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Abstract

Diffusion models are a class of generative models that serve to establish a stochastic
transport map between an empirically observed, yet unknown, target distribution
and a known prior. Despite their remarkable success in real-world applications,
a theoretical understanding of their generalization capabilities remains underde-
veloped. This work embarks on a comprehensive theoretical exploration of the
generalization attributes of diffusion models. We establish theoretical estimates
of the generalization gap that evolves in tandem with the training dynamics of
score-based diffusion models, suggesting a polynomially small generalization error
(O(n=2/> +m~%/5)) on both the sample size n and the model capacity m, evading
the curse of dimensionality (i.e., not exponentially large in the data dimension)
when early-stopped. Furthermore, we extend our quantitative analysis to a data-
dependent scenario, wherein target distributions are portrayed as a succession of
densities with progressively increasing distances between modes. This precisely
elucidates the adverse effect of “modes shift” in ground truths on the model gener-
alization. Moreover, these estimates are not solely theoretical constructs but have
also been confirmed through numerical simulations. Our findings contribute to the
rigorous understanding of diffusion models’ generalization properties and provide
insights that may guide practical applications.

1 Introduction

As an emerging family of deep generative models, diffusion models (DMs; [16}145]]) have experienced
a surge in popularity, owing to their unparalleled performance in a wide range of applications
(122, 1391168, 1151, 13 135} 41 1601, 1331169, 164! 163} 153]). This has led to notable commercial successes, such
as DALL-E ([34]), Imagen ([38]), and Stable Diffusion ([36]). Mathematically, diffusion models learn
an unknown underlying distribution through a two-stage process: (i) first, successively and gradually
injecting random noises (forward process); (ii) then reversing the forward process through denoising
for sampling purposes (reverse process). To achieve this, an equivalent formulation of diffusion
models called score-based generative models (SGMs; [50, [52]) is employed. SGMs implement
the aforementioned two-stage process via the continuous dynamics represented by a joint group of
coupled stochastic differential equations (SDEs) ([154. 20]).
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Despite their impressive empirical performance, the theoretical foundation of DMs/SGMs remains
underexplored. Generally, fundamental theoretical questions can be categorized into several aspects.
By considering machine learning models as mathematical function classes from certain spaces, one
can identify three central aspects: approximation, optimization and generalization. At the forefront
lies the generalization problem, which aims to characterize the learning error between the learned
and ground truth distributions.

The development of generalization theory for diffusion models is pressing due to both theoretical and
practical concerns:

* In theory, the generalization issues of generative modeling (or learning for distributions)
may exhibit as the memorization phenomenon, if the modeled distribution is eventually
trained to converge to the empirical distribution only associated with training samples.
Intuitively, memorization arises from two reasons: (i) it is useful for the hypothesis space to
be large enough to approximate highly complex underlying target distributions (universal
convergence; [63]); (ii) the underlying distribution is unknown in practice, and one can only
use a dataset with finite samples drawn from the target distribution. Rigorous mathematical
characterizations of memorization are developed for bias potential models and GANSs in
[66]] and [67], respectively. A natural question is, does a similar phenomenon occur for
diffusion models? To answer this, a thorough investigation of generalization properties for
DMs/SGMs is required.

* In practice, the generalization capability of diffusion models is also an essential requirement,
as the memorization can lead to potential privacy and copyright risks when models are de-
ployed. Similar to other generative models and large language models (LLMs) [SL 170l 19} 6],
diffusion models can also memorize and leak training samples [5.46], hence can be subse-
quently attacked using specific procedures and algorithms [28| [18}162]. Although there are
defense methods developed to meet privacy and copyright standards ([ L1} [14}158]), these
approaches are often heuristic, without providing sufficient quantitative understandings
particularly on diffusion models. Therefore, a comprehensive investigation of the general-
ization foundation of diffusion models, including both theoretical and empirical aspects, is
of utmost importance in improving principled tutorial guidance in practice.

The current work develops the generalization theory of diffusion models in a mathematically rigorous
manner. Our main results include the following:

* We derive an upper bound of the generalization gap for diffusion models along the training
dynamics. This result suggests, with early-stopping, the generalization error of diffusion
models scales polynomially small on the sample size (O(n~2/)) and the model capacity
(O(m~%/5)). Notably, the generalization error also escapes from the curse of dimensionality.

* This “uniform” bound is further extended to a data-dependent setting, where a sequence
of unidimensional Gaussian mixtures distributions with an increasing modes’ distance is
considered as the ground truth. This result characterizes the effect of “modes shift” quanti-
tatively, which implies that the generalization capability of diffusion models is adversely
affected by the distance between high-density regions of target distributions.

* The theoretical findings are numerically verified in simulations.
The rest of this paper is organized as follows. In Section [2] we discuss the related work on the
convergence and training fronts of diffusion models and also the generalization aspects of other
generative modeling methods. Section[3]is the central part, which includes the problem formulation,

main results, and consequences. Sectiond]includes numerical verifications on synthetic and real-world
datasetﬂ All the details of proofs and experiments are found in the appendices.

2 Related Work

We review the related work on diffusion models concerning the central results in this paper.

* First, on the convergence theory, [7,19] established elaborate error estimates between the
modeled and target distribution given the discretization and time-dependent score matching

3Code is available at https://github. com/lphLeo/Diffusion_Generalization
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Figure 1: Illustration of the problem formulation and important notations.

tolerance. Compared to the present work, they did not evolve the concrete training dynamics
since the setting therein focuses on the properties of optimizers.

* Second, on the training front, proposed a set of techniques to enhance the training
performance of score-based generative models, scaling diffusion models to images of higher
resolution, but without any characterization of possible generalization improvements. Similar
to [7, O], [49] also provided error estimates between the modeled and target distributions in
a point-wise sense and again did not evolve the detailed training dynamics.

* Third, on the generalization and memorization side, corresponding theories are developed
for bias potential models and GANSs in [66] and [67], respectively, where the modeled
distribution learns the ground truth with early-stopping and diverges or converges to the
empirical distribution only associated with training samples after sufficiently long training
time. The current work extends the mathematical analysis to the case of diffusion models
under a data-dependent setting.

 As a supplement, we also discuss related literature regarding low-density learning. [50]
illustrated the difficulty of learning from low-density regions with toy formulations and
simulations, which motivates the sampling method of annealed Langevin dynamics as
the predecessor of (score-based) diffusion models. restudied similar problems under
the pure score matching regime (without the denoising or time-dependent dynamics) and
attributed the difficulty to increasing isoperimetry of distributions with modes shift. [41]]
defined the Hardness score and numerically justified that decreasing manifold densities
leads to the increasing Hardness score, and consequently applied the Hardness score as
the regularization to the sampling process to enhance synthetic images from low-density
regions. As a comparison, this work establishes a mathematically rigorous estimate on the
generalization gap that quantitatively depends on the range of low-density regions (between
modes) in target distributions for (score-based) diffusion models that requires denoising.

3 Formulation and Results

In this section, we first introduce the problem setup. Next, we state the main theoretical results,
subsequent consequences, and possible connections. The numerical illustration is provided at last.

3.1 Problem Formulation

Since DMs/SGMs have already grown into a large family of generative models with an enormous
number of variants, there are various ways to define the parameterization of diffusion models. Here,
we adopt (one of) the most fundamental architectures proposed in [34]], where the forward perturbation
and reverse sampling process are both implemented by a joint group of coupled (stochastic) differential
equations. See Figure|[I|for an illustration of the problem formulation.



Forward perturbation. We start with the setting of unsupervised learning. Given an unlabeled

dataset D = {x;}"_, C R with the sample x; Sy po(x), where pg denotes the underlying (ground
truth or target) distribution, the forward diffusion process is defined as

da = f(x,t)dt + g(t)dWy,  2(0) ~ po, (1)

Here, the drift coefficient f(-,¢) : R¢ — R is a time-dependent vector-valued function, and the
diffusion coefficient g(-) : R>o — R is a scalar function, and W} denotes the standard Wiener
process (a.k.a., Brownian motion). The SDE () has a unique, strong solution under certain regularity
conditions (i.e., globally Lipschitz coefficients in both state and time; see [31]). From now on, we
denote by p;(x(t)) the marginal distribution of (), and let p,|(z(t)|x(s)) be the (perturbation)
transition kernel from x(s) to x(t),0 < s < t < T < oo with T as the time horizon. By appropriately
selecting f and g, one can force the SDE (1)) to converge to a prior distribution (typically a Gaussian).
Common examples include the (time-rescaled) Ornstein—Uhlenbeck (OU) process]’|which is a special
case of the linear version of (T)):

do = f(t)wdt + g(t)dW;, (0) ~ po. @

Reverse sampling. According to [1]] and [54], both the following reverse-time SDE and probability
flow ODE share the same marginal distribution as the forward-time SDE (T):

dz = [£(@.t) — 6*(t)Va logpu(a) | dt + g(£)dW, ©)

dx = [f(:&t) - 392(t)vm lngt<iL')] dt, 4)

where W, is a standard Wiener process when time flows backwards from 7' to 0, and dt is an
infinitesimal negative time step. With the initial condition (T") ~ pr = 7, where 7 is a known prior
distribution such as the Gaussian noise, one can (numerically) solve (3)) or {@) to transform noises
into samples from pg, which is exactly the goal of generative modeling.

