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Abstract

Laplace learning algorithms for graph-based semi-supervised learning have been
shown to suffer from degeneracy at low label rates and in imbalanced class regimes.
Here, we propose CutSSL: a framework for graph-based semi-supervised learning
based on continuous nonconvex quadratic programming, which provably obtains
integer solutions. Our framework is naturally motivated by an exact quadratic
relaxation of a cardinality-constrained minimum-cut graph partitioning problem.
Furthermore, we show our formulation is related to an optimization problem whose
approximate solution is the mean-shifted Laplace learning heuristic, thus providing
new insight into the performance of this heuristic. We demonstrate that CutSSL
significantly surpasses the current state-of-the-art on k-nearest neighbor graphs and
large real-world graph benchmarks across a variety of label rates, class imbalance,
and label imbalance regimes. Our implementation is available on github1.

1 Introduction

In semi-supervised learning (SSL), a learner is given access to a partially-labeled training set
consisting of labeled examples and unlabeled examples. The goal in this setting is to learn a predictor
that is superior to a predictor that is trained using the labeled examples alone. This framework is
motivated by the high cost of obtaining annotated data on practical problems. For problems where
very few labels are available, the geometry of the unlabeled data can be used to significantly improve
the performance of classic machine learning models. A seminal work in graph-based semi-supervised
learning is Laplace learning [38], which seeks a harmonic function that extends provided labels over
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the unlabeled vertices (a harmonic extension of the labeled vertices). Laplace learning and its variants
have been widely applied in semi-supervised and graph-structured learning [37, 36, 2, 20].

However, recent work [26, 1] has demonstrated that ‘vanilla’ Laplace learning methods exhibit
poor prediction error at low label rates, primarily due to degenerate estimates near the decision
boundary—although this can be partially addressed in practice via a simple mean-shift of the
predictions [10]. Furthermore, in the context of classification, the labels often correspond to elements
from a discrete set. In this setting, typically a thresholding operation is applied post hoc to the
harmonic extension to map from continuous predictions to the discrete set of labels. This thresholding
can further exacerbate the aforementioned degeneracy. Furthermore, when class sizes are imbalanced,
approximate heuristics are often employed to ensure satisfaction of the volume (class-cardinality)
prior [10, 19]. In particular, [19] apply efficient auction algorithms [5] to volume-constrained semi-
supervised learning. They do this by iteratively solving linearizations of a quadratic problem under
volume and box constraints to reach a local solution. The authors claim convergence to a local
solution due to monotonic decrease of the objective, although local solutions may be poor and
convergence can be slow.

In this paper, we formulate cardinality-constrained semi-supervised learning as a nonconvex quadratic
program, a generalization of the assignment problem. Notably, in contrast to semidefinite or spectral
relaxations, our formulation is exact in that it has a 0− 1 minimizer corresponding to a maximally
smooth discrete label assignment. Furthermore, our method has connections to spectral graph
partitioning and the mean-shift Laplace learning heuristic.

Our method involves solving a sequence of quadratic programs via Alternating Direction Method of
Multipliers (ADMM) [7], which exhibits robust convergence guarantees, having also been applied
successfully to Quadratic Assignment Problems and similar Semi-Definite Program (SDP)-based
relaxations of nonconvex Boolean constrained problems [24]. As we will show, the ADMM iterates
can be solved efficiently, particularly when the underlying graph is sparsely connected.

Our contributions are as follows:

1. We introduce a framework derived from an exact formulation of a cardinality-constrained
graph partitioning problem with supervision, a non-degenerate problem in the unlabeled
data limit. We also prove sufficient conditions for exact recovery of integer solutions.

2. Numerically, we develop a scalable and convergent iterative method based on ADMM and
demonstrate superior performance and scalability in low, medium, high, and imbalanced
label rate and data regimes on k-NN graphs (MNIST, Fashion-MNIST, and Cifar-10) as well
as Planetoid citation networks and large-scale (160k-2.5M nodes) OGB graphs compared to
state-of-the-art graph-based SSL algorithms.

3. We describe a connection to Laplace learning, and derive a simple and intuitive explanation
for the efficacy of the mean-shift heuristic.

2 Preliminaries

In this section, we review graph semi-supervised learning, Laplace learning, the combinatorial
minimum cut problem, and an associated continuous extension.

2.1 Laplace learning

Let V = {v1, v2, . . . , vM} denote the M vertices of the graph G with weight matrix W whose entries
wij ≥ 0 are the edge weights between vi and vj . We assume the graph is symmetric, i.e., wij = wji.
We define the degree di =

∑n
j=1 wij . Without loss of generality, we assume the first m vertices

l = {v1, v2, . . . , vm} are assigned labels {y1,y2, . . . ,ym}, where 0 < m≪ M . In the context of
k-class classification we take each yi to be one of the k standard basis vectors {e1, e2, . . . , ek} of
the form ei = (0, . . . 0, 1, 0, . . . , 0), i.e. a one-hot row vector. Let n denote the number of unlabeled
vertices, i.e. n = M −m. The problem of graph-based semi-supervised learning is to smoothly
propagate the labels over the unlabeled vertices u = {vm+1, vm+2, . . . , vM}.
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Given a graph and a set of labeled vertices, the solution of Laplace learning [38], is the minimizer of
the following quadratic program with label constraints (X0)i = yi:

min
X0∈RM×k

{
tr(X⊤

0 LX0) : (X0)i = yi, 1 ≤ i ≤ m
}
, (1)

where X0 ∈ RM×k, L is the combinatorial graph Laplacian given by L = D −W , where D =
diag(W1M ) is a diagonal matrix whose elements are the node degrees, The prediction for vertex vi
is determined by a heuristic of thresholding the largest component of (X0)i:

argmax
j∈{1,...,k}

{(X0)ij}. (2)

Note that Laplace learning is also called label propagation (LP) [39], since the Laplace equation asso-
ciated with (1), can be solved by repeatedly replacing (X0)i with a weighted average of its neighbors.

Let L =
[

Ll Llu

Lul Lu

]
and X0 =

[
Xl

Xu

]
where l and u correspond to labeled and unlabeled indices,

respectively. For brevity, we denote X = Xu and Y = Xl. The solution X̂ satisfies the linear system

LuX̂ = B := −LulY. (3)

Although Laplace learning and related algorithms work well when the number of labeled examples is
sufficient, these algorithms generally suffer from two drawbacks: (1.) they typically solve a relaxation
such that rather than predicting categorical values (e.g., binary one hot-encodings), they assign a
real value for each class. A heuristic (usually thresholding) is necessarily applied to determine the
predicted categorical label. (2.) In the low label rate regime, Laplace learning degenerates, yielding
homogeneous predictions. Thus, thresholding results in poor prediction. In contrast, we propose
an approach derived from a non-degenerate problem and coupled with a method to ensure exact
combinatorial predictions, removing the need for heuristic thresholding.

2.2 Graph partitioning

Given a graph G = (W,V ), consider the discrete, cardinality-constrained graph partitioning problem

min
P⊆V

Cut(P, P c) :=
∑
vi∈P

∑
vj∈P c

wij

 s.t. |P | = m1 (4)

Critically, we note that this combinatorial problem is non-degenerate when m≪ n, if m1 < n, due
to the cardinality constraint on the solution [30]. Algorithms and solutions to this problem have been
thoroughly studied, particularly in the context of neighborhood graphs and for formulations that
replace the constraint |P | = m1 with a penalty on the imbalance between partitions.

The applications of graph partitioning-inspired methods to data science are well-known, particu-
larly various relaxations of graph cut problems, including spectral methods [31, 4], combinatorial
algorithms [21, 13], and semi-definite programs (SDPs) [16, 25]. However, key drawbacks of these
methods include the inexactness of the relaxation (spectral methods), high computational price due to
a large number of constraints (SDPs), or slow convergence (combinatorial algorithms).

On the other hand, while exact continuous nonconvex formulations for graph partitioning have been
studied [17], as far as we are aware, no attempts have been made to design efficient algorithms
amenable to k-way partitioning of large-scale datasets with partial label information. In particular,
the k-way graph cut generalization was studied in [17]. The developed algorithms are based on a
piecewise linear refinement of an initial, continuous-valued solution to one that is integer-valued and
a local minimizer of a certain nonconvex relaxation (Theorem 2.1 in their paper). These algorithms
guarantee an integer solution that exhibits a valid cut with objective value greater than that of the
continuous-valued extension used to initialize their method. However, note that these algorithms
are prohibitively expensive, e.g., potentially requiring exhaustive search over 3n

2

feasible “path
matrices".

2.3 Graph cuts and continuous quadratic programming

Here we restate the discrete graph partitioning problem in a form more amenable for continuous
quadratic optimization, i.e. as a continuous optimization problem over x ∈ RM . Later, we will see
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that this problem bears similarities to the Laplace learning problem in that the two share the same
objective, but the graph partitioning problem involves additional constraints.

