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Abstract

With Large Language Models (LLMs) becom-001
ing increasingly multilingual, effective knowl-002
edge editing (KE) needs to propagate edits003
across languages. Evaluation of the existing004
methods for cross-lingual knowledge editing005
(CKE) is limited both w.r.t. edit effectiveness:006
benchmarks do not account for entity aliases007
and use faulty entity translations; as well as ro-008
bustness: existing work fails to report on LLMs’009
downstream generation and task-solving abil-010
ities after editing. In this work, we aim to (i)011
maximize the effectiveness of CKE while at the012
same time (ii) minimizing the extent of down-013
stream model collapse due to the edits. To accu-014
rately measure the effectiveness of CKE meth-015
ods, we introduce BABELEDITS, a new CKE016
dataset covering 60 languages that combines017
high-quality multilingual synsets from Babel-018
Net with marker-based translation to ensure019
entity translation quality. Unlike existing CKE020
benchmarks, BABELEDITS accounts for the021
rich variety of entity aliases within and across022
languages. We then propose BABELREFT, a023
modular CKE approach based on representa-024
tion fine-tuning (ReFT) which learns entity-025
scope ReFT modules, applying them to all mul-026
tilingual aliases at inference. Our experimental027
results show that not only is BABELREFT more028
effective in CKE than state-of-the-art methods,029
but, owing to its modular design, much more ro-030
bust against downstream model collapse when031
subjected to many sequential edits.1032

1 Introduction033

Large Language Models (LLMs) require contin-034

uous updates to maintain factual correctness as035

new information emerges. Knowledge editing (KE)036

in LLMs aims at injecting new knowledge (i) ef-037

ficiently, i.e., without the need for expensive re-038

training or continued training of a large model and039

(ii) robustly, i.e., without disrupting the model’s lan-040

1We release our data and code upon acceptance.
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Figure 1: BABELREFT pushes the effectiveness-
robustness Pareto-front in sequential CKE. Effective-
ness refers to reliability of propagation of edits made
in one language to other languages on BABELEDITS;
Robustness denotes LLMs’ downstream performance
in question answering (on XQuAD) averaged over 4
languages after editing.

guage modeling abilities and downstream perfor- 041

mance. As LLMs grow increasingly multilingual 042

(Grattafiori et al., 2024; Riviere et al., 2024; Dang 043

et al., 2024), effective multilingual knowledge edit- 044

ing is paramount. In particular, we need the cross- 045

lingual transfer of added or changed knowledge 046

(CKE) (Fierro and Søgaard, 2022; Qi et al., 2023): 047

that a multilingual LLM reflects a fact imparted 048

into it in one language (e.g., “Kanye West’s wife 049

is Bianca Censori”) in all other languages that it 050

supports (e.g., when answering “Tko je žena Kanye 051

Westa?” in Croatian). 052

The existing body of (C)KE work, however, 053

comes with prominent limitations, especially for 054

proper evaluation of both (1) effectiveness of im- 055

parting new knowledge into the model and (2) 056

model robustness after the edits. 057

The effectiveness of KE is measured via met- 058

rics such as exact match, efficacy score, magnitude 059

(Meng et al., 2022), and rewrite score (Hase et al., 060

2023), all of which operate on the same formula- 061

tion of the fact (i.e., precisely the same tokens) as 062
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English MT (Target) Correct Error Type

Mortal Kombat Combattimento Mortal Kombat (IT) Literal translation
Mortale (IT)

Turkey Truthahn (DE) Türkei (DE) Wrong entity type
(animal vs country)

Mountain Dew Whisky (FR) Mountain Dew (FR) Wrong entity entirely

2006 2549 (TH) 2006 (TH) Wrong translation

Table 1: Samples of entity MT errors (Google Translate)

used for the edit itself. Such evaluation fails to063

reflect different possible formulations that elicit the064

same knowledge downstream, including, promi-065

nently, entity aliases (e.g., “Who is Ye’s wife?”).066

This problem is exacerbated in CKE, where exist-067

ing evaluation benchmarks are predominantly built068

by machine-translating English facts (Wang et al.,069

2024a; Nie et al., 2024; Wang et al., 2024c) and070

entity mentions: automatically translating entity071

names with little or no context is particularly error-072

prone, as illustrated in Table 1.073

KE has been shown to harm LLMs’ general per-074

formance, with even single edits sharply reducing075

downstream performance. This “model collapse”076

(Yang et al., 2024b,c) is known to worsen in real-077

world scenarios involving multiple sequential edits078

(Gupta et al., 2024a,b; Gu et al., 2024; Li et al.,079

2024), rendering LLMs virtually useless after edit-080

ing. While the existing CKE work (Wang et al.,081

2024a,c) tests the effectiveness of cross-lingual082

transfer of the edited knowledge, no prior work083

investigates model collapse in CKE, i.e., how ed-084

its in one language affect the LLMs’ multilingual085

abilities, i.e., quality of text generation in other086

languages as well as effectiveness in downstream087

tasks.088

Contributions. In this work, we simultaneously089

tackle the aspects of effectiveness and robustness090

in multilingual knowledge editing. In contrast to091

existing work, we aim to (i) maximize the effective-092

ness of CKE, i.e., propagation of knowledge edits093

across languages while at the same time (ii) mini-094

mizing the extent of model collapse, considering095

all languages supported by a multilingual LLM.096

1) We introduce BABELEDITS, the largest and097

most multilingual dataset for CKE to date, span-098

ning 60 languages and 13,366 facts. It couples099

high-quality multilingual synonym sets from Ba-100

belNet (Navigli and Ponzetto, 2010; Navigli et al.,101

2021) with marker-based label projection (Chen102

et al., 2023) to ensure entity translation quality.103

Unlike existing CKE benchmarks, it captures the104

diversity of entity aliases across languages.105

2) We propose BABELREFT, a modular CKE ap- 106

proach based on representation fine-tuning (ReFT, 107

Wu et al., 2024) where we (i) learn small entity- 108

scope ReFT modules during editing and (ii) apply 109

a ReFT module of an entity to all its aliases across 110

languages, obtained both from BabelNet and via 111

marker-based translation. Results on two widely 112

used LLMs show that, due to its highly modular na- 113

ture, BABELREFT avoids the negative interference 114

present in existing CKE approaches and mitigates 115

model collapse effects, proving to be very robust 116

in sequential editing with many edits. Figure 1 117

shows how BABELREFT pushes the effectiveness- 118

robustness Pareto-front in CKE. 119

2 Background and Related Work 120

In the most common task formulation, KE aims 121

to alter a fact provided as a subject-relation-object 122

triple (s, r, o) by replacing o with a new object o′, 123

denoted with (s, r, o→ o′), e.g. (Kanye West, wife, 124

Kim Kardashian → Bianca Censori). A prompt 125

π(s, r) formulated from the subject s and predicate 126

r is typically used to impart the new knowledge 127

and test the success of the editing. The prompt 128

π(s, r) is effectively asking the LLM to complete 129

the incomplete fact (s, r, ?) (e.g., “Who is the wife 130

of Kanye West?”). We refer throughout the paper 131

to the extended prompt π(s, r, o′) as the prompt 132

π(s, r) immediately followed by the new object o′. 133

We next provide an overview of KE work w.r.t. 134

to the two dimensions of our contributions: meth- 135

ods for imparting new knowledge (§2.1) and KE 136

evaluation metrics and protocols (§2.2). In §2.1, we 137

provide more details for methods that we employ 138

as baselines in our evaluation (see 4). 139

2.1 Knowledge Editing Methods 140

Yao et al. (2023) provide a taxonomy of KE 141

methods, where the approaches are divided 142

into parameter-preserving and parameter-altering 143

methods, indicating whether the method modifies 144

the original parameters of the LLM or not. 145

Parameter-Altering Methods. These approaches 146

treat KE as any other downstream task for which a 147

subset of the model’s weights need to be updated 148

and are further divided into locate-then-edit and 149

meta-learning approaches. 150

Locate-then-edit approaches. Most approaches in 151

this category modify only the parameters of the 152

down-projection matrices of the MLP layers, fol- 153

lowing the observations that these components play 154
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a central role in recalling factual knowledge (Geva155

