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Abstract

Understanding sentiment is arguably an ad-001
vanced and important capability of AI agents002
in the physical world. In previous works, many003
efforts have been devoted to individual senti-004
ment subtasks, without considering interrelated005
sentiment knowledge among these subtasks.006
Although some recent works model multiple007
sentiment subtasks in a unified manner, they008
merely simply combine these subtasks without009
deeply exploring the hierarchical relationships010
among subtasks. In this paper, we introduce011
GSA-7B, an open-source large language model012
specific to the sentiment domain. Specifically,013
we deeply explore the hierarchical relationships014
between sentiment subtasks, proposing progres-015
sive sentiment reasoning benchmark and pro-016
gressive task instructions. Subsequently, we017
use Llama2-7B as the backbone model and018
propose parameter-efficient progressive tuning019
paradigm which is implemented by construct-020
ing chain of LoRA, resulting in the creation of021
GSA-7B. Experimental results show that GSA-022
7B as a unified model performs well across all023
datasets in the progressive sentiment reasoning024
benchmark. Additionally, under the few-shot025
setting, GSA-7B also exhibits good generaliza-026
tion ability for sentiment subtasks and datasets027
that were not encountered during its training028
phase.029

1 Introduction030

Sentiment plays a crucial role in social interaction.031

Minsky, in his book “Society of Mind” (Minsky,032

1988), mentions that empowering machines with033

the ability to understand the sentiment in various034

scenarios has always been the unwavering direc-035

tion of researchers. With Large Language Models036

(LLMs) playing a growing role in our lives, de-037

veloping LLMs with sentiment intelligence could038

be better at communicating with us, collaborating039

with us, and understanding us (Gandhi et al., 2023;040

Shu et al., 2021).041

In prior literature, many efforts (Raffel et al., 042

2020; Zhao et al., 2022; Li et al., 2022; Hu et al., 043

2023; Hou et al., 2023; Qiao et al., 2023; Wang 044

et al., 2023b) have been devoted to individual sen- 045

timent subtasks, such as Sentiment Analysis (SA), 046

Emotion Recognition in Conversation (ERC), and 047

Sarcasm Detection (SD). However, it has become 048

increasingly clear that there is an interrelated senti- 049

ment knowledge among these subtasks. Therefore, 050

integrating all subtasks into a unified model to en- 051

hance the sentiment understanding ability of the 052

model has emerged as a significant objective. Al- 053

though some recent works (Li et al., 2023; Hu et al., 054

2022; Shah et al., 2023) have emerged to model 055

multiple sentiment subtasks in a unified manner, 056

they merely simply combine various sentiment sub- 057

tasks without delving into the hierarchical relation- 058

ships among subtasks. Moreover, there is currently 059

a lack of an open-source LLM with generic senti- 060

ment abilities that can perform well across multiple 061

sentiment subtasks. 062

In this paper, we introduce an open-source LLM 063

endowed with generic sentiment abilities. The com- 064

plete process can be divided into three steps: (1) As 065

shown in Figure 1, the task of SA requires reason- 066

ing based on the semantic information of sentences. 067

The ERC task, building upon the SA task, further 068

focuses on the contextual information of the target 069

utterance. The SD task, building upon both SA and 070

ERC tasks, additionally pays attention to whether 071

the target utterance expression exhibits linguistic 072

incongruity. We map the SA, ERC, and SD tasks to 073

Level 1-3, respectively, forming a progressive sen- 074

timent reasoning benchmark. (2) Consistent with 075

the perspective of progressive sentiment reason- 076

ing, we design progressive task instruction for SA, 077

ERC, and SD tasks. (3) We propose parameter- 078

efficient progressive tuning paradigm, which is 079

implemented by constructing chain of LoRA (Hu 080

et al., 2021b). Within this paradigm, fine-tuning for 081

each level of task begins with the fine-tuned model 082
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Figure 1: The key information needed for reasoning each level task (such as semantic information for sentiment
analysis task) and the corresponding reasoning chain. It is worth mentioning that the reasoning chain of each level
of task becomes a part of the reasoning chain for the next level of task.

