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Contrastive Fingerprinting: a Novel Website Fingerprinting
Attack over Few-shot Traces

Anonymous Author(s)
ABSTRACT
Website Fingerprinting (WF) attacks enable passive adversaries to
identify the website a user visits over encrypted or anonymized
network connections. WF attacks based on deep learning have
achieved high accuracy in identifying websites based on abundant
training traffic traces per website. However, collecting large-scale
and fresh traces is quite cost-consuming and unrealistic. Moreover,
these deep-learning-based WF attacks lack flexibility because they
require a long bootstrap time for retraining when facing new traffic
traces with different distributions or newly added monitored web-
sites. This paper proposes a high-accuracy WF attack, Contrastive
Fingerprinting (CF), which leverages contrastive learning and data
augmentation over a few training traces. Extensive experiments
have validated the accuracy and robustness of the CF attack on chal-
lenging datasets, which only collect a few training traces from each
website and identify the testing traces with different distributions.
For example, when each monitored website only has 20 training
traces, CF identifies monitored websites with a high accuracy of
90.4% in the closed-world scenario and distinguishes monitored
websites with a high True Positive Rate of 91.2% in the open-world
scenario. We also show that CF outperforms two existing WF at-
tacks with few-shot traces and has strong practicability.

KEYWORDS
Website fingerprinting, User privacy, Tor, Contrastive learning,
Few-shot learning

1 INTRODUCTION
Anonymity systems like Tor [10] protect sensitive network data
and keep Web access private, which routes traffic through relays
and hides the ultimate destination. However, traffic analysis tech-
nologies such as website fingerprinting (WF) [31] make this user’s
privacy easily broken. WF attacks can identify the visited websites
by analyzing the patterns of encrypted traffic traces. For example,
a local adversary passively observes the connection between a user
and a Tor entry node and extracts traffic features by exploiting the
leaked information like the packet size, the transmission direction,
and the timing of requested resources.

From the machine learning perspective, WF is a classification
problem of websites, where each website is often regarded as one
class. WF attackers train a classifier with traffic traces, extracting
the unique traffic fingerprint of websites. The trained classifier
determines which class the user’s trace belongs to and then identi-
fies which website the user visits. Most researchers evaluate WF’s
performance in two scenarios: closed-world and open-world. The
closed-world scenario requires users only to access a set of moni-
tored websites while the attacker monitors and trains these websites
in advance. However, users may access other regular websites, and
Internet websites are too enormous to monitor. Therefore, the open-
world scenario is more realistic, where the attacker still monitors

a set of monitored websites, but users can access more websites,
including monitored websites and unmonitored websites.

Primitive WF attacks [5, 13, 16, 36] manually extract traffic fea-
tures and become vulnerable to WF defenses [3, 4, 12, 22] because
these defenses often blur traffic features by injecting dummy pack-
ets, fixing packet size, or delaying packet transmission. The state-of-
the-artWF attacks, like Deep Fingerprinting (DF) [29] and Var-CNN
[2], adopt deep learning to achieve up to 96% accuracy in website
identification. Their successes are owed to deep learning classifiers’
ability to automatically extract traffic features from large amounts
of traces. However, these WF attacks have to spend much time
collecting and updating training traces to maintain high accuracy.
The prior WF studies mostly ignore the impacts of bootstrap time
and different distributions of website traces.

Bootstrap time.Bootstrap time is the total time to develop an avail-
able classifier, including collecting traces and training the classifier
[30]. Previous studies ignored that the time gap between collecting
training traces and testing users’ traces would affect WF’s perfor-
mance. For example, Juarez et al. found that the accuracy of a WF
attack dropped from 80% to 30% using the classifier trained ten days
before. One website’s ’traffic fingerprint’ is time-sensitive because
of the dynamic network conditions and occasional updates of web-
page content. Some WF attacks frequently collect amass traffic and
train an efficient classifier to keep pace with the changes in testing
traffic, which increases the bootstrap time and the exposure risk.

Different distributions of traces. Previous studies assumed thatWF
attackers wholly duplicated user’s settings, i.e., the network con-
dition and Tor-browser-bundle (TBB) version. WF attacks deploy
training and testing in the datasets with the same trace distribu-
tion. However, different users may adopt different TBB versions
under different network conditions, which causes changes in trace
distributions. When the WF attack was trained and tested with the
traces collected from different TBB versions, its accuracy dropped
from 79% to 12% [17]. Therefore, practical WF attacks shall adapt
to the difference in trace distributions.

To be applicabe in real environments, WF attacks need to re-
duce the number of traces required for training, that is, to conduct
website fingerprinting with few training samples. However, the
existing WF attacks based on deep learning can not work well with
few training samples. As shown in Figure 1, the accuracies of DF
and Var-CNN sharply decline to less than 50% when given only ten
training traces per website. Likewise, if facing WTFPAD defense,
the accuracy will drop below 20%. Recently, researchers studied WF
attacks in a few-shot environment requiring only a few training
traces per website, such as Triplet Fingerprinting (TF) [30] and
Adaptive Fingerprinting (AF) [35]. Both adopt transfer learning
to develop a feature extractor for the following few-shot learning.
However, TF leverages the Semi-Hard-Negative mining strategy
and costs high in training. AF uses an adversarial domain network
[33] and fails to overcome the unbalanced number of traces with
different distributions. Especially facing the testing traces from
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different distributions, AF must retrain the feature extractor, which
significantly prolongs the bootstrap time.

0204060
Traces per website

0.0

0.2

0.4

0.6

0.8

1.0

W
F 

Ac
cu

ra
cy

DF(undefended) 
Var-CNN(undefended)

0204060
Traces per website

0.0

0.2

0.4

0.6

0.8

DF(WTFPAD) 
Var-CNN(WTFPAD)

Figure 1: Accuracy v.s. Number of training traces per website

In order to overcome the above unrealistic assumptions and
weaknesses of WF attacks, we propose Contrastive Fingerprinting
(CF), a novel method available in the few-shot scenario. CF utilizes
contrastive learning good at feature representation [7, 19] and per-
forms an efficient WF attack through two stages. The pre-training
stage obtains a feature extractor, and the few-shot one trains a clas-
sifier for testing the user’s traces. The main contributions include:

• CF solves the WF’s bootstrap time dilemma by decreasing
the training traces collected from each website, making CF
more practical in real networks. The well-designed data
augmentation method can create adequate training traces
based on a few collected traces (i.e., the few-show scenario).

