© N O oA~ W N =

© O N O O A~ W N = O ©

SimpleTIR: End-to-End Reinforcement Learning for

Multi-Turn Tool-Integrated Reasoning

Anonymous Author(s)
Affiliation
Address

email

Abstract

Large Language Models (LLMs) can significantly improve their reasoning capa-
bilities by interacting with external tools, a paradigm known as Tool-Integrated
Reasoning (TIR). However, extending TIR to multi-turn scenarios using Rein-
forcement Learning (RL) is often hindered by training instability and performance
collapse. We identify that such instability is primarily caused by a distributional
drift from external tool feedback, leading to the generation of low-probability
tokens. This issue compounds over successive turns, causing catastrophic gradient
norm explosions that derail the training process. To address this challenge, we
introduce SimpleTIR, a plug-and-play algorithm that stabilizes multi-turn TIR
training. Its core strategy is to identify and filter out trajectories containing “void
turns”, i.e., turns that yield neither a code block nor a final answer. By removing
these problematic trajectories from the policy update, SimpleTIR effectively blocks
the harmful, high-magnitude gradients, thus stabilizing the learning dynamics. Ex-
tensive experiments show that SimpleTIR achieves state-of-the-art performance on
challenging math reasoning benchmarks, notably elevating the AIME24 score from
a text-only baseline of 22.1 to 50.5 when starting from the Qwen2.5-7B base model.
Furthermore, by avoiding the constraints of supervised fine-tuning, SimpleTIR
encourages the model to discover diverse and sophisticated reasoning patterns,
such as self-correction and cross-validation.

‘—o— SimpleTIR —— Naive Multi-turn Training Baseline (DAPO)
50%
35
45%
- 40% 30
&
5 35% 25
S €
¥} =
< 30% o
<+ Zz 20
& 259 €
z > S
T 20% 3
e [C]
5 15% 10
2
10% 5
5%
0
0%
? (0] 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200
Training Steps of Reinforcement Learning Training Steps of Reinforcement Learning

Figure 1: Starting from Qwen2.5-7B base model, The training dynamics of SimpleTIR are highly stable, and
it clearly outperforms the baseline method without TIR (). The gradient norm remains well-behaved
with almost no spikes. In contrast, Naive Multi-turn Training not only suffers from unstable dynamics and
catastrophic gradient norm explosions, but also fails to match the performance of the baseline without TIR.

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

20

21
22
23
24
25
26
27
28
29
30
31

32
33
34
35
36
37
38
39
40
41

42
43
44
45
46
47
48
49
50
51
52

53
54
55
56
57
58
59
60
61

62

63
64
65
66
67

68

69
70

1 Introduction

Training Large Language Models (LLMs) for multi-turn Tool-Integrated Reasoning (TIR) represents
a promising frontier in Reinforcement Learning (RL). In this paradigm, LLLMs iteratively reason,
generate code, execute it, and utilize the output for informed reasoning in the subsequent turns.
TIR addresses LLMs’ inherent limitations such as poor computational accuracy and knowledge
cutoffs. For example, by using a Python interpreter or a search engine, LLMs can perform precise
mathematical computations or retrieve current information. Despite its clear potential, training LLMs
for multi-turn TIR remains highly challenging due to frequent instability and gradient explosion
issues [1} 2} 3} 14]. One common solution is to “cold start” the model with Supervised Fine-Tuning
(SFT) to enhance stability [5]. However, this approach can constrain the model’s discovery of novel
reasoning strategies, undermining a core benefit of Zero RL training: emergent problem-solving and
diverse reasoning behaviors.

In this paper, we identify a core factor contributing to this training instability: the emergence and
accumulation of extremely low-probability tokens. When external tool feedback is used as model input
in multi-turn TIR, such input may deviate from the model’s pretrained data distribution. Although
the tool feedback itself is masked when computing the policy loss [6, 2l], the model’s subsequent
generations inherit this distributional shift, leading to increased stochasticity. Consequently, the
model is more likely to sample low-probability tokens. This issue is compounded in the multi-turn
loop, as these low-probability tokens are fed back as input, exacerbating the distributional shift in
subsequent turns. We make theoretical analysis of the gradient norm on softmax logits, which is part
of the total gradient regarding to model parameters, and find two dominating terms with negative
correlations to token probabilities. This explains the gradient explosion issues observed in prior work.

Building on this analysis, we propose SimpleTIR, an effective trajectory filtering algorithm that
stabilizes multi-turn TIR training. We observe that the accumulation of low-probability tokens and
high generation stochasticity frequently results in what we define as a void turn: an LLM response
that contains neither a complete code block nor a final answer. Typical examples include partial code,
repetitive text, or incomplete responses caused by the premature sampling of an end-of-sequence
(eos) token. The core strategy of SimpleTIR is to filter out trajectories containing void turns. By
excluding these trajectories from the policy loss computation, SimpleTIR blocks the harmful, high-
magnitude gradients associated with the problematic low-probability sequences, directly addressing
the gradient explosion issue. This filtering approach is also general and plug-and-play, requiring
minimal modifications to be integrated into existing training frameworks for improved stability and
performance with almost no extra cost.

To demonstrate the effectiveness of SimpleTIR, we conduct comprehensive experiments on chal-
lenging mathematical reasoning tasks. When applied to the Qwen2.5-7B base model, SimpleTIR
achieves state-of-the-art performance in multi-turn TIR, improving the AIME24 score from a text-
only baseline of 22.1 to 50.5. Our ablation studies confirm that filtering trajectories with void turns is
the crucial component for stabilizing training, overcoming the instability that plagues naive multi-turn
approaches and enabling significant performance gains. Finally, we highlight a key advantage of
our Zero RL approach. In contrast to methods that rely on a “cold-start” SFT phase, SimpleTIR
encourages the model to discover novel and diverse reasoning patterns, such as cross-validation,
progressive reasoning, and self-correction.

2 Preliminaries

End-to-end training of multi-turn Tool-Integrated Reasoning (TIR) agents with Reinforcement
Learning (RL) is challenging due to its compositional structure. We therefore model the process as
a Hierarchical Markov Decision Process [7], which separates decision-making into two levels: a
high-level policy governing the sequence of conversational turns and a low-level policy for generating
tokens within each turn.

2.1 Hierarchical MDP Formulation for Multi-Turn TIR

A full interaction trajectory is a sequence o = (g, lo, fo,---,lx—1, fK—1), where lj, is the model’s
generated response at turn k and f, is the subsequent tool feedback.

71
72

73
74

75
76

77
78

79

80
81

82
83

84

85
86

87
88

89
90

91

92
93
94

95

96
97
98
99
100

101

102
103

104

105

106
107
108
109
110

The high-level MDP, My = (Sy, Ay, T, Ry, vH), operates at the turn level to govern the overall
strategy.

* State (S;): Sk = (q,lo, fo,.--,lk—1, fr—1). This represents the complete conversation history
before the current turn.

* Action (L;): An option, or high-level sub-policy, that generates the entire response [, for the
current turn.

* Transition (Ty): Sip+1 = Sk o (Ig, fr), where the state evolves by appending the generated
response and its corresponding tool feedback.

* Reward (Rpy): R(0), a terminal reward assigned to the final trajectory based on its overall success.

The low-level MDP, M, = (Sy,, Ay, T, R1, 1), operates at the token level to execute the chosen
high-level action [8]].

* State (s;): s = Sk o (a1,...,a;—1). This is the sequence of tokens generated so far within the
current turn k.

* Action (a;): a; € A, a single token selected from the model’s vocabulary.

* Transition (77): s;11 = s: o ay, where the state evolves by deterministically appending the
selected token.

