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Abstract001

Causal reasoning is a critical aspect in hu-002
man judgment, yet large language models003
(LLMs) often fail to distinguish between cor-004
relation and causation when answering natu-005
ral language questions. While existing bench-006
marks primarily assess factual correctness in007
causal QA tasks, they do not evaluate whether008
model outputs are causally coherent or for-009
mally valid. In this work, we propose DoVeri-010
fier, a symbolic evaluation framework that as-011
sesses whether LLM-generated answers can012
be correctly formalized as causal expressions013
using do-calculus semantics. Our approach014
translates LLM outputs into structured forms015
such as P (Y | do(X), Z), compares them016
against known ground-truth assumptions or017
causal graphs, and identifies common reason-018
ing failures such as misinterpreting interven-019
tions as observations. We further demonstrate020
that this formalization layer enables symbolic021
feedback, which can guide LLMs to revise022
incorrect outputs and improve overall answer023
quality.1024

1 Introduction025

Causal reasoning lies at the core of human intelli-026

gence. Unlike mere pattern recognition, it enables027

us to reason about interventions, explain effects,028

and predict outcomes under hypothetical scenarios.029

As large language models (LLMs) (OpenAI, 2024;030

Team, 2025; DeepSeek-AI, 2025) are increasingly031

deployed in scientific, medical, and policy-related032

domains, the ability to generate and interpret causal033

claims is no longer optional—it is critical (Doshi-034

Velez and Kim, 2017). An LLM that can distin-035

guish between correlation and causation could sup-036

port tasks ranging from experimental design to sci-037

entific hypothesis generation.038

Recent causal reasoning benchmarks such as039

CLadder (Jin et al., 2023) and CausalBench (Wang,040

1The full code of DoVerifier, along with the evaluation
code and synthetic dataset, will be released.

Figure 1: Our symbolic verifier checks whether a model-
generated causal expression is semantically equivalent
to the ground truth under a given DAG. Unlike string
match, it explores all valid derivations using do-calculus
and probability rules to identify formal equivalence.

2024) have begun to evaluate LLMs on causal ques- 041

tion answering. However, these efforts primarily 042

focus on surface-level correctness: whether the 043

model’s answer matches a gold string or produces 044

the right outcome in simple scenarios. While use- 045

ful, these metrics fail to capture a more fundamen- 046

tal question: does the model’s output represent a 047

valid causal expression under formal semantics? 048

This gap is especially significant because the 049

verification of causal statements is not as simple 050

as evaluating mathematical statements. In mathe- 051

matical formalization tasks, models can often be 052

evaluated by plugging in values or checking nu- 053

merical correctness (Gao et al., 2025; Fan et al., 054

2024; Cobbe et al., 2021; Hendrycks et al., 2021). 055
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However, in causal inference, as shown in Figure 1,056

we rarely know the full joint distribution P (·); the057

ground truth is defined not by observed values, but058

by derivability under a causal graph using the rules059

of do-calculus (PEARL, 1995). This makes causal060

verification fundamentally symbolic: an expression061

like P (Y | do(X)) must be judged valid based062

on its formal relation to a DAG and other expres-063

sions—not via simulation or numeric output.064

To our knowledge, no existing work has pro-065

posed a general-purpose symbolic verifier for066

LLM-generated causal expressions. Even the067

most advanced causal benchmarks (Wang, 2024;068

Ma, 2025) still focus on the final answer, and evalu-069

ating the reasoning steps overlooks semantic equiv-070

alences despite syntactical differences. Existing071

metrics conflate syntactic similarity with seman-072

tic equivalence and offer no way to detect subtle073

logical errors, such as confusing observations with074

interventions. For example, as the case shown in075

Figure 1, the LLM-generated expression can be076

simplified using the rules of do-calculus from an077

observational form to an interventional form. This078

limits the precision of causal QA evaluation and079

hinders progress toward more reliable reasoning080

agents.081

To address this concern, in this paper, we intro-082

duce a formal verification framework, DoVerifier,083

that evaluates the causal validity of LLM outputs.084

As illustrated in Figure 1, our method translates085

model-generated answers into structured symbolic086

expressions and verifies whether these expressions087

are derivable from known assumptions using the088

do-calculus and probability rules. This enables089

a rigorous test of whether a response is causally090

coherent, regardless of its surface form. By intro-091

ducing symbolic verification into LLM evaluation,092

our work opens the door to more trustworthy large093

language models in the causality domain.094

The main contributions of this paper are 3-fold:095

• We define causal equivalence as a reachability096

problem in a derivation graph, and develop a097

sound and complete proof search algorithm098

based on breadth-first traversal with our veri-099

fier DoVerifier.100

• We show that DoVerifier outperforms stan-101

dard string-based metrics in both synthetic102

and real datasets, recovering semantically cor-103

rect answers that would otherwise be marked104

incorrect.105

• We demonstrate a symbolic feedback loop that106

uses the verifier’s outputs to guide model cor- 107

rections, improving causal accuracy without 108

access to ground-truth answers. 109

2 Related Work 110

Causal QA and LLMs Recent benchmarks eval- 111

uate large language models (LLMs) on their ability 112

to answer causal questions expressed in natural 113

language. CLadder (Jin et al., 2023) and Causal- 114

Bench (Wang, 2024) present standardized datasets 115

of associational, interventional, and counterfactual 116

queries grounded in causal graphs. Evaluation typ- 117

ically hinges on whether a model’s output matches 118

a gold-standard string, sometimes allowing para- 119

phrasing or token-level similarity. While these 120

approaches assess factual correctness, they lack 121

a formal guarantee of causal validity (Jin et al., 122

2023; Bondarenko et al., 2022; Joshi et al., 2024). 123

For instance, a model that outputs P (Y | X) in- 124

stead of P (Y | do(X)) may still be marked cor- 125

rect—despite the two being causally distinct. These 126

benchmarks do not assess whether an expression 127

is derivable from the assumed graph using valid 128

causal rules. 129

This paper addresses this gap by introducing 130

a symbolic verification framework that checks 131

whether a model output is derivable from known 132

assumptions via the do-calculus and probability the- 133

ory. This enables principled evaluation of causal 134

soundness beyond surface form. For example, 135

when asked to formalize “Does X cause Y ?” in 136

a graph where X affects Y through a mediator Z, 137

models often produce P (Y | X) > P (Y )—an 138

associational claim—rather than the correct inter- 139

ventional query P (Y | do(X)) ̸= P (Y ) (Chen 140

et al., 2024). Such conceptual errors are undetected 141

by benchmarks that assess only final answers. 142

Formal Verification and Symbolic Inference 143

The causal inference community has long relied 144

on do-calculus (PEARL, 1995) and probability the- 145

ory to determine whether a causal query is identi- 146

fiable from observational data. Classical identifi- 147

ability algorithms (Shpitser and Pearl, 2008) and 148

modern tools like dosearch (Tikka et al., 2021) 149

formalize this process as a search over valid deriva- 150

tions. However, these tools are designed to com- 151

pute a causal effect from known inputs—not to 152

verify whether two arbitrary expressions are equiv- 153

alent or whether a generated formula is consis- 154

tent with a causal graph. However, this is signifi- 155

cant to evaluate the multi-step reasoning process in 156
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causal reasoning. Another line of work, like Sheth157