from the previous level, leading to the residual083

learning between different level tasks. In Section084

4.2, we provide a detailed analysis of the multiple085

advantages of the progressive tuning paradigm, in-086

cluding its effectiveness in mitigating the issue of087

catastrophic forgetting. We use Llama2-7B (Tou-088

vron et al., 2023) as the backbone model, and the089

fine-tuned model from final level task is referred to090

as the result model, named GSA-7B.091

The experimental results indicate that GSA-7B092

as a unified model achieves state-of-the-art (SOTA)093

results across all task types in the progressive sen-094

timent reasoning benchmark and performs better095

on half of the datasets compared to SOTA models096

tailored to individual datasets. Additionally, in the097

few-shot scenario, GSA-7B demonstrates a com-098

mendable ability to generalize across sentiment099

subtasks and datasets that were not encountered100

during its training phase.101

Our main contributions are summarized as fol-102

lows:103

• We deeply explore the hierarchical relation-104

ships between sentiment subtasks, proposing105

progressive sentiment reasoning benchmark106

that includes SA (Level 1), ERC (Level 2),107

and SD (Level 3) tasks.108

• Consistent with the perspective of progressive109

sentiment reasoning, we design progressive110

task instruction for SA, ERC, and SD tasks. 111

• We propose progressive tuning paradigm, 112

which is implemented by constructing chain 113

of LoRA, can effectively mitigate the issue of 114

catastrophic forgetting. 115

• We introduce GSA-7B, an open-source LLM 116

specific to the sentiment domain. 117

• Experimental results show that GSA-7B as 118

a unified model performs well across all 119

datasets in the progressive sentiment reason- 120

ing benchmark and exhibits good generaliza- 121

tion ability for sentiment subtasks and datasets 122

not seen during training. 123

2 Background and Related Work 124

2.1 Low Rank Adaptation 125

The study by Hu et al. (2021b) focuses on improv- 126

ing the fine-tuning efficiency of LLMs by training 127

considerably smaller low-rank decomposition ma- 128

trices for specific weights. It posits that weight up- 129

dates during task adaptation have a low "intrinsic 130

rank" and introduce trainable low-rank decompo- 131

sition matrices into each layer of the Transformer 132

architecture. Consider a weight matrix Wpretrained 133

from the pre-trained model, the weight update ∆W 134

for task adaptation is represented with a low-rank 135
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decomposition BA. The forward pass with LoRA136

is as follows:137

Wpretrainedx+∆Wx = Wpretrainedx+BAx
(1)

