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Abstract

Flow-based generative models have shown
promise in various machine learning applications,
but they often face challenges in handling noise
and ensuring robustness in trajectory estimation. In
this work, we propose NRFlow, a novel extension
to flow-based generative modeling that incorpo-
rates second-order dynamics through acceleration
fields. We develop a comprehensive theoretical
framework to analyze the regularization effects
of high-order terms and derive noise robustness
guarantees. Our method leverages a two-part loss
function to simultaneously train first-order velocity
fields and high-order acceleration fields, enhancing
both smoothness and stability in learned transport
trajectories. These results highlight the potential
of high-order flow matching for robust generative
modeling in complex and noisy environments.

1 INTRODUCTION

Flow-based generative modeling [Lipman et al., 2023, Liu
et al., 2023, Albergo and Vanden-Eijnden, 2023, Bose et al.,
2024, Esser et al., 2024] has recently gained substantial
traction in machine learning due to its capacity to learn ex-
pressive, invertible transformations that map simple source
distributions to more complex target distributions. In par-
ticular, flow matching techniques [Lipman et al., 2023, Liu
et al., 2023] have shown promising results in bridging the
gap between traditional normalizing flows and score-based
diffusion models. These methods typically construct a con-
tinuous time trajectory or “flow” that transports samples
from a prior distribution, usually Gaussian distribution, to
an unknown data distribution. By matching a parameter-
ized velocity field to the ground-truth time derivatives along
a path connecting these distributions, flow matching has
demonstrated impressive empirical performance, as well as

favorable theoretical properties.

Despite these advances, existing flow-based frameworks
remain susceptible to perturbations such as noise contam-
ination in the data or instability in the learned transport
path [Wang et al., 2024a, Hu et al., 2024b]. This vulnera-
bility arises because standard (i.e., first-order) methods pre-
dominantly focus on velocity alignment, thereby neglecting
higher-order dynamics and their influence on smoothness
and robustness. Several works in diffusion-based modeling
[Chen, 2023, Hang and Gu, 2024, Lin et al., 2024] have
suggested that carefully accounting for noise and incorporat-
ing additional constraints can lead to more stable solutions.
However, a principled and comprehensive approach to inte-
grating higher-order information within flow matching has
yet to be fully explored.

In this paper, we propose NRFlow, a novel extension to
the traditional flow-based generative framework that lever-
ages acceleration fields in addition to velocity fields. Our
approach is motivated by the observation that second-order
information can be interpreted as a form of regularization,
acting to enforce higher-order smoothing constraints on the
learned trajectories. Concretely, we show—both formally
and informally—that these second-order terms can mitigate
noisy or imperfect training data by providing stronger reg-
ularity conditions, which in turn bolster model robustness.
The core idea is straightforward but powerful: we decom-
pose the learning objective into two parts, one for velocity
matching and one for acceleration matching, and jointly
train these terms to ensure smooth, stable flows.

Our main theoretical contributions center on establishing
a rigorous noise-robustness guarantee that quantifies how
noise in the observed data propagates through the learned
second-order flow. Specifically, we derive a two-part loss
function whose first-order component learns a velocity field
approximating ẋt, while the second-order component tar-
gets ẍt. We then prove that if these losses remain small,
the Sobolev H2-norm of the estimation error is bounded,
effectively demonstrating the regularization effect of the



second-order term. Further, a discrete Gronwall-type analy-
sis reveals that noise in the training distribution propagates
sublinearly over time, thereby yielding improved stability
compared with purely first-order flow matching.

In addition to the theoretical framework, we also propose a
second-order inference algorithm that modifies the classic
flow integration step by adding an acceleration update. Ex-
perimental results on a Gaussian mixture dataset highlight
the effectiveness of our approach.

The summary of our contributions to the theoretical under-
standing of these architectures and their boundaries, showed
as follows:

• We develop a unified second-order flow formulation
offering a broad perspective on incorporating higher-
order dynamics into generative models.

• We establish rigorous guarantees showing that NRFlow
exhibits improved immunity to data noise, grounded
in both an informal explanation of its regularization
properties and a formal theorem bounding noise propa-
gation.

2 RELATED WORK

Flow Matching. Flow Matching (FM) [Lipman et al., 2024]
has recently gained prominence in generative modeling,
particularly within the framework of Continuous Normal-
izing Flows (CNFs). FM offers a simulation-free approach
to training CNFs by regressing vector fields along fixed
conditional probability paths, thereby enhancing scalability
and performance in generative tasks Lipman et al. [2023].
Building upon this foundation, Tong et al. [2024] developed
Conditional Flow Matching (CFM), a family of simulation-
free training objectives for CNFs. CFM facilitates condi-
tional generative modeling and accelerates both training and
inference processes. An exciting development in this area
is the introduction of Rectified Flow, which refines flow-
based methods by incorporating corrective adjustments to
the learned vector fields, enabling more robust convergence
and improved stability in generative modeling tasks. Rec-
tified Flow not only enhances training efficiency but also
synergizes effectively with other flow-matching methods,
further extending the utility of FM in diverse applications. A
notable variant within CFM, Optimal Transport Conditional
Flow Matching (OT-CFM), approximates dynamic optimal
transport in a simulation-free manner, leading to more ef-
ficient and stable training. Recent advancements in flow
matching for generative modeling have introduced several
innovative approaches. Haviv et al. [2024] proposed Wasser-
stein Flow Matching, extending traditional flow matching to
families of distributions, enhancing its applicability in fields
like computer graphics and genomics. Cao et al. [2025a]
incorporates special relativity constraints in flow matching.
Moreover, numerous recent works [Xu et al., 2022, Dax

et al., 2023, Pooladian et al., 2023, Wang et al., 2024d,b,c,
Chen and Lipman, 2024, Klein et al., 2024, Bansal et al.,
2025] have significantly inspired and influenced our work.

Diffusion Models. Generative Models have long been a
central topic in the field of Deep Learning [Kingma and
Welling, 2014, Goodfellow et al., 2020, Liu et al., 2022,
Corvi et al., 2023]. Empowered by the recent advances
in Vision Transformers [Dosovitskiy et al., 2021, Zhang
et al., 2021, Peebles and Xie, 2023, Bao et al., 2023], dif-
fusion models have gained unprecedented success in gen-
erative modeling, producing high fidelity visual contents
and has applications in a wide range of real-world scenar-
ios, such as image generation [Song et al., 2021, Rombach
et al., 2022, Cao et al., 2025c], video generation [Yang
et al., 2024, Cao et al., 2025b, Guo et al., 2025a,b], text
editing [Kawar et al., 2023, Garibi et al., 2024, Guo et al.,
2025c], e-commerce [Wang et al., 2023, Zhao et al., 2024,
Liu et al., 2024]. These approaches typically involve a for-
ward process that systematically adds noise to an initial
clean image and a corresponding reverse process that learns
to remove noise step by step, thereby recovering the un-
derlying data distribution in a probabilistic manner. Early
works [Song and Ermon, 2019, Song et al., 2021, Dock-
horn et al., 2022] established the theoretical foundations
of this denoising strategy, introducing score-matching and
continuous-time diffusion frameworks that significantly im-
proved sample quality and diversity. Subsequent research
has focused on more efficient training and sampling proce-
dures [Lu et al., 2022, Wu et al., 2023, Shen et al., 2025a,b],
aiming to reduce computational overhead and converge
faster without sacrificing image fidelity. Other lines of work
leverage latent spaces to learn compressed representations,
thereby streamlining both training and inference [Rombach
et al., 2022, Hu et al., 2024a]. This latent learning approach
integrates naturally with modern neural architectures and
can be extended to various modalities beyond images, show-
casing the versatility of diffusion processes in modeling
complex data distributions. In parallel, recent researchers
have also explored multi-scale noise scheduling and adap-
tive step-size strategies to enhance convergence stability
and maintain high-resolution detail in generated content in
Lovelace et al. [2024], Feng et al. [2024], Rout et al. [2024],
Jiang et al. [2025], Luo et al. [2024]. On the other hand,
Rout et al. [2023], Hu et al. [2024a], Wen et al. [2024], Hu
et al. [2025d] explores the Diffusion Models theoretically,
pointing out future directions of Diffusion Models.

Large Language Models. Neural networks built upon the
Transformer architecture [Vaswani et al., 2017] have swiftly
risen to dominate modern machine learning approaches in
natural language processing. Extensive Transformer mod-
els, trained on wide-ranging and voluminous datasets while
encompassing billions of parameters, are often termed large
language models (LLM) or foundation models [Bommasani
et al., 2021]. Representative instances include BERT [Devlin



et al., 2019], PaLM [Chowdhery et al., 2023], Llama [Tou-
vron et al., 2023], ChatGPT [OpenAI, 2024], GPT4 [Ope-
nAI, 2023], among others. These LLMs have showcased
striking general intelligence abilities [Bubeck et al., 2023]
in various downstream tasks. Numerous adaptation methods
have been developed to tailor LLMs for specific applica-
tions, such as adapters [Hu et al., 2022, Zhang et al., 2024,
Gao et al., 2023a, Shi et al., 2023, Hu et al., 2025b, Cao and
Song, 2025], calibration schemes [Zhao et al., 2021, Zhou
et al., 2023], multitask fine-tuning [Gao et al., 2021, Von Os-
wald et al., 2023, Xu et al., 2024], prompt optimization [Gao
et al., 2021, Lester et al., 2021, Hu et al., 2025c], scratch-
pad approaches [Nye et al., 2021], instruction tuning [Li
and Liang, 2021, Chung et al., 2024, Mishra et al., 2022],
symbol tuning [Wei et al., 2023], black-box tuning [Sun
et al., 2022], in-context learning [Wei et al., 2022, Wu et al.,
2025b,a] and reinforcement learning from human feedback
(RLHF) [Ouyang et al., 2022]. Additional lines of research
endeavor to boost model efficiency without sacrificing per-
formance across diverse domains, for example, in Liang
et al. [2025a], Li et al. [2024a], Chen et al. [2025d, 2024b],
Ke et al. [2024]. An emerging focus in LLMs is the in-
herent theoretical limitation of these models, including the
infeasibility of efficient computation under sufficiently large
model weight magnitudes [Alman and Song, 2023, 2024a,b,
2025a,b], circuit complexity [Li et al., 2024b, 2025a, Chen
et al., 2024a, Li et al., 2025b], the infeasibility to learn
some Boolean functions under gradient descent [Chen et al.,
2025c, Hu et al., 2025e, Kim and Suzuki, 2025], universal
approximation Kratsios et al. [2022], Chen et al. [2025e],
Liu et al. [2025], Hu et al. [2025a], and in-context learn-
ing [Wu et al., 2025b,a, Chen et al., 2025a].