et al., 2021, 2022; Dai et al., 2022; Meng et al.,156

2022; Geva et al., 2023; Chughtai et al., 2024). In157

the light of this, arguably the simplest approach158

is to train the down-projection matrix of a spe-159

cific MLP layer via language modeling on the to-160

kens of the new object for the prompt π(s, r), an161

approach known as FT-M (Zhang et al., 2024b).162

A related variant, known as FT-L (Meng et al.,163

2022), applies an L∞ norm (i.e., max-norm) on164

the weight changes and minimizes a different vari-165

ant of the language modeling loss. ROME (Meng166

et al., 2022) first identifies which MLP to edit us-167

ing causal mediation analysis (Vig et al., 2020)168

and then applies a rank-one modification to the169

MLP layer’s down-projection to impart a new fact.170

MEMIT (Meng et al., 2023) extends ROME to sup-171

port batch edits, i.e. modifying multiple facts in a172

single edit step.173

Meta-learning approaches typically employ hyper-174

networks, auxiliary networks that generate weights175

for the LLM, to learn the necessary weight updates176

for editing of the LLMs as the main model. Key177

examples include Knowledge Editor (De Cao et al.,178

2021) and MEND (Mitchell et al., 2022a).179

Model Collapse. Although editing via directly up-180

dating the model’s weights is effective, prior work181

has shown that such methods often induce “dis-182

abling edits” (Yang et al., 2024b,c), i.e. single edits183

that cause the plummeting of downstream perfor-184

mance to random chance, a phenomenon named185

“model collapse”. In sequential editing, where186

multiple edits are applied one at a time, several187

parameter-altering methods were shown to cause188

model collapse with a few hundred edits (Gupta189

et al., 2024a,b; Gu et al., 2024; Li et al., 2024).190

Parameter-Preserving Methods. The motivation191

for parameter-preserving KE methods can be mani-192

fold: computational efficiency (Zheng et al., 2023),193

continuous KE (Hartvigsen et al., 2023), or the194

ability to edit models without having access to its195

weights (Mitchell et al., 2022b). More importantly196

and intuitively, avoiding to directly edit the LLMs’197

parameters reduces the risk of model collapse. Be-198

sides simple in-context learning for KE (Zheng199

et al., 2023), gating approaches constitute the bulk200

of the approaches in this category. Gating methods201

store the edited knowledge into separate weights202

which are activated based on soft routing. The gat-203

ing (i.e., routing) function can be a dedicated model204

like a scope classifier in SERAC (Mitchell et al.,205

2022b) or a simple key-value similarity threshold 206

as in GRACE (Hartvigsen et al., 2023). The addi- 207

tional parameters are, accordingly, a whole sepa- 208

rate model (SERAC) or a vector that replaces the 209

activation values at a given layer (GRACE). 210

With GRACE as the most competitive baseline 211

in our evaluation (§5), we provide further details 212

about it in Appendix A.2. 213

2.2 Knowledge Editing Evaluation 214

KE evaluation protocols encompass several dimen- 215

sions (Zhang et al., 2024b; Yao et al., 2023). Relia- 216

bility reflects whether an edit (s, r, o→ o′) success- 217

fully triggers the new answer o′ when the model 218

is prompted with π(s, r). Generality assesses if 219

the edit holds across paraphrases of the original 220

prompt π. Locality verifies that unrelated knowl- 221

edge (s′′, r′′, o′′) remains unchanged after editing. 222

Portability evaluates how well the model general- 223

izes from edited knowledge (Cohen et al., 2024). 224

This includes multi-hop portability, which tests if 225

the model can reason with the edited fact (e.g., 226

inferring “architect” as Kanye West’s wife’s pro- 227

fession after editing his wife to be “Bianca Cen- 228

sori”), and subject-aliasing portability, checking if 229

the edit applies to alternative subject formulations 230

(e.g., “Kanye West” vs. “Ye”). 231

Cross-lingual Knowledge Editing Given the doc- 232

umented cross-lingual inconsistencies in LLMs’ 233

factual knowledge (Fierro and Søgaard, 2022; Qi 234

et al., 2023), multilingual knowledge editing needs 235

methods that enable effective cross-lingual trans- 236

fer of edits (CKE). Accordingly, several CKE 237

benchmarks have emerged: BiZsRE (Wang et al., 238

2024a), a GPT-4-translated English-Chinese ver- 239

sion of ZsRE (Levy et al., 2017); MzsRE (Wang 240

et al., 2024c), extending BiZsRE to 10 more lan- 241

guages; and BMIKE-53 (Nie et al., 2024), which 242

unifies and translates multiple datasets into 53 lan- 243

guages. These benchmarks have primarily been 244

derived by machine-translating both prompts and 245

entities. Entities are translated in isolation, which 246

not only leads to numerous translation errors (as 247

shown in Table 1) but also results in a single trans- 248

lation for each entity (Koehn and Knowles, 2017; 249

Yan et al., 2019; Liang et al., 2024). Focusing on 250

multi-hop portability MLaKE (Wei et al., 2025) 251

takes a different approach: they mine parallel fact 252

chains in 5 languages and use ChatGPT to generate 253

prompts, but do not provide test sets for generality, 254

locality, and subject aliasing. 255
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3 Methodology256

We first describe the process of creating BABELED-257

ITS, our new benchmark for CKE spanning 60 lan-258

guages in §3.1 and then our novel modular CKE259

approach BABELREFT in §3.2. Both leverage Ba-260

belNet (Navigli et al., 2021), a massively multi-261

lingual knowledge graph in which concepts are262

represented as multilingual synonym sets (synsets).263

3.1 BABELEDITS264

We utilize BabelNet’s graph structure to generate265

edits and its multilingual synsets to collect entity266

aliases, which, combined with marker-based ma-267

chine translation (Yang et al., 2024a), allows us to268

obtain high-quality fact translations. This enables269

a (i) more robust evaluation of edits through sub-270

ject aliasing and (ii) acceptance of multiple correct271

answers thanks to object aliases. BABELEDITS272

comes with multi-parallel prompts in 60 languages,273

supporting reliability, generality, locality, subject-274

aliasing and multi-hop portability evaluation.275

BABELEDITS Creation. We next describe in de-276

tail all steps of the BABELEDITS creation pipeline,277

which is fully reproducible from our code.278

1. Language selection. We start from 50 lan-279

guages of the popular NLU benchmark XTREME-280

R (Ruder et al., 2021) as they cover a wide range281

of scripts and language families. We remove Wolof282

(WO) as it is currently not supported by Google283

Translate (GT). We add 11 more languages with284

more than 500,000 Wikipedia articles (as of Aug285

’23) and supported by GT, obtaining the final set L286

of 60 languages, listed in Appendix A.3.287

2. Subject extraction. Wikipedia page titles are (of-288

ten) entity names that we use to query BabelNet to289

gather subjects for constructing the edit (s, r, o→290

o′). For each language-specific Wikipedia, we first291

retrieve the 30,000 most viewed pages from 2021.2292

We keep only the pages that have a correspond-293

ing BabelNet synset with (multi-parallel) senses294

in all languages in L. We finally sample 20,000295

pages (i.e., entities) from each language-specific296

Wikipedia, ensuring that BABELEDITS is fully bal-297

anced across languages.298

3. Relation extraction. Having obtained subject299

synsets, we next collect all relations these synsets300

have in BabelNet (i.e., labels of all corresponding301

outgoing edges). From these, we manually select302

2Selecting a more recent year could have potentially
yielded entities unseen in pretraining by older LLMs.

100 prominent relations (selection criteria provided 303

in Appendix A.4). Finally, we prompt GPT-4o (see 304

Appendix C.4 for the exact prompt) to verbalize 305

each relation r as a template sentence with a slot to 306

be filled with a subject: e.g., for r = LOCATEDIN, 307

we get the template “Where is ⟨s⟩ located in?”. 308

4. Edit creation. In the next step, we create the 309

edits (s, r, o→ o′), following a procedure similar 310

to that of Cohen et al. (2024). Let S and R be sets 311

of our retrieved synsets and relations, respectively. 312

Each σ ∈ S then becomes the subject s in the edit 313

request: we then look for a relation r from R, a 314

ground truth object o, and a target object o′ that 315

cover all languages in L. For a synset σ ∈ S, we 316

randomly select from its outgoing edges one rela- 317

tion r to another synset ω that also fully covers our 318

set of languages L. A meaningful edit object o′ 319

needs to be of the same category as o. In BabelNet, 320

this generally holds for objects of the same relation 321

r. We thus randomly select a target object synset ω′ 322

from the set of all BabelNet edges with r as the rela- 323

tion, i.e. {(σ′, r, ω′) |σ ̸= σ′, ω ̸= ω′}: the edit is 324

then given as (σ, r, ω → ω′). For creating locality 325

sets we sample an additional relation rloc ̸= r and 326

a ground truth object ωloc such that it also covers 327

all languages from L. For multi-hop portability, we 328

start from the target object synset ω′ and perform, 329

if possible, a hop in the BabelNet graph via a new 330

relation r′ ̸= r to another synset ω′′, so that we 331

obtain the 2-hop chain (σ, r, ω′, r′, ω′′). In both 332

cases, we feed the obtained tuples to GPT-4o to 333

create portability prompts, which we detail in Ta- 334

ble 12 in Appendix C.4. Finally, for each obtained 335

synset, we collect senses to serve as subject and 336

object aliases. Here, we filter only senses from 337

more trustable sources: Wikipedia, OmegaWiki, 338

WordNet, and OpenMultilingualWordNet (Francis 339

and Kyonghee, 2012) and exclude those obtained 340

via automatic translation and Wiki redirections. 341

5. Marker-based translation. We resort to marker- 342

based translation with EasyProject (Chen et al., 343

2023) to translate templated prompts, to easily 344

identify entity spans in the translation. Con- 345

cretely, we wrap the subject s and object o (in 346

English) of the reliability prompt in special mark- 347

ers, e.g.: “Which language does <s>Leonardo Di 348

Caprio <\s>speak?<o>Japanese<\o>”. We then 349

translate this markered reliability prompt with GT. 350

The markup in the translation allows us to easily 351

replace the content between <s> and <\s> with the 352

aliases of s from BabelNet. We next feed these 353
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aliased prompts to NLLB (Team et al., 2022) to354

leverage its denoising training to correct possible355

grammatical errors that arise from the replacement356

(e.g., gender, article, or case adjustments).357

Quality Assessment. The above-described process358

results in 13,366 samples which we split into train-359

ing (11,498), validation (480), and test portions360

(1042). The train-validation-test split is based on361

the relations r, i.e., there is no overlap between362

relation sets of any two portions. We manually363

assess the quality of the obtained BABELEDITS364

prompts in four target languages: German, Ital-365

ian, French, and Croatian. We select up to 100366

reliability test prompts where our marker-based367

BABELEDITS translation differs from separately368

machine-translating each component (subject, ob-369

ject, and prompt) of π(s, r, o′) as done in prior370

work. We maximally diversify the set of relations371

among the selected instances. We then present both372

translations to the annotators (native speakers) and373

ask them to indicate a preference between the two374

(instructions available in Table 8 in the Appendix).375

The results (detailed in Appendix B.1) show that an-376

notators predominantly—ranging from 59.2% for377

Croatian to 90.0% for French—prefer our marker-378

based translations.379

3.2 BABELREFT380

Improving the effectiveness-robustness Pareto front
in CKE requires a method that is (i) modular, as
direct editing of model’s parameters jeopadizes
robustness and (ii) effective in massively mul-
tilingual settings, enabling propagation of edits
across a wide range of diverse languages. In BA-
BELREFT, we leverage Representation Finetuning
(ReFT, Wu et al., 2024), a parameter-efficient fine-
tuning method that modifies hidden representations
of only some tokens, originally based on their posi-
tion in the sequence. The standard approach, Low-
rank Linear Subspace ReFT (LoReFT), projects
hidden representations of selected tokens into a
low-dimensional subspace using trainable matrices
R ∈ Rm×d and W ∈ Rm×d, where d is the dimen-
sionality of h and m≪ d. The transformation (or,
as called in ReFT, intervention) applied at layer ℓ
and token position i is defined as follows:

hℓ
i ← hℓ

i +RT (Whℓ
i + b−Rhℓ

i) (1)

LoReFT updates the parameters ϕ = {R,W,b},381

while the LLM’s parameters remain frozen. R is a382

low-rank matrix with orthonormal rows, while W383

and b define an affine transformation of h.384

BABELREFT couples ReFT with a lexical gating 385

function: i.e., we do not select tokens that undergo 386

a ReFT transformation based on their position, but 387

rather based on whether the token is part of an 388

entity mention. This allows us to train entity-scope 389

ReFT modules and route tokens of an entity being 390

edited, as well as tokens of their translations and 391

aliases through the same ReFT module. For each 392

entity e, we construct a vocabulary Ve that consists 393

of all lexicalizations of the entity in the source 394

language (i.e., the language of the edit) and all 395

target languages: with “lexicalizations” we here 396

refer to the union of all entity translations we obtain 397

with marker-based MT and all senses (i.e., aliases) 398

from BabelNet. 399

Prior to the forward pass, we search for men-
tions of entities e by string-matching (with the Aho-
Corasick algorithm (Aho and Corasick, 1975)) the
input text against the entries in Vs. When a match
is found, all tokens of the matched mention are
routed through the ReFT intervention of the re-
spective entity e, i.e., the hidden representations of
those tokens are modified as follows:

hℓ
i←hℓ

i+WT
2[e]