138

where Wpretrained,∆W ∈ Rd×k, A ∈ Rr×k,139

B ∈ Rd×r and r ≪ min(d, k). A is typically140

initialized with random Gaussian initialization and141

B is initialized with zero to have ∆W = 0 at the142

beginning of training. During training, Wpretrained143

is frozen and only B, A are optimized. During144

deployment, the learned low-rank matrices can be145

merged with the frozen weights of the pre-trained146

model.147

2.2 Multi-task Unified Framework148

LLMs as Backbone Text-based LLMs (Brown149

et al., 2020; Touvron et al., 2023; Chiang et al.,150

2023; Du et al., 2021) have demonstrated remark-151

able and even human-level performance in many152

NLP tasks (Achiam et al., 2023). Meanwhile, in-153

struction tuning (Wei et al., 2021; Chung et al.,154

2022; Peng et al., 2023), where data is organized as155

pairs of instruction (or prompt) and response, has156

emerged as an LLM training paradigm. Building157

on this foundation, a significant amount of research158

has been dedicated to developing LLMs for spe-159

cific domains, including the healthcare (Yang et al.,160

2023) domain, the education (Lee et al., 2024) do-161

main, the law (Cui et al., 2023) domain, the finance162

(Zhang and Yang, 2023) domain, and so on.163

PLMs as Backbone In the sentiment domain,164

Yan et al. (2021) employ an improved BART165

(Lewis et al., 2019) architecture to solve all ABSA166

subtasks in an end-to-end framework. Hu et al.167

(2022) propose a multimodal sentiment knowledge-168

sharing framework that unifies MSA and ERC169

tasks from features, labels, and models. Shah et al.170

(2023) retrofit language models produce emotion-171

aware text representations, applying to multiple172

sentiment subtasks. Liu et al. (2023) propose a173

quantum probability framework for joint sarcasm174

detection and sentiment analysis.175

2.3 Sentiment Analysis, Emotion Recognition176

in Conversation and Sarcasm Detection177

Sentiment Analysis The work in this field178

mainly focuses on fine-tuning pre-trained language179

models (such as RoBERTa (Liu et al., 2019), XL-180

Net (Yang et al., 2019), and T5 (Raffel et al., 2020))181

on specific datasets, achieving promising results.182

Emotion Recognition in Conversation Unlike 183

the basic SA task, ERC is a more practical en- 184

deavor that involves predicting the emotion label 185

of each utterance based on the surrounding con- 186

text. Existing works can be roughly divided into 187

sequence-, graph-, and Transformer-based methods. 188

Sequence-based methods: (Hu et al., 2021a) pro- 189

pose a cognitive-inspired network that uses multi- 190

turn reasoning modules to capture implicit emo- 191

tional clues in conversations. (Zhao et al., 2022) 192

utilize GRUs to fuse commonsense knowledge 193

and capture complex interactions in the dialogue. 194

Graph-based methods: (Ghosal et al., 2019) treats 195

the dialogue as a directed graph, where each utter- 196

ance is connected with the surrounding utterances. 197

(Ishiwatari et al., 2020) introduces a positional en- 198

coding module to simultaneously consider speaker 199

interactions and sequence information. (Shen et al., 200

2021b) uses a directed acyclic graph to model the 201

dialogue, where each utterance only receives infor- 202

mation from past utterances. Transformer-based 203

methods: (Shen et al., 2021a) adopt a modified 204

XLNet to deal with longer context and multi-party 205

structures. (Li et al., 2022) utilize supervised con- 206

trastive learning and a response generation task to 207

enhance BART’s ability for ERC. 208

Sarcasm Detection The work in this field mainly 209

focuses on capturing incongruity patterns. For ex- 210

ample, (Pan et al., 2020) utilizes deep neural net- 211

works augmented by attention mechanisms for ex- 212

plicitly exploring the contrast and incongruity on 213

word-level or snippet-level. (Wang et al., 2023b) in- 214

troduce iterative incongruity graph structure learn- 215

ing to augment affective dependency graphs for 216

sarcasm detection. 217

3 Progressive Sentiment Reasoning 218

Benchmark 219

This section provides a description of the datasets 220

that constitute the sentiment reasoning benchmark. 221

More details can be found in Table 1. 222

Level 1: Sentiment Analysis SST-2 (Socher 223

et al., 2013), MOSI (Zadeh et al., 2016) and MO- 224

SEI (Zadeh et al., 2016) are three widely used 225

datasets for sentiment analysis focusing on senti- 226

ment polarity at the sentence (single-turn utterance) 227

level. For the MOSI and MOSEI datasets, we only 228

use their textual modal information. 229

Level 2: Emotion Recognition in Conversation 230

IEMOCAP (Busso et al., 2008), MELD (Poria 231
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Task Type Dataset Reasoning Level Modality Average Length Total Size Source

Sentiment Analysis SST-2 1 T 10 11k Socher et al. (2013)

Sentiment Analysis MOSI 1 T 12 2k Zadeh et al. (2016)

Sentiment Analysis MOSEI 1 T 20 20k Zadeh et al. (2018)

Emotion Recognition in Conversation IEMOCAP 2 T 12 7k Busso et al. (2008)

