
SimpleTIR: End-to-End Reinforcement Learning for
Multi-Turn Tool-Integrated Reasoning

Anonymous Author(s)
Affiliation
Address
email

Abstract

Large Language Models (LLMs) can significantly improve their reasoning capa-1

bilities by interacting with external tools, a paradigm known as Tool-Integrated2

Reasoning (TIR). However, extending TIR to multi-turn scenarios using Rein-3

forcement Learning (RL) is often hindered by training instability and performance4

collapse. We identify that such instability is primarily caused by a distributional5

drift from external tool feedback, leading to the generation of low-probability6

tokens. This issue compounds over successive turns, causing catastrophic gradient7

norm explosions that derail the training process. To address this challenge, we8

introduce SimpleTIR, a plug-and-play algorithm that stabilizes multi-turn TIR9

training. Its core strategy is to identify and filter out trajectories containing “void10

turns”, i.e., turns that yield neither a code block nor a final answer. By removing11

these problematic trajectories from the policy update, SimpleTIR effectively blocks12

the harmful, high-magnitude gradients, thus stabilizing the learning dynamics. Ex-13

tensive experiments show that SimpleTIR achieves state-of-the-art performance on14

challenging math reasoning benchmarks, notably elevating the AIME24 score from15

a text-only baseline of 22.1 to 50.5 when starting from the Qwen2.5-7B base model.16

Furthermore, by avoiding the constraints of supervised fine-tuning, SimpleTIR17

encourages the model to discover diverse and sophisticated reasoning patterns,18

such as self-correction and cross-validation.19

0 200 400 600 800 1000 1200
Training Steps of Reinforcement Learning

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

Av
er

ag
e

AI
M

E2
4

Ac
cu

ra
cy

0 200 400 600 800 1000 1200
Training Steps of Reinforcement Learning

0

5

10

15

20

25

30

35

Gr
ad

ie
nt

 N
or

m

SimpleTIR Naive Multi-turn Training Baseline (DAPO)

Figure 1: Starting from Qwen2.5-7B base model, The training dynamics of SimpleTIR are highly stable, and
it clearly outperforms the baseline method without TIR (DAPO). The gradient norm remains well-behaved
with almost no spikes. In contrast, Naive Multi-turn Training not only suffers from unstable dynamics and
catastrophic gradient norm explosions, but also fails to match the performance of the baseline without TIR.

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

1 Introduction20

Training Large Language Models (LLMs) for multi-turn Tool-Integrated Reasoning (TIR) represents21

a promising frontier in Reinforcement Learning (RL). In this paradigm, LLMs iteratively reason,22

generate code, execute it, and utilize the output for informed reasoning in the subsequent turns.23

TIR addresses LLMs’ inherent limitations such as poor computational accuracy and knowledge24

cutoffs. For example, by using a Python interpreter or a search engine, LLMs can perform precise25

mathematical computations or retrieve current information. Despite its clear potential, training LLMs26

for multi-turn TIR remains highly challenging due to frequent instability and gradient explosion27

issues [1, 2, 3, 4]. One common solution is to “cold start” the model with Supervised Fine-Tuning28

(SFT) to enhance stability [5]. However, this approach can constrain the model’s discovery of novel29

reasoning strategies, undermining a core benefit of Zero RL training: emergent problem-solving and30

diverse reasoning behaviors.31

In this paper, we identify a core factor contributing to this training instability: the emergence and32

accumulation of extremely low-probability tokens. When external tool feedback is used as model input33

in multi-turn TIR, such input may deviate from the model’s pretrained data distribution. Although34

the tool feedback itself is masked when computing the policy loss [6, 2], the model’s subsequent35

generations inherit this distributional shift, leading to increased stochasticity. Consequently, the36

model is more likely to sample low-probability tokens. This issue is compounded in the multi-turn37

loop, as these low-probability tokens are fed back as input, exacerbating the distributional shift in38

subsequent turns. We make theoretical analysis of the gradient norm on softmax logits, which is part39

of the total gradient regarding to model parameters, and find two dominating terms with negative40

correlations to token probabilities. This explains the gradient explosion issues observed in prior work.41

Building on this analysis, we propose SimpleTIR, an effective trajectory filtering algorithm that42

stabilizes multi-turn TIR training. We observe that the accumulation of low-probability tokens and43

high generation stochasticity frequently results in what we define as a void turn: an LLM response44

that contains neither a complete code block nor a final answer. Typical examples include partial code,45

repetitive text, or incomplete responses caused by the premature sampling of an end-of-sequence46

(eos) token. The core strategy of SimpleTIR is to filter out trajectories containing void turns. By47

excluding these trajectories from the policy loss computation, SimpleTIR blocks the harmful, high-48

magnitude gradients associated with the problematic low-probability sequences, directly addressing49

the gradient explosion issue. This filtering approach is also general and plug-and-play, requiring50

minimal modifications to be integrated into existing training frameworks for improved stability and51

performance with almost no extra cost.52

To demonstrate the effectiveness of SimpleTIR, we conduct comprehensive experiments on chal-53

lenging mathematical reasoning tasks. When applied to the Qwen2.5-7B base model, SimpleTIR54

achieves state-of-the-art performance in multi-turn TIR, improving the AIME24 score from a text-55

only baseline of 22.1 to 50.5. Our ablation studies confirm that filtering trajectories with void turns is56

the crucial component for stabilizing training, overcoming the instability that plagues naive multi-turn57

approaches and enabling significant performance gains. Finally, we highlight a key advantage of58

our Zero RL approach. In contrast to methods that rely on a “cold-start” SFT phase, SimpleTIR59

encourages the model to discover novel and diverse reasoning patterns, such as cross-validation,60

progressive reasoning, and self-correction.61

2 Preliminaries62

End-to-end training of multi-turn Tool-Integrated Reasoning (TIR) agents with Reinforcement63

Learning (RL) is challenging due to its compositional structure. We therefore model the process as64

a Hierarchical Markov Decision Process [7], which separates decision-making into two levels: a65

high-level policy governing the sequence of conversational turns and a low-level policy for generating66

tokens within each turn.67

2.1 Hierarchical MDP Formulation for Multi-Turn TIR68

A full interaction trajectory is a sequence o = (q, l0, f0, . . . , lK−1, fK−1), where lk is the model’s69

generated response at turn k and fk is the subsequent tool feedback.70

2

The high-level MDP, MH = ⟨SH ,AH , TH , RH , γH⟩, operates at the turn level to govern the overall71

strategy.72

• State (Sk): Sk = (q, l0, f0, . . . , lk−1, fk−1). This represents the complete conversation history73

before the current turn.74

• Action (Lk): An option, or high-level sub-policy, that generates the entire response lk for the75

current turn.76

• Transition (TH): Sk+1 = Sk ◦ (lk, fk), where the state evolves by appending the generated77

response and its corresponding tool feedback.78

• Reward (RH): R(o), a terminal reward assigned to the final trajectory based on its overall success.79

The low-level MDP, ML = ⟨SL,AL, TL, RL, γL⟩, operates at the token level to execute the chosen80

high-level action [8].81

• State (st): st = Sk ◦ (a1, . . . , at−1). This is the sequence of tokens generated so far within the82

current turn k.83

• Action (at): at ∈ A, a single token selected from the model’s vocabulary.84

• Transition (TL): st+1 = st ◦ at, where the state evolves by deterministically appending the85

selected token.86

• Reward (RL): RL = 0. The low-level policy receives no intrinsic reward, as its only goal is to87

complete the high-level action.88

In this framework, ◦ denotes concatenation, and we set the discount factor γ = γH = γL = 1. We89

train a single, unified policy πθ(at|st) to implicitly solve this two-level problem.90

