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Abstract

Inner monologue is an essential phenomenon for reasoning and insight mining in
human cognition. In this work, we propose a novel approach for AI systems to
simulate inner monologue. Specifically, we consider the communications between
components in an LLM-centric system as inner monologues, and demonstrate
inner monologue reasoning ability can be learned by supervised learning and
reinforcement learning, and then be utilized to solve different complex vision-
language problems in different domains. Driven by the power of Large Language
Models (LLMs), two prominent methods for vision-language tasks have emerged:
(1) the hybrid integration between LLMs and Vision-Language Models (VLMs),
where visual inputs are firstly converted into language descriptions by VLMs,
serving as inputs for LLMs to generate final answer(s); (2) visual feature alignment
in language space, where visual inputs are encoded as embeddings and projected
to LLMs’ language space via further supervised fine-tuning. The first approach
provides light training costs and interpretability but is hard to be optimized in an
end-to-end fashion. The second approach presents decent performance, but feature
alignment usually requires large amounts of training data and lacks interpretability.
With inner monologue simulation, our approach achieves competitive performance
with less training data and promising interpretability when compared with state-of-
the-art models on two popular tasks.

1 Introduction

Recently, large language models (LLMs) have achieved substantial advancements. Notable models
like PaLM (Chowdhery et al., 2022), InstructGPT (Ouyang et al., 2022), and LLaMA (Touvron et al.,
2023) showcase their immense potential in the field of natural language processing and commonsense
reasoning. Despite the impressive performance, LLMs are far from human-level reasoning in terms
of multi-step reasoning ability and interpretability. When human perform complex reasoning, inner
monologue plays an essential role in human cognition in which an individual engages in silent verbal
communication with themselves. When people solve complicated reasoning problems, they tend
to use “inner monologue" by performing reasoning via multi-turn self-conversations in their minds.
Inner monologue helps people organize their thoughts and work through the optimal answers as a
form of problem-solving (Cherney, 2023; Huang et al., 2022). To address the challenges in LLMs, we
introduce a novel approach, Inner Monologue Multi-Modal Optimization (IMMO), to simulate the
inner monologue process and specifically focus on complex reasoning in vision-language tasks, such
as visual question-answering (VQA) or visual entailment (VE). Evidence shows that explicitly using
natural language as the intermediate representation of reasoning is effective and essential for human
cognition (Goldin-Meadow and Gentner, 2003; Chen et al., 2020; Lee et al., 2019; Zhang et al.,
2023). Many researchers explore using natural language as the intermediate representation to bridge
multiple modalities. Two research directions to add visual inputs into language space have been
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actively studied recently. The first direction is the hybrid integration between vision-language models
(VLMs) and LLMs (Yang et al., 2022; Salaberria et al., 2023; Zhu et al., 2023a). Hybrid integration
approaches aim to enable LLMs to utilize VLMs in a zero-shot or few-shot manner. These models
do not require heavy training costs and provide interpretability as the model outputs from LLMs
and VLMs are transparent. However, as LLMs do not access the visual inputs directly, they may
miss some visual details in the images. Also, most hybrid integration approaches merge LLMs and
VLMs in a discrete space, which are hard to optimize in an end-to-end fashion. The second direction
is visual feature alignment in language space, where visual inputs are encoded as embeddings and
projected to LLMs’ language space via further supervised fine-tuning (Dai et al., 2023; Chen et al.,
2023; Li et al., 2023a; Liu et al., 2023). This direction heavily relies on a large number of high-quality
training data and lacks interpretability (Gao et al., 2022).