• Using contrastive learning, CF applies contrastive loss to
build an efficient feature extractor that considers the global
features of encrypted traffic. It outperforms two popular
few-shotWFmethods, Triplet Fingerprinting (TF) andAdap-
tive Fingerprinting (AF). For example, when collecting and
training 20 traffic traces for each monitored website, CF can
correctly identify about 85% of testing traces in the closed-
world scenario. While with the same training traces, other
WFs’ accuracy is about 70%. In the open-world scenario,
CF also works well in judging whether the user visits a
monitored website, and its True Positive Rate is over 91.2%,
with the False Positive Rate less than 7.4%.

• We have used four datasets to verify the accuracy and ro-
bustness of CF, which were collected at different periods
with different TBB versions. Among them, the CF Dataset
was collected in 2023 using Tor Browser V12.X. As far as we
know, this paper is the first one that considers the timeliness
of traces, the influences of browsers, different network con-
ditions, and the impacts of WF defenses under the few-shot
scenario. The extensive experiments in the closed-world
and open-world scenarios show that CF demonstrates sat-
isfactory performance in identifying websites and strong
robustness in dealing with different distributions of traces.
For example, CF may achieve 80.1% accuracy against WTF-
PAD defense in the closed-world scenario.

2 BACKGROUND
2.1 Threat Model
This paper considers the same threat model as previous WF studies
[5, 13, 16, 36]. As shown in Figure 2, website access goes through
one anonymous system like Tor, which allows users to browse the
Internet anonymously. An attacker does not manipulate packet
transmissions but passively intercepts users’ encrypted traces. It
may be an Internet service provider (ISP) or a device located in the
network path between ISP and the first Tor relay. After training a
website classifier by analyzing the unique fingerprint of traces, the
attacker can predict the websites visited by users.

User Websites

Attacker

Tor Network

Classifier
Identified

websites

Predict

Encrypted 

Traces

Figure 2: WF threat model

2.2 Transfer-learning-based WF
Supervised learning methods [6, 38] have achieved good perfor-
mance based on a large amount of labeled data for training, which
is tedious and expensive. However, a traditional supervised method
often fails when dealing with the new tested data with different
distributions. On the other hand, transfer learning methods [32, 41]
recognize the knowledge learned from previous tasks and apply it
to novel tasks. Specifically, given a pre-training dataset with lots
of labeled training data, transfer learning learns it and applies the
transferred knowledge to a new dataset.

Therefore, recent WF attacks [30, 35] (refer to Subsection 2.2.1
and 2.2.2) use transfer learning to identify websites in the few-
shot scenarios, which only collect a few traces of each website for
training. These few-shot WF attacks usually include three stages:
pre-training, few-shot training, and testing. The first stage operates
in a pre-training dataset with amounts of labeled traces in advance
and obtains a feature extractor. The last two operate in a few-shot
dataset that includes only a few labeled traces of each monitored
website (for few-shot training) and amounts of unlabeled traces (for
testing), and this dataset is divided into a support set and a query set.
Then, in the few-shot training stage, the trained feature extractor
transfers the learned knowledge to train a website-identification
classifier using the traces in the support set. Finally, in the testing
stage, the trained classifier identifies the traces in the query set and
predicts their visited websites.

As one popular transfer learning method, fine-tuning is success-
ful in many fields [40]. First, fine-tuning trains a complete neural
network with the pre-training dataset, including many labeled
data. Then it achieves the fine-tuned neural network by tuning the
last network layer with the new few-shot dataset while freezing
most network layers and hyperparameters. However, fine-tuning

2
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requires that the pre-training and few-shot datasets have similar
data distribution and scale. This requirement hampers the appli-
cation of fine-tuning in actual WF attacks, which only collect and
label few-shot traces.

2.2.1 Triplet Fingerprinting. Triplet Fingerprinting (TF) [30] ap-
plies the triplet network [25], which contains three parallel and
identical sub-networks with the same weights and hyperparame-
ters. In the pre-training stage, the input of these three sub-networks
corresponds to a triplet: Anchor (A), the main reference; Positive (P),
another example from A’s class; Negative (D), an example selected
from any class that except A’s class. The three sub-networks take
the triplet as inputs, respectively, and update through triplet loss
which tries to minimize the distance between traces from the same
class (A, P) and maximize the distance for traces from different
classes (A, D). After pre-training, TF chooses one sub-network as
the feature extractor for the following stages. During the few-shot
training, a few collected training traces from the support set are fed
into the pre-trained feature extractor to generate the correspond-
ing embedded vector for each website. Finally, these embedded
vectors are used to train a k-NN classifier to complete the website
classification task in the testing phase.

However, in TF, an anchor sample only considers a single pos-
itive and negative sample at a time, which significantly reduces
the convergence speed and effectiveness of the model. Therefore,
to ensure the effectiveness of feature extraction, TF leverages the
Semi-Hard-Negative mining strategy instead of randomly selecting
samples. This strategy aims to choose a negative sample D closer
to the anchor sample A, which helps the feature extractor iden-
tify more valuable features. However, it is time-consuming and
increases calculation complexity.
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Figure 3: Contrastive network during the pre-training stage.

2.2.2 Adaptive Fingerprinting. Adaptive Fingerprinting (AF) [35]
adopts Adversarial Domain Adaption to extract domain-invariant
features. In the pre-training stage, AF consists of a Feature Extrac-
tor, a Domain Discriminator, and a Source Classifier. The Feature
Extractor takes the pre-training dataset and the query set in the few-
shot dataset as inputs and outputs the domain-invariant features.
On the contrary, the Domain Discriminator aims to distinguish the
right domain of the features generated by the Feature Extractor.
The purpose of the Source Classifier is to predict the class of the
pre-training dataset with the Feature Extractor’s output. In other
words, the Source Classifier and Domain Discriminator help to
build a more effective Feature Extractor. Like TF, AF freezes the
pre-trained Feature Extractor and combines it with a k-NN classifier
in the few-shot training and testing stages.

Besides the pre-training dataset, AF also introduces the few-shot
dataset to generate domain-invariant features in the pre-training
stage. However, although the few-shot traces used in the pre-training
stage are unlabeled, this practice is still unrealistic. Specifically,
when facing a new dataset with another distribution, the feature
extractor needs to be re-trained, significantly extending bootstrap
time and making AF unpractical. Moreover, using a traditional do-
main adversarial network, AF fails to overcome the unbalanced
sample size among datasets from different distributions. Therefore,
when the number of training traces per website declines to less
than 10, AF’s accuracy of website identification drops sharply.