(
W1[e] h

ℓ
i+b[e]−W2[e] h

ℓ
i

)
(2)

with W1[e],W2[e] ∈ Rm×d and b[e] ∈ Rm as 400

trainable parameters of the ReFT module of en- 401

tity e. Entity-specific ReFT modules prevent neg- 402

ative interference between edits by design, which 403

should provide robustness and prevent model col- 404

lapse in the face of a larger number of sequential 405

edits. Unlike LoReFT, in BABELREFT we do not 406

use rotation matrices, assuming that enforcing or- 407

thogonality could introduce interference between 408

edits in sequential editing. ReFT parameters W1[e], 409

W2[e], and b[e] of an entity e are trained by feeding 410

the extended prompt π(s, r, o′), where s is a lexi- 411

calization of e, into the LLM and minimizing the 412

language modeling loss on the tokens of o′. 413

4 Experimental Setup 414

Models. We run single and sequential editing ex- 415

periments with the instruction fine-tuned variants of 416

Llama 3.1 8B and Gemma 2 9B (cf. Appendix C.3). 417

Languages. Due to computational constraints, we 418

carry out the evaluation on English and 10 other lan- 419

guages (out of the 60 languages in BABELEDITS): 420

Arabic (AR), German (DE), French (FR), Croatian 421

(HR), Italian (IT), Japanese (JA), Georgian (KA), 422

Burmese (MY), Quechua (QU), and Chinese (ZH). 423
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We manually selected these languages to ensure424

diversity across linguistic typology, scripts, and425

“resourcefulness” (Joshi et al., 2020).426

KE Methods. We compare BABELREFT against427

FT-M, FT-L, r-ROME3, and GRACE. We conduct428

an exhaustive search for the optimal hyperparam-429

eters that maximize average reliability across lan-430

guages on our validation split of BABELEDITS,431

considering all combinations of models, methods,432

and both single and sequential editing.4 In our ex-433

periments, we solely use the test set, as none of434

the methods require training an auxiliary editor net-435

work. We inject the edit using a single reliability436

prompt in the editing language from the test set.437

We subsequently evaluate the edited model on all438

the evaluation dimensions using the prompts for the439

same edit in all 11 selected languages. In sequential440

editing, we carry out the evaluation after injecting441

n = 100, 250, 500, 1042 (test set size) edits.442

Metrics. We use the ‘rewrite and rephrase’ scores443

introduced by Hase et al. (2023) to measure reli-444

ability and generality. We adapt these scores for445

multi-hop and subject-aliasing portability: if an446

edit has multiple aliases for the same target ob-447

ject, we compute the metric for each and then take448

the best value. We follow Hoelscher-Obermaier449

et al. (2023) and use neighborhood KL-divergence450

(NKL) to evaluate locality.5 We evaluate the zero-451

shot downstream multilingual performance of the452

edited models on two tasks: (1) multiple-choice453

reading comprehension using Belebele (Bandarkar454

et al., 2024) and the (2) extractive question answer-455

ing on the XQuAD dataset (Artetxe et al., 2020).456

We report the results in terms of accuracy for Bele-457

bele and exact match for XQuAD.6458

5 Results and Discussion459

Sequential Editing. Table 3 presents the results460

of the sequential editing task, where the number461

of sequentially applied edits successively increases462

from 100 to the entire test set (1042). We first463

apply the edit to the model in English. We then464

test the edited model both on KE in all languages465

on the BABELEDITS test set and on downstream466

3r-ROME is a re-implementation of ROME that mitigates
model collapse (Gupta et al., 2024a).

4Details about the procedure and the best hyperparameter
configurations are provided in Appendix C.2.

5We provide precise formulations for all metrics in Ap-
pendix A.1.

6Further details about the evaluation and the prompts used
can be found in Appendix C.5

EN FR IT JA MY

FT-M 63.77 25.87 33.78 8.42 0.33
GRACE 99.08 0.38 0.75 0.00 0.00
BABELREFT 98.49 49.86 64.38 19.44 2.17

Table 2: Reliability of three methods with sequential
editing in English on the full BABELEDITS dataset using
LLaMA 3.2 7B. Results are provided for five languages
due to space constraints, full results in Appendix B.2.

performance on XQuaD and Beleble. 467

BABELREFT demonstrates superior perfor- 468

mance across several editing aspects (top half of 469

Table 3), achieving by far the highest scores on re- 470

liability, generality, and subject aliasing. GRACE 471

performs better than FT-M on many dimensions but 472

is still very far from achieving the effectiveness of 473

BABELREFT. Near-zero results in other languages 474

largely explain GRACE’s low average reliability; 475

GRACE, however, remains highly reliable in En- 476

glish, as shown in Table 2. 477

Multi-hop portability performance (Ap- 478

pendix B.2) is close to zero across all models, with 479

BABELREFT performing slightly better. On the 480

full dataset, BABELREFT gets a score of 1.27 and 481

1.64 for LLaMA and Gemma respectively, whereas 482

FT-M holds the second-best score with 0.12 and 483

0.26. This shows that further research is needed to 484

make models generalize from the imparted edits. 485

BABELREFT also shows robustness in down- 486

stream evaluation (bottom half of Table 3). It pre- 487

serves the original model’s performance, matching 488

GRACE’s stability while significantly outperform- 489

ing other baselines, in particular r-ROME which 490

shows large degradation with as few as 100 edits. 491

Our downstream evaluation also shows that the 492

choice of downstream task is critical for detecting 493

model collapse. For instance, after 500 sequential 494

edits, FT-M loses only 5 points on Belebele, yet 495

its XQuAD performance plummets to 1.58, clearly 496

indicating a collapse of its generative abilities. This 497

discrepancy reflects the nature of the tasks: Bele- 498

bele is a multiple-choice QA task where inference 499

simply decodes the answer letter with the highest 500

log-probability, i.e., it does not reflect the gener- 501

ative ability of the models. In contrast, XQuAD 502

requires that the model generates a response con- 503

taining the actual tokens of the answer. We thus 504

advocate for evaluating downstream performance 505

after KE on free-form generative tasks, as these can 506

detect early signs of model collapse. 507

We next test if our findings generalize beyond 508
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Llama 3.1 Gemma 2

Edits FT-L FT-M r-ROME GRACE BABELREFT FT-L FT-M r-ROME GRACE BABELREFT

Cross-lingual Knowledge Editing Performance
↑ Reliability: edit success
100 1.59 21.94 -0.01 9.33 37.12 3.16 15.58 0.12 15.51 42.30
500 1.59 19.98 -0.02 9.27 37.48 2.12 10.26 0.01 16.54 40.90
Full 1.52 19.51 -0.04 9.26 36.51 3.02 9.79 0.01 17.10 40.72
↑ Generality: edit success over paraphrases
100 1.29 19.73 -0.02 0.72 34.40 2.35 10.28 0.12 8.30 39.52
500 1.48 17.87 -0.02 0.58 35.15 1.41 5.99 0.01 8.86 38.48
Full 1.71 17.69 -0.04 0.47 34.25 2.37 5.76 0.01 9.36 38.18
↑ Subject-Alias: edit success over prompts with a subject alias
100 1.49 17.23 -0.01 2.45 23.08 1.72 10.30 0.01 9.86 26.93
500 0.83 11.05 -0.01 1.47 28.33 0.92 5.07 0.00 7.96 27.95
Full 0.87 11.93 -0.01 1.32 27.85 1.36 4.66 0.00 9.18 28.81

Downstream Performance
↑ Belebele (accuracy)
Original 73.59 73.59 73.59 73.59 73.59 84.68 84.68 84.68 84.68 84.68
100 73.42 73.99 34.89 73.59 73.50 84.48 84.46 24.14 84.71 84.59
500 73.79 68.06 28.64 73.56 73.50 84.48 84.38 26.07 84.71 84.70
Full 72.92 60.26 22.58 73.50 73.39 84.64 84.40 28.62 84.71 84.70
↑ XQuAD (EM)
Original 29.60 29.60 29.60 29.60 29.60 31.79 31.79 31.79 31.79 31.79
100 18.07 20.00 0.00 29.60 29.60 29.64 29.98 0.13 31.76 31.76
500 19.37 1.58 0.00 29.71 29.45 29.03 28.78 2.77 31.76 31.64
Full 19.35 0.36 0.00 29.71 29.18 26.37 29.81 4.33 31.76 31.70

Table 3: Comprehensive comparison of cross-lingual knowledge editing (effectiveness) and downstream task
performance (robustness) for Llama 3.1 8B and Gemma 2 9B models for different number of sequential edits in
English. Editing metrics are averaged over all target languages and multiplied by 100 for readability. Bold numbers
show the best performance for each metric/model combination. Downstream performance is averaged over the
target languages: Original denotes the model performance before editing. Full results in Appendix B.2.

BABELEDITS by evaluating sequential KE on the509

MzsRE benchmark (Zhang et al., 2025). Specif-510

ically, we perform sequential editing in English511

across the entire test set (742 edits) and evaluate512

the results for languages in which MzsRE over-513

laps with BABELEDITS (DE, EN, FR, ZH). For514

BABELREFT, we use the subject s from each edit515

to query BabelNet and incorporate all retrieved516

senses into the vocabulary Vs. As shown in Table 4,517

MzsRE results closely mirrors our findings from518

BABELEDITS: BABELREFT achieves the high-519

est average reliability (with LLama 3.1) without a520

decline in downstream performance, while other521

methods fall short either in cross-lingual reliability522

(GRACE) or provoke model collapse (FT-M).523

Single Edits. While sequential editing represents524

a more realistic use case, single editing is still often525

used in CKE evaluations. We thus evaluate BA-526

BELREFT against the same baselines on the test527

set of BABELEDITS but this time by performing528

each edit in the dataset independently. We perform529

editing in each of the 11 languages in our evalua-530

tion set. Since evaluating downstream performance531

after each edit is computationally prohibitive, we532

follow Yang et al. (2024b) and use perplexity as a533

Methods avg de en fr zh

↑ Reliability: edit success
FT-M 27.53 23.09 64.76 17.52 4.75
GRACE 25.17 0.78 99.51 0.40 0.00
BABELREFT 45.24 44.31 97.23 34.25 5.17

↑ XQuAD (EM)
Original 29.83 34.71 32.44 - 22.35
FT-M 5.97 4.29 7.56 - 6.05
GRACE 29.94 34.54 33.03 - 22.27
BABELREFT 29.75 34.45 32.52 - 22.27

Table 4: Sequential editing in English on the MzsRE
dataset, showing reliability and XQuAD exact match.
Full results in Appendix B.2.

surrogate metric. We compute perplexity variation 534

(Delta PPL) before and after editing on a translated 535

version of their ME-PPL-50 dataset, comprising 536

randomly sampled sentences from widely used cor- 537

pora such as BookCorpus (Zhu et al., 2015) and 538

ROOTS (Laurençon et al., 2022). 539

Results in Table 5 show that BABELREFT and 540

GRACE exhibit similarly high reliability with 541

Llama 3.1. However, while GRACE did not show 542

any model collapse in sequential editing, it shows 543

a massive increase in perplexity, particularly in the 544

case of Llama 3.1: this suggests that its gating func- 545

tion is often activated when not necessary, severely 546
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Methods avg de en fr zh

