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Abstract

Large pre-trained language models (PLMs) en-
able in-context learning (ICL) by condition-
ing on a few labeled training examples as a
text-based prompt, eliminating the need for
parameter updates and achieving competitive
performance. In this paper, we demonstrate
that factual knowledge is imperative for the per-
formance of ICL in three core facets, i.e., the in-
herent knowledge learned in PLMs, the factual
knowledge derived from the selected in-context
examples, and the knowledge biases in PLMs
for output generation. To unleash the power of
large PLMs in few-shot scenarios, we introduce
a novel Knowledgeable In-Context Tuning
(KICT) framework to further improve the ICL’s
performance: 1) injecting knowledge to PLMs
during continual self-supervised pre-training,
2) judiciously selecting the examples with high
knowledge relevance, and 3) calibrating the
prediction results based on prior knowledge.
We evaluate the proposed approaches on auto-
regressive models (e.g., GPT-style PLMs) over
multiple text classification and question answer-
ing tasks. Experiments results demonstrate that
KICT substantially outperforms strong base-
lines, and improves by more than 13% and 7%
on text classification and question answering
tasks, respectively. !

1 Introduction

Pre-trained language models (PLMs) have become
the imperative infrastructure in the natural language
processing (NLP) community (Devlin et al., 2019;
Liu et al., 2019; Yang et al., 2019). To enable
large PLMs to perform well without any parameter
updates, in-context learning (ICL) has become one
of the flourishing research topics in many few-shot
NLP tasks, which aims at generating the prediction
of the target example by conditioning on a few
labeled samples (Brown et al., 2020). As shown
in Figure 1, the key component of ICL is the text-
based prompt that serves as the demonstration.

'All codes and datasets will be released upon acceptance.

In-Context Examples as Demonstration
Input: It 's a symptom . \n Output: Negative \n\n
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Figure 1: An example of in-context learning (ICL).

Previous works have explored multiple aspects
that affect the performance of ICL (Dong et al.,
2023), such as input-output mapping (Min et al.,
2022b; Kim et al.,, 2022), extensive data re-
sources (Mishra et al., 2022; Chen et al., 2022b;
Min et al., 2022a), and prediction calibration (Zhao
etal., 2021). Liu et al. (2022); Lu et al. (2022) have
explored some others, such as the prompt format
(e.g., “Input:”, “Output:”), the selection of labeled
data, and example permutation. However, these
works ignore the influence of factual knowledge in
ICL, which is one of the non-negligible factors in
the era of NLP (Hu et al., 2022).

To this end, we explore the effectiveness of ICL
from the perspective of factual knowledge. As seen
in Figure 2, when randomly replacing or removing
entities and labels from text-based prompts, the av-
erage accuracy decreases significantly. The destruc-
tion performance is also universal across model
scales. In further analysis, we discover that: 1)
more intrinsic factual knowledge learned in the pre-
training stage is typically beneficial to the PLMs
to improve its effectiveness. 2) The factual knowl-
edge (e.g., entities and labels) derived from selected
in-context examples is key to the performance of
ICL. 3) The PLMs tend to generate common words
which may have high frequencies in the training
corpora, resulting in biased prediction.

After analyzing these knowledge facets, a nat-
ural question arises: how to fully employ factual
knowledge to further improve the performance of
ICL? To reach this goal, we focus on casual auto-
regressive PLMs (e.g., GPT-2 (Radford et al., 2019)
and OPT (Zhang et al., 2022a)) and present a novel



Text Classification

Question Answering

No Demonstration EEm Origin
mmm Shuffle Label
EEE Remove Label

Shuffle Entity
60 1 Remove Entity
= Shuffle Non-Entity

w
(%]

Accuracy (%)
N
wv o

e
o

35-

0.1B 0.3B 0.8B 1.5B 2.7B 6.7B

55

No Demonstration Emm Origin
mmm Shuffle Label

EmE Remove Label

50 Shuffle Entity
Remove Entity
= Shuffle Non-Entity

;\?45’

340’

I

5 35

3

< 30
251

20+

0.1B 0.3B 0.8B 1.5B 2.7B 6.7B

Figure 2: Results of different scales of GPT-2 and OPT models over 8 text classification tasks and 4 question
answering tasks when using different component destruction settings. Each target example has K = 8 labeled
samples as the demonstration. Results indicate that factual knowledge is crucial to ICL’s performance.

Knowledgeable In-Context Tuning (KICT) frame-
work, which involves the knowledgeable guidance
in pre-training, prompting, and prediction of these
models. Specifically, to endow the PLMs with
text generation abilities by better probing inher-
ent knowledge, we introduce several knowledge-
able self-supervised tasks to inject knowledge into
PLMs during the pre-training stage. For text-based
prompting, we propose a knowledgeable example
retrieval algorithm to judiciously select in-context
examples which have relevant knowledge with the
target example. Finally, during prediction, we uti-
lize the knowledge-wise prior of label words from
a underlying Knowledge Base (KB) to calibrate the
prediction distributions derived from PLMs. Each
of the proposed techniques is plug-and-play and
can be freely combined together, facilitating the
users to exploit knowledge for improving ICL.

To evaluate the effectiveness of the KICT frame-
work, we employ auto-regressive PLMs (e.g., GPT-
style models) to conduct extensive experiments
over multiple classification and question answer-
ing tasks. Results demonstrate that each proposed
procedure achieves substantial improvements.

2 The Impact of Knowledge on
In-Context Learning

In this section, we aim at investigating whether
factual knowledge affects the performance of ICL.

Preliminary experimental settings. We follow
Min et al. (2022b) and Kim et al. (2022) to per-
form empirical experiments by component de-
struction. Specifically, given one target example
text X', we randomly select K training sam-
ples D = {(X!I™,y!"™)} X | to form a text-based
prompt. We identify all entities in the prompt, and
then design some destruction settings as follows. 1)
Shuffle Entity means to randomly replace
all entities with others in the KB. 2) Shuffle

Non-Ent ity denotes replacing some non-entity
words (e.g., “It”, “have”) with others in the PLM
vocabulary. 3) Shuffle Label represents re-
placing all the golden labels with wrong labels.
4) Remove Entity and Remove Label aim
to remove all entities and labels from the prompt,
respectively. 5) No Demonstration is a typ-
ical zero-shot method that does not use any la-
beled data (Min et al., 2022b). We choose different
scales of GPT-2 (0.1B-1.5B) and OPT (Zhang et al.,
2022a) (2.7B-6.7B) to evaluate 8 text classification
tasks and 4 question answering tasks. > In de-
fault, we randomly sample K = 8 labeled samples
for each task and run experiments with 5 differ-
ent random seeds. More details can be found in
Appendix A. The findings are summarized below.

The inherent knowledge in the PLM itself is ben-
eficial to the performance of downstream tasks.
As in Figure 2, models can obtain remarkable few-
shot performance when increasing the scale size.
We hypothesize that this is because larger mod-
els can learn more valuable semantics in the pre-
training corpus. To validate this assumption, we
do not use any text-based prompts to perform zero-
shot inference (i.e., No Demonstration). In
other words, only the intrinsic knowledge learned
during pre-training can provide the model guid-
ance on the prediction. We can see that the perfor-
mance gap between 6.7B and 0.1B is about 20%
on both text classification and question answering
tasks. This suggests that the inherent knowledge
learned during pre-training is imperative (Yang
et al., 2021).

