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ABSTRACT

Rectified flows (RFs) enable efficient, high-fidelity image synthesis by integrating
a learned velocity field from noise to data. However, in latency-constrained sce-
narios with few-step settings, RFs tend to produce degraded images. We identify
this limitation in the commonly used Euler sampler which assumes piecewise-
constant velocity and neglects inherent acceleration. Consequently, significant
discretization errors occur and dominate the few-step sampling process. To ad-
dress this issue, we introduce Acceleration-Aware Sampling (A2S) which explic-
itly accounts for acceleration while maintaining the same computational cost as
Euler sampler. From a second-order perspective, we decomposes acceleration
into temporal and spatial components, and compensates for both with lightweight
approximations. Specifically, temporal acceleration is handled by a time-shifted
velocity evaluation, aligning updates with mid-interval dynamics while preserv-
ing one forward pass per step. Meanwhile, spatial acceleration is captured by
a smooth, time-dependent gain that modulates step size. As a result, A2S is
model-agnostic, plug-and-play for existing pretrained rectified-flow models and
requires no retraining. Across multiple models and benchmarks, A2S consistently
improves image quality and stability in the few-step setting and remains competi-
tive as the step count increases. Moreover, on FLUX, few-step A2S even surpasses
standard multi-step samplers in image aesthetics and text–image alignment.

1 INTRODUCTION

Continuous-time flows have emerged as a powerful paradigm for high-fidelity image synthesis. In
particular, rectified flows (RFs) (Lipman et al.; Liu et al.; Esser et al., 2024; Labs, 2024) provide a
deterministic alternative to diffusion models (Ho et al., 2020; Rombach et al., 2022; Podell et al.)
by learning a velocity field that transports noise to data. During inference, sampling proceeds by
integrating velocity field from an initial noise to a final image. Though RF samplers are already more
efficient than stochastic approaches, real-world applications such as interactive generation (Yu et al.,
2024; 2025; Liang et al., 2025) and latency-sensitive services (Ma et al., 2025; Shen et al., 2025)
often require strict time budgets, which force ultra-few sampling steps and expose a pronounced
trade-off between quality and speed: when the number of integration steps get significantly reduced,
image artifacts and loss of fidelity emerge (Lu et al., 2022).

We identify a central cause of this degradation in the Euler sampler (Lee et al., 2025; Esser et al.,
2024) commonly used for RFs. Euler integration assumes that the velocity is piecewise constant
within each step, i.e., zero acceleration. However, the learned velocity vθ(xt, t) in RFs depends
on both the state xt and time t, producing trajectories with nonzero acceleration that Euler sampler
neglects. In the few-step scenario, since the discretization interval is large, ignoring acceleration in-
troduces significant integration error. This error accumulates across steps and becomes the dominant
failure mode under few-step sampling.

To address this issue, we propose Acceleration-Aware Sampling (A2S) which explicitly incorporates
the acceleration at the same computational cost. Specifically, A2S starts from a second-order Taylor
view of the trajectory and decomposes the total acceleration into two components: (1) Temporal
acceleration (Acctemp), which reflects how velocity varies with time at a fixed state; and (2) Spatial
acceleration (Accspat), describing how the velocity changes as the state moves along the trajectory.
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Directly computing these acceleration terms is nontrivial, as it requires Jacobian-vector prod
(JVP) (Blondel & Roulet, 2024) or higher-order differentiation, which is impractical for high-
dimension image space. We compensates for them with lightweight approximations. For Acctemp,
we uses a time-shifted evaluation: it evaluates the velocity as a shifted time within each step to
better align the update with mid-interval dynamics, while keeping a single forward pass per step.
For Accspat, we approximate the effect of speed changes along the current direction of motion with
a smooth, time-dependent gain that scales the step size. Technically, we utilize a simple linear
scheduler to capture the dominant effect without additional model calls.

Across multiple pretrained RF models (Labs, 2024; Esser et al., 2024) and benchmarks (Lin et al.,
2014; Wang et al., 2023; Kirstain et al., 2023; Wu et al., 2023), A2S consistently improves image
quality and stability in the few-step setting and remains competitive as the number of steps increases.
Notably, on FLUX, few-step A2S even surpasses standard multi-step samplers in terms of image aes-
thetics and text–image alignment, demonstrating that acceleration-aware integration can outperform
naive increases in step count. Ablation studies further confirm that both temporal and spatial com-
ponents contribute to the gains, and qualitative analyses show that A2S better tracks the underlying
continuous-time flow. Our contributions are summarized as follows:

• We diagnose few-step degradation in rectified flows as a consequence of the zero-acceleration
assumption in first-order samplers and derive a second-order view of RF sampling that explicitly
separates temporal and spatial acceleration.

• We propose Acceleration-Aware Sampler that compensates temporal acceleration via a single time
shift and approximates spatial acceleration through lightweight, time-dependent scale modulation.

• Our method exhibits significant quality gains in few-step setting across pretrained RF models and
benchmarks, with minimal implementation overhead and no retraining; on FLUX-dev, few-step
A2S surpasses standard multi-step samplers in both image aesthetics and text–image alignment.

2 RELATED WORKS

We review three main lines of work for few-step sampling: (i) reducing discretization error with
more accurate numerical solvers to facilitate few-step sampling (Fast samplers), (ii) eliminating
redundant sampling steps by caching and reusing past computations (Cache-based methods), and
(iii) reduing the required number of sampling steps by knowledge distillation (Step distillation).

Fast Samplers. Fast samplers develop higher-order ODE solvers and timestep schedules to
achieve strong fidelity with very few function evaluations. Representative examples include DPM-
Solver and DPM-Solver++ (Lu et al., 2022; 2025), exponential-integrator formulations such as
DEIS (Zhang & Chen), and unified predictor-corrector (UniPC) (Zhao et al., 2023). Schedule design
(e.g., noise or sigma parametrization and nonuniform time grids) (Karras et al., 2022; Song et al.)
is also crucial in the few-step setting. DEQ (Pokle et al., 2022) extends the DDIM solve for a joint
fixed point with implicit differentiation, ParaDiGMS (Shih et al., 2023) uses Picard iterations within
a sliding window to update multiple states simultaneously, ParaTAA (Walker & Ni, 2011; Shih et al.,
2023) solves triangular nonlinear systems and introduces Triangular Anderson Acceleration for sta-
ble iterative refinement, and StreamDiffusion (Kodaira et al., 2023) combines batched denoising,
residual classifier-free guidance, and asynchronous queues for real-time interaction. While these
solvers can attain high order with 2–3 evaluations per step, extremely coarse discretizations (e.g.,
4–8 steps) stress their smoothness assumptions.

Cache-based Methods. Cache-based strategy reuses past model evaluations to construct updates
with a single function evaluation per step after initialization. DeepCache (Ma et al., 2024) identifies
redundancy across nearby steps and reuses features to avoid recomputation while preserving fidelity
at typical step counts. ∆-DiT (Chen et al., 2024) optimizes diffusion transformers via step-sensitive
block caching and adaptive allocation of computational resources. FORA (Selvaraju et al., 2024)
reduces redundant inference by caching residuals between attention layers. TeaCache (Liu et al.,
2025) exploits correlations between inputs and outputs to define dynamic caching policies. These
methods are highly efficient as cached outputs substitute for extra forward passes. However, they do
not explicitly address integration errors that arise under very coarse step sizes.