↑ Reliability: edit success
FT-M 28.87 39.29 37.10 35.98 26.32
GRACE 32.58 45.33 46.19 40.65 24.42
BABELREFT 30.96 43.65 37.48 39.02 27.64
↓ Delta PPL
FT-M 79.52 40.24 3.37 16.05 5.42
GRACE 5.46e4 5.09e4 8.65e4 3.61e4 1.02e5
BABELREFT 0.00 0.00 0.00 0.00 0.00

Table 5: Reliability and variation of perplexity for single
edits with Llama 3.1 8B. Each column (except ’avg’)
corresponds to an editing language, and the results are
averaged across all the target languages. Column ’avg’
averages those results. Full results in Appendix B.2

damaging the LLM’s generative capabilities.547

Altough single editing can be seen as an unreal-548

istic (i.e., in vitro) use-case, BABELREFT remains549

competitive, still providing the best solution when550

considering both editing effectiveness and down-551

stream robustness.552

Gating Scope. We empirically observe that the553

failure of GRACE in either transferring edits across554

languages (sequential editing) or causing model555

collapse (single edits) stems from its difficulty to556

balance precision and recall of its gating activation.557

In sequential editing, the clusters get gradually558

smaller as edits are injected hence making the gat-559

ing function seldom activate (precision over recall).560

This, coupled with the limited cross-lingual seman-561

tic alignment of LLMs’ representations, explains562

the negligible edit transfer. This would also ex-563

plain the higher reliability of GRACE with Gemma564

2, given Gemma’s better cross-lingual alignment565

compared to Llama 3.1 (Kargaran et al., 2025). In566

the case of single edits, there is only one cluster567

with a large fixed radius, which is promoted by the568

hyperparameter selection procedure that aims to569

maximize the edit transfer across languages (i.e.,570

recall over precision). This, however, makes the571

gating function fire on almost every input, causing572

the model collapse and rendering the model useless573

for downstream tasks.574

Cross-Lingually Disabling Edits. Gupta et al.575

(2024b) have shown that a single disabling edit can576

completely disrupt the model’s downstream abili-577

ties. To the best of our knowledge, we are the first578

to observe cross-lingually disabling edits, i.e., that579

edits in one language compromise the performance580

across languages. To shed more light on this phe-581

nomenon, we compute for all target languages the582

top 5 most destructive edits, i.e. those that cause583
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Figure 2: Average EM on XQuAD of the top-5 most
destructive edits in terms of perplexity.

the highest increase of perplexity, across all possi- 584

ble editing languages. Figure 2 illustrates the effect 585

of cross-lingually disabling edits for FT-M applied 586

to Llama 3.1 (as FT-M performed overall compara- 587

bly to GRACE but with less perplexity variation) 588

for pairs of edit-test languages. We observe, e.g., 589

that a single edit in Japanese disables the model for 590

many languages, whereas a single edit in German 591

reduces performance for English much less than 592

for other languages. The latter is particularly insid- 593

ious, as editing in some languages can collapse the 594

model only w.r.t. some other languages, which can 595

be difficult to detect for model users. 596

6 Conclusion 597

Knowledge Editing (KE) shows promise for main- 598

taining LLM factual accuracy, but faces limitations, 599

especially in cross-lingual contexts both from the 600

evaluation (data quality) and methodological per- 601

spective (model collapse). Our benchmark, BA- 602

BELEDITS, addresses the limitations of previous 603

research by offering diverse, high-quality entity rep- 604

resentations obtained using BabelNet synsets and 605

marker-based translation. Our modular approach, 606

BABELREFT, couples entity-scope ReFT modules 607

that activate only when necessary using BabelNet 608

synsets as “multilingual keys”, achieving CKE ef- 609

fectiveness (through wide coverage) and model ro- 610

bustness (avoiding model collapse). This prevents 611

indiscriminate gate activation or non-existing cross- 612

lingual edit-transfer, displayed by competing meth- 613

ods such as GRACE in single edits and sequential 614

editing, respectively. We find that cross-lingual 615

multi-hop portability is challenging for all meth- 616

ods, including BABELREFT. Future work could 617

further exploit multilingual knowledge graphs like 618

BabelNet to address this limitation, extending exist- 619

ing monolingual approaches (Zhang et al., 2024a). 620
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7 Limitations621

Choice of baselines. Our experiments compare622

against four baselines: FT-L, FT-M, r-ROME,623

and GRACE. More baselines could have been624

used but we chose to keep baselines that are the625

most relevant to our discourse. First, we used626

fine-tuning baselines (FT-L and FT-M) because627

they are the simplest baselines we could find.628

Then we chose r-ROME and GRACE as competi-629

tive baselines representing parameter-altering and630

parameter-preserving methods respectively.631

r-ROME (Gupta et al., 2024a) was selected632

among all the parameter-altering approaches be-633

cause it was explicitly designed to avoid model634

collapse, while most methods in the same category635

are detrimental to downstream performance (Li636

et al., 2024), including MEMIT, PMET, MEND,637

and KN. Moreover, we discarded all meta-learning638

approaches like MEND because they require addi-639

tional training data to train the hypernetwork that640

can then be applied to new unseen edits. While641

this paper provides such a training set through the642

BABELEDITS dataset, meta-learning methods are643

deemed out-of-scope for our work, since they are644

not directly comparable to other methods.645

GRACE is chosen among other parameter-646

preserving approaches for similar reasons: it aims647

to avoid model collapse, while other methods were648

often proposed for different purposes. For example,649

SERAC was proposed for editing a model with-650

out access to its weights (Mitchell et al., 2022b),651

and IKE aims at compute-efficiency (Zheng et al.,652

2023). Moreover, we discard in-context learning653

approaches because it is unclear how they should654

be applied to downstream tasks. More importantly,655

while IKE is compute-efficient for a single edit, per-656

forming thousands of edits would require a larger657

prompt that might exceed the context window or658

render inference latency impractical.659

Choice of models. We evaluate BABELREFT660

and the baselines with two relatively small mod-661

els: LLaMA 3.1 7B Instruct and Gemma 9B In-662

struct. Models of this size were selected for practi-663

cal reasons. Instruct versions of the models were664

chosen over base ones because they are expected665

to perform better on downstream evaluation. Fi-666

nally, this work focuses on English-centric mod-667

els, while it could have been tested on more mul-668

tilingual models like Aya or Bloom. Nevertheless,669

English-centric models are still widely used, even670

in a multilingual context. While our work focuses671

on the editing method rather than the model itself, 672

future work that attempts to get the most accurate 673

edited multilingual model might need to rely on 674

larger and explicitly multilingual models. 675

Choice of languages The proposed BABELED- 676

ITS dataset contains 60 languages and improves 677

upon previous datasets which contain at most 678

53 languages (Nie et al., 2024). BABELED- 679

ITS includes several low-resource languages, with 680

namely 9 languages among the class 1 from Joshi 681

et al. (2020) (the "scrapping-bys"). In contrast, the 682

only absent class is class 0, for obvious reasons 683

since it contains languages with virtually no unla- 684

belled data available. 685

BABELREFT and the compared baselines are 686

not evaluated on all 60 languages, but only on a 687

subset of 10 languages due to computational con- 688

straints. However, those 10 languages were se- 689

lected before the experiments to obtain diversity in 690

scripts, language families, and degrees of resource- 691

fulness. 692

8 Ethical considerations 693

Like any other knowledge editing method, the pro- 694

posed BABELREFT method can be used for harm- 695

ful purposes. Since it injects new knowledge into 696

an existing LLM, it can be used to propagate false 697

information. While the KE methods still seem to be 698

in their infancy, they might not directly threaten ac- 699

cess to information. But if and when KE methods 700

become production-ready, they could help make 701

LLM more accurate just as well as inject harmful 702

false information. 703

Cross-lingual knowledge editing also presents 704

an opportunity to bridge some gaps in informa- 705

tion access across languages. LLMs can have fac- 706

tual inconsistencies across languages (Fierro and 707

Søgaard, 2022; Qi et al., 2023), and CKE could 708

help address that. However, there is also a chance 709

that KE techniques could uniformize information 710

across languages to a point where cultural excep- 711

tion is suppressed. While this paper is still far 712

from posing such a threat, we advocate that all re- 713

searchers involved in knowledge editing keep this 714

ethical consideration in mind. 715
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A Additional Methodology1104

A.1 Evaluation Metrics1105

We report the formulations of rewrite score (RS),
paraphrase score (PS), and portability score (PoS)
used in our study.

RS =
pθ∗(o

′|πrel(s, r))− pθ(o
′|πrel(s, r))

1− pθ(o′|πrel(s, r))
(3)

PS =
pθ∗(o

′|πgen(s, r))− pθ(o
′|πgen(s, r))

1− pθ(o′|πgen(s, r))
(4)

PoS =
pθ∗(o

′|πport(s, r))− pθ(o
′|πport(s, r))

1− pθ(o′|πport(s, r))
(5)

where pθ∗ is the output distribution of the edited1106

model and pθ is the output distribution of the origi-1107

nal model. For locality, we use the neighborhood1108

KL-divergence score over a locality prompt:1109

NKL =∑
o′1,...,o

′
m

pθ(o
′
i|πloc(s, r, o

′
:i)) log

pθ(o
′
i|πloc(s, r, o

′
:i))

pθ∗(o′i|πloc(s, r, o′:i))

(6)

where o′i is the i-th token of the object o′ and1110

πloc(s, r, o
′
:i) is the locality prompt truncated at the1111

i-th token.1112

A.2 GRACE1113

GRACE maintains a codebook (at a specific layer),
which stores key-value pairs with keys being
cached activations and values learned hidden state
vectors that modify the model’s behavior. If a hid-
den state hℓ−1 falls into the ball of radius εi cen-
tered on a key ki in a set of stored keys K, then
the corresponding value vi ∈ V, which is learned
through backpropagation, will replace it (where
d(·) is some distance function):

hℓ =


vi if ∃(ki, vi) ∈ K× V

s.t. d(hℓ−1, ki)) < εi

f ℓ(hℓ−1)) otherwise

(7)