The factual knowledge in selected in-context ex-
amples is key to ICL. As shown in Figure 2,
the original setting (Origin) outperforms others

*We do not use larger GPT-style models (e.g., GPT-
3 (Brown et al., 2020)) due to resource constraints. Yet, our
findings are generally consistent across different model scales.
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Figure 3: 4-shot results of GPT-2 (urge) over AGNews
and TREC. For each frequency region, we sample top-5
label words for each category and report the accuracy
for all label mapping permutations.

in each model scale. We find that changing the
non-entities does not significantly reduce the per-
formance, while replacing or removing the entities
will decrease the average accuracy a lot in both
text classification and question answering tasks.
This indicates that factual knowledge in text-based
prompts is the key factor for the PLM to under-
stand the task. Further, we also find the label is
also imperative for ICL, where similar findings are
presented in (Kim et al., 2022). Different from Min
et al. (2022b), we suggest that labels can also be
viewed as one of the knowledge that guides the
PLM to perceive semantics during model inference.

PLM:s tend to generate common label words due
to knowledge bias. To test whether the predic-
tion suffers from bias problems, we choose two
knowledge-intensive tasks (i.e., AGNews (Zhang
etal., 2015), and TREC (Voorhees and Tice, 2000)).
We first obtain top-5 predictions at the output posi-
tion for each training example  and calculate the
frequency statistics of each generated label word.
We then choose 4 labeled examples from the train-
ing set. For each category, we randomly select 2
label words from each frequency region and report
the average accuracy of all label mapping permu-
tations . Results in Figure 3 show that the perfor-
mance highly relies on the label word frequency,
which indicates that the frequency of factual knowl-
edge learned in PLMs is crucial to the prediction °.

3 The Proposed KICT Framework

The preliminary experiments demonstrate that fac-
tual knowledge has a substantial effect on ICL.
This suggests that we can fully exploit the knowl-

3The scale of the training set is larger than the testing set
so that the statistics can be more obvious.

“Take AGNews as an example, it has 4 classes and each has
2 label words, there are 2* = 16 label mapping permutations.

>Similar findings are also described in (Zhao et al., 2021).

edge to boost the performance in various of pro-
cesses in ICL, including pre-training, prompting,
and prediction. To reach this goal, we intro-
duce KICT, a novel Knowledgeable In-Context
Tuning framework to better exploit knowledge to
unleash the PLM power towards answer genera-
tion. In this framework, we introduce knowledge-
able pre-training (KPT) with three well-designed
self-supervised tasks to inject factual knowledge
into the PLMs. Then, we present a knowledgeable
example retrieval (KER) algorithm to judiciously
select knowledge-relevant in-context examples. At
last, a knowledgeable prediction calibration tech-
nique (KPC) is used to calibrate the prediction dis-
tribution via prior information derived from KB.
The framework overview is shown in Figure 4.

3.1 Knowledgeable Pre-Training

This part describes three knowledge-aware self-
supervised learning tasks to inject factual knowl-
edge into the PLM, i.e., Masked Entity Predic-
tion, Entity Description Generation, and Knowl-
edge Question Answering. Different from Chen
et al. (2022a), we aim at leveraging an external
KB to enrich the language generation abilities w.r.t.
important entities. Hence, the input is a training
corpus {X} andaKB G = (£,R, T), where £ is
a set of entities, R is a set of relations, and T is a
set of triples expressing factual knowledge.

Masked Entity Prediction (MEP). This task
requires the model to predict the missing enti-
ties in the text to learn explicit knowledge, which
is similar to the Masked Language Modeling in
BERT-style PLMs (Devlin et al., 2019; Liu et al.,
2019). Concretely, given one piece of text to-
kens X = {z;}, we recognize all entities Fx =
{ele € G,e € X} via entity linking toolkit, where
e = {xj|x; € X} is an entity with multiple tokens.
For each entity e, 50% of the time is replaced with
special tokens (e.g., “_""), while another 50% of the
time is replaced with random tokens . Thus, we can
obtain a training example X = {#;}. We generate
a label mask vector M ¢ to represent what position
is used for training®, and My = I(#; € Ex),
where [(+) is the indicator function.

Entity Description Generation (EDG). This
task aims to generate a text description step by
step based on the given entities. Specifically, given
one text X and a corresponding entities set E'x, we

%The word in red in Figure 4 (left).
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Figure 4: The overview of KICT framework. We introduce multiple plug-and-play knowledgeable techniques for
better exploiting knowledge to improve ICL’s performance. Left: We present three knowledge-aware self-supervised
learning tasks to inject factual knowledge into PLM during pre-training. Medium: We incorporate the knowledge
entities to select in-context examples which have high knowledge relevance with the target example. Right: For
prediction, we obtain the prior information derived from large-scale corpora for calibrating the prediction.

construct a prefix text which is a linearized string
formed by the template “Entities:”, all entities in
Ex and the template “Text:”. The suffix text is
the original text X. Likewise, we can generate a
training example X and a label mask vector M %
and M %= 1 when Z; is in the suffix string.

Knowledge Question Answering (KQA). To
fully use off-the-shelf triples in KB, we also con-
sider a knowledge-aware question answering task
which aims to generate the entity based on a ques-
tion. Specifically, given one text X and a corre-
sponding entities set F'y, we can obtain two enti-
ties ey, e; € E'x which have 1-hop relation r € R
and form a triple (e, r,e;) € T, where e, and
e; are the head entity and tail entity, respectively.
Inspired by Wang et al. (2022), we design a tem-
plate for each triple and convert it to a question to
ask the model to predict the tail entity, and obtain
the training example X and the label mask vector.
We denote M = 1 when Z; is the token of the
selected tail entlty

During the pre-training process, we randomly se-
lect multiple examples from the same task to form
a training instance X = {X} until reaching the
maximum sequence length (i.e., 2048). We calcu-
late the cross-entropy loss at the output position
(where M ¢ = 1). Formally, we have:

Ing(yz|X<z) (1)

Xex Tx #eX

where y; is the ground truth. p(-) denotes the pre-
diction probability. Ty = >, ¢ My is the

number of positions that model needs to calculate
the loss.

3.2 Knowledgeable Example Retrieval

Although we have obtained a powerful and knowl-
edgeable PLM, the performance of ICL highly de-
pends on the selection and order of labeled exam-
ples (Brown et al., 2020). Previous works (Liu
et al., 2022; Lu et al., 2022; Rubin et al., 2022)
have investigated that the PLM itself can gener-
ate suitable text-based prompts. However, they
pay little attention to the tangible value of factual
knowledge in KB.

We introduce a novel knowledgeable example re-
trieval (KER) algorithm to incorporate knowledge
to select in-context examples. The process is visu-
alized in Figure 4 (medium), and the algorithm is
shown in Algorithm 1 in Appendix C. Specifically,
given a training set Dy, = {(X!™, yl™, EI™)}
and a target set Dyg = {(X] X't tgt)} (i.e., test-
ing set), where X! and X;gt denote the input
texts, y/"" denotes the label of the training example,
and EI"" and E;gt are the corresponding entities
set. Recall that the knowledge in the text-based
prompts is key to ICL. The task of KER aims to
choose a set of training examples that have high
knowledge relevance to the target set. Hence, a
simple way is to retrieve the examples in which
the entities can cover more target examples. We

utilize Jaccard similarity to calculate the similarity
| Etrn e Et9t|
Yet, the Jaccard similarities of most example pairs

between two examples by djq.(i, j) =



are zeros, so we further leverage the pre-trained
knowledge embeddings to retrieve the training ex-
amples which are more similar to the target set in
the semantic space. Formally, we obtain the av-
eraged representations e; and e; of all entities in
E!"™ and E;igt, respectively. The Euclidean dis-
tance dgem (7, j) between e; and e; can be used
to represent the difference in the semantic space.
Thus, the final knowledge relevance between two
examples can be calculated as:

djac(i> ]) + Y
max xtrnep,,,, djac(i, k) +

dsem(iﬂ j) )
maXernGDtm dsem (Z, k) ’

dX{ X)) = a

+(1—a)(l-

2)
where 0 < o < 1 and v > 0 are hyper-parameters.
For each X!"™, the sampling weight is:

Xtrn)
S/(Xfrn> — S( 7 , 3
S xmepy, s

where s(X}™™) can be computed as:

1
s(Xfmy =
( 7 ) ’Dtgt‘ 2
X]- €Dyt

a(X{m, X,

“

Intuitively, the training example with high weight
means that it has high knowledge relevance with
all target examples. Ultimately, we can sample K
training examples based on these weights.