For simplicity, we first introduce a bipartitioning framework, V0(x) := {vi : xi = 0}, V1(x) :=
{vj : xj = 1} characterized by a binary vector x ∈ {0, 1}M . Equivalently, each binary vector x
determines an edge set Ex = {(i, j) : xi = 0,xj = 1} connecting two subsets V0(x), V1(x). The
cardinality-constrained min-cut solution is the binary vector x satisfying

∑
i xi = m1

argmin
x∈{0,1}M

{
(1M − x)⊤Wx

}
= argmin

x∈{0,1}M

∑
(i,j)∈Ex

wij . (5)

The equality is due to both terms being equal, i.e. (1M − x)⊤Wx =
∑

(i,j)∈Ex
wij , over the set

of binary vectors. Next, note that when x is binary, (1M − x)⊤Sx = 0 for any diagonal matrix S.
Hence, min-cut is equivalent to

min
x∈{0,1}M

{(1M − x)⊤(W + S)x} (6)

The theoretical aspects of this perturbed problem were investigated in [17]. However, an algorithm to
solve this problem was left as future work.

For completeness, we review the multi-partition generalization before proposing an efficient iterative
scheme in Section 3. In particular, the choice of S is characterized in [17] as a way to provide
a tighter relaxation from the set of binary vectors to the real-valued box set [0, 1]M . Essentially,
the term x⊤Sx acts as a regularizer. For instance, take S = I . The maximizer of the quadratic
x⊤Sx = x⊤x = ||x||22 on the simplex {x ∈ [0, 1] :

∑
i xi = 1} are the extreme points of the

simplex, i.e. the one-hot vectors. Hager and Krylyuk [17] rigorously proved that the larger the entries
of S, the tighter the relaxation, but the number of stationary points grows. The key condition that
must be satisfied by S is stated in Theorem 2.1 of [17]: Sii + Sjj ≥ 2wij which ensures that the
min-cut problem with cardinality constraint on V1 coincides with the following continuous quadratic
optimization problem,

min
x∈RM

(1M − x)⊤(W + S)x s.t. 0 ≤ xi ≤ 1, 1⊤
Mx = m1 = |V1| (7)

Given S ̸= 0n×n, an essential question is how to compute a solution to (7). Note that it is no longer a
convex problem. Intuitively, given some quadratic (e.g., parameterized by W ) with a minimum in the
interior of the simplex, perturbing W by S results in a new, indefinite or concave quadratic with a
minimum at a vertex of the simplex.

Our proposed framework is based on constructing a homotopy path, e.g. with S = sD for some
parameter s in (7), to find high-quality stationary points at extreme points of the simplex. In other
words, our proposed method computes x(s0) for some small s0, and then uses x(s0) as initialization
to reach x(s) for a larger value s, until solutions are within some small radius ϵ of an integral solution.
By controlling the magnitude of s, we control the number of critical points that trap iterative methods.

We illustrate these principles in Figure 1, where we visualize the level sets of the 2-d quadratic
f(x, y) = (x− 0.8)2 − (y − 0.2)2 − s(x2 + y2) on the simplex {(x, y) ∈ [0, 1]2 : x+ y = 1} for
various choices of s. Note that when s = 0, the quadratic is convex and the minimum lies in the
interior of the simplex. As s increases, the quadratic becomes indefinite, and eventually concave on
the simplex (i.e. when s = 10). As s increases, the local minima on the simplex gravitate towards the
“corners” (one-hot labels) until both “corners” become local minima in the extreme case.

3 Graph Partitioning for SSL

In this section, we generalize semi-supervised bi-partitioning (2-class SSL) to k-way partitioning
(multi-class SSL). This yields a constrained optimization problem over n× k real-valued matrices.
We generalize the previous framework to incorporate label information, introduce the conditions
necessary for recovering binary-valued solutions, and develop our CutSSL algorithm.

3.1 Semi-supervised k-way partitioning

Before introducing label information, we transition from the bipartitioning to the k-way partitioning
setting. The following maximization problem, introduced in [17], is interpreted as the maximization
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Figure 1: Effect of perturbing L by S on minimizers of (10) on the simplex. Shade of level-curves
denotes descent direction. Blue dots denote unique minimizers in the simplex. As the magnitude of
the perturbation increases, the minimzers gravitate towards the extreme points of the simplex.

of the sum of intra-partition edge weights.

max
X∈RM×k

tr(X⊤(W + S)X) s.t. X⊤1M = m, X1k = 1M , X ≥ 0. (8)

Here, the entries of the vector m ∈ Rk denote the given cardinalities of each class and 1⊤
k m = M ,

the number of all examples.

To motivate the introduction of labels to the cardinality-constrained cut problem, we relate the
objective of (8) with the perturbed Laplacian quadratic form:

Proposition 3.1 (Equivalent binary minimizers). Let HS(X) = tr(X⊤(L− S)X) be the quadratic
form associated with the Laplacian, and let GS be the objective of (8), GS = tr(X⊤(W + S)X).
Then, we have that

argmax{GS(X) : X ∈ Ω} = argmin{HS(X) : X ∈ Ω}

for all XΩ ∈ Ω, where Ω = {X ∈ RM×k : Xi,j ∈ {0, 1}, X⊤1M = m}.

Proof. Observe that
HS(X) +GS(X) = ⟨X,DX⟩ = ||D1M ||1 (9)

is a constant and the minimizers and maximizers coincide.

The Laplace learning solution (3) alongside this proposition motivates the following Laplacian
quadratic objective with perturbation S, which we term CutSSL. This is our key formulation.

min
X∈Rn×k

{
Fs(X) :=

1

2
tr(X⊤(Lu − S)X)− tr(X⊤B)

}
s.t. X⊤1n = m, X1k = 1n, X ≥ 0,

(10)

In practice for the homotopy path, we take S = sD, where we have for any feasible XΩ ∈ Ω,

Fs(XΩ) = F0(XΩ)− s||D1/2XΩ||2F = F0(XΩ)− s||Dm||1
Thus, any binary minimizer of (10) with s = 0 is also a binary minimizer with s > 0. For
brevity denote Lu,s = Lu − sD. For real-valued X , we have that the objective is Fs(X) =

F0(X)− s||D1/2X||2F . The quadratic term of the objective Fs satisfies

tr(X⊤Lu,sX) = tr(X⊤((1− s)Du −Wu)X) = (1− s)
∑
i

(du)i||Xi||22 −
∑
ij

(wu)ij⟨Xi, Xj⟩.

Thus, we have the following natural interpretation:

• When s = 0, the objective mirrors Laplace learning.

• When 0 ≤ s ≤ 1, the constrained minimizer of the quadratic encourages solutions with
predictions at unlabeled high-degree vertices to have small norm.

• When s > 1, Lu,s could be indefinite or negative definite. The minimizers are extreme
points of the feasible set and correspond exactly to labels.
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When Lu,s satisfies a certain condition, recovery of exact binary solutions is guaranteed, i.e. the
relaxation is exact if (s− 1)(Dii +Djj) ≥ 2wij . The following proposition characterizes the binary
solutions to (10) with respect to an appropriate choice of s. The proof is provided in the Appendix.

Proposition 3.2. Suppose s is chosen such that (Lu,s)ii + (Lu,s)jj < 2(Lu,s)ij for all pairs (i, j).
Then every local minimizer of Fs(X) is a 0− 1 solution.

Note that the condition is weaker than a negative definite condition of Lu,s. For instance, as s→∞
every extreme point of the feasible set of (10) (every feasible 0 − 1 assignment) becomes a local
solution. With smaller s, fewer of these extreme points are local minimizers.

3.2 CutSSL algorithm

The problem introduced in (10) is amenable to the alternating direction method of multipliers
(ADMM) framework [8], a flexible approach to solve non-smooth and nonconvex optimization
problems by introducing “coupled” subproblems derived from a “splitting” of the primal variables.
We consider the following “split” problem, introducing the variable T ∈ Rn×k:

min
X,T∈Rn×k

{
F (X,T ) =

1

2
tr(X⊤(Lu,s)X)− tr(X⊤B)

}
s.t. X⊤1n = m, X1k = 1n, T ≥ 0, X = T

(11)

Define the Lagrangian, G(X,T,Λ) to be the objective of the following problem:

max
Λ∈Rn×k

min
X,T∈Rn×k

1

2
tr(X⊤Lu,sX)− tr(X⊤B) + tr(Λ⊤(X − T )) +

1

2
||X − T ||2

s.t. X⊤1n = m, X1k = 1n, T ≥ 0.