To tackle this dilemma, we enable an Observer(s) and a Reasoner to interact through natural language
conversation by simulating inner monologue reasoning and propose to use supervised learning and
reinforcement learning to learn how to perform the inner monologue. We choose one LLM as the
Reasoner and one VLM as the Observer. Given a visual input and a visual reasoning problem, the
Observer perceives the visual information and abstracts it into a natural-language description. The
Reasoner decides whether the description has sufficient information to solve the problem or generates
a further question for the Observer to acquire more visual information. With multiple turns, the
Reasoner organizes the information and works through an answer. The figure in Appendix sec A
shows two examples of solving visual questions with the inner monologue. To automatically learn the
process of the inner monologue, the entire system is optimized by a policy gradient method named
Proximal Policy Optimization (PPO) (Schulman et al., 2017). Explicitly modeling and providing the
inner monologues make the thorough process for LM’s decisions transparent, offer user insights into
how it arrived at a particular output, help users understand why the model made certain choices, and
prompt users or developers to identify and correct errors thereby improving models’ reliability. As
expected, it may also gain user trust, help users detect bias, support better human-AI collaboration,
and help people study model behavior.

In summary, our contributions are as follows:

• Inspired by human cognition, we propose a novel approach, IMMO, to simulate inner
monologue with LMMs and how we use it in vision-and-language reasoning. IMMO can be
trained efficiently and has interpretability, which is also flexible to adapt to other modalities.

• We propose a two-stage training process to let the Observer(s) and Reasoner learn how to
work together. We created a new human-like multi-turn inner monologue reasoning training
corpus by augmenting existing VQA data with GPT-3.5.

• We evaluate IMMO on two vision-language reasoning tasks. Experiments show that IMMO
can achieve competitive results compared with GPT-4 based hybrid integration approaches,
while it uses significantly less training data and provides greater interpretability compared
with embedding alignment approaches.

2 Related Works

The success of large pre-trained language models (LLMs) has led to significant advancements in
solving vision-language problems by fusing visual representations into the language space. The
essence of these works is to allow LLMs to understand information from other modalities, using
their rich pre-trained language knowledge and the emerging ability (Wei et al., 2022a). Several
recent works have explored two research directions: embedding alignment and hybrid integration.
Approaches with embedding alignment focus on projecting visual embeddings to the language space
and fusing vision and language information via supervised fine-tuning in the language space (Dai et al.,
2023; Li et al., 2023a; Liu et al., 2023). Despite the impressive performance, these models demand
extensive engineering efforts to collect the training data and lack interpretability. Our approach
focuses on converting visual inputs to language descriptions while keeping decent performance,
which provides more interpretability and reduces training costs significantly. Approaches involving
hybrid integration convert visual inputs to language descriptions, such as image captions, via VLMs
and solve problems with LLMs (Yang et al., 2022; Salaberria et al., 2023). However, this approach
may lead to captions that are irrelevant to the question. To address this problem, several works adapt
interactive multi-turn conversations to promote VLMs and LLMs interacting with each other and
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Figure 1: The IMMO framework automatically acquires inner monologue capabilities through
reinforcement learning. The Reasoner (LLM) and Observer (VLM) are alternately designated as
the actively trainable model, highlighted with an orange hue and a fire icon, while the other model
assumes the role of a static environmental representation, distinguished by a light blue shade and a
snow icon.

acquiring more information (You et al., 2023; Zhu et al., 2023a). Despite these works providing
more interpretability and accessibility, they are usually in zero-shot or few-shot settings and have
significantly lower performance compared to the embedding-alignment-based approaches. Our
approach introduces a novel framework to optimize hybrid integration systems, which gives a more
decent performance while preserving interpretability.

3 Approach

An overview of the IMMO framework for solving complex vision and language problems is shown in
Figure 1. Our framework contains two components: Reasoner and Observer. The Observer takes
images as the inputs and generates textual descriptions to describe the key information it observes.
The Reasoner takes the generated textual descriptions and performs reasoning by either generating
a new query for the Observer or generating the final results of the task. We choose an LLM as our
Reasoner model and a VLM as our Observer model. The objective of the Reasoner is to generate
effective queries to obtain targeted information and the objective of the Observer is to provide
correct information based on the queries from the Reasoner. With multi-turn querying-answering
conversations between the Reasoner and the Observer, the Reasoner gathers information to address
the vision and language problems. Meanwhile, the Observer receives the queries and perceives more
visual details from the image. In this section, we start by presenting the IMMO framework and then
introduce the two-stage training approach for the IMMO framework.

