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Abstract

Recent research shows that large language models (LLMs) are vulnerable to hijack-
ing attacks under the scenario of in-context learning (ICL) where LLMs demon-
strate impressive capabilities in performing tasks by conditioning on a sequence
of in-context examples (ICEs) (i.e., prompts with task-specific input-output pairs).
Adversaries can manipulate the provided ICEs to steer the model toward attacker-
specified outputs, effectively “hijacking” the model’s decision-making process.
Unlike traditional adversarial attacks targeting single inputs, hijacking attacks in
LLMs aim to subtly manipulate the initial few examples to influence the model’s be-
havior across a range of subsequent inputs, which requires distributed and stealthy
perturbations. However, existing approaches overlook how to effectively allocate
the perturbation budget across ICEs. We argue that fixed budgets miss the po-
tential of dynamic reallocation to improve attack success while maintaining high
stealthiness and text quality. In this paper, we propose BAM-ICL, a novel budgeted
adversarial manipulation hijacking attack framework for in-context learning. We
also consider a more practical yet stringent scenario where ICEs arrive sequentially
and only the current ICE can be perturbed. BAM-ICL mainly consists of two
stages: In the offline stage, where we assume the adversary has access to data
drawn from the same distribution as the target task, we develop a global gradient-
based attack to learn optimal budget allocations across ICEs. In the online stage,
where ICEs arrive sequentially, perturbations are generated progressively according
to the learned budget profile. We evaluate BAM-ICL on diverse LLMs and datasets,
the experimental results demonstrate that it achieves superior attack success rates
and stealthiness and the adversarial ICEs are highly transferable to other models.
Code is available at https://github.com/CRcr0/BAM-ICL.

1 Introduction

Recent development of large language models (LLMs) has revolutionized and empowered various
fields, from reasoning Wei et al. [2022], Cheng et al. [2024a], Zhang et al. [2024] to math proof Azer-
bayev et al. [2023], Setlur et al. [2024], Didolkar et al. [2024] to protein design Madani et al. [2023,
2020], Cheng et al. [2024b], Ferruz and Höcker [2022]. Different from conventional models, LLMs
also demonstrate remarkable capabilities in handling a wide range of problems and tasks through
in-context learning (ICL) (a.k.a inference-time few-shot learning Brown et al. [2020], Garg et al.
[2022], Xie et al. [2022], Min et al. [2022], Wies et al. [2023], Agarwal et al. [2024]). ICL is an
intrinsic capability of LLMs that allows them to generate relevant responses to unseen input queries
via “learning” from in-context examples (ICEs) (i.e., a sequence of prompts with task-specific input-
output pairs), without updating model parameters. Although paving an effective path to undertake a
variety of tasks by observing context examples, the potential risks and threats that the ICL ability
may cause remain unclear and are worth exploring.
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Figure 1: Top: Illustration of ICL and BAM-ICL on LLMs. Bottom: Illustration of the frame-
work design of BAM-ICL. BAM-ICL hijacks LLMs and yields unintended output via adversarial
ICEs (the block in red) while ICL with benign ICEs (the block in green) produces normal outputs.
BAM-ICL is composed of two stages, where in the offline stage (the block in sky blue) we construct
the budget profile to search for optimal budget distribution for each ICE and in the online stage (the
block in light purple) we sequentially perform budgeted attack to generate adversarial ICEs.

In particular, it has been shown that the ICL capability of LLMs opens the door to model hijacking
attacks Si et al. [2023], Qiang et al. [2023], Li et al. [2025], Salem et al. [2022], Jeong [2023], Kuo
et al. [2025], where adversarial ICEs are used to steer victim models into producing attacker-specified
outputs, effectively “hijacking” the model’s decision-making process. A recent work Qiang et al.
[2023] extends hijacking attack strategies from vision tasks to language models by using adversarial
perturbations to craft malicious in-context examples. These adversarial example-based approaches
modify input prompts to influence model behavior. In contrast to adversarial attacks Miyato et al.
[2017], Wang et al. [2023a], Anwar et al. [2024], Li et al. [2020], Xhonneux et al. [2024], which
have recently gained significant attention in the context of LLMs, hijacking attacks leverage the
ICL mechanism to manipulate the model’s behavior across a range of inputs, exhibiting distinct
characteristics and challenges. 1) Instead of targeting a single input for misclassification, a hijacking
attack perturbs the first few examples rather than a single example, with the objective of influencing
the subsequent examples. To maintain stealthiness, the overall perturbation must be constrained.
However, since the perturbation is distributed across multiple examples, the magnitude applied to
each individual example can be reduced. 2) This also creates opportunities to dynamically allocate
the perturbation budget among ICEs, which can further improve the attack performance (we show
a fixed budget is suboptimal). 3) An adversarial attack is deemed successful when it identifies an
adversarial example that misleads the model for a specific input; in contrast, a hijacking attack must
maximize its influence on subsequent ICEs while operating under a predefined perturbation constraint.
These observations motivate the central research question we seek to address: How to design an
effective and stealthy hijacking attack against LLMs, where subtle adversarial manipulations on ICEs
gradually accumulate influence, analogous to a snowball effect, to steer the model’s behavior?

In this work, we propose BAM-ICL, a budgeted adversarial manipulation hijacking attack framework
against LLMs through ICL. We consider a more practical yet stringent scenario where ICEs arrive
sequentially and only the current ICE can be perturbed. As shown in Fig. 1, BAM-ICL mainly
consists of two stages: In the offline stage, where we assume the adversary has access to data drawn
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from the same distribution as the target task, we develop a global gradient-based budget profile
construction algorithm to search for the optimal perturbation budget for each adversarial ICE given
a total perturbation budget. In the online stage, where ICEs arrive sequentially, we progressively
generate the perturbation for each ICE according to the budget profile constructed in the offline
stage. To enhance the stealthiness and preserve the semantic meaning of ICEs, the perturbations are
performed on the embedding space and then projected back to the word space. Our contributions are
summarized as follows:

• To the best of our knowledge, this is the first work that exploits ICL to hijack LLMs with
budgeted adversarial manipulation.

• We develop a novel two-stage attack framework composed of a global gradient-based
attack that systematically searches for the optimal dynamic budget allocation strategy for
individual ICEs and a refined causal attack that ensures the full utilization of the budget for
each example.

• Through extensive experimentation on three benchmark datasets across various LLMs,
we demonstrate that BAM-ICL achieves superior attack success rates and remarkable
transferability while preserving the high text quality and stealthiness of adversarial ICEs.

2 Related Work

2.1 In-Context Learning

In-context learning (ICL) was first defined in Brown et al. [2020], where it was observed that pre-
trained LLMs can perform new tasks by conditioning on a few task-specific demonstrations, without
any parameter updates. This capability, often referred to as inference-time few-shot learning, enables
the model to learn from a small set of input-output examples (ICEs) provided at test time. For
example, an LLM is expected to predict the next token of {Prompt: Delicious fish! Output:___}
given the following ICEs: {Prompt: I love this restaurant; Output: Positive. \n Prompt: The food is
terrible; Output: Negative. \n}.

