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Abstract

Pre-trained language models (PrLMs) have001
shown impressive performance in natural lan-002
guage understanding. However, they mainly003
rest on extracting context-sensitive statistical004
patterns without explicit modeling of linguis-005
tic information such as semantic relationships006
entailed in natural language. In this work, we007
propose EventBERT, an event-based semantic008
representation model that takes BERT as the009
backbone and refines with event-based struc-010
tural semantics in terms of graph convolution011
network. EventBERT benefits simultaneously012
from rich event-based structures embodied in013
the graph and contextual semantics learned in014
pre-trained model BERT. Experimental results015
on the GLUE benchmark show the effective-016
ness.017

1 Introduction018

Recent years have witnessed deep pre-trained lan-019

guage models (PrLM) such as ELMo (Peters et al.,020

2018), BERT (Devlin et al., 2019), XLnet (Yang021

et al., 2019) and ERNIE (Sun et al., 2020) signifi-022

cantly prospering the performance of a wide range023

of natural language understanding (NLU) tasks.024

The remarkable advancements brought by PrLM025

have shown the effectiveness of learning contextu-026

alized representation. However, they mainly rest027

on extracting context-sensitive statistical patterns028

without explicitly modeling linguistic information029

such as semantic relationships in natural language.030

It is clear that natural language itself abounds031

with ample, multi-level linguistic information. Al-032

though PrLMs like BERT implicitly represent lin-033

guistic knowledge more or less (Rogers et al.,034

2020), we have to confess that linguistic knowl-035

edge is far from fully absorbed (Ettinger, 2020;036

Rogers et al., 2020). Therefore, there emerges a037

series of derivatives of PrLM intending to fuse ex-038

plicit linguistic knowledge so as to acquire better039

language representation, including syntactic and040
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Figure 1: An example showing how SRL parses sen-
tences and the intuition of constructing event-based
graph.

semantic information (Zhang et al., 2020b,a; Xu 041

et al., 2021). 042

In cognition practice, human needs to distill 043

semantics of different levels to gain a compre- 044

hensive understanding, whereas neural language 045

models learn semantic representation to deal with 046

downstream tasks (Geeraerts and Cuyckens, 2007). 047

Thus, effective learning of semantic knowledge 048

plays a crucial role in NLU tasks and has gained 049

growing attention recently. For instance, Zhang 050

et al. (2020a) proposed SemBERT, which directly 051

connects multiple predicate-argument structures ac- 052

quired by semantic role labeler (SRL) to get the 053

joint representation. 054

The essence of SRL (Shi and Lin, 2019) lies in 055

that every sentence possesses multiple predicate- 056

specific structures which can represent different 057

frames of events, while semantic roles express the 058

abstract role that arguments of a predicate can take 059

in the event. Besides, the events inside a sentence 060

have interactions with each other which serve to- 061

gether to present the overall semantic knowledge. 062
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Figure 2: The overall structure of EventBERT.