2.2 Joint Policy Optimization and Feedback Masking91

The unified policy πθ is trained using Group Relative Policy Optimization (GRPO) [9]. GRPO92

circumvents the need for a learned value function [8] by calculating the advantage based on the93

relative performance within a group of G trajectories sampled from the same prompt. The advantage94

for trajectory oi is Âi =
ri−mean({rj}G

j=1)
Fnorm({rj}G

j=1)
, where ri is the terminal reward from the high-level MDP.95

A critical adaptation is required for the TIR setting. The policy is only responsible for generating96

response tokens (lk), not the environment-provided feedback tokens (fk). To ensure correct credit97

assignment, we employ feedback token masking [6, 2]. The loss is accumulated only over the98

timesteps corresponding to the agent’s actions, effectively excluding feedback tokens from the99

gradient computation.100

This leads to our final training objective, JTIR(θ):101

JTIR(θ) = E q∼q0,

{oi}G
i=1∼πθold (·|q)

 1

G

G∑
i=1

1∑
t mi,t

|oi|∑
t=1

mi,t · LCLIP(θ, i, t)

 , (1)

where mi,t is a binary mask that is 1 if the token at step t belongs to any response lk and 0 otherwise.102

The term LCLIP is the standard clipped surrogate objective from PPO [10, 11]:103

LCLIP(θ, i, t) = min
(
ρi,t(θ)Âi, clip(ρi,t(θ), 1− ε, 1 + ε)Âi

)
, (2)

with the importance sampling ratio ρi,t(θ) =
πθ(oi,t|oi,<t)
πθold (oi,t|oi,<t)

.104

3 Methodology105

We first diagnose a core source of instability in multi-turn TIR: the emergence of low-probability106

tokens. We demonstrate how these tokens drive gradient explosions and create a credit assignment107

dilemma during Zero-RL training. Building on this analysis, we introduce SIMPLETIR, a simple yet108

effective trajectory filtering method that stabilizes training while encouraging the model to develop109

sophisticated, multi-turn reasoning strategies.110

3

0 200 400 600 800
Steps

0.0

0.1

0.2

0.3

0.4

AI
M

E2
4

Sc
or

e

0 200 400 600 800
Steps

0

2

4

6

8

Gr
ad

 N
or

m

0 200 400 600 800
Steps

500

750

1000

1250

1500

1750

Re
sp

on
se

 L
en

gt
h

0 200 400 600 800
Steps

0.0

0.2

0.4

0.6

0.8

1.0

Co
de

 U
se

 F
re

qe
nc

y

Naive Multi-turn Training Naive Single-turn Training

Figure 2: Training statistics comparing naive single-turn and multi-turn TIR. Single-turn training proceeds
smoothly and achieves higher performance, while multi-turn training is unstable.

Turn 1 with Tool Call Turn 2 with Tool Call Turn 3 without Tool Call Turn 4 with Collapsed Response

0

-2

-4

-6

-8

-10To
ke

n
Pr

ob
ab

ilit
y

(L
og

 S
ca

le
)

Figure 3: Visualization of token probabilities in a multi-turn TIR trajectory. The y-axis is log-scaled. Distribu-
tional drift from tool feedback in early turns leads to a collapse in token probabilities in later turns.

3.1 The Emergence of Low-Probability Tokens in Multi-Turn TIR111

The instability of multi-turn TIR training is a known challenge [1, 2]. To isolate the cause, we contrast112

it with a minimal, single-turn TIR setting where the model produces exactly one response containing113

reasoning and an optional code block. As shown in Fig. 2, the single-turn baseline trains smoothly114

and achieves reasonable performance, whereas the multi-turn equivalent suffers from performance115

collapse and recurring gradient spikes.116

The key difference lies in the feedback loop. In multi-turn TIR, the tool feedback fk from turn k117

is concatenated into the prompt for turn k + 1. Because this feedback originates from an external118

interpreter, it can deviate significantly from the LLM’s learned data distribution. Conditioned on such119

out-of-distribution (OOD) input, the model’s subsequent generations can drift away from pretrained120

patterns, becoming highly stochastic and assigning unnaturally low probabilities to selected tokens.121

We verify this phenomenon with a case study in Fig. 3. The tool feedback in the early turns contains122

tokens with extremely low probabilities, confirming their OOD nature. While masking the loss on123

these feedback tokens is a known practice [6, 2], it is insufficient. The distributional drift it induces124

contaminates subsequent model generations. As seen in Fig. 3, while token probabilities in Turn 1 are125

high, low-probability segments emerge in the model’s own text in Turns 2 and 3. This compounding126

drift culminates in a collapsed, nonsensical response with extremely low token probabilities in Turn127

4.128

3.2 How Low-Probability Tokens Compromise Zero-RL Training129

Having established the emergence of low-probability tokens, we now analyze their two primary130

detrimental effects on Zero-RL training: gradient explosion and misaligned credit assignment.131

Gradient Explosion. A primary failure mode in multi-turn TIR is the explosion of gradient norms132

(Fig. 2). To formalize this, we analyze the policy gradient with respect to the pre-softmax logits133

z [12].134

4

Code 1
solve_a()

Code 2
solve_b()

Validated Results

Result 1 Result 2

Code 1
solve_step1()

Code 2
solve_step2()

Code 3
solve_step3()

Final Results

Code
buggy_func()

Initial Result

Retry
If Error

Final Results

End-to-End Multi-Turn Agent Training

Pattern 1: Cross Validation Pattern 2: Progressive Reasoning Pattern 3: Error Correction Loop

Agent-Env Interaction

Agent
Code
Result

Multiple Turns

Reinforcement Learning

Result 1

Result 2

Trajectory Filtering

Code 2 Results
Reasoning 1 Code 1 Reasoning 2

Incomplete Code

Void Turn
Stop Generation

, ,{
}

, Reasoning 1 Code 1 Reasoning 2, ,{
}

,

,

with Valid Trajectory

Policy Update

Emergent Multi-Turn Reasoning Patterns
Figure 4: An overview of SIMPLETIR. During the policy update, SIMPLETIR identifies and filters out entire
trajectories that contain a void turn—an LLM response that fails to produce either a complete code block or a
final answer.

Proposition 1. Consider a token c at timestep t of a trajectory oi. The L2 norm of the policy gradient135

with respect to the logits zt is:136

∥∇zt
JTIR∥2 =

mi,t∑
j mi,j

· ρi,t(θ) · gi,t · |Âi| ·
√

1− 2P (c) +
∑
j∈A

P (j)2, (3)

where mi,t is the feedback mask, ρi,t(θ) is the importance ratio, |Âi| is the absolute advantage, P is137

the policy’s probability distribution πθ(·|oi,<t), and gi,t is a gating function active when the PPO138

update is not clipped.139

Proposition 1 reveals that the gradient norm is highly sensitive to two factors that are exacerbated by140

low-probability tokens:141

• Unclipped Importance Ratio: The ratio ρi,t(θ) =
πθ(oi,t|oi,<t)
πθold (oi,t|oi,<t)

is a primary source of gradient142

spikes. For a negatively-rewarded trajectory (Âi < 0), this ratio is unbounded from above. If token143

c was generated with a very low probability by the old policy, πθold(c|·) is minute. Even a small144

update to πθ(c|·) can cause ρi,t(θ) to explode, leading to the gradient spikes observed in training.145

• Sustained High Gradient Norm: The probability-dependent term,
√

1− 2P (c) +
∑

j P (j)2,146

can sustain large gradients. When the policy assigns a low probability to the sampled token c,147

1 − 2P (c) nears its maximum of 1. If the policy is otherwise confident (i.e., the distribution148

is sharp), the collision probability
∑

j P (j)2 remains large, preventing the gradient norm from149

diminishing and thus contributing to unstable training [12].150

Misaligned Credit Assignment. Beyond gradient instability, low-probability tokens introduce a151

severe credit assignment problem. As seen in Fig. 3, these tokens are more prevalent in later turns.152