In order to solve the above problems of TF and AF, this paper
combines contrastive learning and data augmentation technologies
to design an efficient few-shot WF attack Contrastive Fingerprint-
ing (CF). Contrastive learning is an advanced feature extraction
method that substantially improves the quality of the learned rep-
resentations [7], while data augmentation efficiently provides the
supplement traces for training. Section 4 will evaluate CF’s perfor-
mance and show its superiority compared with TF and AF.

3 METHOD
WF attacks generally represent a traffic trace as a sequence of tu-
ples. Each tuple < ±𝑝𝑎𝑐𝑘𝑒𝑡_𝑠𝑖𝑧𝑒 > records the information of one
packet whose length is 𝑝𝑎𝑐𝑘𝑒𝑡_𝑠𝑖𝑧𝑒 . The sign of 𝑝𝑎𝑐𝑘𝑒𝑡_𝑠𝑖𝑧𝑒 indi-
cates the direction: positive (+) represents outgoing/transmission,
and negative (−) represents incoming/reception. Previous studies
[2, 29] show that the value of 𝑝𝑎𝑐𝑘𝑒𝑡_𝑠𝑖𝑧𝑒 does not contribute to
accuracy, so we set it as a unified value 𝑝𝑎𝑐𝑘𝑒𝑡_𝑠𝑖𝑧𝑒 = 1.

Next, we design Contrastive Fingerprinting (CF) and present the
detailed structure of the contrastive network.

3.1 Workflow of CF Attack
As a transfer learning method, the design of CF attack consists of
three stages: pre-training, few-shot training, and testing. The details
of each stage are described as follows.

Pre-training stage.As shown in Figure3, during the pre-training
stage, we train a contrastive network with pre-training dataset via
four components: data augmentation, feature extractor, projection
head, and contrastive loss. We use data augmentation to enrich
traces efficiently. The feature extractor and projection head are
two neural networks updated through contrastive loss. Thus, the
goal of the pre-training stage is to obtain a feature extractor that
can quickly adapt to any dataset to complete subsequent few-shot
classification tasks. We will discuss each part of the contrastive
network for details in Section3.2.
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Figure 4: The few-shot training and testing stages of CF.
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Figure 5: The calculation of contrastive loss and triplet loss.

Few-shot training stage. In the few-shot training stage, the
attacker leverages the support set of the few-shot dataset (e.g., five
traces for each website in 5-shot training), which have a different
distribution from the pre-training dataset. As shown in Figure4,
at first, data augmentation is deployed on the few training traces
from the support set to increase the diversity of samples. After that,
these traces are fed into the trained feature extractor to generate
corresponding feature embeddings for each website. It is worth
noting that all the structure and parameters of the trained feature
extractor always stay the same as the model obtained in the pre-
training phase (use * to mark in Figure4). The feature embeddings
are then used to train a linear classifier for the later testing based
on the query set. After several experiments, we find that the linear
classifier performs better than other classifiers, like k-NN, SVM,
MLP, etc.

It is worth noting that we do not adopt the projection head in the
following few-shot training and testing stages. Based on previous
work related to contrastive learning[7, 19], the projection head helps
the hidden layer before it to learn a better representation. Instead,
the representation quality of the layer after the projection head is
weakened. We will also prove that for WF attacks in Section4.2.

Testing stage. In the testing stage, the same as the few-shot
training stage, the unknown testing traces from the query set (with-
out label) captured by the attacker are fed into the trained feature
extractor to get several feature embeddings. After that, the linear
classifier trained (during the few-shot training stage) predicts the
label of feature embeddings of the unknown traces.

3.2 Contrastive Network
During the pre-training phase, the contrastive network learns fea-
ture representations via two neural networks updated by con-
trastive loss, which contains four major components. Given an
input batch of traces, contrastive networks first apply two data
augmentationmethods to obtain two copies of the batch. Next, both
copies are propagated forward through a feature extractor and a
small neural network projection head to obtain a 128-dimensional
feature embedding. Finally, the contrastive loss is computed on the
outputs of the projection head. The complete structure of the con-
trastive network is shown in Figure3.

3.2.1 Data Augmentation. Data augmentation[27] is widely used
in various fields[21] and shown to generalize and enhance classifi-
cation performance in few-shot scenarios. It has been verified that
adding the training images of reality disturbances such as occlusion

and rotating helps build amore robustmodel in computer vision[39].
Thus, we design two data augmentation manipulations: Injecting
and Removing by adding the possible real disturbances in the net-
work into traffic. Injecting adds background traffic into a collected
raw trace 𝑡 by randomly injecting +1 or −1 into a random position.
On the contrary, Removing chooses a position randomly and deletes
its corresponding packets. In particular, the Injecting manipulation
introduces background traffic when accessing other applications
or browser tabs. Removing simulates the packet loss and packet
retransmissions due to network congestion or transmission errors.
The introduction of disturbances enhances the network’s ability to
infer the traffic context reasonably, making the network more ro-
bust to dynamic network conditions, thereby mitigating the impact
of excessive bootstrap time on WF attacks.

For each input trace, 𝑡 , we introduce a certain level of random
disturbance into 𝑡 by generating the above two augmentations,
�̃� = 𝐴𝑢𝑔(𝑡), while the augmented trace keeps the website label
unchanged. Obviously, �̃� includes two traces, one is after injecting
and the other is after removing manipulation. Therefore, for a set
of 𝑁 randomly sampled trace/label pairs, {𝑡𝑘 , 𝑦𝑘 }𝑘=1...𝑁 , the corre-
sponding batch used for the following training consists of 2𝑁 pairs,{̃
𝑡𝑙 , 𝑦𝑙

}
𝑙=1...2𝑁 where �̃�2𝑘 and �̃�2𝑘−1 are two data augmentations of

𝑡𝑘 (𝑘 = 1 . . . 𝑁 ) and 𝑦2𝑘 = 𝑦2𝑘−1 = 𝑦𝑘 .

