of clients C =
{1, . . . , i, . . . ,M}. Each client is initialized with its weight
w

(0)
i ∈ Rd, where d is the size of the parameter vector and

the superscript in w
(0)
i denotes the initial communication

round. Model training is done in a series of communi-
cation rounds denoted k ∈ {1, 2, ...,K}. Let the graph
at round k be G(k) = (C, E(k)), where E(k) is the set of
edges representing connections between clients. Further-
more, the neighborhood of client i at round k is denoted
N (k)

i = {j | (i, j) ∈ E(k)}. This graph is specified before
each communication round and can take an arbitrary form.

3.2. Proposed NTK-DFL

Figure 1 illustrates the proposed NTK-DFL method. We
describe its key components below.

Per-round Parameter Averaging At the beginning of
each communication round k, each client i both sends and
receives weights—client i sends its model w(k)

i to all neigh-
bors j ∈ N (k)

i and receives w(k)
j from all neighbors. Each

client then aggregates its own weights with its neighbors’
weights to form a new averaged weight as follows:

w̄
(k)
i = 1

Ni+
∑

j∈N(k)
i

Nj

(
Niw

(k)
i +

∑
j∈N (k)

i

Njw
(k)
j

)
. (1)

The client must then send this aggregated weight w̄(k)
i back

to all neighbors. This step enables each client to construct
a local NTK, comprised of inner products of Jacobians
from both neighboring clients and its own Jacobian. See
Algorithm 2 in Appendix A for details.

Local Jacobian Computation At this point, each client

possesses its own aggregated weight w̄
(k)
i as well as a

set of aggregated weights w̄
(k)
j from each of their neigh-

bors j ∈ N (k)
i . The ith client computes the Jacobian of

f(Xi; w̄
(k)
j) with respect to the neighboring model parame-

ters w̄j
(k) using its local data Xi. We denote this neighbor-

specific Jacobian as

J
(k)
i,j ≡ [∇wf(Xi; w̄

(k)
j)]⊤. (2)

Each client sends every neighbor their respective Jacobian
J

(k)
i,j , true label Yi, and function evaluation f(Xi; w̄

(k)
j).

Note the order of the indices in the Jacobian: the ith client
sends J

(k)
i,j , an evaluation on the ith client’s data and its

neighbors’ weights. In contrast, the ith client receives J (k)
j,i

from each of its neighbors, an evaluation on its neighbors’
data and the ith client’s weights. Algorithm 3 in Appendix A
describes this process.

Weight Evolution After all inter-client communication
is completed, the clients begin the weight evolution phase
of the round (see Algorithm 4 in Appendix A). Here, all
clients act in parallel as computational nodes. Each client
possesses their own Jacobian tensor J (k)

i,i as well as their

neighboring Jacobian tensors J (k)
j,i for each j ∈ N (k)

i .

We denote the tensor of all Jacobian matrices possessed by
the ith client at round k as J (k)

i , which is composed of
matrices from the set {J (k)

i,i } ∪ {J
(k)
j,i | j ∈ N

(k)
i } stacked

along the third dimension. We denote the matrix of true
labels and function evaluations stacked in the same manner
as Yi and f(X i), respectively. Explicitly, we have J (k)

i ∈
RÑi×d2×d, Y(k)

i ∈ RÑi×d2 , and f(X i) ∈ RÑi×d2 . Ad-
ditionally, Ñi = Ni +

∑
j∈N (k)

i
Nj represents the total

number of data points between client i and its neighbors,
and d2 is the output dimension.

From here, each client performs the following operations to
evolve its weights. First, compute the local NTK H

(k)
i from

the Jacobian tensor J (k)
i using the definition of NTK:

[H
(k)
i]m,n =

1

d2
⟨J (k)

i (xm),J (k)
i (xn)⟩F. (3)

Each element of the NTK is a pairwise Frobenius inner
product between Jacobian matrices, where the indices m
and n correspond to the mth and nth data points, respec-
tively. Second, using H

(k)
i , the client evolves their weights

as follows (see Appendix B for more details):

f (k,t)(X i) =
(
I−e−

ηt

Ñi
H

(k)
i

)
Y(k)

i

+ e
− ηt

Ñi
H

(k)
i f (k)(X i).

(4)

We unroll gradient steps to find the weight w(k,t)
i as follows:

3

NTK-DFL: Enhancing DFL in Heterogeneous Settings via NTK

w
(k,t)
i =

d2∑
j=1

(J (k)
i,:j:)

⊤R
(k,t)
i,:j + w̄

(k)
i , (5a)

R
(k,t)
i,:j ≡

η

Ñid2

t−1∑
u=0

[Y(k)
i − f (k,u)(X i)]. (5b)

Third, the client selects the weight w(k,t)
i for a timestep t

with the lowest loss according to the evolved residual
f (k,t)(X i)−Yi. This is used as the new weight w(k+1,0)

i

for the next communication round.

Final Model Averaging Throughout the paper, we study
the convergence of the final averaged model w̄(k) =
1
M

∑M
i=1 w

(k)
i . In the decentralized setting, clients would

average all K client models after all training is completed.
This may be done through a fully-connected topology, se-
quential averaging on a ring topology, or in a secure, cen-
tralized manner. The average may also be carried out over a
subset of clients. In practice, we observe that the aggregated
model w̄(k) generally performs better than any individual
client model w(k)

i . We study the impact of the order of
client averaging on model performance with a client selec-
tion algorithm and show the results in Figure 6. Each client
that opts in to model averaging contributes a portion of its
data to a global validation set before training begins. Our
client selection algorithm selects clients in the order of their
accuracy on the validation set. We will demonstrate that in
the practical setting, with a proper selection of clients, not
all nodes must opt into final model averaging in order for
the aggregated model to benefit from improved convergence.
We note a difference between model consensus, often dis-
cussed in the DFL literature (Savazzi et al., 2020; Liu et al.,
2022), and the proposed final model averaging approach.
Model consensus refers to the eventual convergence of all
client models to a single, unified model over numerous com-
munication rounds. In contrast, our approach implements
final model averaging as a distinct step performed after the
completion of the training process.

Lastly, while communication overhead and memory effi-
ciency are not the primary focus of this paper, we briefly
note a technique to address potential memory constraints
in NTK-DFL implementations. For scenarios involving
dense networks or large datasets, we introduce Jacobian
batching. This approach allows clients to process their local
datasets in smaller batches, reducing memory complexity
from O(Nid2d) to O(Nid2d/m1), where m1 is the num-
ber of batches. We also study communication efficiency,
where NTK-DFL is resilient to compression measures such
as top-k sparsification and random projections. This en-
ables significant reductions in communication costs without
significantly compromising convergence. A thorough dis-
cussion of overhead can be found in Appendices D and E.

We also provide results on a reconstruction attack performed
using client Jacobians in Appendix F.

4. Theoretical Analysis
In this section, we derive a convergence bound for NTK-
DFL by analyzing the behavior of the average client weight
w̄(k) = 1

M

∑M
i=1 w

(k)
i , similar to Sun et al. (2021); Shi et al.

(2023). Unlike DFedAvg, the NTK-DFL bound includes a
key additional dependence on the number of local iterations
T in its main term. The bound captures the unique advan-
tage that NTK-DFL gains by using much larger T values
compared to other methods, improving convergence. The
analysis also captures key factors such as the relationship
between the spectral gap and model convergence, impact of
data heterogeneity, and NTK approximation error.

Definition 4.1. (DFL objective). We are interested in mini-
mizing the global loss L(w) across all clients, defined as

L(w)=
M∑
i=1

Ni

Ntotal
Li(w), Li(w)= 1

Ni

Ni∑
j=1

ℓ(w;xi,j ,yi,j), (6)

where ℓ(·) is a sample-wise loss applied to client data.

Definition 4.2. (The gossip/mixing matrix). [Definition 1,
(Sun et al., 2021)] The matrix M = [mi,j] ∈ [0, 1]m×m is
assumed to satisfy the following properties: (i) (Graph) If
i ̸= j and (i, j) /∈ V , then mi,j = 0; otherwise, mi,j >
0. (ii) (Symmetry) The matrix is symmetric, i.e., M =
M⊤. (iii) (Null space property) The null space of I −M
is spanned by the all-ones vector, null(I−M) = span{1}.
(iv) (Spectral property) The matrix satisfies I ⪰M ≻ −I.
The eigenvalues of M satisfy 1 = |λ1(M)| > |λ2(M)| ≥
· · · ≥ |λm(M)|, and the spectral gap is defined as (1 −
λ)2 ∈ (0, 1], where λ := max{|λ2(M)|, |λm(M)|}.
Assumption 4.3. (Standard DFL assumptions). We assume
that ∇Li is Lipschitz continuous. We bound the variance
of client gradients with σ2

g and the client gradient norm
with B. We note that these assumptions are relatively mild
and common in the DFL literature. Additional details can
be found in Appendix G.

Assumption 4.4. (Approximation error of NTK gradient).
For any client i ∈ {1, 2, . . . ,M}, the difference between the
NTK gradient and the true gradient of the loss is bounded
by δNTK, i.e.,∥∥∇LNTK

i (w)−∇Li(w)
∥∥2 ≤ δ2NTK, (7)

for all w ∈ Rd. We note that an explicit formulation of
δNTK is possible given assumptions of a simplified model
(Huang et al., 2021; Yue et al., 2022) (see Lemma G.9 in
Appendix G). In our analysis, we treat this as a constant in
order to remain model-agnostic.