Loss objectives. The only remaining task is to estimate the unknown (Stein) score function
Ve logpi(x). This is achieved by minimizing the following weighted sum of denoising score
matching ([57]) objectives:

LION)) = Eenito.1) [M8)  Bao)opy [Batimpe [Ist0(@(0) = Vaip log pio(@()]e0))13]]]

(5
with 8* := arg mein L(0; A(+)), where U(0,T) denotes the uniform distribution over [0, 7], and

A(t) : [0,T] — Ry is a weighting function, which is typically selected as

A(t) ¢ 1/1/Eatyapy o [ Vo) Log pupo ((2) (0)) 3] ©)

according to ([54]). The score function s; ¢ : RY — RY s time-dependent and can be parameter-
ized as a neural network (encoded with the time information) such as the U-net([|37]]) architecture
commonly applied in the field of image segmentation. Alternatively, one can also define the time-
dependent score matching loss

L(O;N()) = Etri0,7) [A1) - Ex(tymp, [I81.0(2(t)) — Ve log pe(x(t))[|3]] 7
which is equivalent to (5) up to a constant independent of @ by [57, 49].

In practice, expectations in the objective (5) can be respectively estimated with empirical means over
time steps in [0, 7], data samples from po and pyo, which is efficient when the drift coefficient f(-, )
is linear. Specifically, if the forward-time SDE takes the form of @, the transition kernel py|o has a

closed form ([40])
Pigo((t)]|2(0)) = N (ax(t); r(t)(0), r* ()v* (t) La), ®)

where NV (x; pt, 3) denotes the multivariate Gaussian distribution evaluated at = with the expectation
p and covariance X, and r(t) := els F(Q)d¢, u(t) == w/fot fzgg dg.

“The OU process is the unique time-homogeneous Markov process which is also a Gaussian process, with
the stationary distribution as the standard Gaussian distribution.




Training. We aim to investigate the gradient flow training dynamics over the empirical loss
d - N R R
T0n(7) = V5, La(On (1) A()), 0n(0) := O], ©)
where £, is the Monte-Carlo estimation of £ defined in H on the training dataset with an auxiliary
gradient flow over the population loss
d A
70(7) = =V LIO(T);A(-)),  6(0) = 6" =6, (10)
-
In both cases, the weighting function A(+) is selected as in @ Denote the score function learned at
the training time 7 evaluated at the SDE time ¢ with respect to the empirical loss and population loss
as s, 5 (. (x(t)) and s, g(r)(2(t)), respectively. The corresponding density functions, denoted by

Pi6, () (x(t)) and py g(r)(x(t)), are obtained by solving
Vb 10gpt7én(7)(a:(t)) = St,én('r)(w<t))7 V) log proi (2(t)) = s1.9¢)(x(t)), (11)

and then normalizing, respectively.

Score networks. We parameterize the score function s; ¢ as the following random feature model

m

1
= —Ac(Wx +Ue(t)) = — o(w, Te(t)), 12
sio() = —Ac(Wa + Ue(t)) m;adwzww e(t)) (12)
where o is the ReLU activation function, A = (ay,...,a,,) € R¥™ is the trainable parameter,
while W = (w1, ..., wy)" € R™and U = (uy,...,u,)" € R™*4 are randomly initialized

and frozen during training, and e : R>q — R% is the embedding function concerning the time
information. Assume that a;, w; and u; are i.i.d. sampled from an underlying distribution p. Then,
as m — 0o, we get

stﬂ(w) - gt,é(w) = E(a,w,u)wp [aa(w—rw + uTe(t))]
= Ewawps [a(w,w)o(w @ +u'e(t))], (13)
with a(w, u) := m Jga ap(a,w,u)da and po(w,w) := [, p(a,w,uw)da. By the positive
homogeneity property of the ReLU activation, we can assume that |w||; + |Jul|; <1 w.l.o.g.

One can view 5, g(x) as a continuous version of the random feature model. Correspond-
ingly, the optimal solution is denoted as @* when replacing the parameterized score func-
tion s; g(x) in the loss objective or by 3, 9(x). Define the kernel k,,(z,z') :=
E(w,u)mpo [0(w @ +ule(t))o(w a' +u'e(t)], and let Hy, be the induced reproducing

kernel Hilbert space (RKHS; [2]), we have 8,5 € Hy, if the RKHS norm Hgtﬁ”ik =
PO

E (w,u)~po Lla(w, w) 3] = [/[la|2] QLz(pn) < o0, and the corresponding discrete version can be
1

i ; 2 — 2 _ 1 Nxm 2
defined by the empirical average, i.e., ||st79HHkm = Al = o > in [la(ws, w;)||3.
Remark 1. There are more modern and complex mathematical tools such as neural tangent kernels
(NTKs) and mean fields that can be selected as the score networks. Employing these modern tools is
valuable at least for theoretical completeness and we leave these as the future work.E]

The goal is to measure and bound the generalization error evolving with the gradient flow training
dynamics (9) between the learned distribution and target distribution, using the common Kull-
back-Leibler (KL) divergence.

Definition 1 (KL divergence). Given two distributions p and q, the KL divergence from q to p is
defined as Dxy,(pl|q) = [za p(2) log (%) de.

Based on the above definitions, the generalization gap along the gradient flow training dynamics (9)

is formulated as Dk, (po v, én(r)> , which is only a function of the training time 7. The goal is to

estimate D, (po ||p07én(7)>.

SRecall the dataset Dy = {zi}iz, C R?, and we take D; = {t:}i=1 C [0, T] for convenience.

SFor example, the extension to NTKs is possible, since the training of random feature models follows a
specific NTK regime (only the last layer is updated) in the output space (instead of the parameter space), which
can be properly analyzed in the infinite-width regime.



3.2 Main Results

In this section, we state the main results of the generalization capability of the (score-based) diffusion
models and how it evolves as the training proceeds. Based on the formulation in Section we

theoretically derive several upper bounds to estimate Dk, (po 2, 6, (T)) under different settings.

The results cover both the positive and negative aspects: in the data-independent setting where
the target distribution has finite support, the generalization gap is proved to be small; while in the
data-dependent setting where the target distribution possesses shift modes, the generalization is
adversely affected by the modes’ distance.

3.2.1 Data-Independent Generalization Gap

In this section, we provide the characterization of the generalization capability for diffusion models
given a target distribution defined on a finite domain. Generally, the KL divergence from the learned
distribution p,, 4 (ry at the training time 7 to the target distribution pg can be estimated as follows.

Theorem 1. Suppose that the target distribution pq is continuously differentiable and has a compact
support set, i.e.,
(RKHS) H (:=Hj oo ) such that So0.6- € H. Assume that the initial loss, trainable parameters, the
embedding function e(t) and weighting function \(t) are all bounded. Then for any 6 > 0, § < 1,
with the probability of at least 1 — 0, we have

7_4 7_3

1 = ~
Dy, (po||p0’gn(7)) S [ +— + } + [m +L(6%) +L(6%)| + Dkw (pril7), 7>1,

where < hides the term dlog(d + 1), the polynomials of log(1/6?), finite RKHS norms and universal
positive constants only depending on T

Remark 2. Since pg is compactly supported, the target score function so(x) = Vg logpo(x) is also
defined on a compact domain. According to [12\|13l], s¢ is contained in the Barron function space
with a finite Barron norm, and hence in a certain RKHS with a finite RKHS norm. Therefore, it is
reasonable to require that the global minimizer so,g+ or 8 g« is also contained in some RKHS.

Proof sketch. Theorem I]is proved via the following procedure.