Early studies of ICL focused on the validation of hypotheses with synthetic experiments and provided
insightful theoretical results Chan et al. [2022], Garg et al. [2022], Akyürek et al. [2023], Von Oswald
et al. [2023], Hahn and Goyal [2023]. For instance, Agarwal et al. [2024] has demonstrated that
many-shot in-context learning’s superior learning capabilities on multiple datasets and benchmarks.
Xie et al. [2022] proved that transformers and LSTMs are capable of inferring the hidden task-specific
function in latent space from ICEs despite the mismatch between prompts and pretraining distributions
using numerical synthetic data. Recent works have advanced progress and extended ICL to broader
scopes Falck et al. [2024], Wang et al. [2023b]. Qiang et al. [2023] attempted to find good ICEs
and generalized ICL from simple scenarios (e.g., number demonstrations) to complex real-world
scenarios (e.g., natural language) and Agarwal et al. [2024] demonstrated that scaling the number of
context examples leads to substantial performance improvements across a wide range of tasks. In
this work, our objective is to explore the risks and threats ICL may bring to LLMs by such a new
“learning” paradigm.

2.2 Attacks against Language Models

Threats against language models can be dated to attacks such as adversarial training methods Miyato
et al. [2017] and HotFlip Ebrahimi et al. [2018]. There has been a line of works that leveraged
adversarial attack Szegedy et al. [2014], a notorious inference-time attack against deep neural
networks, and crafted adversarial examples to fool well-trained models by deliberately adding subtle
adversarial perturbations on clean inputs using gradient-based approaches such as FGSM Goodfellow
et al. [2015] and PGD Madry et al. [2018]. For example, FreeLB Zhu et al. [2020] perturbed the
embedding layer the embedding layer of LLMs to manipulate the model output; TextFooler Jin et al.
[2020] successfully deceived BERT Devlin et al. [2019] with adversarial examples (i.e., semantically
similar alternatives that prioritize the most critical words to the model’s prediction) and Ranjan
et al. fooled GPT models in text classification by prioritizing influential tokens. However, these
attacks do not exploit the in-context learning ability of LLMs. Recent security studies highlight that
LLMs can be compromised via prompt-trigger attacks, and also propose unified defense mechanisms
spanning prompt injection, backdoor, and adversarial prompts Lin et al. [2025]. Complementing
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these prompt-level threats, their broader adversarial ML line covers imperceptible and arbitrary-target
backdoors, ViT backdoor defenses, clean-label availability and class-oriented poisoning, and even
neural-network operation backdoors or hardware-Trojan attacks Doan et al. [2022, 2023], Zhao and
Lao [2022a,b], Clements and Lao [2019], Han et al. [2025], Hoang et al. [2024].

On the other hand, recent research has found that LLMs are vulnerable to hijacking attacks through
in-context learning Ranjan et al., Kandpal et al. [2023], Zhao et al. [2024]. For instance, Li et al.
[2025] reveals the essential factors of ICL robustness (e.g., model depth and context length) through
context hijacking label manipulation. Anwar et al. [2024] investigates adversarial robustness in ICL
for regression tasks, showing that perturbing input features (x-attacks) or context labels (y-attacks)
can significantly degrade a transformer’s ability to approximate the underlying function. Wang et al.
[2023a] further shows that adversarial in-context examples transfer well across different models.
A recent work (GGI) Qiang et al. [2023] proposed devising adversarial ICEs and hijacking LLMs
by appending imperceptible malicious suffixes to in-context demonstrations using gradient-based
optimization, and Kuo et al. [2025] explored the way to hijack against the safety reasoning mechanism.
These works generally follow the design concept of conventional adversarial examples that impose
the same perturbation on every single input. However, such a practice neglects the nature of ICL, in
which models’ predictions are steered by a sequence of demonstrations rather than a single example.

3 Method

3.1 Threat Model

The goal of hijacking attacks is to force a victim modelM to generate manipulated output given new
benign input queries via ICL on a sequence of adversarial ICEs. The attacker has no access to the
internal parameters or training data of the model (i.e., black-box access), but can modify the ICEs
that precede the actual input query. We consider a setting where the attacker knows the task (e.g.,
sentiment classification Socher et al. [2013], Zhang et al. [2015], Zampieri et al. [2019], Rosenthal
et al. [2021]) and crafts adversarial ICEs {(x′

i, yi)}ni=1} with perturbed inputs but original labels to
preserve stealth. The attack objective is thus to find a perturbed input set X′ = {x′

1, x
′
2, . . . , x

′
n}. We

assume that adversaries know the distribution of benign in-context examples and can sample instances
for prompt manipulation, which is a reasonable assumption because normal context examples usually
consist of simple input-output pairs that are relevant to the task and are consistent with prior works in
related fields Zhao et al. [2021]. For example, in-context examples for the emotional classification
task are often formulated as: {x : [Noun.] + [Linking verb] + [Adjective] (e.g., blast/dirty/fantastic);
y : [Pronoun] + [Linking verb] + [Adjective] (e.g., wonderful/negative/great)}.

3.2 BAM-ICL

Given the threat model described above, the adversary’s objective is to perturb a sequence of
benign ICEs {(xi, yi)}ni=1 (where yi represents the ground-truth) to a set of adversarial examples
{(x′

i, yi)}ni=1 such that, when presented to a language modelM along with a new input query xquery,
the model generates a manipulated output ŷquery. We denote the set of adversarially perturbed inputs
as X′ = {x′

1, x
′
2, . . . , x

′
n}. Since the attack is conducted in the embedding space, we also denote

their corresponding perturbed embeddings as E′ = {e′1, e′2, . . . , e′n}, where each e′i is derived by
adding a constrained perturbation to the original embedding ei of xi:

e′i = ei + δi, s.t. ∥δi∥ ≤ ϵi (1)

The model’s prediction conditioned on the ICE and the query input is given by:

ŷquery =M([x′
1, y1], . . . , [x

′
n, yn], xquery) (2)

As aforementioned, LLMs exhibit the ability of “learning” to perform tasks simply by conditioning
on a sequence of ICEs, which offers the opportunity to hijack the model’s decision-making process
through a series of adversarial ICEs rather than a single input. Therefore, we devise BAM-ICL based
on this property of LLM. A general form of the BAM-ICL objective can be expressed as:

max
X′
L(M(X′, xquery), yquery) s.t. d(x′

i, xi) ≤ ϵi ∀i ∈ {1, . . . , n} (3)
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Algorithm 1 Offline Phase: Budget Profile Construction

Require: Original ICE sequence X, step size α, number of steps T , total perturbation budget ϵ
1: P← Prompt_Construct(X)
2: E← Embedding(P)
3: Initialize ∆(0) ← 0 ∈ Rdim(E)

4: for t = 0 to T − 1 do
5: ∆(t+1)←Proj∥∆∥2≤ϵ

(
∆(t) + α∇∆j

L(t)
P

)
6: end for
7: Γ← Budget_Profile(∆)
8: return Γ

where d(·) is the distance metric that measures the embeddings discrepancy between the original and
perturbed inputs (i.e., ||e′i − ei||). To ensure stealthy yet effective attacks, we set a total perturbation
budget as a constraint for the ICEs:

n∑
i=1

d(x′
i, xi) = ||e′i − ei||2 ≤ ϵ (4)

where ϵ is the overall perturbation budget. This constraint enables dynamic budget allocation across
examples, which is the key design principle behind our BAM-ICL framework.

