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Abstract

LLMs exhibit advanced reasoning capabili-001
ties, offering the potential to transform natural002
language questions into mathematical models.003
However, existing open-source datasets in op-004
erations research domain lack detailed anno-005
tations of the modeling process, such as vari-006
able definitions, focusing solely on objective007
values, which hinders reinforcement learning008
applications. To address this, we release the009
StructuredOR dataset, annotated with com-010
prehensive labels that capture the complete011
mathematical modeling process. We further012
propose BPP-Search, a algorithm that inte-013
grates reinforcement learning into a tree-of-014
thought structure using Beam search, a Process015
reward model, and a pairwise Preference al-016
gorithm. This approach enables efficient ex-017
ploration of tree structures, avoiding exhaus-018
tive search while improving accuracy. Exten-019
sive experiments on StructuredOR, NL4OPT,020
and MAMO-ComplexLP datasets show that021
BPP-Search significantly outperforms state-of-022
the-art methods. In tree-based reasoning, BPP-023
Search excels in accuracy and efficiency, en-024
abling faster retrieval of correct solutions.025

1 INTRODUCTION026

Mathematical modeling, particularly Linear Pro-027

gramming (LP) and Mixed Integer Programming028

(MIP), plays a critical role in industrial applications029

such as logistics (Demirel and Gökçen, 2008), elec-030

tricity scheduling and transmission (Zhang et al.,031

2018), and supply chain management (Özceylan032

and Paksoy, 2013). With the advent of Large Lan-033

guage Models (LLMs), transforming natural lan-034

guage questions into mathematical models has be-035

come a promising approach for automating opera-036

tions research tasks (Xiao et al., 2024; Tang et al.,037

2024a).038

Despite the increasing availability of open-039

source operations research (OR) datasets designed040

for question-to-model transformation (Huang et al.,041

2024; Ramamonjison et al., 2022; Tang et al., 042

2024b), these datasets primarily focus on objec- 043

tive values while lacking detailed annotations of 044

the underlying modeling processes. This gap limits 045

the application of Reinforcement Learning (RL), as 046

prior studies (Lightman et al., 2023; Uesato et al., 047

2022; Cobbe et al., 2021) have shown that pro- 048

cess information can significantly enhance mathe- 049

matical reasoning performance. To address this 050

limitation, we design a rigorous framework for 051

dataset generation and introduce the Structure- 052

dOR dataset, which not only provides objective 053

values for evaluation but also includes comprehen- 054

sive annotations of the modeling process, enabling 055

broader applicability in RL-based methods. 056

Chain-of-Thought (CoT) (Wei et al., 2022), Self- 057

Consistency (SC) (Wang et al., 2023) and Tree- 058

of-Thought (ToT) (Yao et al., 2023) have demon- 059

strated substantial improvements in reasoning tasks. 060

However, these approaches have inherent limita- 061

tions. CoT heavily relies on the policy model and 062

generates only one reasoning path at a time, mak- 063

ing it likely to fail to find the correct answer when 064

the policy model is weak. SC, without a verifier, 065

struggles to validate the correctness of candidate 066

answers, allowing errors in intermediate steps to 067

propagate and mislead the reasoning process. Sim- 068

ilarly, ToT generates multiple leaf nodes as poten- 069

tial answers, but without a verifier, it is unclear 070

which leaf node should be selected as the final so- 071

lution. Nonetheless, ToT remains promising; with 072

sufficiently wide and deep trees and effective node 073

selection strategies, it has the potential to generate 074

optimal solutions. 075

To enhance the reasoning process within the 076

ToT framework, we propose BPP-Search, a novel 077

method that integrates Beam Search, a Process Re- 078

ward Model (PRM), and a pairwise Preference 079

algorithm. BPP-Search is designed to improve ac- 080

curacy and reduce unnecessary node exploration, 081

making it particularly effective for complex reason- 082
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ing tasks in mathematical modeling.083