Second Order Method. More recently, second-order meth-
ods have been applied to neural network optimization and
used to solve a lot of problems. Martens et al. [2010] intro-
duced Hessian-free optimization, using conjugate gradients
to approximately solve the Newton update. Vinyals and
Povey [2012] used a Krylov subspace descent method to di-
rectly approximate the Newton update. For natural gradient
methods, which perform the steepest descent in the space
of network outputs rather than parameters, Amari [1998]
showed a connection to second-order optimization via the
Fisher information matrix. Grosse and Martens [2016] later
extended K-FAC to convolutional neural networks. Ba et al.
[2022] combined natural gradient with trust region meth-
ods to further improve stability and performance. Despite
these advances, second-order neural network optimization
remains an active area of research, such as Song [2019],
Deng et al. [2022], Song et al. [2023], Gao et al. [2025a,b,
2023c], Bian et al. [2023], Deng et al. [2023], Gao et al.
[2023b], Shrivastava et al. [2023], Qin et al. [2023], Chen
et al. [2025b,a], Liang et al. [2024], Chen et al. [2024a],
Liang et al. [2025b,c], Ke et al. [2025]. Open problems
include improving the scalability of Hessian approxima-
tions, handling non-convex optimization landscapes, and

automating hyper-parameter selection.

Roadmap. In Section 3, we introduce essential computa-
tional techniques and key definitions of flow matching and
our NRFlow. In Section 4, we provide a detailed regularity
analysis and compute the upper bound of the excess risk. We
also provide an inequality that quantifies the growth of esti-
mation error under bounded noise. In Section 5, We design
some preliminary experiments to demonstrate the validity
of our theory and the results. We conclude in Section 6.

3 PRELIMINARY

In this section, we provide the foundational concepts, nota-
tions, and assumptions required for the subsequent theoret-
ical developments. In Section 3.1, we begin by listing the
key notations employed throughout this work. In this Sec-
tion 3.2, we state the principal assumptions under which our
analysis is conducted. Next, we introduce the flow-matching
framework, along with its second-order extension, and high-
light several important definitions in Section 3.3. Finally, in
Section 3.4, we provide our second-order algorithms.

3.1 NOTATIONS

We use Pr[] to denote the probability. We use E[] to denote
the expectation. We use Var[] to denote the variance. We
use ∥x∥p to denote the ℓp norm of a vector x ∈ Rn, i.e.
∥x∥1 :=

∑n
i=1 |xi|, ∥x∥2 := (

∑n
i=1 x

2
i )

1/2, and ∥x∥∞ :=
maxi∈[n] |xi|. For variables a, b, We write a ≲ b to indicate
that a is bounded above by b up to a multiplicative constant
independent of the main parameters. We write a ≳ b to
indicate that a is bounded below by b up to a multiplicative
constant independent of the main parameters. We denote
ẋ(k) as the k-th order derivative field of x. We use ∥ · ∥H2(Ω)

to denote the Sobolev norm in W 2,2(Ω), corresponding to
k = 2 and p = 2.

3.2 ASSUMPTIONS

We now outline the principal assumptions that underlie our
theoretical analysis. These assumptions concern smooth-
ness, Lipschitz continuity, bounded noise, function-class
complexity, and time discretization. First, we show the as-
sumption of smoothness and boundness.

Assumption 3.1 (Smoothness and boundedness). We as-
sume the true trajectory xtrue

t and its first and second
derivatives are sufficiently smooth and bounded. Specifically,
xtrue
t ∈ H2(Ω), and there exist constants M1,M2 > 0 such

that

∥ẋtrue
t ∥H2(Ω) ≤M1, ∥ẍtrue

t ∥H2(Ω) ≤M2.

Assumption 3.2 (Lipschitz continuity). The learned fields
u1,θ1(x, t) and u2,θ2(v, x, t) are L-Lipschitz continuous in



spatial and temporal arguments. Formally, there exists L >
0 such that for all x, y ∈ Rd and t, s ∈ [0, 1]:

∥u1,θ1(x, t)− u1,θ1(y, t)∥2 ≤ L∥x− y∥2,
∥u2,θ2(v, x, t)− u2,θ2(v, y, t)∥2 ≤ L∥x− y∥2,

and

∥u2,θ2(v, x, t)− u2,θ2(v, y, t)∥2 ≤ L∥x− y∥2,
∥u2,θ2(v, x, t)− u2,θ2(v, x, s)∥2 ≤ L∥t− s∥2,

Similar conditions hold for time differences.

Assumption 3.3 (Bounded noise magnitude). There exists
δ > 0 such that ∥ηi∥2 ≤ δ or E[∥ηi∥22] ≤ δ2. This ensures
that the noise does not grow without bounds.

Assumption 3.4 (Rademacher complexity or VC dimen-
sion). There exist function classes F1,F2 such that

u1,θ1(·, ·) ∈ F1, u2,θ2(·, ·) ∈ F2.

The complexity of each class is measured by C(F1) and
C(F2).

Assumption 3.5 (Bounded loss). There exists some constant
Q > 0 such that for all θ ∈ Θ and all x ∈ X , the per-
sample loss lθ(x) satisfies |lθ(x)| ≤ Q.

Assumption 3.6 (Time discretization). For the inference
(deployment) stage, let ∆t = 1/L be the uniform step size,
and define discrete times tl = l∆t for l = 0, 1, · · · , L. The
numerical scheme for forward integration is

xl+1 = xl +∆t · u1,θ1(xl, tl)

+
(∆t)2

2
u2,θ2(u1,θ1(xl, tl), xl, tl).

Remark 3.7. In this paper, our derivation accounts for
higher-order residual terms through discrete Gronwall-type
analyses (see Lemma 4.6). Despite the discretization as-
sumption potentially omitting explicit higher-order terms,
we bound such cumulative effects over time by considering
Lipschitz continuity and noise assumptions. This ensures
that any leftover remainder does not cause unbounded error
growth.

3.3 FLOW MATCHING AND RECTIFIED FLOW

Next, we describe the general framework of flow matching
and its second-order rectification. These concepts form the
basis for our proposed method, as they integrate first and
second-order information for trajectory estimation.

Definition 3.8 (Easy error). Let

c1(t) := ẋest
t − ẋtrue

t , c2(t) := ẍest
t − ẍtrue

t .

Fact 3.9. Let a field xt be defined as

xt = αtx0 + βtx1,

where αt and βt are functions of t, and x0, x1 are constants.
Then, the first-order gradient ẋt and the second-order gra-
dient ẍt can be manually calculated as

ẋt = α̇tx0 + β̇tx1 and ẍt = α̈tx0 + β̈tx1.

Definition 3.10 (A variant of flow matching in Lipman et al.
[2023]). Given two distributions µ0 and π0 on Rd, flow
matching aims to learn a time-dependent velocity field

vθ : Rd × [0, 1] → Rd

such that for any trajectory xt transporting x0 ∼ µ0 to
x1 ∼ π0, we have

ẋt ∼ vθ(xt, t).

Remark 3.11. In practice, one often samples (x0, x1) from
(µ0, π0) and parameterizes xt (e.g. via interpolation) at
intermediate times to build a training objective that matches
the velocity field to the true time derivative ẋt.

Definition 3.12 (Second-order flow matching and loss). We
additionally learn an acceleration field

u2,θ2(v, x, t), where v = u1,θ1(x, t),

to approximate ẍt. Hence, the two-part (second-order) loss
is:

L2nd(θ1, θ2) = E[∥ẋtrue
t − u1,θ1(xt, t)∥22]︸ ︷︷ ︸

L2,1,θ1

+ E[∥ẍtrue
t − u2,θ2(u1,θ1(xt, t), xt, t)∥22]︸ ︷︷ ︸

L2,2,θ2,θ1

.

Here, ẋtrue
t and ẍtrue

t are observed (or numerically approxi-
mated) true velocity and acceleration, while u1,θ1 and u2,θ2

are the networks to be trained.

Definition 3.13 (Trajectory and time parameterization).
Consider a continuous trajectory {xt}t∈[0,1] ∈ Rd connect-
ing an initial distribution µ0 to a target data distribution π0.
We assume x0 ∼ µ0 and x1 ∼ π0.

Definition 3.14 (First and second order flow). A first-
order rectified flow is characterized by a velocity field
u1,θ1(x, t) approximating ẋt. A second-order rectified flow
further involves an acceleration field u2,θ2(v, x, t), where
v = u1,θ1(x, t) approximates ẋt, and u2,θ2 approximates
ẍt.

Definition 3.15 (Sobolev space). For a domain Ω ⊂ Rd,
the Sobolev space H2(Ω) is defined as

H2(Ω) = {f ∈ L2(Ω) : Dαf ∈ L2(Ω),∀|α| ≤ 2}.

We assume the trajectory xt(ω) or its corresponding fields
lie in such spaces, ensuring sufficient smoothness.



Definition 3.16 (Noisy data and noise proportion). Let
the training dataset X = {xi}Ni=1 be drawn from π0 but
corrupted by noise. We denote the noise proportion as
ϵ = Nnoisy/N . A noisy sample can be modeled as

xnoisy
i = xclean

i + ηi,

where ηi satisfies certain boundedness conditions.

Definition 3.17 (Error). As we assume in Assumption 3.6,
we define the error in H2-norm.

ek := ∥xest
k − xtrue

k ∥H2(Ω)

Definition 3.18 (Second-order loss function). The loss func-
tion for the second-order method contains two parts. We
define the first part which is trying to using ẋt in Fact 3.9,
xt and t to learn function u1,t, thus the loss is

L2,1,θ1 := ∥ẋt − u1,θ1(xt, t)∥22

Next, we define the second part, which is trying to use
ẍt, u1,θ1(xt, t), xt and t to learn u2,θ2 function, thus the
loss is

L2,2,θ2,θ1 := ∥ẍt − u2,θ2(u1,θ1(xt, t), xt, t)∥22

Overall, the total loss is

L2,θ := L2,1,θ1 + L2,2,θ2,θ1

Definition 3.19 (Empirical loss). We define the empirical
second-order loss as L̃2,θ = 1

N

∑N
i=1 lθ(xi).

Definition 3.20 (Population loss). We define the population
second-order loss as L2,θ = E[lθ(X)]

3.4 PROPOSED METHOD

In this section, we now summarize the second-order algo-
rithms that arise from the definitions above. Due to the space
limitation, we delay the original first-order algorithm and
our new third algorithms in the appendix.

Algorithm 1 Our new second-order training process

1: procedure 2NDORDERFORWARD()
2: for each iteration do
3: Random sample x0 and time t, with target x1

4: xt ← αt · x0 +
√
1− α2

t · x1

5: Compute gradient with respect to L2,θ ▷ see
Def. 3.18

6: end for
7: return u1, u2 ▷ Two network functions
8: end procedure

Algorithm 2 Our new second-order inference algorithm

1: procedure 2NDORDERINFERENCE(u1, u2)
2: x0 ∼ N (0, 1)
3: Initial x← x0

4: for t from 0 to 1 with step ∆t = 0.01 do
5: x← x+∆t ·u1(x, t)+

(∆t)2

2 ·u2(u1(x, t), x, t)
6: end for
7: return x
8: end procedure

Remark 3.21. Since our approach could use a separate
neural network for each higher-order term, the overall com-
plexity scales by a constant factor corresponding to the
number of higher-order terms. Thus, the time complexity of
our method exactly matches the complexity of previous first-
order flow-matching methods, and this constant factor will
not substantially increase computational overhead beyond
the original first-order algorithm.

Remark 3.22. Our model parameterizes all orders of time
derivatives, rather than only parameterizing higher-order
derivatives (e.g., acceleration) and using numerical inte-
gration to compute lower-order derivatives (e.g., velocity).
This technical choice ensures the numerical stability of our
model and avoids introducing extra numerical errors dur-
ing integration. In computationally resource-scarce settings
where fewer model parameters are needed, our model can
also flexibly consider parameterizing only higher-order time
derivatives while deriving lower-order derivatives through
numerical integration.