3.1 Inner Monologue Multi-Modal Optimization

In the IMMO framework, the Reasoner and the Observer work together to solve a problem. Initially,
the Observer receives the image I and generates a caption C to describe the basic visual information
in the image. A text container IM will be used here to track the inner monologue, including the initial
caption C. At the intermediate i-th turn (i ∈ [1, t] where t is the predefined maximum conversation
turn), the Reasoner and the Observer will interact. Firstly, the Reasoner receives the original textual
description of the problem/task P combined with IMi−1 and generates a query Qi. Then, given
Qi, the Observer will provide the answer Ai based on the image. At the end of each turn, both
question and answer that are generated within the current turn will be added to the inner monologue
history. After the final conversation turn t, the Reasoner will provide its prediction Af for the original
problem P based on all the collected inner monologue. During the multi-turn iteration, the Observer
only accesses the input image and the most recent information query generated by the Reasoner,
while the Reasoner can access the complete QA history at any given timestamp through the input
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prompt. Once the interaction reaches a pre-defined number of turns, the system prompts LLM for
the final prediction. Appendix Sec. C describes the inner monologue process as formulas. Next, we
describe how IMMO optimizes the Reasoner and the Observer jointly.

3.2 Two-Stage Training

Although this multi-turn conversational framework can be used in a zero-shot manner through prompt-
ing, the collaboration between the Reasoner and the Observer is suboptimal. The collaboration
between the Reasoner and Observer should be further improved. For example, the Reasoner needs to
be familiar with the Observer’s capability in order to generate appropriate queries that the Observer
can answer. The Observer, on the other hand, should be optimized to extract correct visual information
based on the queries from the Reasoner. To alleviate the aforementioned underperformed collab-
oration problem, IMMO uses a two-stage training process: Supervised Human-prior Fine-tuning
and Reinforcement Learning. Figure 1 shows the overview of the IMMO framework, and only the
system-level reinforcement learning is illustrated.

To provide the Reasoner and the Observer a better starting point for reinforcement learning in the next
stage, we employ supervised fine-tuning in the first stage, similar to the approach used in InstructGPT
(Ouyang et al., 2022) to impart human reasoning patterns to the language model. Our training process
focuses on imparting effective inner monologue to the model, going beyond simple chit-chat or
prompt-based zero-shot learning. To achieve this, we enhance our pre-trained language model by
introducing human prior knowledge and reasoning patterns with supervised fine-tuning. We utilize
high-quality multi-turn conversational question-answering pairs annotated by humans as our training
data. Both the Reasoner and the Observer are trained on the human-annotated data as a warm-up
process. In the second stage, IMMO uses a special alternative training process for system-level
reinforcement learning to jointly optimize multiple models while taking into account the dynamic
interactions between models. Since the system involves two models, we use the alternating training
strategy to prevent issues that may arise from updating two models simultaneously, such as the
imbalance of capabilities of the Reasoner and the Observer (Goodfellow et al., 2014). Specifically, at
the 2k-th epoch where k is a non-negative integer, we set the Observer as the active model (policy
network) and the Reasoner as the environment model to provide feedback; at the 2k+1-th epoch, we
switch the Reasoner to be active and change the Observer as the environment model. During training,
we only update the active model. Following the common approaches used in previous works (Stiennon
et al., 2020; Ziegler et al., 2019) for fine-tuning auto-regressive decoder-only generative model, we
treat the active model as the policy network. The active model is updated by PPO (Schulman et al.,
2017) and the environment model remains frozen. Notably, the active model and the environment
model only affect which model will be updated, and the input/output of each model strictly follows
the multi-turn framework as shown in Figure 1. The algorithm uses the exact matching loss r(Af , G)
between the predicted answer Af and the ground-truth answer G as the major reward factor. The
final reward R shown in equation 1 also includes a KL penalty (Jaques et al., 2017) weighted by β to
ensure that the updated modelM does not deviate too far from the well-trained starting pointM0.

R = r(Af , G) + βKL(M,M0) (1)

The training goal is to optimize the policy that maximizes the expected reward. Appendix Sec. D
shows the algorithm of the overall training procedure.