3.3 Knowledgeable Prediction Calibration

After model pre-training and in-context example
selection, we can directly generate the output for
the target example X'9* € Dy by:

§ = argmaxp(y =v[D, X'"), ()
ve

where V is the verbalizer to map the label words to
the corresponding class ’. D is the set of in-context
examples. However, we find that the frequency of
label words (in the classification task) or entities
(in the question answering task) may induce bias
in the prediction probability (recall to Section 2).
To remedy this dilemma, we aim to leverage the
prior information of the label words to calibrate
the prediction of each target example. Specifically,
we obtain a subset of training corpora S from the
KQA task and calculate the contextualized prior of

"For classification, V denotes the label words set. For
question answering, V denotes the whole vocabulary set.

each candidate label word or entity v € V at the
output position by:

1 .
P(U)%EZP(QZU’X% (6)
Xes

where X is the training example, and P(v) denotes
the approximated prior information of candidate v.
We remove the label word or entity v whose prior
probability is smaller than a threshold (Hu et al.,
2022). Thus, the output can be upgraded by the
calibrated prediction:

§ = argmaxp(y = v|D, X")/P(v). (7
ve

Remarks. Most recent works (Hu et al., 2022;
Zhao et al., 2021) focus on prediction calibration.
Different from them, we fully exploit prior knowl-
edge from the large-scale corpus to debias, instead
of only utilizing in-domain data or designing task-
agnostic content-free input (e.g., “N/A”).

4 Experiments

4.1 Implementation Settings and Baselines

For the pre-training corpus, we use Wikipedia
Dumps (2020/03/01)%, which consists of
25,933,196 sentences. Further, the KB we used
is WikiDataSM (Wang et al., 2021b), which
includes 3, 085, 345 entities and 822 relation types.
By default, we choose GPT-2 (large) with 0.8B
parameters as the backbone . For downstream
tasks, we consider 8 text classification tasks
and 4 question answering tasks. The details of
corpora and downstream benchmarks are shown
in Appendix B. The implementation details of
pre-training, prompting, and prediction can be
found in Appendix C.

We consider the following baselines: 1) In-
Context Learning (ICL) is the vanilla version
proposed by GPT-3. 2) Calibrate Before Use
(CBU) (Zhao et al., 2021) is a typical method
that aims to de-bias the prediction via content-free
prompts. 3) KATE (Liu et al., 2022) uses the CLS
embeddings of a RoBERTa-large model as sentence
representations, and retrieves the nearest K neigh-
bors for each target example as the final in-context
examples. 4) MetalCL (Min et al., 2022a) im-
proves ICL by meta-learning the objective of ICL
in cross-task settings. 5) SelfSup. (Chen et al.,
2022a) improves ICL by multiple self-supervised

$https://dumps.wikimedia.org/enwiki/
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. SST-2 MRPC MNLI QNLI RTE CB TREC  AGNews
Baselines Avg.
acc f1 acc acc acc acc acc acc
Full Data
Fine Tuning (RoBERTa-large) 95.00 91.40 89.80 93.30 80.90 90.50 97.40 94.70 91.63
Few-shot Labeled Data (8-shot)
ICL (Brown et al., 2020) 76.18+72 54.46+23 56.85+2.4 5293432 53.94+50 42.50+1.8 51.56x4.1 45.67+6.6 54.26
CBU (Zhao et al., 2021) 82.71+4.4 63.07+39 57.93+28 53.19+39 54.87+28 51.34x1.7 54.61+37 55.42+28 59.14
KATE (Liu et al., 2022) 81.33+3.8 58.04+3.9 59.40+24 53.57+35 53.17+27 454821 54.69+28 50.28+3.4 57.00
MetaICL! (Min et al., 2022a)  87.40+50 6291220 60.22434 55.18+1.9 57.06£28 49.20+25 56.09+1.8 55.80+24 60.48
SelfSup.t (Chen et al., 2022a)  87.94+30 62.33520 62.00+22 54.77+18 572726 45.80:25 55.59+25 57.44232 60.39
kictt 91.21£2.9 69.96:0.7 69.59:1.0 60.66:12 63.74:42 56.07+38 63.52:55 68.89+57 67.96
only w. KPTf 90.04+3.5 66.65£1.9 67.39+2.6 58.97+3.0 5826433 5543420 60.16£22 59.74+44 64.58
only w. KER 84.05+2.7 59.26+2.5 59.93+1.0 57.23+12 53.79+4.0 51.36+38 55.52+5.1 52.70+3.3 59.23
only w. KPC 85.52+39 64.77+07 63.13+1.2 57.69+24 55.94+12 54.07+28 56.92+27 57.24+55 6191

Table 1: The 8-shot performance (%) on GPT-2 (large) of different learning settings with standard deviations over
text classification benchmarks. Compared with other baselines, our framework achieves consistent improvement. '
denotes the method involves parameters update for ICL. “only w.” means we only use one technique in KICT.

learning tasks. We also choose RoOBERTa-large
to perform fully Fine-tuning to demonstrate the
ceiling performance of each task.

4.2 Main Results

Table 1 and Table 2 respectively report the re-
sults over text classification and question answering
tasks in the 8-shot setting. We thus make the fol-
lowing observations: 1) Our proposed framework
KICT outperforms strong baselines and achieves
substantial improvements over all benchmarks.
Specifically, compared with ICL, the averaged re-
sult over text classification task is improved by
13.70% , which is larger than other baselines. The
average gain over question answering tasks is also
more than 7%, despite that there is still room for
improvement on unseen target domains, likely be-
cause they require more challenging generaliza-
tion and commonsense ability. 2) Compared with
ICL, KER and KCP make great contributions to the
performance. Particularly, KER and KCP also re-
spectively outperform strong baselines KATE and
CBU, indicating the indispensable merit of factual
knowledge in the inference stage. 3) The perfor-
mance of KPT exceeds meta-learning (MetalCL)
and self-supervised learning (SelfSup.) approaches
by around 4%, which are also focused on continual
pre-training. This demonstrates that explicitly in-
jecting knowledge into PLM is more effective for
ICL, which is imperative and makes a dominant
role in ICL. 4) Our method attains more impressive
performance when combining all of these knowl-
edgeable techniques, highlighting the necessity of
factual knowledge in ICL. We provide a detailed
analysis in Section 4.3. 5) We also evaluate the

ComQA Quartz  SQuAD  Quoref

Baselines Avg.
acc acc em em

Full Data

Fine Tuning (RoBERTa-large) ~ 72.10 76.90 86.50 7870  78.55

Few Labeled Data (8-shot)

ICL (Brown et al., 2020) 27.93+48 54.49+35 46.93+3.0 40.31x27 4242

CBU (Zhao et al., 2021) 29.88+39 55.40+1.8 49.32+40 44.05:40 44.66

KATE (Liu et al., 2022) 29.02+4.0 55.10+3.9 47.25+34 42.77+38 43.54

MetalCLT (Min et al., 2022a)  31.16£32 55.64+29 50.46226 46.7227 46.00

Sc]fSup,i (Chen et al., 2022a)  31.32+3.0 54.88+3.0 49.97+2.7 47.50+35 45.92

CKICTT T 3617518 58.11%24 54.23:26 50.46:33 49.74

only w. KPT' 3421+43 57.32+22 52.79+30 49.93:1.9 48.56
only w. KER 29.56+23 55.82+1.2 48.11x24 43.58+2.1 44.27
only w. KCP 33.6043.7 57.77x24 51.63x29 46.09:3.1 47.27

Table 2: The 8-shot performance (%) on GPT-2 (large)
of different learning settings with standard deviations
over question answering benchmarks.

other scales for GPT-2 and OPT in 8-shot settings.
Results in Appendix F show that the improvements
are consistent in different PLMs.