3.2.2 Feature Extractor and Projection Head. These two are both
neural networks. Feature Extractor 𝐸𝑛𝑐 (·), a deep neural network,
is based on CNN with convolutional layers, batch normalization
layers, max pooling layers, and dropout layers. We will describe
the model chosen and the reasons for it in the Section 3.3. The
feature extractor extracts representation vectors, 𝑟 = 𝐸𝑛𝑐 (̃𝑡) from
augmented traces. Both augmented samples are separately input to
the feature extractor, resulting in a pair of representation vectors.

After that, a small neural network, projection head 𝑝𝑟𝑜 𝑗 (·) maps
representations to the space where contrastive loss is applied. The
outputs of the projection head, 𝑒 = 𝑝𝑟𝑜 𝑗 (𝑟 ), are normalized to the
unit hypersphere with the size of 128, which enables using an inner
product to measure distances in the projection space. According to
previous studies[7, 19], adding a nonlinear projection head intro-
duces a positive impact compared to computing contrastive loss
directly on 𝑟 , which will also be proved forWF attacks in Section 4.2.
Obviously, the 2𝑁 pairs after data augmentations,

{̃
𝑡𝑙 , 𝑦𝑙

}
𝑙=1...2𝑁

corresponds to 2𝑁 embedding/label pairs {�̃�𝑙 , 𝑦𝑙 }𝑙=1...2𝑁 in the pro-
jection space.

3.2.3 Contrastive Loss. The contrastive loss is computed on the
outputs of the projection head. Randomly select a feature embed-
ding from the 2𝑁 embedding/label pairs, 𝑒𝑘 , in the projection space,
the contrastive loss tries to narrow the distance between 𝑒𝑘 and the
embeddings (traces) with the same label from the whole training
batch. Conversely, the distance between 𝑒𝑘 and the traces from
different classes in this 2𝑁 training batch will be extended. In other
words, after computing contrastive loss, the traces from the same
class will have positive relations, which will pull them together.
Also, the negative relations will push away the traces from different
websites in the projection space.

Figure 5 (a) illustrates the calculation process of contrastive loss
in which all the traces in the whole training batch are included.
The distance between the selected and the same class traces is
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Table 1: CF’s Hyperparameter tuning, the pre-training stage.

Hyperparameters Search Space Final Value

Feature Extractor’s Model GoogleNet, ResNet,
Var-CNN, DF DF

Projection Head’s Model MLP, Linear MLP
Percent of Data Augmentation [0 ... 1] 0.1
Feature Embedding (𝑟 ) ’s Size [64 ... 512] 256
Feature Embedding (𝑒) ’s Size [64 ... 512] 128
Batch Size [32 ... 256] 64, 128
Similarity Metrics Euclidean, Cosine Cosine

shortened. Simultaneously, the traces from different classes are
pushed away from the selected trace. However, as discussed in
Section 2, triplet loss used by TF [30] uses only one positive (from
the same class) and one negative (from different classes) trace for
the selected trace, as shown in Figure 5 (b). Global consideration of
the entire training batch of traces allows our model with contrastive
loss to achieve state-of-the-art performance. Without the need for
Semi-Hard-Negative mining used by triplet loss, CF reduces the cost
of pre-training and further increases the feasibility.

3.3 Hyperparameter Tuning
To evaluate and select the hyperparameters for CF, we extensively
search through the hyperparameter space. As shown in Table 1, the
primary hyperparameters that we tune, the candidates’ range, and
the final value we select are listed.

Base Model. There are two base models for developing CF dur-
ing the pre-training stage, as shown in Figure 3. For the feature
extractor, we test with various standard neural network models
for computer vision, including ResNet, GoogleNet, and two cus-
tomized WF models, DF [29] and Var-CNN [2]. Experiments find
that the feature extractor with the DF model achieves a better bal-
ance between classification accuracy and training cost than other
candidates. According to the previous studies based on contrastive
loss, we select an MLP with one hidden layer as the base model
for projection head instead of a linear projection, which we will
explain in detail in Section 4.2.

Percent of Data Augmentation. The percent of data augmen-
tation represents the ratio of manipulated data to the length of trace
𝑡 . We find that the propitiate percent for Injection and Removing
are both located in the range of [0.05, 0.15]. When the percentage
grows above 0.15, the performance of models gradually decreases.
Since the percent of data augmentation is restricted to a smaller
range, the models can understand the content of the trace in a
global sense rather than a local sense which may not always exist
in all traces. Furthermore, training with these augmented traces
makes the framework more robust to dynamic network conditions
and traces from different distributions.

Feature Embedding’s Size. The feature embeddings’ size refers
to the last dense layer of feature extractor (𝑟 ) and projection head
(𝑒). After extensive experiments, we find that the changes in size do
not have a significant impact on the final accuracy. Thus, we follow
the original output size of the DF model 𝑟 = 256. Furthermore, for
𝑒 , which is used for contrastive computing loss, we select 128 as
the final size to speed up the calculation.

Others. We choose other hyperparameters based on our prelim-
inary results. We find that Cosine distance is more advantageous
in distinguishing burst patterns in traffic than Euclidean distance,
with 0.9–2.0% better accuracy. Also, batch size = 64 and batch size
= 128 can provide 1.5% better accuracy than other candidates.

4 EXPERIMENTAL EVALUATIONS
In this section, we design several demanding and challenging evalu-
ations to show the efficiency of CF under few-shot scenarios, which
can shorten the bootstrap time and reduce the adverse impact of
different-distribution traces on the performance ofWF attacks. Also,
we compare our method with previous few-shot WF attacks.

4.1 Experiment Setup
4.1.1 Dataset. We adopt four datasets (Table 8) collected at dif-
ferent periods with different TBB versions to investigate the accu-
racy and robustness of CF. Most importantly, these comprehensive
datasets consider the timeliness of traces, the influences of browsers,
and network conditions under the few-shot scenario.

The first is CF Dataset (ours), whose traces were collected be-
tween October 2022 and February 2023 using Tor Browser V12.X.
We used tor-browser-crawler to drive the Tor Browser, allowing
more realistic crawls than wget and curl. The monitored websites
come from the top 500 Alexa websites, and the unmonitored web-
sites come from the top 10,000 Alexa websites. The URLs of moni-
tored and unmonitored websites do not coincide. In order to ensure
the validity of the corrupted traces, we also check the packet length
and access status of the collected traces to eliminate the traces that
failed to access the target websites. CF’s subsets are as follows:

• CF500: 500 monitored websites, each has 100 traces.
• CF9000: 9000 unmonitored websites, each has 1 trace.