As shown in Figure 1, SRL parses every sentence063

with multiple predicate-specific structures which064

can serve as events inferring who did what to whom,065

when and why. Each event has an inner struc-066

ture centered on the predicate to which several ar-067

guments are associated such as Hog[ARG0], the068

woman’s age[ARG1] and Tuesday[ARGM-TMP]069

connected to confirmed[V]. Meanwhile, the multi-070

ple events work together to give a comprehensive071

meaning of a sentence, like the events centered on072

said, confirmed, left. With regard to delving into073

the inner interactions between the events and effec-074

tively capturing multiple objects, we are motivated075

to build a graph to reveal the intrinsic structures076

between and inside the events.077

Inspired by the above ideas, we propose Event-078

BERT: an event-based semantic representation079

model which takes BERT as the backbone and re-080

fines with event-based structural semantics. Our081

EventBERT benefits simultaneously from rich082

event-based structures embodied in the graph and083

contextual semantics learned in the pre-trained084

BERT.085

Our proposed model works in three steps: it086

first applies an off-the-shelf SRL toolkit devel-087

oped by AllenNLP to parse every sentence with088

semantic role labels; then it constructs event-based089

graphs and employs Graph Convolutional Net-090

works (GCNs) (Schlichtkrull et al., 2018) to propa-091

gate and aggregate information from neighboring092

nodes on the graph; at last, it combines the contex- 093

tualized representation acquired by BERT encoder 094

together with the graph-level representation to ob- 095

tain an event-based contextualized representation 096

finally. 097

The key contributions of our work are summa- 098

rized as follows: 099

1. To our best knowledge, our work is the first at- 100

tempt to extract event-based semantic knowl- 101

edge employing SRL to enrich language rep- 102

resentation. 103

2. We employ GCNs to construct sentence-level 104

graphs which better reveal interactions inside 105

and between the events in a sentence. 106

2 Related Work 107

Recent studies show that current prominent pre- 108

trained language models have already incorporated 109

semantic information to some extent (Clark et al., 110

2019), yet such implicit semantic information is 111

far from enough for comprehensive natural lan- 112

guage understanding (Ettinger, 2020). Thus there 113

emerges a research line that focuses on fusing se- 114

mantic information into contextualized language 115

representation. ERNIE2.0 (Sun et al., 2020) adopts 116

three-stage masking in which entity-level masking 117

helps to obtain a word representation containing 118

richer semantic information. Other works like Sem- 119

BERT (Zhang et al., 2020a) and FMSR (Guo et al., 120
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2021) make use of two major semantic frames Prop-121

Bank (Palmer et al., 2005) and FrameNet (Baker122

et al., 1998) respectively to capture explicit seman-123

tic information. Unlike previous works that attempt124

to capture semantic structures by semantic tags, our125

model is the first to construct event-based graphs on126

sentence level, unveiling richer structural semantic127

information inside the sentence.128

3 Model129

Figure 2 gives an overview of our proposed model,130

EventBERT with two major components: 1) Con-131

text Encoder which acquires deep and contextu-132

alized representations for raw input sequences by133

following BERT architecture; 2) Event-based En-134

coder which obtains richer structural semantic rep-135

resentation by modeling event-based intra-sentence136

graphs. We omit the details of BERT which is137

widely used and ubiquitous and leave readers to138

resort to Devlin et al. (2019) for more information.139

3.1 Context Encoder140

The raw input sentence X = {x1, . . . , xn} is a se-141

quence of words of length n. It is first tokenized142

to a sequence of sub-words with [CLS] inserted143

at the beginning to get a sentence-level representa-144

tion. Then we pass it through the embedding block145

and encoder block of BERT to produce a context-146

informed representation: C = {c1, . . . , cm} ∈147

Rm×dhs , where m denotes the length of sentence148

on sub-word level and dhs stands for the dimension149

of hidden states.150

3.2 Event-based Encoder151

Semantic Role Labeler The raw input sentence152

is simultaneously fed into SRL to fetch multi-153

ple predicate-specific structures tagged by Prop-154

Bank (Shi and Lin, 2019) semantic roles: T =155

{t1, . . . , td}, where d is the number of semantic156

structures for one sentence. Notably, ti can be rep-157

resented under the format {tagi1, tagi2, ..., tagin}.158

Graph Construction Figure 3 shows the process159

of graph construction. For each sentence with the160

argument-predicate roles, we construct an event-161

based graph G = (V, E ,R) with span-level nodes162

vi ∈ V and labeled edges (vi, r, vj) ∈ E , where163

r ∈ R a relation type. Since every sentence has164

several semantic structures, here we take one struc-165

ture as example and show the modeling method:166

Given e = {tag1, tag2, ..., tagn} a word-level tag167

I bought a book which talks about the cosmos.

bought

I
his brother
... “the witness”
a book
which..

talks

a book
about 
the cosmos

ARG0 ARG1 ARG0 ARG1

Verb Verb

Super Event Node

SEN

SEN

VerbARG0 ARG1

boughtI a book 
which... a book talks about 

the cosmos

Levi Graph

Event-based Graph

Raw sentence text

Figure 3: The process of graph construction: from raw
sentence text to event-based graph and corresponding
Levi graph.

