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Abstract

Pre-trained language models (PrLMs) have
shown impressive performance in natural lan-
guage understanding. However, they mainly
rest on extracting context-sensitive statistical
patterns without explicit modeling of linguis-
tic information such as semantic relationships
entailed in natural language. In this work, we
propose EventBERT, an event-based semantic
representation model that takes BERT as the
backbone and refines with event-based struc-
tural semantics in terms of graph convolution
network. EventBERT benefits simultaneously
from rich event-based structures embodied in
the graph and contextual semantics learned in
pre-trained model BERT. Experimental results
on the GLUE benchmark show the effective-
ness.

1 Introduction

Recent years have witnessed deep pre-trained lan-
guage models (PrLM) such as ELMo (Peters et al.,
2018), BERT (Devlin et al., 2019), XLnet (Yang
et al., 2019) and ERNIE (Sun et al., 2020) signifi-
cantly prospering the performance of a wide range
of natural language understanding (NLU) tasks.
The remarkable advancements brought by PrLM
have shown the effectiveness of learning contextu-
alized representation. However, they mainly rest
on extracting context-sensitive statistical patterns
without explicitly modeling linguistic information
such as semantic relationships in natural language.

It is clear that natural language itself abounds
with ample, multi-level linguistic information. Al-
though PrLMs like BERT implicitly represent lin-
guistic knowledge more or less (Rogers et al.,
2020), we have to confess that linguistic knowl-
edge is far from fully absorbed (Ettinger, 2020;
Rogers et al., 2020). Therefore, there emerges a
series of derivatives of PrLLM intending to fuse ex-
plicit linguistic knowledge so as to acquire better
language representation, including syntactic and
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Figure 1: An example showing how SRL parses sen-
tences and the intuition of constructing event-based
graph.

semantic information (Zhang et al., 2020b,a; Xu
et al., 2021).

In cognition practice, human needs to distill
semantics of different levels to gain a compre-
hensive understanding, whereas neural language
models learn semantic representation to deal with
downstream tasks (Geeraerts and Cuyckens, 2007).
Thus, effective learning of semantic knowledge
plays a crucial role in NLU tasks and has gained
growing attention recently. For instance, Zhang
et al. (2020a) proposed SemBERT, which directly
connects multiple predicate-argument structures ac-
quired by semantic role labeler (SRL) to get the
joint representation.

The essence of SRL (Shi and Lin, 2019) lies in
that every sentence possesses multiple predicate-
specific structures which can represent different
frames of events, while semantic roles express the
abstract role that arguments of a predicate can take
in the event. Besides, the events inside a sentence
have interactions with each other which serve to-
gether to present the overall semantic knowledge.
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Figure 2: The overall structure of EventBERT.

As shown in Figure 1, SRL parses every sentence
with multiple predicate-specific structures which
can serve as events inferring who did what to whom,
when and why. Each event has an inner struc-
ture centered on the predicate to which several ar-
guments are associated such as Hog[ARGO], the
woman’s age[ARG1 ] and Tuesday[ARGM-TMP]
connected to confirmed[V]. Meanwhile, the multi-
ple events work together to give a comprehensive
meaning of a sentence, like the events centered on
said, confirmed, left. With regard to delving into
the inner interactions between the events and effec-
tively capturing multiple objects, we are motivated
to build a graph to reveal the intrinsic structures
between and inside the events.

Inspired by the above ideas, we propose Event-
BERT: an event-based semantic representation
model which takes BERT as the backbone and re-
fines with event-based structural semantics. Our
EventBERT benefits simultaneously from rich
event-based structures embodied in the graph and
contextual semantics learned in the pre-trained
BERT.

Our proposed model works in three steps: it
first applies an off-the-shelf SRL toolkit devel-
oped by AllenNLP to parse every sentence with
semantic role labels; then it constructs event-based
graphs and employs Graph Convolutional Net-
works (GCNs) (Schlichtkrull et al., 2018) to propa-
gate and aggregate information from neighboring

nodes on the graph; at last, it combines the contex-
tualized representation acquired by BERT encoder
together with the graph-level representation to ob-
tain an event-based contextualized representation
finally.

The key contributions of our work are summa-
rized as follows:

1. To our best knowledge, our work is the first at-
tempt to extract event-based semantic knowl-
edge employing SRL to enrich language rep-
resentation.

2. We employ GCNs to construct sentence-level
graphs which better reveal interactions inside
and between the events in a sentence.

2 Related Work

Recent studies show that current prominent pre-
trained language models have already incorporated
semantic information to some extent (Clark et al.,
2019), yet such implicit semantic information is
far from enough for comprehensive natural lan-
guage understanding (Ettinger, 2020). Thus there
emerges a research line that focuses on fusing se-
mantic information into contextualized language
representation. ERNIE2.0 (Sun et al., 2020) adopts
three-stage masking in which entity-level masking
helps to obtain a word representation containing
richer semantic information. Other works like Sem-
BERT (Zhang et al., 2020a) and FMSR (Guo et al.,



2021) make use of two major semantic frames Prop-
Bank (Palmer et al., 2005) and FrameNet (Baker
et al., 1998) respectively to capture explicit seman-
tic information. Unlike previous works that attempt
to capture semantic structures by semantic tags, our
model is the first to construct event-based graphs on
sentence level, unveiling richer structural semantic
information inside the sentence.