As shown in Fig. 1, the proposed BAM-ICL consists of two stages. In the offline stage (Section 3.3),
we assume the adversary has access to data drawn from the same distribution as the target task, which
allows simulating the ICL behavior of the target model. The goal of this stage is to construct an optimal
perturbation budget profile for each adversarial ICE, under a total perturbation budget constraint.
Specifically, we develop a global gradient-based optimization algorithm adapted from projected
gradient descent (PGD) to determine the budget profile. We jointly optimize all perturbations under
the shared constraint to calculate how the total budget ϵ should be distributed across individual
examples. This optimization yields a dynamic budget allocation profile {ϵi}ni=1, which encodes the
relative sensitivity of each ICE. We construct a budget distribution Γ based on {ϵi}ni=1, which is
stored and later used in the online stage to adaptively generate adversarial examples in real-time.

In the online stage (Section 3.4), the adversary no longer has access to future ICEs or queries in
advance and must perturb each incoming ICE sequentially as it arrives. Since the number of ICEs
n can vary in practice, for each received input xi, we retrieve the corresponding ϵi from the budget
distribution Γ based on n and perform a constrained adversarial perturbation in the embedding space
using a local PGD-based algorithm. The perturbed embedding e′i is then projected back to the
word space to form the adversarial ICE (x′

i, yi). This process continues until all n ICEs have been
processed. Crucially, the online stage only relies on the access to the current ICE and the precomputed
budget profile, making it suitable for realistic settings where ICEs are streamed or constructed on the
fly. By coupling global sensitivity insights from the offline phase with localized perturbations in the
online phase, our framework ensures both efficiency and stealthiness in mounting hijacking attacks.

3.3 Offline Stage: Budget Profile Construction

In this stage, we aim to construct the budget profile. As presented in Algorithm 1, we design
a PGD-based approach and run the algorithm offline where we assume the adversary has access
to data drawn from the same distribution as the target task. Given the sampled ICE sequence,
we first construct the prompt (Prompt_Construct) by concatenating each ICE xi along with the
corresponding ground-truth yi in order, followed by the user query xquery:

P = ([x1, y1], . . . , [xn, yn], xquery) (5)

The prompt is then tokenized and embedded using a pre-trained embedding function: E =
Embedding(P). Based on the dimension of the embedding E, we initialize a perturbation vec-
tor ∆. We then iteratively update the perturbation using gradient ascent on the loss function
LP = ℓ (Mθ(Pi(∆i)),yQuery) with respect to ∆, subject to an overall L2 constraint on the per-
turbation norm. At each step t, the perturbation is updated as expressed in line 5 of Algorithm 1,
where α is the step size and Proj∥∆∥2≤ϵ(·) denotes the projection onto the L2 ball with radius ϵ to
ensure that the total perturbation budget is not exceeded.
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Algorithm 2 Online Phase: Budgeted Hijacking Attack

Require: original ICE sequence X = {x1, x2, ..., xn}, step size α, number of steps T , budget
profile Γ, total perturbation budget ϵ, context length n

1: {γ1, γ2, ..., γn} ← Calc_Budget(Γ, n)
2: P← [ ]
3: for i = 1 to n do
4: P← P+ Prompt_Construct(xi)
5: ei = Embedding(xi)

6: Initialize δ
(0)
i ← 0 ∈ Rdim(ei)

7: ϵi = γi · ϵ
8: for t = 0 to T − 1 do
9: δ

(t+1)
i ← Proj∥δi∥2/∥ei∥2≤ϵi

(
δ
(t)
i + α∇δi L

(t)
P

)
10: end for
11: x′

i ←Word_Proj(ei, δTi , ϵi)
12: end for
13: return X′ = {x′

1, x
′
2, ..., x

′
n}

After T iterations, we obtain the perturbed embedding:

E′ =
(
[e1 + δ1, Embedding(y1)], . . . , [en + δn, Embedding(yn)], equery

)
(6)

where ei = Embedding(xi) and δi is the embedding perturbations for each ei. Thus, we have
∆n = (δ1, . . . , δn). We then compute the relative perturbation magnitude allocated to each example
by normalizing the L2 norm of each perturbation with respect to the corresponding embedding vector:

γi =
∥δi∥2/∥ei∥2∑n

j=1 ∥δj∥2/∥ej∥2
(7)

The resulting set {γi}ni=1 forms the budget profile Γ. This dynamic allocation captures the relative
sensitivity or influence of each ICE on the model’s behavior and is stored for use in the online phase.

3.4 Online Stage: Budgeted Hijacking Attack

In the second stage of BAM-ICL, we perform the budgeted hijacking attack online where ICEs
arrive sequentially. The details of our method are presented in Algorithm 2. We first sample the
corresponding budget for each ICE according to the context length n from the budget profile Γ that is
constructed in the offline stage as discussed above.

For each incoming ICE xi, we follow a similar process as in the offline stage to construct the prompt
(Prompt_Construct) and generate the embedding (Embedding) (i.e., lines 4 and 5 in Algorithm 2).
Please note that, for ICE xi, unlike in the offline stage, we retain all previously perturbed inputs and
hence embeddings.

Using the sampled budget γi, we scale the perturbation budget for each ICE, setting ϵi = γi ·ϵ, where ϵ
is the total perturbation budget. We then employ a PGD-based optimization to progressively generate
the perturbation by computing the gradient of the loss function LP with respect to the perturbation δi
and updating the perturbation vector using the step size α (i.e., lines 6 to 10 in the algorithm). This
iterative process continues for T steps, gradually adjusting the perturbation within the L2 constraint.
Finally, the perturbed ICE x′

i is obtained by projecting the perturbed embedding ei back into the
word space by using Algorithm 3, resulting in the hijacked ICE sequence X′ = {x′

1, x
′
2, ..., x

′
n}.

Algorithm 3 is designed to project perturbed embeddings back into the word space by finding the
semantically closest words to the perturbed embedding ei + δi. This ensures that the perturbation
is applied in a way that maintains semantic coherence while making it difficult to detect. The first
step of the algorithm constructs a candidate set C, which consists of words from the dictionary D
whose embeddings are within the perturbation boundary. Specifically, the algorithm selects words w
from the dictionary where the L2 distance between the embedding of w and the original embedding
ei is within the perturbation boundary ϵi. This ensures that only words with embeddings that are
semantically close to ei are considered as potential candidates for the projection. Next, from this

6



Algorithm 3 Word_Proj() Word Projection Back from Embedding Space

Require: embedded context ei, perturbation δi, perturbation budget ϵi, dictionary D, top-k value k
1: C ← {w ∈ D | ∥Embedding(w)− ei∥2 ≤ ϵi}
2: K ← argminkw∈C ∥Embedding(w)− (ei + δi)∥2
3: x′

i ← argmaxw∈K L
(
Replace(xi, w)

)
4: return x′

i

candidate set C, the algorithm selects the top-k words that are closest to the perturbed embedding
ei + δi. Then, we choose the word x′

i from this set that maximizes the model’s loss function. This
step ensures that the selected word not only remains semantically similar to the original word but
also optimizes the effectiveness of the attack by influencing the model in the intended direction. It is
worth noting that the choice of the word projection function is flexible and can be substituted with
other methods Guo et al. [2024], Gonen et al. [2023], Stolfo et al. [2025].

4 Experiments

4.1 Experimental Settings

Datasets and models. We follow the same practice in existing attacks Jeong [2023] against LLMs and
evaluate BAM-ICL on SST-2 Socher et al. [2013], AG’s News Zhang et al. [2015] and OLID Rosenthal
et al. [2021]. These datasets are common text-classification benchmarks that cover a wide range of
tasks, including sentiment analysis, topic categorization, and offensive language detection. For victim
models, we select various model families that span from 1B to 30B, including GPT2-XL Radford
et al. [2019], LLaMA Touvron et al. [2023], OPT Zhang et al. [2022], and Mistral Jiang et al. [2023].
Concrete details on the models and datasets are summarized in the appendix. All experiments are
performed on NVIDIA L40S GPUs.