With a sparse, terminal reward, a trajectory that fails in its final turns receives a single negative reward153

for the entire sequence. This signal does not distinguish between correct, high-probability reasoning154

in early turns and the faulty, low-probability tokens that caused the eventual failure. This dynamic155

unfairly penalizes valid multi-turn behavior, causing the policy to collapse toward safer, single-turn156

generations.157

3.3 SimpleTIR: Stabilizing Training by Filtering Void Turns158

Given that low-probability tokens are the root cause, simple heuristics like masking high-perplexity159

trajectories or clipping the importance ratio may seem appealing. While effective in some contexts [13,160

14], we show in Fig. 5 (bottom) that these methods fail to resolve instability in multi-turn TIR, as161

their thresholds are difficult to tune and they do not solve the credit assignment problem.162

A more robust filtering criterion is needed. We observe that the collapsed Turn 4 in Fig. 3 follows a163

turn that produced neither a tool call nor a final answer. Intuitively, such a turn makes no progress in164

the reasoning process. We define these as void turns. A void turn is often a symptom of distributional165

drift, where high generation stochasticity leads to a premature end-of-sequence token. Because void166

turns are rare in successful trajectories but indicative of abnormal ones, they serve as a powerful167

heuristic for identifying problematic trajectories.168

5

Table 1: Performance comparison on various math benchmarks. Check and cross marks in the “TIR” column
refers to whether the method involves TIR during training and evaluation. Slash, check, and cross marks in the
“Zero RL” column refers to whether the model is untrained, trained with the Zero RL setting, or trained with
other settings. The “From” column indicates the type of We fill the scores with - if they are not provided in
respective reports.

Model TIR Zero RL From AIME24 AIME25 MATH500 Olympiad AMC23 Hmmt 25

Models based on Qwen2.5-7B

Qwen2.5-7B ✗ / Base 3.2 1.1 51.9 15.4 21.7 0.0
Qwen2.5-7B-TIR ✓ / Base 1.7 0.6 18.0 6.2 10.8 1.9
SimpleRL-Zoo-7B ✗ ✓ Base 15.6 - 78.2 40.4 62.5 -
ToRL-7B ✓ ✗ Math-Inst 40.2 27.9 82.2 49.9 75.0 -
Effective TIR-7B ✓ ✗ Math 42.3 29.2 86.4 - 74.2 -
ARPO-7B ✓ ✗ Inst 30.0 30.0 78.8 - - -
ZeroTIR-7B ✓ ✓ Base 39.6 25.0 80.2 - - 22.5
SimpleTIR-7B ✓ ✓ Base 50.5 30.9 88.4 54.8 79.1 29.7

Models based on Qwen2.5-32B

Qwen2.5-32B ✗ / Base 4.2 1.6 43.1 17.8 28.0 0.2
Qwen2.5-32B-TIR ✓ / Base 7.1 5.0 37.0 16.9 20.0 5.2
DAPO ✗ ✓ Base 50.0 - - - -
ReTool ✓ ✗ Math-Inst 67.0 49.3 - - - -
ZeroTIR-32B ✓ ✓ Base 48 27 87.8 - - 20.0
SimpleTIR-32B ✓ ✓ Base 59.9 49.2 92.9 63.7 91.6 34.6

This insight leads to the SIMPLETIR algorithm, illustrated in Fig. 4. The procedure is simple: for169

each sampled trajectory, we inspect its turns. If any turn contains neither a complete code block nor170

a final answer, it is labeled a void turn. We then mask the policy loss for the entire trajectory,171

removing it from the batch before the GRPO update. This single step simultaneously prevents the172

large gradients from low-probability tokens from backpropagating and corrects misaligned credit173

assignment by ensuring successful early turns are not penalized for a later collapse. SIMPLETIR’s174

filtering approach is agnostic to the specific RL algorithm used and is orthogonal to other recent175

improvements in RL for LLM reasoning [13, 15, 16].176

3.4 Implementation Details177

To further enhance training stability and efficiency, we adopt several key practices. First, to avoid178

out-of-distribution special tokens when using base models, we do not use chat templates. Instead, we179

prepend tool outputs with a simple prefix, “Code Execution Result:”. Second, to provide a shortcut180

for simple tasks and improve sample efficiency, we prepend every LLM-generated code block with a181

‘final_answer‘ function, allowing the model to terminate and answer within a single turn if possible.182

Finally, to prevent the model from hallucinating tool outputs, we strictly stop LLM generation after a183

complete code block is formed and always append the true, external tool feedback before the next184

turn begins.185

4 Experiments186

4.1 Setup187

Training We prepare our training code with the VeRL [17] and Search-R1 [6] framework. We188

use Sandbox Fusion as an asynchronous code interpreter. The training datasets are Math3-5 from189

SimpleRL [18] and Deepscaler [19]. SimpleTIR follows the Zero RL setting and uses the unaligned190

Qwen-2.5 series as the base models, including Qwen-2.5-7B and Qwen-2.5-32B. During training, the191

rollout batch size is set to 512, and the mini update size is set to 128. The maximum response length192

is initially set to 16K, with a maximum of five turns of code execution. When the average response193

length plateaus, we increase the maximum response length to 24K and the largest number of turns to194

10. Other training hyperparameters are in Appendix C.2.195

6

Figure 5: Top: Training curves for SimpleTIR with different maximum number of turns. SimpleTIR with
maximum 10 turns is resumed at 200 steps from SimpleTIR with maximum 5 turns. SimpleTIR clearly benefits
from scaling interaction turns from 1 to 5. Bottom: The training curves for ablation studies in the first 320 steps.
Trajectory filtering with high importance ratios or low probability tokens cannot resolve the challenge of training
instability, while SimpleTIR suffers less from low probability tokens and gradient explosion.

0 400 800 1200
Steps

1.0

1.5

2.0

2.5

3.0

3.5

Nu
m

be
r o

f T
ur

ns

0 400 800 1200
Steps

1000

2000

3000

4000

Av
er

ag
e

Re
sp

on
se

 L
en

gt
h

0 400 800 1200
Steps

0.2

0.4

0.6

0.8

M
at

h5
00

 S
co

re

0 400 800 1200
Steps

0.0

0.1

0.2

0.3

0.4

0.5

AI
M

E2
4

Sc
or

e

Max Turns=1 Max Turns=5 Max Turns=10

0 80 160 240
Steps

0

1

2

3

4

Gr
ad

 N
or

m

0 80 160 240
Steps

30

25

20

15

10

M
in

 T
ok

en
 P

ro
ba

bi
lit

y

0 80 160 240
Steps

1

2

3

4

5

M
ax

 R
at

io
0 80 160 240

Steps

0.25

0.30

0.35

0.40

0.45

0.50

0.55

Tr
ai

ni
ng

 S
co

re

High Ratio Filtering Low Prob Filtering SimpleTIR

Table 2: Results of ablation studies. Considering the unstable training of ablated methods, we report the highest
scores within 1000 gradient steps. “Naive Multi-Turn” directly applies RLVR in multi-turn TIR. “Low Prob” and
“High Ratio” filtering refers to masking the policy loss on tokens with lowest probabilities or highest importance
ratio.