(12)

In this instance, ADMM is implemented by searching for saddle points of G via the following iterates:

Xt+1 = argmin
X∈Rn×k

G(X,Tt,Λt) s.t. X⊤1n = m, X1k = 1n

Tt+1 = argmin
T∈Rn×k

G(Xt+1, T,Λt) s.t. T ≥ 0

Λt+1 = Λt +Xt+1 − Tt+1

(13)

The first-order optimality conditions on X are

X = L̄−1
u,s(B + T − Λ− 1nµ

⊤
1 − µ21

⊤
k ), (14)

where µ1 ∈ Rk and µ2 ∈ Rn are multipliers associated with the constraints X⊤1n = m and
X1k = 1n respectively, and L̄u,s = Lu,s + I . The optimality conditions associated with (µ1, µ2)
are recovered by applying the constraint X⊤1n = m. Let c = 1⊤

n L̄
−1
u,s1n. This yields

µ1 = c−1{(B + T − Λ− µ21
⊤
k )

⊤L̄−1
u,s1n −m}

µ2 =
1

k
{(B + T − Λ− 1nµ

⊤
1 )1k − L̄u,s1n}

(15)

The optimality condition for T yields

T = argmin
T≥0

1

2
||Λ +X − T ||2 =⇒ T = max(Λt +Xt+1, 0) (16)

The algorithm is summarized in Algorithm 1. Detailed derivations are provided in Appendix E.1.
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Algorithm 1 CutSSL

Input: Laplacian L, labels B, initialization X0

Output: One-hot label predictions X
1: function ADMM(L̄u,s, X0)
2: X ← X0

3: while not converged do
4: Xt+1 = L̄−1

u,s{B + Tt − 1nµ
⊤
1 − µ21

⊤
k − Λt} ▷ µ1, µ2 given by (15)

5: Tt+1 ← max(Λt +Xt+1, 0) ▷ Projection of T
6: Λt+1 = Λt +Xt+1 − Tt+1 ▷ update multipliers
7: end while
8: return Xt

9: end function

3.3 Convergence and complexity of CutSSL

The convergence of the standard two-block ADMM for convex and nonconvex problems has been
thoroughly established in the literature [6, 8]. Note that when s = 0, (10) is convex and the feasible
set is non-empty. An optimal solution exists. The ADMM iterations for (11) produce a sequence
{(Xt, Tt,Λt)}, where Xt is guaranteed to satisfy the equality constraints, the entries of Tt are
guaranteed to be positive and Λt is the multiplier for equality constraint.

Generally, and as we show in the Appendix, ADMM converges to a KKT point of (11) if and only if
the objective, primal, and dual residuals converge [8] as t→∞, i.e.

rt+1
p = ||Xt − Tt||2, rt+1

d = ||Tt+1 − Tt||2 (17)

The iterations stop when the norms of these residuals are within specified tolerance levels. ϵp ≥ 0,
ϵd ≥ 0. One may speed up the empirical rate of convergence of ADMM by adjusting a step-size
parameter associated with the Lagrangian. See the Appendix for details.

Partitioning poses a challenge from an optimization perspective, primarily due to the nonconvexity of
the quadratic objective. For example, the Poisson MBO method [10] is locally convergent in the limit
and incurs complexity O(TR), where T is a bound on the number of iterations the procedure is run
and O(R) is the cost of solving a Laplacian system. Likewise, the volume MBO method presented
in [19] also claims local convergence and complexity O(TNV (log(V ) +N)C) for some constant
C. Preconditioned conjugate gradient can be applied to find solutions to Laplacian-like systems in
nearly linear time (linear in M ) [29]. Thus, the complexity of our method is dominated by the primal
variable update O(TR) (step 4 in Alg. 1).

4 Mean-shifted Laplace learning

In the previous section, we introduced a graph-cut-inspired framework for graph-based semi-
supervised learning. Here we consider a related problem formulation to (10) such that we do
not limit our solutions to lie on the simplex, and set s = 0. This is equivalent to imposing a cardinality
constraint on Laplace learning (1):

min
X∈Rn×k

{
1

2
tr(X⊤LuX)− tr(X⊤B)

}
s.t. X⊤1n = m (18)

This comparison is justified with empirical evidence on MNIST. At solutions to (10) with s = 0, we
observe (1.) the inequality constraints X ≥ 0 are inactive (2.) the multiplier µ2 associated with the
constraint X1k = 1n has infinitesimal norm (empirically order of 10−9) (3.) the solutions to (18)
and (10) differ in norm by a tiny amount (order of 10−4).

We will show that an approximate solution to this problem is a previously known heuristic, mean-shift
Laplace learning. Our analysis of this problem provides new evidence to explain the empirical
performance of this heuristic, while also revealing that it is suboptimal in some sense.

While Laplace learning (3) exhibits excellent results at medium and higher label rates, recent
work [10, 11] has identified that the solution to the Laplace learning problem degenerates to a
constant as m≪M , i.e., as the number of unlabeled vertices is significantly larger than the number
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of labeled vertices. Specifically, in the low label rate regime, X̂ asymptotically depends only on the
degrees of the labeled vertices of the graph [10, 32]: X̂i ≈ ȳw :=

∑m
i=1 diyi∑m
j=1 dj

, thus, thresholding as
in (2) results in a poor solution, concentrated on a single class.

In the nonasymptotic regime, however, X̂ is not exactly a constant, and earlier work has demonstrated
that shifting X̂ such that the column-means are zero (i.e. the mean-shift) empirically corrects this
issue. This is justified in Calder et al. [10], von Luxburg et al. [32] via a random walk argument.

4.1 Mean-shift as an approximate solution for cardinality-constrained SSL

The problem in (18) is convex since the matrix Lu is a principal submatrix ofL, a positive semidefinite
matrix. Additionally, the set Cm = {X : X⊤1n = m} is convex and nonempty. Mean-shifted
Laplace learning is one heuristic to solve this problem, by performing the the following pair of steps:

1) Linearization: Solve LuX = B to get X̂ . This is equivalent to vanilla Laplace learning.
2) Projection: Project X̂ onto the set Cm:

ˆ̄X = argmin
X

{
1

2
∥X − X̂∥2F s.t. X⊤1n = m

}
, (19)

Applying Lagrange multipliers yields ˆ̄Xij = X̂ij − 1
n

(∑n
i=1 X̂ij −mj

)
. Thus, mean-shift is the

projection ˆ̄Xij when m = 0k.

This is only an approximate solution. However, it is straightforward to characterize the optimal
solutions of (18), which can be decomposed into the sum of two terms: X = Z + 1

n1nm
⊤. The

first term is associated with the solution to (18) for m = 0, i.e. 1⊤
nZ = 0. Denote the projection

P = I− 1
n1n1

⊤
n onto the set of n×k matrices with mean-zero columns. Note that Z is the minimizer

of 1
2 tr(Z⊤PLuPZ)− tr(Z⊤(PB)) and satisfies the system Z = (PLuP )†PB. The second term

1
n1nm

⊤ is a constant term to correct for the true value of m so that 1⊤
nX = m. Thus, it is clear that

to resolve the suboptimality of the mean-shift heuristic, one must apply mean-shift to the Laplace
learning solution when the labels have been shifted. This can be solved with Projected Conjugate
Gradient (PCG). In the following proposition, we characterize optimal solutions to (18) in terms of
the mean-shift heuristic. Naturally, we expect that as the number of labeled vertices increases, the
gap becomes smaller. The proof is provided in the appendix.

Proposition 4.1. Let X∗ ∈ Rn×k be a solution to Laplace learning (18), X̂ ∈ Rn×k be the solution
to (3), and ˆ̄X ∈ Rn×k be the mean-shift heuristic (28). Let κ(Lu) =

λmax(Lu)
λmin(Lu)

and m̂ = 1nX̂ . Then,

X∗ is a rank-one perturbation of ˆ̄X and ||X∗ − ˆ̄X|| ≤ κ(Lu)√
n
||m⊤ − m̂⊤||+ 1

n ||m̂||.

In the projection step, the rank-one perturbation (33) serves to adjust the column sum of X̂ to
satisfy the cardinality constraint implied by m. When thresholding continuous solutions to integer
predictions by comparing the entries in each row of X , the rank-one adjustment can play a crucial
balancing role, particularly when m̂, the cardinalities of the predicted labels, are far from the prior
cardinalities m. We emphasize that the term m̂ exactly corresponds to the degeneracy of Laplace
learning X̂ .

Notably, in the low-label rate regime, the bound is dominated by the smallest eigenvalue of Lu, the
denominator of κ(Lu). This term is intimately related to the number of labeled vertices, i.e. by
interlacing [14], as well as the difference in cut and cut quality, by the above proposition. Generally,
the bound gets smaller as the smallest eigenvalue of Lu increases, and this corresponds to the addition
of labeled samples to the label set.

In the appendix, we empirically confirm this in Fig 3, where we investigate solutions generated
using the mean-shift Laplace learning heuristic and the true solution to (18) on MNIST at label rates
ranging from 1 per-class to 10 per-class.