4 OUR RESULT

In Section 4.1, we first present a classical elliptic regularity
lemma. In Section 4.2, we then show how controlling the
second-order loss ensures bounded estimation error in a
stronger Sobolev norm, thereby revealing a key regulariza-
tion effect. In Section 4.3, we derive an excess risk bound,
demonstrating that our method generalizes well under finite-
sample conditions. In Section 4.4, we further analyze a
discrete propagation inequality under noise. In Section 4.5,
we combine these insights in our main theorem, proving
that the learned trajectory remains robust against noise and
sampling limitations.

4.1 ELLIPTIC REGULARITY

In this section, we introduce the first result, which is a
classical result that characterizes the relationship between
different Sobolev norms for sufficiently smooth functions.

Lemma 4.1 (Elliptic regularity in Evans [2010]). Let Ω ⊂
Rd be a bounded domain with a sufficiently smooth bound-
ary. Suppose h : Ω → R belongs to L2(Ω), has weak



derivatives up to second order in L2(Ω) and satisfies appro-
priate boundary conditions. Then, there exists a constant
Creg > 0, depending only on Ω and the boundary condi-
tions, such that

∥h∥H2(Ω) ≤ Creg(∥∇h∥L2(Ω) + ∥h∥L2(Ω)).

The above result is fundamental in establishing norm equiv-
alences in Sobolev spaces, which we will use to analyze the
regularity of error terms in subsequent lemmas.

4.2 REGULARIZATION EFFECT

In this section, we now connect the second-order loss func-
tion with the Sobolev norm of the estimation error.

Lemma 4.2 (Regulazation effect). Let {(x0, x1, t)} denote
the sampling start point, endpoint, and time in the train-
ing set, and suppose the true trajectory ẍt ∈ H2(Ω), we
consider

L2,2,θ1,θ2 = E[∥ẍtrue
t − u2,θ2(u1,θ1(x

true
t , t), xtrue

t , t)∥22],

The second-order loss with respect to the true second deriva-
tive. Particularly, there exist Creg ∈ R when L2,2,θ1,θ2 is
sufficiently small such that

∥ẋest
t − ẋtrue

t ∥H2(Ω)

≤ Creg(L
1/2
2,2,θ1,θ2

+ ∥ẋest
t − ẋtrue

t ∥L2(Ω)).

Proof. First we let h(·) = ẋest
t (·)−ẋtrue

t (·), the problem de-
pends on both t and x, we could it by h(t, x). For clarity, we
simply write h(·) and regard it as a function on Ω. Generally,
one assumes ẋest

t , ẋtrue
t ∈ H2(Ω) so that h ∈ H2(Ω).

Applying Lemma 4.1 to h(·) = ẋest
t − ẋtrue

t , we have

∥ẋest
t − ẋtrue

t ∥H2(Ω)

≤ Creg(∥∇h∥L2(Ω) + ∥h∥L2(Ω)). (1)

By the Definition of the loss function, a small L2,2,θ1,θ2

implies

∥ẋest
t − ẋtrue

t ∥L2(Ω) ≲ L
1/2
2,2,θ1,θ2

(2)

Combining Eq.(1) and (2), we have

∥ẋest
t − ẋtrue

t ∥H2(Ω)

≤ Creg(L
1/2
2,2,θ1,θ2

+ ∥ẋest
t − ẋtrue

t ∥L2(Ω)).

Thus, we complete the proof.

The above lemma highlights the importance of small second-
order loss: it guarantees that the estimation error in the
stronger Sobolev norm H2(Ω) remains controlled.

4.3 EXCESS RISK

In this section, we introduce the following result which
bounds the difference between the empirical and population
loss, demonstrating that our method generalizes well under
finite-sample conditions.

Lemma 4.3 (Symmetrization bound). Let {xi}Ni=1 and
{x′

i}Ni=1 be i.i.d. samples. For G = {ℓθ : θ ∈ Θ}, we
have:

sup
g∈G
| 1
N

N∑
i=1

(g(xi)− g(x′
i))| ≤

2

N
E
σ
[sup
g∈G

N∑
i=1

σig(xi)],

where {σi}Ni=1 are Rademacher random variables, σi ∈
{+1,−1} with equal probability.

Proof. For each σi has a symmetric distribution, we have:

|
N∑
i=1

(g(xi)− g(x′
i))| ≤ E

σ
[|

N∑
i=1

σi(g(xi)− g(x′
i))|

Taking the supremum over g ∈ G and noting that {xi} and
{x′

i} have the same distribution, we can split the expression
inside the absolute value:

sup
g∈G
|

N∑
i=1

(g(xi)− g(x′
i))|

≤ Eσ[sup
g∈G
|

N∑
i=1

σi(g(xi)− g(x′
i))|].

By the triangle inequality, we get:

|
N∑
i=1

σi(g(xi)− g(x′
i))| ≤ |

N∑
i=1

σig(xi)|+ |
N∑
i=1

σig(x
′
i)|.

Hence,

sup
g∈G
|

N∑
i=1

(g(xi)− g(x′
i))|

≤ Eσ[sup
g∈G
|

N∑
i=1

σi g(xi)|+ sup
g∈G
|

N∑
i=1

σig(x
′
i)|].

Because {x′
i} is drawn from the same distribution as {xi},

the two supremum terms have the same expected value.
Therefore, we can combine them as follows:

sup
g∈G
| 1
N

N∑
i=1

(g(xi)− g(x′
i))| ≤

2

N
E
σ
[sup
g∈G

N∑
i=1

σig(xi)],

Thu,s we complete the proof.

Lemma 4.4 (Theorem 6.11 in Shalev-Shwartz and Ben–
David [2014]). As we defined in Definition 3.15, 3.20 and



3.19, if Assumption 3.4 holds, for g ∈ G where G = {ℓθ :
θ ∈ Θ}, we have

sup
g∈G
| 1
N

N∑
i=1

g(x′
i)− E[g(x)]| ≤ O(

√
ln(1/β)/N)

Lemma 4.5 (Excess risk). As we defined in Definition 3.20,
we have

L̃2,θ

=
1

N

N∑
i=1

(∥ẋtrue,i
t − u1,θ1(·)∥22 + ∥ẍ

true,i
t − u2,θ2(·)∥22)

(3)

and

L2,θ = E[∥ẋtrue
t − u1,θ1(·)∥22 + ∥ẍtrue

t − u2,θ2(·)∥22] (4)

Suppose F1 nad F2 have finite or at most polynomially
growing complexities C(F1), C(F2). Then for β ∈ (0, 1),
with probability at least 1− β, we have

|L̃2,θ − L2,θ| ≤ O((C(F1) + C(F2) + ln(1/β))/N)1/2.

Proof. Let G = {ℓθ : θ ∈ Θ} represent the complexity of
G the Rademacher/VC dimension, As we defined in Defi-
nition 3.12, 3.19 and 3.20, we calculate the empirical loss
and population loss,

L̃2,θ =
1

N

N∑
i=1

lθ(xi)

=
1

N

N∑
i=1

(∥ẋtrue,i
t − u1,θ1(·)∥22

+ ∥ẍtrue,i
t − u2,θ2(·)∥22)

and

L2,θ = E[lθ(X)]

= E[∥ẋtrue
t − u1,θ1(·)∥22 + ∥ẍtrue

t − u2,θ2(·)∥22]

let {x′
i}Ni=1 be an i.i.d. sample from the same distribution

as {xi}Ni=1, and let {σi}Ni=1 be i.i.d. Rademacher random
variables (σi ∈ {+1,−1} with probability 1/2 each). Then,
for any g ∈ G, we have

sup
g∈G
| 1
N

N∑
i=1

g(xi)− E[g(x)]|

≤ sup
g∈G
| 1
N

N∑
i=1

(g(xi))− g(x′
i)|

+ sup
g∈G
| 1
N

N∑
i=1

g(x′
i)− E[g(x)]| (5)

We can upper bound the first term in Eq. (5),

sup
g∈G
| 1
N

N∑
i=1

(g(xi))− g(x′
i)|

≤ 2

N
E
σ
[sup
g∈G

N∑
i=1

σig(xi)]

= 2R̃N (G)

≤ 2 ·O(
√
C(G)/N)

≤ O(
√
(C(F1) + C(F2))/N) (6)

where the first step follows from Lemma 4.3, the
second step comes from we define R̃N (G) :=

Eσ[supg∈G
1
N

∑N
i=1 σig(xi)], the third step follows from

Assumption 3.4, the forth step follows from the definition
of G.

We can upper bound the second term in Eq. (5) by using
Lemma 4.4,

sup
g∈G
| 1
N

N∑
i=1

g(x′
i)− E[g(x)]| ≤ O(

√
ln(1/β)/N) (7)

Loading Eq. (6) and Eq. (7), we can obtain

sup
g∈G
| 1
N

N∑
i=1

g(xi)− E[g(x)]|

≤ O(
√
(C(F1) + C(F2) + ln(1/β))/N)

Thus, we complete the proof.

4.4 DISCRETE PROPAGATION UNDER NOISE

In this section, we show the lemma about discrete propaga-
tion under noise, which quantifies how noise in the trajectory
affects the error propagation in a discrete setting.

Lemma 4.6 (Discrete propagation under noise). Suppose
ηi satisfies ∥ηi∥ ≤ δ, there exist Cprop ∈ R such that

el+1 ≤ (1 + ∆t · Cprop)el + Cprop ·∆t · δ · ϵ

unrolling for l = 0, · · · , L− 1, we have

eL ≤ e0 exp(Cprop) +
δ · ϵ
Cprop

(exp(Cprop)− 1)

Proof. By Assumptions 3.2 and 3.6, the discrete updates
for both the estimated and true systems can be written as:

xl+1 = xl +∆t · u1,θ1(xl, tl)

+
(∆t)2

2
u2,θ2(u1,θ1(xl, tl), xl, tl).



Subtracting the true system update from the estimated one
gives:

xest
l+1 − xtrue

l+1

= (xest
l − xtrue

l ) + ∆t · (u1,θ1(x
est
l , tl)− ẋtrue

l )

+
(∆t)2

2
· (u2,θ2(·)− ẍtrue).

Taking the H2-norm, we have:

∥xest
l+1 − xtrue

l+1 ∥H2(Ω)

≤ ∥xest
l − xtrue

l ∥H2(Ω)

+∆t · ∥u1,θ1(x
est
l , tl)− ẋtrue

l ∥H2(Ω)

+O((∆t)2).

Since ẋtrue
l ∼ u1,θ1(x

true
l , tl) and the deviation is con-

trolled by ∥xest
l − xtrue

l ∥ and noise δϵ, we can write:

el+1 = ∥xest
l+1 − xtrue

l+1 ∥H2(Ω)

≤ (1 + ∆t · Cprop)el + Cprop∆t · δ · ϵ,

where Cprop depends on the Lipschitz constants of u1,θ1

and u2,θ2 . Repeatedly applying this inequality from l = 0
to l = L− 1, we have:

eL = e0

L−1∏
j=0

(1 + ∆t · Cprop)

+

L−1∑
l=0

(Cprop∆t · δ · ϵ
L−1∏
j=l+1

(1 + ∆t · Cprop)).