Our contributions are threefold: (1) We intro-084

duce the StructuredOR dataset, which bridges the085

gap between existing datasets and the requirements086

of RL-based methods by providing detailed mod-087

eling annotations. (2) We propose BPP-Search088

and explore heuristic algorithms combined with089

PRM, including Beam Search (Lowerre and Reddy,090

1976), Greedy (Prim, 1957), Epsilon Greedy (Sut-091

ton, 2018), and Random Greedy we proposed in092

Section 4.3. (3) We conduct extensive experiments093

on the StructuredOR, NL4OPT (Ramamonjison094

et al., 2022), and Mamo-ComplexLP (Huang et al.,095

2024) datasets, demonstrating the superiority of096

BPP-Search over baseline and current state-of-the-097

art methods from the perspective of efficiency and098

accuracy.099

2 RELATED WORK100

2.1 Mathematical Modeling Datasets101

Mathematical modeling datasets can be broadly cat-102

egorized into two types: abstract modeling and con-103

crete instance modeling. Modeling tools such as104

Pyomo (Hart et al., 2017) and AMPL (Gay, 2015),105

and OPL (Van Hentenryck et al., 1999) provide sup-106

port for both approaches, enabling users to work107

with abstract models as well as concrete instances.108

Abstract modeling focuses on capturing the es-109

sential structural information of a model. It typ-110

ically involves two steps: defining basic model111

declarations and applying data to create concrete112

instances. This approach is particularly suited113

for large-scale industrial applications and research,114

as models can be defined once and reused by115

importing different datasets. For instance, ML-116

Prompt (Wang et al., 2024b) leverages abstract117

models to generate parameter distributions, which118

are subsequently populated with specific values119

to construct concrete instances within industrial120

pipelines. Additionally, several studies (Yang121

et al., 2024c; Wang et al., 2024c) combine abstract122

models with CoT and LLMs to address problems123

such as Traveling Salesman Problem (Gavish and124

Graves, 1978), bypassing the need for traditional125

mathematical solvers or explicit concrete models.126

Concrete modeling requires all data to be avail-127

able before model processing begins, making it a128

straightforward and efficient approach. It is partic-129

ularly suited for analytical projects. This approach130

is especially advantageous when certain constraints131

are difficult or time-consuming to generalize into132

an abstract format, as it allows for more precise 133

and tailored solutions, significantly reducing pro- 134

cessing time. For smaller-scale mathematical mod- 135

els, tasks can be solved directly without treating 136

them as a combination of abstract modeling and 137

Named Entity Recognition (Grishman and Sund- 138

heim, 1996), which involves first building an ab- 139

stract model and then mapping numerical param- 140

eter values to it. This approach minimizes error 141

accumulation across tasks (Shen et al., 2023). 142

2.2 Process Reward Model 143

Several works (Cobbe et al., 2021; Lightman et al., 144

2023; Uesato et al., 2022) introduced the concept of 145

the Process Reward Model (PRM), demonstrating 146

its ability to significantly enhance the performance 147

of weak and small-scale policy models. Com- 148

pared to the Outcome Reward Model (ORM), PRM 149

achieves better performance but incurs higher la- 150

beling costs (Uesato et al., 2022). Initially, PRM 151

training relied on manually labeled data (Light- 152

man et al., 2023). To address the growing demand 153

for processing labels, Monte Carlo Tree Search 154

(MCTS)-based methods (Wang et al., 2024d,a; Luo 155

et al., 2024; Zhang et al., 2024; Setlur et al., 2024) 156

were later developed to simulate and assign scores 157

to reasoning processes. While effective, MCTS- 158

based approaches require wide and deep trees to 159

generate labeled data through extensive rollouts for 160

score convergence at intermediate nodes, resulting 161

in extremely high computational resource demands. 162

In contrast, manually labeled data is deterministic 163

and directly reflects the intended reasoning process 164

without relying on approximations. 165

3 Dataset Generation 166

3.1 Preliminary 167

Greedy. The Greedy algorithm selects the candi- 168

date with the highest score at each step, focusing 169

entirely on exploitation without exploration. The 170

selection process can be formalized as: 171

a∗ = argmax
a∈A

P (a), (1) 172

where P (a) represents the score of candidate a, 173

and A denotes the set of candidates. 174

Epsilon Greedy. The Epsilon Greedy algorithm 175

balances exploration and exploitation during can- 176

didate selection. At each step, with a probability 177

of ϵ, the algorithm selects a candidate randomly. 178
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Otherwise, it selects the candidate with the highest179

score. The selection process can be formalized as:180

a∗ =

{
random choice, w.p. ϵ,

argmaxa∈A P (a), w.p. 1− ϵ,
(2)181

where P (a) represents the score of candidate a,182

and A denotes the set of candidates. The parameter183

ϵ controls the probability of exploring randomly184

versus exploiting the best-known option.185

Beam Search. Beam Search is a heuristic search186

algorithm that explores a fixed number (k) of the187

most promising candidates (beam width) at each188

step. Unlike Greedy, which selects only the best189

candidate, Beam Search maintains a set of top k190

candidates to balance exploration and exploitation.191

The selection process can be formalized as:192

Bt+1 = Top-k

( ⋃
a∈Bt

Expand(a)

)
, (3)193

where Bt represents the set of beam candidates at194

step t, Expand(a) denotes the set of all possible195

successors of candidate a, and Top-k selects the k196

candidates with the highest scores. The parameter197

k controls the trade-off between computational cost198

and search completeness.199

Tree of Thought. Compared with CoT and SC,200

ToT has the potential to generate many accurate201

results, but it faces challenges in selecting a single202

answer from numerous leaf nodes. Our objective203

is to accelerate this process and efficiently retrieve204

a satisfactory solution. In the mathematical mod-205

eling task, Fig. 1 illustrates the reasoning process,206

following a structured path through the question,207

sets, parameters, variables, objectives, and con-208

straints (see Appendix A.3 for an example). Con-209

structing a six-layer tree for each example across210

all datasets incurs high computational costs. To211

address this, we group nodes based on property212

similarities and limit each node to a maximum of213

three child nodes. The resulting tree structure is214

as follows: the first layer represents the question,215

the second combines sets and parameters, the third216

includes variables, and the fourth integrates ob-217

jectives and constraints, as shown in Fig. 2. This218

approach balances tree width and computational219

efficiency for experiments.220

3.2 StructuredOR Dataset Framework221

Existing operations research datasets predomi-222

nantly focus on objective values and the annota-223

Figure 1: Reasoning steps. The process follows the path
Q → S → P → V → O → C, where Q, S, P , V , O
and C represent the question, set, parameter, variable,
objective, and constraint respectively.