4.3 Ablation Study

We further investigate how these proposed knowl-
edgeable techniques contribute to the final perfor-
mance with different combinations. As shown in
Table 3, results demonstrate that no matter what
combination, it greatly promotes the overall perfor-
mance of vanilla ICL. We also have an interesting
observation. KPT is more important for perfor-
mance improvement, and achieves higher scores
than KER and KCP, indicating that the best way of
unleashing the PLM power is to inject knowledge
into the model parameters. Nonetheless, the com-
bination of KER+KCP also respectively improves
ICL by about 8% for each task. This indicates that
KER and KCP are also critical to ICL because ultra-
large PLM can not be continuously pre-trained or
tuned in real-world scenarios to save compuational
resources. In addition, results from Table 1 to Ta-



SST-2 MRPC MNLI RTE

Baselines
acc fl acc acc

AGNews
acc acc acc acc em em

TREC ComQA Quartz SQuAD  Quoref

ICL 76.18+72 54.46+23 56.85:£24 53.9445.0
KPT+KER
KPT+KCP

91.043.3
90.65+3.7

67.93+3.0
68.44+2.5

68.47+2.9
68.89+3.4

61.30+3.3
62.38+2.3

45.67+6.6

51.56+4.1 27.93+48 54.49+35 46.93+3.0 40.31x2.7

62.18+3.9
63.88+3.5

61.52+3.1
62.12+2.9

35.17+4.0
36.38+2.2

57.64+2.6
58.03£2.0

52.23+3.4
54.17+1.8

50.20+3.1
50.18+2.2

KER+KCP 86.45+3.0 64.07+24 66.60+2.9 57.39+3.2

All (KICT) 91.21:29 69.59:1.0 63.74:4.2

58.95+3.6

58.60+3.5 34.26+22 57.88+3.1 52.20+23 47.92+2.7

68.89+5.7

63.52+55 36.17+1.8 58.11x2.4 54.23+2.6 50.46+3.1

Table 3: The 8-shot performance (%) of different combinations of the knowledgeable modules.

Methods SST-2 AGNews TREC ComQA SQuAD
ace ace ace acce em
None (ICL) ~ 76.18+72 45.6766 51.56x41 27.93x48 46.93:3.0
GPT-2 81.35:3.0 48.72:27 523633 28.61x38 47.1413.1
“KPT 90.04:3.5 59.74:44 60.16:20 34.21x43 52.79:3.0
w/o. MEP  84.40:40 51.29+39 54.72:31 33.01s77 5223328
w/o. EDG  87.19+29 56.40:43 55.91#3.1 31.95:59 50.80:3.9
w/o. KQA  85.30:33 53.03:36 53.46:24 30.08:58 49.71x46

Table 4: The 8-shot performance (%) of each self-
supervised task. GPT-2 denotes the vanilla objective.
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Figure 5: GPT-2 (large) sample effectiveness (%)
of KICT (only w. KER) with different values of K.

ble 3 show that our method has improved signif-
icantly on classification tasks. We think that the
benefits of injecting knowledge over simple lan-
guage understanding tasks are more obvious than
question answering.

4.4 Further Analysis

Effectiveness of KPT. To investigate what makes
a high performance for KPT, we test the effective-
ness of each knowledgeable self-supervised task.
For a fair comparison, we also choose two base-
lines: 1) None is that we do not use any self-
supervised task, which is the same as vanilla ICL
proposed in (Brown et al., 2020), 2) GPT-2 repre-
sents conventional autoregressive language mod-
eling (ALM) pre-training tasks. As shown in Ta-
ble 4, KPT can make substantial improvements for
ICL. Particularly, all the self-supervised learning
tasks in KPT are complementary for pre-training
and outperform the baseline with or without the
conventional objective of GPT-2. In addition, the

Figure 6: Visualizations of each AGNews’s training ex-
ample. KATE (left) uses CLS embeddings of RoOBERTa.
Ours (right) utilizes averaged knowledge embeddings.

MEP and KQA tasks are most critical for classifi-
cation and question answering, respectively, which
demonstrates that different pre-training objectives
possess different advantages in downstream tasks.

Sample Effectiveness. To investigate the influ-
ence of the number of in-context examples K, we
choose multiple classification and question answer-
ing tasks and vary K from O, 1, 4, 8 to 16. From
Figure 5, we find that increasing K generally helps
across both classification and question answering
tasks, demonstrating that more in-context exam-
ples may bring more knowledge to better guide the
PLM to make predictions. When K > 8, the per-
formance of the most tasks will decrease, because
the maximum length limit causes information loss.
The suitable value K is set around 8.

Visualization of Selected Examples in KER. In
addition, for explicitly seeing the performance in
semantic space, we obtain the t-SNE (Van der
Maaten and Hinton, 2008) visualization of each
training example over AGNews via averaged repre-
sentations of all corresponding entities. We choose
KATE as our strong baseline, which is also focused
on the example selection °. Figure 6 demonstrates
that our method can build better semantic represen-
tations toward factual knowledge.

Permutations of In-Context Examples. We also
compare different permutations of these selected

*We do not fine-tune RoBERTa on the training set.



Baselines SST-2 MRPC MNLI

Random 7942427  59.26x£2.5 59.93%1.0
Ascending 78.2942.2  58.05+2.6 59.31%1.5
Descending  79.61+3.0  58.16+£3.0 59.58+1.3

Table 5: The 8-shot averaged results (%) of KICT (only
w. KER) for different permutations.
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Figure 7: GPT-2 (large) 4-shot performance of calibra-
tion over difference word frequencies.

examples according to the sample weight computed
in Eq. 3. In Table 5, Random means to randomly
choose an order. Ascending and Descending re-
spectively denote that the example order is ascend-
ing or descending by the weight. From the results,
we find no tangible relationship between the sam-
pling weight and order.

Effectiveness of KPC. We finally conduct analy-
sis on prediction calibration. We choose AGNews
and TREC tasks and follow the same settings in
the preliminary experiments (we randomly choose
two label words from different frequency regions).
Results in Figure 7 demonstrate that calibrating the
prediction consistently achieve improvements than
the vanilla approach. In addition, we find that the
prediction results highly depend on the label fre-
quency, which is similar to Figure 3. However, our
KPC still outperforms the strong baseline Calibrate
Before Use (CBU) with arbitrary label frequency,
which only transforms the input into content-free
prompts. It underscores that the prior information
of each label word in KB is non-negligible. In
other words, calibration by the prior information
can alleviate the impact of label frequency.

5 Related Work

Pre-trained Language Models (PLMs). Large-
scale PLMs aim at learning semantic representa-
tions over unsupervised corpora and have made
tremendous progress in the NLP community. No-
table PLMs can be divided into three main types,
including encoder-only (Devlin et al., 2019; Liu

et al., 2019; He et al., 2021; Yang et al., 2019;
Lan et al., 2020), decoder-only (Radford et al.,
2018; Brown et al., 2020; Zhang et al., 2022a) and
encoder-decoder (Lewis et al., 2020; Raffel et al.,
2020). To inject factual knowledge into PLMs, a
branch of knowledge-enhanced PLMs (Zhang et al.,
2019; Sun et al., 2020a; Wang et al., 2021b,a, 2022;
Pan et al., 2022) have been proposed for PLMs to
capture rich semantic knowledge from KBs. Our
work focuses on decoder-only models (e.g., GPT-2)
and injects factual knowledge to further improve
the ICL’s performance.