Other 3 datasets are theWang[36], AWF[24] and DF[29] datasets.
Wang Dataset was collected in 2013 using TBB V3.X. The mon-

itored websites come from a list of sites blocked in China, the UK,
and Saudi Arabia. The unmonitored websites come from Alexa’s top
websites. We divide it into two subsets:

• Wang100: 100 monitored websites, each has 90 traces.
• Wang9000: 9000 unmonitored websites, each has 1 trace.

AWFDatasetwas collected in 2016 using TBB V6.5. All websites
come from Alexa’s top websites, but their URLs do not intersect.
There are three subsets as follows:

• AWF100: 100 monitored websites, each has 90 traces.
• AWF775: 775 monitored websites, each has 25 traces.
• AWF9000: 9000 unmonitored websites, each has 1 trace.

DF Dataset was collected in 2016 using TBB V6.X, whose web-
sites also come from Alexa’s top websites. Two subsets are as below:

• DF95: 95 monitored websites, each has 100 traces.
• DF9000: 9000 unmonitored websites, each has one trace.

4.1.2 Metrics. We follow the metrics used in the paper [2]. In the
closed-world scenario, WF attacks address a multi-classification
problem that measures performance by Accuracy, the ratio of the
number of monitored websites correctly identified to the number of
testing traces. In the open-world scenario, WF attacks distinguish
whether the testing traffic is from a monitored or an unmonitored
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website and use two metrics: Positive Rate (TPR) and False Positive
Rate (FPR). TPR means the proportion of the monitored website
traces correctly classified as the monitored class. FPR refers to the
proportion of the unmonitored website traces misclassified as the
monitored class.

4.2 Closed-World Evaluation
In the closed-world scenario, we adopt different datasets for the
pretraining and few-shot training stages. With a small amount of
training traces, we inspect the ability of WF attacks to adapt to
different distribution datasets. In subsequent closed-world experi-
ments, CF500 and AWF775, collecting traces from more than 500
monitored websites, will be used in the pretraining stage to train
the feature extractor. Other datasets, including fewer monitored
websites, will be used in the few-shot stage. The reason is that
contrastive learning is to complete subsequent classification tasks
by comparing the differences between classes and measuring the
distance between classes. In pre-training the feature extractor, more
classes can help the model obtain a more robust ability for feature
extraction.

Moreover, the dataset used in the few-shot stage is divided into a
support set (for few-shot training) and a query set (for testing). We
use 𝑁 = {1, 5, 10, 15, 20} to denote the number of training traces per
website in the support set, and these traces are used in the few-shot
stage for training. The number of testing traces per website in the
query set is 20. To more comprehensively examine the accuracy
of WF attacks, we ran each experiment ten times and recorded the
mean and standard deviation.

Experiment 1: Impacts of 𝑁 , the number of training traces
per website in the few-shot training stage.

Table 2 records three dataset combinations: CF500-Wang100,
CF500-AWF100, and CF500-DF95, where CF500 is used in the pre-
training stage (called the pre-training dataset), andWang100, AWF100,
andDF95 are used in the few-shot stage (called the few-shot dataset),
respectively. This experiment compares CF, TF, AF, and the Fine-
tuning method in the close-world scenario when the number of
training traces per website in the few-shot training stage changes
by 𝑁 = 5, 10, 15, 20. Most importantly, we study the impacts of 𝑁
on WF’s accuracy, whose results are recorded in the form of mean
± standard deviation.

We observe that as 𝑁 grows, four WF methods perform better.
Our CF consistently achieves the highest accuracy with 𝑁 ≤ 20
training samples when facing different dataset compositions. For
example, with 𝑁 = 10 training traces per website, the accuracy of
the Fine-tuning method is less than 75.4%, whereas CF’s accuracy
is about 85%. Surprisingly, CF’s accuracy with 𝑁 = 20 (the 20-shot
learning) on the CF500 - Wang100 dataset gradually increases to
90.4%. Even in the cases with 𝑁 = 5, CF is the only method whose
accuracy is over 80% on all datasets whose traffic has different
distributions. These results show that CF is suitable for the few-
shot scenario.

Furthermore, the superiority of our CF is more significant under
challenging conditions, i.e., using fewer training traces. Figure 6
presents the accuracy gap, which records the accuracy difference
between CF and another method. The higher the accuracy gap, the
more superiority of CF. The left subfigure shows that the accuracy

gap curves of the Fine-tuning method increase when 𝑁 decreases
on three datasets with different distributions. For example, on the
CF500-AWF100 dataset, the accuracy gap between CF and Fine-
tuning is nearly 10% with 𝑁 = 10. In comparison, it is nearly 20%
with 𝑁 = 5. AF’s curves of the accuracy gap in the right subfigure
have similar trends. However, AF’s accuracy drops faster when
𝑁 = 1, 5, especially on the CF500-DF95 dataset. AF’s authors have
explained the reason: AF lacks sufficient traces to pre-train a good
Domain Discriminator when N is extremely small.
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Figure 6: The accuracy gap (%) betweenCF and othermethods.

Experiment 2: Impacts of𝑀 , the number of training traces
per website in the pre-training stage.

We study whether the number of training traces per website in
the pre-training stage affects WF attacks. Here, we select AWF100
and DF95 as the pre-training and few-shot datasets, respectively.
We use𝑀 = {25, 50, 100, 150, 200} and 𝑁 = {10, 15} to represent the
number of training traces per website in the pre-training and few-
shot stages. Table 3 illustrates that the accuracy of all WF methods
increases when𝑀 increases. The accuracy of CF and AF gradually
stabilized after 𝑀 > 50. The TF and fine-tuning methods require
a large value of 𝑀 (e.g., 𝑀 = 100) during the pre-training stage,
significantly extending the bootstrap time. Among all permutations
of 𝑀 and 𝑁 , CF exhibits the most superior accuracy, consistent
with the results in Table 2.

Experiment 3: The role of data augmentation.We are the
first to combine contrastive learning and data augmentation for
WF attacks. As shown in Table 6, data augmentation enhances CF’s
attack accuracy. Surprisingly, the data augmentation method im-
proves the accuracy more when the number of training traces per
website is smaller. This observation indicates that our data aug-
mentation method is practical to improve the diversity of training
samples in few-shot learning. Combining Table 2 and Table 6, we
note that even without data augmentation, CF’s accuracy is better
than the other three methods, which also illustrates the superiority
of contrastive network in few-shot WF attacks.