Recognizing that:
∏L−1

j=0 (1 + ∆t · Cprop) = exp(Cprop),
we simplify the summation term using the geometric series
formula:

L−1∑
l=0

L−1∏
j=l+1

(1 + ∆t · Cprop) =
exp(Cprop)− 1

Cprop
.

Thus, we obtain:

eL ≤ e0 exp(Cprop) +
δ · ϵ
Cprop

(exp(Cprop)− 1).

This completes the proof.

This result provides a discrete Gronwall-type inequality,
quantifying the growth of error under bounded noise.

4.5 MAIN RESULT

In this section, we now state and prove our main result
with the auxiliary lemmas in place, which establishes the
robustness of the learned trajectory against noise and finite-
sample effects.

Theorem 4.7 (Noise robustness). 1 Suppose all Assump-
tion 3.1, 3.2, 3.3 and 3.6 holds, Let θ̃ = (θ̃1, θ̃2) is the
approximately optimal solution, then β ∈ (0, 0.1), the final-
time(t = 1) trajectory estimate satisfies

∥xest
t=1 − xtrue

t=1 ∥H2(Ω)

≤ C1 exp(C2) · (e0 + δ · ϵ)
+ C3 · ((C(F1) + C(F2) + ln(1/β))/N)1/2,

where e0 = ∥xest
0 −xtrue

0 ∥ is the initial error. C1, C2, C3 de-
pends on Lipschitz constant L, dimension d, sobolev embed-
ding constant, ∆t, exp(C2) represents the discrete gronwall
factor for the time interval [0, 1].

Table 1: Euclidean distance loss across three complex
distribution datasets under the new trajectory setting.
Lower values indicate higher accuracy in distribution trans-
fer. The optimal values are highlighted in Bold, and the
second-best loss values (second-lowest) are represented by
Underlined numbers for each dataset (row).

Loss Five 3-round Dot
terms mode Spiral Hyperbola
O1 Liu et al. [2023] 1.755 17.338 18.096
O1 + O2 (Ours) 0.956 15.514 3.823
O1 + O2 + O3 (Ours) 0.778 11.866 2.959

5 EXPERIMENTS

This section presents a series of experiments to evaluate
the effectiveness of our NRFlow. Our results demonstrate
that NRFlow significantly improves distribution generation,
with the high-order loss playing a key role in enhancing
model performance. In Section 5.1, we provide a detailed
explanation for the setup of our experiments. In Section 5.2,
we provide a comprehensive analysis of the effectiveness of
our high-order supervision in our NRFlow model.

5.1 EXPERIMENT SETUP

We conduct comprehensive evaluations of NRFlow across
diverse data distributions and multiple loss function combi-
nations. Notably, the NRFlow implementation using only
first-order loss (denoted as O1) corresponds exactly to
the baseline Rectified Flow framework Liu et al. [2023].
Our proposed extensions consist of two configurations:
second-order enhanced (O1+O2) and third-order augmented
(O1+O2+O3) variants.

The evaluation employs two challenging synthetic datasets:
a three-round spiral distribution and a dot-hyperbola dis-
tribution. Each dataset contains 100 sample points drawn

1We state the proof of Theorem 4.7 in Section B in our Ap-
pendix.
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Figure 1: NRFlow on 3-round spiral dataset and dot-hyperbola dataset. From left to right: the first column shows
the 3-round spiral dataset and the dot-hyperbola dataset; the second column shows the results of NRFlow optimized
with first-order loss (O1) Liu et al. [2023]; the third column shows the results of NRFlow optimized by first-order and
second-order loss (O1+O2) (Ours); the fourth column are the results of NRFlow optimized by first-order, second-order and
third-order loss (O1+O2+O3) (Ours). Our high-order NRFlows (third column and fourth column) show great capability in
modeling complex distribution. Quantitative results are shown in Table 1.

from both source and target distributions. Our implemen-
tation utilizes a 2-layer fully connected network with 100
hidden units, trained using the Adam optimizer with a learn-
ing rate of 0.005. For the three-round spiral dataset, we
employ full-batch training (batch size 1000) over 1000 op-
timization steps. The dot-hyperbola configuration uses an
increased batch size of 1600 to account for its greater geo-
metric complexity. Numerical integration is performed using
an adaptive ODE solver throughout all experiments.

5.2 RESULTS ANALYSIS

Our primary objective involves learning optimal transport
trajectories between source distributions (depicted in or-
ange in Figure 1) and target distributions (shown in pick).
Empirical results demonstrate that the baseline Rectified
Flow model (O1) exhibits significant limitations in target
distribution modeling. As visualized in Figure 1 (second
column), the first-order model generates substantial out-of-
distribution artifacts for both synthetic datasets. This obser-
vation is quantitatively confirmed in Table 1, where O1 has
the highest Euclidean distance metrics among all settings.

The introduction of second-order regularization (O1+O2)
yields marked improvements. Final optimization with third-
order constraints (O1+O2+O3) produces the most accurate
distribution alignment, achieving near-perfect coverage of
target domains. These results conclusively demonstrate that
high-order supervision progressively enhances the model’s
ability to capture complex distributional geometries, with
each additional regularization term contributing to statisti-
cally significant performance gains.

6 CONCLUSION

In summary, we introduced NRFlow, which augments tra-
ditional flow-based generative models by the second-order
term. Our theoretical results demonstrate that these higher-
order terms act as an effective regularizer, providing im-
proved noise robustness and smoother trajectories under
bounded perturbations. A discrete Gronwall analysis further
shows that error propagation remains controlled, reinforc-
ing the framework’s stability. These findings highlight the
promise of second-order methods for robust generative mod-
eling.
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Roadmap. In Section A, we introduce some notations and basic concepts. We state the proof of Theorem 4.7 in Section B.
In Section C, we extend our result to a third-order case. In Section D, we extend our result to k-th order. In Section E, we
provide comprehensive experiments to evaluate our NRFlow under complex conditions.

A PRELIMINARY

In Section A.1, we introduce some notations we use in the appendix. In Section A.2, we introduce some basic concepts
about flow matching. In Section A.3, we introduce the background of optimal transport.

A.1 NOTATIONS

We use Pr[] to denote the probability. We use E[] to denote the expectation. We use Var[] to denote the variance. We use ∥x∥p
to denote the ℓp norm of a vector x ∈ Rn, i.e. ∥x∥1 :=

∑n
i=1 |xi|, ∥x∥2 := (

∑n
i=1 x

2
i )

1/2, and ∥x∥∞ := maxi∈[n] |xi|.
For variables a, b, We write a ≲ b to indicate that a is bounded above by b up to a multiplicative constant independent of
the main parameters. We write a ≳ b to indicate that a is bounded below by b up to a multiplicative constant independent
of the main parameters. We denote ẋ(k) as the k-th order derivative field of x. We use Dist as the function represents
the probability distribution of a given random variable or random vector, mapping it to its corresponding measure on the
probability space.

A.2 FLOW MATCHING

In this section, we restate and introduce some definitions of flow matching and the algorithm. We restate part of Defini-
tion 3.18 and introduce the loss function of flow matching.

Definition A.1 (Loss function). The loss function for the second order method contains two parts. We define the first part
which is trying to using ẋt in Fact 3.9, xt and t to learn function u1,t, thus the loss is

L1st := ∥ẋt − u1,θ1(xt, t)∥22.

Here we restate Definition 3.10

Definition A.2 (A variant of flow matching in Lipman et al. [2023]). Given two distributions µ0 and π0 on Rd, flow
matching aims to learn a time-dependent velocity field

vθ : Rd × [0, 1] → Rd

such that for any trajectory xt transporting x0 ∼ µ0 to x1 ∼ π0, we have

ẋt ∼ vθ(xt, t).

We present the training algorithm and inference algorithm of flow matching.



Algorithm 3 Training algorithm of flow matching

1: procedure 1STORDERFORWARD()
2: for each iteration do
3: Random sample x0 and time t, with target x1

4: xt ← αt · x0 +
√
1− α2

t · x1

5: Compute gradient with respect to L1st ▷ See Definition A.1
6: end for
7: return u1 ▷ One network functions
8: end procedure

Algorithm 4 Inference algorithm of flow matching

1: procedure 1STORDERINFERENCE(u1)
2: x0 ∼ N (0, 1)
3: Initial x← x0

4: for t from 0 to 1 with step ∆t = 0.01 do
5: x← x+∆t · u1(x, t)
6: end for
7: return x
8: end procedure

A.3 OPTIMAL TRANSPORT

In this section, we introduce some background of optimal transport.

The optimal transport (OT) problem, as originally framed by Monge Monge [1781], seeks to minimize a cost functional:

inf
T

E[c(T (x0)− x0)],

s.t. Dist(T (x0)) = π0, Dist(x0) = µ0,

where the optimization is over deterministic mappings T : Rd → Rd that define a coupling (x0, x1) with x1 = T (x0),
minimizing the cost c Villani [2009].

Kantorovich Kantorovitch [1958] extended Monge’s problem by introducing the Monge-Kantorovich (MK) formulation,
which allows for both deterministic and stochastic couplings (x0, x1) with marginal distributions µ0 and π0. Notably, when
µ0 is absolutely continuous with respect to the Lebesgue measure, the optimal coupling remains deterministic, reducing
the problem to the set of mappings T . This equivalence facilitates a dynamic interpretation, where the aim is to identify a
continuous-time trajectory {xt}t∈[0,1] from a collection of smooth interpolants X , such that x0 ∼ µ0 and x1 ∼ π0. For a
convex cost function c, Jensen’s inequality implies:

E[c(x1 − x0)] ≥ inf
{xt}t∈[0,1]∈X

E
[∫ 1

0

c(ẋt)dt

]
.

The infimum is achieved when xt follows the displacement interpolant, xt = tx1 + (1− t)x0, representing a geodesic in
the Wasserstein space McCann [1997].

When the process is governed by ordinary differential equations (ODEs) of the form dxt = vt(xt)dt, the evolution of the
Lebesgue density ϵt of xt satisfies the continuity equation:

∂ϵt
∂t

+∇ · (vtϵt) = 0.

The Monge problem can then be reformulated dynamically as:

inf
{vt}t∈[0,1],{xt}t∈[0,1]

E
[∫ 1

0

c(vt(xt))dt

]
,

s.t.
∂ϵt
∂t

+∇ · (vtϵt) = 0,



µ0 =
dµ0

dλ
, π0 =

dπ0

dλ
.

Although this dynamic formulation provides deeper insights, solving it is computationally challenging. For cost functions like
the ℓ2 norm, this reduces to minimizing the kinetic energy of the flow, as shown by Shaul et al. [2023], where displacement
interpolants are energy-optimal and correspond to straight-line flow paths.

B MISSING PROOF OF THEOREM 4.7

Here, we state the proof of Theorem 4.7.

Proof. Let θ̃ = (θ̃1, θ̃2) denote the approximate optimal solution for the estimated loss in Eq. (3). By Lemma 4.5, we have

|L̃2,θ − L2,θ| ≤ O((C(F1) + C(F2) + ln(1/β))/N)1/2.