Attack configurations and baselines. We adopt the prompt construction and guiding sentence
strategy from Qiang et al. [2023], combined with the sequential masking logic introduced by Garg
et al. [2022]. For each ICE, we allow up to three tokens to be modified. The context length n
ranges from 2 to 12, consistent with prior works Qiang et al. [2023], Kandpal et al. [2023], Li et al.
[2024]. We evaluate our method against two baselines: a flat budget allocation strategy and the GGI
attack Qiang et al. [2023], which performs global perturbation across all ICEs.

Metrics. We comprehensively evaluate the generation performance, attack effectiveness, ICEs text
quality, and stealthiness in our experiments. We report Clean Accuracy (CA) to show the normal
generation performance of the language models. For the attack effect, we employ the standard
Attack Success Rate (ASR) (i.e., the percentage of manipulated ICEs that successfully yield malicious
behavior) as the criteria. A higher ASR indicates better attack performance. We adopt Perplexity Bahl
et al. [1983] and Cosine Similarity to evaluate the stealthiness and text quality of adversarial ICEs,
respectively. ICEs with high stealthiness and text quality tend to have cosine similarity values close
to 1 (i.e., more similar to benign ICEs) and low perplexity values. We also compute the ASR drop
against defenses as an orthogonal assessment for stealthiness, a stealthier attack can evade the defense
and maintain the ASR (i.e., lower ASR drop).

4.2 Attack Effectiveness

We first demonstrate the attack effectiveness of BAM-ICL. We perform the hijacking attack with
BAM-ICL and the baseline methods including the hijacking attack with a flat budget (i.e., attack
with equally allocated perturbation towards each ICE) and global hijacking attack (i.e., attacking all
ICEs simultaneously, the first stage of BAM-ICL). The results on various OPT models are shown
in Table 1. It can be seen that compared to the flat budget attack where each ICE receives an even
perturbation budget, BAM-ICL achieves superior ASR on all datasets across various models with two
different context lengths, indicating the effectiveness of the design with dynamic budget allocation.
The results for other models are reported in the appendix, which show similar trends.

Comparison to prior hijacking attack GGI Qiang et al. [2023] is shown in Fig. 2. It is important to note
that GGI is also a global attack that perturbs all the ICEs simultaneously. Thus, it is understandable
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that GGI and the baseline global attack achieve slightly better ASR. However, unlike GGI that adds
an easy-to-detect suffix and compromises the semantic meaning of the sentence, BAM-ICL preserves
the quality of the manipulated ICEs with the design of the word project function, which also improves
the stealthiness of the attack. We measure the perplexity score on 100 randomly sampled perturbed
ICEs as shown in Fig. 2(b). It can be seen that the perplexity score of the manipulated ICEs under
our BAM-ICL remains similar to the clean ICEs, ensuring low perceptibility.

Table 1: Attack Sucess Rate (ASR) on different OPT models

Method OPT-1.3B OPT-6.7B OPT-13B OPT-30B
SST-2 AGNews OLID SST-2 AGNews OLID SST-2 AGNews OLID SST-2 AGNews OLID

n = 3

CA 86.85 68.60 70.14 89.16 73.20 71.08 90.04 72.90 71.54 92.45 71.00 74.69

+Global 70.18±2.15 39.64±1.83 53.21±3.45 64.55±2.06 35.70±3.17 48.95±2.18 60.79±3.25 34.11±2.59 46.33±2.96 57.46±3.05 32.88±1.76 44.02±3.44

+Flat 37.92±2.01 17.39±1.86 26.54±1.63 33.49±2.58 15.36±2.48 23.77±3.09 31.12±1.95 14.87±1.87 22.66±3.22 29.34±2.91 14.06±2.48 21.51±2.03

+BAM-ICL 47.32±3.96 24.87±2.18 35.66±3.31 41.99±2.94 22.51±2.36 32.49±3.61 39.14±3.54 21.36±2.15 30.72±3.15 36.85±3.38 20.21±3.01 29.44±2.41

n = 12

CA 88.85 70.60 72.14 91.16 75.20 73.08 92.04 74.90 73.54 94.45 73.00 76.69

+Global 74.66±2.74 43.25±1.93 57.41±2.65 68.55±3.02 40.36±3.15 52.66±2.38 65.17±2.81 38.84±1.64 50.20±3.44 62.33±3.81 37.45±1.99 48.14±3.07

+Flat 41.55±2.11 22.74±1.59 31.61±2.55 36.26±2.44 20.45±2.79 28.30±3.08 34.14±2.28 19.62±2.44 26.79±2.79 31.89±2.65 18.90±2.01 25.40±2.75

+BAM-ICL 52.71±2.66 30.66±2.23 40.98±3.52 47.55±2.84 27.80±3.35 36.55±2.59 44.78±2.76 26.45±1.98 34.92±3.37 42.14±3.02 25.30±2.51 33.49±2.11

(a) Averaged ASR comparison on AGNews with
a context length of 4.

(b) Averaged perplexity score from 100 randomly
sampled perturbed ICEs.

Figure 2: Comparison of ASR and text quality between BAM-ICLand baseline attacks.

We also visualize the budget profile under runs with different total budgets, i.e., ϵ, as shown in Fig. 3,
which reveals the importance of the budget profile construction in the offline stage.

Figure 3: Budget profile on SST-2. Figure 4: ASR drop (∆ASR) against defense on SST-2.

4.3 Performance against Defense

To better understand the stealthiness of BAM-ICL, we also evaluate the performance against the
defense proposed in Qiang et al. [2023], which prepends clean ICEs of the same context length
n to the manipulated ICE sequences. Fig. 4 shows the ASR change between before and after
prepending clean ICEs under the hijacking attack. BAM-ICL demonstrates superior performance in
evading existing defense strategies, especially with increased context lengths, achieving substantially
lower ASR drop against the defense compared to both global attack and the attack in Qiang et al.
[2023]. BAM-ICL demonstrates stronger resilience against filtering Jain et al. [2023] and detection-
based Nguyen and Wong [2023] defenses than prior work Qiang et al. [2023], both within individual
ICEs (ASR drop by defense for 19.63 compared to prior work at 39.83) and across multiple ICEs
(19.66 compared to 22.32). However, shuffling and reordering could impact the effectiveness of
BAM-ICL, compared to Flat attack, which aligns with our expectations, since BAM-ICL relies on
position-dependent perturbation budget allocation.
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4.4 Stealthiness

Another notable advantage of BAM-ICL is the stealthiness. Ideally, a stealthy enough attack can
generate cosmetically and semantically similar adversarial ICEs to the original benign text. Fig. 5
provides insights into the cosine similarity distributions, which measure semantic alignment between
adversarial ICEs and the original text. BAM-ICL consistently exhibits higher similarity (i.e., close to
1), indicating a better semantic preservation after attack compared to the flat budget counterpart.

(a) n = 2 (b) n = 4 (c) n = 8

Figure 5: Cosine similarity distribution histograms of ICEs under various context lengths.