Figure 2: The structure of the Tree of Thought. Here, Q
represents the question, SP represents set and parameter,
V represents variable, and OC represents objective and
constraint.

tions of the underlying modeling process appear 224

to be missing. To bridge the gap, we introduce 225

StructuredOR a new dataset explicitly designed 226

to provide the objective value for evaluation and 227

capture the complete mathematical modeling pro- 228

cess. 229

Building on Xiao’s work (Xiao et al., 2024), 230

which introduces a framework for generating ab- 231

stract mathematical models, we refine and expand 232

this approach to cover a wider spectrum of ab- 233

stract models. We leverage LLM such as GPT- 234

4o (Achiam et al., 2023) in conjunction with math- 235

ematical solvers to instantiate abstract models into 236

concrete examples. Furthermore, we implement a 237

series of validation mechanisms to construct and 238

verify the accuracy of these concrete problems, 239

thereby ensuring the dataset’s quality and relia- 240

bility. In summary, the StructuredOR dataset pro- 241

vides pairs of concrete questions and corresponding 242

model data, accompanied by comprehensive anno- 243

tations detailing the entire modeling process. Fig. 3 244

illustrates the construction pipeline, with each step 245

distinguished by a color-coded arrow: blue for Step 246

1, orange for Step 2, red for Step 3, and green for 247

Step 4. The whole process is delineated as follows: 248

Firstly, we leverage LLMs such as GPT-4o to 249

generate distributions for sets and parameters in ab- 250

stract models, inspired by prior work (Wang et al., 251

2024b) demonstrating that LLMs, such as GPT- 252

4o, are capable of producing realistic distributions 253
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Figure 3: Pipeline of the construction process of our proposed StructuredOR dataset.

for such applications. This is followed by a simula-254

tion process to generate instance-specific parameter255

data. Subsequently, these parameters are converted256

into concrete models in LP format using a parser257

and a modeling tool. The resulting models are then258

validated for solvability and correctness using the259

Gurobi solver (Achterberg, 2019). Solvable prob-260

lems from the solver are then selected as labeled261

instances, encompassing both the modeling process262

and the associated objective values. Details about263

standardizing the mathematical modeling data for-264

mat are provided in Appendix A.1.265

Next, based on the descriptions of sets and pa-266

rameters in abstract models, we construct templates267

to generate markdown-formatted lists via string in-268

sertion to describe the information of sets and pa-269

rameters. We subsequentially employ GPT-4o to270

develop a concrete problem description in natural271

language, which does not involve specific values272

for sets or parameters but provides a contextual-273

ized description of the problem. By concatenating274

this description with the numerical details of sets275

and parameters, a complete problem statement is276

produced. This string-based insertion ensures con-277

sistency and accuracy in the generated problem278

descriptions.279

We further utilize GPT-4o to rephrase each gen-280

erated question into three semantically equivalent281

versions to enhance fluency and naturalness. This282

process is supported by a rigorous review frame-283

work, comprising manual filtering, GPT-based scor-284

ing, and rule-based evaluation, to ensure semantic285

consistency between the rephrased texts and their286

corresponding labels.287

Finally, we introduce an iterative strategy for288

data augmentation by changing parameter data dis- 289

tributions during the initial generation phase. This 290

yields a dataset comprising 124 concrete questions 291

and their corresponding models, spanning domains 292

including logistics, scheduling, and networks, of 293

which 77 examples are from the original frame- 294

work, and 47 are generated through data augmenta- 295

tion. 296

Appendix A.2 provides an example of a concrete 297

question along with its structured modeling process 298

as the label. It also discusses the limitations of other 299

datasets, such as Mamo-ComplexLP (Huang et al., 300

2024), NL4OPT (Ramamonjison et al., 2022), and 301

IndustryOR (Tang et al., 2024b), highlighting their 302

challenges in addressing the complete modeling 303

process. Since most datasets, apart from Struc- 304

turedOR, are incompatible with the schema de- 305

fined in Appendix A.1, many questions in these 306

datasets cannot be successfully parsed, rendering 307

some examples unusable. Given the small size of 308

the IndustryOR (Tang et al., 2024b) dataset, our 309

experiments focus on the StructuredOR, Mamo- 310

ComplexLP, and NL4OPT datasets. 311

3.3 PRM Dataset Preparation 312

To implement process supervision within the tree 313

structure, we introduce the PRM (Uesato et al., 314

2022; Lightman et al., 2023), which assigns a score 315

to each intermediate step in the reasoning process. 316

There are two main approaches to generating train- 317

ing data for PRMs. (Uesato et al., 2022; Lightman 318

et al., 2023) rely on manually labeling each inter- 319

mediate step while (Wang et al., 2024d,a; Luo et al., 320

2024; Zhang et al., 2024; Setlur et al., 2024) lever- 321

age MCTS to assign scores to intermediate steps. 322
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MCTS-based methods rely on wide and deep323