Therefore, under the true distribution, ẋest
t and ẍest

t approximate ẋtrue
t and ẍtrue

t well in an L2 sense.

As we defined ẍtrue
t ∈ H2(Ω) ,we then apply Lemma 4.2, which leverages the Assumption 3.1. If L2,2,θ1,θ2 is small, there

exist Creg such that

∥ẋest
t − ẋtrue

t ∥H2(Ω)

≤ Creg(L
1/2
2,2,θ1,θ2

+ ∥ẋest
t − ẋtrue

t ∥L2(Ω)).

Since Lemma 4.5 already guarantees that ẋest
t and ẍest

t are close to the true ẋtrue
t and ẍtrue

t in L2, we conclude that the
learned fields are also close in the stronger H2(Ω) norm. As we assumed in Assumption 3.3 and 3.6, For or uniform time
steps ∆t = 1/L, the update for the estimate is

xest
l+1 = xest

l +∆t · u1,θ̃1
(xest

l , tl)

+
(∆t)2

2
u2,θ̃2

(u1,θ̃1
(xest

l , tl), x
est
l , tl).

Similarly, the true trajectory xtrue
l+1 follows the same scheme but with the true velocity and acceleration (plus noise bounded

by δϵ). Subtracting two updates and taking the H2-norm, and invoking the Lipschitz condition in Assumption 3.2, yields
Lemma 4.6, we have

el+1 = ∥xest
l+1 − xtrue

l+1 ∥H2(Ω)

≤ (1 + ∆t · Cprop)el + Cprop∆t · δ · ϵ.

Here Cprop depends on Lipschitz constants and bounds on ẋ and ẍ. Iterating the above and a discrete Gronwell argument
shows

eL = ∥xest
L − xtrue

L ∥H2(Ω)

≤ e0 exp(Cprop) +
δ · ϵ
Cprop

(exp(Cprop)− 1).

Since exp(Cprop) is just a constant factor, denote it by eC2 . Combine all of these terms then yields the exact form of
Theorem 4.7:

∥xest
t=1 − xtrue

t=1 ∥H2(Ω)

≤ C1 exp(C2) · (e0 + δ · ϵ)
+ C3 · ((C(F1) + C(F2) + ln(1/β))/N)1/2.

Thus, we complete the proof.



C EXTENSION ON THIRD-ORDER FLOW MATCHING

In this section, we extend the second-order flow-matching framework in Section 3.3 to incorporate third-order information.
We first introduce additional assumptions in Section C.1 to ensure that the third derivative of the true trajectory is sufficiently
smooth and bounded. In Section C.2, we introduce our third-order training algorithm and the inference algorithm. In
Section C.3, we introduce the elliptic regularity for third-order cases. In Section C.4, we present the result of the regularization
effect result for the third-order loss function. In Section C.5, we show the excess risk of third-order cases. In Section C.6, we
show the lemma about discrete propagation under noise quantifies how noise in the trajectory affects the error propagation
in a third-order discrete setting. In Section C.7, we prove our third-order main result.

C.1 PRELIMINARY

In this section, we introduce some additional definitions and assumptions specific to the third-order extension.

Assumption C.1 (Smoothness in higher Sobolev spaces). We assume xtrue
t ∈ H3(Ω), its derivatives up tothe third order lie

in L2(Ω) and satisfy suitable boundary conditions.

∥ẋtrue
t ∥H3(Ω) ≤M1, ∥ẍtrue

t ∥H3(Ω) ≤M2, ∥ ...
x true

t ∥H3(Ω) ≤M3.

In addition, we assume the third derivative ...
x true

t is continuous over [0, 1] and satisfies

∥ ...
x true

t ∥∞ ≤M3.

The assumption above is critical to ensure the trajectory has sufficient regularity for third-order analysis.

Remark C.2. Assumption C.1 extends Assumption 3.1 by requiring a bounded third derivative and ensuring the entire
trajectory has appropriate regularity in Sobolev space H3(Ω). This added smoothness is essential for deriving higher-order
error bounds.

We now define the discrete-time update rule for third-order systems.

Assumption C.3 (Time discretization for third-order update). Let ∆t = 1/L be the uniform step size, and define discrete
times tl = l∆t for l = 0, 1, . . . , L. The third-order discrete update for the estimated system is:

xest
l+1 = xest

l +∆tu1,θ1(x
est
l , tl) +

(∆t)2

2
u2,θ2(u1,θ1(x

est
l , tl), x

est
l , tl) +

(∆t)3

6
u3,θ3(u2,θ2(·), xest

l , tl).

The discrete update incorporates terms up to the third derivative, capturing the dynamics more accurately.

Assumption C.4. The learned fields u1,θ1(x, t) , u2,θ2(v, x, t) and u3,θ3(a, x, t) are L-Lipschitz continuous in spatial and
temporal arguments. Formally, there exists L > 0 such that for all x, y ∈ Rd and t, s ∈ [0, 1]:

∥u1,θ1(x, t)− u1,θ1(y, t)∥2 ≤ L∥x− y∥2,
∥u2,θ2(v, x, t)− u2,θ2(v, y, t)∥2 ≤ L∥x− y∥2,
∥u3,θ3(a, x, t)− u3,θ3(a, y, t)∥2 ≤ L∥x− y∥2,

This is the natural extension of the second-order scheme in Assumption 3.6.

This assumption is necessary to control the propagation of errors through the system.

Definition C.5 (Third-order rectified flow). A third-order rectified flow is determined by three learned fields:

u1,θ1(x, t)

u2,θ2(v, x, t) where v = u1,θ1(x, t),

u3,θ3(a, x, t) where a = u2,θ2(v, x, t).

These fields aim to approximate ẋtrue
t , ẍtrue

t , and ...
x true

t , respectively.



We now introduce the third-order analog of the velocity and acceleration fields. In addition to the velocity u1,θ1 and
acceleration u2,θ2 fields, we define a field

u3,θ3(a, x, t),

where a = u2,θ2(v, x, t) and v = u1,θ1(x, t). This field aims to approximate the third derivative ...
x true

t .

Here, we introduce the definition of the field of third-order flow.

Definition C.6 (Third-order flow field). A third-order rectified flow is characterized by a velocity field u1,θ1(x, t), an
acceleration field u2,θ2(v, x, t), and a field

u3,θ3(a, x, t),

where

v = u1,θ1(x, t), a = u2,θ2(u1,θ1(x, t), x, t).

The function u3,θ3 aims to approximate the ...
x true

t .

And we present the loss function of third-order flow as follows.

Definition C.7 (Third-order loss function). Let ẋtrue
t , ẍtrue

t , and ...
x true

t be the true velocity, acceleration, and of the
trajectory xtrue

t . We define the third-order loss as

L3rd(θ1, θ2, θ3) = E[∥ẋtrue
t − u1,θ1(xt, t)∥22]︸ ︷︷ ︸

L3,1,θ1

+E[∥ẍtrue
t − u2,θ2(u1,θ1(xt, t), xt, t)∥22]︸ ︷︷ ︸

L3,2,θ2,θ1

+E[∥ ...
x true

t − u3,θ3(u2,θ2(·), xt, t)∥22]︸ ︷︷ ︸
L3,3,θ3,θ2,θ1

,

where each expectation is taken over the possibly noisy samples of the continuous trajectory xtrue
t .

Here’s the empirical third-order loss.

Definition C.8 (Empirical third-order loss). Given a training dataset {(xi
0, x

i
1)}Ni=1 and time samples {ti}, we define the

empirical third-order loss:

L̃3rd =
1

N

N∑
i=1

[∥ẋtrue,i
t − u1,θ1(x

i
t, ti)∥2 + ∥ẍ

true,i
t − u2,θ2(u1,θ1(x

i
t, ti), x

i
t, ti)∥2 + ∥

...
x true,i

t − u3,θ3(u2,θ2(·), xi
t, ti)∥2].

C.2 PROPOSED THIRD-ORDER ALGORITHMS

We present the natural extension of the second-order methods in Section 3.4 to incorporate the jerk term. Here are our
third-order training algorithm and inference algorithm.

Algorithm 5 Our third-order training algorithm

1: procedure 3RDORDERFORWARD()
2: for each iteration do
3: Random sample x0 and time t, with target x1

4: xt ← αt · x0 +
√
1− α2

t · x1

5: Compute gradient with respect to L3rd ▷ See Definition C.7
6: end for
7: return u1, u2, u3 ▷ Three network functions
8: end procedure

C.3 ELLIPTIC REGULARITY

We now provide key lemmas and the main theorem establishing noise-robustness for third-order flow matching. In this
section, we first introduce the elliptic regularity.

Lemma C.9 (Elliptic regularity in Evans [2010]). Let Ω ⊂ Rd be a bounded domain witha smooth boundary. Suppose a
function h : Ω→ R has weak derivatives up to order 3 in L2(Ω) and satisfies relevant boundary conditions. Then there
exists a constant Creg,3 > 0 (depending on Ω) such that

∥h∥H3(Ω) ≤ Creg,3(∥∇2h∥L2(Ω) + ∥∇h∥L2(Ω) + ∥h∥L2(Ω)).



Algorithm 6 Our third-order inference algorithm

1: procedure 3RDORDERINFERENCE(u1, u2, u3)
2: x0 ∼ N (0, 1)
3: Initial x← x0

4: for t from 0 to 1 with step ∆t = 0.01 do
5: x← x+∆t · u1(x, t) +

(∆t)2

2 · u2(u1(x, t), x, t) +
(∆t)3

6 · u3(u2(u1(x, t), x, t), xt, t)
6: end for
7: return x
8: end procedure

C.4 REGULARIZATION EFFECT

In this section, we show the result of the regularization effect for the third-loss order.

Lemma C.10 (Regularization effect for third-order loss). As we defined in Definition C.8, then we define

L3rd := E[∥ ...
x true

t − u3,θ3(u2,θ2(·), xtrue
t , t)∥2].

If ...
x true

t ∈ H3(Ω) and L3rd is sufficiently small, then there exists a constant Creg,3 such that

∥ẍest
t − ẍtrue

t ∥H3(Ω) ≤ Creg,3(L
1/2
3rd + ∥ẍest

t − ẍtrue
t ∥L2(Ω)).

Proof. Applying Lemma C.9 to h(·) = ẍest
t − ẍtrue

t , we have

∥ẍest
t − ẍtrue

t ∥H3(Ω)

≤ Creg,3(∥∇2h∥L2(Ω) + ∥∇h∥L2(Ω) + ∥h∥L2(Ω)). (8)

By the Definition of the loss function, a small L2,2,θ1,θ2 implies

∥ẍest
t − ẍtrue

t ∥L2(Ω) ≲ L
1/2
3rd (9)

Combining Eq.(8) and (9), we have

∥ẍest
t − ẍtrue

t ∥H3(Ω)

≤ Creg,3(L
1/2
3rd + ∥ẍest

t − ẍtrue
t ∥L2(Ω)).

Thus, we complete the proof.

C.5 EXCESS RISK

In this section, we first introduce some necessary tools that need to be used in Lemma C.10. Then, we show our result of
excess risk for third-order flow. First, we restate the symmetrization bound again.