4

NTK-DFL: Enhancing DFL in Heterogeneous Settings via NTK

Theorem 4.5. Consider the average weight over M clients
w̄(k) := 1

M

∑M
i=1 w

(k)
i for round k ∈ {1, . . . ,K} and

suppose the previously stated assumptions hold. Assuming
that the learning rate satisfies 0 < η ≤ 1

8LT , we have

min
1≤k≤K

∥∥∥∇L(w̄(k)
)∥∥∥2 ≤ 2

[
L(w̄(1))− L∗]
Kγ(T, η)

+ α(η, T, σg, δNTK) + β(η, T, σg, δNTK, λ), (8)

where the constants are defined as

γ(T, η) := ηT − 32η2T 2L(ηTL+ 1), (9a)

α(η, T, σg, δNTK) :=
1

γ(T,η)2ηT
[
L(ηLT + 1)

· 8ηT (δ2NTK+σ2
g) + δNTKB

]
, (9b)

β(η, T, σg, δNTK, λ) :=
1

γ(T,η)512η
4T 4L3(ηTL+ 1)

· (1− λ)−2(δ2NTK+σ2
g+B2). (9c)

Corollary 4.6. Let the learning rate satisfy O(1/L
√
KT).

Using similar assumptions as Theorem 4.5 in Appendix G,
we have the following convergence rate for NTK-DFL:

min
1≤k≤K

∥∥∥∇L(w̄(k)
)∥∥∥2 ≤ O

(
L(w̄(1))− L∗
√
KT

+

√
T (δNTKB + δ2NTK + σ2

g)√
K

+
T (δ2NTK + σ2

g)

K

+
T (δ2NTK + σ2

g +B2)

(1− λ)2K

)
+O(δNTK). (10)

From the bound above, we can see that the main conver-
gence term can be improved when we increase the number
of local iterations, T . However, as expected, we cannot
arbitrarily increase T without inducing a greater error in
the terms δNTK, B, and σg. Compared to bounds in Sun

et al. (2021), O
(

1√
K

+
σ2
g√
K

+
σ2
g+B2

(1−λ)2K3/2

)
, the first term

to the right of the inequality highlights improved conver-
gence derived from the ability to select a value of T that
is 1 to 2 orders of magnitude larger than that of other DFL
methods. Intuitively, the bound tightens with an increasing
spectral gap (1−λ)2, which is associated with mixing speed.
We note that there is an irreducible convergence floor from
the NTK approximation term δNTK. Obtaining an explicit
bound on this term can be done through specific assumptions
about the loss function and the model itself. For instance,
as detailed in Lemma G.9, assumptions about the smooth-
ness of fi and a bounded per-client residual norm lead to
δNTK = O

(
K−1T (σ2

g +B2)
)
, thus becoming reducible.

5. Experiments
5.1. Experimental Setup

Datasets and Model Specifications Following Yue et al.
(2022), we experiment on three datasets: Fashion-MNIST

(Xiao et al., 2017), FEMNIST (Caldas et al., 2019), and
MNIST (Lecun et al., 1998). Each dataset contains C = 10
output classes. For Fashion-MNIST and MNIST, data het-
erogeneity has been introduced in the form of non-IID parti-
tions created by the symmetric Dirichlet distribution (Good,
1976). For each client, a vector qi ∼ Dir(α) is sampled,
where qi ∈ RC is confined to the (C − 1)-standard simplex
such that

∑C
j=1 qij = 1. This assigns a probability distribu-

tion over labels to each client, creating heterogeneity in the
form of label-skewness. For smaller values of α, a client
possesses a distribution concentrated in fewer classes. We
test over a range of α values in order to simulate different
degrees of heterogeneity. In FEMNIST, data is split into
shards based on the writer of each digit, introducing hetero-
geneity in the form of feature-skewness. For the model, we
use a two-layer multilayer perceptron with a hidden width
of 100 neurons for all trials.

Network Topologies A sparse, time-variant κ-regular
graph with κ = 5 was used as the standard topology for
experimentation, where for each communication round k,
a new random graph G(k) with the same parameter κ is
created. Various values of κ were tested to observe the
effect of network density on model convergence. We also
experimented with various topologies to ensure robustness
to different connection settings. We used a network of 300
clients throughout our experiments.

Baseline Methods We compare our approach to various
state-of-the-art baselines in the DFL setting. These include
D-PSGD (Lian et al., 2017), DFedAvg, DFedAvgM (Sun
et al., 2021), DFedSAM (Shi et al., 2023), and DisPFL
(Dai et al., 2022). We also compare with the centralized
baseline NTK-FL (Yue et al., 2022). The upper bound
NTK-FL would consist of a client fraction of 1.0 where the
server constructs an NTK from all client data each round,
which is infeasible due to memory constraints. Instead, we
conducted a comparison following Dai et al. (2022), which
we include in Appendix C.1. We also include details on
baseline hyperparameters in Appendix C.2.

Performance Metrics We evaluate the performance of the
various DFL approaches by studying the aggregate model
accuracy on a global, holdout test set. This ensures that
we are measuring the generalization of the aggregate model
from individual, heterogeneous local data to a more rep-
resentative data sample. Our approach is in line with the
goal of training a global model capable of improved gener-
alization over any single local model (Section 3.1), unlike
personalized federated learning where the goal is to fine-
tune a global model to each local dataset (Tan et al., 2023).
When evaluating the selection algorithm in Figure 6, we
split the global test set in a 50:50 ratio of validation to test
data. We use the validation data to sort the models based on
their accuracy, and report the test accuracy in the figure.

5

NTK-DFL: Enhancing DFL in Heterogeneous Settings via NTK

0 10 20
Communication Round

0.75

0.80

0.85

Te
st

 A
cc

ur
ac

y

0 10 20
Communication Round

NTK-DFL (Ours)
DFedAvg
DFedAvgM

DFedSAM
DisPFL
D-PSGD

Method IID α = 0.5 α = 0.1

DFedAvg 18 31 83

DFedAvgM 23 43 86

DFedSAM 24 45 200+

DisPFL 43 87 200+

D-PSGD 53 79 125

NTK-DFL 12 17 18

Figure 2. Convergence of different methods on Fashion-MNIST for (left) highly non-IID with α = 0.1 and (middle) IID settings.
(Right) The table displays the communication rounds required to reach 85% test accuracy on Fashion-MNIST. We observe increased
improvement in NTK-DFL convergence over baselines for more heterogeneous settings.

2 3 4 5 6 7
Number of Neighbors

0.80

0.81

0.82

0.83

0.84

0.85

0.86

Te
st

 A
cc

ur
ac

y Performance
Gap

NTK-DFL (Ours)
DFedAvg
DFedAvgM
DisPFL
DFedSAM
D-PSGD

0.1 0.2 0.3 0.4 0.5
Heterogeneity Level

NTK-DFL (Ours)
DFedAvg
DFedAvgM
DisPFL
DFedSAM
D-PSGD

Figure 3. Performance of NTK-DFL vs. (left) sparsity level and (right) heterogeneity level (smaller α→ more heterogeneous). NTK-DFL
outperforms the baselines and the gains are stable as the factors vary.

5.2. Experimental Results

Test Accuracy & Convergence Our experiments demon-
strate the superior convergence properties of NTK-DFL
compared to baselines. Figure 2 illustrates the convergence
trajectories of NTK-DFL and other baselines on Fashion-
MNIST. We see that NTK-DFL convergence benefits are
enhanced under increased heterogeneity. Under high het-
erogeneity with α = 0.1, NTK-DFL establishes a 3–4%
accuracy lead over the best-performing baseline within just
five communication rounds and maintains this advantage
throughout the training process. Additionally presented are
the number of communication rounds necessary for con-
vergence to 85% test accuracy, where NTK-DFL consis-
tently outperforms all baselines. For the α = 0.1 setting,
NTK-DFL achieves convergence in 4.6 times fewer com-
munication rounds than DFedAvg, the next best performing
baseline. Figure 10 in Appendix C demonstrates a simi-
lar convergence advantage for NTK-DFL on both feature-
skewed FEMNIST and label-skewed MNIST datasets.

Factor Analyses for NTK-DFL We evaluate NTK-DFL’s
performance over various factors, including the sparsity and

heterogeneity levels, the choices of the topology, and weight
initialization scheme. Figure 3 illustrates the test accuracy
of NTK-DFL and other baselines as functions of the sparsity
and heterogeneity levels, respectively. We observe a mild
increase in convergence accuracy with decreasing sparsity.
NTK-DFL experiences stable convergence across hetero-
geneity values α ranging from 0.1 to 0.5. The left plot
reveals that NTK-DFL consistently outperforms baselines
by 2–3% across all sparsity levels. The right plot demon-
strates NTK-DFL’s resilience to data heterogeneity—while
baseline methods’ performance deteriorates with decreas-
ing α, NTK-DFL maintains stable performance. In Figure 8
of Appendix C, we evaluate NTK-DFL across a range of
network topologies and find that it performs consistently
well across different connection structures with the same
sparsity level. Additionally, Figure 11 illustrates the impact
of a dynamic network topology on NTK-DFL convergence.
The dynamic topology accelerates convergence compared to
the static topology, likely due to improved information flow
among clients. Figure 12 demonstrates the effect of weight
initialization on NTK-DFL performance. While random per-
client initialization slightly slows convergence compared

6

NTK-DFL: Enhancing DFL in Heterogeneous Settings via NTK

0 5 10 15 20 25
Communication Round

0.60

0.65

0.70

0.75

0.80

0.85

Te
st

 A
cc

ur
ac

y

IID
= 0.5
= 0.1

Figure 4. Performance gains of model averaging on convergence,
trained on Fashion-MNIST. Solid lines correspond to the accuracy
of the aggregated global model, whereas dotted lines correspond to
the mean accuracy across client models. NTK-DFL’s aggregated
model maintains high performance, whereas mean client accuracy
declines significantly with increased heterogeneity.

to uniform initialization, NTK-DFL exhibits robustness to
these initialization differences.