Step Distillations. Distillation reduces the number of network evaluations by training students to
match a teacher’s trajectory in fewer steps. Progressive distillation (Salimans & Ho) halves the

2
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Figure 1: Empirical evidence that the learned velocity vθ is not piecewise constant. (a) Velocity-
norm ||vθ(xt, t)||2 along the sampling trajectory for five samples. (b) Temporal sensitivity:
||vθ(xt, t + τ)||2 versus time perturbation τ . (c) Spatial sensitivity: ||vθ(xt + ∆x, t)||2 versus
state perturbation ∆x.

step count iteratively, eventually reaching very small numbers of steps. Consistency-based ap-
proaches (Luo et al., 2023; Song et al., 2023) enforce self-consistency constraints to enable one-
to-few step synthesis, including latent variants built on top of latent diffusion backbones. In the
flow-matching and rectified flow literature, distillation and scaling studies (Liu et al.; Kim et al.;
Lee et al., 2024) demonstrate straighter, more easily integrable trajectories and improved few-step
quality; adversarial distillation (Sauer et al., 2024) further enhances perceptual fidelity at low step
counts. These techniques require additional training or fine-tuning and may involve changes to the
model architecture or loss.

3 METHOD

This work targets the few-step generation configuration, where standard Euler sampling in rectified
flows often degrades image quality due to the ignorance of acceleration. We address this by explic-
itly modeling and compensating for both temporal and spatial components of acceleration within
each integration step. We begin by analyzing the limitations of existing samplers that neglect ac-
celeration (Sec. 3.1). Sec. 3.2 introduces A2S, which decomposes acceleration into temporal and
spatial terms via a principled Taylor expansion. However, computing these accelerations is non-
trivial, as either JVP or differentiation is required, which is almost intractable for high-dimension
images. Subsequent subsections (Sec. 3.3 and Sec. 3.4) detail our efficient approximations for these
components, enabling accurate compensation with minimal additional computation.

3.1 EMPIRICAL ANALYSIS OF NON-ZERO ACCELERATION IN RECTIFIED FLOW

Preliminary. We provide a concise introduction to rectified flow models (Lipman et al.; Liu et al.),
covering their training and sampling procedures. RF learns a vector field vθ by regressing the net-
work output to a known velocity along a straightened (linear) probability path connecting a noise
sample x0 ∼ N (0, I) and a data sample x1 ∼ pdata:

xt = (1− t)x0 + tx1, t ∈ [0, 1] (1)

This path has constant velocity v = dxt

dt = x1 − x0. The model parameterized by θ is trained to
predict this velocity by minimizing the mean-squared error:

LRF(θ) = Et,x0,x1
||vθ(xt, t)− v||22 (2)

For sampling, time is discretized into N steps with increment ∆t = 1/N, and the learned velocity
is integrated via an explicit iterative sampling process, progressing from t = 0 to t = 1:

xt+∆t = xt + vθ(xt, t) ·∆t (3)

Motivation: Acceleration in Velocity Fields. Sampling in RF models typically uses the first-order
Euler integration in Eq. 3, which assumes vθ is constant over each interval [t, t + ∆t]. That is to
say, the acceleration within each step is zero. We test this assumption empirically on five samples.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Fig. 1a shows that the velocity norm varies substantially along the trajectory. Fig. 1b and Fig. 1c
further demonstrate that vθ is sensitive to both time perturbations (temporal variation) and state
perturbations (spatial variation). These observations indicate nonzero acceleration; hence the Euler
update induces integration error that grows with larger ∆t, degrading sample quality. This motivates
samplers that explicitly account for acceleration within the integration step.

3.2 SECOND-ORDER ACCELERATION-AWARE SAMPLER

The empirical evidence above shows that the learned velocity varies with both time and state, vio-
lating the piecewise-constant assumption implicit in Euler updates. To account for the acceleration
effects, we augment the sampler with a second-order Taylor expansion of the trajectory around t:

xt+∆t ≈ xt + vθ(xt, t) ·∆t+
1

2

dvθ(xt, t)

dt
· (∆t)2 (4)

where the second-order term dvθ(xt,t)
dt is the total acceleration. By the chain rule, this total accelera-

tion can be further decomposed into temporal and spatial components, reflecting its dependence on
both time and state:

dvθ(xt, t)

dt
=

∂vθ(xt, t)

∂t︸ ︷︷ ︸
temporal acceleration

+
∂vθ(xt, t)

∂xt
· dxt

dt︸ ︷︷ ︸
spatial acceleration

=
∂vθ
∂t

+
∂vθ
∂xt
· vθ(xt, t) (5)

A detailed derivation is provided in Appendix A. Substituting Eq. 5 into Eq. 4 gives the full second-
order update:

xt+∆t = xt + vθ(xt, t) ·∆t+
1

2

(
∂vθ
∂t

+
∂vθ
∂xt

vθ

)
· (∆t)2 (6)

While conceptually straightforward, computing acceleration at every step is nontrivial in high-
dimensional image space. The temporal term requires differentiating the network with respect to
its time input, and the spatial term is a Jacobian-vector product (JVP). Forming the full Jacobian is
intractable for image-sized states. Besides, even efficient JVPs typically require extra differentiation
passes, increasing both runtime and memory use per step. Finite differences can be noisy and still
incur additional computation. In the following subsections, we develop efficient approximations
to both acceleration components to keep the computation close to the first-order sampling while
improving integration accuracy.

3.3 COMPENSATING TEMPORAL ACCELERATION VIA TIME-SHIFTING

The temporal acceleration term ∂vθ

∂t quantifies the explicit change in the velocity field with respect
to time, holding the state fixed. However, directly computing this partial derivative can be costly,
as it would require multiple model calls to estimate the finite differences. We propose an efficient
approximation inspired by a fundamental observation: the velocity field evolves smoothly with time.

Our key idea is to estimate the change by evaluating the network at a strategically chosen future
time point. Specifically, evaluating the velocity at a slightly future time t + δ for the same state xt

obtains vθ(xt, t+δ) and the difference between vθ(xt, t+δ)−vθ(xt, t) approximates the change due
purely to time advancement, which is the essence of the temporal acceleration. We can formalize
this intuition with a Taylor expansion:

vθ(xt, t+ δ) ≈ vθ(xt, t) +
∂vθ(xt, t)

∂t
· δ (7)

To integrate this into the second-order update (Eq. 6), we set the shift δ = ∆t/2. The product of the
temporal acceleration and the timestep ∆t is then approximated by:

∂vθ
∂t
·∆t ≈ 2

(
vθ(xt, t+

1

2
∆t)− vθ(xt, t)

)
(8)

4
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Substituting Eq. 8 into the full second-order update (Eq. 6) simplifies the expression by absorbing the
original velocity and the temporal acceleration term into a single, time-shifted velocity evaluation:

xt+∆t ≈ xt + vθ(xt, t) ·∆t+
1

2

(
∂vθ
∂t

+
∂vθ
∂xt

vθ

)
· (∆t)2

≈ xt + vθ(xt, t) ·∆t+

(
vθ(xt, t+

1

2
∆t)− vθ(xt, t)

)
·∆t+

1

2

∂vθ
∂xt

vθ · (∆t)2

= xt + vθ(xt, t+
1

2
∆t) ·∆t+

1

2

∂vθ
∂xt

vθ · (∆t)2. (9)

This result has a compelling interpretation: compensating temporal acceleration is equivalent to
using a time-shifted velocity evaluated at the midpoint of the integration interval t +∆t/2. This is
analogous to the midpoint method in numerical ODE integration, which achieves a local truncation
error of O(∆t3) by better capturing the average flow within the step. Our approximation thus
reduces the error from the temporal component without explicitly computing expensive temporal
derivatives. We further explain the timeshift from the lens of “trajectory switching” in Appendix A.1.