As new edits come in, the codebook is updated1114

mostly by shrinking existing radii so that the ed-1115

its do not interfere. However, as we show in 51116

GRACE’s efficacy in cross-lingual KE highly de-1117

pends on the sensitive choice of the initial cluster1118

radius εinit. The gating function should activate1119

only on the edited prompt and its semantic equiva- 1120

lents across languages and not semantically related 1121

entities within a language: this, however, is difficult 1122

to achieve due to the limited semantic alignment 1123

of LLM hidden representations across languages 1124

(Kargaran et al., 2025). 1125

A.3 Language selection 1126

We report the languages included in our benchmark 1127

in Table 6. 1128

A.4 Relationship selection 1129

For constructing BABELEDITS, we sample the 200 1130

most frequent relationships that we could extract 1131

from Wikipedia and BabelNet such as to perform a 1132

manual selection of the 100 most adequate of them. 1133

We removed relationships that had the following 1134

issues: 1135

• Relationships that can have many different an- 1136

swers, like SEMANTICALLY_RELATED 1137

(Alma mater, SEMANTICALLY_RELATED, 1138

Mean Girls 2) or INSTANCE_OF (1672, IN- 1139

STANCE_OF, Calendar year) 1140

• Relationships which do not make sense when 1141

edited. for examples, if the subject and the ob- 1142

ject are similar like GIVEN_NAME (Miklós 1143

Horthy, GIVEN_NAME, Miklós) 1144

• Relationships that are very specific to a given 1145

field, like PARENT_TAXON (Coronaviri- 1146

dae, PARENT_TAXON, Nidovirales) 1147

• Relationships that reflects the structure of 1148

Wikipedia or BabelNet rather than the actual 1149

world (9/11, WIKIMEDIA_OUTLINE, Out- 1150

line of the September 11 attacks) 1151

B Additional Results 1152

B.1 Translation quality assessment 1153

We manually compared the quality of our entities 1154

translated with the EasyProject method (Chen et al., 1155

2023) with entities directly translated with Google 1156

Translate. Since four of the authors speak a dif- 1157

ferent language, we randomly sample up to 100 1158

translations from the test set in each language: Ger- 1159

man, Italian, French, and Croatian. 1160

For each annotator, the 100 pairs of translations 1161

were randomly inverted to make it impossible to 1162

guess which one is the raw translation and which 1163

one is the result of applying EasyProject. 1164
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Language
ISO
639-1
code

# Wikipedia
articles (in
millions)

Class in
Joshi et al. (2020)

Script
Language
family

Afrikaans af 0.09 3 Latin IE: Germanic
Arabic ar 1.02 5 Arabic Afro-Asiatic
Azerbaijani az 0.18 1 Latin Turkic
Belarussian be 0,43 3 Cyrillic IE: Slavic
Bulgarian bg 0.26 3 Cyrillic IE: Slavic
Bengali bn 0.08 3 Brahmic IE: Indo-Aryan
Catalan ca 1.70 4 Latin IE: Romance
Czech cs 1.57 4 Latin IE: Slavic
Danish da 0.79 3 Latin IE: Germanic
German de 2.37 5 Latin IE: Germanic
Greek el 0.17 3 Greek IE: Greek
English en 5.98 5 Latin IE: Germanic
Spanish es 1.56 5 Latin IE: Romance
Estonian et 0.2 3 Latin Uralic
Basque eu 0.34 4 Latin Basque
Persian fa 0.7 4 Perso-Arabic IE: Iranian
Finnish fi 0.47 4 Latin Uralic
French fr 2.16 5 Latin IE: Romance
Gujarati gu 0.03 1 Brahmic IE: Indo-Aryan
Hebrew he 0.25 3 Jewish Afro-Asiatic
Hindi hi 0.13 4 Devanagari IE: Indo-Aryan
Croatian hr 0.54 4 Latin Slavic
Haitian Creole ht 0.06 2 Latin Creole
Hungarian hu 0.46 4 Latin Uralic
Armenian hy 0.89 1 Armenian alphabet IE: Armenian
Indonesian id 0.51 3 Latin Austronesian
Italian it 1.57 4 Latin IE: Romance
Japanese ja 1.18 5 Ideograms Japonic
Javanese jv 0.06 1 Brahmic Austronesian
Georgian ka 0.13 3 Georgian Kartvelian
Kazakh kk 0.23 3 Arabic Turkic
Korean ko 0.47 4 Hangul Koreanic
Lithuanian lt 0.2 3 Latin IE: Baltic
Malayalam ml 0.07 1 Brahmic Dravidian
Marathi mr 0.06 2 Devanagari IE: Indo-Aryan
Malay ms 0.33 3 Latin Austronesian
Burmese my 0.05 1 Brahmic Sino-Tibetan
Dutch nl 1.99 4 Latin IE: Germanic
Norwegian no 1.53 1 Latin IE: Germanic
Punjabi pa 0.04 2 Brahmic IE: Indo-Aryan
Polish pl 1.44 4 Latin IE: Slavic
Portuguese pt 1.02 4 Latin IE: Romance
Cusco Quechua qu 0.02 1 Latin Quechuan
Romanian ro 0.42 3 Latin IE: Romance
Russian ru 1.58 4 Cyrillic IE: Slavic
Slovak sk 0.57 3 Latin IE: Slavic
Swedish sv 6.21 4 Latin IE: Germanic
Serbian sr 3.73 4 Serbian Cyrillic IE: Slavic
Swahili sw 0.05 2 Latin Niger-Congo
Tamil ta 0.12 3 Brahmic Dravidian
Telugu te 0.07 1 Brahmic Dravidian
Thai th 0.13 3 Brahmic Kra-Dai
Tagalog tl 0.08 3 Brahmic Austronesian
Turkish tr 0.34 4 Latin Turkic
Ukrainian uk 1.06 3 Cyrillic IE: Slavic
Urdu ur 0.15 3 Perso-Arabic IE: Indo-Aryan4
Uzbek uz 0.52 3 Latin Turkic
Vietnamese vi 1.24 4 Latin Austro-Asiatic
Yoruba yo 0.03 2 Arabic Niger-Congo
Mandarin zh 1.09 5 Chinese ideograms Sino-Tibetan

Table 6: Languages composing the BABELEDITS dataset. Languages in bold are the ones used for evaluation.
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We report the results of the translation quality1165

assessment in Table 7 and the annotator instructions1166

in Table 8.1167

B.2 Additional results1168

The following additional results can be found at the1169

end of the Appendix:1170

• Extended results with all evaluation aspects1171

and number of sequential edits in English of1172

Llama 3.1 and Gemma 2 in Table 14.1173

• Detail of evaluation metrics on each target1174

language after sequential editing in English1175

on the full BABELEDITS dataset with Llama1176

3.1 in Table 151177

• Detail of evaluation metrics on each target1178

language after sequential editing in English1179

on the full BABELEDITS dataset with Gemma1180

2 in Table 161181

• Evaluation of sequential editing in English of1182

Llama and Gemma 2 on the MzsRE dataset1183

(Zhang et al., 2025) on the languages that in-1184

tersect with our evaluation set (DE, EN, FR,1185

ZH) in Table 17.1186

• Results for single editing on LLaMa 3.1 in1187

Table 18.1188

• Results for single editing on Gemma 2 in Ta-1189

ble 19.1190

C Additional Experimental Details1191

C.1 Computing resources1192

We perform all of our editing experiments using the1193

EasyEdit library (Wang et al., 2024b) on a single1194

NVIDIA A6000/A100/A40 GPU (40 or 48 GB)1195

using bfloat16 precision. Each run takes between1196

5 to 20 hours: we estimate our editing experiments1197

to have required circa 2,250 GPU hours.1198

C.2 Hyperparameter Selection1199

The Hyperparameter selection was done for each1200

method using 100 randomly sampled parameter1201

sets. The editing is always done in English and the1202

validation criterion is the average reliability across1203

languages.1204

To pick the hyperparameters we perform a grid1205

search for each method/model/{single, sequential}-1206

editing combination using a random sample of 1001207

edits from the validation split of BABELEDITS.1208

We perform the editing in English and use average 1209

reliability across languages as a validation criterion. 1210

We search over the following grids: 1211

• FT-L: Layers: all, Learning Rate: {1e94, 5e9 1212

4} , Norm Constraint: {2e 9 3, 1e 9 4, 2e 9 5} 1213

• FT-M: Layers: all, Learning Rate: {1e94, 5e9 1214

4} 1215

• r-ROME: Layers: all, KL Factor: 1216

{0.0625, 0.9, 1}, 1217

• GRACE: Layers: all, Learning Rate: 1218

{0.1, 1.0}, Replacement: {last, all} , εinit : 1219

{0.1, 1.0, 100} 1220

• BABELREFT: Layers: all, Learning Rate: 1221

{1e 9 4, 1e 9 3, 2e 9 3}, Low-rank dimension- 1222

ality: {4, 16, 64} 1223

For FT-L, Norm Constraint indicates the L∞ norm 1224

constraint. For r-ROME, KL factor indicates the 1225

weight of the KL term in the v optimization term. 1226

For GRACE, replacement indicates whether the re- 1227

placed hidden states are all or just the one at the last 1228

token position. The best-found hyperparameters 1229

are in Table 9. 1230

C.3 Models Used 1231

We report in Table 10 the models used in our 1232

study together with their Huggingface Hub links 1233

for download. 1234

C.4 Prompt for GPT-4-based template 1235

prompt creation 1236

To verbalize these relations into usable prompts, 1237

we provide GPT-4o with the relation r and an ex- 1238

ample of subject s and o from the previously ex- 1239

tracted synsets and ask it to provide a template 1240

prompt π(⟨s⟩, r) to be later filled with the ap- 1241

propriate subject. For example, for the relation 1242

r = LOCATEDIN, then the GPT-4o output was 1243

π(⟨s⟩, r) = Where is ⟨s⟩ located in?. We addition- 1244

ally ask GPT-4o to generate a rephrased version of 1245

π(⟨s⟩, r) to create the generality set of BABELED- 1246

ITS. 1247

We report in Table 11 the full prompt used to ask 1248

GPT-4o to create template prompts and rephrase 1249

template prompts for BABELEDITS. In Table 12 we 1250

present the prompt used to have GPT-4o generate 1251

the multi-hop portability prompts. 1252
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Language Preference Ratio (%) Annotation Size Different Prompts
Italian 89.0% 100 512
French 90.0% 100 429
German 81.9% 83 193
Croatian 59.2% 71 133

Table 7: Results of the translation quality assessment for 4 languages. Different prompts indicates the number of
prompts in the test set for which the extended prompts π(s, r, o′) obtained with MT applied separately to subject,
object and prompt and our markered translations obtained with EasyProject differ.

You will be presented with a prompt for a knowledge editing task in the English
Language. Together with that, you will be provided with two translations
under the column labelled ’A’ and ’B’.
Your task is to express a preference for one of the two translations. Compare
the English prompt with the one in your mother tongue and choose the one
between the options ’A’ and ’B’ which sounds more correct to you both in terms
of how grammatical it is and how well the subject and object are translated.
You must always express a preference. If you are unsure about the nature of
the subject and object of the prompt, you can find Babelnet links to both
in the two columns titled ’BabelNet Subject URL’ and ’BabelNet Object URL’.
Simply write A or B in capital letters in the column titled ’Preference’.

Table 8: Task descriptions for the annotators which were asked to select between one of the two possible translations
of the English prompt.