Prompting for PLMs. Prompt-based learning
aims to add natural language prompts to guide the
PLM to solve downstream tasks. A series of works
focus on tunable discrete prompt-tuning (Gao et al.,
2021; Raffel et al., 2020) and continuous prompt-
tuning (Liu et al., 2021b; Gu et al., 2021). In
contrast, GPT-3 (Brown et al., 2020) enables in-
context learning (ICL) with a text-based prompt
in zero-shot scenarios that bypasses the parameter
update (Dong et al., 2023). To explore what facets
affect ICL, previous works focus on input-output
mapping (Min et al., 2022b; Kim et al., 2022), meta-
learning (Chen et al., 2022b; Min et al., 2022a),
prompt engineering (Liu et al., 2022, 2021a), pre-
diction calibrating (Zhao et al., 2021; Hu et al.,
2022), etc. Recently, Chain-of-Thought (CoT) is
presented to leverage reasoning and interpretable
information to guide the large PLM to generate reli-
able responses (Si et al., 2022; Zhang et al., 2022b;
Wei et al., 2022). Different from them, we fully
exploit factual knowledge to better improve ICL in
pre-training, prompting, and prediction.

6 Conclusion

In this paper, we explore and exploit factual knowl-
edge in ICL, such as inherent knowledge learned
in PLM, relevant knowledge derived from the se-
lected training examples, and knowledge biases
in prediction. We propose a novel knowledgeable
in-context tuning (KICT) framework to further im-
prove the ICL’s performance by fully exploiting
factual knowledge in the procedures of pre-training,
prompting, and prediction. Extensive experiments
illustrate that each technique substantially achieves
improvements and outperforms the strong baselines
over classification and question answering tasks. In
the future, we will 1) explore the reasoning and in-
terpretability of knowledge in ICL, and 2) extend
our works to encoder-decoder PLMs.



Limitations

We provide some limitations of our work. 1)
We only focus on decoder-only PLM because the
original in-context learning is mainly focused on
decoder-only generation, such as GPT-2, GPT-3,
OPT, etc. However, we think it can be extended to
the encoder-decoder model, which aims to use for
translation, and conditional generation. 2) Due to
the computation resources limitation, we ignore the
experiment settings for urge-large PLMs over 10B
parameters. 3) We focus on investigating factual
knowledge in three procedures, i.e., pre-training,
prompting, and prediction. However, we believe
that the knowledge may have other impact facets,
such as reasoning, interpretability, etc. We will
leave it as our future work.

Ethical Considerations

Our contribution in this work is fully methodolog-
ical, namely a knowledgeable in-context tuning
(KICT) to boost the performance of PLMs with
factual knowledge. However, transformer-based
models may have some negative impacts, such as
gender and social bias. Our work would unavoid-
ably suffer from these issues. We suggest that users
should carefully address potential risks when the
KICT models are deployed online.
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A Details of Preliminary Experiments

A.1 Details of Destruction Settings

We choose 8 classification tasks and 4 question an-
swering tasks for the preliminary experiments. The
details of these datasets are shown in Appendix B.

To investigate the impact of factual knowledge,
we assume that the entities (sometimes with labels)
in the example can represent the factual knowl-
edge (Wang et al., 2021b, 2022, 2021a; Sun et al.,
2019; Zhang et al., 2019). Thus, we recognize
all entities by the open-source entity linking tool
TagMe!? (Ferragina and Scaiella, 2010). For the
classification tasks, we also view the labels as spe-
cial entities.

We follow (Min et al., 2022b; Kim et al., 2022)
to design multiple destruction settings which aim

Ohttps://sobigdata.d4science.orqg/
group/tagme.
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to remove or replace all the entities (and the la-
bels) to show the impact of the factual knowledge.
Likewise, to make a fair comparison, we also ran-
domly choose some non-entity tokens (the number
of these tokens is the same as the number of en-
tity tokens). For each task, we randomly choose
K = 8 examples as the in-context examples and
concatenate them with each test example to form
an input sequence. The maximum sequence length
of each example is 256. We choose 5 different ran-
dom seeds (i.e., 12, 24, 42, 90, and 100). Hence,
each dataset has 5 different testing results for one
PLM. In other words, for each PLM, we can obtain
8 x b = 40 results for classification and 4 x 5 = 20
results for question answering. We thus report the
averaged results of each PLM in Figure 2. Through
the results, we find that factual knowledge is key
to the performance of ICL and is more important
than non-entity components.

A.2 Details of Frequency Settings

In the preliminary experiment, we investigate the
impact of label word frequency. Specifically, we
choose two classic tasks AGNews and TREC. We
first randomly choose K = 4 examples from the
training set to form the in-context prompt. Then,
we use the rest of the training examples as target ex-
amples to make predictions. We do not use the de-
velopment or testing sets because the scale of them
is too small to demonstrate the frequency obviously.
During the prediction, we obtain 4 generated words
which have top-4 highest prediction probabilities.
Thus, we can calculate the frequency statistics of
each generated word. Due to the space limitation,
we only show the top-8 label words statistics of
each category over AGNews in Figure 8.

To investigate the impact of the frequency, for
each frequency region (i.e., (0,200], (200,400],
(400, 600], > 600), we randomly choose two label
words for the prediction. For example, we can
choose “teams” and “groups” from the frequency
region > 600 for the label “sports” in the AGNews
task. Thus, we can respectively obtain 2 = 16
and 26 = 64 permutations for AGNews and TREC.
We choose GPT-2 (urge) with 1.5B parameters and
report the average results and show the box plots
in Figure 3.

A.3 Analysis of the Knowledge Relevance in
In-Context Examples

In the preliminary experiments, we find that the fac-
tual knowledge in the selected in-context examples
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is key to ICL. To further validate these findings, we
choose two datasets for further analysis, including
SST-2 and TREC.

Specifically, we use the proposed technique in
knowledgeable example retrieval (KER) to obtain
the knowledge relevance score for each training
example. Thus, for each score region (i.e., (0, 15],
(15, 30], (30,45], (45, 60], (60, 75]), we can sam-
ple K = 4 examples for the in-context prompt.
For each region, we can obtain the average perfor-
mance on 4 X 3 X 2 x 1 = 24 orders. We draw
the box plot in Figure 9. Results show that the se-
lected examples with higher knowledge relevance
make consistent contributions to ICL, indicating
that the factual knowledge in the selected examples
is critical to ICL.

B Details of the Corpus and Downstream
Benchmarks

B.1 Corpora and Knowledge Base

We propose knowledgeable pre-training (KPT),
which is similar to the current flourishing research
of knowledge-enhanced pre-trained language mod-
els (KEPLMs) (Liu et al., 2020; Sun et al., 2019,
2020b; Wang et al., 2022). Different from them,
we focus on auto-regressive PLMs, such as GPT-
2. We collect training corpora from Wikipedia
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(2020/03/01)!!, and use WikiExtractor'? to process
the pre-training data. The knowledge base (KB)
G we choose is WikiData5SM (Wang et al., 2021b),
which is an urge-large structural data source based
on Wikipedia. The entity linking toolkit we used
is TagMe. In total, we have 3,085,345 entities and
822 relation types in G, and 25,933,196 training
sentences.

As mentioned above, KPT consists of three self-
training tasks, i.e., masked entity prediction, entity
description generation, and knowledge question
answering. For each task, we randomly select mul-
tiple sentences to form a training instance until
reaching the maximum sequence length (i.e., 2048).
Finally, we have sampled 100k training instances
for each task. In average, we have 8 examples for
each instance.

B.2 Downstream Task Datasets

To evaluate the effectiveness of our framework, we
choose 8 text classification tasks and 4 question
answering tasks. For the text classification, we di-
rectly choose 8 tasks from (Gao et al., 2021; Zhao
et al., 2021). All the classification tasks involve
sentiment analysis, natural language inference
(NLI), question classification, and topic classifica-
tion. For the question answering tasks, we choose
four widely used tasks, including CommonsenseQa
(ComQA) (Talmor et al., 2019), Quartz (Tafjord
et al., 2019), SQuAD (Rajpurkar et al., 2018) and
Quoref (Dasigi et al., 2019), where ComQA and
Quartz are multi-choice QA, SQuAD and Quoref
are extractive QA. The statistics of each dataset are
shown in Table 6.