4 Experiment

To evaluate the effectiveness of IMMO for complex vision-language reasoning, we conducted
experiments on two popular tasks: Commonsense Visual Question Answering (VQA) and Visual
Entailment (VE). Both tasks require models to have commonsense knowledge and reasoning abilities.
This section first describes our implementation of the IMMO framework and then presents the details
of these two tasks. We also provide a detailed comparison between IMMO with existing VQA
methods in Appendix Sec. F and an ablation study of the impact of conversation turns in Appendix
Sec. G. Appendix Sec. H presents the details of data preparation and model implementation.

1All the experiments in the table are named after the methods, and the language models involved are all
Vicuna-7B.
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Table 1: Results on ScienceQA test set.

Method 1 Training Reasoning Aids Accuracy(%)

PICa Zero-shot None 54.3
Vicuna 16-shots Chain-of-Thought 68.6
IMMO 16-shots Inner-Monologue 74.0

Vicuna SL Chain-of-Thought 78.3
IMMO SL+RL Inner-Monologue 84.8

Commonsense Visual Question Answering We conducted experiments on the ScienceQA (SQA)
(Lu et al., 2022) dataset, which is a standard benchmark for commonsense VQA, collected from
elementary and high school exams. Appendix Sec. E shows some success and failure examples of our
method. To study the impact of RL optimization and inner monologue on model performance, we
conduct experiments with 3 baselines. As shown in Table 1, different training methods and reasoning
aids were examined, while we used Vicuna-7B as LLM and BLIP-2 as a captioning model in all cases.
The first baseline is PICa (Yang et al., 2022). For a fair comparison, instead of using the default GPT-3
as LLM in PICa, we let PICa use Vicuna as its LLM. The second baseline is Vicuna-16-shots, which
incorporates the Chain-of-Thoughts (CoT) prompting (Wei et al., 2022b) with the Vicuna model. The
third baseline is Vicuna-SL, which is LLM fined tuned with the training data following instruction
fine-tuning (Chung et al., 2022; Taori et al., 2023). We also compare two training methods for IMMO:
few-shot learning (IMMO 16-shots) vs. two-stage training described in Section 3.2 (IMMO SL+RL).
Following the baseline setting, table 1 presents our results on the SQA test set. Results show that our
approach outperforms both few-shot baselines and the supervised finetuning baseline.

Table 2: Results on SNLI-VE.

Method Accuracy(%)

E
m

b MiniGPT4 (Zhu et al., 2023b) 35.1
LLaVA (ZS) (Liu et al., 2023) 40.3
OFA (Wang et al., 2022) 91.0

N
L

IdealGPT (You et al., 2023) 55.3

Vicuna-16-shots 49.8
Vicuna-SL 59.8
IMMO 65.7

Visual Entailment SNLI-VE (Xie et al., 2018) is a widely-used task designed as a classification
problem for vision-language reasoning: identify whether the relationship between the given image
premise and text hypothesis is entailment, neural, or contradiction. Table 2 shows the results on the
SNLI-VE dev set. We add another baseline: IdealGPT (You et al., 2023), a recent hybrid integration
approach that utilizes the rich reasoning knowledge of GPT-3.5-175B. Among approaches that use
text to represent visual information, IMMO achieves the best performance. With a much smaller
LLM, our best-performing checkpoints trained from Vicuna-7B achieved a 10.4% improvement over
IdealGPT (65.7% vs 55.3%). The results of 3 embedding-based methods (MiniGPT4 (Zhu et al.,
2023b), LLaVA (Liu et al., 2023), and OFA (Wang et al., 2022)) are also reported as a reference.
While well-tuned embedding-based methods such as OFA work well on this dataset, single-model-
based end-to-end optimization is not practical when interpretability is required or the training cost is
too high. In such situations, hybrid integration like IMMO could be a good choice.