* Reward (R1): Ry = 0. The low-level policy receives no intrinsic reward, as its only goal is to
complete the high-level action.

In this framework, o denotes concatenation, and we set the discount factor v = vy = v = 1. We
train a single, unified policy 7y (a¢|s;) to implicitly solve this two-level problem.

2.2 Joint Policy Optimization and Feedback Masking

The unified policy 7y is trained using Group Relative Policy Optimization (GRPO) [9]. GRPO
circumvents the need for a learned value function [§] by calculating the advantage based on the
relative performance within a group of G trajectories sampled from the same prompt. The advantage
T —mcan({rj }]Gzl)
Fnorm({rj]'Gzl)

A critical adaptation is required for the TIR setting. The policy is only responsible for generating
response tokens (I1), not the environment-provided feedback tokens (fx). To ensure correct credit
assignment, we employ feedback token masking [6, 2]]. The loss is accumulated only over the
timesteps corresponding to the agent’s actions, effectively excluding feedback tokens from the
gradient computation.

for trajectory o; is A; = , where r; is the terminal reward from the high-level MDP.

This leads to our final training objective, Jr (6):

G o]

1 1
jTIR((g) =E q~qo, Z Z mizt - LCLIP(H, i7 t)) (])

{Oi}iG:INﬂ'Gold("q) G i=1 Zt mivt t=1

where m; ; is a binary mask that is 1 if the token at step ¢ belongs to any response [, and 0 otherwise.
The term Ly p is the standard clipped surrogate objective from PPO [10} [11]:

Leww(6,4, 1) = min (pi7t(9)A¢, clip(pie(6),1 —&,1+ 6)1217;) ,)

with the importance sampling ratio p; +(6) = %
old 2y k3

3 Methodology

We first diagnose a core source of instability in multi-turn TIR: the emergence of low-probability
tokens. We demonstrate how these tokens drive gradient explosions and create a credit assignment
dilemma during Zero-RL training. Building on this analysis, we introduce SIMPLETIR, a simple yet
effective trajectory filtering method that stabilizes training while encouraging the model to develop
sophisticated, multi-turn reasoning strategies.

111

112
113
114
115
116

117
118
119
120
121

122
123
124
125
126
127
128

129

130
131

132
133
134

—— Naive Multi-turn Training —— Naive Single-turn Training

8 1750 10
1500

0.4
0.2
L ne X

0o 200 400 600 800 o 200 400 600 800) 200 400 600 800 0o 200 400 600 800
Steps Steps Steps Steps

o

~
a
o

°
by
N
Code Use Fregency

AIME24 Score

o
N

Grad Norm
»

Response Length

3 R
o w
S o

u
i=3
o

o
o
o
o
o

Figure 2: Training statistics comparing naive single-turn and multi-turn TIR. Single-turn training proceeds
smoothly and achieves higher performance, while multi-turn training is unstable.

Vv W W

o

g
N
N

'
»
f

'
o
L

)
©
|

l

Turn 1 with Tool Call Turn 2 with Tool Call Turn 3 without Tool Call Turn 4 with Collapsed Response

Token Probability (Log Scale)

'
-
(=]

Figure 3: Visualization of token probabilities in a multi-turn TIR trajectory. The y-axis is log-scaled. Distribu-
tional drift from tool feedback in early turns leads to a collapse in token probabilities in later turns.

3.1 The Emergence of Low-Probability Tokens in Multi-Turn TIR

The instability of multi-turn TIR training is a known challenge [1} 2]]. To isolate the cause, we contrast
it with a minimal, single-turn TIR setting where the model produces exactly one response containing
reasoning and an optional code block. As shown in Fig.[2] the single-turn baseline trains smoothly
and achieves reasonable performance, whereas the multi-turn equivalent suffers from performance
collapse and recurring gradient spikes.

The key difference lies in the feedback loop. In multi-turn TIR, the tool feedback fj, from turn k
is concatenated into the prompt for turn k£ 4 1. Because this feedback originates from an external
interpreter, it can deviate significantly from the LLM’s learned data distribution. Conditioned on such
out-of-distribution (OOD) input, the model’s subsequent generations can drift away from pretrained
patterns, becoming highly stochastic and assigning unnaturally low probabilities to selected tokens.

We verify this phenomenon with a case study in Fig. [3] The tool feedback in the early turns contains
tokens with extremely low probabilities, confirming their OOD nature. While masking the loss on
these feedback tokens is a known practice [6} 2], it is insufficient. The distributional drift it induces
contaminates subsequent model generations. As seen in Fig.[3] while token probabilities in Turn 1 are
high, low-probability segments emerge in the model’s own text in Turns 2 and 3. This compounding
drift culminates in a collapsed, nonsensical response with extremely low token probabilities in Turn
4.

3.2 How Low-Probability Tokens Compromise Zero-RL Training

Having established the emergence of low-probability tokens, we now analyze their two primary
detrimental effects on Zero-RL training: gradient explosion and misaligned credit assignment.

Gradient Explosion. A primary failure mode in multi-turn TIR is the explosion of gradient norms
(Fig.[2). To formalize this, we analyze the policy gradient with respect to the pre-softmax logits
z [12].

136

137
138
139

140
141

142

143
144
145

146

147
148
149
150

151
152
153
154
155
156
157

158

159
160
161
162

163
164
165
166
167
168

End-to-End Multi-Turn Agent Training

Agent-Env Interaction Trajectory Filtering Reinforcement Learning
Code { Reasoning1 Code 1 Reasoning 2 | { Reasoning1 , Codel | Reasoning2
_, , .
Agent Result Incomplete Code } © Code2 ., Results }
—
Void Turn
Multiple Turns S(OpOGIen:rro(\on with Valid Trajectory

Policy Update

Figure 4: An overview of SIMPLETIR. During the policy update, SIMPLETIR identifies and filters out entire
trajectories that contain a void furn—an LLM response that fails to produce either a complete code block or a
final answer.

Proposition 1. Consider a token c at timestep t of a trajectory o;. The L2 norm of the policy gradient
with respect to the logits z; is:

IV 2, Trirl|2 = & “pit(0) - git - |Az| ‘ \/1 —2P(c) + ZP(j)2, 3)

Z] Mi,j jeA

where m; , is the feedback mask, p; (0) is the importance ratio, \fll| is the absolute advantage, P is
the policy’s probability distribution my(-|0; <¢), and g; 1 is a gating function active when the PPO
update is not clipped.

Proposition [T]reveals that the gradient norm is highly sensitive to two factors that are exacerbated by
low-probability tokens:

e (Oi,t |Oi,<t)
N Togq (0i,t]0i,<t)
spikes. For a negatively-rewarded trajectory (A; < 0), this ratio is unbounded from above. If token
¢ was generated with a very low probability by the old policy, 7y, (c|-) is minute. Even a small
update to 7y (c|-) can cause p; () to explode, leading to the gradient spikes observed in training.

* Unclipped Importance Ratio: The ratio p; ;(0) = is a primary source of gradient

* Sustained High Gradient Norm: The probability-dependent term, \/ 1—2P(c) + >, P(j)%

can sustain large gradients. When the policy assigns a low probability to the sampled token c,
1 — 2P(c) nears its maximum of 1. If the policy is otherwise confident (i.e., the distribution
is sharp), the collision probability }; P(j)? remains large, preventing the gradient norm from
diminishing and thus contributing to unstable training [12].