3.4 COMPENSATING SPATIAL ACCELERATION VIA SCALE MODULATION

The spatial acceleration term ∂vθ
∂xt

vθ is a Jacobian-vector product, which is expensive and numeri-
cally unstable to compute exactly in high-dimensional image spaces. We therefore seek an approxi-
mation that captures its leading effect while keeping the first-order computational cost.

Fig. 1c indicates that the velocity responds approximately linearly to small perturbations in the state.
This suggests preserving the direction of motion while adjusting the step size via speed modulation.
To explicitly model the effect brought by the spatial acceleration along the velocity direction, we
decompose the spatial acceleration into components parallel and orthogonal to the current velocity
direction vθ:

∂vθ
∂xt

vθ =
< ∂vθ

∂xt
vθ, vθ >

||vθ||22
vθ + rθ =

v⊤θ

(
∂vθ
∂xt

)
vθ

||vθ||22
vθ + rθ = κtvθ + rθ, rθ ⊥ vθ (10)

The coefficient κt is the directional derivative of the velocity along itself, projected back onto the
direction of motion. Therefore, retaining only the parallel component corrects how fast we move
along the current direction, which directly targets the dominant effect observed in Fig. 1c. The
orthogonal component rθ is considerably harder to estimate without extra network evaluations or
Jacobians. We therefore neglect it for efficiency and stability in the few-step scenario.

Incorporating only the parallel component of the spatial acceleration into Eq. 9 yields:
xt+∆t ≈ xt + vθ(xt, t+

1
2∆t) ·∆t+ 1

2κtvθ(xt, t+
1
2∆t) · (∆t)2, (11)

which shows that spatial acceleration acts as a multiplicative correction to the effective step size
along the current direction. Defining αt ≈ 1 + κt∆t/2, we obtain the practical update:

xt+∆t = xt + αtvθ(xt, t+
1
2∆t) ·∆t (12)

This form preserves the direction given by the time-shifted velocity while compensating for speed
changes via a scalar gain. Inspired from the near-linearity in Fig. 1c, we approximate αt as a smooth,
time-dependent schedule that captures the average trend of speed variation along the flow using a
simple linear schedule:

αt = αstart + (αend − αstart) · t, t ∈ [0, 1]. (13)
Based on Eq. 12, we design a cache-based sampler that exploits direction difference to determine
the caching strategy. See Appendix A.3 for details.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUPS

Models, Datasets, and Baselines. We evaluate our method on representative flow-based text-to-
image models, namely FLUX-dev (Labs, 2024) and Stable Diffusion 3.5 (Esser et al., 2024). Un-
like prior works that typically rely on a single dataset, we conduct a comprehensive evaluation on

5
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Table 1: Quantitative results on FLUX-dev and Stable Diffusion 3.5-large (SD 3.5) across four
datasets. The base samplers use 20 and 30 denoising steps respectively. Latency is reported in
seconds; subscripts denote speedup relative to each model’s base sampler. indicates metrics
where few-step A2S surpasses the corresponding multi-step base. Bolded denotes the best score.

Method FLUX-dev (20 steps) SD 3.5-large (30 steps)
Latency(s)↓ PIQA↑ AES↑ CLIP↑ Pick↑ HPSv2↑ Latency(s)↓ PIQA↑ AES↑ CLIP↑ Pick↑ HPSv2↑

M
SC

O
C

O

Base 15.51×1.00 0.8353 6.3547 31.4861 23.0181 0.2894 20.52×1.00 0.8222 6.2415 32.4559 22.7901 0.2878
+∆-DiT 8.50×1.82 0.7560 6.1667 31.5278 22.7156 0.2833 7.88×2.60 0.7691 6.1425 32.2669 22.4705 0.2824
+FORA 8.58×1.81 0.7951 6.2795 31.5754 22.8030 0.2849 7.55×2.72 0.7612 6.1541 32.2797 22.4651 0.2822
+TeaCache 6.28×2.47 0.7925 6.3327 31.5135 22.8110 0.2841 6.84x3.00 0.7946 6.1420 32.2489 22.4778 0.2853
+DPM 6.26×2.48 0.7866 6.2686 31.6541 22.6635 0.2843 6.84×3.00 0.7870 6.1773 32.2498 22.5119 0.2855
+UniPC 6.26×2.48 0.7952 6.2663 31.6450 22.6658 0.2857 6.89×2.98 0.7921 6.1631 32.1262 22.4750 0.2864
+A2S 6.19×2.51 0.8132 6.4352 31.6768 22.9733 0.2876 6.64×3.09 0.7971 6.2095 32.5638 22.6009 0.2864

D
iff

us
io

nD
B Base 15.52×1.00 0.8486 7.0069 31.9292 21.1640 0.2741 20.63×1.00 0.8152 6.7790 32.8839 21.4617 0.2751

+∆-DiT 8.61×1.80 0.7274 6.8457 31.6846 20.6779 0.2675 7.89×2.62 0.7452 6.7195 32.8759 21.1428 0.2684
+FORA 8.64×1.80 0.8037 6.9249 31.9023 21.0369 0.2700 7.54×2.73 0.7390 6.7330 32.8784 21.1306 0.2682
+TeaCache 6.30x2.46 0.7782 7.0054 32.1365 21.1151 0.2688 6.94x2.97 0.7278 6.7181 32.8399 21.0646 0.2677
+DPM 6.28×2.47 0.7829 6.9392 31.9322 20.8954 0.2698 6.84×3.02 0.7769 6.7861 33.0042 21.2064 0.2711
+UniPC 6.33×2.45 0.8044 6.9492 31.8827 20.9041 0.2713 6.89×2.99 0.7892 6.7594 32.8315 21.1673 0.2722
+A2S 6.23×2.49 0.8054 7.1996 32.2102 21.3643 0.2735 6.40×3.22 0.7901 6.8067 33.1371 21.2525 0.2730

Pi
ck

-a
-P

ic

Base 15.53×1.00 0.8265 6.7594 31.9251 22.1654 0.2759 20.63×1.00 0.8067 6.5171 32.6785 22.1848 0.2757
+∆-DiT 8.59×1.81 0.7524 6.5584 31.7751 21.9596 0.2702 7.87×2.62 0.7374 6.4802 32.5863 21.9141 0.2699
+FORA 8.64×1.81 0.7781 6.6504 31.8977 22.0116 0.2713 7.55×2.73 0.7296 6.4898 32.5816 21.9071 0.2697
+TeaCache 6.27x2.48 0.7633 6.7709 31.6654 22.0854 0.2706 6.76x3.05 0.7717 6.4776 32.5656 21.9250 0.2715
+DPM 6.28×2.47 0.7679 6.6501 31.7623 21.8770 0.2708 6.84×3.02 0.7626 6.4804 32.5837 21.9336 0.2715
+UniPC 6.29×2.47 0.7865 6.6653 31.7649 21.8848 0.2724 6.88×3.00 0.7728 6.4504 32.5458 21.9564 0.2725
+A2S 6.23×2.50 0.7873 6.8760 31.7706 22.1795 0.2735 6.35×3.25 0.7864 6.5093 32.6654 21.9928 0.2727