1. According to Theorem 1 in [49]], the KL divergence on the left-hand side can be upper
bounded by the population loss of the trained model up to a small error. That is,

Dict, (polpos, () < £(80(7): () + Dict. (prlm) (14)

2. We use the model trained with respect to the population loss (I0) to perform the decomposi-
tion:

L(0a(7)) = [£(00(7) = £(O(r)] + £(6(7)

+
< [c(én(T)) - /3(9(7))} + £(8(7)) + Monte Carlo 2 I, + I, + I5, (15)

where we omit the weighting function g?(-) for simplicity. Here, £ is the loss objective

obtained by replacing s; ¢ in L (defined in .) by 8, g, and I3 summarizes the resulting
Monte Carlo error.

3. I3 can be estimated via a similar argument as in [24] (Lemma 48).

4. I, can be upper bounded via a standard analysis on the gradient flow dynamics over convex
objectives.

5. I can be reduced as the norm product of s, 6,,(r)’ 50,6(r) and their gap, then

(a) the former can be bounded with a square-root rate growth via a general norm estimate
of parameters trained under the gradient flow dynamics;

(b) the latter can be estimated by the Rademacher complexity (see e.g., Chapter 26 in [43]).

Combining all above gives the desired result. The detailed proof is found in Appendix



Discussion on error bounds. The three error terms are further analyzed as follows.

* The first term is the main error, which implies an early-stopping generalization gap. In fact,
if one selects an early-stopping time Teg as Tes = © (nf), and let m ~ n, we have

2
Dt (pollpo s, (ney ) S (1/m)F +(1/m)

* The second term is m-dependent and corresponds to the approximation error, which is
o(1) when m > 1. In fact, the random feature model is a universal approximator to
Lipschitz continuous functions on a compact domain (Theorem 6 in [17]). See more details
in Appendix [A.T](the last paragraph).

4
5

(16)

* The third term is exponentially small in 7" since 7 (e.g. the Gaussian density) is log-Sobolev,
according to a classical result in e.g. [S5] (Theorem 3.20, Theorem 3.24 and Remark 3.26).

Remark 3. In practice, it is common to use the test error to evaluate the generalization performance.
For diffusion models, a straightforward approach is to compute the negative log-likelihood (averaged
in bits/dim, equivalent to the KL divergence) on the test dataset during training with the instantaneous
change-of-variable formula ([|8]) and probability flow ODE (defined in (E]) ), where the true score
function V 3, log pi(x) is replaced by s; (- ().

Remark 4. Previous literature has established similar bounds for bias potential models ([66)])
and GANs ([I67]). Theorem [l| extends the corresponding results to the setting of diffusion models.
Furthermore, this upper bound is finer in the sense that it incorporates the information regarding the
model capacity (the hidden dimension m in this case), which shows that more parameters benefit the
learning and generalization, as expected.

3.2.2 Data-Dependent Generalization Gap

In Section [3.2.1] we derive estimates on the generalization error for diffusion models along the
training dynamics, where the target distribution is assumed to be finitely supported. In reality, this
is often not the case, where target distributions usually possess distant multi-modes, from simple
Gaussian mixtures to complicated Boltzmann distributions of physical systems ([29,130]]). Under
these settings, the above analysis in Section [3.2.1] can not directly apply since the data domain
is unbounded. It remains a problem to quantitatively characterize the generalization behavior of
diffusion models given these target distributions with distant multi-modes or modes shift.

To provide a fine-grained demonstration of the generalization capability of diffusion models when
applied to learn distributions with distant multi-modes, as an illustrating example, the Gaussian
mixture with two modes is selected as the target distribution.

Theorem 2. Suppose the target distribution pg is a one-dimensional 2-mode Gaussian mixture:

po(®) = N (x; —p, 1) + 2N (5 i, 1), where pp > \/log(1/02), q1, g2 > 0 with q1 + g2 = 1L are
all constants. Under the conditions of Theorem|I|(except the uniform boundness of inputs), we have

4 ,7_3

T 1 ,u2 = - -
D(A)<P1——f—£9*£0*D :
ke (Pollpo g, () ) S Poly(n) {mn + mQ] +-+ {m +L(67) +L£(67)| + Dice. (prm)
where 7 > 1, < hides the polynomials of log(1/62), finite RKHS norms and universal positive
constants only depending on T.

Proof sketch. Theorem[2]is proved following a similar

procedure with Theorem [I] except the input data z does

not have a uniform bound here. This problem mainly

affects the last step (5 (b)) in the proof sketch of Theorem & -
[1] and can be handled by using the fact

2| € [n— /10g(1/62), 4 \/log(1/6%)] = O(u) (17)

given the target Gaussian mixture distribution. The de-
tailed proof is found in Appendix[A.2]
Remark 5. Theorem[Dindicates that, even for a simple Figure 2: An illustration of modes shift.
target distribution (e.g. a one-dimensional 2-mode Gaussian mixture), the generalization error of
diffusion models can be polynomially large regarding the modes’ distance. Although Theorem
provides only an upper bound, the modes shift effect holds due to the model-target inconsistency (the
last paragraph in Appendix[A.2)) and the following consistent experiments (Section d.1.2).




4 Numerical Verifications

In this section, we numerically verify the previous theoretical results and insights (early-stopping
generalization and modes shift effect) on both synthetic datasets and real-world datasets.

4.1 Simulations on Synthetic Datasets

4.1.1 Early-Stopping Generalization

First, we illustrate the early-stopping generalization gap established in Theorem [I] We select the
one-hidden-layer neural network with Swish activations as the score network, which is trained
using the SGD optimizer with a fixed learning rate 0.5. The target distribution is set to be a one-
dimensional 2-mode Gaussian mixture with the modes’ distance equalling 6, and the number of data
samples is 1000. We measure the KL divergence from the trained model to the target distribution

Dxkr, (po [122%3 (T)) along with the training epochs.

From Figure 3] one can observe that the KL divergence achieves its minimum at approximately the
800-th training epoch, and it starts to increase after this turning point. The experimental results are
consistent with Theorem [T] (over multiple runs), which states that there exist early-stopping times
when diffusion models can generalize well, indicating the effectiveness of our upper bound. Further,
the KL divergence begins to oscillate after the minimum point, which may suggest a phase transition
in the training dynamics, and the transition point is around the (optimal) early-stopping time.

—— Repetition 1
—— Repetition 2
12 —— Repetition 3
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Figure 3: The KL divergence dynamics.
4.1.2 Modes Shift Effect

Next, we numerically test the relationship between the modes’ distance and generalization (density
estimation) performance. All the configurations remain the same as Section f.1.1] except that the
target Gaussian mixtures have different modes’ distances.

In Figure[d] the modeled distributions exhibit the following two-stage dynamics: (i) first gradually
fitting the two modes (epoch = 100 — 1000); (ii) then diverging (epoch = 1000 — 1900). This
aligns with the KL divergence dynamics (Figure[3) and again verifies the corresponding theoretical
results (Theorem |I[) However, Figure |§| shows that when the modes are distant from each other, there
is difficulty in the learning process. In Figure[3] the optimal generalization is achieved at epoch = 100,
but is still far from well generalizing. As the training proceeds, the learned model is almost always
a single-mode distribution (epoch = 1000, 1900). This phenomenon is aligned with the results
established in Theorem|Z|, which states that when there are distant modes in the target distribution,
the generalization performance is relatively poor.

epoch = 100 epoch = 1000 epoch = 1900
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Figure 4: The training dynamics when the distance between two modes is 6 (i = 3).
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Figure 5: The training dynamics when the distance between two modes is 30 (11 = 15).

4.2 Simulations on Real-World Datasets

In this subsection, we verify our results on the MNIST dataset using the standard U-net architecture
as the score network, which suggests that the adverse effect of modes shift on the generalization
performance of diffusion models also appears in general.

The setup is as follows. First, we perform a K -means clustering on D (D denote the MNIST dataset) to
getD = Ukl,(:1 Dy, and &y, as the center of Dy, k = 1,2,--- , K. Let (4%, j*) := argmax;+; |Z; —
Z||2, and Diyrnest = Di+ |JDj». Drearest is similarly constructed by arg min indices. Then, by
randomly selecting the same number of data samples and using the same configuration, we train two
separate diffusion models on Diypinest and Dhearest, r€Spectively, and then perform inference (sampling).
The training loss curves and sampling results are shown in Figure [ and Figure[7] respectively. One
can observe a significant performance gap: the diffusion model trained on Dgahest appears a higher
learning loss and worse sampling quality compared to those of Dpeyres;-
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Figure 6: The training loss dynamics.
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Figure 7: Sampling of the farthest (left) and nearest (right) clusters.