trees to generate labeled process data through ex-324

tensive rollouts, ensuring score convergence for325

intermediate nodes but demanding significant com-326

putational resources. In contrast, manually labeled327

data is deterministic and directly captures the in-328

tended reasoning process without relying on ap-329

proximations.330

We first utilize the CoT and ToT frame-331

works across various policy models, including332

GPT (Achiam et al., 2023), LLama (Dubey et al.,333

2024), and Qwen series (Yang et al., 2024b), ap-334

plied to the NL4Opt (Ramamonjison et al., 2022)335

and MAMO-ComplexLP (Huang et al., 2024) train-336

ing datasets. Examples with consistent objective337

values are assumed to have correct modeling pro-338

cesses and therefore do not require manual label-339

ing. Although the StructuredOR dataset already340

includes detailed modeling process annotations and341

serves as a source of high-quality positive exam-342

ples, we adopt the same procedures to further aug-343

ment its training data.344

The process of modeling labels for both correct345

and incorrect reasoning paths is structured in align-346

ment with the layers of the ToT framework. This347

follows a cumulative approach, where each layer348

is constructed sequentially, building upon the out-349

comes of the preceding layer. If the generated label350

represents a correct reasoning path, all segmented351

labels derived from it are also correct, as the cor-352

rectness of each segment ensures the validity of the353

entire path. Conversely, if the overall reasoning354

path is determined to be incorrect and a specific355

intermediate step can be definitively identified as in-356

correct, all subsequent steps from that point onward357

are also labeled as incorrect, as errors propagate358

forward in the reasoning process. If no specific359

intermediate step can be identified as incorrect, the360

entire reasoning path is simply labeled as incorrect361

without making assumptions about the correctness362

or incorrectness of individual intermediate steps.363

To diversify the PRM dataset, manual perturba-364

tions are applied to enrich it with diverse examples365

in both categories. Detailed descriptions of the366

PRM training dataset preparation are provided in367

Appendix A.4.368

4 Methodology369

4.1 Training PRM370

Previous works (Cobbe et al., 2021; Uesato et al.,371

2022; Lightman et al., 2023; Luo et al., 2024) have372

Figure 4: A real demonstration of the BPP-Search pro-
cess with a beam search width of 2. Yellow nodes rep-
resent pruned nodes that are not explored, while light
blue nodes indicate nodes that have been visited.

shown that small-scale LLMs equipped with veri- 373

fiers evaluating intermediate processes are capable 374

of outperforming foundational large-scale LLMs in 375

mathematical reasoning tasks. In this work, we fine- 376

tune Qwen2.5-Math-1.5B (Yang et al., 2024b) for 377

a binary classification task. Details on constructing 378

prompts for the PRM are provided in Appendix A.5. 379

After full-parameter supervised fine-tuning, we ex- 380

tract the logits corresponding to the correct label 381

and apply the sigmoid function to compute the 382

score: 383

SPRM =
1

1 + e−lprm
, (4) 384

where lprm denotes the logit value for the correct 385

label, and SPRM represents the PRM score. 386

4.2 BPP-Search 387

We integrate the PRM with Greedy (Prim, 1957) 388

and Beam Search (Lowerre and Reddy, 1976) al- 389

gorithms, where the PRM provides scores to guide 390

node selection. However, as shown in Section 5.3, 391

increasing the Beam Search width does not con- 392

sistently improve performance and, in some cases, 393

leads to degradation. This limitation stems from 394

the PRM, which is trained for classification tasks 395

but required to assign continuous scores during 396

inference, resulting in output discrepancies. Man- 397

ual analysis of the tree generation process reveals 398

that the final layer of Beam Search frequently con- 399

tains both correct and incorrect candidates that are 400

highly similar, with only subtle distinctions. These 401

minor differences yield comparable scores, making 402

it challenging to determine the optimal solution 403

effectively. 404

To address this challenge, we propose BPP- 405

Search, an algorithm that integrates Beam search, 406
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Table 1: Performance evaluation (number of correctly solved examples) of various LLMs on the StructuredOR test
dataset (38 examples) under different methods: CoT (Wei et al., 2022) (including CoT-BMLD, where modeling is
performed first and then data is imported, and CoT-SPVOC, which follows the sequence of set, parameter, variable,
objective, and constraint for CoT), ToT (Yao et al., 2023), SC (Wang et al., 2023), ToT-randomly-chosen (where
the final result is obtained randomly from the leaf nodes), ToT-rethink (providing all leaf nodes to the LLM and
obtaining a revised result), and ToT-fully-traverse (where every leaf node is thoroughly checked).

Model/Methods CoT-BMLD CoT-SPVOC SC ToT-Randomly-Chosen ToT-Rethink ToT-Fully-Traverse
GPT-4o 19 19 21 21 23 30
GPT-4o-mini 13 14 19 12 19 21
Llama-3-70B 10 17 19 17 17 22
Llama-3.1-70B 18 10 21 5 14 17
Llama-3.2-11B 2 0 1 0 0 8
Qwen-2-72B-Instruct 2 2 4 3 1 5
Qwen-2.5-MATH-72B-Instruct 2 2 0 0 0 4
Qwen-2.5-72B-Instruct 6 5 9 2 2 2
Mixtral-8×7B-v0.1 0 0 0 0 1 1