Misaligned Credit Assignment. Beyond gradient instability, low-probability tokens introduce a
severe credit assignment problem. As seen in Fig. 3] these tokens are more prevalent in later turns.
With a sparse, terminal reward, a trajectory that fails in its final turns receives a single negative reward
for the entire sequence. This signal does not distinguish between correct, high-probability reasoning
in early turns and the faulty, low-probability tokens that caused the eventual failure. This dynamic
unfairly penalizes valid multi-turn behavior, causing the policy to collapse toward safer, single-turn
generations.

3.3 SimpleTIR: Stabilizing Training by Filtering Void Turns

Given that low-probability tokens are the root cause, simple heuristics like masking high-perplexity
trajectories or clipping the importance ratio may seem appealing. While effective in some contexts [13}
14]], we show in Fig. E] (bottom) that these methods fail to resolve instability in multi-turn TIR, as
their thresholds are difficult to tune and they do not solve the credit assignment problem.

A more robust filtering criterion is needed. We observe that the collapsed Turn 4 in Fig. 3| follows a
turn that produced neither a tool call nor a final answer. Intuitively, such a turn makes no progress in
the reasoning process. We define these as void turns. A void turn is often a symptom of distributional
drift, where high generation stochasticity leads to a premature end-of-sequence token. Because void
turns are rare in successful trajectories but indicative of abnormal ones, they serve as a powerful
heuristic for identifying problematic trajectories.

169
170
171
172
173
174
175
176

177

178
179
180
181
182
183
184
185

186

187

188
189
190
191
192
193
194
195

Table 1: Performance comparison on various math benchmarks. Check and cross marks in the “TIR” column
refers to whether the method involves TIR during training and evaluation. Slash, check, and cross marks in the
“Zero RL” column refers to whether the model is untrained, trained with the Zero RL setting, or trained with
other settings. The “From” column indicates the type of We fill the scores with - if they are not provided in
respective reports.

Model TIR Zero RL From AIME24 AIME25 MATH500 Olympiad AMC23 Hmmt 25

Models based on Qwen2.5-7B

Qwen2.5-7B X / Base 32 1.1 51.9 15.4 21.7 0.0
Qwen2.5-7B-TIR v / Base 1.7 0.6 18.0 6.2 10.8 1.9
SimpleRL-Zoo-7B X v Base 15.6 - 78.2 404 62.5 -
ToRL-7B v X Math-Inst 40.2 27.9 82.2 49.9 75.0

Effective TIR-7B v X Math 423 29.2 86.4 - 74.2

ARPO-7B v X Inst 30.0 30.0 78.8 - - -
ZeroTIR-7B v v Base 39.6 25.0 80.2 - - 22.5
SimpleTIR-7B v v Base 50.5 30.9 88.4 54.8 79.1 29.7

Models based on Qwen2.5-32B

Qwen2.5-32B X / Base 4.2 1.6 43.1 17.8 28.0 0.2
Qwen2.5-32B-TIR v / Base 7.1 5.0 37.0 16.9 20.0 52
DAPO X v Base 50.0 - - - -

ReTool 4 X Math-Inst 67.0 49.3 - - - -
ZeroTIR-32B v 4 Base 48 27 87.8 - - 20.0
SimpleTIR-32B v v Base 59.9 49.2 92.9 63.7 91.6 34.6

This insight leads to the SIMPLETIR algorithm, illustrated in Fig.[d The procedure is simple: for
each sampled trajectory, we inspect its turns. If any turn contains neither a complete code block nor
a final answer, it is labeled a void turn. We then mask the policy loss for the entire trajectory,
removing it from the batch before the GRPO update. This single step simultaneously prevents the
large gradients from low-probability tokens from backpropagating and corrects misaligned credit
assignment by ensuring successful early turns are not penalized for a later collapse. SIMPLETIR’s
filtering approach is agnostic to the specific RL algorithm used and is orthogonal to other recent
improvements in RL for LLM reasoning [[13} 15} [16].

3.4 Implementation Details

To further enhance training stability and efficiency, we adopt several key practices. First, to avoid
out-of-distribution special tokens when using base models, we do not use chat templates. Instead, we
prepend tool outputs with a simple prefix, “Code Execution Result:”. Second, to provide a shortcut
for simple tasks and improve sample efficiency, we prepend every LLM-generated code block with a
‘final_answer* function, allowing the model to terminate and answer within a single turn if possible.
Finally, to prevent the model from hallucinating tool outputs, we strictly stop LLM generation after a
complete code block is formed and always append the true, external tool feedback before the next
turn begins.

4 Experiments

4.1 Setup

Training We prepare our training code with the VeRL [17] and Search-R1 [6] framework. We
use Sandbox Fusion as an asynchronous code interpreter. The training datasets are Math3-5 from
SimpleRL [18] and Deepscaler [19]. SimpleTIR follows the Zero RL setting and uses the unaligned
Qwen-2.5 series as the base models, including Qwen-2.5-7B and Qwen-2.5-32B. During training, the
rollout batch size is set to 512, and the mini update size is set to 128. The maximum response length
is initially set to 16K, with a maximum of five turns of code execution. When the average response
length plateaus, we increase the maximum response length to 24K and the largest number of turns to
10. Other training hyperparameters are in Appendix

196
197
198
199
200
201
202
203
204
205
206
207

o

(=]

208

209
210
211
212
213
214
215

Figure 5: Top: Training curves for SimpleTIR with different maximum number of turns. SimpleTIR with
maximum 10 turns is resumed at 200 steps from SimpleTIR with maximum 5 turns. SimpleTIR clearly benefits
from scaling interaction turns from 1 to 5. Bottom: The training curves for ablation studies in the first 320 steps.
Trajectory filtering with or low probability tokens cannot resolve the challenge of training
instability, while SimpleTIR suffers less from low probability tokens and gradient explosion.

35 £ 0.5
o
0.8
230 T 4000 ° 0.4
5 g S s
Fas £ 3000 & 06 gos3
2 & 8 3
é 20 & 2000 204 wo2
215 ng" 2 <01
8 1000 02
1.0 < 0.0
[400 800 1200 [400 800 1200 [400 800 1200) 400 800 1200
Steps Steps Steps Steps
‘ Max Turns=1 —— Max Turns=5 —— Max Turns=10
4 5
-0 0.55
£ 4 0.50
3 3 -15 <
3 2 o g 045
s 4 5 e
2, & -20 23 2040
3 § g £
I¢] $ -25 = 5 035
- 2 [=4
1 § s 0.30
5 -3
1 0.25
0
[80 160 240 [80 160 240 0 80 160 240 0 80 160 240
Steps Steps Steps Steps
\ High Ratio Filtering —— Low Prob Filtering —— SimpleTIR \

Table 2: Results of ablation studies. Considering the unstable training of ablated methods, we report the highest
scores within 1000 gradient steps. “Naive Multi-Turn” directly applies RLVR in multi-turn TIR. “Low Prob” and
“High Ratio” filtering refers to masking the policy loss on tokens with lowest probabilities or highest importance
ratio.

SimpleTIR-7B ~ Naive Multi-Turn ~ Low Prob Filtering ~ High Ratio Filtering ~ Stop Generation w/o Filtering

AIME24 50.5 20.8 233 26.3 26.1
Math500 88.4 73.1 72.8 75.0 71.3

Evaluation Our evaluation is conducted on Math500 [20], AIME24, AIME25, AMC23, and Hmmt
Feb 25, using a temperature of 1 and reporting average @32 scores to reduce variance, following Yu
et al. [21]. For comparison, we consider three categories of baselines. The first is non-TIR Zero RL,
where we use SimpleRL-Zoo [18]] and DAPO [21] as representative baselines. The performance gap
between these methods and SimpleTIR highlights the advantage of incorporating TIR in mathematical
reasoning. The second category is TIR RL from cold-start or specialized models, which includes
ReTool [5]], collecting cold-start datasets for supervised finetuning on Qwen2.5-Math-32B-Instruct,
ARPO [22]], finetuning Qwen2.5-7B-Instruct, as well as ToRL [23]] and Effective CIR [24], both
applying RL to the Qwen2.5-Math series. The final category is Zero RL with TIR, where, to the best
of our knowledge, Zero-TIR [2] is the only method that strictly follows the Zero RL paradigm by
training TIR models directly from base models. starting from unaligned base models when training
TIR models.