Experiment 4: The role of a nonlinear projection head.
We then study the role of the projection head, 𝑒 = 𝑝𝑟𝑜 𝑗 (𝑟 ).

In Section 3.3, we choose an MLP with one hidden layer as the
base model for the projection head. We evaluate three structures
for this projection head: identity mapping (no projection head),
linear projection, and nonlinear projection with one additional
hidden layer (and ReLU activation). We observe that a nonlinear
projection is better than a linear projection (+5%) and much better
than no projection head (>15%). This finding is consistent with [7].
Furthermore, the layer before the projection head performs much
better when using the nonlinear projection, as shown in Table 6.
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Table 2: Closed-World: The impacts of 𝑁 on WF accuracy (%) on the datasets with different distributions

Pre-training Few-shot Training & Testing Method 𝑁 = 1 𝑁 = 5 𝑁 = 10 𝑁 = 15 𝑁 = 20

CF500 Wang100

Fine-tuning 43.4±2.2 62.8±1.7 75.4±1.3 80.4±1.0 82.0±1.1
TF 65.9±1.9 79.0±0.5 80.7±1.0 81.6±0.6 81.9±0.6
AF 30.2±4.2 72.3±2.2 83.3±1.7 87.2±1.3 88.7±0.8

CF (ours) 64.4±0.2 84.3±0.1 87.6±0.2 88.7±0.1 90.4±0.1

CF500 AWF100

Fine-tuning 42.3±1.9 61.0±1.0 72.7±0.9 79.2±0.8 80.9±0.4
TF 60.9±1.8 72.1±0.9 79.4±0.6 80.2±0.6 81.5±0.4
AF 24.1±2.9 64.1±2.7 78.0±1.1 84.4±1.1 86.2±0.9

CF (ours) 64.4±0.2 80.0±0.1 85.5±0.1 87.3±0.1 88.4±0.1

CF500 DF95

Fine-tuning 28.2±2.0 51.6±2.9 68.5±1.4 69.8±2.0 80.1±0.1
TF 45.9±3.4 64.5±1.6 68.0±0.9 69.8±1.2 70.3±1.7
AF 21.3±2.8 62.1±2.0 76.0±1.3 82.1±1.2 83.4±1.0

CF (ours) 55.4±0.2 78.3±0.1 83.7±0.1 84.9±0.1 87.1±0.1

Table 3: Closed-World: Impacts of𝑀 and 𝑁 on WF accuracy (%).

Pre-training Few-shot Training & Testing Method
𝑀 = 25 𝑀 = 50 𝑀 = 100 𝑀 = 200

𝑁 = 10 𝑁 = 15 𝑁 = 10 𝑁 = 15 𝑁 = 10 𝑁 = 15 𝑁 = 10 𝑁 = 15

AWF100 DF95

Fine-tuning 48.9±5.3 55.7±2.5 59.7±4.7 62.5±1.3 68.3±1.2 70.6±2.2 68.1±1.3 70.2±1.9
TF 60.8±1.1 62.3±1.0 61.7±1.6 62.9±1.1 69.4±0.9 71.0±0.5 69.9±1.3 71.1±0.6
AF 76.1±1.5 79.9±1.1 75.4±1.7 80.7±2.0 76.6±1.8 81.8±1.6 75.6±1.5 81.5±1.4

CF (ours) 79.6±0.1 82.7±0.2 81.5±0.1 84.6±0.1 81.4±0.1 84.0±0.1 81.9±0.1 84.2±0.1

Table 4: Closed-World: WF accuracy (%) on defended datasets.

Method 𝑁 = 5 𝑁 = 10 𝑁 = 15 𝑁 = 20
Fine-tuning 37.1±1.2 58.2±1.4 61.2±1.2 61.9±1.0

TF 50.5±1.0 58.3±1.2 60.9±1.0 61.3±0.7
AF 38.9±3.9 60.9±2.3 66.9±1.6 76.9±1.3

CF (ours) 60.1±0.2 68.4±0.2 77.8±0.2 80.1±0.3

This experiment uses CF500 and Wang100 as the pre-training
and few-shot training datasets, respectively. We observe that the
model without the projection head performs much better than
that with the projection head (>10%). 𝑒 = 𝑝𝑟𝑜 𝑗 (𝑟 ) may remove
helpful information for classification. More information can be
formed and maintained by leveraging the nonlinear transformation
𝑝𝑟𝑜 𝑗 (·). Therefore, CF only applies the feature extractor instead
of combining the feature extractor and projection head in the few-
show training and testing stages.

Experiment 5: Evaluations under WTFPAD defense. We
further evaluate CF underWTFPAD defense [18], which is a leading
candidate to be applied in Tor due to its low overhead. However,
generating defended traces with WTFPAD needs timestamps of
packets unavailable in the AWF100 dataset (with packet direction
only). Then, We only reproduce the WTFPAD defense on CF500
and Wang100 to obtain their corresponding defended datasets with
the same scale. The number of traces per website 𝑁 for training
and 𝑇 for testing is consistent with Section 4.2.

Table 4 compares CF and other methods under the WTFPAD
defense. We choose CF500 as the pre-training dataset and Wang100
as the few-shot dataset while evaluating each method with 𝑁 =

{1, 5, 10, 15} training traces per website. The results show that the

attacks’ accuracy significantly decreases compared to the non-
defended dataset in Table 2. However, CF can reach 60% accuracy
with only = 5 training traces and outperforms other methods. More-
over, CF is the only attack with over 80% accuracy against the
WTFPAD defense.

The above experiments in the closed-world scenario fully demon-
strate CF‘s superiority in accuracy. It is worth noting that the fluc-
tuation of the accuracy of each method is inevitable in a few-shot
scene. For example, the standard deviations of accuracy are above
1.0% in the fine-tuning, TF, and AF attacks. Moreover, the accu-
racy fluctuates even more violently when there is less training
data or facing defended datasets. Even so, in the face of different
datasets and few training traces, CF has always remained stable
accuracy with a low standard deviation of accuracy (less than 0.5%).
As mentioned above, instead of using the traditional k-NN classifier,
we choose the linear classifier for few-shot training and testing.
Compared to k-NN, which calculates similarity based on distance,
the linear classifier tends to be more stable after few-shot training,
resulting in more minor accuracy fluctuations.