Despite not resolving the issue of degeneracy in the theoretical sense of Calder et al. [11], we show in
Sec. 5 that solving (18) exactly via PCG consistently yields better results than the mean shift heuristic,
at no additional computational cost. Intuitively, our analysis implies that shifting both the solution
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and the labels is a superior heuristic. However, we note that while gains in accuracy of 1− 2% are
consistent in the very low label-rate regime, the improvement becomes marginal at higher label rates.
In contrast, we demonstrate that CutSSL, which avoids degenerate solutions via recovery of integer
solutions, has consistent improvement in performance across label rates.

5 Experiments

We evaluate our method on three image datasets: MNIST [12], Fashion-MNIST [33] and Cifar-10
[23], using pretrained autoencoders as feature extractors as in Calder et al. [10], see appendix for
details. We also evaluate cutSSL on various real-world networks, including the Cora citation network
and the OGB [18] Arxiv and Product networks.

Table 1: Cifar-10. Average accuracy over 100 trials with standard deviation in brackets.

CIFAR-10 # LABELS PER CLASS 1 3 5 10 4000

LAPLACE/LP [38] 10.4 (1.3) 11.6 (2.7) 14.1 (5.0) 21.8 (7.4) 80.9 (0.0)
MEAN SHIFT LAPLACE/LP 40.9 (4.1) 49.5 (3.4) 51.3 (2.9) 57.0 (2.1) 81.0 (0.4)
EXACT LAPLACE/LP (OURS) 41.6 (4.3) 50.1 (2.9) 51.6 (2.6) 57.3 (1.9) 81.1 (0.2)
LE-SSL [3] 36.2 (0.1) 50.2 (4.3) 54.7 (3.4) 59.4 (2.3) 80.1 (0.9)
SPARSE LP [20] 13.1 (2.9) 13.4 (2.6) 18.4 (2.1) 19.8 (1.9) 71.3 (0.1)
POISSON [10] 40.7 (5.5) 49.9 (3.4) 53.8 (2.6) 58.3 (1.7) 80.3 (0.9)

VOLUME-MBO [19] 38.0 (7.2) 50.1 (5.7) 55.3 (3.8) 59.2 (3.2) 75.1 (0.2)
POISSON-MBO [10] 41.8 (6.5) 53.5 (4.4) 57.9 (3.2) 61.8 (2.2) 80.1 (0.3)
CUTSSL (OURS) 44.7 (5.9) 56.1 (3.7) 59.7 (3.1) 64.5 (1.7) 82.0 (0.2)

Image datasets We construct a graph over the latent feature space. We used all available data to
construct the graph, with n = 70, 000 nodes for MNIST and Fashion-MNIST, and n = 60, 000 nodes
for Cifar-10. The graph was constructed as a k-nearest neighbor graph with Gaussian edge weights
given by wij = exp

(
−4||vi − vj ||2/dk(vi)2

)
, where vi are the latent variables for image i, and

dk(vi) is the distance in the latent space between vi and its kth nearest neighbor. We used k = 10 in
all experiments and symmetrize W by replacing W with 1

2 (W +W⊤).

We compare to the state-of-the-art unconstrained graph-based SSL algorithm Poisson Learning [10]
as well as variants based on the MBO procedure [19] to incorporate knowledge of class sizes. We
include vanilla Laplace learning, Laplace learning with the mean-shift heuristic, and exact Laplace
learning with relaxed cardinality constraints presented in Section 4. We also include a method
inspired from spectral relaxations of the min-cut problem. Laplacian Eigenmaps-SSL [3] performs
graph-based SSL by learning a linear predictor using the principal eigenvectors of the graph Laplacian
as features. We note that our method is directly comparable to Volume- and Poisson-MBO, which
also incorporate knowledge of class sizes.

Adopting a homotopy method implies that we solve a sequence of quadratic programs with
s0 = 0 and use the associated solution to initialize a subsequent problem with s > 0. In
practice, we set s = 0.1 for all experiments. The procedure presented in Alg. 1 is run for
100 iterations. In Table 1 we present the accuracy of our method on Cifar-10 across various
label rates (MNIST and fMNIST results are in the appendix). CutSSL outperforms all meth-
ods across all label rates. In particular, we outperform the state-of-the-art by 2.9% when only
a single sample from each class is provided and by 1.9% in the large label-rate regime.

Table 2: A citation network with 169, 343 vertices and 40 labels (“Rate=tr” means all train data).

OGBN-ARXIV, k = 40 ACC. (RATE=1) RUNTIME (S) CUT (103) ACC. (RATE=TR)

POISSON [10] 45.72% 79.34 71.13 50.11%
GRAPHHOP-NN [34] 27.36% 1878.39 94.16 34.47%
POISSON-MBO [10] 46.94% 341.12 72.09 51.7%
CUTSSL (OURS) 52.37% 122.04 70.43 68.21%
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Table 3: A co-purchasing network with >2M vertices and 47 labels (“Rate=tr” means all train data).

OGBN-PRODUCTS, k = 47 ACC. (RATE=1) RUNTIME (S) CUT (103) ACC. (RATE=TR)

POISSON [10] 48.31% 113.91 117.21 52.14%
GRAPHHOP-NN [34] 19.47% 3490.64 163.24 31.16%
P-LAPLACE [15] 43.07% 91.01 132.93 52.11%
POISSON-MBO [10] 49.07% 412.01 91.13 56.31%
CUTSSL (OURS) 54.22% 188.24 94.21 61.24%

(a) Cora (b) Citeseer
Figure 2: Prediction accuracy on citation networks.

Citation networks : In Figure 2 we
plot accuracy and label rate for the
Cora and Citeseer citation networks,
demonstrating that our method gener-
alizes beyond k-NN graphs. Notably,
for Cora, we outperform PoissonMBO
by 7.5% at 1 label per class (see ap-
pendix). We note that the trend per-
sists across datasets and label rates.
Interestingly, LE-SSL [3] performs
significantly worse across label rates.
This implies that searching near the
set of binary vectors is critical to achieving good predictors.

Large-scale networks: To demonstrate the scalability of our method, we provide results at 1-label
rate for OGB networks Arxiv (Table 2) and Products (Table 3). These networks contain up to 2
million vertices and 47 classes. We demonstrate state-of-the-art performance in this regime, with
an improvement of ∼ 5% for both. Note that CutSSL also significantly outperforms a graph neural
network-based method, GraphHop [34], designed for low label rates and which also exploits node
feature information. CutSSL has double the accuracy with an order of magnitude less run-time.

Label/class imbalance: In the appendix, we also present results demonstrating performance under
label and class imbalance. Our method exhibits superior robustness when either the label rate is
imbalanced (different classes have different number of labels, see Tab. 5) or when the underlying
partition sizes are imbalanced (different classes have different number of samples, see Tab. 6).

Additional experiments: In the appendix (section C.2), we demonstrate the efficacy of CutSSL at
classifying samples with small “margin”. This is in contrast to spectral and Laplace learning-type
algorithms are known to produce predictions that “bleed” across the cut boundary. We conduct
ablative studies on the graph construction and choice of S (section C.4). Convergence of CutSSL and
recovery of integer solutions is empirically demonstrated in Figure 6.

6 Conclusion

We have proposed a novel formulation of graph-based semi supervised learning as a nonconvex
continuous quadratic program that bears similarities to the mean-shift Laplace learning heuristic and
graph cuts. We have presented an iterative method to solve a sequence of these problems to recover
discrete predictions. Numerically, we have demonstrated that our approach consistently outperforms
state-of-the-art methods on semi-supervised learning problems at low, medium, and high label rates
and in imbalanced class regimes. Future work includes a rigorous analysis of exact cut-based methods
for graph-based semi-supervised learning. Of particular interest are the asymptotic behavior and
consistency of cut-based methods for graph-based SSL.
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A Outline of appendix

The outline of the appendix is as follows: we first provide the proofs of the propositions presented
in Sections 3 and 4. Next, we provide additional experiments to demonstrate the efficacy of our
method on other standard image and citation network benchmarks (FMNIST and FashionMNIST and
Planetoid) and in the presence of imbalanced labels. We also include an ablation study of S and the
graph construction, and an evaluation of the cut objective for different methods. Additionally, we
review two existing methods for cardinality-constrained semi-supervised learning. We also provide
detailed derivations and a variation of the algorithm presented in the main text which incorporates a
step size.

B Proofs

Consider the CutSSL formulation:

min
X∈Rn×k

{
F (X) =

1

2
tr(X⊤(Lu − S)X)− tr(X⊤B)

}
subject to X⊤1n = m, X1k = 1n, X ≥ 0.

(20)

The following proposition characterizes the binary solutions to (20) assuming appropriate choice of s.
Proposition B.1 (Proposition 3.2). Suppose s is chosen such that (Lu,s)ii + (Lu,s)jj < 2(Lu,s)ij
for all pairs (i, j). Then every local minimizer of F is a 0− 1 solution.