SimpleTIR-7B Naive Multi-Turn Low Prob Filtering High Ratio Filtering Stop Generation w/o Filtering

AIME24 50.5 20.8 23.3 26.3 26.1

Math500 88.4 73.1 72.8 75.0 77.3

Evaluation Our evaluation is conducted on Math500 [20], AIME24, AIME25, AMC23, and Hmmt196

Feb 25, using a temperature of 1 and reporting average@32 scores to reduce variance, following Yu197

et al. [21]. For comparison, we consider three categories of baselines. The first is non-TIR Zero RL,198

where we use SimpleRL-Zoo [18] and DAPO [21] as representative baselines. The performance gap199

between these methods and SimpleTIR highlights the advantage of incorporating TIR in mathematical200

reasoning. The second category is TIR RL from cold-start or specialized models, which includes201

ReTool [5], collecting cold-start datasets for supervised finetuning on Qwen2.5-Math-32B-Instruct,202

ARPO [22], finetuning Qwen2.5-7B-Instruct, as well as ToRL [23] and Effective CIR [24], both203

applying RL to the Qwen2.5-Math series. The final category is Zero RL with TIR, where, to the best204

of our knowledge, Zero-TIR [2] is the only method that strictly follows the Zero RL paradigm by205

training TIR models directly from base models. starting from unaligned base models when training206

TIR models.207

4.2 Training Results208

The training results are listed in Tab. 1. SimpleTIR demonstrates significant performance im-209

provement over base models and outperform all baselines of Zero RL, either with or without TIR.210

SimpleTIR can also outperform baselines starting from Qwen2.5-Math-7B series, such as ToRL211

and Effective TIR. Comparing with methods not following Zero RL, it is shown that cold start212

significantly boosts performance, with ReTool-32B obtaining the highest scores on AIME24 and213

AIME25. The advantage of Zero RL over cold start lies in the diversity of reasoning patterns, as214

discussed in Sec. 4.4.215

7

Figure 6: Demonstration of three reasoning patterns observed in responses generated by SimpleTIR.

Code 1
solve_a()

Code 2
solve_b()

Validated Results

Result 1 Result 2

Code 1
solve_step1()

Code 2
solve_step2()

Code 3
solve_step3()

Final Results

Code
buggy_func()

Initial Result

Retry
If Error

Final Results

End-to-End Multi-Turn Agent Training

Pattern 1: Cross Validation Pattern 2: Progressive Reasoning Pattern 3: Error Correction Loop

Agent-Env Interaction

Agent
Code
Result

Multiple Turns

Reinforcement Learning

Result 1

Result 2

Trajectory Filtering

Code 2 Results
Reasoning 1 Code 1 Reasoning 2

Incomplete Code

Void Turn
Stop Generation

, ,{
}

, Reasoning 1 Code 1 Reasoning 2, ,{
}

,

,

with Valid Trajectory

Policy Update

Emergent Multi-Turn Reasoning Patterns

Table 3: Comparison of reasoning pattern frequencies in ReTool and SimpleTIR-32B responses. The summation
of frequencies may exceed 100% as there may be more than one reasoning patterns in one response.

Progressive
Reasoning (%)

Cross
Verification (%)

Error
Correction (%)

ReTool 18.9 82.4 25.8

SimpleTIR-32B 46.5 86.0 38.0

4.3 Training Curves and Ablation Studies216

We show the training curve of SimpleTIR with 1, 5, and 10 turns of generation in Fig. 5 (Top). In217

all these settings, SimpleTIR exhibits constant and smooth increases of the average response length218

and performance scores. The average number of turns first arises quickly then remains constant219

for multi-turn SimpleTIR. We also observe that the response length and the Math500 score scales220

with more turns, while the AIME24 score does not benefit clearly. This indicates that different tasks221

require distinct reasoning patterns. Some may be solvable with few steps of reasoning, but others will222

take a number of external feedback before reaching the correct answer.223

We also conduct ablation studies to demonstrate the effectiveness of trajectory filtering in SimpleTIR.224

We first investigate two alternative filtering criteria: high importance ratio and low token probabilities,225

as specified in the first paragraph of Sec. 3.3. As shown in Fig. 5 (Bottom), these two filtering226

approach cannot resolve the issue of gradient explosion, exhibiting unstable curves of training scores.227

SimpleTIR features a more stable curve of gradient norm, thanks to the mild token probability228

distributions. This demonstrates the effectiveness of void turn filtering in stabilizing multi-turn TIR229

training. We then consider an ablation method where LLM generation is terminated on void turns230

but resulting trajectories are not filtered when computing policy loss. According to the validation231

results in Tab. 2, this method is also inferior to SimpleTIR. This can be attributed to misaligned credit232

assignment since trajectories containing void turns can hardly obtain positive outcome. SimpleTIR233

handles such issue by masking the loss of whole responses containing void turns.234

4.4 Emergence of Diverse Reasoning Behaviors235

Thanks to the framework of Zero RL training, SimpleTIR automatically reinforces useful reasoning236

patterns obtained in the pretraining phase, rather than sticking to predefined patterns in the SFT237

dataset. In Appendix B.2, we show SimpleTIR responses with diverse multi-turn reasoning behaviors.238

They are mostly combinations of the three main reasoning patterns illustrated in Figure 6, namely239

Cross Validation, Progressive Reasoning, and Error Correction.240

We also use Claude-3.7-Sonnet to identify and count the frequency of reasoning patterns in responses241

generated by ReTool and SimpleTIR-32B. The responses are filtered so that they all lead to the242

correct final answer. Both models demonstrate a strong tendency to conduct multiple rounds of cross243

verification. Meanwhile, SimpleTIR-32B exhibits more instances of progressive reasoning and error244

8

correction. This illustrates the advantage of Zero RL, which preserves more diversity in reasoning245

patterns.246

5 Related Work247

5.1 Zero RL for LLM Reasoning248

DeepSeek-R1 [9] first shows that starting from an unaligned base model, large-scale RL training249

with outcome reward can unlock emergent chain-of-thought reasoning ability. Such paradigm is250

later referred to as Zero RL. SimpleRL [18] provides a reproducible cookbook to run Zero RL on251

various open-source base models. Open-Reasoner-Zero [25] proposes that vanilla PPO with GAE252

(λ = 1, γ = 1) without KL regularization is sufficient to scale up Zero RL training. DAPO [21]253

introduce several training details that makes Zero RL training stable and efficient, such as raising254

the high clip ratio of PPO and GRPO and filtering tasks with 0 or 100% solve rate. Dr. GRPO [26]255

proposes to remove the length normalization term. SimpleTIR also follows the Zero RL pipeline and256

is orthogonal to training algorithms for Zero RL without TIR.257

5.2 RL for Tool Integrated Reasoning258

Several recent works focus on applying RL to improving the tool use ability of LLMs. Search-R1 [6]259

and R1-Search [27] focus on question-answering tasks, utilizing the search tool. For mathemati-260

cal reasoning tasks, python interpreter can be a useful tool to conduct numerical calculations or261

enumerations. ReTool [5] employs a cold-start SFT phase before RL. ToRL [23] and Effective262

CIR [24] explore training recipes on math-specialized bases. These pipelines often rely on domain263

data, instruction tuning, or other supervision that introduce bias and complexity; in contrast, Zero264

RL is more general yet notoriously unstable in multi-turn settings. Our work directly addresses this265

stability gap under Zero RL by filtering trajectories with void turns. ZeroTIR [2] is also explicitly266

framed in the Zero RL setting. It proposes several stabilizing techniques that are orthogonal to our267

approach. There is also a theoretical explanation [28] on why TIR is more effective than text-only268

reasoning. SimpleTIR serves as a good empirical evidence of their claim.269

We leave related work on stabilizing RL training in Appendix A.270

6 Conclusion271

In this work, we introduce SimpleTIR, an RL framework designed to stabilize and enhance multi-turn272

TIR under the Zero RL setting. By addressing the key challenge of harmful negative samples via273

filtering out trajectories with void turns, our method achieves stable training dynamics and improves274

reasoning performance across a variety of mathematical benchmarks. Beyond state-of-the-art results275

starting from the Qwen2.5-7B model, SimpleTIR also encourages the emergence of diverse reasoning276

patterns. These results highlight the potential of end-to-end multi-turn TIR RL, without relying on277

cold-start human data, as a pathway to scalable and reliable multi-turn reasoning in future LLM agent278

development.279

Limitations and Future Work While effective, our method has several limitations. First, we use280

void turns as an indicator of low-probability tokens in multi-turn TIR. However, this indicator may281

not be directly applicable to tasks beyond multi-turn TIR. Second, we currently restrict the maximum282

number of turns to 10 for mathematical reasoning, though more interactions may be required for283

complex multi-turn agent tasks. Third, our training relies on a highly parallel sandbox for code284

execution. Therefore, the development of a faster and more reliable sandbox is an important direction285

for future work. Finally, achieving fully asynchronous rollout and reward calculation remains an open286

challenge. These limitations raise additional concerns around rollout efficiency, memory management,287

and credit assignment, which we leave for future exploration.288

9

References289

[1] Zihan Wang, Kangrui Wang, Qineng Wang, Pingyue Zhang, Linjie Li, Zhengyuan Yang, Xing290