Lemma C.11 (Symmetrization bound, formal version of Lemma 4.3). Let {xi}Ni=1 and {x′
i}Ni=1 be i.i.d. samples. For

G = {ℓθ : θ ∈ Θ}, we have:

sup
g∈G
∥ 1
N

N∑
i=1

(g(xi)− g(x′
i))∥ ≤

2

N
E
σ
[sup
g∈G

N∑
i=1

σig(xi)],

where {σi}Ni=1 are Rademacher random variables, σi ∈ {+1,−1} with equal probability.

Proof. For each σi has a symmetric distribution, we have:

∥
N∑
i=1

(g(xi)− g(x′
i))∥ ≤ E

σ
[∥

N∑
i=1

σi(g(xi)− g(x′
i))∥



Taking the supremum over g ∈ G and noting that {xi} and {x′
i} have the same distribution, we can split the expression

inside the absolute value:

sup
g∈G
∥

N∑
i=1

(g(xi)− g(x′
i))∥

≤ Eσ[sup
g∈G
∥

N∑
i=1

σi(g(xi)− g(x′
i))∥].

By the triangle inequality, we get:

∥
N∑
i=1

σi(g(xi)− g(x′
i))∥ ≤ ∥

N∑
i=1

σig(xi)∥+ ∥
N∑
i=1

σig(x
′
i)∥.

Hence,

sup
g∈G
∥

N∑
i=1

(g(xi)− g(x′
i))∥

≤ Eσ[sup
g∈G
∥

N∑
i=1

σi g(xi)∥+ sup
g∈G
∥

N∑
i=1

σig(x
′
i)].

Because {x′
i} is drawn from the same distribution as {xi}, the two supremum terms have the same expected value. Therefore,

we can combine them as follows:

sup
g∈G
∥ 1
N

N∑
i=1

(g(xi)− g(x′
i))∥ ≤

2

N
E
σ
[sup
g∈G

N∑
i=1

σig(xi)],

Thus, we complete the proof.

Here we restate Lemma 4.4.

Lemma C.12 (Formal version of Lemma 4.4). As we defined in Definition 3.15, C.7 and C.8, if Assumption 3.4 holds, for
g ∈ G where G = {ℓθ : θ ∈ Θ}, we have

sup
g∈G
∥ 1
N

N∑
i=1

g(x′
i)− E[g(x)]∥ ≤ O(

√
ln(1/β)/N)

We next present the result of excess risk for third-order flow.

Lemma C.13 (Excess risk). As we defined in Definition C.7 and C.8, we have

L̃3rd =
1

N

N∑
i=1

[∥ẋtrue,i
t − u1,θ1(x

i
t, ti)∥2 + ∥ẍ

true,i
t − u2,θ2(u1,θ1(x

i
t, ti), x

i
t, ti)∥2 + ∥

...
x true,i

t − u3,θ3(u2,θ2(·), xi
t, ti)∥2]

and

L3rd(θ1, θ2, θ3) = E[∥ẋtrue
t − u1,θ1(xt, t)∥2]︸ ︷︷ ︸

L3,1,θ1

+E[∥ẍtrue
t − u2,θ2(u1,θ1(xt, t), xt, t)∥2]︸ ︷︷ ︸

L3,2,θ2,θ1

+E[∥ ...
x true

t − u3,θ3(u2,θ2(·), xt, t)∥2]︸ ︷︷ ︸
L3,3,θ3,θ2,θ1

,

Suppose F1 and F2 have finite or at most polynomially growing complexities C(F1), C(F2). Then for β ∈ (0, 1), with
probability at least 1− β, we have

|L̃3rd − L3rd| ≤ O((C(F1) + C(F2) + ln(1/β))/N)1/2.



Proof. Let G = {ℓθ : θ ∈ Θ} represent the complexity of G the Rademacher/VC dimension, As we defined in Defini-
tion C.5, C.7 and C.8 we calculate the empirical loss and population loss,

L̃3rd =
1

N

N∑
i=1

[∥ẋtrue,i
t − u1,θ1(x

i
t, ti)∥2 + ∥ẍ

true,i
t − u2,θ2(u1,θ1(x

i
t, ti), x

i
t, ti)∥2 + ∥

...
x true,i

t − u3,θ3(u2,θ2(·), xi
t, ti)∥2]

and

L3rd(θ1, θ2, θ3) = E[∥ẋtrue
t − u1,θ1(xt, t)∥2]︸ ︷︷ ︸

L3,1,θ1

+E[∥ẍtrue
t − u2,θ2(u1,θ1(xt, t), xt, t)∥2]︸ ︷︷ ︸

L3,2,θ2,θ1

+E[∥ ...
x true

t − u3,θ3(u2,θ2(·), xt, t)∥2]︸ ︷︷ ︸
L3,3,θ3,θ2,θ1

,

let {x′
i}Ni=1 be an i.i.d. sample from the same distribution as {xi}Ni=1, and let {σi}Ni=1 be i.i.d. Rademacher random variables

(σi ∈ {+1,−1} with probability 1/2 each). Then, for any g ∈ G, we have

sup
g∈G
∥ 1
N

N∑
i=1

g(xi)− E[g(x)]∥ ≤ sup
g∈G
∥ 1
N

N∑
i=1

(g(xi))− g(x′
i)∥+ sup

g∈G
∥ 1
N

N∑
i=1

g(x′
i)− E[g(x)]∥ (10)

We can upper bound the first term in Eq. (10),

sup
g∈G
∥ 1
N

N∑
i=1

(g(xi))− g(x′
i)∥

≤ 2

N
E
σ
[sup
g∈G

N∑
i=1

σig(xi)]

= 2R̃N (G)

≤ 2 ·O(
√
C(G)/N)

≤ O(
√
(C(F1) + C(F2))/N) (11)

where the first step follows from Lemma C.11, the second step comes from we define R̃N (G) :=

Eσ[supg∈G
1
N

∑N
i=1 σig(xi)], the third step follows from Assumption 3.4, the forth step follows from the definition

of G.

We can upper bound the second term in Eq. (10) by using Lemma C.12,

sup
g∈G
∥ 1
N

N∑
i=1

g(x′
i)− E[g(x)]∥ ≤ O(

√
ln(1/β)/N) (12)

Loading Eq. (11) and Eq. (12), we can obtain

sup
g∈G
∥ 1
N

N∑
i=1

g(xi)− E[g(x)]∥ ≤ O(
√
(C(F1) + C(F2) + ln(1/β))/N)

C.6 DISCRETE PROPAGATION

In this section, we show the lemma about discrete propagation under noise quantifies how noise in the trajectory affects the
error propagation in a discrete setting for third-order flow.

Lemma C.14 (Discrete propagation with jerk). Under Assumptions C.1, C.3 and C.4 let

el = ∥xest
l − xtrue

l ∥H3(Ω).



Then there is a constant Cprop,3 > 0 such that

el+1 ≤ (1 + ∆tCprop,3)el + Cprop,3δϵ∆t.

Unrolling from l = 0 to l = L− 1 with ∆t = 1/L yields

eL ≤ e0 exp(Cprop,3) +
δϵ

Cprop,3
(exp(Cprop,3)− 1).

Proof. By Assumptions C.3 and C.4, we have

xest
l+1 = xest

l +∆tu1,θ1(x
est
l , tl) +

(∆t)2

2
u2,θ2(u1,θ1(·), xest

l , tl) +
(∆t)3

6
u3,θ3(u2,θ2(·), xest

l , tl),

xtrue
l+1 = xtrue

l +∆tẋtrue
l +

(∆t)2

2
ẍtrue
l +

(∆t)3

6

...
x true

l .

Subtracting the true update from the estimated one and taking the H3-norm, the difference involves Lipschitz constants, the
prior error el, and a noise term bounded by δϵ. One obtains

∥xest
l+1 − xtrue

l+1 ∥H3(Ω) ≤ (1 + ∆t · Cprop,3)∥xest
l − xtrue

l ∥H3(Ω) + Cprop,3δϵ∆t.

where Cprop,3 depends on Lipschitz constants of u1,θ1 , u2,θ2 , u3,θ3 , and the boundedness of ẍtrue
t ,

...
x true

t .

Repeating this inequality from l = 0 to l = L− 1 and noting ∆t = 1/L, by a discrete Gronwall argument we have

eL = ∥xest
L − xtrue

L ∥H3(Ω)

≤ e0 exp(Cprop,3) +

L−1∑
l=0

(Cprop,3δϵ∆t

L−1∏
j=l+1

(1 + ∆tCprop,3)),

≤ e0 exp(Cprop,3) +
δϵ

Cprop,3
(exp(Cprop,3)− 1).

This completes the proof.

C.7 MAIN RESULT: THIRD-ORDER NOISE ROBUSTNESS

Combining the above, we obtain the final noise-robustness result for third-order flow matching in this section.

Theorem C.15 (Third-order noise robustness). Suppose Assumptions C.1, C.3, 3.2 and 3.3 hold. Let θ̃ = (θ̃1, θ̃2, θ̃3) be
an approximately optimal solution minimizing the empirical loss L̃3rd,θ1,θ2,θ3 . Then, with probability at least 1 − β, for
uniform time steps tl = l∆t with ∆t = 1/L, we have

∥xest
L − xtrue

L ∥H3(Ω) ≤ C ′
1 exp(C

′
2)(e0 + δϵ) + C ′

3((C(F1) + C(F2) + C(F3) + ln(1/β))/N)1/2,

where e0 = ∥xest
0 − xtrue

0 ∥H3(Ω) denotes the initial error, and C ′
1, C

′
2, C

′
3 depend on Lipschitz constants, the dimension d,

and Sobolev embedding constants in H3(Ω).

Proof. Let θ̃ = (θ̃1, θ̃2) denote the approximate optimal solution for the estimated loss, use Lemma C.13, we have

|L̃3rd − L3rd| ≤ O((C(F1) + C(F2) + C(F3) ln(1/β))/N)1/2.

Therefore, under the true distribution, ẋest
t and ẍest

t approximate ẋtrue
t and ẍtrue

t well in an L2 sense.

As we defined ...
x true

t ∈ H3(Ω) ,we then apply Lemma C.10, which leverages the Assumption C.1. If L3rd is small, there
exist Creg,3 such that

∥ẍest
t − ẍtrue

t ∥H3(Ω) ≤ Creg,3(L
1/2
3rd + ∥ẍest

t − ẍtrue
t ∥L2(Ω)).



We conclude that the learned fields are also close to the stronger H2(Ω) norm. As we assumed in Assumption 3.3 and C.3,
For or uniform time steps ∆t = 1/L, the update for the estimate is

xest
l+1 = xest

l +∆tu1,θ̃1
(xest

l , tl) +
(∆t)2

2
u2,θ̃2

(u1,θ̃1
(xest

l , tl), x
est
l , tl) +

(∆t)3

6
u3,θ̃3

(u2,θ̃2
(·), xest

l , tl),

xtrue
l+1 = xtrue

l +∆tẋtrue
l +

(∆t)2

2
ẍtrue
l +

(∆t)3

6

...
x true

l .

Subtracting two updates and taking the H3-norm, and invoking the Lipschitz condition in Assumption C.4, yields
Lemma C.14, we have

el+1 = ∥xest
l+1 − xtrue

l+1 ∥H3(Ω) ≤ (1 + ∆t · Cprop,3)el + Cprop,3∆t · δ · ϵ.