Proof. Suppose X is a non-binary optimal solution to (20). Assume that Xi1,i2 lies in (0, 1). The
feasibility condition implies that both Xi3,i2 and Xi1,i0 lie in the interval (0, 1) for some i3 and
some i0. Likewise, Xi4,i3 ∈ (0, 1) for some i4. Repeat the argument, then there exists a sequence
of l nonzero entries in X , whose indices form a cycle, i.e., (i1, i2, i3. . . . il) and il = i0 with l even.
That is, Xij ,ij+1

∈ (0, 1), Xij+2,ij+1
∈ (0, 1) for j = 1, 3, 5, . . .. The existence of a cycle in X

implies that we can construct X + ϵE feasible, where E is a 0/1 matrix with Eij ,ij+1
= 1 and

Eij+2,ij+1 = −1. Clearly, we have that

E1k = 0 and E⊤1n = 0. (21)

From the local optimality condition f(X + ϵE) ≥ f(X), with ϵ → 0+, the necessary conditions
indicate two conditions,

tr(E⊤(Lu,sX −B)) = 0, tr(E⊤Lu,sE) ≥ 0 (22)

for each E with cycle (i1, . . . , il). Since X is a locally optimal solution, then Lu,sX − B =
µ11

⊤
k + 1nµ

⊤
2 holds for some vectors µ1, µ2, which ensures the condition tr(E⊤(Lu,sX −B)) = 0.

However, according to the assumption (Lu,s)ii + (Lu,s)jj < 2(Lu,s)ij , we have that

tr(E⊤Lu,sE) =

l∑
j=1

2(Lu,s)ij ,ij − 2(Lu,s)ij ,ij+1
< 0 (23)

i.e., the conditions for local optimality are violated.
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Let L =
[

Ll Llu

Lul Lu

]
and X0 =

[
Xl

Xu

]
where l and u correspond to labeled and unlabeled indices,

respectively. The solution X̂ of the Laplace learning problem satisfies the linear system

LuX̂ = B := −LulY. (24)

Consider the cardinality constrained Laplace learning formulation

min
X∈Rn×k

{
f(X) =

1

2
tr(X⊤LuX)− tr(X⊤B)

}
s.t. X⊤1n = m

(25)

In the main text, we discussed that mean-shift Laplace learning is a heuristic that recovers approximate
solutions to the above convex problem for m = 0k. The mean-shift heuristic corresponds to the
following two-step procedure:

1) Linearization: Solve LuX = B to get X̂
2) Projection: Project X̂ onto the orthogonal complement of 1n to get ˆ̄X = PX̂ , where P =
I − 1

n1n1
⊤
n First, we provide a detailed derivation of step 2.

We have
ˆ̄X = argmin

X

{
1

2
∥X − X̂∥2F s.t. X⊤1n = m

}
, (26)

Let m = 0. Applying Lagrange multipliers to (19) in order to solve step 2 yields

G(X,µ) =
1

2
∥X − X̂∥2F + µ⊤(X⊤1n −m)

=

(
1

2
∥X − X̂∥2F + (Xµ)⊤1n

)
− µ⊤m

(27)

with µ ∈ Rk. The solution to (19) is given by finding the µ which satisfies the constraint. The partial
derivatives of the Lagrangian are

∂G
∂Xij

= (Xij − X̂ij) + µj = 0 =⇒ Xij = X̂ij − µj

Applying the constraint
∑n

i=1 Xij = mj yields µj = 1
n (
∑n

i=1 X̂1ij −mj). The projection of X̂
onto Cm is

ˆ̄Xij = X̂ij −
1

n

(
n∑

i=1

X̂ij −mj

)
(28)

Here, we characterize the connection between this heuristic and the cardinality-constrained problem.

Proposition B.2 (Proposition 4.1). Let X∗ ∈ Rn×k be a solution to Laplace learning (18), X̂ ∈
Rn×k be the solution to (3), and ˆ̄X ∈ Rn×k be the mean-shift heuristic (28). Let κ(Lu) =

λmax(Lu)
λmin(Lu)

and m̂ = X̂⊤1n. Then, X∗ is a rank-one perturbation of ˆ̄X and ||X∗− ˆ̄X|| ≤ κ(Lu)√
n
||m⊤−m̂⊤||+

||m̂||.

Consider the first order condition of (25):

LuX
∗ = B + 1nµ

⊤ (29)

for some multiplier µ ∈ Rk satisfying

m = µ(1⊤
nL

−1
u 1n) + (B⊤L−1

u 1n) (30)

i.e., due to the constraint X⊤1n = m,

m = (L−1
u (B + 1nµ

⊤))⊤1n

= (L−1
u B + L−1

u 1nµ
⊤)⊤1n

= µ(1⊤
nL

−1
u 1n) + (B⊤L−1

u 1n)

(31)
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Figure 3: (top) Reciprocal of the small eigenvalue of Lu (bottom) Label disagreements

The first order condition implies that X∗ is determined by

X∗ =L−1
u 1n(1

⊤
nL

−1
u 1n)

−1m⊤ + {I − L−1
u 1n(1

⊤
nL

−1
u 1n)

−11⊤n }L−1
u B⊤ (32)

Let X̂ denote the solution to the classic Laplace learning problem: X̂ = L−1
u B⊤ and m̂ = 1⊤n X̂ .

Also, let y = L−1
u 1n and introduce the notation 1⊤nL

−1
u 1n = 1⊤n y. Then, we may show that X∗ is a

rank-one perturbation of X̂ ,

X = X̂ + (1⊤n y)
−1y(m⊤ − m̂⊤) (33)

Informally, since L has a null vector 1n (smallest eigenvalue 0), in the low-label rate regime, Lu is
nearly singular and L−1

u 1n corresponds a very large drift term.

Remark B.3. Denote the condition number of Lu κ(Lu) =
λmax(Lu)
λmin(Lu)

. It follows that

||(1⊤n y)−1y(m⊤ − m̂⊤)|| ≤ (1⊤n y)
−1||y|| · ||m− m̂||

≤ κ(Lu)√
n
||m− m̂||

(34)

Remark B.4.

||X − (X̂ − 1

n
m̂)|| ≤ ||(1⊤n y)−1y(m⊤ − m̂⊤)||+ 1

n
||m̂|| ≤ κ(Lu)√

n
||m− m̂||+ 1

n
||m̂||

We note that M , the total number of vertices remains a constant. M = n + m, where n are the
number of unlabeled vertices and m are the number of labeled vertices. The bound highlights the gap
as m varies, with M fixed. As m increases, n decreases and κ(Lu) increases (due to interlacing).
Empirically, in Figure 3, we plot the difference in integer-rounded predictions and the reciprocal of
the smallest eigenvalue of Lu. We note that the reciprocal of the smallest eigenvalue of Lu decays
with the label rate, as does the difference in predictions.

C Additional Details and Experiments

In this section, we provide additional numerical evidence for the efficacy of our method.

See the Colab link provided in the abstract for an implementation of the algorithm in Python and
NumPy and the graphlearning package [9]. All experiments were evaluated on Colab instances.
These instances were equipped with 2-core AMD EPYC 7B12 CPUs and 13 GB of ram.

We additionally explore failure cases of our method—examples of data which our method incorrectly
classifies; a setting in which emphasizes an imbalance in the label rate for each class; and an ablation
study on the choice of the diagonal perturbation matrix S.
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Figure 4: Predicted label distribution on MNIST at 1 label per class. Vanilla Laplace learning (orange)
is degenerate. The mean-shift heuristic (green) imposes a constraint on the predictions corresponding
to a balanced prior on the class distribution. Shifting the labels (blue) is insufficient to enforce the
prior.

C.1 MNIST and Fashion-MNIST

For MNIST and Fashion-MNIST, we used variational autoencoders with 3 fully connected layers
of sizes (784,400,20) and (784,400,30), respectively, followed by a symmetrically defined decoder.
The autoencoder was trained for 100 epochs on each dataset. The autoencoder architecture, loss, and
training are similar to Kingma and Welling [22].

For each dataset, we construct a graph over the latent feature space. We used all available data to
construct the graph, with n = 70, 000 nodes for MNIST and Fashion-MNIST, and n = 60, 000 nodes
for Cifar-10. The graph was constructed as a k-nearest neighbor graph with Gaussian edge weights
given by

wij = exp
(
−4||xi − xj ||2/dk(xi)

2
)
,

where xi are the latent variables for image i, and dk(xi) is the distance in the latent space between xi

and its kth nearest neighbor. We used k = 10 in all experiments and symmetrize W .

Table 4: Average accuracy over 100 trials with standard deviation in brackets. Best is bolded.