H
PD

v2

Base 15.52×1.00 0.8419 6.7367 32.5582 22.6456 0.2836 20.66×1.00 0.8089 6.5974 33.9259 22.7529 0.2834
+∆-DiT 8.60×1.80 0.7778 6.5910 32.5681 22.4429 0.2776 7.91×2.61 0.7467 6.5005 34.0328 22.4431 0.2777
+FORA 8.65×1.79 0.8016 6.6672 32.6645 22.5003 0.2790 7.57×2.73 0.7448 6.5269 34.0575 22.4321 0.2775
+TeaCache 6.32x2.46 0.7799 6.7492 32.7640 22.5746 0.2782 6.96x2.97 0.7302 6.5132 34.0283 22.3817 0.2771
+DPM 6.29×2.47 0.7869 6.6746 32.6868 22.3607 0.2787 6.84×3.02 0.7709 6.5728 34.1335 22.5697 0.2801
+UniPC 6.30×2.46 0.8042 6.6806 32.7982 22.3595 0.2801 6.86×3.01 0.7766 6.5254 33.9404 22.5020 0.2809
+A2S 6.21×2.50 0.8052 7.0025 32.8823 22.7729 0.2836 6.64×3.11 0.7808 6.5484 34.1450 22.5794 0.2814

four diverse benchmarks: MSCOCO (Lin et al., 2014), DiffusionDB (Wang et al., 2023), Pick-a-
Pic (Kirstain et al., 2023), and the Human Preference Dataset v2 (HPDv2) (Wu et al., 2023). These
datasets cover different prompt distributions, thereby testing the model’s ability to synthesize a broad
range of content. For baselines, we compare against two major categories: (i) cache-based methods
(FORA (Selvaraju et al., 2024), ∆-DiT (Chen et al., 2024), and TeaCache (Liu et al., 2025)); and
(ii) fast samplers (DPM (Lu et al., 2022), UniPC (Zhao et al., 2023)). Together, these baselines
represent the main directions of few-step approaches. Further details are provided in Appendix B.

Evaluation Metrics. We evaluate our method along three key dimensions: (i) computational ef-
ficiency, measured by per-sample latency (in seconds) and overall speedup (shown in subscript);
(ii) image quality, assessed using no-reference image quality assessment (IQA) metrics, including
PIQA (Zalcher et al., 2025) and AES (LAION-AI, 2022); and (iii) textual alignment and human
preference, quantified by CLIP (Radford et al., 2021), HPSv2 (Wu et al., 2023), and Pick (Kirstain
et al., 2023), which capture the correspondence between generated images, input prompts, and hu-
man judgments. More details about these evaluation metrics are provided in Appendix B.2.

Implementation Details. All experiments are conducted on a single NVIDIA H20 GPU (96 GB).
Our method is implemented by compensating for both temporal and spatial acceleration. For tem-
poral acceleration, we apply a timeshift δ equal to half the integration step size (δ = 1

2∆t). Since
the base scheduler employs a resolution-dependent rescaling of the timestep schedule (Esser et al.,
2024), the integration step size ∆t varies across steps; we follow the same schedule, making the
timeshift δ step-dependent as well. For spatial acceleration, we use a linear schedule for the scaling
factor αt, gradually increasing it from αstart = 0.95 to αend = 1.05 throughout the generation
process. More details are provided in Appendix B.3.

4.2 MAIN RESULTS

Quantitative Results. Tab. 1 compares the proposed A2S with the base sampler and other base-
lines. A2S achieves the highest speedups while preserving, and often improving, image quality. It
consistently attains the best or near-best AES across datasets and backbones, frequently surpassing
the multi-step base. On FLUX-dev, A2S reduces latency to around 6.2 seconds (about x2.5 speedup
over the 20-step base) and simultaneously improves semantic and aesthetic metrics: for MSCOCO
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Base FORA TeaCache DPM UniPC Ours

Figure 2: Qualitative comparisons on MSCOCO dataset with FLUX-dev (20 steps) as the base
model. Top: “A cat laying in a green bowl on a wooden table.” Bottom: “A dog herding a group of
sheep in a meadow.” Best viewed when zoomed in for details.

and DiffusionDB, A2S exhibits higher AES, CLIP and Pick scores than the base. On HPDv2, the
AES improves significantly from 6.7367 to 7.0025 despite using far fewer steps. On SD 3.5, the
speedup is larger and the image quality is at least on par with the base. On MSCOCO, DiffusionDB
and Pick-a-Pic, A2S reaches the top scores in nearly all metrics. On preference-oriented metrics
(Pick, HPSv2), A2S matches or outperforms all baselines, improving the Pick score on three out
of four datasets under FLUX (DiffusionDB, Pick-a-Pic, HPDv2). Overall, A2S provides the best
speed–quality trade-off: it is 2.5–3.2× faster, while often exceeding the multi-step base on align-
ment and aesthetics and outperforming accelerated samplers on preference metrics.

Qualitative Results. We present qualitative comparisons in Fig. 2, where all the baselines and our
method employ FLUX-dev as the base model. In the first example, existing methods noticeably
reduce visual fidelity and texture richness, resulting in blurred details or unrealistic appearances.
Compared to the base model, our method enhances realism by preserving fine-grained fur textures,
producing a more informative background, and rendering natural depth-of-field effects that together
yield superior visual quality. In the second example, competing methods fail to faithfully preserve
the target object, causing the dog to vanish or appear unnatural. In contrast, our approach restores
the missing semantic element, improves text–image alignment, and introduces richer scene details
with a more balanced composition. Additional qualitative results are provided in Appendix C.2.

4.3 ABLATION STUDIES

Table 2: Ablation on temporal (Acctemp) and spatial
(Accspat) acceleration compensation on MSCOCO. The top
row reports FLUX-dev at 20 steps. Rows 2-5 show results
with various components removed (✘) and active (✔).

Acctemp Accspat PIQA↑ AES↑ Pick↑ HPSv2↑
FLUX-dev (20 steps) 0.835 6.355 23.018 0.289

✘ ✘ 0.779 6.339 22.635 0.285
✔ ✘ 0.804 6.453 22.950 0.287
✘ ✔ 0.786 6.371 23.000 0.286
✔ ✔ 0.813 6.435 22.973 0.288

Ablation on Acceleration Compen-
sation. Unless otherwise noted, all
ablations and analyses in this section
are conducted with FLUX-dev on the
MSCOCO dataset. Tab. 2 evaluates
how the temporal (Acctemp) and spa-
tial compensation (Accspat) contribute
to quality under an aggressive time
budget on MSCOCO. We use FLUX-
dev at 20 steps as a reference. Dis-
abling both modules exhibits signifi-
cant drops in PIQA, Pick and HPSv2
relative to 20-step baseline, confirming that naive few-step generation harms both perceptual fidelity
and human preference. Adding Acctemp recovers most of the perceptual loss with the AES even
surpassing the 20-step baseline (6.453 vs 6.355, the highest AES in the ablation). Accspat provides
complementary gains with the strongest Pick metric among the variants. This suggests Accspat ef-
fectively counters spatial artifacts. Enabling both delivers the best overall trade-off: it attains the
highest PIQA and HPSv2 while also reaching a comparable AES and Pick metric. Notably, the full
model’s AES is marginally below Acctemp only and its Pick metric slightly below Accspat only, indi-
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Table 3: Ablation on the timeshift δ. We com-
pare fixed shifts (δ ∈ [−0.02, 0.04]), a shift op-
timized via a genetic algorithm (GA), and the
analytic midpoint δ = 1

2∆t for compensating
temporal acceleration Acctemp.