Jin, Kefan Yu, Minh Nhat Nguyen, Licheng Liu, et al. RAGEN: Understanding Self-evolution291

in LLM Agents via Multi-turn Reinforcement Learning. arXiv preprint arXiv:2504.20073,292

2025.293

[2] Xinji Mai, Haotian Xu, Xing W, Weinong Wang, Yingying Zhang, and Wenqiang Zhang. Agent294

RL Scaling Law: Agent RL with Spontaneous Code Execution for Mathematical Problem295

Solving. arXiv preprint arXiv:2505.07773, 2025.296

[3] Carlo Baronio, Pietro Marsella, Ben Pan, and Silas Alberti. Multi-Turn RL Training for CUDA297

Kernel Generation. https://cognition.ai/blog/kevin-32b, 2025.298

[4] Moonshot AI. Kimi-Researcher: End-to-End RL Training for Emerging Agentic Capabilities.299

https://moonshotai.github.io/Kimi-Researcher/, June 2025.300

[5] Jiazhan Feng, Shijue Huang, Xingwei Qu, Ge Zhang, Yujia Qin, Baoquan Zhong, Chengquan301

Jiang, Jinxin Chi, and Wanjun Zhong. ReTool: Reinforcement Learning for Strategic Tool Use302

in LLMs. arXiv preprint arXiv:2504.11536, 2025.303

[6] Bowen Jin, Hansi Zeng, Zhenrui Yue, Dong Wang, Hamed Zamani, and Jiawei Han. Search-R1:304

Training LLMs to Reason and Leverage Search Engines with Reinforcement Learning. arXiv305

preprint arXiv:2503.09516, 2025.306

[7] Milos Hauskrecht, Nicolas Meuleau, Leslie Pack Kaelbling, Thomas L. Dean, and Craig307

Boutilier. Hierarchical solution of markov decision processes using macro-actions. In UAI,308

1998.309

[8] Ziniu Li, Tian Xu, Yushun Zhang, Zhihang Lin, Yang Yu, Ruoyu Sun, and Zhi-Quan Luo.310

ReMax: A Simple, Effective, and Efficient Reinforcement Learning Method for Aligning Large311

Language Models. In ICML, 2024.312

[9] DeepSeek-AI Team. DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforce-313

ment Learning. arXiv preprint arXiv:2501.12948, 2025.314

[10] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal315

Policy Optimization Algorithms. arXiv preprint arXiv:1707.06347, 2017.316

[11] Qing Wang, Yingru Li, Jiechao Xiong, and Tong Zhang. Divergence-augmented policy opti-317

mization. Advances in Neural Information Processing Systems, 32, 2019.318

[12] Yingru Li. Logit Dynamics in Softmax Policy Gradient Methods. arXiv preprint319

arXiv:2506.12912, 2025.320

[13] Chujie Zheng, Shixuan Liu, Mingze Li, Xiong-Hui Chen, Bowen Yu, Chang Gao, Kai Dang,321

Yuqiong Liu, Rui Men, An Yang, Jingren Zhou, and Junyang Lin. Group Sequence Policy322

Optimization. arXiv preprint arXiv:2507.18071, 2025.323

[14] Yifan Zhang, Xingyu Lu, Xiao Hu, Chaoyou Fu, Bin Wen, Tianke Zhang, Changyi Liu, Kaiyu324

Jiang, Kaibing Chen, Kaiyu Tang, Haojie Ding, Jiankang Chen, Fan Yang, Zhang Zhang,325

Tingting Gao, and Liang Wang. R1-Reward: Training Multimodal Reward Model Through326

Stable Reinforcement Learning. arXiv preprint arXiv:2505.02835, 2025.327

[15] Feng Yao, Liyuan Liu, Dinghuai Zhang, Chengyu Dong, and Jianfeng Gao. Your Efficient RL328

Framework Secretly Brings You Off-Policy RL Training. Feng Yao’s Notion, 2025.329

[16] Aili Chen, Aonian Li, Bangwei Gong, Binyang Jiang, Bo Fei, Bo Yang, Boji Shan, Changqing330

Yu, Chao Wang, Cheng Zhu, et al. MiniMax-M1: Scaling Test-Time Compute Efficiently with331

Lightning Attention. arXiv preprint arXiv:2506.13585, 2025.332

[17] Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua333

Peng, Haibin Lin, and Chuan Wu. HybridFlow: A Flexible and Efficient RLHF Framework.334

arXiv preprint arXiv:2409.19256, 2024.335

10

https://moonshotai.github.io/Kimi-Researcher/

[18] Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He.336

SimpleRL-Zoo: Investigating and Taming Zero Reinforcement Learning for Open Base Models337

in the Wild. arXiv preprint arXiv:2503.18892, 2025.338

[19] Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y. Tang, Manan Roongta, Colin339

Cai, Jeffrey Luo, Li Erran Li, Raluca Ada Popa, and Ion Stoica. DeepScaleR: Surpassing340

O1-Preview with a 1.5B Model by Scaling RL, 2025. Notion Blog.341

[20] Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn342

Song, and Jacob Steinhardt. Measuring Mathematical Problem Solving With the MATH Dataset.343

In NeurIPS Datasets and Benchmarks, 2021.344

[21] Qiying Yu, Zheng Zhang, Ruofei Zhu, et al. DAPO: An Open-Source LLM Reinforcement345

Learning System at Scale. arXiv preprint arXiv:2503.14476, 2025.346

[22] Fanbin Lu, Zhisheng Zhong, Shu Liu, Chi-Wing Fu, and Jiaya Jia. ARPO: End-to-End Policy347

Optimization for GUI Agents with Experience Replay. arXiv preprint arXiv:2505.16282, 2025.348

[23] Xuefeng Li, Haoyang Zou, and Pengfei Liu. ToRL: Scaling Tool-Integrated RL. arXiv preprint349

arXiv:2503.23383, 2025.350

[24] Fei Bai, Yingqian Min, Beichen Zhang, Zhipeng Chen, Wayne Xin Zhao, Lei Fang, Zheng Liu,351

Zhongyuan Wang, and Ji-Rong Wen. Towards Effective Code-Integrated Reasoning. arXiv352

preprint arXiv:2505.24480, 2025.353

[25] Jingcheng Hu, Yinmin Zhang, Qi Han, Daxin Jiang, Xiangyu Zhang, and Heung-Yeung Shum.354

Open-Reasoner-Zero: An Open Source Approach to Scaling Up Reinforcement Learning on the355

Base Model. arXiv preprint arXiv:2503.24290, 2025.356

[26] Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee,357

and Min Lin. Understanding R1-Zero-like Training: A Critical Perspective. arXiv preprint358

arXiv:2503.20783, 2025.359

[27] Huatong Song, Jinhao Jiang, Yingqian Min, Jie Chen, Zhipeng Chen, Wayne Xin Zhao, Lei Fang,360

and Ji-Rong Wen. R1-Searcher: Incentivizing the Search Capability in LLMs via Reinforcement361

Learning. arXiv preprint arXiv:2503.05592, 2025.362

[28] Heng Lin and Zhongwen Xu. Understanding Tool-Integrated Reasoning. arXiv preprint363

arXiv:2508.19201, 2025.364

[29] Ganqu Cui, Yuchen Zhang, Jiacheng Chen, Lifan Yuan, Zhi Wang, Yuxin Zuo, Haozhan Li,365