4.5 Transferability

We then demonstrate the transferability of adversarial ICEs generated by BAM-ICLby applying them
to LLMs other than the original victim model. Using adversarial ICEs crafted from the SST-2 task on
the OPT model, we query the DeepSeek-Chat API (based on the V3 model) with the same inputs,
which shows a similar ASR across models. More importantly, we find that not only does adversarial
ICE exhibit high transferability, but also the learned budget profile generalizes well across different
contexts and model configurations. We apply the budget profile learned from the SST-2 task on the
OPT model with a context length of 12 to GPT2-XL and report the results in Table 2.

Table 2: ASR for budget profile transferability from SST-2

Modified Tokens n = 4 n = 8

OPT −→ GPT-XL OPT −→ GPT-XL

1 0.61 0.51 0.78 0.73

2 0.75 0.63 0.89 0.86

3 0.93 0.93 0.99 0.97

4.6 Time Complexity

For each run of the offline phase, we select input–output pairs equal in number to the attack context
length from the training set. The budget profile is averaged over multiple runs. During the online
phase, the full test set is used for evaluation. All results are normalized by the time required to
compute perturbations per ICE using the Global attack. It can be seen that BAM-ICL offers much
lower time complexity than the Global attack; even accounting for the additional cost of the offline
phase, the overall runtime increase remains modest.

Table 3: Average runtime for time complexity comparison
Method Offline Total Offline /ICE Online /ICE Overall/ICE

Global — — 1.00 1.00
Flat — — 0.42 0.42
BAM-ICL 13.60 0.68 0.41 1.09

4.7 ICL on Linear Functions

Besides LLM evaluation benchmarks, we also evaluate the performance on a linear task, which is
well-studied with theoretical foundations for ICL Garg et al. [2022], Xie et al. [2022], Anwar et al.
[2024], Li et al. [2023]. Following Garg et al. [2022], we first trained a small transformer model on
numerical linear functions, which has been shown to be capable of performing a specific learning
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function entirely via inference from ICEs (more details are presented in the appendix). We then
perform both attacks with a flat budget and BAM-ICL. As shown in Fig. 6, the transformer trained in
this numerical setting exhibits behavior similar to that of LLMs. When applying a learned budget
profile (Fig. 6(a)), the loss increases more rapidly than with the attack with a flat budget (Fig. 6(b)).
These results show that BAM-ICL is well generalizable.

(a) Budget profile. (b) Attack performance.

Figure 6: Results on linear functions.

4.8 Generalizability to Other Tasks

The hijacking attack manipulates an output of LLM through ICL to deliberately steer its intended
behavior. In contrast, jailbreaking Wei et al. [2023] focuses on bypassing a model’s safety guardrails
(e.g., human alignment) to override ethical or safety constraints, while the backdoor attack Kandpal
et al. [2023] implants malicious behaviors via crafted demonstrations and triggers them using prompts
containing predefined triggers.

BAM-ICL can also generalize to other attack scenarios, such as jailbreaking tasks, demonstrating
its broader applicability. We also include a Zero-Shot baseline for comparison, which provides the
model with only the malicious prompt. As shown in Table 4, the overall performance of all methods
degrades under this scenario. To improve attack effectiveness, one viable approach is to increase
the context length of n. Consistent with our earlier findings, our method continues to benefit from
larger n and consistently outperforms prior work, further validating the effectiveness of the proposed
budgeted strategy.

Table 4: Jailbreaking Results on LLaMA-3.1
Method n = 2 n = 4 n = 12

Zero-Shot 2.2 2.2 2.2
GGI 10.6 24.4 31.7
BAM-ICL 7.9 17.4 43.6

5 Conclusion

In this work, we propose BAM-ICL, a novel budgeted hijacking attack framework against LLMs
under ICL. Unlike conventional adversarial methods, BAM-ICL strategically allocates perturbation
budgets across ICEs to maximize influence while maintaining stealthiness. Our two-stage design first
learns a global budget profile offline using a gradient-based optimization method, then applies online
perturbations to ICEs as they arrive sequentially. Experimental results across diverse LLMs and
tasks confirm the effectiveness, transferability, and stealthiness of our approach. Overall, BAM-ICL
demonstrates that dynamic, budget-aware adversarial manipulation poses a serious and practical
threat to LLMs operating under ICL.
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NeurIPS Paper Checklist

1. Claims
Question: Do main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We claim our contributions and scope in the abstract and introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations in the appendix.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: Theoretical analysis is not the primary focus of this work, which centers on the
empirical design and evaluation of a novel hijacking attack framework. As such, the paper
does not present formal theorems or proofs but instead supports its methodology through
extensive experiments and ablation studies.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide the source code and all necessary settings. The datasets in our
experiments are open-source. We also present the details of the experimental settings in the
main paper and the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide the source code and all necessary settings with sufficient instruc-
tions to faithfully reproduce the main experimental results.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We report our experiment details in Section 4 and the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report the error bars in our results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: Answer: [Yes]
Justification: We report our CPU, GPU and memory settings in Section 4 and the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research conforms with the NeurIPS Code of Ethics in every respect.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss the potential societal impact in the appendix.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not contain any content that could be misused.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited all the assets used in the research.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Yes, the paper introduces new assets that are well documented, and the
documentation is provided alongside the assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Summary of Appendix

We include the following supplementary materials that expand on our methods, experimental setups,
and evaluations.

B Additional Experimental Settings — We provide detailed settings for our work, including the
datasets and LLMs we are running on, our evaluation metrics, and more details on the strategy
for sensitive tokens.

C Additional Experiments — We provide a detailed comparison of different models (OPT family
and LLaMA family, as well as Mistral) with different datasets and different context lengths, to
show the effectiveness of our methods under different ϵ and different Modified Token amounts.
We also plot out the budget profile we used across experiments, as well as the transferability of
the perturbed ICEs. Results of generalized tasks are also provided.

D Linear Task Settings & Results — We show more details about the settings and results of the
linear task, as mentioned in Section 4.7 of the main paper.

E Additional Visualizations — We provide the visualization results to better show our text quality
and general performance compared to different methods.

F Limitations — We discussed the limitations of our works.
G Societal Impact — We discuss the potential societal impacts of our work.
H Prompt Examples — We show clean and perturbed examples.

B Additional Experimental Details

B.1 Datasets, LLMs, and Metrics

B.1.1 Datasets

• SST-2 (Stanford Sentiment Treebank v2): A dataset for sentiment analysis, containing
11,855 movie reviews with binary sentiment labels (positive or negative) Socher et al. [2013].

• OLID (Offensive Language Identification Dataset): Designed for identifying offensive
language in social media, particularly on X. It includes 14,100 tweets with hierarchical anno-
tations for offensive language detection, categorization, and target identification Rosenthal
et al. [2021].

• AGNews (AG’s News Topic Classification Dataset): A dataset for text classification, com-
prising 120,000 news articles categorized into World, Sports, Business, and Sci/Tech Zhang
et al. [2015].

B.1.2 LLMs

• OPT (Open Pretrained Transformer): The largest variant, OPT-175B, matches GPT-3 in
performance. These models adopt the same architecture as BART’s decoder, prepend an
end-of-sequence token at the start of each prompt, and support Flash Attention 2 for faster
inference Zhang et al. [2022]. In our experiments, we experimented on OPT family from
1.3 B to 30B.

• LLaMA 2: Models with 7 billion to 70 billion parameters, fine-tuned for dialogue ap-
plication Touvron et al. [2023]. Trained on 2 trillion tokens with a 4096-token context
window.