Here Cprop,3 depends on Lipschitz constants and bounds on ẋ and ẍ,
...
x . Iterating the above and a discrete Gronwell

argument shows

eL = ∥xest
L − xtrue

L ∥H3(Ω) ≤ e0 exp(Cprop,3) +
δ · ϵ

Cprop,3
(exp(Cprop,3)− 1).

Since exp(Cprop,3) is just a constant factor, denote it by eC2 . Combine all of these terms then yields the exact form of
Theorem C.15:

∥xest
L − xtrue

L ∥H3(Ω) ≤ C ′
1 exp(C

′
2)(e0 + δϵ) + C ′

3((C(F1) + C(F2) + C(F3) + ln(1/β))/N)1/2,

Thus, we complete the proof.

D EXTENSION ON k-TH ORDER FLOW MATCHING

In this section, we extend the second-order flow-matching framework in Section 3.3 to incorporate third-order information.
We first introduce additional assumptions in Section D.1 to ensure that the third derivative of the true trajectory is sufficiently
smooth and bounded. In Section D.2, we introduce our third-order training algorithm and the inference algorithm. In
Section D.3, we introduce the elliptic regularity for the third-order case. In Section D.4, we present the result of the
regularization effect result for the third-order loss function. In Section D.5, we show the excess risk of the third-order case.
In Section D.6, we show the lemma about discrete propagation under noise quantifies how noise in the trajectory affects the
error propagation in a third-order discrete setting. In Section D.7, we prove our k-th order main result.

D.1 PRELIMINARY

In this section, we introduce some additional definitions and assumptions specific to the k-th order extension.

Assumption D.1 (Smoothness in higher Sobolev spaces). We assume the true trajectory xtrue
t ∈ Hk(Ω) and that its

derivatives up to the k-th order are sufficiently smooth and bounded. Formally, there exist constants {Mj}kj=1 > 0 such that

∥ẋ(j),true
t ∥Hk(Ω) ≤Mj , forj = 1, . . . , k,

where ẋ(j),true
t denotes the j-th order time derivative of xtrue

t . We also require these derivatives to be continuous on [0, 1] in
the time variable.

Then, we introduce our assumption for time discretization under k-th order update.

Assumption D.2 (Time discretization for k-th order update). Let ∆t = 1/L be the uniform step size, and define discrete
times tl = l∆t for l = 0, 1, . . . , L. We consider the following k-th order discrete update for the estimated system:

xest
l+1 = xest

l +

k∑
j=1

(∆t)j

j!
uj,θj (uj−1,θj−1

(. . . u1,θ1(x
est
l , tl) . . . ), x

est
l , tl), (13)

where each uj,θj is a learned field approximating the j-th order derivative ẋ
(j),true
t .



The k-th order Lipschitz continuity is also necessary, and we present it here.

Assumption D.3 (k-th order Lipschitz continuity). We assume the learned fields (uj,θj )
k
j=1 are each L-Lipschitz continuous

in their spatial and temporal arguments. Formally, there exists L > 0 such that for any x, y ∈ Rd and t, s ∈ [0, 1]

∥uj,θj (. . . , x, t)− uj,θj (. . . , y, t)∥2 ≤ L∥x− y∥2
∥uj,θj (. . . , x, t)− uj,θj (. . . , x, s)∥2 ≤ L∥t− s∥2.

Next we introduce the definition of k-th order loss function.

Definition D.4 (k-th order flow). A k-order flow involves a sequence of learned fields uj,θj for j = 1, . . . , k, each targeting
the approximation of (ẋ(j)

t )True.

Here is the k-th order loss function.

Definition D.5 (k-th order loss function). The k-order loss function evaluates the accuracy of approximations for each
derivative:

Lk−order(θ1, . . . , θk) =

k∑
j=1

E[∥(ẋ(j)
t )True − uj,θj (uj−1,θj−1

(. . . ), xt, t)∥2].

And we introduce empirical k-th order loss here.

Definition D.6 (Empirical k-th order loss). Given a training dataset {(xi
0, x

i
1)}Ni=1 with times {ti} and (approximate)

ground-truth derivatives up to the k-th order, the empirical k-th order loss is

L̃k−order(θ1, . . . , θk) =
1

N

N∑
i=1

k∑
j=1

∥(ẋ(j)
ti )true,i − uj,θj (uj−1,θj−1

(. . . ), xi
ti , ti)∥

2.

D.2 PROPOSED k-TH ORDER ALGORITHMS

In this section, we show our k-th order training algorithm and inference algorithm. First, we show the k-th order training
algorithm.

Algorithm 7 Our k-th order training algorithm

1: procedure K-THORDERFORWARD()
2: for each iteration do
3: Random sample x0 and time t, with target x1

4: xt ← αt · x0 +
√
1− α2

t · x1

5: Compute gradient with respect to Lk−order ▷ See Definition D.5
6: end for
7: return u1, u2, · · · , uk ▷ k network functions
8: end procedure

D.3 ELLIPTIC REGULARITY

In this section, we introduce the first result, which is a classical result that characterizes the relationship between different
Sobolev norms for sufficiently smooth functions for k-th order flow.

Lemma D.7 (Elliptic regularity in Evans [2010]). Let Ω ⊂ Rd be a bounded domain with a sufficiently smooth boundary.
Suppose h : Ω→ R has weak derivatives up to order k in L2(Ω). Then there is a constant Creg,k > 0 depending on Ω such
that

∥h∥Hk(Ω) ≤ Creg,k(

k−1∑
m=0

∥∇mh∥L2(Ω)).



Algorithm 8 Our k-th order inference algorithm

1: procedure K-THORDERINFERENCE(u1, . . . , uk)
2: x0 ∼ N (0, 1)
3: Initialize x← x0

4: for t from 0 to 1 with step ∆t = 0.01 do
5: x← x+

∑k
j=1

(∆t)j

j! · uj(uj−1(. . . u1(x, t) . . . ), x, t)
6: end for
7: return x
8: end procedure

D.4 REGULARIZATION EFFECT

In this section, we now connect the second-order loss function with the Sobolev norm of the estimation error under the k-th
order loss function.

Lemma D.8 (Regularization effect for k-th order loss). As we defined in Definition D.6, then we define

Lk−order(θ1, . . . , θk) =

k∑
j=1

E[∥(ẋ(j)
t )True − uj,θj (uj−1,θj−1(. . . ), xt, t)∥2].

If (ẋtrue
t )(k) ∈ H3(Ω) and Lk−order is sufficiently small, then there exists a constant Cregk such that

∥(ẋest
t )(k−1) − (ẋtrue

t )(k−1)∥Hk(Ω) ≤ Cregk(L
1/2
k−order + ∥(ẋ

est
t )(k−1) − (ẋtrue

t )(k−1)∥L2(Ω)).

Proof. Applying Lemma D.7 to h(·) = ẍest
t − (ẋtrue

t )(k−1), we have

∥(ẋest
t )(k−1) − (ẋtrue

t )(k−1)∥Hk(Ω)

≤ Cregk(

k−1∑
m=0

∥∇mh∥L2(Ω)). (14)

By the Definition of the loss function, a small L2,2,θ1,θ2 implies

∥(ẋest
t )(k−1) − (ẋtrue

t )(k−1)∥L2(Ω) ≲ L
1/2
k−order (15)

Combining Eq.(14) and (15), we have

∥(ẋest
t )(k−1) − (ẋtrue

t )(k−1)∥Hk(Ω)

≤ Cregk(L
1/2
k−order + ∥(ẋ

est
t )(k−1) − (ẋtrue

t )(k−1)∥L2(Ω)).

Thus, we complete the proof.

D.5 EXCESS RISK

In this section, we present a result that quantifies the gap between the empirical and population loss, highlighting the strong
generalization capabilities of our method even with a finite sample size.

Lemma D.9 (Excess risk for k-th order). As in Definition D.5 and D.6, let

L̃k−order =
1

N

N∑
i=1

k∑
j=1

∥(ẋ(j)
ti )true,i − uj,θj (uj−1,θj−1

(. . . ), xi
ti , ti)∥

2



and

Lk−order(θ1, . . . , θk) =

k∑
j=1

E[∥ẋ(j),true
t − uj,θj (uj−1,θj−1

(. . . ), xt, t)∥2].

Suppose each function class Fj has finite or at most polynomially growing complexity C(Fj). Then for β ∈ (0, 1), with
probability at least 1− β, we have

|L̃k−order − Lk−order| ≤ O(

k∑
i=1

C(Fi) + ln(1/β))/N)1/2.

Proof. Let G = {ℓθ : θ ∈ Θ} represent the complexity of G the Rademacher/VC dimension, as we defined in Defini-
tion C.5, C.7 and C.8 we calculate the empirical loss and population loss,

L̃k−order =
1

N

N∑
i=1

k∑
j=1

∥(ẋ(j)
ti )true,i − uj,θj (uj−1,θj−1(. . . ), x

i
ti , ti)∥

2

and

Lk−order(θ1, . . . , θk) =

k∑
j=1

E[∥ẋ(j),true
t − uj,θj (uj−1,θj−1

(. . . ), xt, t)∥2].

let {x′
i}Ni=1 be an i.i.d. sample from the same distribution as {xi}Ni=1, and let {σi}Ni=1 be i.i.d. Rademacher random variables

(σi ∈ {+1,−1} with probability 1/2 each). Then, for any g ∈ G, we have

sup
g∈G
∥ 1
N

N∑
i=1

g(xi)− E[g(x)]∥ ≤ sup
g∈G
∥ 1
N

N∑
i=1

(g(xi))− g(x′
i)∥+ sup

g∈G
∥ 1
N

N∑
i=1

g(x′
i)− E[g(x)]∥ (16)

We can upper bound the first term in Eq. (16),

sup
g∈G
∥ 1
N

N∑
i=1

(g(xi))− g(x′
i)∥

≤ 2

N
E
σ
[sup
g∈G

N∑
i=1

σig(xi)]

= 2R̃N (G)

≤ 2 ·O(
√
C(G)/N)

≤ O((

k∑
i=1

C(Fi)/N)1/2) (17)

where the first step follows from Lemma C.11, the second step comes from we define R̃N (G) :=

Eσ[supg∈G
1
N

∑N
i=1 σig(xi)], the third step follows from Assumption 3.4, the forth step follows from the definition

of G in k-th order case.

We can upper bound the second term in Eq. (16) by using Lemma C.12,

sup
g∈G
∥ 1
N

N∑
i=1

g(x′
i)− E[g(x)]∥ ≤ O(

√
ln(1/β)/N) (18)

Loading Eq. (17) and Eq. (18), we can obtain

sup
g∈G
∥ 1
N

N∑
i=1

g(xi)− E[g(x)]∥ ≤ O(((

k∑
i=1

C(Fi) + ln(1/β))/N)1/2)



D.6 DISCRETE PROPAGATION

In this section, we show the lemma about discrete propagation under noise quantifies how noise in the trajectory affects the
error propagation in a discrete setting for k-th order flow.

Lemma D.10 (Discrete propagation under noise for k-th order). Under Assumptions D.2 and D.3, let

el = ∥xest
l − xtrue

l ∥Hk(Ω).

Then there is a constant Cprop,k > 0 such that

el+1 ≤ (1 + ∆tCprop,k)el + Cprop,kδϵ∆t.