4.2 Training Results

The training results are listed in Tab. [I] SimpleTIR demonstrates significant performance im-
provement over base models and outperform all baselines of Zero RL, either with or without TIR.
SimpleTIR can also outperform baselines starting from Qwen2.5-Math-7B series, such as ToRL
and Effective TIR. Comparing with methods not following Zero RL, it is shown that cold start
significantly boosts performance, with ReTool-32B obtaining the highest scores on AIME24 and
AIME2S5. The advantage of Zero RL over cold start lies in the diversity of reasoning patterns, as
discussed in Sec. .4l

216

217
218
219
220
221
222
223

224
225
226
227
228
229
230
231
232
233
234

235

236
237
238
239
240

241
242
243
244

Figure 6: Demonstration of three reasoning patterns observed in responses generated by SimpleTIR.

Pattern 1: Cross Validation Pattern 2: Progressive Reasoning Pattern 3: Error Correction Loop
[Code 1] [Code 2] Code 1
| | /> | Result1
Code 2
(Result 1) (Result 2)
| | /> | Result 2
[Validated Results] Code 3 Final Results

Final Results

Table 3: Comparison of reasoning pattern frequencies in ReTool and SimpleTIR-32B responses. The summation
of frequencies may exceed 100% as there may be more than one reasoning patterns in one response.

Progressive Cross Error

Reasoning (%) Verification (%) Correction (%)
ReTool 18.9 82.4 25.8
SimpleTIR-32B 46.5 86.0 38.0

4.3 Training Curves and Ablation Studies

We show the training curve of SimpleTIR with 1, 5, and 10 turns of generation in Fig. 5] (Top). In
all these settings, SimpleTIR exhibits constant and smooth increases of the average response length
and performance scores. The average number of turns first arises quickly then remains constant
for multi-turn SimpleTIR. We also observe that the response length and the Math500 score scales
with more turns, while the AIME24 score does not benefit clearly. This indicates that different tasks
require distinct reasoning patterns. Some may be solvable with few steps of reasoning, but others will
take a number of external feedback before reaching the correct answer.

We also conduct ablation studies to demonstrate the effectiveness of trajectory filtering in SimpleTIR.
We first investigate two alternative filtering criteria: high importance ratio and low token probabilities,
as specified in the first paragraph of Sec.[3.3] As shown in Fig. [5] (Bottom), these two filtering
approach cannot resolve the issue of gradient explosion, exhibiting unstable curves of training scores.
SimpleTIR features a more stable curve of gradient norm, thanks to the mild token probability
distributions. This demonstrates the effectiveness of void turn filtering in stabilizing multi-turn TIR
training. We then consider an ablation method where LLM generation is terminated on void turns
but resulting trajectories are not filtered when computing policy loss. According to the validation
results in Tab. |2} this method is also inferior to SimpleTIR. This can be attributed to misaligned credit
assignment since trajectories containing void turns can hardly obtain positive outcome. SimpleTIR
handles such issue by masking the loss of whole responses containing void turns.

4.4 Emergence of Diverse Reasoning Behaviors

Thanks to the framework of Zero RL training, SimpleTIR automatically reinforces useful reasoning
patterns obtained in the pretraining phase, rather than sticking to predefined patterns in the SFT
dataset. In Appendix [B.2] we show SimpleTIR responses with diverse multi-turn reasoning behaviors.
They are mostly combinations of the three main reasoning patterns illustrated in Figure [6] namely
Cross Validation, Progressive Reasoning, and Error Correction.

We also use Claude-3.7-Sonnet to identify and count the frequency of reasoning patterns in responses
generated by ReTool and SimpleTIR-32B. The responses are filtered so that they all lead to the
correct final answer. Both models demonstrate a strong tendency to conduct multiple rounds of cross
verification. Meanwhile, SimpleTIR-32B exhibits more instances of progressive reasoning and error

245
246

247

248

249
250
251
252
253
254
255
256
257

258

259
260
261
262

264
265
266
267
268

270

271

272
273
274
275
276
277
278
279

280
281
282
283
284
285
286
287
288

correction. This illustrates the advantage of Zero RL, which preserves more diversity in reasoning
patterns.

5 Related Work

5.1 Zero RL for LLM Reasoning

DeepSeek-R1 [9] first shows that starting from an unaligned base model, large-scale RL training
with outcome reward can unlock emergent chain-of-thought reasoning ability. Such paradigm is
later referred to as Zero RL. SimpleRL [[18] provides a reproducible cookbook to run Zero RL on
various open-source base models. Open-Reasoner-Zero [25]] proposes that vanilla PPO with GAE
(A = 1,7 = 1) without KL regularization is sufficient to scale up Zero RL training. DAPO [21]
introduce several training details that makes Zero RL training stable and efficient, such as raising
the high clip ratio of PPO and GRPO and filtering tasks with 0 or 100% solve rate. Dr. GRPO [26]
proposes to remove the length normalization term. SimpleTIR also follows the Zero RL pipeline and
is orthogonal to training algorithms for Zero RL without TIR.

5.2 RL for Tool Integrated Reasoning

Several recent works focus on applying RL to improving the tool use ability of LLMs. Search-R1 [6]
and R1-Search [27] focus on question-answering tasks, utilizing the search tool. For mathemati-
cal reasoning tasks, python interpreter can be a useful tool to conduct numerical calculations or
enumerations. ReTool [S] employs a cold-start SFT phase before RL. ToRL [23]] and Effective
CIR [24]] explore training recipes on math-specialized bases. These pipelines often rely on domain
data, instruction tuning, or other supervision that introduce bias and complexity; in contrast, Zero
RL is more general yet notoriously unstable in multi-turn settings. Our work directly addresses this
stability gap under Zero RL by filtering trajectories with void turns. ZeroTIR [2] is also explicitly
framed in the Zero RL setting. It proposes several stabilizing techniques that are orthogonal to our
approach. There is also a theoretical explanation [28] on why TIR is more effective than text-only
reasoning. SimpleTIR serves as a good empirical evidence of their claim.

We leave related work on stabilizing RL training in Appendix [A]

6 Conclusion

In this work, we introduce SimpleTIR, an RL framework designed to stabilize and enhance multi-turn
TIR under the Zero RL setting. By addressing the key challenge of harmful negative samples via
filtering out trajectories with void turns, our method achieves stable training dynamics and improves
reasoning performance across a variety of mathematical benchmarks. Beyond state-of-the-art results
starting from the Qwen2.5-7B model, SimpleTIR also encourages the emergence of diverse reasoning
patterns. These results highlight the potential of end-to-end multi-turn TIR RL, without relying on
cold-start human data, as a pathway to scalable and reliable multi-turn reasoning in future LLM agent
development.

Limitations and Future Work While effective, our method has several limitations. First, we use
void turns as an indicator of low-probability tokens in multi-turn TIR. However, this indicator may
not be directly applicable to tasks beyond multi-turn TIR. Second, we currently restrict the maximum
number of turns to 10 for mathematical reasoning, though more interactions may be required for
complex multi-turn agent tasks. Third, our training relies on a highly parallel sandbox for code
execution. Therefore, the development of a faster and more reliable sandbox is an important direction
for future work. Finally, achieving fully asynchronous rollout and reward calculation remains an open
challenge. These limitations raise additional concerns around rollout efficiency, memory management,
and credit assignment, which we leave for future exploration.