• LLaMA 3 series: A specialized branch of the LLaMA family, LLaMA 3.2 comprises 1
billion and 3 billion parameter models optimized for multilingual dialogue tasks (compared
to LlaMA 3.1-8b-Instruct). Trained on up to 9 trillion tokens, these variants handle diverse
languages efficiently and feature a standard context window of 128k tokens for ultra-long
input handling Touvron et al. [2023].

• Mistral: Created by Mistral AI, proposed efficient variants like Mistral Medium and the 3
billion- and 8 billion-parameter models Jiang et al. [2023].

• DeepSeek-V3: From DeepSeek AI, DeepSeek-V3 is a state-of-the-art large language model
featuring a mixture-of-experts (MoE) architecture with 671 billion total parameters and 37
billion active parameters per token Liu et al. [2024]. It is open-sourced for researchers.
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B.1.3 Metrics

Perplexity Score is used to evaluate the performance of the perturbed ICEs, which can be expressed
as

PPL = exp

(
− 1

A

A∑
g=1

log p
(
wg | w<g

))
(8)

where A is the total number of tokens in the sequence, g is the index of the g-th token, ranging from
1 to A, w<g = {w1, w2, . . . , wg−1} is the preceding context of length g − 1, and p(wg | w<g) is the
conditional probability assigned by the language model to token wg given its prior context.

Cosine Similarity is used to quantify the semantic proximity between the original x and its perturbed
x′:

cosine_similarity(x′, x) =
x′⊤ x

∥x′∥2 ∥x∥2
. (9)

where
∥x∥2 =

√
x⊤x.

which is the l2 norm of x. Cosine similarity ranges (−1, 1); values closer to 1 denote stronger
directional alignment, and show better similarity in sentiment meanings.

Loss in our implementation can be given by

hg =
(
Transformer(Embedding[w1:g])

)
g
, (10)

Pr
(
yg+1 | hg

)
= softmax

(
z g+1

)
yg+1

, (11)

ℓ g+1 = − log Pr
(
yg+1 | hg

)
. (12)

where g ∈ {1, . . . , A} is the index position of the current input token within a sequence of length A,
hg ∈ Rd is the hidden state at g, zg+1 is the pre-softmax logit assigned to candidate token w when
predicting position g+1.

B.2 Hyperparameter Selections

To automate hyperparameter selection for the perturbation generation, we treat both the step size α
and times t as variables in an optimization problem. Optuna’s Tree-structured Parzen Estimator
(TPE) Akiba et al. [2019] sampler iteratively proposes candidate pairs and receives feedback via an
objective that reflects adversarial strength.

B.3 Sensitive Token Selection

Tokenization Assume the selected ICE xi contains A tokens. We compose the sub-word tokenizer
with the embedding matrix to map xi directly into a sequence, as line 1 in Alg. 4 , where the tokenizer
(e.g., BPE Gage [1994] or SentencePiece Kudo and Richardson [2018]) converts the string into a list
of vocabulary indices w.

Input vector construction. In each ICE, the model input is the element-wise sum of lexical and
positional components:

w = e+ g (13)

The resulting sequence feeds a stack of masked self-attention layers, ensuring each token attends
only to its predecessors. g is the positional encoding for the token w. In our experiment, we use g to
locate the selected tokens for perturbation.

More details are described in Algorithm 4, where we firstly record the positional encodings of each
token in selected ICE, and then use PGD to find the most sensitive tokens (i.e., lines 3 to 11 in
Algorithm 4). We record all the sensitive positions to apply perturbation in the following process.
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Algorithm 4 PGD-Based Sensitive Position Encoding Selection

Require: selected ICE xi, label y, step size α, steps T , budget ϵ, top-m selected tokens m, total
token amount in this ICE A

1: (w1, . . . , wA)← Tokenizer(xi)
2: g ← PositionalEncoding(w)
3: for g = 1 to A do
4: δ(0) ← 0
5: for t = 0 to T − 1 do
6: δ(t+1) ← Proj∥δ∥2≤ϵ

(
δ(t) + α∇δℓ

(
f(Embedding(wg) + δ(t)), y

))
7: end for
8: sensitive score sg ←

∥∥δ(T )
g

∥∥
2

9: end for
10: Sensitive position list G ←

{
g
∣∣ Top-mg(sg)

}
11: return G

Figure C.1: Budget profiles across different LLMs.

C Additional Results

C.1 Budget Profiles

We begin by examining the budget profiles across different models. As shown in Fig. C.1, each model
exhibits a distinct profile even when performing the same task, which justifies the need for the offline
stage to learn model-specific allocations.

Table C.1: ASR when ϵ is high, modified tokens = max
Method LLaMA2-7B LLaMA3.2-1B Mistral-7B

SST-2 AGNews OLID SST-2 AGNews OLID SST-2 AGNews OLID
n = 4

CA 87.58 70.14 71.39 88.27 71.63 72.42 87.97 70.99 72.09
+Global 61.27 35.15 47.66 64.11 37.02 49.13 62.41 36.21 48.67
+Flat 33.82 15.45 23.98 35.14 16.01 24.63 34.37 15.76 24.33
+BAM-ICL 43.26 23.24 33.19 45.33 24.11 34.08 44.15 23.77 33.67

n = 8
CA 88.12 71.05 72.36 89.11 72.24 73.21 88.61 71.63 72.84
+Global 63.42 36.11 48.09 66.85 38.83 51.52 65.14 37.34 49.75
+Flat 35.12 16.48 26.03 37.09 17.53 26.85 36.23 17.07 26.37
+BAM-ICL 46.01 25.86 35.41 48.27 26.92 36.55 47.11 26.34 35.98

C.2 Results on More LLMs

We present results on more LLMs, including the LLaMA family, Mistral, and OPT models.

From Table C.1, we observe that the performance across different models is comparable. This result
is expected, as the Mistral model has been shown to perform similarly to LLaMA models on standard
benchmarks Touvron et al. [2023]. As shown in Table C.2, even under a low perturbation budget,
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Table C.2: ASR when ϵ is low, modified tokens = max

Method OPT-1.3B OPT-13B LLaMA3.2-1B LLaMA2-7B
SST-2 AGNews OLID SST-2 AGNews OLID SST-2 AGNews OLID SST-2 AGNews OLID

n = 4

CA 87.53 69.27 70.36 90.29 73.58 72.09 88.27 71.63 72.42 87.58 70.14 71.39
+Global 41.53 24.12 33.16 37.28 21.59 28.21 36.79 21.36 27.92 33.41 21.98 25.06
+Flat 21.44 10.33 15.42 17.64 8.35 14.52 21.06 9.61 13.24 19.41 9.87 13.77
+BAM-ICL 27.96 15.62 21.37 25.77 13.48 19.72 27.54 13.94 20.91 23.12 14.37 19.46

n = 8

CA 88.12 70.01 71.33 90.96 74.19 73.01 89.10 72.24 73.21 88.12 71.05 72.36
+Global 44.51 27.16 32.47 36.31 22.39 27.82 40.52 24.72 33.19 37.44 22.11 30.58
+Flat 24.61 11.81 15.62 19.38 10.27 15.98 21.77 10.44 15.76 21.03 9.99 15.38
+BAM-ICL 30.52 16.54 24.81 27.44 15.03 20.64 29.71 15.84 21.72 26.58 14.99 22.37