C.5 Prompts used for downstream evaluation1253

We evaluate downstream performance using the1254

lm-eval library (Biderman et al., 2024), in a zero-1255

shot fashion on the intersection of our 10 languages1256

and the languages, in the Belebele benchmark (all1257

but QU) and XQuAD dataset (AR, DE, EN, ZH).1258

The prompts used for downstream evaluation for1259

the two downstream tasks (Belebele and XQuAD)1260

are reported in Table 13.1261

D Scientific artefacts1262

D.1 BabelNet License1263

BABELEDITS is a KE benchmark made from Ba-1264

belNet v5.3 downloaded from https://babelnet.1265

org, made available with the BabelNet NonCom-1266

mercial License (see https://babelnet.org/1267

full-license).1268

D.2 Software Used1269

This project utilized the following key software1270

libraries:1271

• The BabelNet Python API (version 1.2.0) was1272

used to access and query BabelNet (Navigli1273

and Ponzetto, 2010). It has a license that al-1274

lows free usage for research purpose7 1275

• Weights & Biases (wandb) version 0.18.7 was 1276

employed for experiment tracking and visu- 1277

alization citewandb and hyperparameter opti- 1278

mization. The Python SDK has MIT License. 1279

• hydra (Yadan, 2019) was used for configu- 1280

ration management (version 1.3.2, MIT Li- 1281

cense). 1282

• EasyEdit (Zhang et al., 2024b) was used 1283

for computing performing knowledge editing 1284

with the reported baselines (no version nam- 1285

ing, MIT License). 1286

• The Google Cloud Translate API (Python 1287

SDK version 3.18.0) 1288

The main Python dependencies were the follow- 1289

ing, and all were used within the boundaries of 1290

their license: 1291

• PyReFT (0.0.8, Apache License 2.0) 1292

• Pyvene (0.1.6, Apache License 2.0) 1293

• The HuggingFace datasets library (version 1294

3.1.0, Apache License 2.0) 1295

7https://babelnet.org/license

17

https://babelnet.org
https://babelnet.org
https://babelnet.org
https://babelnet.org/full-license
https://babelnet.org/full-license
https://babelnet.org/full-license
https://babelnet.org/license


FT-L FT-M r-ROME GRACE BABELREFT
Model Setting Layer Learning Rate Norm Constr. Layer Learning Rate Layer KL factor Layer Learning Rate Replacement εinit Layer Learning Rate Low Rank

Llama 3.1
Single 21 5e-4 0.002 15 5e-4 15 0.0625 19 0.1 last 100 12 2e-3 64
Sequential 19 1e-4 0.002 21 5e-4 17 1.0 21 0.1 all 100 12 2e-3 64

Gemma 2
Single 23 1e-4 0.002 27 5e-4 25 0.9 29 0.1 all 100 22 2e-3 64
Sequential 31 1e-4 0.002 31 1e-4 5 0.9 31 0.1 all 100 18 2e-3 64

Table 9: Knowledge Editing Methods best-found hyperparameters.

Model URL
Llama 3.1 8B Instruct https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct
Gemma 2 9B Instruct https://huggingface.co/google/gemma-2-9b-it
NLLB 200 600M https://huggingface.co/google/nllb-200-distilled-600M

Table 10: URLs of the models used in our study for the KE task (Llama 3.1, Gemma 2) or creating the subject
aliasing prompts (NLLB).

You are a helpful assistant that is able to leverage its world knowledge to
convert relations extracted from a knowledge graph (for example, WordNet or
Babelnet) into natural language questions. Given the relations provided in
the user input, create a question for each relation.
In the case of the relation PLAYS_FOR, the question could be ’Which team
does <subject> play for?’.
Moreover, create an additional version of the question by rephrasing.
The input is a markdown table with 4 columns: relation_name, count, subject,
object.
When creating the question, ALWAYS keep the <subject> placeholder. The
examples provided as subject and object are there just to help you understand
the relation; do NOT include them in the question, which means that you should
NOT replace the <subject> placeholder with the examples.
You simply need to output the result in tsv format with 6 columns:
relation_name, count, subject, object, question, and rephrase.
For all the columns except question and rephrase, simply copy the values
from the input tsv. Reply directly with the tsv file, without ANY additional
text.

Table 11: Prompt used to ask GPT-4o to create template prompts and rephrased template prompts.

• The HuggingFace tokenizers library (version1296

0.20.4, Apache License 2.0)1297

• The HuggingFace transformers library (ver-1298

sion 4.45.1, Apache License 2.0)1299

• Eleuther AI LM evaluation Harness (version1300

0.4.7, MIT License)1301

• pyahocorasick (2.1.0, BSD-3 Clause License)1302

D.3 Datasets used1303

• XQuAD (Artetxe et al., 2020) (License: CC1304

BY-SA 4.0)1305

• Belebele (Bandarkar et al., 2024) (License:1306

CC BY-SA 4.0)1307

• MzsRE (Wang et al., 2024c) (No license 1308

found) 1309

• BabelNet (Navigli and Ponzetto, 2010), see 1310

Section D.1 1311

• Wikipedia (License: CC BY-SA 4.0) 1312

E Usage of AI assistants 1313

We use ChatGPT and Claude 3.5 Sonnet to 1314

write parts of this paper, including text or creat- 1315

ing/refactoring tables. Throughout development, 1316

we used GitHub Copilot as our coding assistant. 1317
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You are a helpful assistant that is able to leverage its world knowledge to
convert relations extracted from a knowledge graph (for example, WordNet or
Babelnet) into natural language questions.
In this case we are dealing with joined triples of the form (subject, relation,
object, relation_2, object_2). You need to formulate a natural language
question which should be answered with object 2. Consider the case of (Messi,
PLAYS_FOR, Barcelona, LOCATED_IN, Spain).
The question could be ’In which country is the team that Messi plays for
located?’. In the generated question, NEVER mention the object (in this case,
Barcelona). Let me repeat: Do NOT INCLUDE the object in the question.
The input will be a markdown table, with five columns: subject, relation,
object, relation_2, object_2.
Please reply directly without any additional text, one question per line, no
special characters at the beginning of each line and separate each line with
a SINGLE newline character and not two. Just a reminder: only one question
per line, only one newline character at the end of each line.

Table 12: Prompt used to ask GPT-4o to create the prompts for multi-hop portability.

Task (Language) Prompt Template
Belebele (all) P: {{flores_passage}}\nQ: {{question.strip()}}\nA: {{mc_answer1}}\nB: {{mc_answer2}}\nC: {{mc_answer3}}\nD: {{mc_answer4}}\nAnswer:

XQuAD (AR) AJ
�: {{context}}\n\nÈ@ 
ñ�: {{question}}\n\n
�
éK. Ag. @


:

XQuAD (DE) Kontext: {{context}}\n\nFrage: {{question}}\n\nAntwort:

XQuAD (EN) Context: {{context}}\n\nQuestion: {{question}}\n\nAnswer:

XQuAD (ZH) 语境: {{context}}\n\n问题: {{question}}\n\n回答:

Table 13: Prompts used to evaluate models on different multilingual benchmarks.
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Llama 3.1 Gemma 2

Edits FT-L FT-M r-ROME GRACE BABELREFT FT-L FT-M r-ROME GRACE BABELREFT

Cross-lingual Knowledge Editing Performance
↑ Reliability: edit success
100 1.59 21.94 -0.01 9.33 37.12 3.16 15.58 0.12 15.51 42.30
250 1.46 23.48 -0.02 9.31 35.89 2.81 12.74 0.01 16.36 41.48
500 1.59 19.98 -0.02 9.27 37.48 2.12 10.26 0.01 16.54 40.90
Full 1.52 19.51 -0.04 9.26 36.51 3.02 9.79 0.01 17.10 40.72
↑ Generality: edit success over paraphrases
100 1.29 19.73 -0.02 0.72 34.40 2.35 10.28 0.12 8.30 39.52
250 1.55 21.88 -0.02 0.54 33.74 2.09 7.81 0.01 8.76 38.46
500 1.48 17.87 -0.02 0.58 35.15 1.41 5.99 0.01 8.86 38.48
Full 1.71 17.69 -0.04 0.47 34.25 2.37 5.76 0.01 9.36 38.18
↑ Subject-Alias: edit success over prompts with a subject alias
100 1.49 17.23 -0.01 2.45 23.08 1.72 10.30 0.01 9.86 26.93
250 0.52 15.28 -0.01 1.91 25.65 1.63 6.11 0.00 10.29 28.87
500 0.83 11.05 -0.01 1.47 28.33 0.92 5.07 0.00 7.96 27.95
Full 0.87 11.93 -0.01 1.32 27.85 1.36 4.66 0.00 9.18 28.81
↓ Locality: preservation of unrelated knowledge
100 7.35 4.97 21.13 0.03 4.41 11.00 6.28 2.64 0.06 5.90
250 7.49 5.66 14.63 0.03 4.12 9.80 6.07 0.71 0.10 5.91
500 8.10 5.97 15.25 0.02 4.03 8.23 6.65 0.49 0.05 6.15
Full 7.34 5.97 13.13 0.03 4.20 11.23 6.75 0.45 0.09 6.37
↑ Multi-Hop: edit success over multi-hop queries
100 -0.16 0.25 -0.17 0.00 1.00 0.01 0.42 0.07 0.00 1.83
250 -0.69 -0.62 -0.70 0.00 0.84 0.01 0.20 0.01 0.01 1.32
500 -0.53 -0.32 -0.55 0.00 0.55 0.03 0.26 0.01 0.00 0.95
Full -0.37 0.12 -0.50 0.00 1.27 0.05 0.26 0.01 0.04 1.64

Downstream Performance
↑ Belebele (accuracy)
Original 73.59 73.59 73.59 73.59 73.59 84.68 84.68 84.68 84.68 84.68
100 73.42 73.99 34.89 73.59 73.50 84.48 84.46 24.14 84.71 84.59
250 73.73 72.02 22.51 73.50 73.47 84.49 84.56 22.92 84.71 84.60
500 73.79 68.06 28.64 73.56 73.50 84.48 84.38 26.07 84.71 84.70
Full 72.92 60.26 22.58 73.50 73.39 84.64 84.40 28.62 84.71 84.70
↑ XQuAD (EM)
Original 29.60 29.60 29.60 29.60 29.60 31.79 31.79 31.79 31.79 31.79
100 18.07 20.00 0.00 29.60 29.60 29.64 29.98 0.13 31.76 31.76
250 27.21 12.29 0.00 29.71 29.68 30.04 29.81 0.21 31.76 31.72
500 19.37 1.58 0.00 29.71 29.45 29.03 28.78 2.77 31.76 31.64
Full 19.35 0.36 0.00 29.71 29.18 26.37 29.81 4.33 31.76 31.70

Table 14: Comprehensive comparison of cross-lingual knowledge editing and downstream task performance for
Llama 3.1 8B and Gemma 2 9B models with sequential editing done in English with an increasing number of
sequential edits. Editing metrics are averaged over all target languages and multiplied by 100 for readability.
Bold numbers indicate the best performance for each metric and model combination. Downstream performance is
averaged over the target languages: Original indicates the model performance before editing.
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Method avg ar de en fr hr it ja ka my qu zh