et al. (2025), checks if answers align with prede-158

fined causal graphs but relies on template matching159

rather than formal derivations and cannot handle160

expressions involving do-calculus transformations.161

To push the frontier of such verification, in this162

paper, DoVerifier proposes to reframe it as a sym-163

bolic proof problem: given a candidate expression,164

it checks whether the expression is logically deriv-165

able from assumptions via valid transformations,166

enabling both evaluation and error diagnosis in167

model-generated outputs.168

Formalization in Mathematical Reasoning Ef-169

forts in mathematical reasoning have primarily fo-170

cused on verifying answers to quantitative prob-171

lems. For instance, Hendrycks et al. (2021) evalu-172

ates LLMs on math competition problems, while173

Glazer et al. (2024) investigates symbolic solvers174

for arithmetic tasks. To further validate intermedi-175

ate reasoning steps, another line of work (Ren et al.,176

2025; Wang et al., 2024) resorts to formal math de-177

scriptions (de Moura and Ullrich, 2021; Nipkow178

et al., 2002) that facilitate the step-wise consistency179

inspection. Although it is promising to formalize a180

math problem (AlphaProof and teams, 2024; Lin181

et al., 2025), checking its semantic correctness is182

found crucial yet under evolving (Lu et al., 2024;183

Xin et al., 2025). Recent work in geometry (Mur-184

phy et al., 2024) and logic (Li et al., 2024) uses185

SMT solvers to assess logical equivalence between186

informal text and formal theorems. We draw inspi-187

ration from this paradigm but extend it to causal188

inference—where correctness is defined not by log-189

ical validity alone, but by derivability under the190

rules of do-calculus and a causal DAG.191

Causal Evaluation Metrics Most existing evalu-192

ation metrics for causal QA—such as exact match,193

BLEU (Papineni et al., 2002), or token-level194

F1—focus on surface similarity between model out-195

puts and reference answers (Jin et al., 2023; Bon-196

darenko et al., 2022; Hu and Zhou, 2024). These197

metrics fail to capture semantic equivalence be-198

tween expressions that differ syntactically but are199

derivationally identical under the do-calculus (Hu200

and Zhou, 2024). Our method addresses this lim-201

itation by treating equivalence as a formal proof202

problem. By comparing expressions based on sym-203

bolic derivability, we provide a more faithful and204

theoretically grounded measure of causal correct-205

ness.206

This verification-based approach not only207

strengthens evaluation but also enables more trans- 208

parent and trustworthy causal reasoning systems, 209

which is critical for high-stakes domains like health- 210

care, policy, and science. 211

3 DoVerifier: Causal Symbolic 212

Verification Framework 213

3.1 Preliminaries 214

As language models increasingly engage with 215

causal reasoning tasks, proper evaluation requires 216

verifying adherence to formal causal inference 217

rules. Do-calculus provides the fundamental ax- 218

ioms for manipulating interventional distributions 219

in causal graphs. 220

The Rules of do-calculus Our method will make 221

use of the fundamental rules of the do-calculus 222

(PEARL, 1995). Let X,Y, Z, and W be arbitrary 223

disjoint sets of nodes in a causal directed acyclic 224

graph (DAG) G. Following the notation of Pearl 225

(2012), we denote GX the graph obtained from G 226

by removing all the edges pointing to the nodes 227

in X and we denote GX the graph obtained by 228

deleting all the edges emerging from the nodes 229

in X . Furthermore, we use GXZ to represent the 230

deletion of all edges that have X as a source or 231

target. 232

Rule 1 (Insertion/deletion of observations): 233

P (y | do(x), z, w) = P (y | do(x), w) 234

if (Y ⊥⊥ Z | X,W )GX
(1) 235

Rule 2 (Action/observation exchange): 236

P (y | do(x), do(z), w) = P (y | do(x), z, w) 237

if (Y ⊥⊥ Z | X,W )GXZ

(2)
238

Rule 3 (Insertion/deletion of actions): 239

P (y | do(x), do(z), w) = P (y | do(x), w) 240

if (Y ⊥⊥ Z | X,W )G
XZ(W )

(3)

241

where Z(W ) is the set of Z-nodes that are not 242

ancestors of any W -node in GX . The notation 243

(Y ⊥⊥ Z | X,W )G represents d-separation in 244

graph G, meaning all paths between Y and Z are 245

blocked by conditioning on X and W . 246
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Probability Rules In addition to do-calculus247