5 Conclusion

Inspired by cognitive modeling, we apply inner monologue, a commonly seen human reasoning
process, in the interaction between LLM and VLM. The Inner Monologue explicitly visualizes the
system’s problem-solving progress in a human-readable way, which improves the interpretability
while maintaining decent performance.
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Social Impacts Statement

The most popular trend of multi-modal reasoning recently is projecting visual embeddings to the
language space which is optimized via multi-modal instruct tuning. However, this direction requires
heavy training costs (resources, electric energy, high-quality annotated data) and lacks interpretability.
Our approach is inspired by human cognition and provides an alternative way for multi-modal
reasoning via trainable inner monologue, which significantly reduces training costs while keeping
decent performance and interpretability. With these features, IMMO is more practical for real-world
cases and also saves more energy.

This paper is a first step towards this research direction, and there is much room for future im-
provement. Our current implementation promotes the reasoner querying certain turns, while an
ideal reasoner should autonomously determine whether to continue querying or end the inner mono-
logue with direct answers (for example, when adequate information has been gathered or due to
time/resource constraints). Our implementation only includes one observer, while it’s possible to
include more observers with different modalities or functionalities. Due to the resource limits, we
used a synthetic way to generate supervised training data, while organizations with ample resources
could hire human annotators to provide more labeled data with higher quality. The reward function
could also be further studied.

Appendix

A Example of Multi-modal Inner Monologue

Figure 2 shows two examples of solving visual questions with the inner monologue.

Figure 2: Examples of multi-model inner monologue.
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B Example of Inner Monologue Warmup data

Figure 3 demonstrates the procedure for the data augmentation. Please see the data appendix for
more data examples.

Figure 3: Example of converting human written declarative rationale to dialogue form reasoning path.

C Inner Monologue Formulas

In the IMMO framework, the Reasoner and the Observer work together to solve a problem. Initially,
the Observer receives the Image I and generates a caption C to describe the basic visual information
in the image. A text container IM will be used here to track the inner monologue, including the
initial caption C:

IM0 = C = Observer(I) (2)

At the intermediate i-th turn (i ∈ [1, t] where t is the predefined maximum conversation turn), the
Reasoner and the Observer will interact. Firstly, the Reasoner receives the original textual description
of the problem/task P combined with IMi−1 and generates a query Qi. Then, given Qi, the Observer
will provide the answer Ai based on the image. This process is shown as the equations 3, and 4.

Qi = Reasoner(P, IMi−1) (3)

Ai = Observer(I,Qi) (4)

At the end of each turn, both question and answer that are generated within the current turn will be
added to the inner monologue history. The IMi is defined as:

IMi = C +

i∑
j=0

(Qj +Aj) (5)

After the final conversation turn t, the Reasoner will provide its prediction Af for the original problem
P based on all the collected inner monologue:
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Af = Reasonser(P + IMt) (6)

During the multi-turn iteration, the Observer only accesses the input image and the most recent
information query generated by the Reasoner, while the Reasoner can access the complete QA history
at any given timestamp through the input prompt. Once the interaction reaches a pre-defined number
of turns, the system prompts LLM for the final prediction.

D Algorithm of IMMO

The overall training procedure of IMMO is shown in Algorithm 1.

Algorithm 1 IMMO Reinforcement Learning
Dataset: (Problem P , Image I , Ground Truth G) tuples
Reasoner: a pre-trained large language model
Observer: a pre-trained vision-language model
N: training epoch
t: pre-defined max turns
k: any none-negative integer

1: for epoch = 1 to N do
2: Set Reasoner as the active modelM
3: Set Observer as the environment model E
4: if epoch = 2k then
5: Set Observer as the active modelM
6: Set Reasoner as the environment model E
7: end if
8: Sample (P , I , G) from the dataset
9: C ← Observer(I)

10: Set IM0 = C
11: for i = 1 to t do
12: Qi ← Reasoner(P, IMi−1)
13: Ai ← Observer(I,Qi)
14: IMi = IMi−1 +Qi +Ai

15: end for
16: Af = Reasoner(P, IMt)
17: Reward← R {Eq. 1}
18: UpdateM using PPO
19: end for