Cross-lingual Knowledge Editing Performance
↑ Reliability
FT-L 1.52 0.48 1.83 6.56 2.20 0.91 2.47 0.38 0.47 0.26 0.43 0.78
FT-M 19.51 7.82 30.52 63.77 25.87 19.86 33.78 8.42 4.83 0.33 7.96 11.42
r-ROME -0.04 -0.04 -0.03 -0.00 -0.01 -0.02 -0.20 -0.03 -0.10 -0.04 -0.00 -0.00
GRACE 9.26 -0.00 1.13 99.08 0.38 0.47 0.75 0.00 0.00 0.00 -0.00 0.00
BABELREFT 36.51 20.90 63.04 98.49 49.86 40.92 64.38 19.44 18.38 2.17 10.81 13.19
↑ Generality
FT-L 1.71 0.38 1.83 8.02 2.13 1.14 2.92 0.30 0.50 0.25 0.56 0.83
FT-M 17.69 6.74 27.56 55.06 24.51 17.90 32.28 7.55 4.39 0.21 7.79 10.58
r-ROME -0.04 -0.02 -0.03 -0.00 -0.01 -0.03 -0.13 -0.06 -0.14 -0.05 -0.00 -0.00
GRACE 0.47 -0.00 0.76 2.67 0.57 0.47 0.47 0.10 0.09 -0.00 0.00 0.00
BABELREFT 34.25 20.90 59.17 93.69 47.64 35.17 61.30 18.66 13.30 2.25 11.61 13.00
↓ Locality
FT-L 7.34 8.88 8.97 9.13 8.50 7.35 8.92 7.74 8.21 1.28 3.70 8.05
FT-M 5.97 7.57 5.96 6.00 5.72 5.10 5.70 6.26 6.38 6.51 3.72 6.79
r-ROME 13.13 9.70 11.70 12.66 12.10 12.45 12.21 12.17 21.16 15.34 14.65 10.25
GRACE 0.03 0.00 0.00 0.30 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00
BABELREFT 4.20 2.50 6.64 9.60 6.18 4.31 6.95 2.56 1.30 0.49 2.16 3.45
↑ Multi-hop portability
FT-L -0.37 -1.54 -1.26 -0.16 -0.19 -0.01 -0.27 -0.25 -0.38 0.03 0.01 -0.02
FT-M 0.12 -1.54 -0.34 1.65 0.72 0.70 0.79 -0.25 -0.34 -0.04 -0.01 -0.01
r-ROME -0.50 -1.54 -1.51 -0.60 -0.37 -0.18 -0.52 -0.26 -0.38 -0.05 -0.03 -0.02
GRACE -0.00 -0.02 0.01 0.00 0.00 0.00 -0.00 0.00 -0.01 -0.00 -0.00 0.00
BABELREFT 1.27 0.53 2.55 2.94 2.29 1.68 1.86 0.65 0.63 -0.00 0.57 0.21
↑ Subject-alias portability
FT-L 0.87 0.25 0.71 4.19 0.25 1.20 2.21 0.16 0.01 0.31 0.00 0.27
FT-M 11.93 2.90 28.66 29.77 12.05 21.53 26.15 2.83 2.39 2.28 0.30 2.40
r-ROME -0.01 -0.02 -0.00 -0.00 -0.00 -0.00 -0.01 -0.01 -0.05 -0.00 -0.00 -0.00
GRACE 1.32 0.00 0.00 14.57 0.00 -0.00 0.00 -0.00 -0.00 0.00 -0.00 -0.00
BABELREFT 27.85 7.65 53.93 87.29 39.05 33.14 55.55 3.53 7.84 4.02 12.19 2.11
Downstream Performance
↑ Belebele
Original 73.59 73.22 77.11 88.67 82.78 74.00 81.0 77.67 52.33 43.78 - 85.33
FT-L 72.92 74.33 77.22 86.89 82.56 73.00 80.44 76.33 52.22 42.00 - 84.22
FT-M 60.26 57.33 64.11 70.78 69.56 56.78 66.89 60.67 45.11 35.00 - 76.33
r-ROME 22.58 25.11 19.33 20.78 24.00 23.89 23.00 22.33 21.22 24.89 - 21.22
GRACE 73.50 73.22 77.11 88.67 83.00 73.33 80.67 77.67 52.44 43.78 - 85.11
BABELREFT 73.39 73.67 76.78 88.56 82.89 73.22 80.11 77.44 52.22 43.78 - 85.22
↑ XQuAD
Original 29.60 28.91 34.71 32.44 - - - - - - - 22.35
FT-L 19.35 11.01 18.49 28.49 - - - - - - - 19.41
FT-M 0.36 0.00 0.42 0.17 - - - - - - - 0.84
r-ROME 0.00 0.00 0.00 0.00 - - - - - - - 0.00
GRACE 29.71 28.99 34.54 33.03 - - - - - - - 22.27
BABELREFT 29.18 28.74 34.12 31.85 - - - - - - - 22.02

Table 15: Results detailed by language for the sequential edits performed in English on the full BABELEDITS
dataset with LLaMA 3.1 7B.
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Method avg ar de en fr hr it ja ka my qu zh

Cross-lingual Knowledge Editing Performance
↑ Reliability
FT-L 3.02 0.76 3.24 18.73 3.06 0.72 5.64 0.29 0.11 -0.02 0.17 0.55
FT-M 9.79 1.53 13.59 62.49 8.82 4.04 13.57 1.23 0.78 -0.02 0.06 1.55
r-ROME 0.01 0.00 0.00 0.00 0.00 0.00 -0.00 -0.00 0.00 0.09 0.00 0.00
GRACE 17.10 4.80 23.50 98.55 16.77 10.85 22.88 3.98 2.47 0.00 0.09 4.25
BABELREFT 36.51 20.90 63.04 98.49 49.86 40.92 64.38 19.44 18.38 2.17 10.81 13.19
↑ Generality
FT-L 2.37 0.69 2.58 13.83 2.67 0.79 4.23 0.28 0.14 -0.03 0.23 0.61
FT-M 5.76 1.00 10.08 29.53 6.57 3.66 8.91 1.07 0.45 -0.02 0.04 2.10
r-ROME 0.01 0.00 -0.00 0.00 0.00 0.00 -0.00 -0.00 0.00 0.14 0.00 0.00
GRACE 9.36 3.56 18.58 30.52 14.00 9.07 17.18 3.35 2.23 0.00 0.00 4.47
BABELREFT 34.25 20.90 59.17 93.69 47.64 35.17 61.30 18.66 13.30 2.25 11.61 13.00
↓ Locality
FT-L 11.23 12.29 13.27 15.65 13.86 13.65 14.33 5.52 14.13 1.41 11.84 7.61
FT-M 6.75 8.90 7.31 8.69 7.64 7.76 8.53 4.88 6.61 0.94 6.94 6.07
r-ROME 0.45 0.27 0.22 0.07 0.14 0.65 0.18 0.69 1.08 0.86 0.35 0.49
GRACE 0.09 0.05 0.22 0.34 0.08 0.04 0.18 0.01 0.00 0.00 0.00 0.04
BABELREFT 4.20 2.50 6.64 9.60 6.18 4.31 6.95 2.56 1.30 0.49 2.16 3.45
↑ Multi-hop portability
FT-L 0.05 0.05 0.06 0.22 0.11 0.01 0.08 0.07 0.01 -0.04 0.01 0.01
FT-M 0.26 0.04 0.38 1.29 0.24 0.11 0.16 0.29 0.01 -0.04 0.16 0.17
r-ROME 0.01 0.00 0.00 0.00 -0.00 0.00 -0.00 -0.01 -0.00 0.13 0.00 0.01
GRACE 0.04 0.00 0.16 0.16 0.00 0.00 0.16 -0.00 -0.00 0.00 0.00 0.00
BABELREFT 1.27 0.53 2.55 2.94 2.29 1.68 1.86 0.65 0.63 -0.00 0.57 0.21
↑ Subject-alias portability
FT-L 1.36 0.24 1.52 8.33 0.49 0.18 4.08 0.07 0.01 0.01 0.00 0.05
FT-M 4.66 0.47 5.53 28.44 5.20 2.93 6.87 0.36 0.36 0.01 0.76 0.37
r-ROME 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 -0.00 0.00 0.00
GRACE 9.18 1.54 10.28 34.75 15.51 14.00 18.89 1.23 1.02 1.02 2.29 0.44
BABELREFT 27.85 7.65 53.93 87.29 39.05 33.14 55.55 3.53 7.84 4.02 12.19 2.11
Downstream Performance
↑ Belebele
Original 84.68 85.78 88.00 93.22 90.67 86.67 89.67 85.11 74.89 64.00 - 88.78
FT-L 84.64 85.89 88.11 93.78 90.67 86.67 89.67 84.89 75.33 63.11 - 88.33
FT-M 84.40 86.00 87.56 93.89 90.67 86.11 89.56 85.33 75.11 61.33 - 88.44
r-ROME 28.62 24.33 25.22 52.56 30.22 22.78 28.89 23.56 22.67 22.89 - 33.11
GRACE 84.71 86.00 88.11 93.22 90.78 86.78 89.78 85.11 75.11 63.44 - 88.78
BABELREFT 84.70 86.00 88.22 93.33 90.67 86.78 89.78 85.11 75.11 63.22 - 88.78
↑ XQuAD
Original 31.79 24.71 27.31 46.89 - - - - - - - 28.24
FT-L 26.37 21.26 22.44 43.19 - - - - - - - 18.57
FT-M 29.81 20.76 26.47 45.80 - - - - - - - 26.22
r-ROME 4.33 0.25 3.53 12.35 - - - - - - - 1.18
GRACE 31.76 24.62 27.48 47.23 - - - - - - - 27.73
BABELREFT 31.70 24.62 27.23 47.31 - - - - - - - 27.65

Table 16: Results detailed by language for the sequential edits performed in English on the full BABELEDITS
dataset with Gemma 2 9B.