rules, our method incorporates standard probability248

transformations, including Bayes’ rule, the chain249

rule, and the law of total probability. These rules,250

combined with do-calculus, provide a complete251

system for verifying equivalence between causal252

expressions. We will denote the set of probability253

calculus rules as P .254

3.2 Definitions255

Definition (Causal Expression Language) Let256

Lcausal be the set of expressions of the form P (Y |257

Z), where Y and elements of Z are either observed258

variables or do-interventions (i.e do(X)). Expres-259

sions are defined over a causal DAG G with a finite260

node set V .261

Definition (Derivability) Given a DAG G, we262

say the causal expression Einit ⊢G Etarget if the263

target expression Etarget can be obtained from the264

initial expression Einit via a finite sequence of appli-265

cations of the rules in do-calculus and probability266

theory, respecting the conditional independencies267

implied by G.268

3.3 Method269

We define a symbolic verification framework,270

DoVerifier, for assessing equivalence between271

causal expressions derived from natural language.272

We first provide a list of desired properties a good273

evaluator should have, listed in Appendix A. Given274

a causal DAG G (which may be generated by the275

model), and two expressions Einit, Etarget ∈ Lcausal,276

DoVerifier determines whether Etarget is derivable277

from Einit under the axioms of do-calculus and stan-278

dard probability theory. The system operates by279

enumerating proof sequences through a structured280

search procedure. Implementation details are pro-281

vided in Appendix B. The framework consists of282

the following components:283

1. Expression Parser. Parses natural language284

or symbolic input into normalized expressions285

in Lcausal, including both observation P (Y |286

X) and interventional P (Y | do(X)) forms.287

2. Transformation Engine. Encodes inference288

rules drawn from do-calculus and probability289

calculus, which serve as rewrite rules over290

symbolic expressions.291

3. Proof Search Module. Executes a breadth-292

first search over the space of derivable expres-293

sions, applying transformation rules to dis- 294

cover a finite derivation sequence from Einit 295

to Etarget, if one exists. 296

We model causal equivalence as a reachability 297

problem in a derivation graph: 298

Proposition 3.1 (Derivation Graph). Let Einit ∈ 299

Lcausal. Define a directed graph S(Einit) where: 300

• Each node is a unique causal expression deriv- 301

able from Einit; 302

• An edge E → E′ exists if E′ can be obtained 303

from E by applying a single valid transforma- 304

tion. 305

Then S(Einit) is a well-defined, finite-branching 306

graph. 307

The branching factor is finite since the number of 308

variables in G is finite and each transformation rule 309

applies to bounded subsets (proof in Appendix C)2. 310

Hence, the core decision problem is: 311

Equiv(Einit, Etarget;G) ≜ ∃ΠEinit
Π−→ Etarget

(4)
312

where Π is admissible under G, reducing evalua- 313

tion of semantic correctness to proof search under 314

graph constraints. 315

Verification Algorithm Given a causal graph G, 316

source expression Einit, target expression Etarget, 317

and maximum depth d, we present Algorithm 1 318

as an algorithm to verify if Einit and Etarget are 319

equivalent bounded by depth d. 320

This approach guarantees finding the shortest 321

sequence of transformations if one exists within 322

the depth limit, as stated in our main theorem that 323

concerns the soundness and completeness of the 324

verification algorithm: 325

Proposition 3.2 (Soundness & Completeness of 326

Proof Search). Let G be a causal DAG, and let 327

Einit, Etarget ∈ Lcausal. If Einit ⊢G Etarget, then Al- 328

gorithm 1 returns a valid proof sequence within 329

depth d, for some finite d. Conversely, if no such 330

derivation exists within depth d, Algorithm 1 re- 331

turns None. 332

Proof. Proved in Appendix C. ■ 333

334

In addition, if no derivation exists between Einit 335

and Etarget with k ≤ d steps, breadth-first search 336

2Although the depth of the derivation graph could be in-
finite, we bound the depth of the derivation graph by some
depth d.
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Algorithm 1 Causal Expression Equivalence Veri-
fication

1: Initialize queue Q← [(Einit, [])] ▷
(expression, proof path π)

2: Initialize visited set V ← {Einit}
3: while Q not empty do
4: (E, π)← Q.dequeue()
5: if E = Etarget then
6: return π ▷ Found equivalence
7: end if
8: if | π |< d then
9: for each applicable rule r do

10: E′ ← apply(r, E)
11: if E′ ̸∈ V then
12: V.add(E′)
13: Q.enqueue((E′, π + [r]))
14: end if
15: end for
16: end if
17: end while
18: return None ▷ No equivalence found within

depth d

(BFS) will terminate after exploring all expressions337

within depth d. Further practical considerations are338

explained in Appendix D339

Separately, we can view DoVerifier as a logi-340

cal system defined over a formal language Lcausal341

equipped with a set of derivation rules R and a342

background model that is either provided or gen-343

erated by an LLM G (the DAG). In this view, we344

distinguish between:345

Syntactic entailment (H ⊢G A): A is derivable346

from hypothesis H using the symbolic trans-347

formation rules admissible under G bounded348

by depth d.349

Semantic entailment (H |=G A): A is true in all350

causal models consistent with G in which all351

Hi ∈ H are true.352

We require our inference system to satisfy:353

Soundness: If H ⊢G A, then H |=G A354

Completeness: If H |=G A, then H ⊢G A355

These are properties of the underlying logical sys-356

tem, which are satisfied due to the completeness357

of do-calculus for causal identifiability (PEARL,358

1995) and the standard probability axioms. Thus,359

the semantic correctness of model outputs can be360

equivalently verified through syntactic derivation, 361

which forms the basis of our verifier. 362

4 Experiments and Results 363

4.1 Synthetic Data Test 364

To verify the internal consistency of the verifier, we 365

construct a synthetic dataset of over 10,000 expres- 366

sion pairs (Einit, Etarget) such that Etarget is prov- 367

ably derivable from Einit under a known DAG G. 368

Each pair involves between 1–4 rule applications 369

and includes randomized use of do-calculus and 370

probability rules. A description of data samples is 371

shown in Appendix E. 372

Sampling Procedure Let V = {v1, . . . , vn} be 373

a finite set of variables, and let G = (V,E) be a 374

randomly sampled acyclic graph. We sample the 375

directed edges independently as P(vi → vj) = p 376

for i < j where p ∈ (0, 1) is the edge probability, 377

and the ordering ensures the graph is acyclic. In our 378

experiments, we fix n ≤ 10 and p = 0.5 to balance 379

expressivity and tractability. We first construct 380

e1 = P (Y | do(X1), . . . ,do(Xk), Z1, . . . , Zm)
(5)

381

where Y ∈ V is chosen uniformly at random, a sub- 382

set of V \{Y } is chosen as intervention variables 383

{Xi} and additional variables {Zj} are included 384

as conditioning set as observation. To ensure struc- 385

tural diversity, the number of intervention variables 386

Xi and observational variables Yi is randomly cho- 387

sen per sample, subject to DAG constraints. Then, 388

we define a symbolic derivation process π consist- 389

ing of a sequence of rule applications: 390

e1
r1→ e2

r2→ . . .
rn→ en+1 (6) 391

where each ri ∈ {Rule 1, Rule 2, Rule 3} ∪ P . 392

Rule applications are randomized but constrained 393

to only apply when valid under the conditional inde- 394

pendencies induced by G. Then, we set Einit = e1 395

and Etarget = en+1. 396

Synthetic Data Performance Our symbolic veri- 397

fier achieves 100% precision and recall under depth 398

limit d = 5, demonstrating correctness of the 399

derivation engine, while other methods such as 400

string match, or token-level F1 performed poorly 401

due to Einit and Etarget being too distinct. Consider 402

the following example: 403

LLM output: P (C | do(A), B) (7) 404

Ground Truth: P (C | B) (8) 405
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Metric Llama3.1-8b Mistral-7B Llama-3.1-8B-Instruct Gemma-7b-it
P R F1 P R F1 P R F1 P R F1

String Match 1.0 0.57 0.72 1.0 0.58 0.73 1.0 0.88 0.93 1.0 0.80 0.89
DoVerifier (Ours) 1.0 0.73 0.85 1.0 0.94 0.97 1.0 0.90 0.94 1.0 0.84 0.91

Table 1: DoVerifier identifies more correct causal expressions than string match. Precision (P), Recall (R), and F1
scores for four LLMs evaluated on CLadder. Our method improves recall substantially while maintaining perfect
precision, revealing semantically correct answers missed by string-based metrics.