Iterating from l = 0 to l = L− 1 (where ∆t = 1/L) gives

eL ≤ e0 exp(Cprop,k) +
δϵ

Cprop,k
(exp(Cprop,k)− 1).

Proof. By Assumptions D.2 and D.3, we have

xest
l+1 = xest

l +∆tu1,θ1(x
est
l , tl) +

(∆t)2

2
u2,θ2(u1,θ1(·), xest

l , tl) +
(∆t)3

6
u3,θ3(u2,θ2(·), xest

l , tl)

+

k∑
j=4

(∆t)j

j!
uj,θj (uj−1,θj−1

(. . . u1,θ1(x
est
l , tl) . . . ), x

est
l , tl),

xtrue
l+1 = xtrue

l +∆tẋtrue
l +

(∆t)2

2
ẍtrue
l +

(∆t)3

6

...
x true

l +

k∑
j=4

(∆t)j

j!
(ẋtrue

t )(j).

Subtracting the true update from the estimated one and taking the Hk-norm, the difference involves Lipschitz constants, the
prior error el, and a noise term bounded by δϵ. One obtains

∥xest
l+1 − xtrue

l+1 ∥Hk(Ω) ≤ (1 + ∆t · Cprop,k)∥xest
l − xtrue

l ∥Hk(Ω) + Cprop,kδϵ∆t.

where Cprop,k depends on Lipschitz constants of u1,θ1 , u2,θ2 , . . .uk,θk , and the boundedness of (ẋtrue
t )(k−1), (ẋtrue

t )k.

Repeating this inequality from l = 0 to l = L− 1 and noting ∆t = 1/L, by a discrete Gronwall argument we have

eL = ∥xest
L − xtrue

L ∥Hk(Ω)

≤ e0 exp(Cprop,k) +

L−1∑
l=0

(Cprop,kδϵ∆t

L−1∏
j=l+1

(1 + ∆tCprop,k)),

≤ se0 exp(Cprop,k) +
δϵ

Cprop,k
(exp(Cprop,k)− 1).

This completes the proof.

D.7 MAIN RESULT FOR k-TH ORDER NOISE ROBUSTNESS

In this section, we formally state and prove our main result, leveraging the auxiliary lemmas to demonstrate the robustness
of the learned trajectory against noise and the effects of finite sample sizes for k-th order flow.

Theorem D.11 (Noise robustness for k-th order flow matching). Suppose Assumptions D.1, D.2, D.3, and 3.3 hold. Let

θ̃ = (θ̃1, . . . , θ̃k)

be an approximately optimal solution minimizing the empirical k-th order loss in Definition D.6. Then, with probability at
least 1− β, the final-time estimate xest

L satisfies:

∥xest
L − xtrue

L ∥Hk(Ω) ≤ C ′′
1 exp(C ′′

2 )(e0 + δϵ) + C ′′
3 ((

k∑
i=1

C(Fi) + ln(1/β))/N)1/2,



where e0 = ∥xest
0 − xtrue

0 ∥Hk(Ω) and C ′′
1 , C

′′
2 , C

′′
3 depend on the Lipschitz constants, Sobolev embedding constants, and

dimension d. The term eC
′′
2 arises from the discrete Gronwall factor over [0, 1].

Proof. Let θ̃ = (θ̃1, . . . , θ̃k) denote the approximate optimal solution for the estimated loss, use Lemma D.9, we have

|L̃k−order − Lk−order| ≤ O(

k∑
i=1

C(Fi) + ln(1/β))/N)1/2.

Therefore, under the true distribution, ẋest
t and ẍest

t approximate ẋtrue
t and ẍtrue

t well in an L2 sense, the higher order field
also hold.

As we defined (ẋtrue
t )(k) ∈ Hk(Ω) ,we then apply Lemma D.8, which leverages the Assumption D.1. If Lk−order is small,

there exist Cregk such that

∥(ẋest
t )(k−1) − (ẋtrue

t )(k−1)∥Hk(Ω) ≤ Cregk(L
1/2
k−order + ∥(ẋ

est
t )(k−1) − (ẋtrue

t )(k−1)∥L2(Ω)).

We conclude that the learned fields are also close to the stronger H2(Ω) norm. As we assumed in Assumption 3.3 and D.2,
For or uniform time steps ∆t = 1/L, the update for the estimate is

xest
l+1 = xest

l +∆tu1,θ1(x
est
l , tl) +

(∆t)2

2
u2,θ2(u1,θ1(·), xest

l , tl) +
(∆t)3

6
u3,θ3(u2,θ2(·), xest

l , tl)

+

k∑
j=4

(∆t)j

j!
uj,θj (uj−1,θj−1

(. . . u1,θ1(x
est
l , tl) . . . ), x

est
l , tl),

xtrue
l+1 = xtrue

l +∆tẋtrue
l +

(∆t)2

2
ẍtrue
l +

(∆t)3

6

...
x true

l +

k∑
j=4

(∆t)j

j!
(ẋtrue

t )(j).

Subtracting two updates and taking the Hk-norm, and invoking the Lipschitz condition in Assumption D.3, yields
Lemma C.14, we have

el+1 = ∥xest
l+1 − xtrue

l+1 ∥Hk(Ω) ≤ (1 + ∆t · Cprop,k)el + Cprop,k∆t · δ · ϵ.

Here Cprop,k depends on Lipschitz constants and bounds on ẋ , ẍ, . . . , ẋ(k)
t . Iterating the above and a discrete Gronwell

argument shows

eL = ∥xest
L − xtrue

L ∥Hk(Ω) ≤ e0 exp(Cprop,k) +
δ · ϵ

Cprop,k
(exp(Cprop,k)− 1).

Since exp(Cprop) is just a constant factor, denote it by eC2 . Combine all of these terms then yields the exact form of
Theorem D.11:

∥xest
L − xtrue

L ∥Hk(Ω) ≤ C ′′
1 exp(C ′′

2 )(e0 + δϵ) + C ′′
3 ((

k∑
i=1

C(Fi) + ln(1/β))/N)1/2,

Thus, we complete the proof.

E EMPIRICAL ABLATION STUDY

In Section E.1, we introduce the three datasets used in our experiments: the five-mode, 3-round spiral, and dot-hyperbola
datasets. In Section E.2, we present results for the first-order loss applied to the datasets, and in Section E.3, we examine the
effect of the second-order loss. Section E.4 extends this analysis by including the third-order loss.



E.1 THREE DATASET

We employ three datasets for our experiments: the five-mode dataset, the 3-round spiral dataset, and the dot-hyperbola
Gaussian mixture distribution dataset, all with a variance of 0.3 for each Gaussian component. In the five-mode dataset, five
source modes (orange) are positioned at a distance of D0 = 6 from the origin, and five target modes (pink) are positioned
at D0 = 13, each mode containing 200 sampled points. For the 3-round spiral dataset, 600 points are drawn from Gaussian
distributions, each with a variance of 0.3, for both the source and target distributions. Similarly, the dot-hyperbola dataset
consists of 900 points sampled from Gaussian distributions with a variance of 0.3 for both the source and target.
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Figure 2: Gaussian mixture distributions visualized: five-mode dataset (Left), 3-round spiral dataset (Middle), and dot-
hyperbola dataset (Right). The primary objective is for NRFlow to learn the transport trajectory from the source distribution
π0 (orange) to the target distribution π1 (pink).

E.2 ONLY FIRST ORDER LOSS

The models are optimized by minimizing the sum of squared error (SSE). Both the source and target distributions are
Gaussian. The target transport trajectory is modeled using the VP ODE framework from Liu et al. [2023], expressed as
xt = αtx0 + βtx1. The parameters αt and βt are defined as αt = exp(− 1

4a(1− t)2− 1
2b(1− t)) and βt =

√
1− α2

t , with
hyperparameters a = 19.9 and b = 0.1. In each of the five-mode, 3-round spiral, and dot-hyperbola datasets, 100 points are
sampled from both the source and target distributions for each mode. The five-mode dataset training involves an ODE solver
and Adam optimizer, using a 2-layer MLP with 100 hidden dimensions, a batch size of 800, a learning rate of 0.005, and
2000 training steps. For the 3-round spiral dataset, the training setup is similar, except with a batch size of 1000 and 1000
training steps. For the dot-hyperbola dataset, the batch size is increased to 1600 while maintaining the same learning rate
and optimizer settings and 1000 training steps.
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Figure 3: NRFlow generated distributions optimized by the first-order loss only: five-mode dataset (Left), 3-round spiral
dataset (Middle), and dot-hyperbola dataset (Right). The source distribution π0 (orange), the target distribution π1 (pink),
and the generated distribution (purple) are shown.



E.3 SECOND ORDER NRFLOW

The models are optimized by minimizing the sum of squared error (SSE). Both the source and target distributions are
Gaussian. The target transport trajectory is modeled using the VP ODE framework from Liu et al. [2023], expressed as
xt = αtx0 + βtx1. The parameters αt and βt are defined as αt = exp(− 1

4a(1− t)2− 1
2b(1− t)) and βt =

√
1− α2

t , with
hyperparameters a = 19.9 and b = 0.1. In each of the five-mode, 3-round spiral, and dot-hyperbola datasets, 100 points are
sampled from both the source and target distributions for each mode. The five-mode dataset training involves an ODE solver
and Adam optimizer, using a 2-layer MLP with 100 hidden dimensions, a batch size of 800, a learning rate of 0.005, and
2000 training steps. For the 3-round spiral dataset, the training setup is similar, except with a batch size of 1000 and 1000
training steps. For the dot-hyperbola dataset, the batch size is increased to 1600 while maintaining the same learning rate
and optimizer settings and 1000 training steps.
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Figure 4: NRFlow generated distributions optimized by the first order and second order losses: five-mode dataset (Left), 3-
round spiral dataset (Middle), and dot-hyperbola dataset (Right). The source distribution π0 (orange), the target distribution
π1 (pink), and the generated distribution (purple) are shown.

E.4 THIRD ORDER NRFLOW

The models are optimized by minimizing the sum of squared error (SSE). Both the source and target distributions are
Gaussian. The target transport trajectory is modeled using the VP ODE framework from Liu et al. [2023], expressed as
xt = αtx0 + βtx1. The parameters αt and βt are defined as αt = exp(− 1

4a(1− t)2− 1
2b(1− t)) and βt =

√
1− α2

t , with
hyperparameters a = 19.9 and b = 0.1. In each of the five-mode, 3-round spiral, and dot-hyperbola datasets, 100 points are
sampled from both the source and target distributions for each mode. The five-mode dataset training involves an ODE solver
and Adam optimizer, using a 2-layer MLP with 100 hidden dimensions, a batch size of 800, a learning rate of 0.005, and
2000 training steps. For the 3-round spiral dataset, the training setup is similar, except with a batch size of 1000 and 1000
training steps. For the dot-hyperbola dataset, the batch size is increased to 1600 while maintaining the same learning rate
and optimizer settings and 1000 training steps.
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Figure 5: NRFlow generated distributions optimized by the first-order, second-order, and third-order losses: five-mode
dataset (Left), 3-round spiral dataset (Middle), and dot-hyperbola dataset (Right). The source distribution π0 (orange), the
target distribution π1 (pink), and the generated distribution (purple) are shown.
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