4.3 Discussion
We compare the results developed in this work with former corresponding literature as follows:

* The previous work [21]] also studied the adverse effect of modes shift, which particularly
reported a contrastive simulation indicating the degraded performance when modeling
Gaussian mixtures with the increasing distance between modes (see Figure 2 in [21]] and
compare with Figure ] and Figure 5. However, the results therein are established and tested
under the “pure” score matching setting, without the denoising or time-dependent dynamics.
As a comparison, Theorem 2] establishes a theoretical estimate on the generalization gap
for diffusion models that requires denoising, and this upper bound directly depends on the
distance between modes of target distributions, instead of a circuitous characterization in [21]]
to attribute the difficulty of learning modes shift to increased isoperimetry of corresponding
target distributions.

» Similar adverse effect of modes shift has also been theoretically analyzed and numerically
verified on recurrent neural networks (RNNs), see e.g., [23, 24]]. There, the modes shift
is understood as a type of long-term memory. This is the phenomenon of the “curse of
memory”: When there is long-term memory in the target, it requires a large number of
parameters for the approximation. Meanwhile, the training process will suffer from severe
slowdowns. Both of these effects can be exponentially more pronounced with increasing
memory or modes shift.

* The very recent work [42] also considered the problem of learning Gaussian mixtures using
the denoising diffusion probabilistic model (DDPM) objective, but under a teacher-student
setting. That is, given the Gaussian mixtures target, [42] parametrized the score network
model in the same form of the score function target, with the goal to identify true parameters.
Consequently, there are all positive convergence results developed in [42], despite that the
time and sample complexity increases with the distance between modes. As a comparison,
Theorem [2]adopts a pre-selected score network model without incorporating any information
from the ground truth, and hence establish negative results concerning the modes shift. In
fact, if the goal is to identify only true positions of the target Gaussian mixture (this is
exactly the setting of [42])), the teacher-student setup seems not necessary (see Figure [5]
where the true position is also learned efficiently using the one-hidden-layer Swish neural
network as the score network, but the modes are always weighed incorrectly). In addition,
[42] did not take the whole denoising dynamics into account. That is, the gradient descent
(GD) analysis therein was performed on the denoising score matching objective successively
at only two time stages: a larger ¢; (“high noise”) and a smaller ¢ (“low noise”), which is
often not the case in practice.

5 Conclusion

In this paper, we provide a theoretical analysis of the fundamental generalization aspect of training
diffusion models under both the data-independent and data-dependent settings, and early-stopping
estimates of the generalization gap along the training dynamics are derived. Quantitatively, the
data-independent results indicate a polynomially small generalization error that escapes from the
curse of dimensionality, while the data-dependent results suggest the adverse effect of modes shift in
target distributions. Numerical simulations have illustrated and verified these theoretical analyses.
This work forms a basic starting point for understanding the intricacies of modern deep generative
modeling and corresponding central concerns such as memorization, privacy, and copyright arising
from practical applications and business products. More broadly, the approach here may have the
potential to be extended to other variants in the diffusion models family, including a general SDE-
based design space ([20])), consistency models ([48]]), rectified flows ([27, 26]), Schrodinger bridges
(1591156, [10% 1441 1471, 1231)), etc. These are certainly worthy of future exploration.
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A Technical Results and Proofs

A.1 Data-Independent Generalization Gap

To derive the theorem for the generalization error of this score-based generative model, we first give
the following lemmas.

Lemma 1 (Forward perturbation estimates). Consider the forward diffusion process with the linear
drift coefficient (2). For any § > 0, 6 < 1, with the probability of at least 1 — 6, we have

le(®)l S Cr (I2(0) o + VIog(1/5)) . (18)

where Cp := tg{l&};] {r(t),r)v(t)}.

Proof. When the drift coefficient f(-,¢) : R — R is linear to x, i.e., f(x,t) = f(t)z, the
transition kernel py|o has a closed form

pejo((1)[2(0)) = N (2(t); r(t)2(0), 72 (t)0* (1) Ia) (19)
with r(t) := elo 1O (1) 1= fg 328 dC. Hence, we have
z(t) =r(t)x(0) + r(t)v(t)z, =z~ N(0,I,). (20)

For any € ~ AV(0,1), ¢ > 1, we have

“+oo 1
—e

c V2T
1 Foo 2 1 +oo 2 2

< — 2xe " 2dy = —/ e % 2dy = \/—e € /2,

o \/271'/C V2T Je2 m

Let§ = O(e="/2), we get

Ple: |e] > c} =2 =2y

P{e: |e| < \/log(1/62)} > 1 —6. 1)

Hence, for any § € (0, 1) with § < 1, with the probability of at least 1 — 0, we have

le(®)llos S Cr (I12(0) ]l + /I05(1/8%)) 22)

with Cp := rr[lgmz}] {r(t),r(t)v(t)}. The proof is completed. O
telo,

Lemma 2 (Theorem 1 in [49]). We have
Dict, (pollpo g, (r)) < £0n(r); () + Dict, (pr|m)
Lemma 3. Both of the loss objectives L(6; \(-)) and 5(0_, A(+)) are quadratic (and hence convex).

Proof. The convexity arises from the following points: (i) The score matching loss objectives

L(0; A(+)) (defined in ) and £(0; \(+)) are L?-metrics between the score network model and target
score function; (ii) The score networks are defined as random feature models (see and (13))
that are linear to trainable parameters. Therefore, using some trace techniques and basic variational
calculations, it is not hard to derive the fact that the loss objectives are quadratic and hence convex
with respect to trainable parameters.

(1) For £(8;\(-)), recall that s;(x(t)) = LAoc(Wx(t) + Ue(t)), and let s,(z(t)) =
Vo logp(x(t)), hi(x,t) == (/A(t)/vVm)o(Wax +Ue(t)), ha(z,t) := \/A(t)s:(x), we have

L(0; X)) = Evni(o,)Ea(tynp, [h1 (x(1), 8)(A/Vim) T (A/Vm)hy (2(1), 1)
— 2hg (z(t),t)(A/vm)hq(z(t), t)] + constant.
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Since for any h, h, B, we have
EEo b (z(t),t)Bh(z(t),1)] = EEqy)[trace(Bh(x(t), t)h " (x(t),t))]
= trace(BEE, ) [h(z(t), )R (z(t),1)]),

we further get

L(O:; () = %traoe(ATABl) - %trace(ABg) + constant,

where
Bl = Et~b{(07T)]Em(t)~pt [hl (.’E(t), t)h,lT (-’B(t); t)L BQ = EtNM(O,T)]E:c(t)Npt [hl (-’B(t)7 t)h; (.’D(t)7 t)]

Here, By is a positive semi-definite matrix, since v ' B1v = E¢Eq ) [(v hi(x(t),t))?] > 0 for any
v. Notice that for any A, B,

trace(A' AB) = trace(ABA") = Z Bij(A. ;)" A, ; = vec(A)T (B @ I)vec(A),
4,7

trace(AB) = Z(A:7j)T(BT);7j = vec(A) "vec(BT),

where ® denotes the Kronecker product. Hence

L(8;\()) = %vec(A)T(Bl ® I)vec(A) — %vec(B;)Tvec(A) + constant (23)

is a quadratic function. It is straightforward to show that the eigenvalues of B; ® I are the same as
B; but with multiplicity[] implying that B, ® I is also positive semi-definite. Therefore,

VoL(8:A(-) = Viee(a)L(8;M()) = 2(B1 @ I)
is positive semi-definite, i.e., the loss is convex with respect to trainable parameters.
(2) For £(; \(+)), notice that
15, 6(®)]15 = Eqw,uympy (0w @ +u'e(t)a’ (w,u)] B w)mp, [a(w’,u)o(w @+ u' e(t))]
= E(w,u),(w'u)~po [aT(w, wo(w' z+u'et))o(w  x+u' e(t))a(w, u')].
Letv := (w,u), v = (w',u), 2(t) := (x " (t),e' (t))T, we get
LO; M) = Errio,1)Ea(tyep, [MNE) (15, 6(x(0))]15 — 28/ (w(1))5, g(2(t)) + [Is:(z(t))]13)]
= Eir0(0,1) Ex (1) ~p, [)\(t) (Ev,v’wpo [aT(v)a(’sz(t))J('U'Tz(t))a(v’)]
— 28/ ((t))Evmp, [a(v)o(v' 2(2))])] + constant

= Epvimpo (@ (V) (Binrs(0.1) Batymp, [N (v 2(1))o (0T 2(1))]) a(v")]
—2E 4~ po [(EtNu(07T)Ez(t)Npt [)\(t)s;r(a:(t))a(sz(t))} )a(’u)} + constant.