Gains Due to Final Model Aggregation Figure 4 demon-
strates the dramatic effect of final model aggregation on final
test accuracy. Though the individual client models decrease
in accuracy as the level of heterogeneity increases, the fi-
nal aggregated model remains consistent across all levels
of heterogeneity (as seen in Figures 2 and 3). In the most
heterogeneous setting α = 0.1 that we tested, the difference
between the mean accuracy of each client and the aggregated
model accuracy is nearly 10%, as shown in Figure 4. A sim-
ilar phenomenon is observed in Figure 9 of Appendix C
as the client topology becomes more sparse. For the same
heterogeneity setting with a sparser topology of κ = 2, the
difference between these accuracies is nearly 15%. Though
the individual performance of local client models may suffer
under extreme conditions, the inter-client model deviation
(see detailed definition in Appendix C.3) created by such
unfavorable settings is exploited by model averaging to re-
cuperate much of that lost performance. Figure 5 suggests
that inter-client model deviation enhances the performance
of model averaging in DFL. While extreme dissimilarity
in model weights would likely result in poor performance
of the averaged model, we observe that a moderate degree
of deviation can be beneficial. For example, this is seen
in Li et al. (2020a) with the tuning of the “proximal term” µ
that regulates this degree of client diversity in model up-
dates. We posit that the NTK-based update steps generate a
more advantageous level of deviation compared to baseline
approaches, contributing to improved overall performance.

Selection Algorithm Figure 6 demonstrates the results of

0.86

0.84

0.82

0.80

0.78

0.76

0.00 0.01 0.02 0.03

Inter-Client Model Deviation

0.04

T
e
s
t
 A

c
c
u
r
a
c
y

NTK-DFL

DFedAvgM

DFedAvg

D-PSGD

Figure 5. Relationship between inter-client model deviation and
final test accuracy on Fashion-MNIST. Each point represents a
trial with distinct hyperparameters. The plot reveals a positive
correlation between model deviation and accuracy, suggesting that
higher deviation may benefit model averaging in DFL to a certain
extent. Notably, the NTK-DFL approach demonstrates both higher
accuracy and greater model deviation compared to other methods.

the selection algorithm for the final model aggregation. The
“best-to-worst” selection algorithm is highly effective in a
highly heterogeneous setting with α = 0.1. It significantly
outperforms a random averaging order and the lower-bound
averaging order, which requires the fewest clients to be av-
eraged to achieve the same level of accuracy. In practical
deployments, final model aggregation has implications in
a fully decentralized setting. For example, when training
starts to converge, clients may need to connect in a denser
topology to shortlist neighbors with higher validation accu-
racies for final model aggregation.

Per-round Averaging Ablation Study In Figure 7, we
perform an ablation study in which we remove the per-round
parameter averaging that is a part of the NTK-DFL process.
Here, clients forego the step of averaging their weight vec-
tors with their neighbors during each communication round.
Instead, clients compute Jacobians with respect to their orig-
inal weight vector and send these to each of their neighbors
(see Algorithm 3 in Appendix A). A massive distribution
shift can be seen in the figure, where the distribution in the
ablated setting is clearly skewed into lower accuracies. In
contrast, NTK-DFL with per-round averaging demonstrates
a much tighter distribution around a higher mean accuracy,
effectively eliminating the long tail of low-performing mod-
els. Per-round averaging in NTK-DFL serves as a stabilizing
mechanism against local model drift, safeguarding clients
against convergence to suboptimal solutions early in the
training process. In other words, client collaboration in
the form of per-round averaging with neighbors ensures
that no client lags behind in convergence. This is a partic-
ularly valuable feature in decentralized federated learning
scenarios, where maintaining uniformity across a diverse

7

NTK-DFL: Enhancing DFL in Heterogeneous Settings via NTK

0 20 40 60 80
Number of Clients Averaged

0.76

0.78

0.80

0.82

0.84

0.86

Te
st

 A
cc

ur
ac

y

Histogram of
individual acc

Best to worst
Worst to best
Mean Shuffled
95% CI

Figure 6. Final model test accuracy on Fashion-MNIST vs. the num-
ber of clients averaged for a highly heterogeneous setting with
α = 0.1. The histogram shows the distribution of individual client
model accuracies. Three client selection criteria are tested: pro-
posed high-to-low (red), random (green), and low-to-high (blue).

0 3 6 9
Communication Round

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Te
st

 A
cc

ur
ac

y

Figure 7. Distributions of individual client model accuracy vs.
the communication round for Fashion-MNIST. The proposed
scheme (red) conducts per-round averaging among neighbors,
whereas the ablated setup (blue) does not. Per-round averaging
reduces the skewness of the model performance distribution.

set of clients with heterogeneous data is a major challenge
(Martı́nez Beltrán et al., 2023).

Communication and Memory Overhead While over-
head is not the primary focus of our work, we propose
several strategies to allow for control over these factors.
To mitigate memory overhead, we experiment with Jaco-
bian batching, where clients divide their data into batches
each round and perform an NTK-DFL update per batch.
As shown in Figure 13 of Appendix E, test accuracy per
communication round improves with increasing batch size.
To address communication overhead, we explore datapoint
subsampling, where clients compute Jacobians with respect
to only a fraction of their data each round. Figure 14 of
Appendix E illustrates the expected accuracy drop from
this approach—a natural trade-off for reduced communica-
tion. Finally, we evaluate compression techniques to reduce
NTK-DFL’s communication volume further. Figure 15 of
Appendix E compares the convergence of NTK-DFL with
different compression methods, while Figure 16 presents
convergence in terms of bits communicated. We leave read-
ers to Appendix E for detailed discussions.

6. Conclusion and Future Work
In this paper, we have introduced NTK-DFL, a novel ap-
proach to decentralized federated learning that leverages
the neural tangent kernel to address the challenges of statis-
tical heterogeneity in decentralized learning settings. Our
work extends NTK-based training to the decentralized set-
ting, while discovering a unique synergy between NTK
evolution and decentralized model averaging that improves

final model accuracy. Our method combines the expressive-
ness of NTK-based weight evolution with a decentralized
architecture, allowing for efficient, collaborative learning
without a central server. We reduce the number of commu-
nication rounds needed for convergence, which may prove
advantageous for high-latency settings or those with heavy
encoding/decoding costs.

There are promising unexplored directions for NTK-DFL.
For instance, extending the algorithm to training models
such as CNNs, ResNets (He et al., 2016), and transform-
ers (Vaswani et al., 2017), possibly making use of new
NTK methods suited for modern architectures (Arora et al.,
2019; Tirer et al., 2022; Yang, 2019). Additionally, fu-
ture research could explore the application of NTK-DFL
to cross-silo federated learning scenarios, particularly in
domains such as healthcare, where data privacy concerns
and regulatory requirements often necessitate decentralized
approaches (Guo et al., 2025). Lastly, NTK-DFL may serve
as a useful paradigm for transfer learning applications in
scenarios where a single, centralized source of both compute
and data is not available.

Impact Statement
This paper presents work aimed at advancing the field of
machine learning. Our research has several potential so-
cietal consequences, none of which we believe need to be
specifically highlighted in this context.

8

NTK-DFL: Enhancing DFL in Heterogeneous Settings via NTK

Acknowledgments
This work was supported in part by the US National Sci-
ence Foundation under grants SaTC-2340856 and ECCS-
2203214, and the ECE Undergraduate Research Program
and the Caldwell Fellows Program at the NC State Univer-
sity. The views expressed in this publication are those of
the authors and do not necessarily reflect the views of the
National Science Foundation.

References
Alemohammad, S., Wang, Z., Balestriero, R., and Baraniuk,

R. The recurrent neural tangent kernel. In International
Conference on Learning Representations, 2021.

Alistarh, D., Hoefler, T., Johansson, M., Konstantinov, N.,
Khirirat, S., and Renggli, C. The convergence of sparsi-
fied gradient methods. In Advances in Neural Information
Processing Systems, volume 31, 2018.

Arora, S., Du, S. S., Hu, W., Li, Z., Salakhutdinov, R., and
Wang, R. On exact computation with an infinitely wide
neural net. In Advances in Neural Information Processing
Systems, 2019.

Caldas, S., Duddu, S. M. K., Wu, P., Li, T., Konečný, J.,
McMahan, H. B., Smith, V., and Talwalkar, A. LEAF: A
benchmark for federated settings. In Advances in Neural
Information Processing Systems, 2019.

Dai, R., Shen, L., He, F., Tian, X., and Tao, D. DisPFL:
Towards communication-efficient personalized federated
learning via decentralized sparse training. In Interna-
tional Conference on Machine Learning, 2022.

Foret, P., Kleiner, A., Mobahi, H., and Neyshabur, B.
Sharpness-aware minimization for efficiently improving
generalization. In International Conference on Learning
Representations, 2021.