289

290
291
292
293

294
295
296

297
298

299
300

301
302
303

305
306

307
308
309

310
311
312

313
314

315
316

317
318

319
320

321
322
323

324
325
326
327

328
329

330
331
332

333
334
335

References

[1] Zihan Wang, Kangrui Wang, Qineng Wang, Pingyue Zhang, Linjie Li, Zhengyuan Yang, Xing
Jin, Kefan Yu, Minh Nhat Nguyen, Licheng Liu, et al. RAGEN: Understanding Self-evolution
in LLM Agents via Multi-turn Reinforcement Learning. arXiv preprint arXiv:2504.20073,
2025.

[2] Xinji Mai, Haotian Xu, Xing W, Weinong Wang, Yingying Zhang, and Wengiang Zhang. Agent
RL Scaling Law: Agent RL with Spontaneous Code Execution for Mathematical Problem
Solving. arXiv preprint arXiv:2505.07773, 2025.

[3] Carlo Baronio, Pietro Marsella, Ben Pan, and Silas Alberti. Multi-Turn RL Training for CUDA
Kernel Generation. https://cognition.ai/blog/kevin-32b, 2025.

[4] Moonshot Al. Kimi-Researcher: End-to-End RL Training for Emerging Agentic Capabilities.
https://moonshotai.github.io/Kimi-Researcher/, June 2025.

[5] Jiazhan Feng, Shijue Huang, Xingwei Qu, Ge Zhang, Yujia Qin, Baoquan Zhong, Chengquan
Jiang, Jinxin Chi, and Wanjun Zhong. ReTool: Reinforcement Learning for Strategic Tool Use
in LLMS. arXiv preprint arXiv:2504.11536, 2025.

[6] Bowen Jin, Hansi Zeng, Zhenrui Yue, Dong Wang, Hamed Zamani, and Jiawei Han. Search-R1:
Training LLMs to Reason and Leverage Search Engines with Reinforcement Learning. arXiv
preprint arXiv:2503.09516, 2025.

[7] Milos Hauskrecht, Nicolas Meuleau, Leslie Pack Kaelbling, Thomas L. Dean, and Craig
Boutilier. Hierarchical solution of markov decision processes using macro-actions. In UAI,
1998.

[8] Ziniu Li, Tian Xu, Yushun Zhang, Zhihang Lin, Yang Yu, Ruoyu Sun, and Zhi-Quan Luo.
ReMax: A Simple, Effective, and Efficient Reinforcement Learning Method for Aligning Large
Language Models. In ICML, 2024.

[9] DeepSeek-Al Team. DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforce-
ment Learning. arXiv preprint arXiv:2501.12948, 2025.

[10] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
Policy Optimization Algorithms. arXiv preprint arXiv:1707.06347, 2017.

[11] Qing Wang, Yingru Li, Jiechao Xiong, and Tong Zhang. Divergence-augmented policy opti-
mization. Advances in Neural Information Processing Systems, 32, 2019.

[12] Yingru Li. Logit Dynamics in Softmax Policy Gradient Methods. arXiv preprint
arXiv:2506.12912, 2025.

[13] Chujie Zheng, Shixuan Liu, Mingze Li, Xiong-Hui Chen, Bowen Yu, Chang Gao, Kai Dang,
Yugiong Liu, Rui Men, An Yang, Jingren Zhou, and Junyang Lin. Group Sequence Policy
Optimization. arXiv preprint arXiv:2507.18071, 2025.

[14] Yifan Zhang, Xingyu Lu, Xiao Hu, Chaoyou Fu, Bin Wen, Tianke Zhang, Changyi Liu, Kaiyu
Jiang, Kaibing Chen, Kaiyu Tang, Haojie Ding, Jiankang Chen, Fan Yang, Zhang Zhang,
Tingting Gao, and Liang Wang. R1-Reward: Training Multimodal Reward Model Through
Stable Reinforcement Learning. arXiv preprint arXiv:2505.02835, 2025.

[15] Feng Yao, Liyuan Liu, Dinghuai Zhang, Chengyu Dong, and Jianfeng Gao. Your Efficient RL
Framework Secretly Brings You Off-Policy RL Training. Feng Yao’s Notion, 2025.

[16] Aili Chen, Aonian Li, Bangwei Gong, Binyang Jiang, Bo Fei, Bo Yang, Boji Shan, Changqing
Yu, Chao Wang, Cheng Zhu, et al. MiniMax-M1: Scaling Test-Time Compute Efficiently with
Lightning Attention. arXiv preprint arXiv:2506.13585, 2025.

[17] Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua

Peng, Haibin Lin, and Chuan Wu. HybridFlow: A Flexible and Efficient RLHF Framework.
arXiv preprint arXiv:2409.19256, 2024.

10

https://moonshotai.github.io/Kimi-Researcher/

336
337
338

339
340
341

342
343
344

345

347
348

349
350

351
352
353

354
355
356

358
359

360

362

363
364

365
366
367

368
369
370

371
372
373

374
375
376

377
378
379

380
381
382

383
384
385

[18] Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He.
SimpleRL-Zoo: Investigating and Taming Zero Reinforcement Learning for Open Base Models
in the Wild. arXiv preprint arXiv:2503.18892, 2025.

[19] Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y. Tang, Manan Roongta, Colin
Cai, Jeffrey Luo, Li Erran Li, Raluca Ada Popa, and Ion Stoica. DeepScaleR: Surpassing
O1-Preview with a 1.5B Model by Scaling RL, 2025. Notion Blog.

[20] Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring Mathematical Problem Solving With the MATH Dataset.
In NeurlPS Datasets and Benchmarks, 2021.

[21] Qiying Yu, Zheng Zhang, Ruofei Zhu, et al. DAPO: An Open-Source LLM Reinforcement
Learning System at Scale. arXiv preprint arXiv:2503.14476, 2025.

[22] Fanbin Lu, Zhisheng Zhong, Shu Liu, Chi-Wing Fu, and Jiaya Jia. ARPO: End-to-End Policy
Optimization for GUI Agents with Experience Replay. arXiv preprint arXiv:2505.16282, 2025.

[23] Xuefeng Li, Haoyang Zou, and Pengfei Liu. ToRL: Scaling Tool-Integrated RL. arXiv preprint
arXiv:2503.23383, 2025.

[24] Fei Bai, Yingqian Min, Beichen Zhang, Zhipeng Chen, Wayne Xin Zhao, Lei Fang, Zheng Liu,
Zhongyuan Wang, and Ji-Rong Wen. Towards Effective Code-Integrated Reasoning. arXiv
preprint arXiv:2505.24480, 2025.

[25] Jingcheng Hu, Yinmin Zhang, Qi Han, Daxin Jiang, Xiangyu Zhang, and Heung-Yeung Shum.
Open-Reasoner-Zero: An Open Source Approach to Scaling Up Reinforcement Learning on the
Base Model. arXiv preprint arXiv:2503.24290, 2025.

[26] Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee,
and Min Lin. Understanding R1-Zero-like Training: A Critical Perspective. arXiv preprint
arXiv:2503.20783, 2025.

[27] Huatong Song, Jinhao Jiang, Yingqian Min, Jie Chen, Zhipeng Chen, Wayne Xin Zhao, Lei Fang,
and Ji-Rong Wen. R1-Searcher: Incentivizing the Search Capability in LLMs via Reinforcement
Learning. arXiv preprint arXiv:2503.05592, 2025.