"In fact, if A € R"*", B € R™*™ have the eigenvalues {v;}7-;, {1;}7,, respectively, the eigenvalues
of A® Bare v;u;,i=1,--- ,n,j=1,---,m. This is due to the following argument. By Jordan—Chevalley
decomposition, there exist invertible matrices P, Q such that A = PAP~', B = QAQ ™!, where A, A are
upper triangular matrices. Therefore, we have

A®B=(PAP H®(QAQ ") =(PoQ)ARA)(P'eQ )=(PRQ)A®A)(P2Q) "

That is, the matrices A ® B and A ® A are similar. Notice that A ® A is still an upper triangular matrix with
diagonal elements v; 5,9 =1,--- ,n,j = 1,--- ,m, we obatain the desired result.
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Then for any ¢ € L?(p), by symmetry we have

SE(:A())10, 8] = lim ~ (£(8 + s A()) — £ A()))
= Eovmpo (@ (V) (Binri(0,1)Ea(ymp, [A(E
+a" (0)(Eieri(0,7) Ea(typ, [NE)o (v 2 (t))]
— 2Ky~ py [(Et~u(0 7 Ea(tymp, [MB)8] (m(1))o (v 2(1))]
= 2By 0o [0 (V) (Eenti0.1) Ba(t)ymp, [N (v 2(8) 0 (v T 2(1))] ) p(v)]
— 2Ky~ po [(Et~u(0 T) m(t)pr [A(t)s/ (x(t ®))]
[

~—
<
™
~~

~—
S~—
q
—
<
4|
N
~
=

= 2Burp [K(v,0"5A())a(v")] — k(M) $(v)) 1,
where
K(v,';A() := Epetg(0,1) Ea(tymp, [NE) (0T 2(1))o (v 2(2))],
k(v A()) == Eonts(0.1) Ba(tymp, [A(D)81(2 (1)) (v 2(1))].
This yields
PR — 98y, [K 0,015 AC))a(o)] — 2K M), 4
and

6,

L(Br; M) + <

9_2 - 9_1> - 5(9_% /\())
L2(po)

o—
Eprmpo [a] (0)K (0,05 A()ar (0)] — 2By 67 (037 ))ar (0)]
+ 2(Eprpy [K (0,05 0(-)) a1 (v')] — k(v; A()), az2(v) — a1 (v
By [0 (0) K (0,05 X))@ (0")] + 2oy [T (05 A(
— By v [(@2(v) — a1 (v)) T K (v, 05 A())(a2(v') — a1 (v')
= — Erart(00)Ea(t)mp, [AE)Ew v, [(@2(v) — a1 (v)) To (v 2(1)o (v 2(8)) (az(v") — a1 (v"))]]
= — Ereta0.1)Ba(tymp [MO) [Evnpo [(a2(0) = a1 (0))o (v 2()]||;] <0,

hence the functional £ (0; \(+)) is convex with respect to @ (given any positive weighting function
A(+)). The proof is completed.

Since the weighting function is fixed in our analysis, we omit the notation A(-) without ambiguity in
the following contents.

Lemma 4. For any T > 0 and 0,0, we have

(0_(7_)) E(é) ||SO 90||H+||SO 0”7.[7 E(@( ) — 5(0) ||So 90||H+||30 GHH

T T

D

Proof. (1) For the loss objective E we define the Lyapunov function

B(r) = (£0) ~ £(0)) + L llar — ala .




where the last inequality holds since

d =, ~ 5L d ~ 5L

2L == =0 - (=

o~ 00) <50 oo AT (T)> <50
L2(p0)

By convexity, for any 7y, 7o, it holds that

c (0(m1)) + <aT2 — O, —
hence - E(7) < 0. We conclude that E(7) < E(0), or equivalently
= _ = _ 1 1
r(£(0(m) = £(8)) + 3 lar = allzz(,) < 5 llao = allfa,,)

Therefore, note that HgOﬁHi = E,,[llal3] (et H := Hy, ), we obtain

_ 2 _ 2
E@(r) - £(0) < 120 e < Foalog + Fonall,

T T
which gives the desired estimate.

(2) For the loss objective L, the argument is almost the same, except replacing the Lyapunov function
by
- . 1 5
E(r) =7 (£(0(r) = £(0)) + 5 |14, - Al
and (-, ) 2(py) by (-, ). Note that & = vec(A)/+/m and ||8079H3_L = ||A||2F /m, we obtain

; 1Ay — A%

5o < | 50,60 I3 + 50,6113
L(O(r) —L(0) S T,

mrT T
which completes the proof. O

Lemma 5. Suppose that the loss objectives L, LM, E:, E(”) are bounded at the initialization, then
for any T > 0, we have

T s,
L T\ ||Boam

N < 5 = < |8~ 7
O e luaol 2 sl 7

Proof. 1t’s sufficient to prove H.§07§(T)

< /T, and the rest part follows similarly.
H
Since

d 1d 2 d oL
Ha’7'||L2(p0) ar Har||L2(p0) = 9dr ||ar||L2(po) =\0n %aT = an—ﬁ
L2(po)

applying Cauchy—Schwartz inequality yields
6=8(7) >L2<po>

=L @E0),

dr
L2(po)

L s = { 2 -5
dr 1A7lLz(po) = ||aT||L2(pO)’ 50

57
56

0=6()

Thus, again by Cauchy—Schwartz inequality, for any 7 > 79 > 0, we have
sy~ Iz < [ 4= 3,2 (B(0)ds

<VT= T\ ~£ (8(r)) + £ (6(r0))

< VT L(8(0)).
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By choosing 79 = 0, we have [|a-||;2(,,) < H§07§(0) HH + /7, hence H§O7g(7) N S H.§07g(0) HH +

/T, which completes the proof.
Lemma 6 (Monte Carlo estimates). Define the Monte Carlo error

ErrMc = ErrMc(B, é; T, A()) = Eth(O,T) [)\(t) . Ez(t)wpt [”St’g(w(t)) — §t)g(w(t))||§]](25)
Suppose that ||x(0)||c < 1, and the trainable parameter a and embedding function e(-) are both
bounded. Then, given any 0, for any § > 0, § < 1, with the probability of at least 1 — 6, there exists
0 such that

201 /52
Erryc < 28 U/%)
m

; (26)

where < hides universal positive constants only depending on T.

Proof. Fix any 6. According to Lemma for any § > 0, 6 < 1, with the probability of at least
1 — 4, we have

le(t)l S Cr (1+ VI0g(1/6%)) £ Cr. @7)
Based on the representation , forany W = (wy,...,wy,)" € R™ U = (uy,...,uy)' €
R™¥de with (w;, w;) ~ po,i = 1,--- ,m,let A := (ay,...,a,) € R>™ with a; := a(w;, u;)
fori=1,---,m,and
1 1 ¢ T T
sio(@) = —Ao(Wax + Ue(t)) = — ; a;o(w; x +u; e(t)), (28)
then Ew v [st,6(€)] = E(w,u)~p, [@(w,u)o(w z +ue(t))] =5, g(x). Fork=1,--- ,d, let

Zuk(W,U) 1= [[st0.6(@) = 506,4@)|| oy, = B2, [[st0.0@) = 5 6.4()[°]

2

_ ml/2
- Em"‘Pt

1 m
- Z aipo(w; © +u; e(t)) — E (w,u)~po [k (W, w)o(w' x + uTe(t))}
i=1

If (W, U) is different from (W, U) at only one component indexed by i, we have

Zyw(W.U) = Zy o(W, 0)]

= Hst,e,k(a’) - gt,é,k(w)HL‘z(m) - Hst,é,k(w) -8

) €T
o),

St,e,k(m) - St,é,k(m)’ L2(py)

L e
= — Jaso(wx +ulet) - airo (@] z +ale®)) .,

=3

IN

— (lassl llow] @+ wl e®)]] oy + il [lo @] @+ @] ()] 2,0, )

INE
3= 3|~ 3

(lai k| (lwill 1 Cr5 + [[will1ll€(®)lloo) + @i k| (@il Cr.s + llaill1][e()]lo))

(iii) B
< — (laikl +1aix)) (Crs + [le®)] )