Golikov, E., Pokonechnyy, E., and Korviakov, V. Neural
tangent kernel: A survey, 2022.

Good, I. J. On the application of symmetric Dirichlet dis-
tributions and their mixtures to contingency tables. The
Annals of Statistics, 4(6), 1976.

Guo, P., Wang, P., Zhou, J., Jiang, S., and Patel, V. M.
Enhancing MRI reconstruction with cross-silo federated
learning. In Li, X., Xu, Z., and Fu, H. (eds.), Federated
Learning for Medical Imaging, The MICCAI Society
book Series, pp. 155–171. Academic Press, 2025.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In IEEE Conference on
Computer Vision and Pattern Recognition, pp. 770–778,
2016.

Huang, B., Li, X., Song, Z., and Yang, X. FL-NTK: A neu-
ral tangent kernel-based framework for federated learning
analysis. In International Conference on Machine Learn-
ing, pp. 4423–4434. PMLR, 2021.

Jacot, A., Gabriel, F., and Hongler, C. Neural tangent kernel:
Convergence and generalization in neural networks. In
Advances in Neural Information Processing Systems, pp.
8580–8589, Red Hook, NY, USA, 2018.

Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis,
M., Bhagoji, A. N., Bonawitz, K., Charles, Z., Cormode,
G., Cummings, R., et al. Advances and open problems in
federated learning. Foundations and Trends® in Machine
Learning, 14:1–210, 2021.

Karimireddy, S. P., Kale, S., Mohri, M., Reddi, S., Stich, S.,
and Suresh, A. T. Scaffold: Stochastic controlled averag-
ing for federated learning. In International Conference
on Machine Learning, pp. 5132–5143. PMLR, 2020.

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998.

Li, T., Sahu, A. K., Zaheer, M., Sanjabi, M., Talwalkar, A.,
and Smith, V. Federated optimization in heterogeneous
networks. In 3rd MLSys Conference, 2020a.

Li, T., Sahu, A. K., Zaheer, M., Sanjabi, M., Talwalkar, A.,
and Smith, V. Federated optimization in heterogeneous
networks. Proceedings of Machine Learning and Systems,
2:429–450, 2020b.

Lian, X., Zhang, C., Zhang, H., Hsieh, C.-J., Zhang, W., and
Liu, J. Can decentralized algorithms outperform central-
ized algorithms? A case study for decentralized parallel
stochastic gradient descent. In Advances in Neural Infor-
mation Processing Systems, volume 30, 2017.

Liu, C., Zhu, L., and Belkin, M. On the linearity of large
non-linear models: When and why the tangent kernel is
constant. In Advances in Neural Information Processing
Systems, volume 33, pp. 15954–15964, 2020.

Liu, W., Chen, L., and Zhang, W. Decentralized federated
learning: Balancing communication and computing costs.
IEEE Transactions on Signal and Information Processing
over Networks, 8:131–143, 2022.

Martı́nez Beltrán, E. T., Pérez, M. Q., Sánchez, P. M. S.,
Bernal, S. L., Bovet, G., Pérez, M. G., Pérez, G. M.,
and Celdrán, A. H. Decentralized federated learning:
Fundamentals, state of the art, frameworks, trends, and
challenges. IEEE Communications Surveys; Tutorials, 25
(4):2983–3013, 2023.

9

NTK-DFL: Enhancing DFL in Heterogeneous Settings via NTK

McMahan, B., Moore, E., Ramage, D., Hampson, S., and
y Arcas, B. A. Communication-efficient learning of deep
networks from decentralized data. In Artificial Intelli-
gence and Statistics, pp. 1273–1282. PMLR, 2017.

Mothukuri, V., Parizi, R. M., Pouriyeh, S., Huang, Y., De-
hghantanha, A., and Srivastava, G. A survey on security
and privacy of federated learning. Future Generation
Computer Systems, 115:619–640, 2021.

Sattler, F., Wiedemann, S., Müller, K.-R., and Samek, W.
Robust and communication-efficient federated learning
from non-i.i.d. data. IEEE Transactions on Neural Net-
works and Learning Systems, 31(9):3400–3413, 2020.

Savazzi, S., Nicoli, M., and Rampa, V. Federated learning
with cooperating devices: A consensus approach for mas-
sive IoT networks. IEEE Internet of Things Journal, 7(5):
4641–4654, 2020.

Shi, Y., Shen, L., Wei, K., Sun, Y., Yuan, B., Wang, X., and
Tao, D. Improving the model consistency of decentral-
ized federated learning. In International Conference on
Machine Learning, 2023.

Shiri, I., Vafaei Sadr, A., Amini, M., Salimi, Y., Sanaat,
A., Akhavanallaf, A., Razeghi, B., Ferdowsi, S., Saberi,
A., Arabi, H., Becker, M., Voloshynovskiy, S., z, D.,
Rahmim, A., and Zaidi, H. Decentralized distributed
multi-institutional PET image segmentation using a fed-
erated deep learning framework. Clin Nucl Med, 47(7):
606–617, Jul 2022.

Sun, T., Li, D., and Wang, B. Decentralized federated
averaging. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 45(4):4289–4301, 2021.

Tan, A. Z., Yu, H., Cui, L., and Yang, Q. Towards person-
alized federated learning. IEEE Transactions on Neu-
ral Networks and Learning Systems, 34(12):9587–9603,
2023.

Tirer, T., Bruna, J., and Giryes, R. Kernel-based smoothness
analysis of residual networks. In 2nd Mathematical and
Scientific Machine Learning Conference, 2022.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L. u., and Polosukhin, I. Atten-
tion is all you need. In Advances in Neural Information
Processing Systems, volume 30, 2017.

Xiao, H., Rasul, K., and Vollgraf, R. Fashion-MNIST: A
novel image dataset for benchmarking machine learning
algorithms, 2017.

Yang, G. Wide feedforward or recurrent neural networks
of any architecture are Gaussian processes. In Advances
in Neural Information Processing Systems, volume 32,
2019.

Yu, Y., Wei, A., Karimireddy, S. P., Ma, Y., and Jordan,
M. TCT: Convexifying federated learning using boot-
strapped neural tangent kernels. In Advances in Neural
Information Processing Systems, 2022.

Yuan, L., Wang, Z., Sun, L., Yu, P. S., and Brinton, C. G. De-
centralized federated learning: A survey and perspective.
IEEE Internet of Things Journal, 2024.

Yue, K., Jin, R., Pilgrim, R., Wong, C.-W., Baron, D., and
Dai, H. Neural tangent kernel empowered federated learn-
ing. In International Conference on Machine Learning,
2022.

Zhang, C., Xie, Y., Bai, H., Yu, B., Li, W., and Gao, Y. A
survey on federated learning. Knowledge-Based Systems,
pp. 106775, 2021.

Zhu, L., Liu, Z., and Han, S. Deep leakage from gradients.
In Advances in Neural Information Processing Systems,
volume 32, 2019.

10

NTK-DFL: Enhancing DFL in Heterogeneous Settings via NTK

A. NTK-DFL Algorithms

Algorithm 1 Consolidated Federated Learning Process

Require: A set of clients C
1: Initialize weights w(0)

i for each client i.
2: for each communication round k = 1 to K do
3: Initialize graph structure G(k) = (C, E(k)), specifying the neighbors N (k)

i for each client i.
4: Execute Algorithm 2 for Per-Round Parameter Averaging
5: Execute Algorithm 3 for Local Jacobian Computation and Sending
6: Execute Algorithm 4 for Weight Evolution
7: end for

Algorithm 2 Per-Round Parameter Averaging

Require: For each client i, a set of neighbors N (k)
i and initial weights w(k)

i

1: for each client i ∈ C in parallel do
2: Send w

(k)
i to all neighbors j ∈ N (k)

i

3: Receive w
(k)
j from all neighbors j ∈ N (k)

i

4: w̄
(k)
i ← 1

Ni+
∑

j∈N(k)
i

Nj

(
Niw

(k)
i +

∑
j∈N (k)

i
Njw

(k)
j

)
5: Send aggregated weight w̄(k)

i back to all neighbors j ∈ N (k)
i

6: end for

Algorithm 3 Local Jacobian Computation and Sending Jacobians

Require: Each client i knows its neighbors N (k)
i and has access to local data Xi and the aggregated weights w̄(k)

j from

each neighbor j ∈ N (k)
i .

1: for each client i ∈ C in parallel do
2: Compute the Jacobian J

(k)
i,i ≡ ∇wf(Xi; w̄

(k)
i) using the client’s own aggregated weight w̄(k)

i and local data Xi.

3: for each neighbor j ∈ N (k)
i do

4: Compute the Jacobian J
(k)
i,j ≡ ∇wf(Xi; w̄

(k)
j) using the neighbor’s aggregated weight w̄(k)

j and client’s local
data Xi.

5: Send J
(k)
i,j , true label Yi, and function evaluation f(Xi; w̄

(k)
j) to neighbor j.

6: end for
7: end for

B. Additional Details on Weight Evolution

In implementation, computing the matrix exponential e
− ηt

Ñi
H

(k)
i in (4) to evolve weights can be computationally expensive.