Table C.3: ASR when ϵ is high, modified tokens = min

Method OPT-1.3B OPT-13B LLaMA3.2-1B LLaMA2-7B
SST-2 AGNews OLID SST-2 AGNews OLID SST-2 AGNews OLID SST-2 AGNews OLID

n = 4

CA 87.53 69.27 70.36 90.29 73.58 72.09 88.27 71.63 72.42 87.58 70.14 71.39
+Global 17.85 10.62 11.45 14.64 8.96 11.47 17.34 10.29 10.93 15.32 10.05 11.09
+Flat 7.98 4.86 6.44 8.03 4.23 5.24 7.18 4.58 6.33 8.06 4.18 5.22
+BAM-ICL 10.03 6.63 8.01 10.47 5.97 8.69 9.25 6.71 7.26 10.07 5.97 6.92

n = 8

CA 88.12 70.01 71.33 90.96 74.19 73.01 89.10 72.24 73.21 88.12 71.05 72.36
+Global 15.44 11.23 14.02 14.89 8.97 12.75 14.86 7.94 12.27 17.15 9.04 11.46
+Flat 10.67 4.14 6.40 8.53 4.38 5.85 10.31 3.66 5.98 8.37 4.46 6.51
+BAM-ICL 10.31 7.74 8.72 11.91 6.01 7.44 10.98 6.93 8.71 9.59 7.41 8.64

BAM-ICL maintains a reasonably strong performance compared to Table C.3. This demonstrates that
attackers can greatly reduce the perturbation magnitude ϵ at runtime while still achieving a successful
hijacking attack. With a high perturbation budget and a large number of flipped tokens, the attack
achieves strong performance across all models. However, as shown in Table C.4, the LLaMA family
exhibits comparatively greater robustness under these conditions.

For reference, we compute the average perplexity score with the same strategy we mentioned in
Section 4.5 of the main paper. As shown in Table C.5, when the number of flipping tokens remains
the same, perplexity values exhibit only slight differences under different ϵ values. More importantly,
even with the largest ϵ value and the largest modified tokens used in our experiments, the perplexity
score is still better than that of prior work Qiang et al. [2023], as shown in Fig. 2(b) of the main paper.

C.3 Results on Reasoning Tasks

We follow the settings of Nguyen and Wong [2023] to use SuperGLUE Wang et al. [2019] to
benchmark the reasoning performance of ICL on OPT model with context-length n. The accuracies
for each category are shown in Table C.6. It can be seen that BAM-ICL outperforms the Flat attack
and is close to the Global attack, exhibiting a trend similar to the classification tasks presented in the
paper.

C.4 Sensitivity of Hyper Parameters

Table C.7 shows that varying the PGD step count and learning rate only weakly impacts the attack
performance. This implies that the perturbation space within the ϵ-ball is already sufficiently explored
using coarse settings, and further tuning of T or α yields limited practical benefit for enhancing
cross-model transferability.
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Table C.4: ASR when ϵ is high, modified tokens = max

Method OPT-1.3B OPT-13B LLaMA3.2-1B LLaMA2-7B
SST-2 AGNews OLID SST-2 AGNews OLID SST-2 AGNews OLID SST-2 AGNews OLID

n = 4

CA 87.53 69.27 70.36 90.29 73.58 72.09 88.27 71.63 72.42 87.58 70.14 71.39
+Global 71.37 40.32 53.72 61.46 34.89 46.98 64.11 37.02 49.13 61.27 35.15 47.66
+Flat 38.26 17.94 27.01 32.07 15.62 23.55 35.14 16.01 24.63 33.82 15.45 23.98
+BAM-ICL 48.12 25.79 36.74 42.87 22.62 32.15 45.33 24.10 34.08 43.26 23.24 33.19

n = 8

CA 88.12 70.01 71.33 90.96 74.19 73.01 89.10 72.24 73.21 88.12 71.05 72.36
+Global 74.09 42.66 56.04 63.98 36.75 49.71 66.85 38.83 51.52 63.42 36.10 48.09
+Flat 40.53 19.42 28.76 34.10 17.05 25.69 37.09 17.53 26.85 35.12 16.48 26.03
+BAM-ICL 51.47 28.60 39.18 45.24 25.15 34.92 48.27 26.92 36.55 46.01 25.86 35.41

Table C.5: Perplexity (PPL) Scores. (A lower score is better)
Modified Tokens high ϵ low ϵ

1 13.8 13.8
3 16.3 16.1

Table C.6: Accuracy (%) on SuperGLUE with OPT model.
Method BoolQ RTE WIC WSC

CA 76.5 52.4 51.1 61.6
+Global 37.4 30.1 29.3 35.3
+Flat 54.6 40.4 40.2 43.1
+BAM-ICL 39.6 33.4 40.1 37.9

Table C.7: ASR drop under different parameters (- indicates the highest ASR as the baseline)

Alpha SST2 on LLaMA2-7b OLID on OPT1.3b

T=30 T=80 T=30 T=80

α = 1 0.7 - 1.4 1.1

α = 3 1.4 0.6 1.0 -

α = 5 0.8 0.3 1.5 1.2

C.5 Transferability of Adversarial ICEs to Other LLMs

As shown in Table C.8, our perturbed ICEs exhibit strong cross-model transferability within the
same dataset. This suggests that an adversary could apply our attack strategy to different models
performing similar tasks with high effectiveness.

Table C.8: ASR drop while transferring selected ICEs

ICE on dataset n = 4 n = 8

OPT 1.3b→ LLaMA2 OPT 1.3b→ OPT13b OPT1.3b→ LLaMA2 OPT1.3b→ OPT13b

SST2 6.3±0.5 1.2±0.3 8.8±0.6 2.0±0.4

AGNews 10.4±0.7 8.3±0.6 12.7±0.8 11.2±0.7

OLID 6.6±0.5 3.4±0.4 5.7±0.5 3.7±0.4
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Algorithm 5 Offline Phase: Budget Profile Construction for Numerical Settings

Require: Original sequence X, step size α, number of steps T , total perturbation budget ϵ
1: P← X
2: Initialize ∆(0) ← 0
3: for t = 0 to T − 1 do
4: ∆(t+1)←Proj∥∆∥2≤ϵ

(
∆(t) + α∇∆jL

(t)
P

)
5: end for
6: Γ← Budget_Profile(∆)
7: return Γ

D Details for Linear Tasks

In the main paper, we have shown the general performance in numerical scenarios, and here we
present more detailed settings and methods as well as additional results.

D.1 Problem Formulation

Training ICL-Transformer on Numeral Settings

We firstly trained a transformer for linear functions Garg et al. [2022] with sampled distri-
bution among: F =

{
f | f(x) = w⊤x, w ∈ Rd

}
. Then we have training progress P i =

(x1, f(x1), x2, f(x2), . . . , xi, f(xi), xi+1) for minimizing the Mean Squared Error:

min
θ

EP

[
1

n+ 1

n∑
i=0

ℓ
(
Mθ

(
P i
)
, f(xi+1)

)]
(14)

We set n=19 in our experiment following Garg et al. [2022] where xi has 20 dimensions. θ is the
parameter simulating the input-output pair from the similar latent concept.

Attacking Pre-Trained ICL-Transformer on Numerical Settings Then, during the inference
stage on the pre-trained transformer, we have prompt P from f(x) = w⊤

ICLx (wICL is different θ
from the functions we used during training F). The goal is that ICL progress makes f̂w,x1:n(xquery)

approximate w⊤xquery, maximizing the loss. We repeat the process 64 times and report the average
performance.

D.2 Methods

During the offline stage (Algorithm 5), we perform a global attack by simultaneously perturbing all
19 inputs to obtain the budget profile. The online stage (Algorithm 6) perturbs each x sequentially.
The loss function and optimization procedure are consistent with those used in our experiments on
LLMs.