PRM, and a Pairwise Preference model. The core407

idea is to enhance decision-making in the final layer408

by leveraging a newly trained Preference Model,409

fine-tuned from Qwen2.5-Math-1.5B, to generate410

pairwise preference scores for ranking candidates.411

Preference Model Data Preparation. To train412

the preference model for pairwise preferences, we413

first use the ToT framework to generate a large set414

of unlabeled reasoning paths and classify them as415

correct or incorrect based on objective values. For416

each problem, one correct reasoning path (A) and417

one incorrect reasoning path (B) are extracted, and418

all pairwise combinations of correct and incorrect419

paths are generated. Prompts are constructed by420

arranging the problem with A and B in two differ-421

ent orders. If A appears first, the prompt is labeled422

as 1; otherwise, it is labeled as 0. The resulting423

labeled data is then used to fine-tune the Preference424

Model as a binary classifier. Details on construct-425

ing prompts for the Preference Model are provided426

in Appendix A.5.427

Pairwise Scoring and Candidate Ranking. Dur-428

ing inference, the preference model evaluates pair-429

wise preference scores for any two candidates430

(A,B). The preference score SPM (A ≻ B) is431

calculated as:432

SPM (A ≻ B) =
1

1 + e−lpm
, (5)433

where lpm is the logit value for class 1 and A ≻ B434

denotes the preference for A over B.435

To compute a comprehensive score for each can-436

didate (A) in the candidate set, pairwise preference437

scores are aggregated across all other candidates:438

SPM (A) =
1

n− 1

j=1,...,n∑
j ̸=i

S(A ≻ Xj), (6)439

where n is the total number of candidates, i is the 440

index corresponding to A, and Xi represents A, 441

while Xj represents other candidates. 442

Selection of the Optimal Candidate. Using the 443

computed scores SPM (A), candidates are ranked, 444

and the one with the highest score is selected as the 445

optimal answer. This robust ranking mechanism 446

addresses the limitations of the PRM, which strug- 447

gles to differentiate between similar candidates and 448

accurately identify the correct answer. 449

Fig. 4 illustrates the BPP-Search process, where 450

nodes are pruned based on PRM scores during 451

beam search (Width = 2), and the Pairwise Prefer- 452

ence Algorithm ranks the final candidates to select 453

the optimal solution, ensuring robustness and accu- 454

racy. 455

4.3 Random Greedy Algorithm 456

To address the limitations of PRM’s scoring preci- 457

sion, we employ the Random Greedy algorithm. 458

Since PRM provides a rough preference ranking 459

rather than precise scores, randomness is intro- 460

duced to mitigate the impact of PRM’s scoring 461

variability. 462

The Random Greedy algorithm prioritizes can- 463

didates with scores close to the maximum while 464

incorporating randomness to mitigate PRM’s im- 465

precision. Candidates are filtered based on the 466

condition: 467

P (amax)− P (ai) ≤ threshold, (7) 468

where P (amax) is the highest score, P (ai) is the 469

score of candidate ai, and threshold is a predefined 470

margin. From the filtered candidates, one is ran- 471

domly selected to continue the search process. 472
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Table 2: Number of problems resolved using ToT-Fully-
Traverse. The numerator represents the number of ex-
amples with at least one correct answer, and the denom-
inator indicates the total number of examples in the test
dataset. Results are shown for GPT-4o on the Struc-
turedOR, NL4OPT (Ramamonjison et al., 2022), and
ComplexLP (Huang et al., 2024) datasets.

Dataset Number of Problems Resolved
StructuredOR 30/38
NL4OPT 143/289
ComplexLP 72/211

5 EXPERIMENT473

5.1 Baseline474

Given the varying performance levels of policy475

models across different scales, our objective is to476

maximize the accuracy of correct results by fully477

exploring every leaf node in the ToT structure, with-478

out requiring fine-tuning of the policy model. Be-479

cause this approach ensures greater stability and480

a larger pool of experimental data for subsequent481

analyses. To achieve this, we design a set of base-482

line experiments on the StructuredOR, providing483

more reliable and consistent evaluations.484

We first evaluate the CoT (Wei et al., 2022)485

approach, including two variations: CoT-BMLD,486

where the modeling process is performed first and487

data is imported later, and CoT-SPVOC, which ad-488

heres to the sequence of set, parameter, variable,489

objective, and constraint in the modeling process.490

Next, since the ToT (Yao et al., 2023) framework491

lacks a mechanism to select a final answer from492

all leaf nodes, we introduce the following config-493

urations to address this limitation: ToT-randomly-494

chosen, where the final result is randomly selected495

from the leaf nodes; ToT-rethink, where all leaf496

nodes are provided to the LLM for reevaluation497

to produce a revised result; and ToT-fully-traverse,498

where every leaf node is thoroughly evaluated to499

ensure that at least one correct result can be gen-500

erated. The detailed tree structure is shown in the501

Fig. 2. Additionally, we include SC (Wang et al.,502

2023) as a baseline, which aims to obtain consistent503

results by sampling multiple reasoning paths.504

The evaluated policy models include GPT-505

4o (Achiam et al., 2023), GPT-4o-mini (Achiam506

et al., 2023), Llama-3-70B (Dubey et al., 2024),507

Llama-3.1-70B (Dubey et al., 2024), Llama-3.2-508

11B (Dubey et al., 2024), Qwen-2-72B (Yang509

et al., 2024a), Qwen-2.5-72B (Team, 2024), Qwen-510

2.5-Math-72B (Yang et al., 2024b), and Mixtral-511

Table 3: Performance metrics of the PRM on the PRM
test dataset (Section 3.3).

Metric Accuracy Precision Recall F1-Score
Value 0.9823 0.9772 0.9868 0.9820

Table 4: Performance metrics of the Preference Model
on the Preference Model test dataset (Section 4.2)