In practice, the weights are evolved according to the more general differential equation from which (4) is derived, reliant
upon the linearized model approximation f(X i; w̄

(k,t)
j) ≈ f(X i; w̄

(k,0)
j) +∇wf(X i; w̄

(k,0)
j)⊤(w̄

(k,t)
j − w̄

(k,0)
j). The

differential equation is as follows
d

dt
f(X i; w̄

(k,t)
j) = −ηH(k)

j ∇fL. (11)

Here, L is the loss function. For example, for a half mean-squared error (MSE) loss, term on the right becomes the residual
matrix∇fL = f(X i; w̄

(k,t)
j)−Yi. During weight evolution, a client j evolves their neighboring function evaluation from

the initial condition f(X i; w̄
(k,0)
j) to the time-evolved f(X i; w̄

(k,t)
j) using a differential equation solver and the differential

equation above. To implement (5a), we use a process similar to Yue et al. (2022) where the initial client residual is evolved
over a series of timesteps specified by the user. For user-specified timesteps, the loss at that time is found using the evolved
residual. Then, the best-performing weights are evolved using the left side of (5a) and selected for the next communication
round.

11

NTK-DFL: Enhancing DFL in Heterogeneous Settings via NTK

Algorithm 4 Weight Evolution

Require: Each client i has access to local data Xi and initial weights w̄(k)
i , and knows its neighbors N (k)

i

1: for each client i ∈ C after intra-client communication do
2: Compute local Jacobian tensor J (k)

i,i and receive J
(k)
j,i from each neighbor j

3: Construct tensor J (k)
i from {J (k)

ii } ∪ {J
(k)
ji | j ∈ N

(k)
i }

4: Compute local NTK H
(k)
i using J (k)

i :
5: for each data point pair (xm, xn) do
6: [H

(k)
i]m,n ← 1

d2
⟨J (k)

i (xm),J (k)
i (xn)⟩F

7: end for
8: for each timestep t = 1 to T do

9: f (k,t)(X i)← (I− e
− ηt

Ñi
H

(k)
i)Y(k)

i + e
− ηt

Ñi
H

(k)
i f (k)(X i)

10: w̄
(k,t)
i ←

∑d2

j=1(J
(k)
i,:j:)

TR
(k,t)
i,:j + w̄

(k)
i

11: end for
12: Select w(k+1,0)

i ← w̄
(k,t)
i with the lowest loss given the residual f (k,t)(X i)−Yi

13: end for

C. Additional Experimental Details
C.1. Baselines

NTK-FL is the only centralized baseline that we compare with. We choose a per-round client fraction that ensures that the
busiest node in the centralized setting is no busier than the busiest decentralized setting. By busier, we mean the degree of
the node or the number of clients communicating with it. We note that NTK-FL is not an upper bound in this case due to the
comparison being founded on node busyness, which disadvantages a centralized approach where all communication happens
through a single, centralized node. Evaluating NTK-FL in the same setting as the table in Figure 2, NTK-FL converges
to threshold accuracy in 73, 85, and 180 communication rounds for heterogeneity settings IID, α = 0.5, and α = 0.1,
respectively. D-PSGD (Lian et al., 2017) is one of the first decentralized, parallel algorithms for distributed machine learning
that allows nodes to only communicate with neighbors. DFedAvg (Sun et al., 2021) adapts FedAvg to the decentralized
setting, and DFedAvgM makes the use of SGD-based momentum and extends DFedAvg. Both use multiple local epochs
between communication rounds, like vanilla FedAvg. DFedSAM (Shi et al., 2023) incorporates the SAM algorithm (Foret
et al., 2021) into the DFL process. DisPFL (Dai et al., 2022) is a personalized federated learning approach that aims to train
a global model and personalize it to each client with a local mask. In order to make the comparision fair, we report the
accuracy of the global model on our test set.

C.2. Hyperparameters

We perform a hyperparameter search over each baseline and select the hyperparameters corresponding to the best validation
accuracy. We use the α = 0.1 Fashion-MNIST test accuracy at communication round 30 as the metric for selection. This
is done because the majority of comparisons take place on Fashion-MNIST in the non-IID setting. For D-PSGD, we use
a learning rate of 0.1, and a batch size of 10 (local epoch count is defined to be one in this approach). For DFedAvg, we
use a learning rate of 0.1, a batch size of 25, and 20 local epochs. For DFedAvgM, we use a learning rate of 0.01, a batch
size of 50, 20 local epochs, and a momentum of 0.9. For DisPFL, we use a learning rate of 0.1, a batch size of 10, and
10 local epochs. Following Dai et al. (2022), we use the sparsity rate of 0.5 for DisPFL. For DFedSAM, we began with
the parameters suggested in Shi et al. (2023). After a hyperparameter search, we found that a radius ρ = 0.01, η = 0.01,
momentum of 0.99, learning rate decay of 0.95, weight decay of 5× 10−4, 5 local epochs, and a batch size of 32 yielded
the best performance. Note that we used a single gossip step per round for all approaches in order to maintain a fair
comparison. As for the NTK-DFL, we use a learning rate of 0.01 and search over values t ∈ {100, 200, . . . , 800} during
the weight evolution process. For the baseline compression methods, we experimented with quantization as well as top-k
sparsification (see Appendix E). We found that the baseline methods, which were gradient-based, cannot withstand the
aggressive sparsification applied to NTK-DFL. Therefore, we used only quantization [such as in Sun et al. (2021)] and
selected the most effective value to facilitate a fair comparison.

12

NTK-DFL: Enhancing DFL in Heterogeneous Settings via NTK

C.3. Inter-Client Model Deviation

We plot the relationship between the accuracy and the inter-client model deviation among NTK-DFL clients in Figure 5,
where the inter-client model deviation is defined for a set of weight vectors w1, . . . ,wM ∈ Rd as follows:

V =
1

d

d∑
j=1

√√√√ M∑
i=1

(wi,j − w̄j)2, w̄ =
1

M

M∑
i=1

wi, (12)

where it captures per-parameter variation in an averaged sense.

C.4. Additional Experimental Results

0 5 10 15
Communication Round

0.6

0.7

0.8

Te
st

 A
cc

ur
ac

y

Cluster
Regular
Erdos-Renyi
Ring
Line

Figure 8. Convergence of NTK-DFL across different dynamic
topologies, trained on Fashion-MNIST. NTK-DFL is evaluated
with a clustered graph (in yellow) with 5 neighbors per client, a
κ = 5 regular graph (in blue), an Erdos-Renyi random graph with
five mean neighbors (in green), a ring topology (in red), and a line
topology (in purple). We observe that NTK-DFL demonstrates
steady convergence across different topology classes. For the ring
and line topologies, convergence is a bit slower due to a sparser
graph of 2 rather than 5 neighbors per client.

2 3 4 5 6 7
Number of Neighbors

0.75

0.80

0.85

Te
st

 A
cc

ur
ac

y
Aggregated Model
Individual Client Models

Figure 9. NTK-DFL model accuracy as a function of neighbor
count κ, trained on Fashion-MNIST. Notably, the aggregated model
accuracy across NTK-DFL clients (in blue) remains consistent, even
as network sparsity varies. This stability persists despite a signifi-
cant decline in mean individual client test accuracy (in yellow) as
the number of neighbors decreases.

0 5 10 15 20 25
Communication Round

0.70

0.75

0.80

0.85

0.90

0.95

Te
st

 A
cc

ur
ac

y

(a) FEMNIST (Feature-skewed)

0 5 10 15 20 25
Communication Round
(b) MNIST (α = 0.05)

0 5 10 15 20 25
Communication Round

NTK-DFL (Ours)
DFedAvg
DFedAvgM
D-PSGD
DisPFL

(c) MNIST (α = 0.1)

Figure 10. Convergence of various methods on heterogeneous datasets: (a) FEMNIST, (b) Non-IID MNIST (α = 0.05), and (c) Non-IID
MNIST (α = 0.1). NTK-DFL consistently outperforms all baselines.

D. Discussion of Communication Trade-offs
Federated learning methods balance two key communication dimensions: the volume of data transmitted per round and the
total number of communication rounds required. NTK-DFL transmits more data per round than traditional approaches such
as DFedAvg by sharing Jacobian matrices rather than gradients or weights, but requires fewer total rounds. We emphasize
that the number of communication rounds is a key practical consideration. Below, we highlight scenarios where minimizing
it is especially beneficial:

13

NTK-DFL: Enhancing DFL in Heterogeneous Settings via NTK

0 5 10 15 20 25
Communication Round

0.74

0.76

0.78

0.80

0.82

0.84

0.86
Te

st
 A

cc
ur

ac
y

NTK-DFL
DFedAvg

Figure 11. The effect of static vs. dynamic topology on NTK-DFL
(Fashion-MNIST, α = 0.1). Solid lines correspond to a dynamic
topology, whereas dotted lines correspond to a static topology. Both
methods benefit from the dynamic topology and NTK-DFL out-
performs DFedAvg under both topologies. Other baselines are not
drawn but perform similarly to DFedAvg.

0 5 10 15 20 25
Communication Round

0.74

0.76

0.78

0.80

0.82

0.84

0.86

Te
st

 A
cc

ur
ac

y

NTK-DFL
DFedAvg

Figure 12. The effect of different vs. identical weight initialization
(Fashion-MNIST, α = 0.1). Solid lines correspond to the same
weight initialization for all clients, whereas dotted lines correspond
to different initialization. The convergence of NTK-DFL is affected
less than that of DFedAvg. Other baselines are not drawn but
perform similarly to DFedAvg.

• Large per-round communication latency, where fewer rounds can significantly reduce overall training time (e.g.,
compression or encryption of weights/gradients, heavy preprocessing of input data).

• Limited device availability, in which fewer rounds allow more efficient training when devices are intermittently
available.