E Representative cases from IMMO

Figure 4 displays instances of successful outcomes (a, b, and c) as well as an unsuccessful case (d)
depicting the interpretable inner monologues generated by IMMO. Example (b) shows LLM’s ability
to compensate for VLM inaccuracies (incorrect A2) through reasoning and available information.
Moreover, the questioning path in (b) and (c) demonstrate LLM’s vigilance in monitoring VLM
responses, persisting in using subsequent questions Q2 to validate information after Q1, even when
the information is enough to answer the main question. On the other side, example (d) exposes how
the VLM’s limited geographical background knowledge hinders LLM from arriving at an accurate
answer. However, the erroneous visual information from VLM misleads the LLM into an incorrect
final prediction. These examples illustrate the interpretability of IMMO.

F Comparison with additional VQA methods

We did some further analysis to compare representative solutions on the ScienceQA task (Table 3).
The embedding alignment approach, LLaVA (Liu et al., 2023), performs well; however, it requires
extensive training data and lacks interpretability. Hybrid integration such as IMMO, Chamaleon (Lu
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(d) Which country is highlighted?
Image: a map a green triangle on it.
Choices: ["the Federated States of 
Micronesia", "Nauru", "the Marshall 
Islands", "Kiribati"]

Q1:  Is the Marshall Islands or Nauru 
highlighted, or neither?
A1: Nauru.
Q2: Is the highlighted area a single island? 
A2: Yes.

Predict: Nauru
Ground-truth answer: the Marshall 
Islands

(b) In this food web, which organism 
contains matter that eventually moves 
to the mushroom? The arrows in a food 
web represent how matter moves 
between organisms in an ecosystem.
Image: A map with various animals
Choices: ["grizzly bear", "parasitic jaeger"]

Q1: Is there any arrow between grizzly 
bear and mushroom?
A1: Yes.
Q2: Any other entities connected to the 
mushroom?
A2: Lichen is connected with the 
mushroom.

Predict: grizzly bear
Ground-truth answer: grizzly bear

(a) Which property do these four 
objects have in common?
Image: Colorful toys on top of each other.
Choices: ["sticky", "slippery", "sour"]

Q1: How many toys?
A1: 4.
Q2: What is the name of each toy?
A2: Honey, wet glue, ice pop, tape.

Predict: sticky
Ground-truth answer: sticky

(c) Hypothesis: dogs racing near 
racetrack.
Image: Dog running by the fence.
Choices: ["Entailment", "Neutral", 
"Contradiction"]

Q1: Are all the dogs running in the same 
direction? Yes or no?
A1: Yes.
Q2: Are the dogs wearing the racing vest 
with a number or logo on it?
A2: Yes.

Predict: Entailment
Ground-truth answer: Entailment

Figure 4: Success and failure examples of IMMO.

LLaVa Chamaleon UnifiedQA IMMO
Interpretable ✗ ✓ ✓ ✓
Trainable ✓ ✗ ✓ ✓
Model size 13B GPT-4 223M 9B
Tuned param 13B 0 223M 5M
Data usage 770K - 17K 25K
SQA 90.9 86.5 74.1 84.8

Table 3: Comparison with other ScienceQA approaches.

et al., 2023) and UnifiedQA (Khashabi et al., 2020; Lu et al., 2022) employ modular architecture,
enabling model-wise interpretability by access to individual outputs from sub-modules. Chameleon is
based on GPT-4, which is not publicly available, and poses constraints on its adoption and further fine-
tuning. Compared with Chamaleon, IMMO achieved comparable performance with a significantly
smaller model. UnifiedQA uses supervised training akin to our Vicuna-SL baseline, however, it falls
short due to the lack of system-wide optimization and information loss when converting images
to captions. Compared with UnifiedQA, IMMO addresses these problems via inner monologue
and two-stage training, which significantly improves the performance of the hybrid integration
method. Furthermore, compared to Chamaleon and UnifiedQA, which offers simple model-level
interpretability, IMMO’s entire complex multi-round reasoning procedure is also transparent and
human-readable.