Timeshift δ PIQA↑ AES↑ Pick↑ HPSv2↑
-0.02 0.5618 5.5635 21.8433 0.2678

0 0.7789 6.3385 22.6349 0.2854
0.02 0.7999 6.4799 22.7707 0.2863
0.04 0.7954 6.4269 22.0910 0.2790
GA 0.8032 6.4231 22.6929 0.2855
1
2∆t 0.8036 6.4526 22.9496 0.2874

Table 4: Ablation on spatial acceleration com-
pensation (Accspat) using the first-order linear
scale schedule in Eq. 13. We vary (αstart, αend)
with all other settings fixed; α = 1.00 denotes
no compensation.

(αstart, αend) PIQA↑ CLIP↑ Pick↑ HPSv2↑
(1.00, 1.00) 0.8036 31.3973 22.9496 0.2874
(1.05, 1.05) 0.7422 31.3911 22.5701 0.2850
(0.95, 0.95) 0.7624 31.8186 22.9178 0.2868
(1.05, 0.95) 0.7974 31.4182 22.9116 0.2871
(0.95, 1.05) 0.8132 31.6768 22.9733 0.2875

cating that the two compensations target different aspects of perceptual quality (aesthetic fidelity vs.
semantic preference) and are best used in concert for balanced performance.

Ablation on Acctemp. We study how the timeshift δ compensates for temporal acceleration. From
Eq. 7, setting δ = 1

2∆t allows vθ(xt, t +
1
2∆t) to implicitly capture the acceleration term in the

local Taylor expansion. We compare fixed shifts (δ ∈ {−0.02, 0, 0.02, 0.04}), a shift tuned via a
genetic algorithm (GA), and the analytic midpoint δ = 1

2∆t. As shown in Tab. 3, the timeshift δ
is necessary but direction-sensitive. A negative shift severely degrades all metrics, indicating that
evaluating too far “behind” the step leads to instability. A large positive shift (δ = 0.04) hurts
the human preference, showing that over-correction is also harmful. The midpoint yields the best
overall performance: it achieves the highest PIQA, Pick, and HPSv2 scores, and ranks second on
AES. This is consistent with our derivation, which reduces the local truncation error and stabilizes
the sampling trajectory. The GA schedule adds tuning complexity without consistent gains. Given
its simplicity, robustness, and strong results, we adopt the analytic midpoint for all experiments.

Ablation on Accspat. We study how the linear scaling schedule αt in Eq. 13 influences performance.
We evaluate five settings: no scaling (1.00→1.00), constant increase (1.05→1.05), constant decrease
(0.95→0.95), increase→decrease (1.05→0.95), and decrease→increase (0.95→1.05). As shown
in Tab. 4, both constant increase or decrease degrade preference and perceptual metrics. Though
constant decrease improves CLIP, it still hurts PIQA and Pick, suggesting better text alignment at
the cost of human preference. The decrease→increase schedule achieves the best overall trade-
off: it obtains the best PIQA, Pick and HPSv2 with CLIP improved over the baseline (31.6768 vs.
31.3973). This suggests that slowing velocity in early denoising steps stabilizes coarse structures,
whereas a later boost helps recover high-frequency details without overshooting.

4.4 FURTHER ANALYSIS

Table 5: Plug-and-play gains from A2S across sam-
plers. Adding A2S to FORA (N=2), DPM (10-steps),
and UniPC (10-steps) consistently improves image
quality under identical time budgets.

Method PIQA↑ AES↑ Pick↑ HPSv2↑
FORA (N=2) 0.795 6.280 22.803 0.285
+A2S 0.844 6.459 22.876 0.288

DPM (10-steps) 0.810 6.301 22.827 0.287
+A2S 0.833 6.404 22.949 0.289

UniPC (10-steps) 0.813 6.294 22.839 0.288
+A2S 0.838 6.460 22.849 0.290

Applying A2S to existing baselines. A2S
is a drop-in module that can be attached
to diverse baselines without altering the
sampling budget. Tab. 5 reports results
on FLUX-dev with MSCOCO for three
representative methods, including a cache-
based approach (FORA) and two fast sam-
plers (DPM and UniPC), before and af-
ter adding A2S. Across all methods and
metrics, A2S yields consistent improve-
ments. The largest absolute gains are ob-
served on perceptual and aesthetic met-
rics: for example, with FORA, PIQA rises
from 0.795 to 0.844 and AES from 6.280
to 6.459. Preference-oriented metrics also benefit: with DPM, Pick increases from 22.827 to 22.949.
These results demonstrate that A2S corrects acceleration-induced errors independent of the solver’s
design and complements a wide range of inference schemes, enhancing visual fidelity, aesthetics,
and preference alignment within the same step budgets. The breadth and consistency of these gains
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Figure 3: Performance across sampling steps.
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Figure 4: Performance on Distilled FLUX-Turbo-α.

establish A2S as a general-purpose, plug-and-play enhancement readily integrable into existing text-
to-image generation pipelines.

Performance across timestep budget. We evaluate our method on FLUX-dev under varying sam-
pling steps (10–30 steps) on MSCOCO to analyze behavior in both few-step and multi-step settings.
As shown in Fig. 3, A2S consistently improves PIQA at all step counts. We also note that after ap-
plying A2S, PIQA at 15 steps already surpasses the base at 30 steps, indicating roughly 2x efficiency
for PIQA. For HPScore, the effect is step-dependent: A2S is slightly lower at 10 steps, almost equal
at 15 steps, and yields small but consistent improvements from 20 to 30 steps. The base curves show
diminishing gains beyond 20 steps (PIQA plateau and gently rising HPSv2). A2S lifts the curves
upward and keeps PIQA improving with steps, indicating that correcting acceleration lets additional
steps translate into real quality gains instead of saturating early. These results indicate that while
A2S is tailored for few-step sampling, it transfers well to multi-step context: it provides immediate
PIQA gains even at very low budgets and improves HPSv2 once the step budget is moderate.

Applying A2S to distilled few-step models. We evaluate A2S on a distilled few-step model
(FLUX-Turbo-α (Alimama-Creative Team, 2024)) with 6 and 8 denoising steps across DiffusionDB,
HPDv2, and Pick-a-Pic, as shown in Fig. 4. The figure contains two grouped bar plots (AES and
HPSv2), each with two step budgets (6 and 8). Within each group, the light bar shows the original
turbo baseline, and the darker stacked segment shows the incremental gain from our method. This
visualization makes both the absolute performance and the plug-in gain clear at fixed compute. It can
be observed that A2S consistently improves both aesthetics (AES) and human preference (HPSv2).
At 6 steps, AES increases by +0.190 (DiffusionDB), +0.150 (HPDv2), and +0.189 (Pick-a-Pic); at
8 steps, the gains grow to +0.263 (DiffusionDB), +0.223 (HPDv2), and +0.223 (Pick-a-Pic), re-
spectively. HPSv2 shows smaller but uniform improvements. The larger gains at 8 steps suggest
that A2S is especially effective when the sampler has a slightly longer refinement horizon, allowing
temporal midpoint correction and progressive spatial scaling to take fuller effect. Notably, the same
A2S configuration is used across datasets and step budgets, yet yields consistent benefits, indicating
strong plug-and-play generalization across data distributions, prompts, and metrics.