• High bandwidth applications, where ample network bandwidth (e.g., gigabit home internet) can accommodate a
large data volume for each communication round, making the number of communication rounds the dominant factor in
training efficiency.

• Synchronization delays, where each round must wait for all devices to complete computation, with the slowest device
bottlenecking progress, thus making the number of communication rounds an important factor.

E. Overhead Mitigation Strategies
While analysis of memory and communication overhead are not a central theme of this paper, we include strategies to
mitigate both forms of overhead for practical deployment. A thorough analysis of optimization and parallelization is out of
the scope of this work and we leave it to future research.

E.1. Jacobian Batching

We introduce Jacobian batching to address potential memory constraints in NTK-DFL implementations. For scenarios
involving dense networks or large datasets, clients can process their local datasets in smaller batches, reducing memory
complexity from O(Nid2d) to O(Nid2d/m1), where m1 is the number of batches. Clients compute and transmit Jacobians
for each batch separately, evolving their weights multiple times per communication round. This approach effectively trades
a single large NTK H ∈ RN×N for m1 smaller NTKs Hm1

∈ RN/m1×N/m1 that form block diagonals of H, where N
represents the total number of data points between client i and its neighbors Ni. While some information is lost in the
uncomputed off-diagonal entries of H, this is mitigated by the increased frequency of NTK evolution steps. Figure 13
demonstrates this phenomenon, where an increasing batch number m1 actually leads to improved convergence. This
complexity reduction enables clients to connect in a denser network for the same memory cost.

E.2. Use of the Clustered Topology

In the traditional NTK-DFL approach, each client must compute Jacobians on their own data with respect to the weight
vector of every neighbor, as NTK construction requires all Jacobians to be evaluated at the same point in weight space. This

14

NTK-DFL: Enhancing DFL in Heterogeneous Settings via NTK

10 20 30
Communication Round

0.750

0.775

0.800

0.825

0.850

Te
st

 A
cc

ur
ac

y

m1 = 2
m1 = 4
m1 = 6
m1 = 8

Figure 13. Test accuracy of NTK-DFL vs. communication round
for various Jacobian batch numbers m1, with higher m1 values
denoting more batches (Fashion-MNIST, α = 0.1). We observe a
general, counterintuitive increase in test accuracy with an increased
number of batches.

10 20 30
Communication Round

0.750

0.775

0.800

0.825

0.850

Te
st

 A
cc

ur
ac

y

m2 = 2
m2 = 4
m2 = 6
m2 = 8

Figure 14. Test accuracy of NTK-DFL vs. communication round for
sampling divisors m2 (Fashion-MNIST, α = 0.1). Different from
Jacobian batching, only a 1/m2 fraction of client data is selected
each communication round. We observe a slight decrease in test
accuracy with increased m2.

implies that Jacobian computation scales linearly with the number of neighbors. However, a (dynamic) clustered topology
reduces this burden: after the initial weight synchronization step, all clients within a cluster share the same (aggregated)
weight, so each client only needs to compute a single set of Jacobians. These Jacobians can then be reused for all neighbor
interactions within the cluster. Furthermore, the weight evolution step can be offloaded to a single designated client, or
distributed across clients by sharing intermediate weights during the weight unrolling process (5b). As a result, both
communication and computation overheads become independent of the number of neighbors, assuming each round’s
evolution is handled by a single client per cluster. We illustrate the performance of NTK-DFL under this clustered topology
in Figure 8 of Appendix C, which shows convergence comparable to that of a regular graph with the same average degree.

E.3. Communication Cost

Compared to traditional weight-based approaches that communicate a client’s parameters wi each round, NTK-DFL
utilizes Jacobian matrices to enhance convergence speed and heterogeneity resilience. This tensor has memory complexity
O(Nid2d), where Ni denotes the number of data points between client i and its neighbors Ni, d is the model parameter
dimension, and d2 is the output dimension. We propose the following strategies to improve the communication efficiency of
NTK-DFL while maintaining convergence properties in heterogeneous settings.

Data Subsampling We introduce an approach where clients sample a 1/m2 fraction of their data each round for NTK
evolution. Clients follow the protocol described in Section 3.2, but exchange Jacobian matrices of reduced size. As
demonstrated in Figure 14, moderate values of m yield light performance degradation, validating this communication
reduction strategy.

Jacobian Compression We employ several techniques to reduce Jacobian tensor dimensionality. First, we apply top-k
sparsification, zeroing out elements with the smallest magnitude (Alistarh et al., 2018). The remaining nonzero values are
quantized to b bits. Additionally, we introduce a shared random projection matrix P ∈ Rd1×d′

1 generated from a common
seed, creating projections Zi = XiP that reduce input dimension from d1 to d′1. This combination of techniques maintains
convergence properties while significantly reducing communication costs. Note that similar compression schemes applied
to weight-based approaches lead to significant degradation in performance (Yue et al., 2022). Figure 15 illustrates the
relative differences in communication load for a different combinations of the techniques above, with a sparsification of 0.5,
quantization to 6 bits, a sampling of m2 = 5, and a projection to d′1 = 200 for the full optimization curve.

Figure 16 compares the convergence of NTK-DFL with the baseline methods in terms of communication volume. NTK-DFL
uses the compression methods detailed above, as well as a clustered topology (Section E.2) to reduce communication
overhead. The communication-optimized NTK-DFL converges in fewer rounds than the baselines. However, with more
expressive updates, it uses greater communication volume. This enforces the idea that NTK-DFL is especially useful in
scenarios where convergence in fewer rounds is important, such as those outlined in Appendix E.

15

NTK-DFL: Enhancing DFL in Heterogeneous Settings via NTK

101 102 103 104

Communication Load (MB)
0.65

0.70

0.75

0.80

0.85
Te

st
 A

cc
ur

ac
y

Sparse
Sparse + Sample
Sparse + Sample + Project

Figure 15. Comparison of NTK-DFL variants with progressive com-
munication optimizations (Fashion-MNIST, α = 0.1). Data sam-
pling and projection technique provides compounding reductions in
communication load compared to sparsification alone, while the fully
optimized variant demonstrates significantly lower communication
requirements at a comparable test accuracy.

0 10 20 30 40 50 60
Communication Volume (MB)

0.76

0.78

0.80

0.82

0.84

0.86

Te
st

 A
cc

ur
ac

y

D-PSGD
DFedAvg
DFedSam
DFedAvgM
NTK-DFL

Figure 16. Test accuracy vs. communication volume for
NTK-DFL and baselines (Fashion-MNIST, α = 0.1). With
the use of compression techniques and a clustered topology,
NTK-DFL performs similarly in term of communication vol-
ume. It is slightly outperformed by more communication
efficient algorithms, though they need about 5 times as many
communication rounds to converge.

F. Reconstruction Attack
While privacy preservation is not the primary focus of this work, we conduct a brief analysis of data privacy in NTK-DFL.
Following the reconstruction attack method of Zhu et al. (2019), we evaluate the feasibility of reconstructing client data from
transmitted Jacobian matrices under varying compression levels. Our experiments range from basic top-k sparsification with
sparsity 0.25 to combined sparsification with random projection to dimension d′1 = 200. Figure 17 illustrates that client data
reconstruction becomes increasingly difficult when a random projection is additionally applied to the Jacobian matrices.

Original Image Sparsification d ′1 = 500

d ′1 = 400 d ′1 = 300 d ′1 = 200

Figure 17. Reconstruction attack of client data from Jacobian matrices for various levels of compression. For the image corresponding to
sparsified matrices (the middle image of the first row), no random projection is done. We observe the ability to reconstruct a very noisy
version of client data. For the other images, we use sparsification and a random projection to dimension d′1. We observe an inability to
reconstruct client data when the random projection is additionally applied.

16

NTK-DFL: Enhancing DFL in Heterogeneous Settings via NTK

G. Mathematical Analysis
Below, we include more detailed assumptions that are used throughout the proof of the lemmas presented below and the
subsequent proof of Theorem 4.5. We note that the assumptions listed below are relatively mild and common in DFL settings
(Sun et al., 2021; Shi et al., 2023).

Assumption G.1. (Lipschitz smoothness). The function Li is differentiable, and its gradient∇Li is L-Lipschitz continuous
for all i ∈ {1, 2, . . . ,m}, i.e.,

∥∇Li(w)−∇Li(v)∥ ≤ L∥w − v∥, (13)

for all w,v ∈ Rd.

Assumption G.2. (Bounded variance). The global variance of the gradient for functions {Li}mi=1 is jointly bounded, i.e.,

1

m

m∑
i=1

∥∇Li(w)−∇L(w)∥2 ≤ σ2
g , (14)

for all w ∈ Rd. This quantity is directly related to data heterogeneity among clients.

Assumption G.3. (Bounded gradients). For any i ∈ {1, 2, . . . ,m} and w ∈ Rd, the gradient of the local loss function is
bounded as ∥∇Li(w)∥ ≤ B, for some constant B > 0.

We present the following lemmas to aid in the analysis. First, we present Lemma G.4 that is common in DFL literature
relating to the spectral properties of the mixing matrix. The following lemmas bound the mean divergence of the client
weights over local update steps t (Lemma G.5), the variance of client weights (Lemma G.7), and the mean gradient norm
over clients (Lemmma G.8). Lastly, we bound the error term δNTK (Lemma G.9).