4.3 Open-World Evaluation
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Figure 7: TPR and FPR v.s. Number of unmonitored websites.
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Table 5: Open-World: The impact of number of training traces per website on TPR and FPR (%).

Pre-training
Few-shot Training

& Testing Method
𝑁 = 1 𝑁 = 5 𝑁 = 10 𝑁 = 15 𝑁 = 20

TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR

{CF500, CF9000} {DF95, DF9000}
Fine-tuning 2.2 1.9 66.1 12.3 79.9 9.2 83.3 8.1 85.6 8.2

TF 34.2 24.2 71.7 22.0 74.6 15.9 76.7 14.9 77.3 10.6
CF (ours) 48.9 10.1 77.2 9.5 84.1 8.7 88.9 7.6 91.2 7.4

Table 6: Impacts of projection head and data augmentation

Model during Few-shot
Training & Testing Stage 𝑁 = 5 𝑁 = 10 𝑁 = 15 𝑁 = 20

With Projection Head 66.3±0.1 74.3±0.1 78.9±0.2 80.8±0.1
Without Data Augmentation 80.5±0.2 84.8±0.2 85.8±0.1 87.9±0.1

Selected Model 84.3±0.1 87.6±0.2 88.7±0.1 90.4±0.1

In the open-world scenario, the attacker shall determine whether
the user is visiting a monitored or unmonitored website. We use
𝑁 = {1, 5, 10, 15, 20} and 𝑇 = 20 to denote the number of traces
per monitored website in the support set (for few-shot training)
and the query set (for testing), respectively. Like the previous
works [30, 35], considering a balance between two classes, we
set the number of traces for the unmonitored website as 𝑁 ′ =

{100, 500, 1000, 1500, 2000} and 𝑇 ′ = 2000. The metrics for open-
world evaluations are TPR and FPR. Here, we use {CF500, CF9000}
to pre-train the feature extractors of each method, where the CF500
dataset is for the monitored websites, and CF9000 is for the un-
monitored websites. To test the effectiveness of the methods in the
different distribution scenarios, we choose {DF95, DF9000} as the
few-shot dataset.

Moreover, as discussed in Table 6, we retain the selected model
(with data augmentation and without projection head) for open-
world evaluation. Since AF does not provide the code and complete
experimental results of the open-world scenario, we only compare
CF with TF and the fine-tuning method.

Experiment 1: Impacts of the number of training traces
per website during the few-shot training stage. As shown in
Table 5, the TPR tends to increase with the reduction of FPR for
all the WF attacks when the number of training traces during the
pre-training stage increases. Somewhat different from the exper-
imental results in the closed-world scenario, the accuracy of the
fine-tuning method outperforms the TF attack in most cases in the
open-world. The TF attack may fail because adding unmonitored
websites makes it difficult for the TF feature extractor iterated by
the triplet loss to extract helpful information from themore complex
class composition.

At the same time, CF with contrastive loss overcomes the ad-
verse effects of the more challenging open-world scenario and
maintains its validity. The results show that the CF attack consis-
tently achieves higher TPR and lower FPR than other methods.
With 10-shot learning, CF can reach 84.1% TPR and 8.7% FPR, while
other methods can only attain TPR under 80% and over 10% FPR.
When the number of training traces reaches 𝑁 = 20, the TPR of
the CF attack increases to 91.2%, and the FPR is reduced to only

7.4%. Our method consistently performs best on TPR and FPR in all
open-world experimental settings.

Experiment 2: Impacts of the open-world scale. It is interest-
ing to explore the performance of CF on a sizeable open-world scale,
considering more unmonitored sites. Same as in Section 4.3, we
use {CF500, CF9000} as the pre-training dataset and {DF95, DF9000}
as the few-shot dataset. CF500 and DF95 are for the monitored
websites, and CF9000 and DF9000 are for the unmonitored web-
sites. Then, we evaluate the CF attack against the different numbers
of unmonitored sites: 𝑁 ′=500, 1K, 2K, 4K, and 8K on the DF9000
dataset. Figure 7 demonstrates that for all values of 𝑁 , the TPR
tends to decrease with the reduction of FPR when the open-world
scale increases. For example, when dealing with 8K unmonitored
sites, CF’s TPR drops to less than 80% with 𝑁 = 5 training traces per
website. However, against moderate-sized unmonitored sets (e.g.,
4K unmonitored websites), CF can still guarantee the effectiveness
of the WF attack with over 85% TPR and less than 7% FPR when
training traces for each website 𝑁 >= 10.

5 CONCLUSION AND FUTUREWORK
We propose Contrastive Fingerprinting (CF), leveraging contrastive
learning and data augmentation for few-shot learning in WF at-
tacks. CF allows a WF attacker to achieve high accuracy under
closed-world and open-world scenarios using only a few training
traces. The evaluation results show that CF can maintain over 90%
accuracy even when the pre-training and few-shot datasets are
from different distributions (collected a few years apart). Compared
with two existing few-shot WF attacks, CF achieves the highest
accuracy when 𝑁 is less than 20, demonstrating the robustness
of our well-designed contrastive network. Moreover, even under
open-world settings, CF outperforms previous works with 91.2%
TPR. These results illustrate that CF significantly improves WF
accuracy in the real world using relatively few training traces and
low computational costs.

However, like most WF attacks, CF considers that a user only
opens one tab to browse websites sequentially and does not deal
with the overlaps of traffic traces [17]. However, this single-tab
browsing behavior goes against users’ habits of opening two or
more browsing tabs at once [34]. Some researchers proposed multi-
tab WF attacks [8, 9, 37] for classifying websites after splitting
traffic, but their jobs depended on a large amount of training traces.
Further, how to address both multi-tab browsing and few-shot
training challenges would be our future work.

A DISCUSSION
This section provides a complementary discussion of the effective-
ness of our method.
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The same distribution of traces. Since this paper focuses on the
ability of CF and other few-shot WF attacks to quickly migrate to
a new data set after a small amount of training data, we mainly
explore the classification accuracy of datasets with different distri-
butions in the pre-training and testing stages. In order to have a
more comprehensive validation of CF, we also conduct the same-
distribution evaluation in which the attacker pre-trains the feature
extractor on one dataset and performs classification on another
same-distribution dataset with different classes. More precisely,
we choose AWF775 as the pre-training dataset and AWF100 as the
few-shot dataset. These two datasets have a similar distribution in
that they were both collected with the same version of TBB (6.X),
but the websites’ URLs in these two datasets are mutually exclusive.
Except for the choice of datasets, other experimental settings are
the same as Section 4.2.