With the causal DAG structure:406

A→ B B → D C → D407

DoVerifier proves equivalence through these408

steps:409

1. Applied Rule 2: Convert do(A) to observation410

P (C | do(A), B) = P (C | A,B)411

2. Applied Rule 1: Remove A due to d-412

separation413

P (C | A,B) = P (C | B)414

Thus, P (C | do(A), B) = P (C | B) is verified415

as equivalent, which string matching and token-416

level F1 would have failed to recognize.417

The experiment results show a key strength of418

our framework that it can correctly recognize when419

two expressions are equivalent under the rules of420

do-calculus and probability, even if they differ in421

formatting, variable order, or surface form.422

4.2 LLM Causal Reasoning Test423

Uncovering Missed Correct Answers We eval-424

uate the ability of our symbolic verifier to improve425

the accuracy of large language model (LLM) eval-426

uation in causal reasoning. Specifically, we ask:427

Can our method recover correct answers that are428

missed by naive evaluation metrics?429

Evaluated Dataset and Models To investigate430

this, we use the CLadder benchmark (Jin et al.,431

2023), a suite of causal questions grounded in432

known DAGs. Each question is paired with a433

ground-truth answer expressed as a formal causal434

expression. We prompt Llama-3-8B (Grattafiori435

et al., 2024), Llama-3-8BInstruct (Grattafiori436

et al., 2024), Mistral-7B (Jiang et al., 2023), and437

Gemma-7B-IT (Team et al., 2024) to answer these438

questions and parse their responses, including a439

DAG that models the problem into symbolic ex-440

pressions. Detailed prompts and parsing are demon-441

strated in Appendix F. Each prediction is then com-442

pared to the ground-truth using two metrics:443

• String Match: A response is marked correct 444

only if it matches the ground-truth expression 445

exactly (after normalizing). 446

• Symbolic (Ours): A response is considered 447

correct if it is derivable from the ground-truth 448

using valid applications of do-calculus and 449

probability rules. 450

Alternative metrics are discussed in Appendix G. 451

We consider a prediction correct if the symbolic 452

verifier finds a valid derivation within a depth limit 453

of 20 steps, using our breadth-first search algorithm 454

from Algorithm 1. 455

Results As shown in Table 1, our symbolic 456

method identifies more correct answers than string 457

match, raising the recall across all models and im- 458

proving the F1 score accordingly. Our method is 459

more useful when models such as Llama3.1-8b 460

and Mistral-7B output an alternative form of the 461

correct use. This improvement highlights an im- 462

portant phenomenon: many model responses are 463

causally correct but fail naive evaluation due to 464

superficial differences in formatting, variable order, 465

or phrasing. The running time of verifying through 466

BFS is minimal (milliseconds). 467

Our symbolic verifier recovers this missing ac- 468

curacy by judging expressions based on their se- 469

mantic content, not their surface form. It enables 470

a more faithful and rigorous assessment of causal 471

reasoning in LLMs, ensuring that models receive 472

credit for valid reasoning even when their output 473

does not match the reference verbatim. 474

Our symbolic verifier offers the largest improve- 475

ments over string match for mid-performing mod- 476

els such as Mistral-7B and Llama3.1-8B, where 477

syntactically different but semantically correct an- 478

swers are common. In contrast, high-performing 479

models like Llama3.1-Instruct already align 480

well with ground-truth formats, so the relative gain 481

over string match is smaller (e.g., F1 improves from 482

0.93 to 0.94). This suggests that the benefit of sym- 483
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bolic evaluation is most pronounced when models484

exhibit partial causal understanding but struggle485

with precise formalization. We identified several486

common patterns where symbolic verification of-487

fers substantial advantages:488

Intervention with conditioning: Our system val-489

idates equivalence between expressions like490

P (Y | do(X), Z = z) and P (Y | do(X), Z)491

by correctly handling instantiated versus sym-492

bolic values.493

Rule-based transformations: Our system cor-494

rectly identifies that P (Y | do(X), Z) can495

be transformed into P (Y | X,Z) in DAGs496

where Z d-separates Y from incoming edges497

of X . This conversion from interventional to498

observational queries represented the majority499

of all verified equivalences. Note that this is500

important since the ground-truth of CLadder501

is in observational queries.502

Multi-step proofs: For more complex cases, our503

verifier successfully applied sequential rules.504

These accounted fewer of verified equiva-505

lences but are representative of some of the506

most challenging verification scenarios.507

4.3 Improving LLMs with Symbolic Feedback508

Beyond evaluation, the proposed DoVerifier en-509

ables structured feedback to guide LLMs toward510

correct causal reasoning without relying on ground511

truth expressions. It has been shown that symbolic512

feedback loops (e.g., using SMT solvers in math or513

logic) have been shown to improve LLM output ac-514

curacy by providing formal, structured corrections515

(Hong et al., 2025; Murphy et al., 2024). Instead of516

using a reference answer as an oracle, our system517

leverages the causal graph structure and indepen-518

dence relationships to provide principled guidance.519

Formal Description Given a causal graph G =520

(V,E) (which may be LLM generated), an521

LLM generated expression ELLM = P (Y |522

do(X1), . . . ,do(Xk), Z1, . . . , Zm), and no access523

to the ground truth Etarget. Our goal is to com-524

pute a revised expression E′
LLM that is causally525

more valid (i.e., more likely to match Etarget) using526

structural reasoning over G.527

We do so by partitioning the conditioning set of528

ELLM into intervention variables Xdo and Zobs:529

Xdo = {X1, . . . , Xk} Zobs = {Z1, . . . , Zm}530

Then, for each variable Z ∈ Zobs, we test:531

• Mediator Detection: If Z lies on a directed path 532

from some ancestor A ∈ Zobs ∪Xdo to out- 533

come Y : 534

A→ · · · → Z → · · · → Y 535

Then, Z is a mediator, so we write a prompt 536

to avoid conditioning on Z, as doing so may 537

block part of the causal pathway and lead to 538

underestimation of the effect. 539

• Treatment Confounding: If Z ∈ Zobs is a 540

common cause of both a treatment variable 541

X ∈ Xdo and the outcome Y , i.e., Z → X 542

and Z → Y , then Z is a confounder. In 543

such cases, we suggest replacing Z with 544

do(Z) when feasible, as intervening on Z may 545

help eliminate confounding bias—particularly 546

when front-door adjustment is applicable. 547

• d-Separation Violation: Let W = Zobs\{Z}∪ 548

Xdo; if X ̸⊥ Y | W, then we suggest con- 549

ditioning on Z may bias the expression as it 550

is not independent of Y given other variables 551

W. 552

Results Across all evaluated models, this feed- 553

back loop led to substantial gains in causal cor- 554

rectness. In our experiments, a significant portion 555

of initially incorrect responses were corrected fol- 556

lowing a single feedback iteration. Table 2 shows 557

the improvement of LLM performance using our 558

feedback loop. We find that the effectiveness of 559

symbolic feedback depends heavily on the type of 560

error in the original expression. For example, when 561

the model incorrectly uses P (Y | X) instead of 562

P (Y | do(X)), feedback guided by d-separation 563

and rule-based reasoning often corrects the mistake. 564

In contrast, if the model hallucinates an irrelevant 565

variable or misrepresents the structure of the DAG 566

itself, our framework is less effective since the sym- 567

bolic transformations cannot fix structurally flawed 568

inputs. 569

5 Discussions 570

This work formalizes the task of verifying causal 571

correctness in language model outputs as a sym- 572

bolic inference problem. The primary objective of 573

the study is the derivation graph S(Einit) induced 574

by the application of a finite rule setR (comprising 575

do-calculus and probability transformations) to an 576

initial causal expressions. 577
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Metric Llama3.1-8b Mistral-7B Llama-3.1-8B-Instruct Gemma-7b-it
P R F1 P R F1 P R F1 P R F1