3 Model

Figure 2 gives an overview of our proposed model,
EventBERT with two major components: 1) Con-
text Encoder which acquires deep and contextu-
alized representations for raw input sequences by
following BERT architecture; 2) Event-based En-
coder which obtains richer structural semantic rep-
resentation by modeling event-based intra-sentence
graphs. We omit the details of BERT which is
widely used and ubiquitous and leave readers to
resort to Devlin et al. (2019) for more information.

3.1 Context Encoder

The raw input sentence X = {x1,...,%,} is a se-
quence of words of length n. It is first tokenized
to a sequence of sub-words with [CLS] inserted
at the beginning to get a sentence-level representa-
tion. Then we pass it through the embedding block
and encoder block of BERT to produce a context-
informed representation: C' = {c1,...,cn} €
R™*dns where m denotes the length of sentence
on sub-word level and dj,; stands for the dimension
of hidden states.

3.2 Event-based Encoder

Semantic Role Labeler The raw input sentence
is simultaneously fed into SRL to fetch multi-
ple predicate-specific structures tagged by Prop-
Bank (Shi and Lin, 2019) semantic roles: T =
{t1,...,tq}, where d is the number of semantic
structures for one sentence. Notably, ¢; can be rep-
resented under the format {tag!,tags, ..., tag’ }.

Graph Construction Figure 3 shows the process
of graph construction. For each sentence with the
argument-predicate roles, we construct an event-
based graph G = (V, £, R) with span-level nodes
v; € V and labeled edges (v;,r,v;) € £, where
r € R arelation type. Since every sentence has
several semantic structures, here we take one struc-
ture as example and show the modeling method:
Given e = {tag1,tags, ..., tag, } a word-level tag
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Figure 3: The process of graph construction: from raw
sentence text to event-based graph and corresponding
Levi graph.

sequence, we first transform it to a span-level se-
quence €’ = {tag},tag,, ..., tag,} by aggregating
the same neighboring tags with | < n represent-
ing the length of tags on span-level. Then we
add a Super Event Node (v = SEN) to seize
global graph information. After that, we add other
nodes and edges to GG based on the following pro-
cess: We first find tagz’j which corresponds to
predicate (Verb in €’). We add a node v = n,
and a directed edge e = (n,, Verb, SEN) with
r = Verb. For the rest tags referring to arguments
of the predicate, tagf] for example, we add a node
v = ng and a directed edge linking to the predicate
e = (np, tagy, np) with relation r = tag,.

Finally, the corresponding Levi graph (Levi,
1942) is extended from G to G, = (V1,€L, R1)
with V;, = YV U R and &, under the form of
(nq,tagy), (tagy, np). For Ry, we follow the set-
ting of Ouyang et al. (2021) and refine it to five
types: default-in, default-out, reverse-in, reverse-
out, self according to the direction of edges towards
the relation vertices.

Event-based Contextualized Representation A
natural way to model relational graph is to adopt
Relational Graph Convolutional Network (R-GCN)
(Schlichtkrull et al., 2018). For predicate and argu-
ment nodes, we inject the corresponding span-level
encoding results from Context Encoder in Section
3.1. For relation nodes, we regard the relations
as embeddings and use a lookup table to get ini-
tial representation. Given initial representation
for every node v;, we implement the propagation



Method CoLA SST-2 MNLI QNLI RTE MRPC QQP STS-B Avg
(mc) (acc) (acc) (acc) (acc) (acc) (acc) (pc) -

Base-size

BERTgASE 58.4 92.8 83.2 88.6  68.5 86.0 86.5 87.8 81.5

EventBERTgAsE 59.6 93.3 83.9 91.8 69.7 89.7 89.8 88.9  83.3(11.8)
Large-size

BERT ARGE 60.3 93.1 85.2 91.5 703 88.5 90.2 89.3 83.6

EventBERT srge  63.1 94.0 85.3 926 714 89.5 90.6 89.5  84.5(10.9)

Table 1: Comparisons between our models and baseline models on GLUE dev set. STS-B is reported by Pearson
correlation, CoLA is reported by Matthew’s correlation, and other tasks are reported by accuracy.

process as follows:

B ZReLU [ 30 g0 w0n )
rERL v;EN(v;) d

(1
where hgl) € R is the hidden state of node V;
in layer [ with d(V) being the dimensionality of
this layer’s representations. ;. (v;) denotes the set
of neighbor indices of node v; under the relation
T. gj(l) is a gated value (Marcheggiani and Titov,
2017) between 0 and 1 for information passing
control. ¢;, is a problem-specific normalization
constant equal to [N w is the learnable pa-
rameters of layer [. Through the R-GCN model,
we obtain a graph-level semantic representation:
R={r,...,rs} € Rf*dns where f is the num-
ber of nodes in the graph and dj is the same di-
mension as C.