C Implementation Details

C.1 Pre-training Details

In the pre-training stage, we choose different scales
of GPT-2 (0.1B, 0.3B, 0.8B, 1.5B) (Brown et al.,
2020) and OPT (Zhang et al., 2022a) (2.7B, 6.7B)
from HuggingFace'? as the underlying PLMs. We
do not use larger GPT-3 models because of the
computation resource limitations. Because all three
kinds of pre-training tasks share the same format,
we can directly mix up all the pre-training examples
to form a cross-task pre-training paradigm. We

"nttps://dumps.wikimedia.org/enwiki/.

Pnttps://github.com/attardi/
wikiextractor.

Bhttps://huggingface.co/transformers/
index.html.
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Category Dataset  #Class #Train  #Test Type Labels (classification tasks)
SST-2 2 6,920 872 sentiment positive, negative
MRPC 2 3,668 408 paraphrase equivalent, not_equivalent
MNLI 3 392,702 9,815 NLI entailment, neutral, contradiction
Text QNLI 2 104,743 5,463 NLI entailment, not_entailment
Classification RTE 2 2,490 277 NLI entailment, not_entailment
CB 3 250 57 NLI entailment, neutral, contradiction
TREC 6 5,452 500 question cls.  abbr., entity, description, human, loc., num.
AGNews 4 120,000 7,600 topic cls. world, sports, business, technology
ComQA - 9,741 1,221 multi-choice -
Question Quartz - 2,696 384  multi-choice -
Answering SQuAD - 87,599 10,570 extractive QA -
Quoref - 19,399 2,418 extractive QA -

Table 6: The statistics of multiple text classification and question answering datasets. Since the original test data is
unavailable, we use the development sets as our test sets.

find that it is suitable for the PLM to learn cross-
task knowledge. We train our model by AdamW
algorithm with 51 = 0.9, 83 = 0.98. The learning
rate is set as le-5 with a warm-up rate 0.1. We
also leverage dropout and regularization strategies
to avoid over-fitting. The models are trained on 8
NVIDIA A100-80G GPUs.

C.2 Prompting Details

We describe the implementation details with knowl-
edgeable example retrieval (KER). Given a training
dataset and a testing set, we aim to choose K exam-
ples from the training set which have a high knowl-
edge relevant to all testing examples. To reach
this goal, we utilize both Jaccard similarity and
Euclidean distance in terms of pre-trained knowl-
edge embeddings. For pre-trained knowledge em-
beddings, we choose the ConVE (Dettmers et al.,
2018) algorithm to pre-train over wikidataSm and
obtain the embeddings of entities and relations. We
set its dimension as 768, the negative sampling size
as 64, the batch size as 128 and the learning rate as
0.001. Finally, we only store the embeddings of all
the entities. The KER algorithm for the prompting
is shown in Algorithm 1.

C.3 Prediction Details

We first provide the details of the prompt formats
and label mapping rules. Specifically, for the classi-
fication task, we need to define a template and label
mapping to guide the model to generate results to-
ward pre-defined classes. The prompt formats and
label words are shown in Table 8. For the question
answering task, we only need to define the template
format, shown in Table 9.
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Algorithm 1 Knowledgeable Example Retrieval

Require: Training set Dy, Target (testing) set Dy 4¢, number
of in-context examples K.
1: Randomly sampling a subset D;,.,, from Dy ;
2: for each target example (th-gt) € Digt do

3: Extract entities E;f" ! from this target example;

4 for each training example (X!™™,y!™™) € D;,., do

5: Extract entities F2™™ from this training example;

6 Calculate Jaccard similarity djqc(é,7) and Eu-

clidean distance dsem (%, 7);

7:  end for

8: Conditioning on the target example th.g *, obtain the
knowledge relevance score d(X!™", X;g %) for the
training example X ;™" in Eq. 2;

9: end for

10: Calculate the final sampling weight s'(X!™") for each

training example X!™™ in Eq. 3;
11: Sampling K training examples via the weight s'(X!™");
12: return The selected K training examples.

During the prediction, we calibrate the predic-
tion probability. We thus provide the implementa-
tion details. We obtain a subset of training corpora
from the KQA pre-training task, which consists of
many question answer pairs. Thus, for each ques-
tion, we can generate an answer (may be an entity
or a label word) at the output position, and obtain
the contextualized prior via Eq. 6. The value P(v)
means the prior information of the generated en-
tity or label word. Intuitively, if the value P(v) is
higher, the entity or label word v is more likely
to be generated. We can save these prior values
before prediction for downstream tasks. During
the prediction, we can use the prior information of
each pre-defined label word or entity to calibrate
the prediction probability via Eq. 7.



2.6 55

2.2 4.5
1.8 35
14 2.5
0.6 05

0 1k 2k 38k 4k 5k 6k 7k 8k 0

(a) Masked Entity Prediction

Tk 2k 3k 4k bk 6k 7k 8k 0

28

2.4

0.8

1k 2k 3k 4k bk 6k 7k 8k

(b) Entity Description Generation (c) Knowledge Question Answering

Figure 10: The curves of the pre-training loss on GPT-2 (large) for each self-supervised learning task.
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Figure 11: The 8-shot performance (%) of GPT-2 (large)
with different o over text classification and question
answering tasks.

D Analysis of Settings of Model Variants

We conduct some detailed analysis of our proposed
technique.

Analysis of Pre-training Efficiency. To show
the efficiency of pre-training, we choose GPT-2
(large) draw the pre-training loss for each self-
supervised learning task. From Figure 10, we can
see that as the training process proceeds, each self-
supervised learning task has reached the conver-
gence of the model through the entire pre-training
process.

Effectiveness of Hyper-parameters. In KICT,
we investigate the effectiveness of the hyper-
parameter « in KER, which aims to balance the
relevance scores between Jaccard similarity and
Euclidean distance. Results shown in Figure 11
demonstrate that the hyper-parameter « is key to
the performance. We can see that the suitable value
is around 0.3.

Effectiveness of the Template. We believe that
the model performances rely on the format of the
template, which has been investigated in (Liu et al.,
2022; Min et al., 2022b). We choose some other
templates for evaluation. For example, when we
change the prefix string (e.g., “Question:”, “An-
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Hyper-parameter Value

Batch Size {2,4,8, 16, 32,64}

Seed {12, 24, 42, 90, 100}

K {0,1,4,8, 16}

« {0.1,0.3,0.5,0.7, 0.9}

~ {0.001, 0.01, 0.05, 0.1, 0.5, 1.0}

Table 7: The searching scope for each hyper-parameter.

swer:”) to others (e.g., “Q:”, “A:”), the perfor-
mance improvement of KICT is consistent. In ad-
dition, we also find that the text split character “
\n” between each sentence or example is impor-
tant to support the generation, which is also found
in (Dong et al., 2023; Andrew and Gao, 2007; Kim
et al., 2022; Si et al., 2022).

E Details of the Grid Search

For the downstream task inference, the searching
scope of each model hyper-parameter is shown in
Table 7.

F Performance on Different PLMs

To show that our method is general and can be ap-
plied to other similar models, we choose other scale
sizes of GPT-2 and OPT to show the effectiveness
of our KICT. More other experiments results are
shown from Table 10 to Table 17.



Task Prompt Label Words
SST-2 Review: This movie is amazing! Positive, Nega-
Sentiment: Positive tive
Review: Horrific movie, don’t see it.

Sentiment:

MRPC  Whether the two questions are similar? Yes, No
Question 1: How much is this book? Question 2: How many books?