5 CONCLUSION

In summary, this work addresses the challenge of preserving high image quality in few-step gen-
eration for rectified flow models, a limitation of first-order samplers that assume zero acceleration.
By identifying degradation as a consequence of neglecting second-order dynamics in the velocity
field, we propose A2S, a lightweight, training-free sampler that explicitly models temporal and spa-
tial acceleration. A2S introduces two corrections: a time-shifted velocity evaluation for temporal
acceleration and a scalar modulation for spatial acceleration. These modifications require no extra
model calls, making A2S a plug-and-play enhancement for existing RF models and sampling sched-
ules. Empirically, A2S demonstrates substantial improvements in image quality and stability across
multiple pretrained RF models and benchmarks, particularly in the few-step setting.

Our contributions advance the understanding of RF sampling dynamics and provide a practical solu-
tion to bridge the efficiency-accuracy gap in real-world applications. Moreover, A2S opens avenues
for exploring higher-order effects in continuous-time flows and their implications. By decoupling
acceleration components and demonstrating their benefits with minimal overhead, A2S provides a
foundation for robust, efficient sampling strategies in resource-constrained settings.
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Reproducibility Statement. We have made extensive efforts to ensure the reproducibility of our
work. All models, datasets, and baseline methods used in our experiments are described in Sec. 4.1.
Further implementation details, including experiment design and hyperparameters of A2S, are pro-
vided in Appendix B. Source code containing our method implementation and evaluation scripts
will be released soon. These resources collectively facilitate the reproduction of all results reported
in this paper.

Ethical Statement. This work does not involve human subjects, personal or sensitive data, or prac-
tices that raise concerns under the ICLR Code of Ethics. We identify no potential harms, conflicts
of interest, discrimination or fairness issues, privacy or security risks, legal implications, or threats
to research integrity arising from this study. Accordingly, we affirm that this research complies fully
with the ICLR Code of Ethics.
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A FURTHER EXPLANATION ON ACCELERATION DECOMPOSITION
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Figure 5: Dependency between t, xt, and vθ.

We further clarify Eq. 5 in the main text. The total
acceleration can be divided into these two compo-
nents because the learned velocity vθ(xt, t) depends
both on state xt and the time t, while xt itself is a
function of t. This dependence is illustrated in Fig. 5.
For intuition, consider the simple bilinear form:

vθ(xt, t) = Axt +Bt+ Cxt · t (14)

where A, B, and C are constants (or tensors) with compatible dimensions. Direct differentiation
with respect to t gives:

dvθ(xt, t)

dt
=A

dxt

dt
+B + C(

dxt

dt
t+ xt) (15)

=(A+ Ct)
dxt

dt
+ Cxt +B (16)
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(a) Standard Euler Sampling
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(b) Temporal Acceleration Compensation (c) Spatial Acceleration Compensation

Figure 6: A intuitive illustration on temporal and spatial acceleration.

whereas computing the partial derivatives yields:

∂vθ(xt, t)

∂t
= B + Cxt

∂vθ(xt, t)

∂xt
= A+ Ct (17)

Substituting Eq. 17 into Eq. 5 gives:

dvθ(xt, t)

dt
=
∂vθ(xt, t)

∂t
+

∂vθ(xt, t)

∂xt
· dxt

dt
(18)

=(B + Cxt) + (A+ Ct)
dxt

dt
(19)

which mathes the result obtained by direct differentiation (Eq. 16).

A.1 TEMPORAL ACCELERATION

We further elaborate on temporal acceleration. As defined in Eq. 5 and illustrated in Fig. 6(b), the
temporal acceleration can be interpreted as the difference between vθ(xt, t) and vθ(xt, t + δ): it
measures how the predicted velocity changes under a small perturbation δ in time while holding the
state xt fixed. To build intuition, we adopt a trajectory-switching perspective. In Fig. 6(b), the red
curve denotes the original Euler sampling trajectory, which reaches the current state xt at time t.
Consider instead the black trajectory, which reaches the same state xt at time t + δ. For the black
trajectory, the current time is t+ δ, and we have:

xred
t = xt = xblack

t+δ (20)

Hence, the predicted velocity at time t+ δ along the black trajectory satisfies:

vθ(x
black
t+δ , t+ δ) = vθ(xt, t+ δ) (21)

This shows that replacing vθ(xt, t) by vθ(xt, t + δ) implicitly switches the sampler from the red
trajectory to the black one. From this viewpoint, temporal acceleration compensation can be un-
derstood as shifting the sampling trajectory forward in time, potentially altering the direction of the
predicted velocity.

A.2 SPATIAL ACCELERATION

We next detail the spatial acceleration. As defined in Eq. 5 and illustrated in Fig. 6(c), the spatial ac-
celeration quantifies how the predicted velocity responds to changes in the state along the direction
of the current velocity, with time held fixed. For a small step size τ > 0, take a forward step along
the current velocity to obtain the state perturbation: ∆x = τ · vθ. The spatial acceleration can then
be viewed as the difference: vθ(xt + ∆x, t) − vθ(xt, t), which, to first order, equals τ ∂vθ(xt,t)

∂xt
vθ

i.e., the Jacobian–vector product term in Eq. 5.

A.3 CACHE-BASED METHOD

Equipped with the proposed A2S, We design a cache-based sampler that exploits direction difference
to determine the caching strategy (Alg. 1). Specifically, inspired by TeaCacheLiu et al. (2025), we
leverage the cosine similarity between the input and output to define dynamic caching policies.

13
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Algorithm 1 Cache-Based A2S Sampling for Rectified Flow

Require: Rectified Flow Model vθ; N-Step Timestep Schedule {ti}Ni=0; threshold θ
1: k ← 0; h← 1 ▷ Initialize the step index k and the step size h
2: vprev ← null ▷ Initialize the cached velocity vprev
3: x0 ∼ N (0, 1) ▷ Initialize the image from Gaussian Distribution
4: ∆t = t0/2 ▷ Initialize the timeshift, Sec. 3.3
5: while k < N do
6: vk ← (1 + αtk) · vθ(xtk , tk + 1

2∆t) ▷ A2S Sampling (Eq. 12 in the main text)
7: if CosSim(vprev, vk) > θ then ▷ Compare current velocity to the cached one
8: h← h+ 1 ▷ Adaptive step-size update
9: knext ← min(k + h,N) ▷ Jump to the next index

10: ∆t← tknext
− tk ▷ Update the time interval

11: xknext
← xk + vk ·∆t ▷ Rectified flow update

12: vprev ← vk; k ← knext ▷ Update the cached velocity and the index
13: return xknext

B MORE DETAILS ON EXPERIMENTAL SETUPS

B.1 DATASETS

We evaluate our method on four different datasets, including MSCOCO (Lin et al., 2014), Diffu-
sionDB (Wang et al., 2023), Pick-a-Pic (Kirstain et al., 2023), and the HPDv2 (Wu et al., 2023).