sequence, we first transform it to a span-level se- 168

quence e′ = {tag′1, tag′2, ..., tag′l} by aggregating 169

the same neighboring tags with l ≤ n represent- 170

ing the length of tags on span-level. Then we 171

add a Super Event Node (v = SEN ) to seize 172

global graph information. After that, we add other 173

nodes and edges to G based on the following pro- 174

cess: We first find tag′p which corresponds to 175

predicate (Verb in e′). We add a node v = np 176

and a directed edge e = (np, V erb, SEN) with 177

r = V erb. For the rest tags referring to arguments 178

of the predicate, tag′q for example, we add a node 179

v = nq and a directed edge linking to the predicate 180

e = (np, tag
′
q, np) with relation r = tagq. 181

Finally, the corresponding Levi graph (Levi, 182

1942) is extended from G to GL = (VL, EL,RL) 183

with VL = V ∪ R and EL under the form of 184

(nq, tag
′
q), (tag

′
q, np). For RL, we follow the set- 185

ting of Ouyang et al. (2021) and refine it to five 186

types: default-in, default-out, reverse-in, reverse- 187

out, self according to the direction of edges towards 188

the relation vertices. 189

Event-based Contextualized Representation A 190

natural way to model relational graph is to adopt 191

Relational Graph Convolutional Network (R-GCN) 192

(Schlichtkrull et al., 2018). For predicate and argu- 193

ment nodes, we inject the corresponding span-level 194

encoding results from Context Encoder in Section 195

3.1. For relation nodes, we regard the relations 196

as embeddings and use a lookup table to get ini- 197

tial representation. Given initial representation h0i 198

for every node vi, we implement the propagation 199
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Method CoLA SST-2 MNLI QNLI RTE MRPC QQP STS-B Avg
(mc) (acc) (acc) (acc) (acc) (acc) (acc) (pc) -

Base-size
BERTBASE 58.4 92.8 83.2 88.6 68.5 86.0 86.5 87.8 81.5
EventBERTBASE 59.6 93.3 83.9 91.8 69.7 89.7 89.8 88.9 83.3(↑1.8)

Large-size
BERTLARGE 60.3 93.1 85.2 91.5 70.3 88.5 90.2 89.3 83.6
EventBERTLARGE 63.1 94.0 85.3 92.6 71.4 89.5 90.6 89.5 84.5(↑0.9)

Table 1: Comparisons between our models and baseline models on GLUE dev set. STS-B is reported by Pearson
correlation, CoLA is reported by Matthew’s correlation, and other tasks are reported by accuracy.

process as follows:200

h
(l+1)
i = ReLU

 ∑
r∈RL

∑
vj∈Nr(vi)