Output: No
Question 1: Do you know the reason? Question 2: What’s the reason?
Output:

MNLI Is entailment, neutral, or contradiction between two texts? entailment, neu-
Text 1: We sought to identify practices within the past 5 years. Text 2: We want to identify pral, contradic-
practices commonly used by agencies in the last 5 years. tion
Output: entailment
Text 1: yeah well you're a student right Text 2: Well you’re a mechanics student right?

Output:

QNLI Whether the answer is entailed to the question? Yes, No
Text 1: In what year did the university first see a drop in applications? Text2: In the early
1950s, student applications declined as a result of increasing crime and - - -

Output: Yes
Textl: When did Tesla move to Gospic? Text2: Tesla was the fourth of five children.
Output:

RTE Others argue that Mr. Sharon should have negotiated the Gaza pullout - both to obtain at  True, False
least some written promises of - - -

Question: Mr. Abbas is a member of the Palestinian family. True or False?
Answer: False

The program will include Falla’s "Night in the Gardens of Spain," Ravel’s Piano - - -
Question: Beatrice and Benedict is an overture by Berlioz. True or False?

Answer:

CB But he ended up eating it himself. I was reluctant to kiss my mother, afraid that somehow  True, False,
her weakness and unhappiness would infect me. - - - Neither
Question: her life and spirit could stimulate her mother. True, False, or Neither?

Answer: Neither

Valence the void-brain, Valence the virtuous valet. Why couldn’t the figger choose his own
portion of titanic anatomy to shaft? Did he think he was helping?

Question: Valence was helping. True, False, or Neither?

Answer:

TREC Classify the questions based on whether their answer type is a Number, Location, Person, Number, Lo-
Description, Entity, or Abbreviation. cation, Person,
Question: How did serfdom develop in and then leave Russia? Des.crlptlon, .

. - Entity, Abbrevi-
Answer Type: Description i
ation
Question: When was Ozzy Osbourne born?
Answer Type:
AGNews Article: USATODAY.com - Retail sales bounced back a bit in July, and new claims for ~ World, Sports,

jobless benefits fell last week, the government said Thursday, indicating - - -
Answer: Business

Article: New hard-drive based devices feature color screens, support for WMP 10.
Answer:

Business, Tech-
nology

Table 8: The prompts used for text classification. We show one training example per task for illustration purposes.

The right column shows the label words (aiming to map the word to the original label class).
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Task Prompt

ComQA  Answer the question through multiple-choice.

Question: When people want to watch a new move, the often go see it at the? (A) town (B) conference (C)
bathroom (D) theater (E) train station
Answer: theater

Question: Where is known to always have snow? (A) africa (B) north pole (C) roof (D) canada (E) surface
of earth north pole
Answer:

Quartz  Answer the question through multiple-choice.

Question: Eric pushes an electron closer to the nucleus of an atom. The electron energy.As you go
farther from the nucleus of an atom, the electron levels have more and more energy. (A) loses (B) gains
Answer: gains

Question: When something is very lightweight what does it need to move?Objects with greater mass have
greater inertia. (A) more inertia (B) less inertia
Answer:

SQuAD  Read the question and find an answer in the context.

Question: Where was the first figure skating championship held?

Context: The tourism industry began in the early 19th century when foreigners visited the Alps, traveled to
the bases of the mountains to enjoy the scenery, and stayed at the spa-resorts. Large hotels were built during
the Belle Epoque; cog-railways, built early in the 20th century, brought tourists to ever higher elevations,
with the Jungfraubahn terminating at the Jungfraujoch, well above the eternal snow-line, after going through
a tunnel in Eiger. During this period winter sports were slowly introduced: in 1882 the first figure skating
championship was held in St. Moritz, and downhill skiing became a popular sport with English visitors
early in the 20th century, as the first ski-lift was installed in 1908 above Grindelwald.

Answer: St. Moritz

Question: What are some examples of classical violinists from Portugal?

Context: In the classical music domain, Portugal is represented by names as the pianists Artur Pizarro,
Maria Jodo Pires, Sequeira Costa, the violinists Carlos Damas, Gerardo Ribeiro and in the past by the
great cellist Guilhermina Suggia. Notable composers include José Vianna da Motta, Carlos Seixas, Jodo
Domingos Bomtempo, Jodo de Sousa Carvalho, Luis de Freitas Branco and his student Joly Braga Santos,
Fernando Lopes-Graga, Emmanuel Nunes and Sérgio Azevedo. Similarly, contemporary composers such as
Nuno Malo and Miguel d’Oliveira have achieved some international success writing original music for film
and television.

Answer:

Quoref  Read the question and find an answer in the context.

Question: What’s the name of the person whose birth causes Sarah to die?

Context: Jack and Sarah are expecting a baby together, but a complication during the birth leads to the death
of Sarah. Jack, grief-stricken, goes on an alcoholic bender, leaving his daughter to be taken care of by his
parents and Sarah’s mother, until they decide to take drastic action: they return the baby to Jack whilst he is
asleep, leaving him to take care of it. - - -

Answer: Sarah

Question: What is the first name of the person the actor believes is a little too odd?

Context: When a British secret agent is murdered in the line of duty, agent Karen Bentley inherits the
mission from her partner. The mission is to deliver a flight plan for a hundred American bomber planes to a
British agent in Chicago. The plans are hidden in a small medallion of a scorpion that Karen wears. - - -
Answer:

Table 9: The prompts used for question answering. We show one training example per task for illustration purposes.
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SST-2 MRPC MNLI QNLI RTE CB TREC  AGNews

Baselines
acc f1 acc acc acc acc acc acc

Full Data
Fine Tuning (RoBERTa-large) 95.00 91.40 89.80 93.30 80.90 90.50 97.40 94.70 91.63

Few-shot Labeled Data (8-shot)

ICL (Brown et al., 2020) 66.58+4.7 447325 49.80+2.9 46.33x22 45.70+38 36.92+23 44.38+2.6 40.53z4.0 46.87
CBU (Zhao et al., 2021) 74.19+4.1 48.88+33 51.10+25 48.39+32 40.07+3.0 39.26+2.8 47.94x22 43.28+22 49.14
KATE (Liu et al., 2022) 72.38+29 46.38+32 49.15+3.0 47.28+2.8 46.30+2.6 41.48+2.1 47.80+22 43.83+3.1 49.95

MetalCLT (Min et al., 2022a)  77.20236 512125 5329430 49.42+22 48.33:20 40.1821.9 49.68+28 47.35:29 52.08
SelfSup.f (Chen et al., 2022a) 78.94%30 52.13:2.0 52.70:22 48.29:18 49.27+26 41.80£2.5 4859125 47.39:32 52.39

KICTT 82.18+3.2 54.19+3.7 54.85+23 50.93:1.9 50.13+2.2 43.89:2.8 51.38+2.5 51.20:3.0 54.90

Table 10: The 8-shot performance (%) on GPT-2 (small) of different learning settings with standard deviations over
text classification benchmarks. T denotes the method involves parameters update for ICL.

SST-2 MRPC MNLI QNLI RTE CB TREC  AGNews

Baselines
acc fl acc acc acc acc acc acc

Full Data
Fine Tuning (RoBERTa-large) 95.00 91.40 89.80 93.30 80.90 90.50 97.40 9470  91.63

Few-shot Labeled Data (8-shot)

ICL (Brown et al., 2020) 71.39:32  49.60+2.8 53.90x24 50.04£32 51.18+4.1 39.33:2.8 49.20+2.1 43.75+3.6 51.05
CBU (Zhao et al., 2021) 77.71+38 55.48+3.1 554122 51.10£3.0 47.53x28 48.11£2.7 51.52+27 53.27+24 55.02
KATE (Liu et al., 2022) 75.32+3.1 53.80+3.1 48.88+34 50.14x25 4582429 47.05£24 50.25£28 51.93x34 52.89

MetalCL! (Min et al., 2022a) ~ 80.16+3.0 6133220 56.12#3.1 5424229 5493229 46.50:29 53.22:28 5336224 57.48
SelfSup.t (Chen et al., 2022a) 81.62+3.0 58.43x32 59.53x2.6 51.70:3.8 54.33x2.6 43.48:3.5 53.46:26 53.73:3.1 57.04

KICTT 89.10+3.9 66.44+2.7 64.85+3.0 57.81232 61.02+4.0 53.91:23 60.34:2.0 61.77+3.3 64.41

Table 11: The 8-shot performance (%) on GPT-2 (medium) of different learning settings with standard deviations
over text classification benchmarks. T denotes the method involves parameters update for ICL.