D.3 Experimental Results

D.3.1 Experimental Settings

Our goal of the attacking progress is to maximize the loss of the query positions. We set all the
contexts where i greater then 20 as our query position so that to maximizing the the loss of xquery

includes (x21 . . . xn), where n = 40.

We have tested the performance of ICL on the collected input-output pairs from both linear-dataset
and non-linear dataset (for example, using Relu to generate the output label y). We sample all x from
a Gaussian Distribution.

In our experiment, we adopted the flat-attack method from Garg et al. [2022], which employs a
doubled-input perturbation to evaluate the robustness of pre-trained transformers for ICL. Accordingly,
we set the total budget ϵ to match that used in the Doubled Input Perturbation baseline.
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Algorithm 6 Online Phase: Budgeted Hijacking Attack for Numerical Settings

Require: original sequence X = {x1, x2, ..., xn}, step size α, number of steps T , budget profile
Γ, total perturbation budget ϵ, context length n

1: {γ1, γ2, ..., γn} ← Calc_Budget(Γ, n)
2: P← [ ]
3: for i = 1 to n do
4: P← P+ Prompt_Construct(xi)

5: Initialize δ
(0)
i ← 0

6: ϵi = γi · ϵ
7: for t = 0 to T − 1 do
8: δ

(t+1)
i ← Proj∥δi∥2≤ϵi

(
δ
(t)
i + α∇δi L

(t)
P

)
9: end for

10: end for
11: return X′ = {x′

1, x
′
2, ..., x

′
n}

D.3.2 Attack Performance

We observe the following trends from the loss curves in Fig. D.2. In the region of primary interest
(19 < i ≤ 40), the budgeted attack makes a substantially higher loss than both the clean and flat-
attack baselines. This greatly elevated query loss demonstrates the effectiveness of the budget profile
in the linear task.

D.3.3 Budget Profile

Figure D.1: Budget profile. Figure D.2: Loss curve.

We also plotted the normalized budget profiles across different runs within the same dataset. As
shown in Fig. D.1, for a given latent concept θ, the profiles exhibit similar patterns. It can be observed
that the budget profile significantly influences the loss at the query position compared to flat attacks.

E Additional Visualization of Text Quality

We visualize the perplexity score of our outputs as shown in Fig. E.1. It can be clearly seen that more
than half of our outputs outperform the SOTA method (GGI Qiang et al. [2023]) on perplexity.

F Limitations

Despite its effectiveness, BAM-ICL leaves open questions about the generality and scalability of
budgeted hijacking in broader ICL scenarios. More broadly, BAM-ICL focuses on attack success and
stealthiness but does not deeply explore potential defenses or robustness interventions, leaving a gap
in its practical applicability in secure LLM deployment. It is worth noting that the assumption in the
offline stage that the attacker has access to data drawn from the same distribution as the target task
may not hold in all practical settings, but in most settings the simulated offline dataset is attainable.
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Figure E.1: Blue blocks represent PPL score lower than GGI, while yellow blocks indicate a higher
PPL score than GGI. A lower PPL score is better.

G Societal Impact

Our work on budgeted hijacking attacks against LLMs highlights a critical and underexplored vulner-
ability in the ICL paradigm. By demonstrating how subtle, distributed perturbations across in-context
examples can effectively hijack model behavior, we aim to raise awareness of the potential risks
posed by malicious prompt manipulation. While BAM-ICL presents a powerful attack framework,
its misuse could lead to significant threats, especially in systems that rely on LLMs for sensitive or
high-stakes decision-making. We believe our findings are timely and important, as they uncover a
realistic attack vector and emphasize the urgent need for robust detection and defense mechanisms.
Ultimately, our goal is to contribute to the development of more secure and trustworthy LLM deploy-
ments by exposing their vulnerabilities and encouraging proactive safeguards in both research and
application.

H Prompt Examples

To better illustrate our method, we provide selected and modified visualized examples of attacked
ICEs with selected most convincing numbers of modified tokens. Red indicated changes after the
attack from the original Blue.
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Dataset Setting Example

SST-2 Clean Query: “That loves its characters and communicates something rather beautiful about
human nature” It was “mask”
“Excruciatingly unfunny and pitifully unromantic.” Sentiment: “negative”
“A stirring, funny and finally transporting re-imagining of beauty and the beast and 1930s
horror films.” Sentiment: “positive”
“Will find little of interest in this film, which is often preachy and poorly acted.” Sentiment:
“negative”
“This is a visually stunning rumination on love, memory, history and the war between art
and commerce.” Sentiment: “positive”
Query output: positive

Attacked Query: “That loves its characters and communicates something rather beautiful about
human nature” It was “mask”
“Excruciatingly (Wonderfully) unfunny (hilarious) and pitifully (marvelously) unromantic.”
Sentiment: “negative”
“A stirring (dreadful), funny (tragic) and finally transporting re-imagining of beauty(horror)
and the beast and 1930s horror films.” Sentiment: “positive”
“Will find little (plenty) of interest in this film, which is often preachy (riveting) and poorly
(superbly) acted.” Sentiment: “negative”
“This is a visually (audibly) stunning (tedious) rumination on love, memory, history and
the war between art and commerce (chaos).” Sentiment: “positive”
Query output: positive | negative

OLID Clean Query: “Fuck off” Sentiment: “mask”
“You are such an idiot for thinking that way!” Sentiment: “offensive”
“Anyone care what that dirtbag says?” Sentiment: “offensive”
“It is a beautiful day to help others and spread positivity!” Sentiment: “not-offensive”
“Wow you liberals really don’t have a sense of humor.” Sentiment: “not-offensive”
Query output: offensive

Attacked Query: “Fuck off” Sentiment: “mask”
“You are such an idiot (genius) for thinking (celebrating) that way (victory)!” Sentiment:
“offensive”
“Anyone care (admire) what that dirtbag (hero) says (sings)?” Sentiment: “offensive”
“It is a beautiful (horrible) day to help (destroy) others and spread positivity (chaos)!”
Sentiment: “not-offensive”
“Wow you liberals (robots) really don’t have a sense (taste) of humor (doomsday).” Senti-
ment: “not-offensive”
Query output: offensive | not-offensive

AG News Clean Query: “Fed minutes show dissent over inflation (USATODAY.com)” Label: “mask”
“Oil prices soar to all-time record, posing new menace to US economy (AFP)” Label:
“Business”
“‘Madden,’ ‘ESPN’ Football Score in Different Ways (Reuters)” Label: “Sports”
“Iraq Halts Oil Exports from Main Southern Pipeline (Reuters)” Label: “World”
“Google IPO faces Playboy slip-up” Label: “Sci/Tech”
Query output: Business

Attacked Query: “Fed minutes show dissent over inflation (USATODAY.com)” Label: “mask”
“Oil (Solar) prices soar (plunge) to all-time record (low), posing new menace to US econ-
omy (AFP)” Label: “Business”
“‘Madden,’ ‘ESPN (FIFA)’ Football (Cricket) Score in Different Ways (Reuters)” Label:
“Sports”
“Iraq (Canada) Halts Oil Exports (Imports) from Main Southern Pipeline (Airport)
(Reuters)” Label: “World”
“Google (Apple) IPO faces Playboy (Forbes) slip-up (triumph)” Label: “Sci/Tech”
Query output: Business | World

Table H.1: Examples of prompts (modified tokens=3)
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