Lemma G.4. [Following Lian et al. (2017)] For any k ∈ Z+, the mixing matrix M ∈ Rm×m satisfies the inequality

∥Mk −P∥op ≤ λk, (15)

where the parameter λ is defined as
λ := max{|λ2(M)|, |λm(M)|}. (16)

Here, the spectral norm of a matrix A is denoted by ∥A∥op, and the matrix P is given by

P =
11

⊤

m
∈ Rm×m, (17)

where 1 is the all-one vector [1, 1, . . . , 1]⊤ ∈ Rm.

Lemma G.5. Assume that Assumptions G.3 and 4.4 hold. Let w(k,t) denote the model weights at round k and timestep t,
and let the weight evolution be governed by the NTK-DFL approach. Then, it follows that

∥w(k,t+1) −w(k,t)∥2 ≤ η2(B + δNTK)
2, (18)

for 1 ≤ k ≤ K.

Proof. [Following Sun et al. (2021)]
We begin with the NTK update step

w
(k,t+1)
i −w

(k,t)
i =

η

N
(k)
i

∇fi(Xi;w
(k,0)
i)⊤ri(Xi,Yi,w

(k,t)
i), (19)

where ri(Xi,Yi,w) = ∇f ℓ(fi(Xi;w),Yi) is the (possibly transformed) residual over the data between client i and its
neighbors j ∈ Ni. The specific ri depends on the loss of choice, and we provide general derivation that is loss-agnostic.
Define the NTK-approximated gradient of the local loss function Li with respect to the model weights wi, using the Jacobian
evaluated at t = 0, we obtain

w
(k,t+1)
i −w

(k,t)
i = η

(
∇Li(w

(k,t)
i) + ∆NTK

i (w
(k,t)
i)

)
, (20)

17

NTK-DFL: Enhancing DFL in Heterogeneous Settings via NTK

where

∇wLNTK
i (w

(k,t)
i) =

1

Ñ
(k)
i

∇wf(X̃i,w
(k,0)
i)⊤ri(X̃i, ỹi,w

(k,t)
i), (21a)

∆NTK
i = ∇wLi(w

(k,t))−∇wLNTK
i (w(k,t)). (21b)

Using Assumptions G.3 and 4.4 and taking the norm:

∥w(k,t+1)
i −w

(k,t)
i ∥ ≤ η(B + δNTK), (22)

therefore completing the proof.

Lemma G.6. Given the stepsize 0 < η ≤ 1
8LT , assume w

(k,t)
i and w

(k)
i are generated by the decentralized NTK-FL

algorithm for all i ∈ {1, 2, . . . ,m}. If Assumptions G.1, G.2, and 4.4 hold, it follows that

1

m

m∑
i=1

∥w(k,t)
i −w

(k,0)
i ∥2 ≤ 16η2T 2

[
δ2NTK + σ2

g +
1
m

m∑
i=1

∥∇L(w(k)
i)∥2

]
, (23)

for 1 ≤ t ≤ K.

Proof. [Following Sun et al. (2021)]
Decomposing the difference into global variance, the NTK difference, and the difference between t = 0 and t,

w
(k,t+1)
i −w

(k,0)
i = w

(k,t)
i −w

(k,0)
i − η

[
∆NTK

i (w
(k,t)
i) +

(
∇Li(w

(k,t)
i)−∇Li(w

(k,0)
i)

)
+

(
∇Li(w

(k,0)
i)−∇L(w(k,0))

)
+∇L(w(k,0)

i)
]
. (24)

We consider two terms such that ∥w(k,t+1)
i −w

(k,0)
i ∥2 ≤ I + II, using the Cauchy inequality and Assumptions G.2 and 4.4

I ≤ (1+ 1
2T−1)

∥∥∥w(k,t)
i −w

(k,0)
i

∥∥∥2 , II ≤ 8Tη2
(
δ2NTK + ∥∇Li(w

(k,t)
i) −∇Li(w

(k,0)
i)∥2 +σ2

g + ∥∇L(w
(k,0)
i)∥2

)
.

(25)

From here, rewriting term II using Assumption G.1, we have∥∥∥w(k,t+1)
i −w

(k,0)
i

∥∥∥2 ≤ (1 + 1
2T−1 + 8Tη2L2)

∥∥∥w(k,t)
i −w

(k,0)
i

∥∥∥2 + 8Tη2(δ2NTK + σ2
g) + 8Tη2∥∇L(w(k,0)

i)∥2.
(26)

Given an appropriately small step size, we simplify 1 + 1
2T−1 + 8Tη2L2 ≤ 1 + 1

T−1 . Solving the recursive relationship
yields

1

m

m∑
i=1

∥∥∥w(k,t)
i −w

(k,0)
i

∥∥∥2 ≤ 1

m

m∑
i=1

T∑
u=1

(1 + 1
T−1)

u(8Tη2)
[
(δ2NTK + σ2

g) + ∥∇L(w
(k,0)
i)∥2

]
(27a)

≤ 16T 2η2
[
δ2NTK + σ2

g +
1
m

m∑
i=1

∥∇L(w(k,0)
i)∥2

]
, (27b)

with the recursive sum
∑T

u=1(1 +
1

T−1)
u ≤ 2T for T ≥ 10. Thus, we have completed the proof.

Lemma G.7. Suppose the stepsize satisfies 0 < η ≤ 1
8LT , and let w(k,0)

i be the model weights produced by the NTK-DFL
algorithm for all clients i ∈ {1, 2, . . . ,m}. Under Assumptions G.2 and 4.4 the following bound holds:

1

m

m∑
i=1

∥w(k,0)
i − w̄(k,0)∥2 ≤

16T 2η2
[
δNTK + σ2

g +
1
m

∑m
i=1 ∥∇L(w

(k,0)
i)∥2

]
(1− λ)2

, (28)

for all 1 ≤ k ≤ K.

18

NTK-DFL: Enhancing DFL in Heterogeneous Settings via NTK

Proof. [Following Sun et al. (2021) and Shi et al. (2023)]
With a slight abuse of notation, Yk := [w

(k,T)
1 ,w

(k,T)
2 , . . . ,w

(k,T)
m] and Xk := [w

(k,0)
1 ,w

(k,0)
2 , . . . ,w

(k,0)
m], we may write

the mixing process as
Xk+1 = MYk = MXk − ζk, (29)

where
ζk := M(Xk −Yk). (30)

We note that the order of averaging and updating weights does not affect this proof, as it relies on the spectral gap of the
(possibly time-varying) mixing matrix, which does not change over time. We can write recursively

Xk = MkX0 −
k−1∑
j=0

Mk−1−jζj . (31)

We note the following property of the mixing operation:

PM = MP = P. (32)

From Lemma G.4 we have that ∥Mk −P∥op ≤ λk. Left-multiplying both sides of (31) and using the mixing property (32),
we obtain

PXk = PX0 −
k−1∑
j=0

Pζj = −
k−1∑
j=0

Pζj , (33)

with the initialization X0 = 0. Then, we are led to

∥Xk − PXk∥ =

∥∥∥∥∥∥
k−1∑
j=0

(P−Mk−1−j)ζj

∥∥∥∥∥∥ ≤
k−1∑
j=0

∥P − Mk−1−j∥op∥ζj∥ ≤
k−1∑
j=0

λk−1−j∥ζj∥. (34)

With the Cauchy inequality, we obtain

∥Xk − PXk∥2 ≤

k−1∑
j=0

λ
k−1−j

2 · λ
k−1−j

2 ∥ζj∥

2

≤

k−1∑
j=0

λk−1−j

k−1∑
j=0

λk−1−j∥ζj∥2
 , (35)

and we can compute that
∥ζj∥2 ≤ ∥M∥2 · ∥Xj −Yj∥2 ≤ ∥Xj −Yj∥2. (36)

Applying Lemma G.6, for all j,

1

m
∥Xj −Yj∥2 ≤ 16T 2η2

[
δ2NTK + σ2

g +
1

m

m∑
i=1

∥∇L(w(k)
i)∥2

]
. (37)

Finally, we complete the proof with

1

m
∥Xt −PXt∥2 ≤

16T 2η2
[
δ2NTK + σ2

g +
1
m

∑m
i=1 ∥∇L(w

(k)
i)∥2

]
(1− λ)2

. (38)

Lemma G.8. Using the result from Lemma G.7, we obtain the following bound for the average squared gradient norm:

1

m

m∑
i=1

∥∇L(w(k)
i)∥2 ≤ 2L2C1η

2

(1− λ)2
+ 2∥∇L(w̄(k))∥2, (39)

where C1 = 16T 2(δ2NTK + σ2
g +B2).