Metric Accuracy Precision Recall F1-Score
Value 0.7560 0.7761 0.7196 0.7468

7×8B (Jiang et al., 2024). Table 1 shows the perfor- 512

mance of baseline methods across these models in 513

StructuredOR dataset. The results highlight signifi- 514

cant variations in performance, demonstrating how 515

model size and architecture impact their effective- 516

ness in solving problems within the StructuredOR 517

dataset. 518

To ensure stable performance in subsequent 519

search algorithm experiments across different 520

datasets, we select GPT-4o as the policy model. We 521

first evaluate its ability to solve questions by finding 522

at least one correct answer within the ToT fully- 523

traverse framework on the test datasets from Struc- 524

turedOR, MAMO-ComplexLP (Huang et al., 525

2024), and NL4OPT (Ramamonjison et al., 2022). 526

Table 2 presents the results of this evaluation. For 527

subsequent tree search algorithm experiments, only 528

successful cases—where the policy model identi- 529

fies at least one valid result—are considered. This 530

ensures that the policy model can generate solu- 531

tions for these questions within the ToT framework. 532

5.2 Evaluation of BPP-Search 533

We evaluate our methods on the solvable prob- 534

lems identified in the datasets, as described in Sec- 535

tion 5.1. Table 5 presents a comparison between 536

our methods and baseline approaches, focusing 537

on correct rate and reasoning steps. The results 538

show that, under the condition where none of the 539

methods fine-tune the policy model, our methods 540

achieve superior performance with fewer reasoning 541

steps, significantly outperforming baselines. 542

These experiments validate the feasibility of 543

utilizing PRM to assist inference within the tree- 544

of-thought structure. BPP-Search effectively ad- 545

dresses the limitations of traditional ToT methods, 546

which struggle to reliably select a final result. As 547

shown in Table 5, Greedy Search, Beam Search, 548

and BPP-Search generate better results in signifi- 549

cantly fewer steps, exponentially reducing compu- 550

tational costs. 551
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Table 5: Accuracy and reasoning steps for our methods and baselines with a fixed policy model (GPT-4o) on the
StructuredOR, Mamo-ComplexLP (Huang et al., 2024), and NL4OPT (Ramamonjison et al., 2022) test datasets.
The results are based on 30 problems from StructuredOR, 72 from Mamo-ComplexLP, and 143 from NL4OPT that
are confirmed solvable by the policy model in prior experiments.

Method StructuredOR Mamo-ComplexLP NL4OPT
Correct Rate Steps Correct Rate Steps Correct Rate Steps

CoT (Wei et al., 2022) 0.633 1 0.486 1 0.566 1
SC (Wang et al., 2023) 0.700 4 0.625 4 0.713 4
ToT-Randomly-Chosen (Yao et al., 2023) 0.700 39 0.444 39 0.629 39
ToT-Rethink (Yao et al., 2023) 0.766 40 0.583 40 0.622 40
Greedy Search Variant (Our Method) 0.833 9 0.555 9 0.713 9
Beam Search Variant (Our Method) 0.800 15 0.666 21 0.783 15
BPP-Search Variant (Our Method) 0.933 15 0.722 21 0.804 15

Table 6: Accuracy and reasoning steps for ablation study of our methods with a fixed policy model (GPT-4o) on the
StructuredOR, Mamo-ComplexLP (Huang et al., 2024), and NL4OPT (Ramamonjison et al., 2022) test datasets.
The results are based on the same 30 problems from StructuredOR, 72 from Mamo-ComplexLP, and 143 from
NL4OPT, confirmed solvable by the policy model in prior experiments.

Method StructuredOR Correct Rate Mamo-ComplexLP Correct Rate NL4OPT Correct Rate Reasoning Step
Greedy Search + PRM 0.733 0.555 0.699 9
Random Greedy Search + PRM 0.833 0.513 0.692 9
Epsilon Greedy Search + PRM 0.733 0.500 0.713 9
Beam Search (Width=2) + PRM 0.800 0.652 0.783 15
Beam Search (Width=3) + PRM 0.766 0.666 0.755 21
BPP-Search (Width=2) 0.933 0.652 0.804 15
BPP-Search (Width=3) 0.866 0.722 0.797 21