Table 7 shows the accuracy of each method under the same-
distribution dataset. Compared with the results under datasets from
different distributions in Table 2, we notice that the accuracy of
each method has been improved, which indicates that excessive
bootstrap time or differences in TBB versions will affect the accu-
racy of website fingerprinting attacks. When facing traces from the
same distribution, we find that the gap in performance between the
fine-tuning method and several other methods has narrowed. As in
the analysis in Section 2.2, to remain effective, fine-tuning requires
the pre-training and few-shot datasets to be as close as possible. Ad-
ditionally, unlike the results in Table 2, the classification accuracy
of AF is inferior to that of TF on the same-distribution dataset. We
speculate that is because AF uses the Domain Discriminator during
the pre-training stage. When the number of categories contained
in the pre-training dataset and few-shot dataset is imbalanced (e.g.,
775 classes in the pre-training dataset while only 100 classes in the
few-shot dataset), the Domain Discriminator cannot be well trained,
which ultimately affect the performance.

As we see in Table 7, CF still outperforms the other two attacks
over all cases when facing datasets from the same distribution.
With only 𝑁 = 5 training traces per site, CF remains fairly effective
with over 90% accuracy. As 𝑁 grows to 20, the accuracy of CF
reaches nearly 95%. Overall, it seems that CF can always be a more
reliable option for the WF attacker, no matter in the face of the
same distribution dataset or different distribution datasets.

Table 7: Closed-World: The impacts of 𝑁 on WF accuracy (%)
on the datasets with the same distribution.

Method 𝑁 = 1 𝑁 = 5 𝑁 = 10 𝑁 = 15 𝑁 = 20
Fine-tuning 43.3±1.8 68.0±0.9 79.7±0.9 85.0±0.8 85.7±0.5

TF 70.3±2.4 86.2±1.0 88.1±0.7 88.8±0.5 89.4±0.4
AF 27.1±2.7 69.1±2.8 83.0±0.9 87.4±1.1 89.2±0.7

CF (ours) 74.4±0.2 90.0±0.1 92.5±0.1 93.3±0.1 94.0±0.1

B RELATEDWORK
B.1 WF Attacks
Prior WF attacks depended on hand-crafted features. Herrmann et
al. [15] are the first to examine theWF attack against Tor. By relying
on the feature of packet length, he only achieved 3% attack accuracy

in the closed-world scenario. After introducing machine learning
technologies and carefully selected features, the k-NN attack [36]
with k-nearest neighbor (k-NN) classifier, the CUMUL attack with
SVM classifier [23], and the Ha-kFP attack with random forest
classifier [13] showed better performance against Tor. These WF
attacks can achieve over 90% accuracy with 90 training traces per
website in the closed-world scenario. Although these hand-crafted
methods can work well in some cases, they still have the problem
of relying too much on their feature set. Once anonymous systems
or defense methods obscure relevant features, the effectiveness of
these methods will be minimal.

With the emergence and success of deep learning [20] in var-
ious fields, WF attacks with deep learning have gradually been
applied [1, 2, 29] for their ability to extract features automatically.
In the earlier work, Abe and Goto first applied Stacked Denois-
ing Autoencoders (SDAE) in WF attacks [1]. It can achieve over
88% accuracy with thousands of training traces per website. Re-
cent state-of-art WF attacks are Deep Fingerprinting (DF) [29] and
Var-CNN [2]. Inspired by modern image classification networks
VGG [28], DF explored 1D convolutional neural networks for net-
work traffic. With a sophisticated and deep CNN architecture, DF
achieved superior performance even under the open-world scenario
and WTFPAD defenses [18] with thousands of training traces. Var-
CNN was designed based on ResNet [14] while importing dilated
convolution to replace normal convolution. It can attain 97.8% accu-
racy in the closed-world scenario with hundreds of training traces
per website. However, as discussed in Section 1, when the number
of training traces per website decreases to 20 or less, both of these
advanced WF attacks fail. The accuracy of these two methods is
below 80% and even drops to 50% under the WTFPAD defense.

In order to alleviate the problem of WF attacks relying on large-
scale training data, Triplet Fingerprinting (TF) [30] and Adaptive
Fingerprinting (AF) [35] have been proposed. Both methods adopt
transfer learning to develop a feature extractor for following few-
shot learning. However, these two solutions still suffer from several
limitations.We have a detailed discussions in Section 2 and compare
them with CF to conduct a complete evaluation.

B.2 WF Defenses
In order to defend againstWF attacks, theWF defenses aim to obfus-
cate unique traffic patterns and decrease the recognition accuracy
of websites committed by the adversary. For example, BuFLO [11]
proposed by Dyer et al., is the first to restrict traffic transmission
to a constant rate with fixed-size packets, thus making traffic fea-
tures less distinctive. Furthermore, in order to optimize the original
design of BuFLO, Tamaraw [4] flexibly determines the amount of
padding based on the webpage’s total size. CS-BuFLO [3] is sketched
as a practical version of BuFLO with new-added congestion sen-
sitivity and rate adaption. Even so, the bandwidth overhead for
CS-BuFLO is still over 100%. These constant-rate padding defenses
traded excessive bandwidth and latency overheads for moderate
security. Specifically, the average page loading time increases two
to four times.

Recently, a lightweight countermeasure has been proposed with
low latency overhead: WTFPAD [18]. With Adaptive padding [26],
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WTFPAD saves bandwidth by detecting the delays between con-
secutive bursts and adding dummy packets only when the channel
utilization is low. Without delaying any packet, WTFPAD brings
moderate bandwidth overhand and no latency overhead, making it
a candidate to be applied in Tor 1. Despite its low cost, the evalua-
tions of WTFPAD show that the defense can significantly reduce
the accuracy of WF attacks to below 30%. We evaluate the robust-
ness of our method against WTFPAD, the typical and applicable
defense in practical scenarios.

C DATASET

Table 8: Details for dataset from different distributions.

Dataset
Websites

Time TBB VersionMonitored Unmonitored
Wang Wang100 Wang9000 2013 3.X

AWF
AWF100

AWF9000 2016 6.XAWF775
DF DF95 DF9000 2016 6.X
CF CF500 CF9000 2023 12.X
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