19

NTK-DFL: Enhancing DFL in Heterogeneous Settings via NTK

Proof.
We expand the expression below by adding a difference term:

1

m

m∑
i=1

∥∇L(w(k)
i)∥2 ≤ 1

m

m∑
i=1

∥∇L(w(k)
i)−∇L(w̄(k)) +∇L(w̄(k))∥2. (40)

Using ∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2, we have

1

m

m∑
i=1

∥∇L(w(k)
i)∥2 ≤ 1

m

m∑
i=1

2∥∇L(w(k)
i)−∇L(w̄(k))∥2 + 2∥∇L(w̄(k))∥2. (41)

With Assumption G.1, we can bound the gradient difference as

1

m

m∑
i=1

∥∇L(w(k)
i)∥2 ≤ 2L2 1

m

m∑
i=1

∥w(k)
i − w̄(k)∥2 + 2∥∇L(w̄(k))∥2. (42)

Finally, we substitute the result from Lemma G.7 and use Assumption G.3 to finish the proof:

1

m

m∑
i=1

∥∇L(w(k)
i)∥2 ≤

32L2T 2η2
(
δ2NTK + σ2

g +B2
)

(1− λ)2
+ 2∥∇L(w̄(k))∥2. (43)

Lemma G.9. Assuming an appropriately small step size (such as is chosen in Theorem 4.5), Lipschitz continuity for
∇fi(Xi;w

(k,t)) and a bounded mean residual norm across all clients, i.e. 1
Ni

∑
∥ri(Xi,Yi;w)∥ ≤ r, we can bound the

error term in Assumption 4.4 as follows:

δ2NTK ≤ 16η2T 2L2r2(σ2
g +B2). (44)

Proof.
We can express ∆NTK as follows

∆NTK
i = ∇wLi(w

(k,t)
i)−∇wLNTK

i (w
(k,t)
i) (45a)

=
1

N
(k)
i

(
∇wf(Xi,w

(k,t)
i)⊤ −∇wf(Xi,w

(k,0)
i)⊤

)
ri(Xi,yi,w

(k,t)
i). (45b)

Using the Lipschitz assumption listed above, where the Lipschitz constant for fi is L, we have

δ2NTK ≤ L2∥w(k,t)
i −w

(k,0)
i ∥2r2. (46)

Now, substituting the result from G.6

δ2NTK ≤ L2
[
16η2T 2(δ2NTK + σ2

g) + 16η2T 2B2
]
r2. (47)

Solving for δ2NTK

δ2NTK ≤
16η2T 2r2L2(σ2

g +B2)

1− 16η2T 2r2
≈ 16η2T 2r2L2(σ2

g +B2). (48)

where the second inequality comes from assuming a step size η such that, for a large communication round K, 16η2T 2r2 ≪
1. Thus, the proof is complete.

Proof of Theorem 4.5.

We begin with
w̄(k+1) − w̄(k) = w̄(k,T) − w̄(k), (49)

due to the fact that the application of the mixing matrix does not change w̄. Using the NTK-DFL weight update step, noting
that the average weight at round k and time step t = 0 is written as w̄(k) := w̄(k,0),

w̄(k,T) − w̄(k) = − η

m

m∑
i=1

T∑
u=1

∇LNTK(w
(k,u)
i) = − η

m

m∑
i=1

T∑
u=1

(
∇wLi(w

(k,u)
i) + ∆

(k,u)
i,NTK

)
. (50)

20

NTK-DFL: Enhancing DFL in Heterogeneous Settings via NTK

Assumption G.1 gives us

L(w̄(k+1)) ≤ L(w̄(k)) + ⟨∇L(w̄(k)), w̄(k+1) − w̄(k)⟩+ L

2
∥w̄(k+1) − w̄(k)∥2. (51)

For the first inner product term, we have

⟨∇L(w̄(k)), w̄(k+1) − w̄(k)⟩ = ⟨T∇L(w̄(k)), (w̄(k,T) − w̄(k))/T + η∇L(w̄(k))− η∇L(w̄(k))⟩ (52a)

= −ηT∥∇L(w̄(k))∥2 +
〈
T∇L(w̄(k)), η∇L(w̄(k)) +

w̄(k,T) − w̄(k)

T

〉
(52b)

= −ηT∥∇L(w̄(k))∥2+

〈
T∇L(w̄(k)),

η

T

1

m

m∑
i=1

T∑
t=1

∇Li(w̄
(k))− η

T

1

m

m∑
i=1

T∑
t=1

(
∇Li(w

(k,t)
i)+∆NTK

i (w
(k,t)
i)

)〉
(52c)

= −ηT∥∇L(w̄(k))∥2 +

〈
T∇L(w̄(k)),

η

T

1

m

m∑
i=1

T∑
t=1

(
∇Li(w̄

(k))−∇Li(w
(k,t)
i)−∆NTK

i (w
(k,t)
i)

)〉
(52d)

≤ −ηT∥∇L(w̄(k))∥2 + η∥∇L(w̄(k))∥ ·

∥∥∥∥∥ 1

m

m∑
i=1

T∑
t=1

(
∇Li(w̄

(k))−∇Li(w
(k,t)
i)

)∥∥∥∥∥+ ηTδNTKB. (52e)

Using Assumption G.1, we have

⟨∇L(w̄(k)), w̄(k+1) − w̄(k)⟩ ≤ −ηT∥∇L(w̄(k))∥2 + ηLT∥∇L(w̄(k))∥ · 1
m

m∑
i=1

∥w̄(k) −w
(k,t)
i ∥+ ηTδNTKB. (53)

Using Young’s Inequality a ≤ a2

2α + α
2 , we can write the norm in terms of the squared norm where we set:

a = ∥w̄(k) −w
(k,t)
i ∥, α = 1/L, (54)

which yields the bound:

ηLT∥∇L(w̄(k))∥ · 1
m

m∑
i=1

∥w̄(k) −w
(k,t)
i ∥ ≤ ηT

2
∥∇L(w̄(k))∥2 + ηL2T

2

1

m

m∑
i=1

∥w̄(k) −w
(k,t)
i ∥2. (55)

With Jensen’s inequality and Lemma G.6:

ηLT∥∇L(w̄(k))∥ · 1
m

m∑
i=1

∥w̄(k) −w
(k,t)
i ∥ ≤ ηT

2
∥∇L(w̄(k))∥2 + ηL2T

2

1

m

m∑
i=1

1

m

m∑
i=1

∥w(k,t)
i −w

(k)
i ∥

2, (56a)

≤ ηT

2
∥∇L(w̄(k))∥2 + ηL2T

2

[
16η2T 2(δ2NTK + σ2

g +
1

m

m∑
i=1

∥∇L(w(k)
i)∥2

)]
. (56b)

Substituting this bound above, the inner product term is bounded by:

⟨∇L(w̄(k)), w̄(k+1) − w̄(k)⟩ ≤ −ηT∥∇L(w̄(k))∥2 + ηT

2
∥∇L(w̄(k))∥2

+ 8η3L2T 3

[
δ2NTK + σ2

g +
1

m

m∑
i=1

∥∇L(w(k)
i)∥2

]
+ ηTδNTKB. (57)

For the second term, we have

L

2
∥w̄(k+1) − w̄(k)∥2 =

L

2
∥w̄(k,T) − w̄(k)∥2 ≤ L

2
· 1
m

m∑
i=1

∥w(k,T)
i −w

(k)
i ∥

2. (58)

21

NTK-DFL: Enhancing DFL in Heterogeneous Settings via NTK

Using results from Lemma G.6

L

2
∥w̄(k+1) − w̄(k)∥2 ≤ 8η2T 2L

[
δ2NTK + σ2

g +
1

m

m∑
i=1

∥∇L(w(k)
i)∥2

]
. (59)

From here, we can write (51) as

L(w̄(k+1))− L(w̄(k)) ≤ −ηT

2
∥∇L(w̄(k))∥2 + 8η2T 2L(ηLT + 1)(δ2NTK + σ2

g) + ηTδNTKB

+ 8η2T 2L(ηTL+ 1)
1

m

m∑
i=1

∥∇L(w(k)
i)∥2. (60)

Substituting Lemma G.8, we obtain

L(w̄(k+1))−L(w̄(k)) ≤ −
[
ηT
2 − 16η2T 2L(ηTL+ 1)

]
∥∇L(w̄(k))∥2 +8η2T 2L(ηLT + 1)(δ2NTK + σ2

g)+ ηTδNTKB

+ 8η2T 2L(ηTL+ 1)
2L2C1η

2

(1− λ)2
. (61)

Taking the sum over K rounds, we obtain

L(w̄(K+1))−L(w̄(1)) ≤ −K
[
ηT
2 − 16η2T 2L(ηTL+ 1)

]
min

1≤k≤K
∥∇L(w̄(k))∥2+K(8η2T 2L)(ηLT + 1)(δ2NTK+σ2

g)

+KηTδNTKB +K(8η2T 2L)(ηTL+ 1)
2L2C1η

2

(1− λ)2
, (62)

By moving terms around, we can finally prove the theorem below:

min
1≤k≤K

∥∥∥∇L(w̄(k)
)∥∥∥2 ≤ L

(
w̄(1)

)
− L

(
w̄(K+1)

)
K

[
ηT
2 − 16η2T 2L(ηTL+ 1)

]
+

8η2T 2L (ηLT + 1) (δ2NTK + σ2
g) + ηTδNTKB + 8η2T 2L(ηTL+ 1) · 2L

2C1η
2

(1−λ)2

ηT
2 − 16η2T 2L(ηTL+ 1)

. (63)

Wrapping this up in constants, we can rewrite the above inequality as

min
1≤k≤K

∥∥∥∇L(w̄(k)
)∥∥∥2 ≤ 2

[
L(w̄(1))− L∗]
Kγ(T, η)

+ α(η, T, δNTK) + β(η, T, δNTK, λ), (64)

where

γ(T, η) = ηT − 32η2T 2L(ηTL+ 1), (65a)

α(η, T, σg, δNTK) =
16η2T 2L (ηLT + 1) (δ2NTK + σ2

g) + 2ηTδNTKB

γ(T, η)
, (65b)

β(η, T, σg, δNTK, λ) =
512η4T 4L3(ηTL+ 1)(δ2NTK + σ2

g +B2)

(1− λ)2γ(T, η)
. (65c)

22