Yuchen Fan, Huayu Chen, Weize Chen, et al. The Entropy Mechanism of Reinforcement366

Learning for Reasoning Language Models. arXiv preprint arXiv:2505.22617, 2025.367

[30] Qingbin Li, Rongkun Xue, Jie Wang, Ming Zhou, Zhi Li, Xiaofeng Ji, Yongqi Wang, Miao368

Liu, Zheming Yang, Minghui Qiu, et al. CURE: Critical-Token-Guided Re-concatenation for369

Entropy-collapse Prevention. arXiv preprint arXiv:2508.11016, 2025.370

[31] Mingjie Liu, Shizhe Diao, Ximing Lu, Jian Hu, Xin Dong, Yejin Choi, Jan Kautz, and Yi Dong.371

Prorl: Prolonged Reinforcement Learning Expands Reasoning Boundaries in Large Language372

Models. arXiv preprint arXiv:2505.24864, 2025.373

[32] Yuzhong Zhao, Yue Liu, Junpeng Liu, Jingye Chen, Xun Wu, Yaru Hao, Tengchao Lv, Shaohan374

Huang, Lei Cui, Qixiang Ye, et al. Geometric-Mean Policy Optimization. arXiv preprint375

arXiv:2507.20673, 2025.376

[33] Chujie Zheng, Shixuan Liu, Mingze Li, Xiong-Hui Chen, Bowen Yu, Chang Gao, Kai Dang,377

Yuqiong Liu, Rui Men, An Yang, et al. Group Sequence Policy Optimization. arXiv preprint378

arXiv:2507.18071, 2025.379

[34] Vaishnavi Shrivastava, Ahmed Awadallah, Vidhisha Balachandran, Shivam Garg, Harkirat Behl,380

and Dimitris Papailiopoulos. Sample More to Think Less: Group Filtered Policy Optimization381

for Concise Reasoning. arXiv preprint arXiv:2508.09726, 2025.382

[35] Xinyu Zhu, Mengzhou Xia, Zhepei Wei, Wei-Lin Chen, Danqi Chen, and Yu Meng. The383

Surprising Effectiveness of Negative Reinforcement in LLM Reasoning. arXiv preprint384

arXiv:2506.01347, 2025.385

11

A Extended Related Work386

A.1 Stabilizing RL Training387

Training instability is a significant challenge when applying RL to LLMs, often manifesting as entropy388

collapse and gradient norm explosions. Entropy-based methods explicitly maintain policy entropy389

or encourage re-generation at pivotal tokens to delay distributional narrowing [29, 30, 31]. Recent390

methods control the importance sampling ratio to reduce gradient variance and brittle updates by391

reweighting or constraining likelihood ratios, e.g., from token-level IS to sequence-level objectives and392

clipping [15, 16, 32, 33]. Data and trajectory filtering stabilizes training by discarding uninformative393

or harmful samples, e.g., multi-sample-then-filter schemes [34]. From the perspective of the learning394

signal itself, negative-only gradient updates have been shown to improve stability and generalization395

without sacrificing exploration, and more generally to focus updates on low-probability/high-entropy396

branching tokens [35]. SimpleTIR departs from the above methods by targeting the root cause397

specific to TIR, i.e., distribution shift induced by external tool outputs compounded by multi-turn398

error accumulation. It is also orthogonal to entropy regularization, IS ratio control, and negative-399

gradient schemes.400

B Example Responses401

B.1 Incomplete Response402

We present representative failure cases that contain void turns, i.e., turns that produce neither a403

complete, executable code block nor a boxed final answer. These examples serve a diagnostic role:404

they illustrate how OOD tool feedback and compounding errors precipitate collapsed generations405

and gradient spikes during Zero RL. Tab. 4 shows a typical trajectory in which a void turn disrupts406

subsequent decoding and leads to corrupted outputs, motivating our trajectory filtering rule.407

B.2 Response with Emergent Reasoning Behaviors408

We provide qualitative rollouts that demonstrate the diverse multi-turn behaviors SimpleTIR elicits409

without instruction-level biases. Tab 5 illustrates progressive reasoning with code improvement.410

Taken together with the quantitative pattern analysis in the main text, these cases substantiate our411

claim that Zero RL with TIR encourages richer strategies than cold-start SFT.412

C Experiments413

C.1 Prompt for Multi-turn TIR Generation414

We include the exact prompt template used to generate multi-turn TIR trajectories in Tab. 6b. The415

design emphasizes: (1) selective use of Python wrapped in triple backticks as complete scripts (with416

imports); (2) explicit printing of intermediate quantities so that execution feedback can guide later417

turns; and (3) a standardized answer channel (final_answer(...) or \boxed{...}) that cleanly418

terminates trajectories when a solution is reached. These choices stabilize interaction with the419

interpreter, reduce format variance, and make it easy to detect valid tool calls versus void turns.420

C.2 Hyperparameters421

We show the training hyperparameters of SimpleTIR in Tab. 6a. Below we explain the rationale422

behind the hyperparameters. We cap the initial max response length at 16,384 tokens to accommodate423

complete code blocks and verbose execution traces without premature truncation. Initial max424

interaction turns = 5 bounds episode length and compute while still allowing the model to plan,425

execute, and verify within a single trajectory. We set rollout temperature = 1.0 to preserve diversity in426

candidate solutions and rely on selection/credit assignment rather than explicit entropy bonuses to427

drive exploration. Each update uses a sampling batch size of 1,280 responses with n = 16 rollouts428

per prompt, which yields broad coverage of tool-use strategies per input while keeping variance429

manageable.430

12

We use standard PPO with clip ratio = 0.2 / 0.28 (low/high) to constrain policy updates; the slightly431

looser upper bound avoids over-penalizing advantageous moves identified by execution feedback.432

PPO epochs = 4 provide sufficient reuse of samples without overfitting to batch noise. The train batch433

size = 512 balances gradient estimate quality and memory use. A small actor learning rate = 1e-6 and434

gradient clipping = 1 (global-norm) prevent instability from long-context backprop and occasional435

high-magnitude advantages produced by sparse rewards. We treat each dialogue as an undiscounted436

episodic task with γ = 1.0. We also set entropy coefficient = 0 and KL coefficient = 0. Exploration is437

instead induced by temperature and multi-rollout sampling.438

C.3 Prompt for Extracting Reasoning Patterns439

To analyze behaviors systematically, in Tab. 7 we provide the prompt used to label reasoning behaviors440

in trajectories . It first enforces minimal bookkeeping (e.g., number of code blocks, whether any441

execution equals the final answer), then queries four patterns: decomposed sub-solves (with non-final442

execution), induction, self-verification, and bug-fixing via additional code. The constrained output443

format improves label consistency and allows fair frequency comparisons across methods.444

13

Table 4: An example from SimpleTIR-7B on AIME24 dataset. Responses generated in different turns are
separated with a vertical line. Response Part-II contains a void turn, where no complete code blocks nor boxed
answers are generated. Both in and after the void turn, the model generates corrupted responses.

Example #1 from AIME24 Dataset

Question:
Eight circles of radius 34 are sequentially tangent, and two of the circles are tangent to AB and BC of triangle
ABC, respectively. 2024 circles of radius 1 can be arranged in the same manner. The inradius of triangle
ABC can be expressed as m

n
, where m and n are relatively prime positive integers. Find m+ n.