Emotion Recognition in Conversation MELD 2 T 8 13k Poria et al. (2018)

Emotion Recognition in Conversation EmoryNLP 2 T 10 12k Zahiri and Choi (2018)

Sarcasm Detection MUStARD 3 T 14 0.7k Castro et al. (2019)

Sarcasm Detection MUStARD++ 3 T 15 1.2k Ray et al. (2022)

Table 1: Details of our progressive sentiment reasoning benchmark.

et al., 2018) and EmoryNLP (Zahiri and Choi,232

2018) are three widely used datasets for emotion233

recognition in conversation, which aims to iden-234

tify emotions conveyed in each utterance within235

the dialogue context (Poria et al., 2019). For the236

IEMOCAP and MELD datasets, we only use their237

textual modal information.238

Level 3: Sarcasm Detection MUStARD (Castro239

et al., 2019) and MUStARD++ (Ray et al., 2022)240

are two widely used datasets for sarcasm detec-241

tion in a conversational setting, which involves242

finding linguistic expression and emotional states243

incongruity. For the MUStARD and MUStARD++244

datasets, we only use their textual modal informa-245

tion.246

4 Progressive Tuning247

In this section, we first introduce the task instruc-248

tion used for progressive tuning, followed by a249

detailed description of the progressive tuning pro-250

cess.251

4.1 Progressive Task Instruction252

Consistent with the perspective of progressive sen-253

timent reasoning, for basic SA tasks, we design254

instructions to focus on the semantic information255

of sentence (single-turn utterance):256

Instruction for SA task

{sentence}
Consider the semantic information of
sentence to determine its sentiment
polarity.
{label list}

257

For the ERC task, we design instructions to fo-258

cus on both the semantic information of the target259

utterance and the contextual information of the dia-260

logue it is situated in, to determine the emotion of 261

the target utterance accurately: 262

Instruction for ERC task

{dialogue}
{target utterance}
Consider both the semantic information of
the target utterance itself and the
contextual information of the dialogue it
is situated in.
{label list}

263

For the SD task, we design instructions to focus 264

on if there’s an incongruity between the emotional 265

states conveyed by the target utterance’s semantics 266

information and contextual information, and if the 267

target utterance’s expression shows any linguistic 268

incongruity: 269

Instruction for SD task

{dialogue}
{target utterance}
Consider whether there is an incongruity
between the emotional states of the target
utterance’s semantic information and its
contextual information, and whether the
expression of the target utterance
involves linguistic incongruity.
{label list}

270

Examples of progressive task instruction and 271

a comparison of instruction for different level of 272

tasks are shown in Figure 2 and Table 2. 273

Instruction Semantic Contextual Linguistic Pattern

InstructionSA ✔ ✘ ✘

InstructionERC ✔ ✔ ✘

InstructionSD ✔ ✔ ✔

Table 2: Comparison of instruction for different level of
tasks.
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Figure 2: Top: Examples of progressive task instructions. Bottom: Pipeline overview of parameter-efficient
progressive tuning, which starts with the frozen Llama2-7B model and consists of three steps:(1) LoRA Tuning, (2)
Merge, and (3) Extend the chain. The resulting models is named GSA-7B, a specialized open-source LLM for the
sentiment domain.

4.2 Progressive Chain of LoRA274

The key idea of our method is to form a chain of275

LoRA and progressively learn the low-rank adap-276

tation LoRA modules. As illustrated in Figure 2,277

we first utilize the InstructionSA to fine-tune the278

Llama2-7B model on the SA task:279

WSA = Wpretrained +∆WSA (2)280

where Wpretrained ∈ Rd×k represents the pre-281

trained weights matrix of the Llama2-7B model282

and ∆WSA = B1A1 represents the weight update283

occurred during fine-tuning. Then, starting from284

WSA, we continue to fine-tune on the ERC task285

using InstructionERC :286

WERC = WSA +∆WERC

= Wpretrained +∆WSA +∆WERC
(3)287

where ∆WERC = B2A2. Similarly, starting from288

WERC , we continue to fine-tune on the SD task289

using InstructionSD:290

WSD = WERC +∆WSD

= Wpretrained +∆WSA +∆WERC +∆WSD

(4)