(iv) 1
S — (CT,(s + CT7e) ’
m

where (i) is from the triangle inequality, (ii) is due to the fact that |o(y)| = |[ReLU(y)| < |y| for any
y € R, the triangle and Holder’s inequality and (27), (iii) follows from the positive homogeneity
property of the ReLLU activation, and (iv) is due to the boundness of the trainable parameter a and
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embedding function e(-). By McDiarmid’s inequality (see e.g., Lemma 26.4 in [43])), for any § > 0,
with the probability of at least 1 — §, we have

1
‘Ztyk(W, U) — ]EW,U[Zt,k(Wa U)H S % (CT$5 + CT,e) mlog(?/é)/2 (29)
log(1/6
< (Ors + Ore) [ 2YD), (30)

Since
Ew v [Z7,(W,U)]

=Ew u {]Emfvpt [ #(x) — gt,e’,k(@‘zﬂ

Y, [EW,U [|5t,e,k(fﬂ) - §t,é,k(m)|2H

2
1 m
= ?Ew’vpt Ew.u Z (al wo(w; @ + u] e(t)) — E (w,w)~po [ak(w7u)a(w—rw + uTe(t))] )
i=1

= rrlLQ epy lEW U l (al ko(w) @ +u) e(t) — Eqwpuympo [an(w, w)o(w’z+u'e(t))] )2H

i=1

1

T T T T
+ WEmwpt Ew u Z (ai’ko('wi z+u; e(t) = Ewuyp [ax(w, w)o(w'z+u'e(t))] )

i#]

X (aj,ka(wjm +u) e(t) = Egwuymp, [ar(w, w)o(w z+u'e(t))] )] ]

=;;EW%[§ZEWMMM[@uwnndme+quw>—Ewmehmwawawﬁw+quwﬂ)1]

=1

1
T e

ZE(wi,ui)Npo [(ai,kU(wiTﬁc +u; e(t) = Ewu)np, [ar(w, u)o(w'z +u'e(t))] )]
i#£j

X E(w, u;)~po [(ama(w;w + ujTe(t)) — E(w,uympo [ax(w, w)o(w z +u'e(t))] )H

i=1

= %Ewwm [iﬂﬂ(w’u)wo [(ak(w, w)o(w'x +u'e(t)) — E (w,u)~po |0k (W, w)o(w' =+ uTe(t))] )2“

1 [ 2

< B B | (ax(w. 00w+ el

i) 1 ' ' 2

< B B | (Ja0.0)] (ol Crs + ) ) ||

(iii) 1 I I 2

< L [Bwmen |(fantw 0] ©rs + lettl)) ||

(iv) 1 r

S —Eorpe [Ewam |(Crs +Cre)?]| (1)
1

S (Crs+Cre)* —, (32)

where (v) is due to Fubini’s theorem, and (ii), (iii), (iv) is the same as before. By the triangle
inequality, Jensen’s inequality, (29) and (3I)), we obtain

d
Eonp [lI8t0(@) ] =Y Eomp, [[st04(2) = 5,5.4(@)|’]

k=1
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d
<Y (1Zk(W,U) = Ew u[Zes(W, U)]| + [Ew,u[Zx (W, U)]|)?

(12 (W, U) ~ Bw.u[Z0u(W, U] + Ew,u[ 22, (W, U)))

=1

d

log(1/6 log(1/6
(Crs + Cre)’ log(1/0) _ (Crs +Cre)’ g1/ )d,
— m m
(33)
which gives
Erme = / Eamp, [I500(@) - 5, g() 3] dt
log(1/6) = 1 (T log?(1/62
S Cns+ Or? g L [Fapar < DI
m m
Obviously, L||A[|% = L 3" [la(w;, u;)|3 = HStﬁ”iLk < 00. The proof is completed. ]
PO

Now we are ready to prove the main theorem.
Proof of Theorem(l] Based on Lemma[2] we have
Dict. (ollpo g, r)) < £0a(7): 6°()) + Dict. (pr ).

To bound the term £(6,,(7); g2(-)), we use the following decomposition:

L£(0a(7)) = [£(0a(7) ~ £(0(r))] + £(6(7)

< [£0a(7) = £(0())] + £(6(r)) + Monte Carlo 2 1y + I + Is.
According to Lemma[d] we obtain
Z A 1 /2 2 _ 2
B0+ (Jsoal+ 0s 7).
The term I3 can be further divided into
Iy == Evetior) MO - Eaioymp, 8100 @(6)) = 5,60 (@(0)]3]]

S Evitom) MO - Eaian, [I5160) (@ (1)
+ Etrio,r) [AE) - Bagtymp, [|ISe0- (x(t)
(t

|
+Einuo,1) [M)  Eaynp, [I8000) (2 (1)) — .0+ (2(t)
=131+ 132+ I33,

where 6* is the Monte Carlo estimator of 8*. By Lemma@ forany § > 0, § < 1, with the probability
of at least 1 — 4, it holds that

2 2
I3 = Errye (07,07 T, A() < Wd, (34)

while Lemma ] gives

= _ = _ = _ =, — 1
Iy S LO() +L£07) = I+ £67) S £(87) + ~ (|50, 13, + 506

2
H )
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and similarly,
~ N 1
I3 S £07)+ = (Is0.0, 3 + s+ ) -
Hence, for any § > 0, § < 1, with the probability of at least 1 — 4, it holds that

I 2 1 62 3 (A% ~ * 1 3 S
I3 < %/)d-i-ﬁ (67) +£(6") + — (IS0, 15, + 1506

2 2
2 150,60 [15 + [Is0,6+

W)
For the term I, we have
VE@. () ~/£(6(r)

- {]Et~M(O,T) [)‘(t) “Bat)np, [Hst,én(r)(w(t)) = Ve Ingt(w(t))H%H }%

|
=
=
o~
2
=
L
3
>
—~
~
~
=
8
=
2
¥
w
g
2
2
—~
8
—
~
~—
~—
|
<
8
=
—
o
0
3
Ry
—~
8
—~
~
~—
~—
=
N|=

—{Eirsi(0,1)Ea(t)ope [MNE)St,00r) (x(E)) = V() log pi(a(t))]

< B0 mBatmp [N Olls,6, () (@(0) = 5100 @(0)I3] }
= { Eveseor Eatipe [ A ;iaiv)a(w? 2(t) + ul e(t) - f ai(r)o(w] z() + ue(0) E
Notice that
» f (65) - st oTol0) + 7o)

< (i J6:(7) = @, ()l Jo(w a(t) + u] e<t>>|>2

<L i Jas(r) = as(r) i otw] 2(t) +ul e(t)]

S i Jas(r) = () i (Juw 2" + [ul et)]”)

<L i Jas(r) ~ as()l3 i (A RECAREG)

S nﬁi lai(7) azmnéi (Chs+Che).

which gives

&
,Qz
m>
3

) — \/5(0(7)) < {fn Z las(r) — as(r)ll; (CF,5 + C%,e)}

<(CT,5+CT,E>{;Z|MT>—aimn;} .

i=1

Here, the triangle inequality, Cauchy—Schwartz inequality, the fact that |o(y)| = [ReLU(y)| < |y|
for any y € R, Holder’s inequality, the positive homogeneity property of the ReLU activation, and
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the boundness of the input data, embedding function e(t) and weighting function A(t). Thus, we get
L(0,(r)) — L(6(7))

m

<*(CT5+CTe ZHaz ) —ai(7)|5 + 1/ £(0(7)) (Crs + Cr.e) { ZHaz - ||2}
)(CTngCTe {Tlnz lla;(T ||2}

1 SN 2
- (Chys+Che) Y lai(r) - a3
i=1
where the last inequality follows from Lemma[4] We further deduce that

*Z”az - ”2
1
:Ez;
1 m
T

1 m
77772

N

~ 1
<20 + L (Is0al + v

2

AT i(CAH‘(TO) —a;i(0))dro

dTO

2
2

[ (Top 200D = T, a6t

2

/T (2]Et~u(0,T) [AOEwt)mpe [(8,00r0)(T(£)) — V() log pe(@(1))) o(w, z(t) + u] e(t))]]

2

)

~2Euo,1) [MOE ) 0 | (816, () (@) = Vi) log pe(a())) o (w] @(t) + ] e(t))H>dTo
2

where p§"> denotes the empirical distribution of p;. Note that

1613 = Ilvec(A)lI3/m = |Al7/m = l|s0.0l, , (35)

by Lemmalwe get [|8(7)ll2 = [[s0.6(r)|5, S ||50.60]l5, + /7/m. Forany t € [0, T}, define the
function space

Foi= {Fi(@(0);00(1) fol(1); 02) : f1 € Fis, fo € Fau},

where
i o= {5000 @) = Vaiy logpe((0)) = 10712 S [[50,00 15 + v/7/m }

Fou = {o(w 2(t) + ue(t) : [wlls + [[ul, <1}.