Before Feedback 1.0 0.73 0.85 1.0 0.94 0.98 1.0 0.90 0.94 1.0 0.84 0.91
After Feedback 1.0 0.93 0.97 1.0 0.99 0.99 1.0 0.98 0.99 1.0 0.87 0.93

Table 2: Feedback improves LLM causal validity. Precision (P), Recall (R), and F1 scores before and after applying
feedback derived from our verifier. The verifier enables models to revise incorrect expressions based solely on
causal graph structure, boosting recall and overall correctness.

Semantic Equivalence as Proof-Theoretic578

Reachability We define semantic equivalence579

with respect to a causal graph G as the symmetric580

closure of the derivability relation:581

E1 ≡G E2 ⇐⇒ (E1 ⊢G E2 ∧ E2 ⊢G E1) (9)582

This defines a family of equivalence classes583

[E]≡G ⊂ Lcausal, where each class represents all584

expressions that are equivalent iff they encode the585

same interventional distribution in all causal mod-586

els consistent with G. Empirically, we observe that587

LLM-generated outputs frequently fall into these588

equivalence classes without being string-identical589

to reference answers. For instance, expressions like590

P (Y | X,Z) and P (Y | do(X), Z) are lexically591

distinct but often semantically equivalent, condi-592

tional on specific d-separation statements. Our sym-593

bolic verifier resolves this not via heuristics, but594

by computing membership in the equivalence class595

through derivation.596

Symbolic Feedback Works Because of Local597

Equivalence Neighborhoods In the presence of598

an incorrect LLM output ELLM, our framework en-599

ables symbolic feedback by computing a correction600

E′ such that601

E′ ∈ ClosureR(ELLM) ∩ [E∗]≡G (10)602

where E∗ is the latent correct expression (not603

known to the verifier). Operationally, this amounts604

to inverse proof search: finding a path from ELLM605

to a semantically correct neighbor. Formally, the606

feedback procedure solves the following optimiza-607

tion:608

min
E′
{cost(E′) | ELLM ⊢G E′ ∧ E′ ≡G E∗}

(11)

609

In Section 4.3, we showed that providing feedback610

derived from symbolic analysis leads to improve-611

ments in model outputs. This supports the hypothe-612

sis that modern LLMs operate near locally correct613

regions of Lcausal, but lack explicit guarantees of614

logical closure (Wei et al., 2023; Zhou et al., 2023).615

Failure Types Align with Non-derivability The 616

most common model failures (e.g., using P (Y | X) 617

when X is a collider, or omitting keyfounders) cor- 618

respond to derivations that fail d-separation condi- 619

tions. For instance, symbolic proof fails when: 620

(Y ̸⊢ Z | X)GX
=⇒ 621

P (Y | X,Z) ̸≡G P (Y | do(X), Z) (12) 622

These cases, which account for a significant portion 623

of the errors in the models, are not just empirically 624

incorrect but provably invalid under our formal sys- 625

tem. This illustrates how symbolic reasoning cap- 626

tures not only surface alignment but deep structural 627

correctness. 628

6 Conclusion 629

We introduced a formal verification framework, 630

DoVerifier, for evaluating the causal validity of 631

LLM-generated expressions. By modeling causal 632

correctness as a symbolic derivation problem un- 633

der do-calculus and probability rules, our system 634

provides a principled alternative to string-based 635

metrics for causal QA tasks. Through experiments 636

on synthetic derivations and benchmarks like CLad- 637

der, we demonstrate that our method can detect sub- 638

tle reasoning failures, recover semantically valid 639

answers that are missed by naive metrics, and pro- 640

vide symbolic feedback that measurably improves 641

model outputs. 642

Our results suggest that symbolic reasoning re- 643

mains an essential component for trustworthy lan- 644

guage models, especially in high-stakes domains 645

where causal correctness matters. This work takes 646

a step toward bridging the gap between natural lan- 647

guage generation and formal reasoning systems by 648

treating causal inference as a structured, verifiable 649

process. 650

Limitations 651

While promising, our approach has several lim- 652

itations and opens up for future work. On the 653

8



one hand, the space of valid derivations can grow654

rapidly with the number of variables and the depth655

of allowed transformations. Although we employ656

optimizations like expression normalization and657

memoization, our breadth-first search remains com-658

putationally expensive in dense or deep DAGs. Fu-659

ture work could explore neural-guided proof search660

or approximate symbolic methods. On the other661

hand, regarding the feedback mechanism, the cur-662

rent feedback module improves the causal validity663

of model outputs using only the predicted DAG664

and the initial expression. It does not incorporate665

the original natural language question. As a result,666

the revised expression may be causally correct un-667

der the graph, but not necessarily faithful to the668

question intent. In practice, we observe that most669

LLM errors stem from misapplying causal seman-670

tics rather than misreading the question, but inte-671

grating question-aware feedback remains a valu-672

able direction for future work.673

Ethical Considerations674

This work focuses on the formal verification of675

causal expressions generated by large language676

models (LLMs), with the goal of improving their677

semantic correctness and reliability in reasoning678

tasks. Our proposed framework does not involve679

human subject data, personally identifiable infor-680

mation, or real-world deployment in high-stakes681

settings such as healthcare or public policy. How-682

ever, we acknowledge that causal claims can in-683

fluence decision-making in sensitive domains. As684

such, we emphasize that symbolic correctness un-685

der do-calculus does not guarantee practical va-686

lidity unless the underlying causal graph is itself687

accurate and contextually appropriate.688

Our framework is designed for evaluation and689

diagnostic purposes, not for automating causal de-690

cisions. We caution against interpreting verified691

expressions as endorsements of correctness in real-692

world applications without domain expertise. To693

avoid misuse, we release our tools with clear dis-694

claimers that they are intended for research and695

educational purposes.696
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A Desired Properties of a Good Verifier886