[28] Heng Lin and Zhongwen Xu. Understanding Tool-Integrated Reasoning. arXiv preprint
arXiv:2508.19201, 2025.

[29] Ganqu Cui, Yuchen Zhang, Jiacheng Chen, Lifan Yuan, Zhi Wang, Yuxin Zuo, Haozhan Li,
Yuchen Fan, Huayu Chen, Weize Chen, et al. The Entropy Mechanism of Reinforcement
Learning for Reasoning Language Models. arXiv preprint arXiv:2505.22617, 2025.

[30] Qingbin Li, Rongkun Xue, Jie Wang, Ming Zhou, Zhi Li, Xiaofeng Ji, Yongqi Wang, Miao
Liu, Zheming Yang, Minghui Qiu, et al. CURE: Critical-Token-Guided Re-concatenation for
Entropy-collapse Prevention. arXiv preprint arXiv:2508.11016, 2025.

[31] Mingjie Liu, Shizhe Diao, Ximing Lu, Jian Hu, Xin Dong, Yejin Choi, Jan Kautz, and Yi Dong.
Prorl: Prolonged Reinforcement Learning Expands Reasoning Boundaries in Large Language
Models. arXiv preprint arXiv:2505.24864, 2025.

[32] Yuzhong Zhao, Yue Liu, Junpeng Liu, Jingye Chen, Xun Wu, Yaru Hao, Tengchao Lv, Shaohan
Huang, Lei Cui, Qixiang Ye, et al. Geometric-Mean Policy Optimization. arXiv preprint
arXiv:2507.20673, 2025.

[33] Chujie Zheng, Shixuan Liu, Mingze Li, Xiong-Hui Chen, Bowen Yu, Chang Gao, Kai Dang,
Yugqgiong Liu, Rui Men, An Yang, et al. Group Sequence Policy Optimization. arXiv preprint
arXiv:2507.18071, 2025.

[34] Vaishnavi Shrivastava, Ahmed Awadallah, Vidhisha Balachandran, Shivam Garg, Harkirat Behl,
and Dimitris Papailiopoulos. Sample More to Think Less: Group Filtered Policy Optimization
for Concise Reasoning. arXiv preprint arXiv:2508.09726, 2025.

[35] Xinyu Zhu, Mengzhou Xia, Zhepei Wei, Wei-Lin Chen, Danqgi Chen, and Yu Meng. The
Surprising Effectiveness of Negative Reinforcement in LLM Reasoning. arXiv preprint
arXiv:2506.01347, 2025.

11

386

387

388
389
390
391
392
393
394
395
396
397
398
399
400

401

402

403
404
405

407

408

409
410
411
412

413

414

415
416
417
418
419
420

421

422
423
424
425
426
427
428
429
430

A Extended Related Work

A.1 Stabilizing RL Training

Training instability is a significant challenge when applying RL to LLMs, often manifesting as entropy
collapse and gradient norm explosions. Entropy-based methods explicitly maintain policy entropy
or encourage re-generation at pivotal tokens to delay distributional narrowing [29} 30, 31]]. Recent
methods control the importance sampling ratio to reduce gradient variance and brittle updates by
reweighting or constraining likelihood ratios, e.g., from token-level IS to sequence-level objectives and
clipping [15} 16} 132 [33]]. Data and trajectory filtering stabilizes training by discarding uninformative
or harmful samples, e.g., multi-sample-then-filter schemes [34]]. From the perspective of the learning
signal itself, negative-only gradient updates have been shown to improve stability and generalization
without sacrificing exploration, and more generally to focus updates on low-probability/high-entropy
branching tokens [35]]. SimpleTIR departs from the above methods by targeting the root cause
specific to TIR, i.e., distribution shift induced by external tool outputs compounded by multi-turn
error accumulation. It is also orthogonal to entropy regularization, IS ratio control, and negative-
gradient schemes.

B Example Responses

B.1 Incomplete Response

We present representative failure cases that contain void turns, i.e., turns that produce neither a
complete, executable code block nor a boxed final answer. These examples serve a diagnostic role:
they illustrate how OOD tool feedback and compounding errors precipitate collapsed generations
and gradient spikes during Zero RL. Tab. | shows a typical trajectory in which a void turn disrupts
subsequent decoding and leads to corrupted outputs, motivating our trajectory filtering rule.

B.2 Response with Emergent Reasoning Behaviors

We provide qualitative rollouts that demonstrate the diverse multi-turn behaviors SimpleTIR elicits
without instruction-level biases. Tab [3]illustrates progressive reasoning with code improvement.
Taken together with the quantitative pattern analysis in the main text, these cases substantiate our
claim that Zero RL with TIR encourages richer strategies than cold-start SFT.

C Experiments

C.1 Prompt for Multi-turn TIR Generation

We include the exact prompt template used to generate multi-turn TIR trajectories in Tab. [6b] The
design emphasizes: (1) selective use of Python wrapped in triple backticks as complete scripts (with
imports); (2) explicit printing of intermediate quantities so that execution feedback can guide later
turns; and (3) a standardized answer channel (final_answer(...) or \boxed{...}) that cleanly
terminates trajectories when a solution is reached. These choices stabilize interaction with the
interpreter, reduce format variance, and make it easy to detect valid tool calls versus void turns.

C.2 Hyperparameters

We show the training hyperparameters of SimpleTIR in Tab. [6a] Below we explain the rationale
behind the hyperparameters. We cap the initial max response length at 16,384 tokens to accommodate
complete code blocks and verbose execution traces without premature truncation. Initial max
interaction turns = 5 bounds episode length and compute while still allowing the model to plan,
execute, and verify within a single trajectory. We set rollout temperature = 1.0 to preserve diversity in
candidate solutions and rely on selection/credit assignment rather than explicit entropy bonuses to
drive exploration. Each update uses a sampling batch size of 1,280 responses with n = 16 rollouts
per prompt, which yields broad coverage of tool-use strategies per input while keeping variance
manageable.

12

431
432
433
434
435
436
437
438

439

440
441
442
443
444

We use standard PPO with clip ratio = 0.2 / 0.28 (low/high) to constrain policy updates; the slightly
looser upper bound avoids over-penalizing advantageous moves identified by execution feedback.
PPO epochs = 4 provide sufficient reuse of samples without overfitting to batch noise. The train batch
size = 512 balances gradient estimate quality and memory use. A small actor learning rate = le-6 and
gradient clipping = 1 (global-norm) prevent instability from long-context backprop and occasional
high-magnitude advantages produced by sparse rewards. We treat each dialogue as an undiscounted
episodic task with v = 1.0. We also set entropy coefficient = 0 and KL coefficient = 0. Exploration is
instead induced by temperature and multi-rollout sampling.

C.3 Prompt for Extracting Reasoning Patterns

To analyze behaviors systematically, in Tab.[7]we provide the prompt used to label reasoning behaviors
in trajectories . It first enforces minimal bookkeeping (e.g., number of code blocks, whether any
execution equals the final answer), then queries four patterns: decomposed sub-solves (with non-final
execution), induction, self-verification, and bug-fixing via additional code. The constrained output
format improves label consistency and allows fair frequency comparisons across methods.

13

Table 4: An example from SimpleTIR-7B on AIME24 dataset. Responses generated in different turns are
separated with a vertical line. Response Part-II contains a void turn, where no complete code blocks nor boxed
answers are generated. Both in and after the void turn, the model generates corrupted responses.

Example #1 from AIME24 Dataset

Question:

Eight circles of radius 34 are sequentially tangent, and two of the circles are tangent to AB and BC of triangle
ABC, respectively. 2024 circles of radius 1 can be arranged in the same manner. The inradius of triangle
ABC can be expressed as 7, where m and n are relatively prime positive integers. Find m + n.