22



Methods Llama 3.1 Gemma 2
avg de en fr zh avg de en fr zh

Cross-lingual Knowledge Editing Performance
↑ Reliability
FT-L 1.50 0.94 3.90 0.78 0.39 2.54 1.23 7.25 1.34 0.34
FT-M 27.53 23.09 64.76 17.52 4.75 25.28 17.63 68.44 12.86 2.20
r-ROME -0.13 -0.20 -0.24 -0.05 -0.02 0.00 0.00 0.00 0.00 -0.00
GRACE 25.17 0.78 99.51 0.40 0.00 30.13 13.10 98.95 7.11 1.34
BABELREFT 45.24 44.31 97.23 34.25 5.17 47.74 48.89 97.95 37.45 6.68
↑ Generality
FT-L 1.13 0.75 2.65 0.72 0.40 1.89 1.20 5.02 1.07 0.28
FT-M 23.23 20.66 51.87 16.01 4.39 17.31 15.23 41.99 10.17 1.84
r-ROME -0.11 -0.24 -0.14 -0.04 -0.02 0.00 0.00 0.00 -0.00 -0.00
GRACE 2.57 0.53 9.50 0.26 0.00 12.33 9.09 35.21 4.53 0.51
BABELREFT 42.13 42.57 89.87 31.09 4.99 44.00 46.55 88.80 34.15 6.48

Downstream Performance
↑ Belebele
Original 83.47 77.11 88.67 82.78 85.33 90.17 88.00 93.22 90.67 88.78
FT-L 83.22 77.00 88.44 82.56 84.89 90.06 88.11 93.44 90.56 88.11
FT-M 71.53 63.33 80.78 68.33 73.67 90.03 87.78 93.33 90.67 88.33
r-ROME 22.89 22.89 22.89 22.89 22.89 25.83 24.56 27.11 26.22 25.44
GRACE 83.36 76.78 88.67 82.78 85.22 90.22 88.11 93.22 90.78 88.78
BABELREFT 83.31 77.00 88.56 82.44 85.22 90.03 87.78 93.11 90.56 88.67
↑ XQuAD
Original 29.83 34.71 32.44 - 22.35 34.15 27.31 46.89 - 28.24
FT-L 4.90 1.26 9.08 - 4.37 33.81 28.07 44.87 - 28.49
FT-M 5.97 4.29 7.56 - 6.05 34.71 31.43 47.06 - 25.63
r-ROME 0.00 0.00 0.00 - 0.00 3.31 0.67 8.99 - 0.25
GRACE 29.94 34.54 33.03 - 22.27 34.15 27.48 47.23 - 27.73
BABELREFT 29.75 34.45 32.52 - 22.27 34.12 27.31 46.81 - 28.24

Table 17: Comparison of knowledge editing methods across Llama 3.1 and Gemma 2 models for sequential editing
done in English on the entire MzsRE dataset (742 edits), showing both editing performance and downstream task
evaluation.
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Methods avg ar de en fr hr it ja ka my qu zh

Cross-lingual Knowledge Editing Performance
↑ Reliability: edit success
FT-L 4.26 1.84 6.71 7.70 5.82 5.95 7.78 1.93 0.85 0.31 5.43 2.48
FT-M 28.87 25.46 39.29 37.10 35.98 34.98 39.74 25.61 20.33 8.57 24.22 26.32
r-ROME 16.24 10.78 24.00 29.76 22.26 17.41 24.29 11.10 2.64 5.31 14.96 16.13
GRACE 32.58 19.55 45.33 46.19 40.65 41.69 46.73 19.19 18.66 14.57 41.37 24.42
BABELREFT 30.96 27.02 43.65 37.48 39.02 39.18 41.54 24.46 22.10 9.41 29.01 27.64
↑ Generality: edit success over paraphrases
FT-L 4.38 1.93 7.05 8.35 5.96 5.91 8.06 1.99 0.72 0.34 5.36 2.47
FT-M 27.81 24.61 38.07 35.42 34.53 33.48 38.61 24.94 19.23 8.24 23.38 25.36
r-ROME 15.67 10.48 23.50 28.57 21.69 16.04 24.70 10.40 2.68 5.07 14.14 15.10
GRACE 32.20 19.16 44.92 45.63 40.21 41.37 46.27 19.06 18.25 14.49 40.97 23.93
BABELREFT 28.45 22.55 41.59 35.04 37.30 35.89 40.18 22.55 17.64 8.46 26.50 25.26
↓ Locality: preservation of unrelated knowledge
FT-L 2.80 2.69 3.53 2.94 3.22 3.47 3.68 3.01 2.30 0.77 2.37 2.78
FT-M 2.79 3.04 3.56 2.86 3.39 3.19 3.58 3.02 1.97 0.69 2.48 2.88
r-ROME 2.91 2.04 3.61 4.16 3.95 2.32 4.10 2.49 1.26 1.90 2.68 3.49
GRACE 6.62 6.72 6.56 3.01 5.56 7.40 6.43 7.77 5.91 8.45 9.85 5.21
BABELREFT 3.70 2.53 5.00 4.20 4.77 4.38 4.87 2.69 1.96 1.57 5.04 3.68
↑ Subject-Alias: edit success over prompts with a subject alias
FT-L 3.91 2.34 6.16 7.48 5.85 5.25 7.32 1.78 0.69 0.21 3.60 2.29
FT-M 24.24 21.19 34.76 34.16 33.04 30.96 36.47 20.03 16.74 0.52 19.00 19.80
r-ROME 10.30 8.00 15.97 20.53 15.54 11.39 18.03 6.20 1.54 2.07 8.21 5.79
GRACE 31.96 17.11 45.57 48.40 43.28 42.87 47.74 17.08 17.12 9.48 42.01 20.87
BABELREFT 19.16 12.56 32.25 27.42 29.25 25.50 30.15 11.52 10.60 0.55 19.81 11.15
↑ Multi-hop: edit success over multi-hop queries
FT-L -0.14 -0.30 -0.00 0.09 -0.06 0.03 -0.01 -0.26 -0.39 -0.21 -0.07 -0.35
FT-M 0.67 0.61 0.91 0.85 0.72 0.54 0.81 0.70 0.43 0.81 0.44 0.50
r-ROME 0.30 0.10 0.34 0.51 0.52 0.50 0.51 0.21 -0.14 0.19 0.47 0.08
GRACE 0.37 -0.12 0.66 0.65 0.50 0.43 0.58 0.06 -0.02 0.83 0.55 -0.08
BABELREFT 1.16 0.98 1.31 1.25 1.46 1.04 1.42 1.02 1.11 1.72 0.55 0.88

Downstream Performance
↓ Delta PPL
FT-L 59.25 15.80 2.11 0.89 1.44 6.57 2.02 1.82 2.68 2.13 6.12e2 3.48
FT-M 79.52 84.01 40.24 3.37 16.05 26.93 36.05 15.15 11.95 58.20 5.77e2 5.42
r-ROME 4.02e2 26.00 10.89 6.00 10.17 34.31 15.50 18.19 1.29e3 1.93e2 2.80e3 13.30
GRACE 5.46e4 3.11e4 5.09e4 8.65e4 3.61e4 5.29e4 5.12e4 1.91e4 2.75e4 1.33e4 1.29e5 1.02e5
BABELREFT 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00

Table 18: Comprehensive comparison of cross-lingual knowledge editing in the single edit setup and perplexity
variation for Llama 3.1 8B. Each column (except ’avg’) corresponds to an editing language, and the results are
averaged across all the target languages. Column ’avg’ averages those results. Values are percentages except for
perplexity where they are absolute values, and bold numbers indicate best performance for each metric and language.
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Methods avg ar de en fr hr it ja ka my qu zh

Cross-lingual Knowledge Editing Performance
↑ Reliability: edit success
FT-L 4.19 2.07 8.75 9.13 7.38 4.28 6.42 1.70 0.29 1.21 2.75 2.09
FT-M 24.37 17.79 33.76 36.12 31.67 27.30 33.47 17.55 15.64 8.79 24.61 21.42
r-ROME 6.80 3.99 10.85 13.90 9.50 8.93 11.34 2.86 0.50 0.96 7.82 4.18
GRACE 24.88 17.97 33.89 37.86 31.54 28.33 33.48 18.13 16.50 9.10 24.73 22.14
BABELREFT 30.45 23.88 43.11 42.10 39.34 37.74 40.84 20.52 21.84 9.21 34.82 21.49
↑ Generality: edit success over paraphrases
FFT-L 3.99 1.92 8.08 9.05 6.75 3.88 5.93 1.75 0.21 1.59 2.96 1.83
FT-M 22.36 15.75 31.30 32.85 28.97 24.92 30.85 16.29 13.61 8.53 23.65 19.22
r-ROME 6.49 3.63 10.29 13.08 9.07 8.57 10.94 2.79 0.45 0.94 7.71 3.88
GRACE 23.08 16.21 31.64 35.18 29.06 25.90 30.99 17.11 14.73 8.97 24.02 20.12
BABELREFT 27.68 19.64 40.48 39.24 36.81 34.30 38.89 18.26 17.43 8.17 32.62 18.68
↓ Locality: preservation of unrelated knowledge
FT-L 2.10 2.24 2.33 2.13 2.39 2.29 2.29 2.46 2.51 0.39 1.86 2.23
FT-M 3.30 2.71 3.29 3.56 3.87 3.09 3.50 4.06 2.91 0.82 4.38 4.08
r-ROME 3.28 2.49 3.81 4.27 3.56 3.58 3.26 3.43 2.81 1.43 3.37 4.10
GRACE 3.07 2.59 3.09 3.51 3.64 2.34 3.38 3.41 3.37 0.40 3.95 4.12
BABELREFT 5.04 2.79 6.24 7.05 6.13 5.62 5.96 3.43 4.46 1.01 8.67 4.05
↑ Subject-Alias: edit success over prompts with a subject alias
FT-L 2.66 1.36 5.50 6.84 4.96 2.98 4.01 1.06 0.16 0.02 1.36 0.97
FT-M 17.92 12.81 25.08 28.33 26.30 20.32 26.56 12.02 12.01 0.53 20.10 13.00
r-ROME 6.02 3.28 10.47 13.06 7.05 7.79 10.34 3.05 0.80 0.62 5.97 3.75
GRACE 18.01 12.69 24.65 27.09 25.32 21.12 24.94 13.28 12.65 0.39 21.96 14.06
BABELREFT 18.34 10.96 28.34 30.14 28.30 24.28 29.21 8.79 9.62 0.26 25.02 6.83
↑ Multi-hop: edit success over multi-hop queries
FT-L 0.44 0.18 0.80 0.58 0.67 0.57 0.51 0.19 0.12 0.82 0.22 0.18
FT-M 0.86 0.57 0.98 1.15 0.96 0.73 1.00 0.68 0.45 1.50 0.85 0.57
r-ROME 0.25 0.13 0.37 0.38 0.32 0.23 0.36 0.15 0.13 0.19 0.31 0.14
GRACE 0.64 0.43 0.75 0.90 0.80 0.66 0.80 0.61 0.38 0.62 0.59 0.44
BABELREFT 1.07 0.66 1.22 1.12 1.27 1.01 1.03 0.90 0.63 2.47 0.88 0.55
Downstream Performance
↓ Delta PPL
FT-L 12.69 -6.37 -19.02 -14.01 -17.13 -16.17 -18.60 4.66 23.14 30.77 171.04 1.34
FT-M 1.38e2 48.18 52.00 34.94 29.17 69.28 61.19 9.10 31.36 65.98 1.09e3 19.72
r-ROME 1.65e8 4.96e6 1.94e7 8.57e6 1.85e7 1.72e8 1.03e7 1.37e7 4.37e5 6.36e5 1.57e9 2.82e6
GRACE 8.20e2 9.22e2 4.66e2 6.80e2 5.31e2 6.39e2 5.12e2 4.93e2 5.94e2 4.92e2 2.80e3 8.83e2
BABELREFT 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 19: Comprehensive comparison of cross-lingual knowledge editing and perplexity variation for Gemma 2
9B. Each column (except ’avg’) corresponds to an editing language, and the results are averaged across all the
target languages. Column ’avg’ averages those results. Values are percentages except for perplexity where they are
absolute values, and bold numbers indicate best performance for each metric and language.
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