g
(l)
j

1

ci,r
w(l)
r h

(l)
j

 ,

(1)201

where h
(l)
i ∈ Rd(l) is the hidden state of node vi202

in layer l with d(l) being the dimensionality of203

this layer’s representations. Nr (vi) denotes the set204

of neighbor indices of node vi under the relation205

r. g
(l)
j is a gated value (Marcheggiani and Titov,206

2017) between 0 and 1 for information passing207

control. ci,r is a problem-specific normalization208

constant equal to |N r
i |. w

(l)
r is the learnable pa-209

rameters of layer l. Through the R-GCN model,210

we obtain a graph-level semantic representation:211

R = {r1, . . . , rf} ∈ Rf×dhs , where f is the num-212

ber of nodes in the graph and dhs is the same di-213

mension as C.214

At last, we concatenate R with the pooled con-215

textual sub-word-level representation c1 of special216

token [CLS] provided by Context Encoder, and217

generate an event-based contextualized represen-218

tation taking the mean value of both sub-word-219

level and graph-level information, which is then220

used as the new sequence representation for down-221

stream tasks following the same way of Devlin et al.222

(2019).223

4 Experiments224

4.1 Setup225

We build EventBERT on the BERT backbone and226

fine-tune the model on GLUE (General Language227

Understanding Evaluation) benchmark (Wang et al.,228

2018) to evaluate the performance, which includes229

two single-sentence tasks (CoLA (Warstadt et al.,230

2018), SST-2 (Socher et al., 2013)), three similarity231

and paraphrase tasks (MRPC (Dolan and Brock-232

ett, 2005), STS-B (Cer et al., 2017), QQP (Chen233

et al., 2018) ), three inference tasks (MNLI (Nangia 234

et al., 2017), QNLI (Rajpurkar et al., 2016), RTE 235

(Bentivogli et al., 2009). 236

Implementation Details For the experiments, 237

we use an initial learning rate in {1e-5, 2e-5, 3e-5} 238

with warm-up rate of 0.1 and L2 weight decay of 239

0.01. The batch size is selected in {16, 32}. The 240

maximum number of epochs is set in {2, 5} depend- 241

ing on tasks. Texts are tokenized with maximum 242

length of 256 for the tasks. 243

4.2 Results 244

Table 1 presents the results on the GLUE bench- 245

mark, which show that EventBERT achieves con- 246

sistent gains over all the subtasks under both of 247

the base and large models. The results indicate 248

that EventBERT can effectively benefit from the 249

fine-grained graph-like event-based structures, as 250

illustrated in case studies in Appendix B. Our analy- 251

sis shows that our model performs better on longer 252

sentences as shown in Appendix A. The results 253

also disclose that modeling intrinsic structures be- 254

tween and inside events is critical for language 255

understanding. 256

5 Conclusion 257

In this work, we propose EventBERT: an event- 258

based semantic representation model that builds on 259

BERT architecture and incorporates event-based 260

structural semantics in terms of graph network mod- 261

eling for fine-grained language representation. Ex- 262

periments on a wide range of NLU tasks show the 263

effectiveness of our model by consistently surpass- 264

ing the baseline. While most existing works focus 265

on fusing accurate semantic signals to enhance se- 266

mantic information, we open up a novel perspective 267

to model intrinsic structural semantics for deeper 268

comprehension and inference in an intuitive and 269

explicit way. 270
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A Effectiveness of semantic structures412

Figure 4 shows that our model surpasses the base-413

line especially when the sequence is relatively long414

and our model performs better on longer sentences415

compared with shorter ones, which implies that416

modeling intrinsic semantic structures is potential417

to guide the model to learn richer structural seman-418

tics more than contextualized information.
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Figure 4: Accuracy of different sequence word lengths
on QNLI and MRPC.

419

B Interpretability: Case Study 420

We select three cases in Classification, Sentence 421

Similarity and Language Inference from SST-2, 422

MRPC and QNLI, which are shown in Figure 423

5. It can be seen that our model can perceive 424

explicit structural meaning to better understand 425

the language. For example, in the first case, our 426

model succeeds in understanding the event Friel 427

and william’s exceptional performances[ARG0] 428

anchored[V] the film’s power[ARG1], whereas 429

baseline does not manage to capture this mean- 430

ing, thus leading to the failure. The second case 431

demonstrates that our model grabs the distinct se- 432

mantic structures centered on is and has and thus 433

gives the right answer not equivalent. Referring 434

to the third case, it can be easily observed that the 435

argument structures centered on force are different 436

which exactly reflects that there is no answer span 437

for the interrogative Why.

Task Example

Language 
Inference

Classification

A: Why was ABC forced to sell its interests in 
 international networks in the 70s? 
B: As a result, ABC was forced to sell all of its 
 interests in international networks, mainly in 
 Japan and Latin America, in the 1970s.

force

ARG1

ARGM-CAU
ARG2

sell

ARG0

ARGM-TMP
ARG1

force

ARG1

ARGM-DIS
ARG2

sell

ARG0

ARGM-TMP
ARG1

ARGM-LOC

Why

in Japan..

 anchored by friel and williams 's exceptional 
 performances , the film 's power lies 
 in its complexity .

anchor
ARG0

lie

Sentence 
Similarity

A: The Calgary woman , who is in her twenties, 
 donated blood on Aug. 7 .
B: The woman -- who has no symptoms of 
 illness -- donated blood Aug. 7

EventBERT: 

Baseline: negative

positive √
×

ARG1
ARG2

ARG1

EventBERT: 

Baseline: equivalent

not equivalent √
×

is
ARG1

donate

ARG2
ARG0

ARG1

ARGM-TMP

has
ARG0

donate

ARG1
ARG0

ARG1

ARGM-TMP

EventBERT: 

Baseline: entailment

not entailment √
×

Figure 5: Examples selected from the dev set of SST-2,
MRPC and QNLI where baseline fails but our model
succeeds.
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