SST-2 MRPC MNLI QNLI RTE CB TREC  AGNews

Baselines
acc f1 acc acc acc acc acc acc

Full Data
Fine Tuning (RoBERTa-large) 95.00 91.40 89.80 93.30 80.90 90.50 97.40 94.70 91.63

Few-shot Labeled Data (8-shot)

ICL (Brown et al., 2020) 78.98+72 56.36+2.3 58.25+24 55.03x32 55.01+50 44.04:1.8 53.29+4.1 47.33x66 56.04
CBU (Zhao et al., 2021) 83.31+44 65.17+39 58.13+28 55.59+39 55.97+28 53.14x1.7 56.29+3.7 57.89+28 60.69
KATE (Liu et al., 2022) 82.55+38 59.43+39 61.20+24 55.37+35 55.57+27 48.27x2.1 56.11+28 53.78+34 59.04

MetalCLT (Min et al., 2022a)  88.8050 64.2242.0 6239434 57.34£19 59.18:28 50.46225 57.90£1.8 57.13:24 62.18
SelfSup.f (Chen et al., 2022a)  88.55£3.0 64.24220 63.42+22 55.70:18 58.93x26 48.08+25 58.01:25 58.28:32 61.90

KICT? 92.18+2.9 71.32+0.7 71.23x1.0 62.89+1.2 66.10+4.2 58.33+38 64.90+5.5 69.27+5.7 69.53

Table 12: The 8-shot performance (%) on GPT-2 (urge) of different learning settings with standard deviations over
text classification benchmarks. T denotes the method involves parameters update for ICL.

SST-2 MRPC MNLI QNLI RTE CB TREC  AGNews

Baselines .
acc f1 acc acc acc acc acc acc

Full Data
Fine Tuning (RoBERTa-large) 95.00 91.40 89.80 93.30 80.90 90.50 97.40 94.70 91.63

Few-shot Labeled Data (8-shot)

ICL (Brown et al., 2020) 79.43+72  56.72+23 59.28+24 553732 56.01+50 44.48+1.8 54.10+4.1 479566 56.67
CBU (Zhao et al., 2021) 83.77+44 65.38+39 58.49+2.8 55.88+39 56.26x2.8 53.89+1.7 56.37+3.7 58.20+2.8 61.03
KATE (Liu et al., 2022) 83.18+38 59.83+39 62.40+24 55.87+#35 55.81x2.7 48.83x2.1 56.98+28 54.32+34 59.65

MetaICL! (Min et al., 2022a)  90.03+5.0 64.72+2.0 62.99+34 57.94x19 59.81+28 51.29+25 58.50£1.8 58.12+24 62.93
S::lfSup.T (Chen et al., 2022a) 88.59+3.0 64.24+2.0 64.42+22 56.60£1.8 59.22+2.6 49.58+2.5 59.33+25 59.48+32 62.77

KICTT 92.38+2.9 71.92+0.7 71.83+1.0 63.21+1.2 66.83x4.2 58.70+3.8 65.38+55 70.42+5.7 70.08

Table 13: The 8-shot performance (%) on OPT (large) of different learning settings with standard deviations over
text classification benchmarks. T denotes the method involves parameters update for ICL.
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ComQA Quartz  SQuAD  Quoref

Baselines Avg.
acc acc em em

Full Data

Fine Tuning (RoBERTa-large) ~ 72.10 76.90 86.50 78.70  78.55
Few Labeled Data (8-shot)

ICL (Brown et al., 2020) 23.70+3.7 49.20£1.9 43.10+34 37.30:3.0 38.34
CBU (Zhao et al., 2021) 263731 529028 46.88+20 41.38+29 41.89
KATE (Liu et al., 2022) 26.89+32 52.88+3.1 46.93:37 41.35:28 42.01

MetalCLT (Min et al., 2022a) ~ 27.40+2.7 52.74+33 46.63x29 4251230 42.32
SelfSup.t (Chen et al., 2022a)  27.33:3.1 529131 469729 427132 4248

KICT? 28.78+2.6 53.10:29 47.72:23 43.88:2.2 43.37

Table 14: The 8-shot performance (%) on GPT-2 (small)
of different learning settings with standard deviations
over question answering benchmarks.

ComQA Quartz SQuAD  Quoref

Baselines Avg.
acce acce em em

Full Data

Fine Tuning (RoBERTa-large) 72.10 76.90 86.50 78.70 78.55
Few Labeled Data (8-shot)

ICL (Brown et al., 2020) 25.38+3.1 52.10s3.2 455833 38.47+27 40.38
CBU (Zhao et al., 2021) 28.40+32 53.64:2.6 47.81x40 43.20:22 42.68
KATE (Liu et al., 2022) 28.38+3.1 54.26£33 46.70+3.7 41.98+4.1 42.83

MetalCLT (Min et al., 2022a) ~ 29.67+2.9 54.37+25 48.79+24 45.1123.1 44.49
SelfSup.’ (Chen etal., 2022a) 29.36:30 54.10:22 48.47+27 44.0623.1 44.00

KICT! 34.81+3.0 56.38+29 51.18:2.8 46.00+35 47.09

Table 15: The 8-shot performance (%) on GPT-2
(medium) of different learning settings with standard
deviations over question answering benchmarks.

ComQA Quartz  SQuAD  Quoref
acc acc em em

Baselines

Full Data
Fine Tuning (RoBERTa-large) ~ 72.10 76.90 86.50 7870  78.55

Few Labeled Data (8-shot)

ICL (Brown et al., 2020) 29.15+2.4 55.78+3.1 49.12#3.1 42.11x27 44.04
CBU (Zhao et al., 2021) 31.58+39 57.01x26 51.28+28 45.70+44 46.39
KATE (Liu et al., 2022) 31.18+4.1  56.70+3.0 49.13:34 44.54+33 45.39

MetalCLT (Min etal., 2022a)  32.16£32 57.64:26 53.26:3.1 489129 47.99
SelfSupf (Chen et al., 2022a) 33.44+32 56.18+3.5 51.90:2.7 49.10+3.1 47.66

KICT? 37.05£28 59.35:24 55.08+2.9 53.18:32 51.17

Table 16: The 8-shot performance (%) on GPT-2 (urge)
of different learning settings with standard deviations
over question answering benchmarks.

ComQA  Quartz SQuAD  Quoref
acc acc em em

Baselines

Full Data
Fine Tuning (RoBERTa-large) 72.10 76.90 86.50 78.70 78.55

Few Labeled Data (8-shot)

ICL (Brown et al., 2020) 30.42+22  56.19+32  48.73£3.0 44.18+37 44.88
CBU (Zhao et al., 2021) 32.16+2.7 58.02+2.8 53.11x27 4735120 47.66
KATE (Liu et al., 2022) 33.32:36 58.90:29 50.65:24 46.12+35 47.25

MetalCL! (Min et al., 2022a) ~ 33.96:34 58.64224 54.11x24 48.12+27 4871
SelfSup.t (Chen et al., 2022a)  34.42:30 58.12430 54.92427 495318 49.25

KICT! 39.22:28 61.71:24 59.67:21 54.40:3.1 53.75

Table 17: The 8-shot performance (%) on OPT (large)
of different learning settings with standard deviations
over question answering benchmarks.
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