A central question in the design of verifiers for sym-887

bolic causal reasoning is: what kinds of differences888

between derivations should not affect the evalua-889

tion? In other words, what transformations should890

a good evaluator be invariant to. In this section,891

we formalize the invariance and sensitivity prop-892

erties that an ideal evaluator should satisfy. These893

properties are motivated both by formal semantics894

and by practical considerations in modeling causal895

reasoning.896

Given an initial expression ϕ0, a target ex-897

pression ϕ∗, and a derivation sequence D =898

(ϕ0, ϕ1, . . . , ϕk = ϕ∗), the evaluator should as-899

sign a score s(D) ∈ R that reflects the logical900

correctness, minimality, and interpretability of the901

derivation.902

Definition (Syntactic Equivalence). Let ϕ and903

ϕ′ be probability expressions. We write ϕ ≡syn904

ϕ′ if they differ only by a syntactic permutation905

that preserves semantic content, such as reordering906

terms in a conditioning set:907

P (Y | X,Z) ≡syn P (Y | Z,X) (13)908

Desideratum 1 (Syntactic Invariance). Let D909

be a derivation and D′ a derivation obtained by a910

sequence of syntactic equivalences to the interme-911

diate steps. Then:912

s(D) = s(D′) (14)913

Definition (α-Renaming). Let ϕ contain a vari-914

able V that does not appear free in other parts of915

the expression. Let ϕ′ be the result of replacing V916

by V ′, where V ′ is a fresh variable name. Then917

ϕ ≡α ϕ′.918

Desideratum 2 (α-Renaming Invariance). The919

evaluator must satisfy920

s(D) = s(D′) if each ϕ′
i ≡α ϕi for all i (15)921

Definition (Well-Typed Step). A step922

ϕi → ϕi+1 using do-calculus Rule923

r ∈ {Rule1,Rule2,Rule3} is valid if an only if924

the required graphical conditional independence is925

entailed by DAG G associated with the problem.926

Desideratum 3 (Rule Sensitivity). If D and D′927

differ only in that D′ includes a rule application r928

that violates the required independence, then:929

s(D′) < s(D) (16)930

This ensures the evaluator penalizes logically in-931

valid or unsound reasoning.932

Definition (Commutativity of Independent 933

Steps). Let ϕi → ϕi+1 → ϕi+2 be two derivation 934

steps, each applying a rule to a disjoint subformula 935

of the expression. IfD1 andD2 are derivations that 936

only differ in the order of these two steps, then they 937

are commutative. 938

Desideratum 4 (Step Order Invariance). We 939

want s(D1) = s(D2) if D1,D2 are commutative 940

of independent steps to ensure the evaluator does 941

not privilege arbitrary ordering of logically inde- 942

pendent rule applications. 943

Definition (Derivational Equivalence). Let D1 944

andD2 be distinct derivations from ϕ0 to ϕ∗, where 945

each step in both sequences is valid, though pos- 946

sibly differing in the choice or order of applied 947

rules. 948

Desideratum 5 (Robustness to Valid Alterna- 949

tives). The evaluator should satisfy ∀ε > 0: 950

|s(D1 − s(D2))| ≤ ε (17) 951

This encourages diversity in valid derivations with- 952

out heavily penalizing alternative but correct rea- 953

soning paths. 954

B Implementation Details of DoVerifier 955

Our implementation converts abstract causal ex- 956

pressions into concrete computational objects that 957

can be manipulated through rule applications. The 958

core components are implemented as follows: 959

Expression Representation We represent causal 960

expressions using a symbolic framework built 961

on SymPy3. Each causal probability expres- 962

sion P (Y | do(X), Z) is represented as a 963

CausalProbability object with an outcome vari- 964

able and a list of conditioning factors, which may 965

include both observational variables and interven- 966

tional variables (wrapped in Do objects). This rep- 967

resentation allows for: 968

• Unique identification of expressions through 969

consistent string conversion 970

• Distinction between interventional and obser- 971

vational variables 972

• Manipulation of expressions through rule ap- 973

plications 974

3https://www.sympy.org

12

https://www.sympy.org


Causal Graph Representation Causal graphs975

are represented using NetworkX4 directed graphs,976

where nodes correspond to variables and edges rep-977

resent causal relationships. For each rule applica-978

tion, we create modified graph structures according979

to the do-calculus definitions:980

• For Rule 1, we remove incoming edges to981

intervention variables using GX982

• For Rule 2, we remove both incoming edges983

to primary interventions and outgoing edges984

from secondary interventions using GXZ985

• For Rule 3, we perform the appropriate graph986

modifications for G
XZ(W )

as specified by987

Pearl988

D-separation Testing To determine rule applica-989

bility, we implement d-separation tests using Net-990

workX’s built-in is_d_separator function. For991

each potential rule application, we:992

1. Create the appropriate modified graph based993

on the rule994

2. Identify the variables that need to be tested for995

conditional independence996

3. Perform the d-separation test with the appro-997

priate conditioning set998

4. Apply the rule only if the independence con-999

dition is satisfied1000

For example, when applying Rule 1 to remove1001

an observation Z from P (Y | do(X), Z), we test1002

whether Y and Z are d-separated given X in the1003

graph GX .1004

Search Algorithm Optimization To make the1005

breadth-first search efficient, we implement several1006

optimizations:1007

• Expression normalization: We convert ex-1008

pressions to canonical string representations1009

with consistent ordering and whitespace re-1010

moval.1011

• Memoization: We cache the results of d-1012

separation tests to avoid redundant graph op-1013

erations.1014

• Early termination: We immediately return1015

a proof path when the target expression is1016

found.1017
4https://networkx.org/

• Visited set tracking: We maintain a set of 1018

already-visited expressions to avoid cycles 1019

and redundant exploration. 1020

Handling Incomplete Knowledge A key inno- 1021

vation in our implementation is the ability to work 1022

with incomplete causal knowledge. When the full 1023

DAG structure is unknown, our system can: 1024

• Work with explicitly provided independence 1025

pairs between variables 1026

• Infer independence relationships from partial 1027

graph information 1028

• Explore potential equivalences under different 1029

assumptions 1030

Scope of Verification While our implementation 1031

includes representations for both probability dis- 1032

tributions (P ) and expectations (E), our current 1033

verification framework focuses on causal expres- 1034

sions involving probabilities. This focus aligns 1035

with Pearl’s do-calculus, which was formulated 1036

for probability distributions. The identification of 1037

causal effects fundamentally involves transforming 1038

interventional probabilities into expressions based 1039

on observed data. 1040

The framework can be extended to handle ex- 1041

pectations directly, as we have implemented the 1042

necessary data structures and fundamental opera- 1043

tions for expectation expressions. However, since 1044

expectations are functionals of probability distri- 1045

butions, verifying equivalence at the probability 1046

level is sufficient for most practical causal infer- 1047

ence tasks. Once the correct probability expression 1048

is identified, expectations and other functionals can 1049

be derived through standard statistical methods. 1050

C Proof of Theorem 3.2 1051

We formally prove the soundness and completeness 1052

of our verification framework by modeling it as a 1053

symbolic derivation system over a finite-branching 1054

graph induced by transformation rules. 1055

Proposition C.1 (State Space as Derivation Graph). 1056

Let G be a causal DAG and let Einit be a valid 1057

causal expression. Then the set of all expressions 1058

derivable from Einit using do-calculus and prob- 1059

ability rules forms a well-defined directed graph 1060

S(Einit) over the language Lcausal, where: 1061

• Nodes correspond to normalized symbolic ex- 1062

pressions over G. 1063
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• Directed edges correspond to valid applica-1064