MNIST # LABELS PER CLASS 1 3 5 10 4000

LAPLACE/LP [38] 16.1 (6.2) 42.0 (12.4) 69.5 (12.2) 94.8 (2.1) 98.3 (0.0)
MEAN SHIFT LAPLACE/LP 91.0 (4.7) 95.7 (1.0) 96.3 (0.5) 96.7 (0.2) 98.2 (0.1)
POISSON [10] 90.2 (4.0) 94.5 (1.1) 95.3 (0.7) 96.7 (0.2) 97.2 (0.1)

VOLUME-MBO [19] 89.9 (7.3) 96.2 (1.2) 96.7 (0.6) 96.7 (0.2) 96.9 (0.1)
POISSON-MBO [10] 96.5 (2.6) 97.2 (0.1) 97.2 (0.1) 97.6 (0.1) 97.3 (0.0)
CUTSSL (S = sI ) 97.4 (0.1) 97.6 (0.1) 97.6 (0.1) 97.6 (0.1) 98.1 (0.1)
CUTSSL (S = sD) 97.5 (0.1) 97.6 (0.1) 97.7 (0.1) 97.7 (0.1) 98.3 (0.1)

FASHIONMNIST

LAPLACE/LP [38] 18.4 (7.3) 44.0 (8.6) 57.9 (6.7) 70.6 (3.1) 85.8 (0.1)
MEAN SHIFT LAPLACE/LP 58.1 (5.1) 67.6 (2.8) 70.5 (2.1) 74.4 (1.4) 85.9 (0.2)
POISSON [10] 60.8 (4.6) 69.6 (2.6) 72.4 (2.3) 75.2 (1.5) 82.4 (0.1)

VOLUME-MBO [19] 54.7 (5.2) 66.1 (3.3) 70.1 (2.8) 74.4 (1.5) 75.1 (0.2)
POISSON-MBO [10] 62.0 (5.7) 70.4 (2.9) 73.1 (2.7) 76.1 (1.4) 80.1 (0.3)
CUTSSL (S = sI ) 63.3 (4.8) 70.4 (2.1) 74.1 (1.2) 76.2 (1.1) 86.0 (0.1)
CUTSSL (S = sD) 64.3 (4.6) 71.9 (3.8) 74.5 (1.3) 76.6 (1.0) 86.1 (0.1)

In Table 4 we present results at a variety of label rates on the MNIST and FashionMNIST datasets,
demonstrating improved classification accuracy and lower classification variance accross all datasets.

To demonstrate the degeneracy of Laplace learning and the mean shift heuristic in the low label
regime, we visualize the distribution of class predictions for MNIST given 1 labeled sampled per class
in Figure 4. Vanilla Laplace learning predictions (orange) are concentrated on label ‘7’, with very low
prediction accuracy. Solving Laplace learning for shifted labels (blue) still shows an imbalanced class
distribution, with a slight increase in performance, whereas mean-shifted Laplace learning (green)
exhibits balanced class predictions and a significant increase in performance.
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We demonstrate the robustness of CutSSL to two versions of “imbalance”: imbalance in the label
distribution (Tab. 5) and imbalance in the underlying class distribution (Tab. 6). Notably, our method
exhibits superior robustness in both cases.

Table 5: Imbalanced label regime. Odd classes have 1 label, even classes have 5 labels.

IMBALANCED LABELS MNIST FMNIST CIFAR-10

LAPLACE/LP 69.5 21.1 10.0
MEAN SHIFT LAPLACE 91.3 62.6 37.2
POISSON 91.1 65.1 44.6
POISSON-MBO 92.7 66.2 55.0
CUTSSL (OURS) 93.2 68.7 59.4

Table 6: Imbalanced class regime. There are 10 times as many samples for each even class than there
are for the odd classes, and one labeled node for each odd class.

CLASS IMBALANCE MNIST FMNIST CIFAR-10

LAPLACE/LP 54.7 38.6 18.4
MEAN SHIFT LP 92.5 64.3 42.8
POISSON 90.0 66.8 43.7
POISSON-MBO 91.8 77.5 52.3
CUTSSL (OURS) 93.1 80.4 54.5

C.2 Graph learning identifies hard samples

Table 7: Accuracy of different method on the top 5%, 10%, 20% of samples with the smallest margin.

CIFAR-10 MARGIN THRESHOLD 5% 10% 20% 100%

EXACT LAPLACE/LP 27.4 (4.3) 29.6 (4.3) 31.6 (4.1) 41.6 (4.3)
POISSON 29.1 (2.1) 28.5 (1.6) 30.1 (1.2) 40.7 (5.5)
CUTSSL (OURS) 36.2 (4.9) 43.2 (4.4) 44.5 (5.3) 44.7 (5.9)

Recall that Laplace learning solves a problem of the form

LuXlap = B := −LulY.

It is then necessary to map the continuous-valued predictions given by Xlap to elements in the label-set.
Usually, the following post-hoc rounding step is performed:

ℓ(i) = arg max
j∈1,...,k

(Xlap)ij .

However, there is one significant issue with this heuristic, as implied by proposition 4.1 in our paper.
At low-label rates, Lu is nearly singular and dominated by a large drift-term associated with the
vector L−1

u 1n. This term is essentially a constant that is governed by the underlying graph and the
distribution of the labeled vertices, but it can dominate any “useful” information and hinder the
threshold heurstic. Notably, in the extreme case, thresholding in the low label rate regime results in
one class dominating the predictions. This is presented in figure 5, which demonstrates that when the
column-argmax heuristic is adopted a single class prediction dominates the rest.

This particular degeneracy is especially relevant for vertices near the decision boundary- e.g. vertices
with corresponding rows in Xlap that have small margin, where margin is defined

margin(i) = max
j∈[k]

(Xlap)ij − max
l∈[k],:l ̸=j

(Xlap)ij

To illustrate this issue and how CutSSL addresses it, in Tab. 7 we evaluate Laplace and Poisson
learning (methods that produce continuous-valued predictions) on the Cifar-10 dataset with one
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sample labeled per class. We then consider the accuracy of each method on the top 5%, 10%, 20% of
samples with the smallest margin. We see that CutSSL, which makes discrete predictions, performs
much better on samples with small margin.

Here, we provide examples of misclassified samples that lie on the “boundary” of their respective
partitions. The node boundary of a set V1 with respect to a set V2 is the set of vertices v in V1 such
that for some vertex u in V2, there is an edge joining u to v. We show that the examples presented in
Figure 5, particularly in the top row for MNIST, correspond to digits which are messily written or
easily confused (bottom, Fashion-MNIST). We hypothesize that these challenging samples lie on the
cut-boundary between partitions.

(a)

(b)

Figure 5: (a) Random sample of misclassified images on the cut-boundary on MNIST. (b) misclassi-
fied images on the cut-boundary of FashionMnist.

C.3 Planetoid (Cora, Citeseer, Pubmed)

In the main text and earlier in the appendix, we provided numerical results on three popular image
datasets. The graphs in those datasets are constructed as kNN graphs. In this section, we evaluate
our method on non-kNN graphs corresponding to citation networks, where the graph is given. In
these networks, the vertices represent documents and their links refer to citations between documents,
while the label corresponds to the topic of the document. Due to the smaller size of these graphs,
we set s = 0.05. We show in Fig. 2 that our method continues to exhibit significant improvement,
beyond the state-of-the-art on these graphs.

In Table 8, we again outperform competing methods across all datasets and label rates. For example,
on Citeseer at 100 labels per class, we outperform Poisson-MBO by 9.4%.

We omit results on Volume-MBO [19] due to runtime errors when evaluating the method on these
graphs.

C.4 Ablation study of S and cut objective and graph construction

The two underlying motivations of our work are that (1.) the graph-based machine learning setting
necessitates the assumption that class structure is tied to the cut structure of the graph (2.) searching
for near-integer solutions when solving the semi-supervised partitioning problem is critical at low-
label rates. We demonstrate this below by evaluating various choices of S as well as evaluating
the quality of the integer partitioning implied by the integer-rounded predictions made by various
methods across datasets in Table 9.

Additionally, we discuss the choice of S = sD. s is the primary hyperparameter of the CutSSL
algorithm. As mentioned in the main text, our choice of S is motivated from the perspective of
regularization. A large enough choice of s results in an indefinite or concave problem that has a
combinatorial number of local minima. By choosing an appropriate sequence of s, we can control
the number of poor local minima. In Figure 6(a) we demonstrate convergence with respect to the
objective of (10) and (b) proximity to an integral solution with various choices of s. In Figure 7, we
plot various measures associated with three different sequences (s0, s1, . . . , sT )2, with s0 = 0 and
sT = 0.5. Each st is determined by st = st−1 + d for some fixed constant d. It can be seen that

2recall that our algorithm works by finding a solution to (10) given a particular st and using this solution to
initialize a subsequent problem associated with st+1
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Table 8: Average accuracy over 100 trials evaluated on the largest connected subgraph with standard
deviation in brackets. Best is bolded.