Then, according to Theorem A.5 in [61]], for any 6 € (0, 1), with the probability at least 1 — § over
the choice of the dataset D, = {x;}!, it holds that

2(®)epr [(St.00r) (®(1)) = Vo log pi(a(t))) o(w] 2(t) + u e(t))]
By [ (56,0 @0) — Vet ogm(@(0)) o] 2(t) + u] e(0)] |
Ea(ty~p: [(St.0(r)(@(t) = Var log pe(a(1))) o (w] z(t) +u, e(t))]
B (81000 (1) = Vo) logpe(x (1)) o(w] x(t) + u; e(t))] ’
By opir (8100 (@(1) = Van) log pi(@(t)) o (w] @ (t) + u e(t))]

By [ (816,0 (@(0) = Vi logmu(@()) ) o] @ (t) + ] e(t))] |

<

. log(2/6
< Rady (Fi) + sup ()] ) 2B
feF, z(t)e[-Cr 5,Cr,s]¢ n

+

By | (31000 @) = 8,5, ) (@(8))) o(w] @(t) + u e(t)| | = i + T + Js,
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where Rad,, denotes the (empirical) Rademacher complexity of F; on D, = {x;}}'_,, and all the
inequalities hold in the element-wise sense.

(i) For J1, according to Lemma A.6 in [61]], we have

Rad,(F) < ( sup (@) + sup Ifz(w(t))|>
f1€F1t, 2(t)€[-Cr,5,Cr,5]% f2€Fa ¢, w(t)€[—Cr,5,Cr,5]¢
: (@n(fl,t) + ﬁa\dn(fz,t)) :
Note that
lo(w'z(t) +u'et))| < |w =) +u'ed)
S llwll @)oo + llull1lle()]lo
< Crs+ Cre, (36)
which yields
[svocr) (1)] = | = > Oimotw] a(t) + u] e(r)
i=1
;o
< 2 0l o(w] a(t) + uTe(t)
1 m
< = (Cr5+Cre) ; 16:(7)|
< (Crs+Cre) 0T,
< (Crs+Cre) (|50l + V/7/m) (37)
and hence
[fi(@(t)] = [st00m) (x(t) = Va) logpe(x(t))|
S(Crs+Cre) (HSO,OOHH + T/m) + Crs
[ fala ()| = |o(w a(t) + uTe(t))! S COrs+ Cre,
where CT 5 i= MaXy(t)e[—Crp.5,Cr5)d |Vm(t) log pi(x | This gives

Rad,(F) S (Crs + Cre) (||soeo||,{+\/r/ +1) (Rada(F1,) + Rady (F2.) ) -
Let
Fioi= {00 @®) 1002 5 [[s0.00 5 + V7/m}

according to Lemma 26.6 in [43]], we get ﬁ:ﬁn(}lt) < ﬁ;;in(FLt). Since

n@n( {t) =K sup Zgjst o(r ()
Lllec T)\|2<||s0 90|| +y/m/m =1
n 1 m T
= B¢ sup D oG—=> Oi(no(wlz;(t) +ule(t)

10|00 ||, +v/77m =1 V™S

m

m e Sup ZG (1) Z@ o(w; x;(t) + u/ e(t))
lle( T)H2<H5090|| +4/7/m i=1 j=1

llwill 1+l llx i +1€[n]

s

IN
-
&=
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1
= Ve sup Sleel ij w (1) +u] (1))
1625 o, QOH 1 /rIm =1 uwznwuulum ieln

<E¢ sup 16(7)lly  sup ng o(w a;(t) +u'e(t)
16125 50,60 ||, +/77m lwllatllulhst 5=
< (HSO’BUHH'F T/m) Ee Zf; w zj(t) +u e(t)) )

ol <1 |5

where the {£;}7 ; are independent random variables with the distribution P(§; = 1) = P(§; =
-1)=1/2, and obviously,

n

sup Z@o(w%]( ) +ule(t >Z@ o(02;(t) + 0 e(t)) =0,
lwlhi+llulli <1 55

we have

sup ij w'z;(t)+u'e(t))

lwllr+[lwl <1

j=1
< max Eio(w xi(t) +u'e(t)), —&)o(w z;(t) +u'e(t))
Hw||1+\|u\|1<1 Z Hw\|1+HuH1<1 Z
< sup go(w'z;(t) +u'e(t) +  sup (=&)o(w a;(t) +u'e(t)),
lwlli+llull <155 lwlhi+llull <155

and by symmetry

E su J ]
‘ _HWH1+HEH1§1 Zg o(w'a;(t) +u'e(t))
<E¢ sup Y Go(w a;(t) +ule(t)| +Ee sup Y (=€) (w () + uTe(t))

llwll1+]lul <1

j=1 lwlli+llull <1 55

n

=2[E¢ Sup Z§] (w’ x;(t) + ule(t))| = QnIia\dn(]:Q)t),

ol +llall <1 53

ie., ﬁa\dn(}]’t) < f/{a\dn( 10) S2 (HSOvOUHH + T/m) @n(f27t). According to Lemma 26.9
(contraction lemma) and Lemma 26.11 in [43]], we have

— 2log(4d log(d +1
R (F2) < (@) + le(®ll) | 220D < (05 + €p) [ EEHD,
Combining above, we obtain
2 Jlog(d+1
J1 Rad ( ) (CT5+CT8 (HSO,GOHH"‘\/%"F 1) %

(ii) For J5, by (36) and (37), we get
|f (@()] = |st.00r)(@(t)) — Vo) log pe(x(t))] |o(w z(t) + u ' e(t))]
S (Crs+ Cre)’ ([80.0lly, + v/7/m) + C (Crs + Cre)
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which gives

log(1/6
< (Crs+Cre) (5000l + v/7/m+1) °g<n/>

(iii) For J3, we similarly have
506, @(6)] S (Cos + ) (130 |y + V77)

hence by (36) and (37), we get

T3 < By

< (Crs+Cre)’ (HSO,GOHH + T/m> :

Combining (i), (ii) and (iii), we obtain

R 1
%;HCM(T) —a;(r ”2 S T

m
Sg

m?2

m T

T

5 d
:(J1+J2+J3) 2=
m

Etwu(o T) ( )(Jl + Jo + Jg)ld] do

J1 + Jo + Jg)lddTQ

(3000 @1) = 5,4, () (@(0) ) o(w] () + u] e(t))

2

2
2

2

. 2
S5 (Crs + Cre)’* [ (Isoel+ 1, +1)

2
(P B il )

which gives

I = L(8.(7)) = L(6(r))

)

1

S (Crs+Cre) <\/5(9*) + % (lls0.00 13, + lls0.6+Il3,) > { Z lai(r) - IIQ}

+ (Chs + Cte) leaz — ai(7))3

1
< Cra+ Cre)® (VEO) + = (lsna g+ lane- )

[d
L=
m

(lonalire 1) (/2D

n

(1/5)> N <||80700||H + \/Zﬂ

2
d 2 log(d + 1) log(1/0) T
+7°— (Or + Cr.e)’ [(HSO,QOHZ—FT-l-l) <\/ . +\/ - ) + ([lso.00l + )

< (Crs+Cre)’ T\/z
| { (V) + S ol + 14110

(1) (\/log(ffl—k 1) +\/10g(§/6)) . (II?/%F +\/Z>]

+T\/z (T+1) <\/10g(i+ o) + \/logg/5)> + <
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510g3(1/52)7\/5 (r+1) (\/bg(‘i—i— 1)+\/log 1/5) (\/1% \/Z)}
{( E(H*)Jr\/%)JFT\/z (r+1) (\/logd+1 +\/10g 1/5))+<\/1T—n+ Tib)]}’

where < hides universal positive constants only depending on 7.

Combining all above estimates yields

Dy, (pOHpU’én(T))
ST+ Iz + Is + Dy, (pr||m)

S log3(1/52)7'\/g (7+1) <\/log(‘fl+ Dy \/logi/&) + % (1+v7)

{( 2(9*)+\/%)+7\/z (7+1)<\/10g(i+1)+\/log(;/5)>+\/lm(1+ﬁ) }

(L) + L0 + 1) 2) + Dic (o).