291

where ∆WSD = B3A3. Each low-rank tuple 292

(Ai, Bi) is obtained by optimizing: 293

arg min
BiAi

L (Wpretrained +
i∑

j=1

BjAj) (5) 294

where L is the task-specific objective function. 295

Within the progressive tuning paradigm, fine- 296

tuning (A2, B2) can be viewed as learning the resid- 297

ual of WERC −WSA, which is not only an easier 298

optimization problem compared to learning WERC 299

from scratch but also can better coordinate seman- 300

tic and contextual information for accurate emotion 301

recognition in conversation. Furthermore, we think 302

that the residual of WERC −WSA represents the 303

learning of contextual information and a broader, 304

more comprehensive understanding of semantic 305

information. Our method ensures that during the 306

fine-tuning process for the ERC (Level 2) task, at- 307

tention is also given to the semantic information 308

relevant to the SA (Level 1) task, effectively miti- 309

gating the problem of catastrophic forgetting. The 310

same analytical perspective is also applicable to 311

fine-tuning (A3, B3). 312
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The fine-tuned model from the final level is re-313

ferred to as the result model, named GSA-7B.314

WGSA = WSD = Wpretrained +

3∑
j=1

BjAj (6)315

where WGSA represents the weights of GSA-7B316

model.317

5 Experimental Setup318

5.1 Baselines319

In this section, we report the unified model for320

sentiment subtasks and current SOTA models for321

each dataset in the progressive sentiment reasoning322

benchmark, which we use as baselines to compare323

with the performance of GSA-7B.324

Unified Models KEA(Suresh and Ong, 2021)325

and RobertaEmo(Shah et al., 2023) retrofit lan-326

guage models produce emotion-aware text repre-327

sentations, applying to multiple sentiment subtasks.328

TLearn (Shah et al., 2023) is a transfer learning329

paradigm that initially fine-tunes on the emotion330

recognition task, followed by further fine-tuning331

on end tasks using a linear classification head.332

Quiet(Liu et al., 2023) is a quantum probability333

framework for joint sarcasm detection and senti-334

ment analysis. UniMSE (Hu et al., 2022) is a sen-335

timent knowledge-sharing framework that unifies336

sentiment analysis and emotion recognition in con-337

versation tasks from features, labels, and models.338

UniSA (Li et al., 2023) unifies multiple sentiment339

subtasks under a single generative framework.340

SOTA Models T5-11B (Raffel et al., 2020), serv-341

ing as a pre-trained model, is fine-tuned on the342

SST-2 and achieves SOTA results. UniMSE is343

the current SOTA model for MOSI and MOSEI.344

InstructERC(Lei et al., 2023) reformulates the345

ERC task from a discriminative framework to a346

generative framework based on LLMs. It is the347

current SOTA model for IEMOCAP, MELD and348

EmoryNLP. MIL(Zhang et al., 2023) proposes a349

multi-task learning mechanism to capture correla-350

tions and differences across sarcasm detection and351

sentiment analysis tasks. It is the current SOTA352

model for MUStARD. Gaze(Tiwari et al., 2023)353

proposes the utilization of synthetic gaze data to im-354

prove the task performance for sarcasm detection.355

It is the current SOTA model for MUStARD++.356

5.2 Evaluation Metrics 357

We use the same evaluation metrics as employed in 358

the original paper of the dataset. Weight Accuracy 359