CORA # LABELS PER CLASS 1 3 5 10 100

LAPLACE/LP [38] 21.8 (14.3) 37.6 (12.3) 51.3 (11.9) 66.9 (6.8) 81.8 (1.1)
MEAN SHIFT LAPLACE/LP 52.7 (7.6) 63.3 (6.3) 67.8 (4.8) 72.1 (2.7) 80.8 (1.1)
POISSON [10] 59.8 (7.9) 66.2 (5.8) 72.4 (2.1) 74.1 (1.8) 79.8 (1.0)

POISSON-MBO [10] 59.9 (6.4) 69.1 (3.1) 72.4 (2.4) 74.3 (2.1) 79.2 (0.9)
CUTSSL (OURS) 67.4 (3.4) 73.2 (3.1) 75.8 (2.1) 78.7 (1.1) 85.4 (0.7)

CITESEER

LAPLACE/LP [38] 27.9 (10.4) 47.6 (8.1) 56.0 (5.9) 63.7 (3.5) 71.6 (1.2)
MEAN SHIFT LAPLACE/LP 56.8 (6.8) 56.8 (6.9) 60.3 (5.1) 64.4 (3.4) 70.6 (1.2)
POISSON [10] 59.4 (5.4) 59.4 (5.4) 62.7 (4.2) 66.9 (1.8) 69.4 (1.0)

POISSON-MBO [10] 47.7 (8.0) 55.7 (3.2) 61.0 (1.7) 63.1 (1.7) 67.0 (1.1)
CUTSSL (OURS) 62.4 (4.6) 63.4 (7.2) 66.9 (1.4) 68.1 (1.3) 76.4 (0.9)

PUBMED

LAPLACE/LP [38] 34.6 (8.8) 35.7 (8.2) 36.9 (8.1) 39.6 (9.1) 74.9 (3.6)
MEAN SHIFT LAPLACE/LP 54.4 (11.1) 62.7 (9.7) 66.2 (8.5) 69.7 (5.0) 76.3 (1.1)
POISSON [10] 56.7 (12.8) 66.5 (6.6) 68.4 (5.9) 71.2 (3.4) 75.8 (0.9)

POISSON-MBO [10] 56.9 (7.3) 67.9 (3.4) 69.6 (3.1) 71.4 (2.5) 76.2 (0.8)
CUTSSL (OURS) 63.1 (4.7) 70.4 (3.1) 72.8 (2.9) 74.1 (1.4) 78.3 (0.8)

Table 9: Average cut value, given by tr(X⊤WX) over 100 trials evaluated with standard deviation
in brackets. Units are 103. Best is bolded.

MNIST # LABELS PER CLASS 1 3 5 10

MEAN SHIFT LAPLACE/LP 9.532 (141.1) 9.549 (78.3) 9.555 (49.0) 9.561 (20.5)
POISSON [10] 9.539 (152.2) 9.553 (58.4) 9.557 (33.3) 9.560 (18.1)

POISSON-MBO [10] 9.568 (62.5) 9.571 (1.9) 9.571 (3.2) 9.571 (2.5)
CUTSSL (OURS) 9.570 (35.8) 9.572 (5.0) 9.572 (10.9) 9.572 (1.3)

FASHIONMNIST

MEAN SHIFT LAPLACE/LP 103626.1 (234.3) 10.355 (158.8) 10.355 (149.5) 10.359 (112.3)
POISSON [10] 10.355 (173.2) 10.352 (149.1) 10.354 (145.7) 10.356 (106.5)

POISSON-MBO [10] 10.383 (71.6) 10.387 (68.7) 10.383 (77.3) 10.385 (91.89)
CUTSSL (OURS) 10.383 (71.2) 10.398 (70.5) 10.399 (69.5) 10.402 (42.5)

CIFAR-10

MEAN SHIFT LAPLACE/LP 7.031 (275.7) 7.010 (191.2) 7.011 (199.9) 7.010 (120.7)
POISSON [10] 7.0 (169.5) 6.987 (169.5) 6.993 (138.5) 6.995 (120.9)

POISSON-MBO [10] 7.007 (113.8) 7.020 (47.7) 7.019 (39.2) 7.022 (46.2)
CUTSSL (OURS) 7.018 (47.6) 7.034 (40.9) 7.038 (37.8) 7.043 (17.1)

(1.) that s need not be chosen to exactly satisfy the condition in Proposition. 3.2, i.e. may be chosen
significantly less than the proposition implies to recover an integer solution. And (2.) our formulation
is reasonably robust to the choice of the sequence of s, i.e. one only needs to select a few values of s
on which to run the algorithm (d can be chosen quite large). As mentioned in the main text, for our
experiments we use sequences of length 3 (i.e. 3 s).

In Table 10 we report the change in accuracy for various choices of the parameter k, used in the
construction of the underlying k-NN graph. The change is reported with respect to k = 10 (the value
used in results reported in the rest of the experiments). Mean and standard deviation are provided in
parenthesis over 100 trials. We do observe some variation in the accuracy, however the results are
mostly robust to different choices of k. Notably, the relative performance remains consistent (i.e.,
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(a) objective of (10) (b) prediction values

Figure 6: (a) Cut value of class assignments with respect to L. Strict descent is not guaranteed due to
nonconvexity. (b) Distribution over maxi Xi for various choices of s on Cifar-10. Larger s leads to
Boolean-valued solutions.

(a) (b) (c)

Figure 7: Comparison between different sequences of s on MNIST. For various s over three sequences,
we plot the cut objective (a), accuracy (b), and proximity to integral solution (c).

CutSSL continues to outperform the other methods). One very interesting observation is that for
CutSSL, the accuracy tends to improve with the value of k, although it’s possible that the accuracy
could deteriorate for larger values of k.

Table 10: Ablation study on neighborhood graph construction (choice of k).

CIFAR-10 k: 5 10 15 100

EXACT LP +1.00 (2.3) 0 -0.31 (2.1) -0.47 (2.3)
POISSON +0.30 (2.2) 0 -0.75 (2.1) -1.0 (2.3)
POISSON-MBO -0.32 (2.7) 0 -0.57 (2.9) -2.30 (3.1)
CUTSSL (OURS) -0.21 (2.3) 0 +0.16 (2.2) +0.64 (2.1)

In Table 11 we evaluate the effect mechanism used to construct the graph on MNIST. First, we evaluate
two variants of weighting edges of the KNN-based method adopted in the main text. Singular refers
to weights of the form wij = 1/||xi−xj ||2, where xi and xj are the features of the i-th and j-th data
points. Uniform refers to wij = 1, i.e. an unweighted graph. In the third column, we evaluate a more
sophisticated method for graph construction based on Non-Negative kernel regression (NNK) [28].
As opposed to the KNN-based methods, which only consider the distance (or similarity) between the
query and the data, the NNK-based method takes into account the relative position of the neighbors
themselves. Note that our CutSSL out-performs Poisson-MBO for the different graph weighting
methods and NNK construction.

D Details of Previous work

In this section, we provide further details on two state of the art methods for volume-preserving label
refinement.
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Table 11: Ablation study on neighborhood graph construction (choice of wij).

METHOD KNN (GAUSSIAN) KNN (SINGULAR) KNN (UNIFORM) NNK

EXACT LP 91.0 (4.7) 89.7 (2.8) 89.8 (2.3) 91.7 (1.1)
POISSON-MBO 96.5 (2.6) 94.2 (2.9) 95.7 (1.6) 97.3 (1.4)
CUTSSL (OURS) 97.5 (0.1) 95.8 (2.6) 96.4 (2.0) 98.4 (1.5)

D.1 PoissonMBO [10]

[10] propose a graph-cut method to incrementally adjust a seed decision boundary so as to improve
the label accuracy and account for prior knowledge of class sizes. The proposed method applies
several steps of gradient descent on the graph-cut problem:

min
u

1

2
||∇u||2ℓ2(X)2 +

1

τ

n∑
i=1

k∏
j=1

|u(xi)− uj |2 (35)

More concretely, the time-spitting scheme that alternates gradient descent on two energy functionals
is employed:

E1(u) :=
1

2
||∇u||2ℓ2(X)2 − µ

m∑
j=1

(yk − ȳ) · u(xj)

E2(u) :=
1

τ

n∑
i=1

k∏
j=1

|u(xi)− uj |2
(36)

The first term E1 corresponds to the Poisson learning objective. Gradient descent on the second
term E2, when τ > 0 is small, amounts to projecting each u(xi) ∈ Rk to the closest label vector
ej ∈ Sk, while preserving the volume constraint (u)X = b. This projection is approximated this by
the following procedure: Let Proj(Sk) : Rk → Sk be the closest point projection, let s1, . . . , sk > 0
be positive weights, and set

ut+1(xi) = ProjSk
(diag(s1, . . . , sk)ut(xi)) (37)

where diag(s1, . . . , sk) is the diagonal matrix with diagonal entries s1, . . . , sk. We use a simple gradi-
ent descent scheme to choose the weights s1, . . . , sk > 0 so that the volume constraint (ut+1)X = b
holds.

Note that Poisson MBO requires a fidelity parameter µ, two parameters Ninner and Nouter, and a
time step parameter τ , and additional clipping values smin and smax.