A

B C
Labeled Answer:
197

Model Output by SimpleTIR-7B (Part-I)

To solve this problem, we need to determine the inradius of triangle ABC' given the arrangement of circles.
Here is the step-by-step reasoning:

Understand the Geometry:

- We have eight circles of radius 34 that are tangent to each other sequentially, with two of them being tangent
to the sides AB and BC of triangle ABC'. - Additionally, 2024 circles of radius 1 can fit in the same manner.
Determine the Distance Between Centers of the Larger Circles:

- The centers of the eight tangent circles of radius 34 will form a chain where each circle is tangent to the
next, meaning the distance between the centers of two consecutive circles is 34 4+ 34 = 68. - Since there
are 8 circles, the total distance from the center of the first circle to the center of the last circle would be
68 x (8 — 1) = 68 x 7 = 476. However, we need to consider that the first circle is tangent to AB and the
last circle is tangent to BC'. This distance of 476 actually represents the length of the tangent chain along the
line connecting the points of tangency on AB and BC.

Relate to Triangle ABC:

- If we look at the centers of these circles, they form a line parallel to BC' and AB, and the distance between
this line and either AB or BC is equal to the radius of the circles (34 for the larger circles, 1 for the smaller
circles).

Calculate the Lengths:

- For the larger circles (radius 34):

- The total distance connecting the points of tangency on AB and BC' is effectively the distance between the
parallel line formed by the centers of these circles and the line BC' or AB, which is 8 x 34 = 272 (since
there are 8 circles, and each has a radius of 34, the total vertical distance covered would be the diameter of
7 circles if we think about it in terms of centers plus radius). However, since they are tangent to each other
sequentially, the distance between the lines AB and BC' (parallel to the line connecting the centers) should be
34434 x(8—1)=34+34x7=34x8=272.

- For the smaller circles (radius 1):

- Similarly, if we can fit 2024 circles of radius 1, the total vertical distance from the line of tangency on AB to
the line of tangency on BC would be 2024 x 1 = 2024.

Inradius Relationship:

- The inradius 7 of triangle ABC' is the radius of the inscribed circle. To find this, we need to understand how
the heights and lengths of the triangle are affected by these tangent circles.

- Let’s denote the length of AB = ¢, BC = a, and C A = b. The height from A to BC' can be considered by
looking at how the circles stack up vertically.

- For the larger circles:

- If two circles are tangent to AB and BC, the length along AB and BC' would create a configuration where
if you think about the points of tangency, the distance covered by the centers vertically for 8 circles should
match up with the triangle height minus twice the radius (since the circles are also on the boundary of the
triangle).

14

Model Output by SimpleTIR-7B (Part-II)

...... Some Response Omitted......

Given this, distance between sides should follow proportionally: Distance apart: smaller = 2214321 Total height
h of the triangle should include this detailed intermediary:

Let’s re-evaluate and verify it step-by-step via coding:

import sympy as sp

R_large = 34
R_small = 1

num_large_circles = 8

num_small_circles = 2024

distance_large_centers = num_large_circles * (2 *x R_large)
distance_small_centers = num_small_circles * (2 * R_small)
\height_large = distance_large_centers

height_small = distance_small_centers

R_ratio = R_small / R_large

num_ratio = num_small_circles / num_large_circles
HR_length = (num_large_circles * 2 * R_large)
H_effective = HR_length

h_total = HR_length

inradius = height_large / (num_ratio + 1)
inradius = sp.Rational(h_total / (num_ratio + 1))
print (f"calculated inradius: {inradius}")

Code execution result: calculated inradius: 4822752356869193/2251799813685248

This calculation seems overly complex; let’s simplify using simpler, geometric visualization and relationships:
Simplified Geometric Relationship:

Large Circle Tangent Arrangement:

- We have 8 circles of radius 34, and 2 of these circles are tangent to AB and BC'. The effective vertical
distance taken by these circles, considering their arrangement repeating pattern of centers, is given by:

8-(2-34) =868

Small Circle Arrangement:
- For smaller circles of radius 1, such that 2024 circles fit similarly: - The vertical distance arrangement for
2024 circles would be:

2024 -2-1=2024-2 = 4048

...... Some Response Omitted......

We repeat arranging parallel: Consider:

each pair arrangement, verifying circles top-height Even scan: If each arrangement euclidean , height method
involving polygons: solved for ratio translating through unique noting: Combining parameters: This par;
valid:

\(\frac{m}{n}\] sum ratio sorts in idlegate ration 1} . However, i’ sequential seek refining this calculation more
consistently: iterating setup considered overall expression precise: Now we solve ensuring configurations
understandable suggest circle distributions proportionally: If):

-\(\(each step repeated configurations: compute \(largest Thus: We need to find side cognize area further on:
triangle holds hold altitude relation contractive step:

15

Table 5: An example from SimpleTIR-7B on AIME24 dataset. It demonstrates the behavior of progressive
reasoning and code improvement. Responses generated in different turns are separated with a vertical line.

Example #1 from AIME24 Dataset

Question:

Let ABCD be a tetrahedron such that AB = CD = v/41, AC = BD = /80, and BC = AD = /9.
There exists a point I inside the tetrahedron such that the distances from I to each of the faces of the tetrahedron
are all equal. This distance can be written in the form mﬁ, where m, n, and p are positive integers, m and p
are relatively prime, and 7 is not divisible by the square of any prime. Find m + n + p.

Labeled Answer:

104

Model Output by SimpleTIR-7B (Part-I)

To solve the given problem, we need to find the distance from point I (which is the incenter of the tetrahedron
ABCD) to each of the faces of the tetrahedron, given that the distances are all equal. This distance is the
radius r of the inscribed sphere of the tetrahedron.

First, we need to determine the volume V of the tetrahedron and the surface area S. The formula for the radius
r of the inscribed sphere is given by:

Step 1: Calculate the Volume V' of the Tetrahedron

We can use the Cayley-Menger determinant to find the volume of the tetrahedron. The Cayley-Menger
determinant for a tetrahedron with edge lengths a, b, c,d, e, f (where a = AB,b = AC,c = AD,d =
BC,e = BD, f = CD)is given by:

0 1 1 1 1
1 0 a® v &2
288Vi=1{1 a®> 0 d*° ¢
1 v & 0 f?
1 2 e f2 0

Substituting a = v/41,b = v/80,c = v/89,d = v/89,e = v/80, f = v41:

11 1 1

0 41 80 89
41 0 89 80
80 89 0 41
89 80 41 O

28812 =

— === O

We can calculate the determinant of the matrix:

import sympy as sp

matrix = sp.Matrix([[0, 1, 1, 1, 1], [1, O, 41, 80, 891, [1, 41, O,
89, 80], [1, 80, 89, O, 41], [1, 89, 80, 41, 011)

det = matrix.det ()

V_squared = det / 288

V = sp.sqrt(V_squared)

print (£"Volume V: {V}")

Code Execution Result: Volume V: 160/3

16

Model Output by SimpleTIR-7B (Part-II)

Step 2: Calculate the Surface Area S of the Tetrahedron

The surface area S is the sum of the areas of the four triangular faces. We can find the area of each triangle
using Heron’s formula.