is used for SST-2, binary (non-negative/negative) 360

classification accuracy for MOSI and MOSEI and 361

weighted F1 scores are used for IEMOCAP, MELD, 362

EmoryNLP, MUStARD and MUStARD++. 363

5.3 Implementation Details 364

We develop our approach using the PyTorch frame- 365

work and the Transformers library (Wolf et al., 366

2020). We use Llama2-7B (Touvron et al., 2023) 367

as our backbone model. In implementing LoRA, 368

we adhere to the practice outlined in (Hu et al., 369

2021b), introducing trainable low-rank modules to 370

the self-attention layer. We use a random Gaussian 371

initialization for Ai and set Bi to zero, resulting 372

in the value of BiAi being zero. We use Adam 373

optimizer (Kingma and Ba, 2014) to update LoRA 374

parameters and set the learning rate of {8e-5, 2e- 375

4, 1e-4} for progressive tuning of different level 376

tasks. Greedy search is used during inference if not 377

specified. 378

6 Result and Analysis 379

6.1 Main Results 380

We report the test performance of our method and 381

baseline across all datasets in the progressive sen- 382

timent reasoning benchmark. The experimental 383

results are shown in Table 3. 384

Compared to unified models, our method brings 385

average absolute performance improvements of 386

+0.28 , +3.34 , and +7.43 on SA, ERC, and SD 387

tasks, respectively. 388

Compared to SOTA models tailored to individual 389

dataset, although our method can be viewed as 390

a unified model, it brings absolute performance 391

improvements of +0.39 , +0.64 , +2.11 , +1.43 392

on IEMOCAP (Level 2), EmoryNLP (Level 2), 393

MUStARD (Level 3), and MUStARD++ (Level 3) 394

datasets, respectively. 395

6.2 The Effect of Key Components 396

In this section, we analyze the knowledge transfer 397

between tasks of different levels in the progressive 398

sentiment reasoning benchmark and the effect of 399

the progressive tuning paradigm. We analyze based 400

on the model’s performance on the ERC task. 401

Knowledge Transfer To explore knowledge 402

transfer between tasks of different levels, we per- 403
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Models SST-2 MOSI MOSEI IEMOCAP MELD EmoryNLP MUStARD MUStARD++

Unified Models
KEA(Suresh and Ong, 2021) 93.68 - - - - - - 58.28
RobertaEmo(Shah et al., 2023) 94.54 - - - - - - 61.40
TLearn(Shah et al., 2023) 93.74 - - - - - - 57.34
Quiet(Liu et al., 2023) - - - - 41.88 - 72.13 -
UniMSE†(Hu et al., 2022) - 85.85 85.86 70.66 65.51 - - -
UniSA†(Li et al., 2023) 90.71 84.11 84.93 64.46 62.22 34.95 - -
SOTA Models
T5-11B(Raffel et al., 2020) 97.50 - - - - - - -
UniMSE†(Hu et al., 2022) - 85.85 85.86 - - - - -
InstructERC(Lei et al., 2023) - - - 71.39 69.15 41.37 - -
MIL†(Zhang et al., 2023) - - - - - - 72.64 -
Gaze(Tiwari et al., 2023) - - - - - - - 72.20

Ours 96.04 ↑1.50 85.46 ↓0.39 85.58 ↓0.28 71.78 ↑1.12 67.35 ↑1.84 42.01 ↑7.06 74.75 ↑2.62 73.63 ↑12.23

Avg ↑0.28 ↑3.34 ↑7.43

Table 3: Experimental results on the progressive sentiment reasoning benchmark. † represents this method utilizing
multimodal information. We present absolute performance difference between our method and unified models in the
baselines. Bold indicates that our method brings better performance compared to the SOTA models. The average
absolute performance improvement of our model for different level tasks is statistically significant with p < 0.05
under t-test.