At last, we concatenate R with the pooled con-
textual sub-word-level representation c; of special
token [CLS] provided by Context Encoder, and
generate an event-based contextualized represen-
tation taking the mean value of both sub-word-
level and graph-level information, which is then
used as the new sequence representation for down-
stream tasks following the same way of Devlin et al.
(2019).

4 [Experiments

4.1 Setup

We build EventBERT on the BERT backbone and
fine-tune the model on GLUE (General Language
Understanding Evaluation) benchmark (Wang et al.,
2018) to evaluate the performance, which includes
two single-sentence tasks (CoLA (Warstadt et al.,
2018), SST-2 (Socher et al., 2013)), three similarity
and paraphrase tasks (MRPC (Dolan and Brock-
ett, 2005), STS-B (Cer et al., 2017), QQP (Chen

et al., 2018) ), three inference tasks (MNLI (Nangia
et al., 2017), QNLI (Rajpurkar et al., 2016), RTE
(Bentivogli et al., 2009).

Implementation Details For the experiments,
we use an initial learning rate in {1e-5, 2e-5, 3e-5}
with warm-up rate of 0.1 and L2 weight decay of
0.01. The batch size is selected in {16, 32}. The
maximum number of epochs is setin {2, 5} depend-
ing on tasks. Texts are tokenized with maximum
length of 256 for the tasks.

4.2 Results

Table 1 presents the results on the GLUE bench-
mark, which show that EventBERT achieves con-
sistent gains over all the subtasks under both of
the base and large models. The results indicate
that EventBERT can effectively benefit from the
fine-grained graph-like event-based structures, as
illustrated in case studies in Appendix B. Our analy-
sis shows that our model performs better on longer
sentences as shown in Appendix A. The results
also disclose that modeling intrinsic structures be-
tween and inside events is critical for language
understanding.

5 Conclusion

In this work, we propose EventBERT: an event-
based semantic representation model that builds on
BERT architecture and incorporates event-based
structural semantics in terms of graph network mod-
eling for fine-grained language representation. Ex-
periments on a wide range of NLU tasks show the
effectiveness of our model by consistently surpass-
ing the baseline. While most existing works focus
on fusing accurate semantic signals to enhance se-
mantic information, we open up a novel perspective
to model intrinsic structural semantics for deeper
comprehension and inference in an intuitive and
explicit way.
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A Effectiveness of semantic structures

Figure 4 shows that our model surpasses the base-
line especially when the sequence is relatively long
and our model performs better on longer sentences
compared with shorter ones, which implies that
modeling intrinsic semantic structures is potential
to guide the model to learn richer structural seman-
tics more than contextualized information.
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Figure 4: Accuracy of different sequence word lengths
on QNLI and MRPC.

B Interpretability: Case Study

We select three cases in Classification, Sentence
Similarity and Language Inference from SST-2,
MRPC and QNLI, which are shown in Figure
5. It can be seen that our model can perceive
explicit structural meaning to better understand
the language. For example, in the first case, our
model succeeds in understanding the event Friel
and william’s exceptional performances{ARGO]
anchored[V] the film’s power[ARGI], whereas
baseline does not manage to capture this mean-
ing, thus leading to the failure. The second case
demonstrates that our model grabs the distinct se-
mantic structures centered on is and has and thus
gives the right answer not equivalent. Referring
to the third case, it can be easily observed that the
argument structures centered on force are different
which exactly reflects that there is no answer span
for the interrogative Why.

Task Example

Classification | anchored by friel and williams 's exceptional
performances , the film's power lies
in its complexity .

ARGO

(Canchor \__ EventBERT: positive i
o ARG1
*~§ Baseline: negative %
——lie D
ARG1 I
Sentence A:  The Calgary woman , who is in her twenties,
Similarity donated blood on Aug. 7 .
B:  The woman -- who has no symptoms of
illness -- donated blood Aug. 7
ARG1
s (_has
o = ARGl
ARGO ARGO
_,4.\ donate ) _’\_.” D
ARG1 _ ARG1 /\'\~'/
ARGM-TMP ARGM-TMP
EventBERT: not equivalent .
Baseline: equivalent x
Language A: Why was ABC forced to sell its interests in
Inference international networks in the 70s?

B:  As a result, ABC was forced to sell all of its
interests in international networks, mainly in
Japan and Latin America, in the 1970s.

e e
/7 | // f in Japan..
ARG1 ARG1
Why ARGz G2
ARGM-DIS
sell  sell
/ I ARGO /
ARGO G1
ARG1 ARGM-TMP

ARGM-TMP
EventBERT: not entailment A
Baseline: entailment x

Figure 5: Examples selected from the dev set of SST-2,
MRPC and QNLI where baseline fails but our model
succeeds.
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