A

B C
Labeled Answer:
197

Model Output by SimpleTIR-7B (Part-I)

To solve this problem, we need to determine the inradius of triangle ABC given the arrangement of circles.
Here is the step-by-step reasoning:
Understand the Geometry:
- We have eight circles of radius 34 that are tangent to each other sequentially, with two of them being tangent
to the sides AB and BC of triangle ABC. - Additionally, 2024 circles of radius 1 can fit in the same manner.
Determine the Distance Between Centers of the Larger Circles:
- The centers of the eight tangent circles of radius 34 will form a chain where each circle is tangent to the
next, meaning the distance between the centers of two consecutive circles is 34 + 34 = 68. - Since there
are 8 circles, the total distance from the center of the first circle to the center of the last circle would be
68× (8− 1) = 68× 7 = 476. However, we need to consider that the first circle is tangent to AB and the
last circle is tangent to BC. This distance of 476 actually represents the length of the tangent chain along the
line connecting the points of tangency on AB and BC.
Relate to Triangle ABC:
- If we look at the centers of these circles, they form a line parallel to BC and AB, and the distance between
this line and either AB or BC is equal to the radius of the circles (34 for the larger circles, 1 for the smaller
circles).
Calculate the Lengths:
- For the larger circles (radius 34):
- The total distance connecting the points of tangency on AB and BC is effectively the distance between the
parallel line formed by the centers of these circles and the line BC or AB, which is 8 × 34 = 272 (since
there are 8 circles, and each has a radius of 34, the total vertical distance covered would be the diameter of
7 circles if we think about it in terms of centers plus radius). However, since they are tangent to each other
sequentially, the distance between the lines AB and BC (parallel to the line connecting the centers) should be
34 + 34× (8− 1) = 34 + 34× 7 = 34× 8 = 272.
- For the smaller circles (radius 1):
- Similarly, if we can fit 2024 circles of radius 1, the total vertical distance from the line of tangency on AB to
the line of tangency on BC would be 2024× 1 = 2024.
Inradius Relationship:
- The inradius r of triangle ABC is the radius of the inscribed circle. To find this, we need to understand how
the heights and lengths of the triangle are affected by these tangent circles.
- Let’s denote the length of AB = c, BC = a, and CA = b. The height from A to BC can be considered by
looking at how the circles stack up vertically.
- For the larger circles:
- If two circles are tangent to AB and BC, the length along AB and BC would create a configuration where
if you think about the points of tangency, the distance covered by the centers vertically for 8 circles should
match up with the triangle height minus twice the radius (since the circles are also on the boundary of the
triangle).

14

Model Output by SimpleTIR-7B (Part-II)

......Some Response Omitted......
Given this, distance between sides should follow proportionally: Distance apart: smaller = 2024×1

8×34
Total height

h of the triangle should include this detailed intermediary:
Let’s re-evaluate and verify it step-by-step via coding:

import sympy as sp
Define the radius of larger and smaller circles
R_large = 34
R_small = 1
num_large_circles = 8
num_small_circles = 2024
Total vertical distance covered by the larger circles ’ centers

from base to the point of tangency
distance_large_centers = num_large_circles * (2 * R_large)
How many points can fit in this same height but smaller the

vertical line can stack:
distance_small_centers = num_small_circles * (2 * R_small)
Height from tangency to the actual top parallel line keeping them

tangent:
height_large = distance_large_centers # actually includes the

tangency start:
height_small = distance_small_centers
Deriving the total height by proportionality:
R_ratio = R_small / R_large
num_ratio = num_small_circles / num_large_circles
HR_length = (num_large_circles * 2 * R_large) # covering space.
H_effective = HR_length
This total covers height only parallelly: from base and top

distance:
h_total = HR_length
inradius = height_large / (num_ratio + 1)
inradius = sp.Rational(h_total / (num_ratio + 1))
print(f"calculated inradius: {inradius}")

Code execution result: calculated inradius: 4822752356869193/2251799813685248

This calculation seems overly complex; let’s simplify using simpler, geometric visualization and relationships:
Simplified Geometric Relationship:
Large Circle Tangent Arrangement:
- We have 8 circles of radius 34, and 2 of these circles are tangent to AB and BC. The effective vertical
distance taken by these circles, considering their arrangement repeating pattern of centers, is given by:

8 · (2 · 34) = 8 · 68

Small Circle Arrangement:
- For smaller circles of radius 1, such that 2024 circles fit similarly: - The vertical distance arrangement for
2024 circles would be:

2024 · 2 · 1 = 2024 · 2 = 4048

......Some Response Omitted......
We repeat arranging parallel: Consider:
each pair arrangement, verifying circles top-height Even scan: If each arrangement euclidean , height method
involving polygons: solved for ratio translating through unique noting: Combining parameters: This par;
valid:

\(\frac{m}{n}\] sum ratio sorts in idlegate ration 1} . However, i’ sequential seek refining this calculation more
consistently: iterating setup considered overall expression precise: Now we solve ensuring configurations
understandable suggest circle distributions proportionally: If):
- \(\(each step repeated configurations: compute \(largest Thus: We need to find side cognize area further on:
triangle holds hold altitude relation contractive step:

15

Table 5: An example from SimpleTIR-7B on AIME24 dataset. It demonstrates the behavior of progressive
reasoning and code improvement. Responses generated in different turns are separated with a vertical line.

Example #1 from AIME24 Dataset

Question:
Let ABCD be a tetrahedron such that AB = CD =

√
41, AC = BD =

√
80, and BC = AD =

√
89.

There exists a point I inside the tetrahedron such that the distances from I to each of the faces of the tetrahedron
are all equal. This distance can be written in the form m

√
n

p
, where m, n, and p are positive integers, m and p

are relatively prime, and n is not divisible by the square of any prime. Find m+ n+ p.
Labeled Answer:
104

Model Output by SimpleTIR-7B (Part-I)

To solve the given problem, we need to find the distance from point I (which is the incenter of the tetrahedron
ABCD) to each of the faces of the tetrahedron, given that the distances are all equal. This distance is the
radius r of the inscribed sphere of the tetrahedron.
First, we need to determine the volume V of the tetrahedron and the surface area S. The formula for the radius
r of the inscribed sphere is given by:

r =
3V

S
Step 1: Calculate the Volume V of the Tetrahedron
We can use the Cayley-Menger determinant to find the volume of the tetrahedron. The Cayley-Menger
determinant for a tetrahedron with edge lengths a, b, c, d, e, f (where a = AB, b = AC, c = AD, d =
BC, e = BD, f = CD) is given by:

288V 2 =

∣∣∣∣∣∣∣∣∣∣
0 1 1 1 1
1 0 a2 b2 c2

1 a2 0 d2 e2

1 b2 d2 0 f2

1 c2 e2 f2 0

∣∣∣∣∣∣∣∣∣∣
Substituting a =

√
41, b =

√
80, c =

√
89, d =

√
89, e =

√
80, f =

√
41:

288V 2 =

∣∣∣∣∣∣∣∣∣∣
0 1 1 1 1
1 0 41 80 89
1 41 0 89 80
1 80 89 0 41
1 89 80 41 0

∣∣∣∣∣∣∣∣∣∣
We can calculate the determinant of the matrix:

import sympy as sp

Define the matrix
matrix = sp.Matrix ([[0, 1, 1, 1, 1], [1, 0, 41, 80, 89], [1, 41, 0,

89, 80], [1, 80, 89, 0, 41], [1, 89, 80, 41, 0]])

Calculate the determinant
det = matrix.det()

Volume squared
V_squared = det / 288

Volume
V = sp.sqrt(V_squared)

print(f"Volume V: {V}")

Code Execution Result: Volume V: 160/3

16

Model Output by SimpleTIR-7B (Part-II)

Step 2: Calculate the Surface Area S of the Tetrahedron
The surface area S is the sum of the areas of the four triangular faces. We can find the area of each triangle
using Heron’s formula.
For triangle ABC:
- AB =

√
41 - AC =

√
80 - BC =

√
89

The semi-perimeter s is:

s =

√
41 +

√
80 +

√
89

2
Using Heron’s formula:

Area =
√

s(s−AB)(s−AC)(s−BC)

We need to find the areas of triangles ABD,ACD, and BCD similarly. Let’s calculate these areas step by
step using Python.