MSCOCO. MSCOCO (Lin et al., 2014) is a large-scale dataset of everyday scenes containing com-
mon objects in natural context. Collected from the web with an emphasis on non-iconic views, it
features multiple objects interacting within each scene. Each data sample is a real image paired with
rich human annotations: object bounding boxes and instance segmentation masks for 80 “thing”
categories (with additional “stuff” and panoptic labels in later releases), five human-written captions
per image, and person keypoints for the people subset. Spanning hundreds of thousands of images
and well over a million annotated object instances, MSCOCO provides standardized train/val/test
splits and serves as a cornerstone benchmark for multiple vision tasks. Its advantage lies in the
diversity and contextual complexity of scenes, which encourages models to reason about objects in
realistic settings rather than isolated, iconic views. In this paper, we utilize its validation set for our
evaluation.

DiffusionDB. DiffusionDB (Wang et al., 2023) is an open, large-scale gallery of text-to-image gen-
erations created by real users of latent diffusion models (notably Stable Diffusion). The dataset is
gathered from public web interfaces and community galleries where users share generations. Each
data sample includes a user-written text prompt, the synthesized image, and, for many entries, gen-
eration metadata such as sampler type, guidance scale, number of steps, seed, and resolution. Dif-
fusionDB contains millions of prompt–image pairs (approximately 2M in the initial release, with
subsequent expansions exceeding 10M), covering a wide range of subjects, artistic styles, and pa-
rameter settings. Its advantage is that it captures real-world prompting behavior and model usage at
scale, enabling research on prompt engineering, controllable generation, and evaluation grounded in
authentic user data rather than curated lab settings. In this paper, we randomly select 5000 prompts
to evaluate our method.

Pick-a-Pic. Pick-a-Pic (Kirstain et al., 2023) is an open, crowdsourced dataset of human prefer-
ences for text-to-image generation. Collected through an interactive web interface where users com-
pare multiple images produced for the same prompt, the dataset provides pairwise (and sometimes
“both/neither”) judgments that indicate which image better matches the user’s preference and the
prompt. Each entry includes a natural-language prompt, two generated images, a user choice label,
and, when available, generation metadata (e.g., model, sampler, guidance scale, steps, and seed).
The data spans a broad distribution of subjects, styles, and models (e.g., Stable Diffusion variants
and other contemporary systems), yielding hundreds of thousands of comparisons across a diverse
prompt set. Pick-a-Pic has become a standard resource for learning and evaluating preference-
aligned reward models and metrics, as it reflects real user judgments rather than proxy heuristics. In
this paper, we use the official release and randomly select 5000 prompts for evaluation.

14
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Human Preference Dataset v2 (HPD v2). HPDv2 (Wu et al., 2023) is a large-scale, curated cor-
pus of human preference annotations for text-to-image generations, released alongside the Human
Preference Score v2 (HPSv2) metric. The dataset aggregates pairwise comparisons over images
generated from diverse prompts and a variety of models, with labels reflecting users’ holistic judg-
ments of prompt adherence, visual quality, and overall appeal. Each sample comprises a prompt, two
candidate images, and a binary preference label (optionally including ties/abstentions in some sub-
sets), with standardized formatting to facilitate training preference models and evaluating alignment.
HPDv2 covers a wide range of concepts and visual styles and contains on the order of hundreds of
thousands to nearly a million comparisons, making it well-suited for learning robust, human-aligned
reward functions and metrics. In our experiments, we report results on the HPDv2 test splits.

B.2 EVALUATION METRICS

Five evaluation metrics are adopted to assess the effectiveness of our proposed method, namely
PIQA (Zalcher et al., 2025), AES (LAION-AI, 2022), CLIP (Radford et al., 2021), HPSv2 (Wu
et al., 2023) and Pick (Kirstain et al., 2023).

AES. AES (Aesthetic Score) (LAION-AI, 2022) estimates the visual appeal of an image using a
model trained on datasets with human-provided aesthetic ratings, built on top of CLIP-like image
embeddings. It outputs a single scalar score that reflects perceived attractiveness, composition, and
overall visual quality and serves as a proxy for the aesthetic quality of generated images and reflects
the human aesthetic preferences.

CLIP. CLIP (Radford et al., 2021) measures text–image semantic alignment by computing the co-
sine similarity between CLIP text and image embeddings, typically with a normalization and scaling
factor. Originally proposed as a reference-free metric for image captioning, it is widely used in text-
to-image evaluation as a proxy for prompt adherence. It outputs a single scalar score that captures
semantic consistency.

HPSv2. HPSv2 (Wu et al., 2023) is a learned metric designed to approximate human judgments of
text-to-image outputs. Trained on broad, curated human preference data spanning diverse prompts
and model families, it uses a vision–language backbone with a lightweight prediction head to output
a scalar score for each prompt–image pair. The score reflects both prompt adherence and perceived
visual quality, and HPSv2 has demonstrated strong cross-model validity and robustness compared
to earlier automatic metrics.

Pick. Pick is the abbreviation for PickScore (Kirstain et al., 2023). PickScore estimates human pref-
erence for a text–image pair using a model trained on large-scale, pairwise human comparisons (e.g.,
from the Pick-a-Pic dataset). Built on top of CLIP-like image–text embeddings, it predicts which
image a human would prefer for a given prompt and outputs a single scalar that integrates factors
such as semantic alignment, aesthetic appeal, and overall perceptual quality. It serves as a reference-
free proxy for human judgments and has been shown to correlate well with crowd preferences across
diverse generators.

PIQA. PIQA (Zalcher et al., 2025) is a no-reference image quality assessment (IQA) metric that
leverages the CLIP vision transformer as a strong perceptual prior for predicting human judgments
of image quality. It employs a lightweight adaptation strategy, using Low-Rank Adaptation (LoRA)
to fine-tune only the attention layers of the CLIP visual encoder. This design preserves the rich
perceptual knowledge embedded in CLIP—gained from its training on human-written captions that
include subjective sentiments and preferences—while allowing for efficient task-specific adaptation.
The model outputs a continuous scalar score that aligns with human mean opinion scores (MOS),
reflecting perceived quality degradations from both authentic (e.g., motion blur, overexposure) and
synthetic (e.g., compression artifacts, noise) distortions.

B.3 BASELINES AND IMPLEMENTATION DETAILS

All experiments are conducted at the resolution of 1024×1024 using the PyTorch framework with
the diffusers library from Huggingface for model loading and inference. We adopt the official
implementation of SD 3.5-large and FLUX-dev for all evaluations. For conditional generation, we
adopt classifier-free guidance (CFG) with a consistent guidance scale of 3.5 across all models. For
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Table 6: Quantitative results for both the baselines and our method across a range of hyperparameters
on MSCOCO dataset.