For triangle ABC"

-AB = +/41- AC =+/80- BC = /89

The semi-perimeter s is:
< V41 + /80 + /89
- 2

Using Heron’s formula:

Area = /s(s — AB)(s — AC)(s — BO)

We need to find the areas of triangles ABD, AC D, and BC'D similarly. Let’s calculate these areas step by
step using Python.

import sympy as sp

Define the edge lengths

AB = sp.sqrt(41)
AC = sp.sqrt(80)
AD = sp.sqrt(89)
BC = sp.sqrt(89)
BD = sp.sqrt(80)
CD = sp.sqrt(41)

Function to compute the area of a triangle using Heron’s formula
def triangle_area(a, b, c):

s =(a+b+c) /2

area = sp.sqrt(s * (s - a) * (s - b) * (s - c))

return area

Calculate the areas of the triangular faces

area_ABC = triangle_area(AB, AC, BC)
area_ABD = triangle_area(AB, AD, BD)
area_ACD = triangle_area(AC, AD, CD)
area_BCD = triangle_area(BC, BD, CD)
Total surface area

S = area_ABC + area_ABD + area_ACD + area_BCD
print (f"Area of triangle ABC: {area_ABC}")
print (f"Area of triangle ABD: {area_ABD}")
print (f"Area of triangle ACD: {area_ACD}")
print (f"Area of triangle BCD: {area_BCD}")

{s¥")

print (f"Total surface area S:

Code Execution Result: Area of triangle ABC: sqrt(-sqrt(41)/2 + 2sqrt(5) + sqrt(89)/2)sqrt(sqrt(41)/2
+ 2sqrt(5) + sqrt(89)/2)sqrt(-2sqrt(5) + sqrt(41)/2 + sqrt(89)/2)sqrt(-sqrt(89)/2 + sqrt(41)/2 + 2sqrt(5))
Area of triangle ABD: sqrt(-sqrt(41)/2 + 2sqrt(5) + sqrt(89)/2

...This content has been truncated to stay below 512 characters...

)2 + sqrt(89)/2)sqrt(-sqrt(89)/2 + sqrt(41)/2 + 2sqrt(5)) Total surface area S: 4sqrt(-sqrt(41)/2 + 2sqrt(5) +
sqrt(89)/2)sqrt(sqrt(41)/2 + 2sqrt(5) + sqrt(89)/2)sqrt(-2sqrt(5) + sqrt(41)/2 + sqrt(89)/2)sqrt(-sqrt(89)/2
+ sqrt(41)/2 + 2sqrt(5))

It appears the individual areas calculated by Heron’s formula are quite complicated and expressed in a form
needing simplification to find the total surface area S. Let’s simplify the expressions to make the calculations
clearer and ensure we obtain a numerical value for the surface area S. We can use simplify to get more
manageable expressions and then compute the numerical value. Let’s also calculate r = % step by step to
simplify finding the equal distances. We know the volume V' = 1%0.

17

Model Output by SimpleTIR-7B (Part-III)

We will now simplify our approach and focus on calculating these areas numerically to find S. Afterward, we
will compute 7 and ensure the result is in the required form mTﬁ. Let’s simplify our strategy and calculate
this accurately in Python.

import sympy as sp

sqrt_41 = sp.sqrt (41)
sqrt_80 = sp.sqrt(80)
sqrt_89 = sp.sqrt(89)

def area_heron(a, b, c):
s = (a+b+c) /2
area = sp.sqrt(s * (s - a) * (s - b) * (s - c))
return sp.simplify(area)

area_ABC = area_heron(sqrt_41, sqrt_80, sqrt_89)
area_ABD = area_heron(sqrt_41, sqrt_89, sqrt_80)
area_ACD = area_heron(sqrt_80, sqrt_89, sqrt_41)
area_BCD = area_heron(sqrt_89, sqrt_80, sqrt_41)

S = area_ABC + area_ABD + area_ACD + area_BCD
V = sp.Rational (160, 3)
r=3xV /S

r_simplified = sp.simplify(r)
print ("Radius r:", r_simplified)

Code Execution Result: Radius r: 20*sqrt(21)/63

The radius r of the inscribed sphere is %.

This is in the form mTﬁ, where m = 20, n = 21, and p = 63. Here, m and p are relatively prime, and n is
not divisible by the square of any prime.
Step 3: Findingm +n +p

Now, we need to calculate m + n + p:

m+n+p=20+21+63

Let’s calculate this:

import sympy as sp

m = 20
n = 21
p = 63
result = m + n + p

print (result)

Code Execution Result: 104

The value of m +n + pis .

This completes the solution. The distance from point [to each of the faces of the tetrahedron is

the final answer is .

20v/21
=5 and

18

Table 6: Key hyperparameters (left) and the prompt for generating multi-turn TIR responses (right).

(a) Key Hyperparameters (b) The Prompt for Generating Multi-turn TIR Responses
Hyperparameter Value Solve the following problem step by step. You now have
Initial max response length 16384 the ability to selectively write executable Python code to
Rollout Temperature 1 enhance your reasoning process. The Python code will be
Tnitial max interaction turns 5 executed by an external sandbox, and the output (after “Code
Train batch size 512 execution result: ”) is returned to aid your reasoning and
Sampling batch size 1280 help you arrive at the final answer. The Python code should
Rollouts per prompt () 16 be complete scripts, including necessary imports.

PPO clip ratio (low / high) 0.2/ 0.28

Entropy coefficient 0 Code Format:

Discount factor ~y 1.0 Each code snippet is wrapped between ~**. You need to use
GAE X\ 1.0 print () to output intermediate results.

KL coefficient (3) 0

PPO epochs 4 Answer Format:

Actor learning rate 1e-6 You can use the final_answer () function in the code to
Gradient Clipping 1 return your final answer. For example, to answer the User

Question: What is the result of the 5 + 3 + 1294.678?, you
can write:

answer = 5 + 3 + 1294.678
final_answer (answer)

You can also use \boxed to return your answer. The last part
of your response should be: \boxed{“The final answer goes
here.”}

User Question:

Table 7: The prompt that instructs Claude-3.7-Sonnet to extract reasoning patterns from the TIR trajectories.

I have a reasoning process of an LLM. The LLM can write code and get code execution result. According to
the following reasoning process, please first answer the following questions:

1. Is the code execution result or interpreter output equal to the final answer?

2. How many code blocks are there in the reasoning process?

3. If there are several code blocks, are the code execution results all the same?

Format:
1. xxx
2. XXX
3. XXX

Please then determine whether the following reasoning process contains following four reasoning patterns:
1. Include at least two code blocks, each solving unique sub-questions. **Important: in such case, the code
execution result or interpreter output should not be equal to the final answer**

2. Use induction, from special case to general conclusions

3. Use code or text to do self-verification

4. Write another code block when the previous code has some bugs

Format:

Reasoning Pattern 1: Yes/No
Reasoning Pattern 2: Yes/No
Reasoning Pattern 3: Yes/No
Reasoning Pattern 4: Yes/No

Please do not output any other words.

Reasoning process:

19

	Introduction
	Preliminaries
	Hierarchical MDP Formulation for Multi-Turn TIR
	Joint Policy Optimization and Feedback Masking

	Methodology
	The Emergence of Low-Probability Tokens in Multi-Turn TIR
	How Low-Probability Tokens Compromise Zero-RL Training
	SimpleTIR: Stabilizing Training by Filtering Void Turns
	Implementation Details

	Experiments
	Setup
	Training Results
	Training Curves and Ablation Studies
	Emergence of Diverse Reasoning Behaviors

	Related Work
	Zero RL for LLM Reasoning
	RL for Tool Integrated Reasoning

	Conclusion
	Extended Related Work
	Stabilizing RL Training

	Example Responses
	Incomplete Response
	Response with Emergent Reasoning Behaviors

	Experiments
	Prompt for Multi-turn TIR Generation
	Hyperparameters
	Prompt for Extracting Reasoning Patterns