import sympy as sp

Define the edge lengths
AB = sp.sqrt (41)
AC = sp.sqrt (80)
AD = sp.sqrt (89)
BC = sp.sqrt (89)
BD = sp.sqrt (80)
CD = sp.sqrt (41)

Function to compute the area of a triangle using Heron ’s formula
def triangle_area(a, b, c):

s = (a + b + c) / 2
area = sp.sqrt(s * (s - a) * (s - b) * (s - c))
return area

Calculate the areas of the triangular faces
area_ABC = triangle_area(AB , AC, BC)
area_ABD = triangle_area(AB , AD, BD)
area_ACD = triangle_area(AC , AD, CD)
area_BCD = triangle_area(BC , BD, CD)

Total surface area
S = area_ABC + area_ABD + area_ACD + area_BCD

print(f"Area of triangle ABC: {area_ABC}")
print(f"Area of triangle ABD: {area_ABD}")
print(f"Area of triangle ACD: {area_ACD}")
print(f"Area of triangle BCD: {area_BCD}")
print(f"Total surface area S: {S}")

Code Execution Result: Area of triangle ABC: sqrt(-sqrt(41)/2 + 2sqrt(5) + sqrt(89)/2)sqrt(sqrt(41)/2
+ 2sqrt(5) + sqrt(89)/2)sqrt(-2sqrt(5) + sqrt(41)/2 + sqrt(89)/2)sqrt(-sqrt(89)/2 + sqrt(41)/2 + 2sqrt(5))
Area of triangle ABD: sqrt(-sqrt(41)/2 + 2sqrt(5) + sqrt(89)/2
...This content has been truncated to stay below 512 characters...
)/2 + sqrt(89)/2)sqrt(-sqrt(89)/2 + sqrt(41)/2 + 2sqrt(5)) Total surface area S: 4sqrt(-sqrt(41)/2 + 2sqrt(5) +
sqrt(89)/2)sqrt(sqrt(41)/2 + 2sqrt(5) + sqrt(89)/2)sqrt(-2sqrt(5) + sqrt(41)/2 + sqrt(89)/2)sqrt(-sqrt(89)/2
+ sqrt(41)/2 + 2sqrt(5))

It appears the individual areas calculated by Heron’s formula are quite complicated and expressed in a form
needing simplification to find the total surface area S. Let’s simplify the expressions to make the calculations
clearer and ensure we obtain a numerical value for the surface area S. We can use simplify to get more
manageable expressions and then compute the numerical value. Let’s also calculate r = 3V

S
step by step to

simplify finding the equal distances. We know the volume V = 160
3

.

17

Model Output by SimpleTIR-7B (Part-III)

We will now simplify our approach and focus on calculating these areas numerically to find S. Afterward, we
will compute r and ensure the result is in the required form m

√
n

p
. Let’s simplify our strategy and calculate

this accurately in Python.

import sympy as sp
Define symbolic variables
sqrt_41 = sp.sqrt (41)
sqrt_80 = sp.sqrt (80)
sqrt_89 = sp.sqrt (89)
Function to compute area using Heron’s formula
def area_heron(a, b, c):

s = (a + b + c) / 2
area = sp.sqrt(s * (s - a) * (s - b) * (s - c))
return sp.simplify(area)

Calculate areas of the triangles
area_ABC = area_heron(sqrt_41 , sqrt_80 , sqrt_89)
area_ABD = area_heron(sqrt_41 , sqrt_89 , sqrt_80)
area_ACD = area_heron(sqrt_80 , sqrt_89 , sqrt_41)
area_BCD = area_heron(sqrt_89 , sqrt_80 , sqrt_41)
Total surface area
S = area_ABC + area_ABD + area_ACD + area_BCD
Volume
V = sp.Rational (160, 3)
Radius of the inscribed sphere
r = 3 * V / S
Simplify r
r_simplified = sp.simplify(r)
print("Radius r:", r_simplified)

Code Execution Result: Radius r: 20*sqrt(21)/63

The radius r of the inscribed sphere is 20
√
21

63
.

This is in the form m
√
n

p
, where m = 20, n = 21, and p = 63. Here, m and p are relatively prime, and n is

not divisible by the square of any prime.
Step 3: Finding m+ n+ p
Now, we need to calculate m+ n+ p:

m+ n+ p = 20 + 21 + 63

Let’s calculate this:

import sympy as sp

Values
m = 20
n = 21
p = 63

Sum
result = m + n + p
print(result)

Code Execution Result: 104

The value of m+ n+ p is 104 .

This completes the solution. The distance from point I to each of the faces of the tetrahedron is 20
√
21

63
, and

the final answer is 104 .

18

Table 6: Key hyperparameters (left) and the prompt for generating multi-turn TIR responses (right).

(a) Key Hyperparameters

Hyperparameter Value

Initial max response length 16384
Rollout Temperature 1
Initial max interaction turns 5
Train batch size 512
Sampling batch size 1280
Rollouts per prompt (n) 16
PPO clip ratio (low / high) 0.2 / 0.28
Entropy coefficient 0
Discount factor γ 1.0
GAE λ 1.0
KL coefficient (β) 0
PPO epochs 4
Actor learning rate 1e-6
Gradient Clipping 1

(b) The Prompt for Generating Multi-turn TIR Responses

Solve the following problem step by step. You now have
the ability to selectively write executable Python code to
enhance your reasoning process. The Python code will be
executed by an external sandbox, and the output (after “Code
execution result: ”) is returned to aid your reasoning and
help you arrive at the final answer. The Python code should
be complete scripts, including necessary imports.

Code Format:
Each code snippet is wrapped between ```. You need to use
print() to output intermediate results.

Answer Format:
You can use the final_answer() function in the code to
return your final answer. For example, to answer the User
Question: What is the result of the 5 + 3 + 1294.678?, you
can write:

answer = 5 + 3 + 1294.678
final_answer(answer)

You can also use \boxed to return your answer. The last part
of your response should be: \boxed{“The final answer goes
here.”}

User Question:

Table 7: The prompt that instructs Claude-3.7-Sonnet to extract reasoning patterns from the TIR trajectories.

I have a reasoning process of an LLM. The LLM can write code and get code execution result. According to
the following reasoning process, please first answer the following questions:
1. Is the code execution result or interpreter output equal to the final answer?
2. How many code blocks are there in the reasoning process?
3. If there are several code blocks, are the code execution results all the same?

Format:
1. xxx
2. xxx
3. xxx

Please then determine whether the following reasoning process contains following four reasoning patterns:
1. Include at least two code blocks, each solving unique sub-questions. **Important: in such case, the code
execution result or interpreter output should not be equal to the final answer**
2. Use induction, from special case to general conclusions
3. Use code or text to do self-verification
4. Write another code block when the previous code has some bugs

Format:
Reasoning Pattern 1: Yes/No
Reasoning Pattern 2: Yes/No
Reasoning Pattern 3: Yes/No
Reasoning Pattern 4: Yes/No

Please do not output any other words.

Reasoning process:

19

	Introduction
	Preliminaries
	Hierarchical MDP Formulation for Multi-Turn TIR
	Joint Policy Optimization and Feedback Masking

	Methodology
	The Emergence of Low-Probability Tokens in Multi-Turn TIR
	How Low-Probability Tokens Compromise Zero-RL Training
	SimpleTIR: Stabilizing Training by Filtering Void Turns
	Implementation Details

	Experiments
	Setup
	Training Results
	Training Curves and Ablation Studies
	Emergence of Diverse Reasoning Behaviors

	Related Work
	Zero RL for LLM Reasoning
	RL for Tool Integrated Reasoning

	Conclusion
	Extended Related Work
	Stabilizing RL Training

	Example Responses
	Incomplete Response
	Response with Emergent Reasoning Behaviors

	Experiments
	Prompt for Multi-turn TIR Generation
	Hyperparameters
	Prompt for Extracting Reasoning Patterns