2o+ ls0.0013 + llso,6-

d+— (H 5060l + 150.6-

If one only focuses on the (m, n)-dependence, i.e. the dependence on the model capacity and sample
size, this upper bound can be further simplified as

Dy (pOHpo,én(T))
(vi) T2 T\ﬁ ; ! r Tﬁ
D VT 0"
S <\/m+ m> ( HOT Tw

+(£@)+£00) + -+ L4 D tor )

0

1
)+ et
)1

|
|

74 T 1 1 3 px A (O*
< +W+;+E+(£(0)+£(0 ))+DKL(IJT||7T)>

mn

N Tf> +(E@) +£09) + =+ L4 D el

4 7.3

5 T 5 (p* ~ * 1 1
L( +mT+mn+mZ>+(£(0 )+ L0 ))+E+F+DKL(I7T”7T)

(vi)
where we assume 7 > 1 for simplicity, and < hides the term dlog(d + 1), the polynomials of
log(1/6?) and finite RKHS norms || - ||3;. The proof is completed.

Approximation errors. For the (universal) approximation, we discuss in two points:

* First, the approximation is a separate problem that can be analyzed independently of training
and generalization. While it is beyond the scope of current work, we have included the
approximation error in the final estimates. When the approximation by random feature
models fails, the generalization error is supposed to be significant.

* In addition, the random feature model can approximate Lipschitz continuous functions on a
compact domain (Theorem 6 in [17]]). Notice that the forward diffusion process defines a
random path (x(t), t);c[o,7) contained in a rectangular domain Ry 5 := [—Cr.s, Cr,5]%
[0, 7] € R¥! with Cr 5 := Cp(Cy + /log(1/62)) (use Lemma 1 and the boundness of
inputs), one can apply Theorem 6 in [17] to bound li on the domain R 5 in R%*! to obtain
approximation results for Lipschitz continuous target score functions.
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A.2 Data-Dependent Generalization Gap

Lemma 7 (Forward perturbation estimates, Gaussian mixtures). Suppose that x is sampled from a
one-dimensional 2-mode Gaussian mixture: po(z) = N (x; —p, 1) + @ N (x5 p, 1), where p > 0,

q1, g2 > 0 with g1 + g2 = 1 are all constants. Then for any § > 0, 6 < 1, p > +/log(1/62), with
the probability of at least 1 — §, we have

2()] 5 Cr (1 + V10g(1/87)) 2 Crps. (39)

Proof. 1t is straightforward to verify that

P ({o:|o - ul < Viog(1/2)} Ufa : [ + ] < viog(1/02)})
—P{a: o — | < Vog(1/62)} + Pl : |z + | < /log(1/5%)}

ptq/log(1/62) —pt+/log(1/62)
:/ po(;v)d:r+/ po(x)dx
n—+/log(1/52) —p—+/log(1/62)
ZCJ2/ N(x;u71)d$+q1/ N (z; —p, 1)dz
pn—1/log(1/62) —p—+/log(1/62)

log(1/52) y/log(1/62)
=q2/ N(x;O,l)derql/ N (z;0,1)dx
_\/W —+/log(1/482)

= (q1 +q2) - P{e : [e] < Iog(1/62)} > 1 -4,

where the last inequality applies (2I). That is, for any § > 0, § < 1, with the probability of at least
1 — 6, we have

2| € [ — V/1og(1/62), pp + /log(1/62)] = O(n). (40)

Hence, Lemmal[T] gives
[2()] 5 Cr (1 + Viog(1/87)) (1)
which completes the proof. O

Lemma 8 (Monte Carlo estimates, Gaussian mixtures). Define the Monte Carlo error

Errve = Errvc (6, 6;T,A()) = Everio.1) [ME) - Eagrymp, [l|5t.0(2(t) = 5,.6(x())3]] )
Suppose that the trainable parameter a and embedding function e(-) are both bounded, and x is
sampled from a one-dimensional 2-mode Gaussian mixture: po(x) = N (z; —p, 1) + g2 N (x5, 1),
where ;n > 0, q1, g2 > 0 with g1 + q2 = 1 are all constants. Then, given any 0, forany 6 > 0, § < 1,
> +/log(1/62), with the probability of at least 1 — 6, there exists 0 such that

log(1/6)

Errpye < pr—=r (43)
m

where < hides universal positive constants only depending on T.

Proof. According to Lemma//| we just need to follow the proof of Lemma|§|by replacing Cr 5 by
Cr,,5- Notably, based on (33) in the proof of Lemma[} one can finally derive

log(1/6
Errye < 208079
m

which gives the desired estimates. O

Proof of Theorem[Z] We decompose the loss £(6,,(7)) in the same way as in the proof of Theorem
In fact, Theorem [2]is similarly proved by replacing C'r s in the proof of Theoremmby Cr,u,5. Note

that Cr 5 = Cr (u + \/log(1/§2)) < p for p > 1, the proof is completed. O
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Remark 6. A standard variance is used here for convenience. In general, if var = o(p) as pp — +00
(e.g. a bounded var), similar analysis and results are supposed to hold. However, this is different
when var = O(u) as p — 400, since the modes are not separated in this case, and we can not
characterize modes shift by simply varying p.

Remark 7. Simply scaling down inputs seems not to resolve the adverse effect of modes shift, since
the ground truth p is unknown. One can use the input scale to approximate |1 on toy datasets, but it is
not that trivial in practice, particularly for real-world applications with multiple high-dimensional
modes in varied scales.

The model-target inconsistency. Informally, there is inconsistency between the score network
model and target score function. In fact, given the target Gaussian mixture po(z) = N (x; —p, 1) +
qoN (z; 11, 1), the target score function is

N (251, 1) — N (25 —p, 1) .
@N (0, 1) + N (z;—p, 1)

which gives so(z) = —z + p, > 0 and so(z) = —x — p, < 0. While the score network model is

s0,0() ~ (nlz Z aiwi> x+ (; Z aiu;-re(o)) ,

:w; >0 :w; >0

where "~" holds since |z| = ©(u) by (1 > 1). Both s and s ¢ are linear functions, but they
have unmatched scales in slopes and intercepts: O(1) and O(p) for s, but both O(a)’s for s . That
is, modeling Gaussian mixtures with large modes distances as random feature models is inconsistent.

Remark 8. Recall that the goal of this work is to estimate Dxr, (po I po,én(r))’ which aims at the

density estimation characterization. This is different from [32l], where the equivalence of learned and
target data manifolds (support sets) is studied.

B Additional Experiments

B.1 Early-Stopping Generalization

We illustrate the early-stopping generalization gap established in Theorem [T|using the Adam optimizer.
All the configurations remain the same as Section except that the learning rate is now 1073,

From Figure[§] one can observe that the KL divergence achieves its minimum at the 1000th training
epoch, and it starts to increase after this turning point. The plot is aligned with Theorem[I] which
states that there exists an optimal early-stopping time when the model can generalize well, indicating
the effectiveness of the upper bound. Further, the KL divergence begins to oscillate after the minimum
point (1000th training epoch), which may suggest a phase transition in the KL divergence dynamics,
and the transition point is around the optimal early-stopping time. The finding is aligned with SGD
setting.
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Figure 8: The KL divergence dynamics under the Adam optimizer.

B.2 Modes Shift Effect
We further test the relationship between the modes’ distance and the generalization performance
using the Adam optimizer under the same configurations.

In Figure [9)and Figure [T0] it is shown that the training of modeled distributions exhibits the same
two-stage dynamics as the SGD setting, indicating that the modes shift effect holds not particularly
for a certain optimizer.

epoch = 100 epoch = 1000 epoch = 1900
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Figure 9: The Adam training dynamics when the distance between two modes is 6 (& = 3).
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Figure 10: The Adam training dynamics when the distance between two modes is 30 (¢ = 15).

B.3 Model Capacity Dependency
We also numerically study the dependency of generalization on the model capacity. Following the

same configurations in Section[.1.1] we conduct experiments for different hidden dimensions varying
from 2! to 21
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In Figure[TT] the left plot shows the KL divergence from the trained distribution at the 1000th training
epoch to the target distribution, and the right plot shows the time duration of the modeled distribution
to generalize. Here, the generalization criterion we select is Dk, < 10~1, and we stop training at
epoch = 10000. Both the two plots in Figure [TT]indicate that increasing model capacity benefits the
generalization, which also verifies the corresponding theoretical results (m-dependency in Theorem T]
and Theorem 2)).
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Figure 11: Left: The KL divergence from the model trained after 1000 epochs to the target distribution
under different hidden dimensions. Right: The earliest training epoch when Dk, < 10~ 1. Here,
“x” means that the model does not generalize when the training is stopped at the maximum training
epoch 10000.
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