5.3 Ablation Study552

Table 6 presents the performance of our methods553

under different configurations. It is evident that554

the PRM struggles to assign precise scores for re-555

gression tasks. For instance, as the beam search556

width increases, the accuracy tends to decrease,557

and in some cases, the performance of beam search558

becomes comparable to that of greedy search. Man-559

ual analysis of the beam search results in the final560

layer reveals that the candidate queue sometimes561

contains both correct and incorrect answers that are562

highly similar in structure, with only subtle differ-563

ences. This similarity leads to comparable scores,564

making it challenging for the PRM to reliably dis-565

tinguish between them.566

To address this limitation, we introduce BPP-567

Search, which incorporates a pairwise preference568

algorithm. Instead of scoring candidates individu-569

ally, BPP-Search evaluates all pairwise combina-570

tions of candidates within the final queue, compar-571

ing each pair and averaging the pairwise preference572

scores for each candidate. This approach ensures a573

more robust evaluation by reducing the bias inher-574

ent in relying solely on individual scores. The ex-575

perimental results in Table 6 demonstrate that this576

method effectively mitigates the risks associated577

with the imprecise scoring of the PRM, resulting578

in improved accuracy and robustness. Additionally,579

based on the performance of PRM, our random580

greedy search algorithms can at least guarantee per- 581

formance comparable to standard greedy search, 582

and in some cases, achieve even better results. 583

6 Conclusion 584

In this work, we introduce a new operations re- 585

search dataset that integrates natural language ques- 586

tions with their corresponding detailed modeling 587

processes, addressing the limitations of existing 588

open-source datasets that lack comprehensive anno- 589

tations of the modeling process. We further propose 590

BPP-Search, an advanced algorithm that combines 591

Beam Search, PRM, and a Pairwise Preference 592

mechanism to enhance the ToT framework. BPP- 593

Search effectively accelerates the reasoning pro- 594

cess, improves accuracy, and alleviates the scoring 595

imprecision of PRM, thereby ensuring robust and 596

reliable decision-making. Comprehensive experi- 597

ments conducted on StructuredOR, NL4OPT, and 598

MAMO-ComplexLP datasets highlight the superi- 599

ority of BPP-Search. Compared to state-of-the-art 600

approaches, such as CoT, SC, and PRM integrated 601

with Greedy or Beam Search, BPP-Search con- 602

sistently achieves higher accuracy while requiring 603

fewer reasoning steps, demonstrating its efficacy in 604

addressing complex reasoning tasks in operations 605

research. 606

8



7 Limitations607

7.1 Trade-offs in ToT Structure: Performance608

and Computational Cost609

In the ToT framework, both increasing tree width610

and deepening the tree can enhance performance.611

A wider tree, achieved by increasing the number612

of child nodes at each layer, provides more explo-613

ration paths, thereby improving the likelihood of614

finding optimal solutions. Similarly, greater depth,615

achieved by dividing tasks into finer-grained nodes616

(e.g., separating "set" and "parameter" into distinct617

layers), not only facilitates more structured and618

detailed reasoning but also offers additional explo-619

ration paths, further increasing the likelihood of620

identifying optimal solutions.621

However, both approaches entail significant com-622

putational costs. For example, a tree with a height623

of 4 and a branching factor of 3 requires 39 LLM624

queries, whereas increasing the branching factor to625

4 raises this to 84 LLM queries, thereby exacerbat-626

ing computational demands, particularly for long627

prompts (e.g., 4000 tokens). This creates a trade-628

off between computational cost and performance.629

In our study, due to limitations in computational630

resources, we were unable to construct a tree that631

is both sufficiently deep and wide to fully explore632

the solution space.633
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A Appendix 809

A.1 Modeling Data Format Specification 810

Tables 7, 8, 9, 10, 11, 12, 13, 14, 15 define the stan- 811

dardized data format for representing mathematical 812

models. This convention provides a structured and 813

consistent way to label and organize modeling data, 814

ensuring clarity and usability across different tasks 815

and datasets. 816

A.2 Operation Research Dataset Comparison 817

The StructuredOR dataset, as illustrated in Fig- 818

ure 5, provides not only the objective value but 819

also the complete modeling process, offering a 820

structured and transparent view of optimization 821

problems. In contrast, as shown in Figure 6, the 822

Mamo-ComplexLP (Huang et al., 2024) and Indus- 823

tryOR (Tang et al., 2024b) datasets include only the 824

objective value as the label, without detailing the 825

modeling process. This limitation makes it difficult 826

to verify the correctness of the data and prevents the 827

application of reinforcement learning to intermedi- 828

ate steps. Similarly, the NL4OPT (Ramamonjison 829

et al., 2022) dataset lacks both a structured mod- 830

eling process and clear objective values, further 831

complicating the interpretation and validation of 832

results. 833

A.3 An Example to Illustrate Reasoning in 834

Mathematical Modeling 835

Figure 7 illustrates the reasoning steps in the X- 836

of-Thought (XoT) framework under the modeling 837

structure defined in Appendix A.1. The process 838

follows a structured sequence, starting with the 839

question (Q), then progressing through sets (S), 840

parameters (P ), variables (V ), objectives (O), and 841

constraints (C). Each step builds upon the pre- 842

vious one, progressively transforming the natural 843

language question into a fully defined mathematical 844

model. 845

A.4 PRM Training Data Collection 846

To augment positive data for Process Reward 847

Model training, we adopt the following four strate- 848

gies: 849

1. Utilizing ground truth: Segment the ground 850

truth data into accumulative chunks corre- 851

sponding to different layers of the reasoning 852

process. This ensures that the hierarchical 853

structure of the data is preserved. 854
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Name Type Required Description
set list No Collection definitions needed for abstract modeling
parameter list No Constants needed for abstract modeling
variable list Yes Variables required for modeling
objective list Yes Objective function definition required for modeling
constraint list No Constraints needed for modeling

Table 7: Summary of components for abstract modeling

Name Type Description
name str Collection name, must meet programming naming conventions,

no spaces allowed
description str Description of the collection
data list Use a list starting from 1 and ending at the size of the set to

represent the number of elements in the set.

Table 8: Details of the Set Component

Name Type Description
name str Parameter name, must meet programming naming conventions, no

spaces allowed
description str Parameter description
domain str The index dimension of the parameter, e.g., “a <in>Aircraft”. If

this parameter is a constant, the domain is an empty string. If
this parameter is multi-dimensional, please list the corresponding
index.

data list Use a list or a number depending on whether the domain is an
empty string. If the domain is an empty string, the data is a number.
Otherwise, it is a list that can be either one-dimensional or multi-
dimensional, representing the values of each parameter across
different sets. There is a one-to-one correspondence between the
dimensions of data and the domain.