D.2 VolumeMBO [19]

The work of [19] provides an alternative way to enforce explicit class balance constraints with a
volume constrained MBO method based on auction dynamics. Their method uses a graph-cut based
approach with a Voronoi-cell based initialization.

More concretely, the solve a volume-constrained cut problem via successive linearizations. I.e., each
iteration of the algorithm necessitates finding a solution to the following problem:

max
Z
−WZ

s.t. Z1 = 1, Z ≥ 0, Z⊤1 = m
(38)

E Algorithm derivations

Here, we describe algorithms referenced in the main text, including a projected CG method for
solving (18) and a variant of the ADMM method introduced to solve (8) that incorporates a step size
parameter.
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E.1 Detailed derivation of iterates X , µ1, µ2 in Sec. 3.2

Here, we provide the details on the derivations of the ADMM iterates and Lagrange multiplier updates
µ1 and µ2.

First, define the Lagrangian, G(X,T,Λ) to be the objective of the following problem:

max
Λ∈Rn×k

min
X,T∈Rn×k

1

2
tr(X⊤Lu,sX)− tr(X⊤B)

+ tr(Λ⊤(X − T )) +
1

2
||X − T ||2

s.t. X⊤1n = m, X1k = 1n, T ≥ 0.

(39)

The first-order optimality conditions on X are

0 = Lu,sX −B + Λ+ (X − T ) + 1nµ
⊤
1 + µ21

⊤
k

=⇒ X = L̄−1
u,s(B + T − Λ− 1nµ

⊤
1 − µ21

⊤
k ),

(40)

where µ1 ∈ Rk and µ2 ∈ Rn are associated with the constraints X⊤1n = m and X1k = 1n

respectively, and L̄u,s = Lu,s + I . The optimality conditions associated with (µ1, µ2) are recovered
by applying the constraint X⊤1n = m.

m = X⊤1n

= {L̄−1
u,s(B + T − Λ− 1nµ

⊤
1 − µ21

⊤
k )}⊤1n

= (B + T − Λ− 1nµ
⊤
1 − µ21

⊤
k )

⊤L̄−1
u,s1n.

(41)

Let c = 1⊤
n L̄

−1
u,s1n.

Solving for µ1,
(B + T − Λ− µ21

⊤
k )

⊤L̄−1
u,s1n −m = µ1c (42)

and
µ1 = c−1{(B + T − Λ− µ21

⊤
k )

⊤L̄−1
u,s1n −m} (43)

Similarly,
1n = X1k

= {L̄−1
u,s(B + T − Λ− 1nµ

⊤
1 − µ21

⊤
k )}1k

= L̄−1
u,s{(B + T − Λ− 1nµ

⊤
1 − µ21

⊤
k )}1k

(44)

Solving for µ2,
(B + T − Λ− 1nµ

⊤
1 )1k − L̄u,s1n = kµ2 (45)

and
µ2 =

1

k
{(B + T − Λ− 1nµ

⊤
1 )1k − L̄u,s1n} (46)

E.2 ADMM with adaptive step size for CutSSL

In this section, we introduce a variation of the algorithm presented in the main text. Here, we augment
the algorithm with an additional tunable parameter β. This parameter offers flexibility depending
on structure of the problem. In particular, the update to X is characterized by a linear system with
matrix Lu,s + βI . To ensure efficient computation of its inverse, β needs to be chosen sufficiently
large. However, the price of a large β is convergence to an integer solution. This tradeoff needs to
be carefully considered in the context of the graph and the label rate when selecting β. For all our
experiments, we choose β = 1.

One may speed up the empirical rate of convergence of ADMM-type algorithms by integrating an
adaptive step-size with the quadratic dual term in the augmented Lagrangian.

First, introduce multipliers µ1 ∈ Rk, µ2 ∈ Rn, ν ∈ Rn×k and recall the Lagrangian associated with
(20).

G(X,µ1, µ2, ν) =
1

2
tr(X⊤Lu,sX)− tr(X⊤B)−µ⊤

2 (X1k−1n)−µ⊤
1 (X

⊤1n−m)− tr(ν⊤X).

(47)
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The KKT condition of X in (47) is

ν = Lu,sX −B − 1nµ
⊤
1 − µ21

⊤
k ≥ 0, (48)

and Xij = 0 must hold for those (i, j) with νij > 0.

As mentioned in the main text, ADMM is carried out to reach a saddle point of
maxΛ minX,T Gβ(X,T,Λ) where

G(X,T,Λ) =
1

2
tr(X⊤Lu,sX)− tr(X⊤B) + tr(Λ⊤(X − T )) +

β

2
||X − T ||2F (49)

subject to

T ≥ 0, X1k = 1n, X
⊤1n = m. (50)

To implement the update of X , we observe that the optimality condition of X is

Lu,sX −B + Λ+ β(X − T )− 1nµ
⊤
1 − µ21

⊤
k = 0 (51)

Decompose X . X = X0 +X1, where X1 is the fixed matrix X1 = n−11nm
⊤. This decomposition

implies that X0 has sum-zero rows and columns, i.e. X01k = 0 and X⊤
0 1n = 0. Hence, we can

determine X0 from

Lu,sX0 + βX0 = 1nµ
⊤
1 + µ21

⊤
k − Lu,sX1 − βX1 + βT − Λ +B. (52)

Apply the projections P1 = I − 1n1
⊤
n /n and P2 = I − 1k1

⊤
k /k to remove the column and row

sums on both sides (to eliminate µ1 and µ2):

X0 = (P1Lu,sP1 + βP1)
†P1(−Lu,sX1 − βX1 + βT − Λ +B)P2, (53)

Next, the update of T and Λ proceed as before:

T ← max(β−1Λ +X, 0), Λ← Λ + β(X − T ) (54)

Once ADMM converges, i.e., ||X − T || → 0, according to (54) and T ≥ 0, we have that Λij ≤ 0
and Λij = 0 holds for Xij > 0. Additionally, by (51), we have

Lu,sX −B − 1nµ
⊤
1 − µ21

⊤
k = −Λ ≥ 0, (55)

i.e., we reach a KKT point associated with the condition (48).

E.3 Projected Conjugate Gradient for Laplace learning with cardinality constraints

Consider the problem

min
X∈Rn×k

{
f(X) =

1

2
tr(X⊤LuX)− tr(X⊤B)

}
s.t. X⊤1n = m

(56)

In practice, large-scale Laplacian linear systems are typically solved using preconditioned conjugate
gradient. Given the associated equality-constrained problem

min
X

1

2
⟨X,LuX⟩ − ⟨X,B⟩

s.t. X⊤1n = m

(57)

One practical modification of conjugate gradient involves first choosing a feasible initialization X0

satisfying X⊤1n = m and running projected conjugate gradient Chapter 16.3 [27], ensuring that
intermediate residuals—update directions—lie in the orthogonal complement of 1n. Termination is
determined according to the residual.
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F Limitations and Broader Impact

Here, we list several limitations and briefly touch upon the broader societal impact of our method.

• Underlying graph structure: Much of this work relies on the structure of the underlying
graph. In this work, we explored the applicability of our method to k-NN graphs, generated
from neural network-derived features and citation networks.

• The choice of S = sD is one heuristic that satisfies the conditions outlined in Hager’s paper
[17]. We are currently exploring the effect of different choices of S on the convergence
and overall efficacy of our method. Additionally, it is interesting to consider how the graph
structure, number of unlabeled and labeled nodes might inform better choices of S.

Regarding the broader societal impact of our method, we have introduced a new method for graph
learning that improves on the state of the art across multiple label-rate regimes. The development
of such methods has positive and negative ramifications for civil liberties and human rights. While
the positive ramifications are relatively clear—models which require less data are cheaper to train
and are generally “lower-impact”—the negative consequences are not immediately obvious. The
above question is explored in greater detail in the context of semi-supervised graph learning in
Fairness Zhang et al. [35]. The principal claim made by Zhang et al. [35] is that when quantities of
unlabeled data are provided, label propagation may be modified to improve fairness.
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Answer: [Yes]
Justification: We confirm that the claims made in the abstract and introduction are accurately
justified by experiments and theoretical results presented in the main text.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have included a discussion on the limitations of our method in section F in
the appendix.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

25



Answer: [Yes]
Justification: For each theoretical statement, we provide a complete proof in section B in the
appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have taken steps to ensure reproducibility, e.g. by providing the implemen-
tation of the core algorithm and experimental setup in Colab.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: An implementation of the core algorithm and experimental setup is provided
in a footnote in the abstract.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Experimental details are provided in section C in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Standard deviations are provided for the statistics reported in the main text.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The details of the computational resources are provided in section C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We confirm that the research conducted in the paper conforms with the NeurIPS
Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have included a discussion of the broader impact of our work in section F
in the appendix.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We use standard image, citation, and product network benchmarks to evaluate
our method.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: We have included citations to benchmarks and code where appropriate.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

29



• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Beyond code to reproduce our method, we have not introduced new assets in
this work.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our work does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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