Notably, we can not rule out the possibility that black-box models like GPT-4 might have inadvertently
or intentionally undergone training using publicly accessible test data. Thus we list the performance
of those black-box models here for reference instead of as a baseline for a fair comparison. We expect
the proposed approach could be applied to other LLMs and VLMs such as GPT-4 and further improve
their performance.

G The Impact of Conversation Turns

To examine the impact of inner monologue turns on performance, we conduct ablation tests on
ScienceQA using both few-shot and trained approaches. Maintaining constant hyperparameters, we
evaluate turns ranging from 0 to 5, where 0 means VLM only provides an initial caption. As shown
in Figure 5, accuracy notably rises on the SQA test set from 0 to 2 turns, plateauing thereafter. Our
analysis identifies SQA questions as demanding less multi-hop reasoning than background knowledge.
Thus, LLM’s primary learned strategy involves querying key facts initially, followed by confirmation
or asking for side information. Also, more conversations bring uncertainty to the interaction as LLM
may ask less relevant questions after 3 turns or VLM brings incorrect visual information. This trend
is accentuated under the few-shot setting. Without training, LLM appears to be less robust to noise
conversation, so the performance rapidly decreases after 2 turns. It’s important to note that these
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Turns of Inner Monologue
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Figure 5: Ablation study on different inner monologue turns using on ScienceQA test set under
few-shot and trained manner.

findings are specific to ScienceQA question patterns, underscoring the best inner monologue turns
are highly based on the dataset’s characteristics.

H Data and Implementation

We construct a new training corpus for supervised human-prior fine-tuning by utilizing the A-
OKVQA (Schwenk et al., 2022) dataset, which includes human-annotated reasoning paths labeled as
rationale. We derive inner monologue from rationale. By prompting GPT-3.5 in a zero-shot manner,
we transform rationale into two-turn question-answering pairs (examples are Appendix Sec. B). The
results are then combined with 17k single-turn VQA samples. Each sample in the training corpus
contains a question, a choice list, two rounds of QA conversations, and the correct answer. At the
supervised fine-tuning stage, we optimize the autoregressive LLM by performing the next token
prediction task over this augmented corpus. At the reinforcement learning stage, the training is mainly
based on the Transformers-Reinforcement-Learning (TRL) solution (von Werra et al., 2020) to wrap
up the Hugging Face trainer (Wolf et al., 2020). For different tasks (VQA or VE), reinforcement
learning is performed on task-specific training sets.

Our proposed system uses the Vicuna-7b (Chiang et al., 2023) language model and BLIP-2 (Li et al.,
2023b) vision-language model. To ensure computational efficiency, we employed the Low-rank
adaptation (Lora) (Hu et al., 2021) to train only 0.06% of the Vicuna-7b model, which corresponds to
5 million parameters. Our experiments primarily focus on the validation of the methodology. For
broader applicability, we chose a model that can be trained on a single NVIDIA A100-40G GPU
or equivalent, instead of a more powerful but larger model. For simplicity, we used a fixed set of
hyperparameters (in Appendix B). Task-specific prompts for both LLM and VLM were designed
manually, inspired by prompt templates used by You et al. (2023); Liu et al. (2023).

Table 4 contains all shared hyperparameters from all experiments, including random seed and Lora-
related settings. As shown in Table 5, the top group (SL) reports the hyperparameters for both
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Hyperparameter Value

Random Seed 1
Lora target q, v

Lora r 8
Lora alpha 16

Lora dropout 0.05
Table 4: Fixed hyperparameters.

Hyperparameter LLM VLM

(SL)
Learning rate 2e-5 N/A
Warmup steps 100 N/A
Truncation False N/A

(RL)

IM turns 2 2
Learning rate 1.3e-5 4e-4
KL penalty (β) 0.15 0.15
Max new token 35 10
Temperature 0.15 N/A

Table 5: Hyperparameters setting for LLM and VLM.

supervised human-prior fine-tuning and baselines implementation (Vicuna-SL). We keep the VLM
fixed during this step. The bottom group (RL) shows the setting during the reinforcement learning
stage. Both tasks (VQA and VE) share the same hyperparameter setting.
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