tions of transformation rules.1065

Proof. Each expression in Lcausal can be rep-1066

resented as a symbolic term P (Y | Z), where Z1067

contains a mix of observational and interventional1068

variables. Given a finite set of transformation rules1069

R (including the rules of do-calculus, Bayes’ rule,1070

chain rule, etc.), we define an edge from E → E′1071

if E′ can be obtained from E via one rule in R1072

under G.1073

Since expressions are finitely representable (e.g.,1074

via normalized strings) and rules are deterministic,1075

S(Einit) is a well-defined labeled transition graph1076

over expressions reachable from Einit. ■1077

1078

Proposition C.2 (Finiteness of Branching Factor).1079

For any node E in the derivation graph S(Einit),1080

the number of distinct expressions reachable via a1081

single transformation is finite.1082

Proof. Let n = |V| be the number of nodes in1083

the DAG G.1084

For each rule r ∈ R:1085

• Rule 1 can be applied at most once for each1086

Z in the conditioning set Z, giving at most n1087

applications.1088

• Rule 2 and Rule 3 apply to intervention vari-1089

ables, also bounded by n.1090

• Bayes’ Rule applies to pairs of variables1091

(X,Y ), yielding at most O(n2) applications.1092

• Chain Rule considers permutations over sub-1093

sets of V , giving at most O(n!) possibilities.1094

• Law of Total Probability can be applied per1095

mediator variable, also bounded by n.1096

Thus, each node E in S(Einit) has a finite1097

out-degree, i.e., the branching factor is finite. ■1098

1099

Proposition C.3 (Completeness of BFS). Let
Einit, Etarget ∈ Lcausal be expressions defined over
the same causal graph G. If there exists a deriva-
tion sequence

Einit → Etarget

of length at most d under rulesR, then breadth-first1100

search with depth limit d will find such a sequence.1101

Moreover, if no such sequence exists within d steps,1102

BFS will terminate after enumerating all reachable1103

expressions within that bound.1104

Proof. We model derivations as paths in the 1105

state graph S(Einit). Since the graph has a finite 1106

branching factor (Theorem C.2) and rule appli- 1107

cations are deterministic, breadth-first search ex- 1108

plores this graph in increasing depth order. 1109

For any reachable expression Etarget such 1110

that Einit ⊢G Etarget within d steps, BFS is 1111

guaranteed to enumerate it after at most O(bd) 1112

steps, where b is the maximum branching factor. 1113

Furthermore, BFS finds the shortest such path 1114

in terms of rule applications, since it explores 1115

all paths of length k before those of length k+1. ■ 1116

1117

D Practical Considerations 1118

Fact D.1 (Complexity). The time complexity of 1119

BFS is O(bd) where b is the maximum branching 1120

factor and d is the depth limit. 1121

While theoretically sound, practical implementa- 1122

tions must consider several optimizations: 1123

1. Expression normalization to avoid revisiting 1124

equivalent states (e.g., removing redundant 1125

conditions, standardizing variable order) 1126

2. Efficient d-separation testing for determin- 1127

ing rule applicability 1128

3. Memoization of independence tests to avoid 1129

redundant graph operations 1130

4. Strategic ordering of rule applications to 1131

potentially find solutions faster 1132

5. Bidirectional search from both Einit and 1133

Etarget to reduce the effective search depth 1134

These optimizations preserve the theoretical 1135

guarantees while making the approach computa- 1136

tionally feasible for practical use in evaluating 1137

causal reasoning in language models. 1138

E Data Samples of Synthetic Data 1139

To support the evaluation of causal inference meth- 1140

ods, we construct synthetic datasets using directed 1141

acyclic graphs (DAGs) that encode assumed causal 1142

relationships among variables. Each DAG consists 1143

of nodes representing variables and directed edges 1144

representing direct causal influences. These graphs 1145

serve as the basis for simulating both observational 1146

and interventional data. 1147

The data samples are designed to validate deriva- 1148

tions using do-calculus. Each example contains: 1149
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• A DAG representing the underlying relation-1150

ships.1151

• A pair of probability expressions (Ea, Eb)1152

where Ea is an interventional expression in-1153

volving do-operators and Eb is an equivalent1154

or simplified observational expression.1155

• A proof showing the sequence of do-calculus1156

rules (Rule 1, Rule 2, Rule 3) applied to re-1157

duce Ea to Eb. These synthetic samples are1158

not drawn from real-world distributions, but1159

they adhere strictly to the independence con-1160

straints implied by the DAGs, ensuring the1161

theoretical correctness of all derivations.1162

F Prompt Examples1163

To evaluate and guide language model performance1164

on causal reasoning tasks, we designed a two-shot1165

prompt that consists of: A set of instructions, two1166

fully worked examples, a new query prompt for the1167

model to solve in the same format.1168
1169

## Instructions:1170
1. For each problem, identify the correct1171

↪→ expression that represents the query1172
2. Draw the graphical representation as a1173

↪→ text description of edges1174
3. Show your mathematical reasoning step by1175

↪→ step1176
4. Provide a final yes/no answer1177
5. Keep your response concise and focused on1178

↪→ the solution1179
1180

## Examples:1181
1182

Example 1:1183
Prompt: Imagine a self-contained,1184

↪→ hypothetical world with only the1185
↪→ following conditions, and without any1186
↪→ unmentioned factors or causal1187
↪→ relationships: Poverty has a direct1188
↪→ effect on liking spicy food and1189
↪→ cholera. Water company has a direct1190
↪→ effect on liking spicy food. Liking1191
↪→ spicy food has a direct effect on1192
↪→ cholera. Poverty is unobserved. The1193
↪→ overall probability of liking spicy1194
↪→ food is 81%. The probability of not1195
↪→ liking spicy food and cholera1196
↪→ contraction is 13%. The probability1197
↪→ of liking spicy food and cholera1198
↪→ contraction is 17%. Is the chance of1199
↪→ cholera contraction larger when1200
↪→ observing liking spicy food?1201

Let V2 = water company; V1 = poverty; X =1202
↪→ liking spicy food; Y = cholera1203

1204
Expression: P(Y | X)1205
Graphical Representation: V1->X,V2->X,V1->Y,1206

↪→ X->Y1207
Reasoning: P(X = 1, Y = 1)/P(X = 1) - P(X =1208

↪→ 0, Y = 1)/P(X = 0)1209

P(X=1) = 0.81 1210
P(Y=1, X=0) = 0.13 1211
P(Y=1, X=1) = 0.17 1212
0.17/0.81 - 0.13/0.19 = -0.44 1213
-0.44 < 0 1214
Final Answer: No 1215