Method Latency(s)↓ Speedup↑ PIQA↑ AES↑ CLIP↑ Pick↑ HPSv2↑
FLUX-dev (20 steps) 15.51 x1.00 6.3547 6.3547 31.4861 23.0181 0.2894

FORA (N = 2) 8.58 x1.81 0.7951 6.2795 31.5754 22.8030 0.2849
FORA (N = 3) 6.24 x2.48 0.7344 6.1980 31.5220 22.5226 0.2798

DPM (10 steps) 7.76 x2.00 0.8102 6.3005 31.6443 22.8270 0.2867
DPM (8 steps) 6.26 x2.48 0.7866 6.2686 31.6541 22.6635 0.2843

UniPC (10 steps) 7.77 x2.00 0.8126 6.2944 31.6343 22.8391 0.2877
UniPC (8 steps) 6.26 x2.48 0.7952 6.2663 31.6450 22.6658 0.2857

TeaCache (ρ = 0.45) 7.67 x2.02 0.8077 6.4842 31.5260 22.9164 0.2860
TeaCache (ρ = 0.50) 7.10 x2.18 0.7978 6.4643 31.5472 22.8980 0.2855
TeaCache (ρ = 0.55) 6.84 x2.27 0.7946 6.4537 31.5489 22.8778 0.2853
TeaCache (ρ = 0.60) 6.28 x2.47 0.7925 6.4352 31.5135 22.8110 0.2841

A2S (θ = 0.98) 7.64 x2.03 0.8243 6.4842 31.6774 23.0936 0.2883
A2S (θ = 0.97) 6.78 x2.29 0.8189 6.4643 31.6825 22.9827 0.2882
A2S (θ = 0.96) 6.48 x2.39 0.8163 6.4537 31.6638 22.9777 0.2879
A2S (θ = 0.95) 6.19 x2.51 0.8132 6.4352 31.6774 22.9733 0.2876

SD 3.5, CFG requires two model evaluations, whereas for FLUX-dev it requires only one because
CFG is distilled during training.

We evaluate two categories of baselines: (i) cache-based method, including FORA (Selvaraju et al.,
2024), ∆-DiT (Chen et al., 2024), TeaCache (Liu et al., 2025). (ii) fast samplers, including DPM (Lu
et al., 2022) and UniPC (Zhao et al., 2023). Below we summarize each method and the hyperpa-
rameters used in our experiments.

FORA. FORA (Selvaraju et al., 2024) caches and reuses the residual outputs of attention layers
across timesteps. A single hyperparameterN controls the cache refresh interval (how frequently the
cache is recomputed.) We set N = 2 for FLUX-dev and N = 3 for SD 3.5.

∆-DiT. Similar to FORA, ∆-DiT (Chen et al., 2024) leverages residuals, but it further accounts
for layer-wise functional difference. It splits the time horizon into two phases and applies distinct
caching policies in each phase. The main hyperparameters are the fraction of cached layers, the
cache interval N and the split time. We cache 2

3 of the layers, set the split time to the midpoint (10
for the 20-step FLUX-dev schedule and 15 for the 30-step SD 3.5 schedule), and use N = 3 for
FLUX-dev and N = 4 for SD 3.5.

TeaCache. TeaCache (Liu et al., 2025) adapts the caching decision based on input-output similarity,
measured by the L2 distance. A threshold ρ determines whether to reuse the cache or recompute.
We set ρ = 0.60 for FLUX-dev and ρ = 0.55 for SD 3.5.

DPM and UniPC. DPM (Lu et al., 2022) and UniPC (Zhao et al., 2023) are both higher order
integrator methods for ODEs designed to improve the accuracy and stability under aggressive step
sizes. UniPC further adopts a unified predictor-corrector scheme that enhances stability at very low
numbers of function evaluation. We use 8 steps for FLUX-dev and 10 steps for SD 3.5.

Our method follows a TeaCache-style adaptive caching strategy augmented with the proposed A2S.
It requires a threshold θ (Alg. 1); we set θ = 0.95.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 ADDITIONAL QUANTITATIVE RESULTS

To further assess the effectiveness of our approach, we report comprehensive quantitative results
for both the baselines and our method across a range of hyperparameters. Tab. 6 summarizes the
speed–quality trade-off, further validating the advantages of our method.
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Table 7: Performance with and without A2S in extreme-few step setting.

Method PIQA↑ AES↑ Pick↑ HPSv2↑
FLUX-dev (5 steps) 0.6410 6.0621 22.0152 0.2744
FLUX-dev (5 steps)+A2S 0.4819 4.9732 18.7005 0.2330

FLUX-turbo (4 steps) 0.7722 6.3698 22.8929 0.2846
FLUX-turbo (4 steps)+A2S 0.5783 6.1073 20.9756 0.2674

C.2 ADDITIONAL QUALITATIVE RESULTS

We visualize more generated images and provide a comprehensive qualitative comparison across
multiple baselines and our method (Fig. 7 and Fig. 8).

D LIMITATION AND FUTURE WORKS

In this work, we examine second-order effects—specifically, acceleration—in the sampling dynam-
ics of rectified-flow models. We decompose the acceleration into temporal and spatial components
and approximate both with lightweight estimators. We identify two main limitations and outline
corresponding directions for improvement. First, our method omits the orthogonal component of
the spatial acceleration term (rθ in Eq. 10). Incorporating this component is expected to improve
sampling accuracy; future work will focus on efficient estimation strategies that capture rθ without
incurring substantial computational overhead. Second, while A2S is effective overall, we observe
severe performance degradation when the number of sampling steps is reduced to about five. As
shown in Tab. 7, the degradation becomes pronounced at four steps. Addressing this extreme few-
step setting is an important direction for future work, including the exploration of adaptive step-size
schedules, higher-order integration schemes, and training-time regularization tailored to low-step
sampling.

E USE OF LARGE LANGUAGE MODELS

In compliance with the conference policy on the use of large language models (LLMs), we disclose
that LLMs were used exclusively for writing-related purposes. Specifically, LLMs assisted in:

• Improving grammar and fluency;
• Polishing sentence structure and readability;
• Suggesting alternative phrasings for clarity and conciseness.

No part of the research design, theoretical development, experiments, data analysis, or result inter-
pretation relied on LLMs. All scientific contributions, ideas, and conclusions were conceived and
validated solely by the authors.
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Base FORA TeaCache DPM UniPC OursPrompt

“A city street lit up in 
a night scene with cars 
in the background. “

“A couple of snow 
skiers are casting a 

shadow on the snow.”

“A giraffe next to a 
stone fence staring off 

into the distance.”

“A group of people 
riding horses on top of 

a sandy beach.”

“A group of people 
walking through a 

field under the sun.”

“A man and a child 
flying a kite. ”

“Two birds flying in 
the sky over a lake.”

“A bathroom with a 
bath tub a sink and a 

mirror.”

“A man sitting on a 
train at a table using a 

laptop.”

“a lady playing with a 
wii on a large screent.”

“Two boats are 
floating on the river 

near the shore.”

Figure 7: Additional qualitative comparisons with FLUX-dev as the base model.
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Base FORA TeaCache DPM UniPC OursPrompt

“A drawing of a fossil 
from the burgess shale.”

“A painting of a smiling 
woman wearing a shawl, 

an ultrafine detailed 
painting by marguerite 

zorach.”

“A wind spirit by ross 
tran, ethereal, highly 

detailed, oil on canvas.”

“A witch emanating 
magic from her palms, 
illuminating the area, 

closeup.”

“Andromeda galaxy in 
a sphere, transparent 

clear see - through 
image from the james 

webb telescope.”

“Animation still frame 
of an attractive female 
sorceress ( long dark 

hair ) casting a icy frost 
spell.”

“creepy Christmas, 
trending on unsplash, 

professional 
photography, overhead 

view of a table.”

Figure 8: Additional qualitative comparisons with FLUX-dev as the base model.
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