Table 9: Details of the Parameter Component

Name Type Description
name str Variable name, must meet programming naming conventions, no

spaces allowed
description str Variable description
domain str Index dimension of the variable, e.g., “a <in>Aircraft"
type str Variable type: CONTINUOUS, INTEGER, BINARY. Default is

CONTINUOUS. Case insensitive

Table 10: Details of the Variable Component

2. Leveraging LLM-generated data: Identify855

correctly generated data from LLMs operating856

under ToT, CoT, and SC frameworks, and ap-857

ply the same segmentation operations used for858

correct generated data. This approach expands859

the dataset with additional examples while860

ensuring consistency and alignment with the 861

hierarchical structure. 862

3. Swapping indices in summation con- 863

straints: Exchange indices within summation 864

functions in constraints derived from ground 865

truth data. This operation does not alter the fi- 866

12



Name Type Description
name str Objective function name, must meet programming naming con-

ventions, no spaces allowed
description str Objective function description
sense str Optimization direction of the objective function: min, max, mini-

mize, maximize
function str Formula of the objective function, details below

Table 11: Details of the Objective Component

Name Type Description
name str Constraint name, must meet programming naming conventions,

no spaces allowed
description str Constraint description
domain str Index dimension of the constraint. Without filter: “a <in>Aircraft".
function str Formula of the constraint, details below

Table 12: Details of the Constraint Component

Type Expression Description
Formula with
sum symbol

∑
i∈I xi {i ∈ I} is the summation dimension

Table 13: Details of Formula Expressions

Type Expression Description
Sum dimension
with subscript
parameter

∑
i∈Successorsk Does not support Successorsk forms

Nested parenthe-
ses in index di-
mension

{i ∈ P{k ∈ A{l ∈
A}} ∈ NOEi}

Nested parentheses in index dimension are not sup-
ported

Subscript re-
striction

xi,j where i, j cannot be a
number

Numeric subscripts like xi,1, x1,j are not supported

Table 14: Unsupported Formulas and Their Limitations

Type Expression Description
Continuous ex-
pression

a < b < c Continuous expressions are supported.

Expression sep-
arated by com-
mas

x+ y < 0, y + z < 1 Must be separated by English commas; will be split
into two constraints.

Two consecutive
sums

∑
i∈I
∑

j∈J xij Will be merged into:
∑

i∈I,j∈J xij .

Missing * mul-
tiplication sym-
bol

∑
i∈I(aixi + biyi) Multiplication symbol will be automatically filled.

Table 15: Supported Special Formulas

nal result, thereby introducing diversity while867

preserving correctness.868

4. Modifying inequalities: Swap the left-hand 869

and right-hand sides of inequalities derived 870

13



from ground truth data, and adjust the in-871

equality signs accordingly (e.g., ‘>=‘ becomes872

‘<=‘). This operation creates valid variations873

of the data while maintaining correctness.874

To augment incorrect data for Process Reward875

Model training, we apply the following strategies:876

1. Mismatch instance data: Replace the correct877

instance data with mismatched values. For878

example:879

• Modify the value of a parameter so that880

it no longer corresponds to the data of881

the set.882

• Delete or add random data to a ‘set‘.883

• Delete a column from a random dimen-884

sion of a parameter.885

• Reshuffle the data of a random parame-886

ter.887

2. Incorrect format: Generate data using LLMs888

based on the training dataset, then select exam-889

ples that cannot be used for modeling due to890

structural inconsistencies or formatting issues.891

3. Constraint modifications: Introduce errors892

in constraints or objectives by:893

• Changing a greater-than sign into a less-894

than sign.895

• Swapping the indices within a constraint.896

• Altering the summation domain of a con-897

straint.898

• Randomly deleting a constraint.899

• Modifying the function in either the con-900

straint or the objective.901

4. Objective reversals: Convert a minimization902

objective into its maximization counterpart, or903

vice versa.904

5. Generated incorrect models: Utilize LLM-905

generated data that is structurally valid and906

adheres to modeling conventions but produces907

incorrect results, where the objective value908

from the modeling solution deviates from the909

expected outcome. This approach ensures the910

data aligns with modeling principles while911

intentionally introducing errors in reasoning912

or optimization outcomes.913

A.5 PRM and Preference Model Prompt914

Figure 8 shows two functions illustrating how PRM915

and Preference Model construct prompts.916
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Figure 5: An example showcasing a concrete question and its structured modeling process as the label in the
StructuredOR dataset.

Figure 6: Comparison highlighting the limitations of the Mamo-ComplexLP and IndustryOR datasets.
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Figure 7: An example illustrating the reasoning process in mathematical modeling.
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def build_prm_training_data_template(question, label):
    convention = get_the_convention()

    template = f"""As an expert in mathematical modeling, you are provided with the 
conventions for generating instances from concrete problems. The conventions are as follows:

{convention}

Please review the following question:
{question}

And evaluate the following mathematical model (or part of it):
{label}
"""
    return template

def build_dpo_training_data_template(question, model1, model2):
    convention = get_the_convention()

    template = f"""As an expert in mathematical modeling, you are provided with conventions 
for generating instances from concrete problems. The conventions are as follows:

{convention}

Please review the following question:
Question: {question}

Evaluate the following two mathematical models:

Model 1 Answer:
{model1}

Model 2 Answer:
{model2}

Instructions:
If Model 1 is correct and Model 2 is incorrect, please consider this example as positive.
If Model 2 is correct and Model 1 is incorrect, please consider this example as negative.
"""
    return template

Figure 8: How PRM and the Preference Model construct prompts.

17


	INTRODUCTION
	RELATED WORK
	Mathematical Modeling Datasets
	Process Reward Model

	Dataset Generation
	Preliminary
	StructuredOR Dataset Framework
	PRM Dataset Preparation

	Methodology
	Training PRM
	BPP-Search
	Random Greedy Algorithm

	EXPERIMENT
	Baseline
	Evaluation of BPP-Search
	Ablation Study

	Conclusion
	Limitations
	Trade-offs in ToT Structure: Performance and Computational Cost

	Appendix
	Modeling Data Format Specification
	Operation Research Dataset Comparison
	An Example to Illustrate Reasoning in Mathematical Modeling
	PRM Training Data Collection
	PRM and Preference Model Prompt