1216
Example 2: 1217
Prompt: Imagine a self-contained, 1218

↪→ hypothetical world with only the 1219
↪→ following conditions, and without any 1220
↪→ unmentioned factors or causal 1221
↪→ relationships: Poverty has a direct 1222
↪→ effect on liking spicy food and 1223
↪→ cholera. Water company has a direct 1224
↪→ effect on liking spicy food. Liking 1225
↪→ spicy food has a direct effect on 1226
↪→ cholera. Poverty is unobserved. For 1227
↪→ people served by a local water 1228
↪→ company, the probability of cholera 1229
↪→ contraction is 64%. For people served 1230
↪→ by a global water company, the 1231
↪→ probability of cholera contraction is 1232
↪→ 66%. For people served by a local 1233
↪→ water company, the probability of 1234
↪→ liking spicy food is 50%. For people 1235
↪→ served by a global water company, the 1236
↪→ probability of liking spicy food is 1237
↪→ 45%. Will liking spicy food decrease 1238
↪→ the chance of cholera contraction? 1239

Let V2 = water company; V1 = poverty; X = 1240
↪→ liking spicy food; Y = cholera. 1241

1242
Expression: E[Y | do(X = 1)] - E[Y | do(X = 1243

↪→ 0)] 1244
Graphical Representation: V1->X,V2->X,V1->Y, 1245

↪→ X->Y 1246
Reasoning: E[Y | do(X = 1)] - E[Y | do(X = 1247

↪→ 0)] 1248
[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X 1249

↪→ =1|V2=0)] 1250
P(Y=1 | V2=0) = 0.64 1251
P(Y=1 | V2=1) = 0.66 1252
P(X=1 | V2=0) = 0.50 1253
P(X=1 | V2=1) = 0.45 1254
(0.66 - 0.64) / (0.45 - 0.50) = -0.39 1255
-0.39 < 0 1256
Final Answer: Yes 1257

1258
## Your Task: 1259
Solve the following problem using the format 1260

↪→ above. Begin your response with " 1261
↪→ Solution:" and provide only the 1262
↪→ expression, graphical representation, 1263
↪→ reasoning, and final answer. 1264

Prompt: {description} 12651266

G Alternative Metrics 1267

Evaluation of causal expression generation has of- 1268

ten relied on surface-level metrics such as exact 1269

string match, BLEU score, BERTscore, and token- 1270

level F1. 1271

BLEU and Token-level F1 Fails for Causal Eval- 1272

uation BLEU computes precision over n-grams 1273

between a candidate and reference string. In causal 1274
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Model BLEU Token-level F1

Llama-3.1-8B-Instruct (Grattafiori et al., 2024) 0.46 0.70
Mistral-7B-v0.1 (Jiang et al., 2023) 0.33 0.58
Llama-3.1-8B (Grattafiori et al., 2024) 0.36 0.57
Gemma-7b-it (Team et al., 2024) 0.19 0.55

Table 3: Average BLEU and token-level F1 scores for each model evaluated on CLadder.

LLM Output Formal Label Correct? BERTScore F1

P(Y | V1) P(Y | X) No 0.91
P(Y) P(Y | X) No 0.91

Table 4: Incorrect model outputs with high BERTScore. While these expressions differ from the gold standard,
BERTScore assigns high similarity, demonstrating its over-generosity in causal evaluation.

reasoning, it suffers from1275

Small expression length bias: Causal expres-1276

sions are often short; hence, BLEU becomes1277

unstable when evaluating < 10 token strings1278

since higher-order n-grams vanish.1279

Syntactic Fragility: Expressions that are seman-1280

tically equivalent but have different variable1281

order get penalized.1282

Non-semantic penalties: BLEU may still reward1283

inclusion of irrelevant variables if they over-1284

lap with the gold string, even if the overall1285

expression is wrong.1286

Token-level F1 computes overlap between tokens,1287

treating the expression as a bag of symbols. It1288

however, still leads to multiple failure cases:1289

Ignores structure role of variables: F1 cannot1290

distinguish P (Y ) from P (Y | X) or1291

P (Y | do(X)). They call share some subset1292

of overlapping tokens and will inflate the1293

recall.1294

No notion of well-formedness: Syntactically ex-1295

pressions such as P (X Y ) or Y | P (X)1296

might have high F1 if they reuse common1297

symbols despite being invalid.1298

No semantics: Conditioning vs intervention is1299

completely ignored, a model can be rewarded1300

for guessing the right letters, not the right1301

logic.1302

Table 3 shows the average BLEU and token-level1303

F1 score for each model evaluated on causal lan-1304

guage tasks. We see that both BLEU and F1 lack1305

a formal grounding in the semantics of causal in- 1306

ference. There is no transformation set T under 1307

which they define an equivalence class. In contrast, 1308

our symbolic verifier defines: 1309

ϕ1 ≡G ϕ2 ⇐⇒ ϕ1 ⊢G ϕ2 ∧ ϕ2 ⊢G ϕ1 (18) 1310

Thus, BLEU and F1 may disagree with formal cor- 1311

rectness, and worse, may systematically overesti- 1312

mate the validity of incorrect outputs. 1313

BERTScore Failure Cases BERTScore (Zhang 1314

et al., 2020) is a widely used metric that computes 1315

semantic similarity by aligning contextualized to- 1316

ken embeddings from a pretrained BERT model. It 1317

is often promoted as a semantically aware alterna- 1318

tive to BLEU. However, in the context of causal 1319

reasoning, BERTScore exhibits a distinct failure 1320

mode: it confuses lexical proximity for logical va- 1321

lidity. Table 4 shows common failure cases where 1322

BERTscore assigns a high similarity score, even 1323

when they are not supposed to be equivalent expres- 1324

sions. Let ϕpred, ϕgold ∈ Lcausal be causal expres- 1325

sions encoded as strings. BERTScore computes: 1326

BERTScore(ϕpred, ϕgold) = F1BERT(hϕpred , hϕgold)

(19)
1327

where hϕ are contextual embeddings from a pre- 1328

trained BERT model. However, the model has 1329

no knowledge of causal semantics, independence 1330

structures, or the syntax of do-calculus. Tokens 1331

like P, (, ) are close in embedding space regard- 1332

less of their role in the logical formula. This re- 1333

sults in BERTScore assigning high similarity to 1334

expressions that are semantically disjoint under the 1335

causal graph. Unlike DoVerifier, BERTScore lacks 1336
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a soundness guarantee1337

BERTScore(ϕpred, ϕgold) > 0.9 ̸⇒ ϕpred ≡G ϕgold
(20)

1338

This could become dangerous in high-stakes con-1339

texts, where plausible-looking causal statements1340

may lead to incorrect conclusions when evaluated1341

with BERTScore.1342
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