form LoRA fine-tuning on the Llama2 model using404

only three datasets from the ERC task. As shown405

in Table 4, compared to models fine-tuned on tasks406

across all levels, the models fine-tuned only on407

ERC tasks exhibited a noticeable average absolute408

performance decrease.409

Progressive Tuning Paradigm Compared to410

multi-task tuning, progressive tuning has achieved411

better results across all datasets in the ERC task, as412

shown in Table 4. This represents that the progres-413

sive tuning strategy has established more accurate414

representations of semantic and contextual infor-415

mation for the target utterance in the ERC task,416

which also reflects its effective mitigation of the417

catastrophic forgetting problem to a certain extent.418

Methods IEMOCAP MELD EmoryNLP Avg

Individual Domain
ERC only 68.63 67.55 40.04 58.74

Different Training Strategies

Multi-task Tuning
70.45 66.71 41.16 59.44

Knowledge Transfer

Progressive Tuning
71.78 67.35 42.01 60.38

Better Tuning Strategy

Table 4: Comparison of model performance on the ERC
task (Level 2) under different settings.

6.3 Few-shot Generalization419

Quantitative Analysis To demonstrate the gen-420

eralizability of our method in sentiment subtasks:421

(1) we conduct experiments on hateful detection 422

(Basile et al., 2019) and emoji prediction (Barbieri 423

et al., 2018) tasks, (2) we conduct experiments on 424

sentiment analysis (Rosenthal et al., 2019) and emo- 425

tion recognition (Mohammad et al., 2018) datasets 426

beyond the progressive sentiment reasoning bench- 427

mark. All experiments are conducted under the 428

few-shot setting. 429

The experimental results in Table 5 demonstrate 430

that our method, under the few-shot setting, per- 431

forms well on sentiment subtasks and datasets not 432

included in the progressive sentiment reasoning 433

benchmark. This result reveals that our method has 434

learned general sentiment knowledge during the 435

training phase. 436

Methods Hateval Twitter
emoji

Twitter
emotion

Twitter
sentiment

SOTAtrain 65.10 32.20 76.10 72.07
T5few−shot 47.94 7.58 59.56 66.13
UniSAfew−shot 49.61 14.82 65.98 64.17
Oursfew−shot 57.65 20.10 68.82 68.03

Ratiofew−shot/train 0.03 0.07 0.18 0.01

Table 5: Generalization results of our method on senti-
ment subtasks. The SOTA models learn on the entire
training set. The ratio represents the proportion of the
number of samples in the few-shot setting to the number
of samples in the entire training set.

Qualitative Analysis Rooting in the nature of 437

LoRA, (Wang et al., 2023a) propose an insight that 438

7



Task Type Sentence/Target Utterance Context Model 1 Model 2

SA I mean I don’t regret seeing it. - GSA-7B (Positive ✔) SA-7B (Neutral ✘)

SD
Person A: It has a bad memory

but a great battery life.
Person A: I just got a new phone.

Person B: How is it?
GSA-7B (Non-sarcastic ✔) Multi-Task Tuning (Sarcastic ✘)

Table 6: Case studies show that the GSA-7B model provides correct answers for SA and SD tasks, highlighting
its advantages effective mitigation of disaster amnesia and its advantages in effectively mitigating the problem of
catastrophic forgetting and possessing better cognitive patterns. SA-7B represents the model fine-tuned on the SA
task.

LoRA parameters are not mere numerical adjust-439

ments but encapsulate crucial directions for model440

gradient updates. Under the progressive tuning441

paradigm, fine-tuning for each level task starts with442

the model fine-tuned on the previous level task,443

learning the residuals between different level tasks.444

Furthermore, as illustrated in Figure 3, considering445

that various sentiment subtasks share similar gra-446

dient directions, when faced with a new sentiment447

subtask, the model can quickly and easily learn the448

patterns of the new task, thereby achieving compet-449

itive performance even in a few-shot setting.450

Figure 3: Qualitative analysis of the generalization of
our method on sentiment subtasks.

6.4 Case Study451

In Table 6, we exemplify two cases from the SA452

and SD tasks.453

In the first case, we employ the model fine-tuned454

on the SA task to determine that the sentiment po-455

larity of the sentence "I mean I don’t regret seeing456

it." as incorrect, whereas the GSA-7B model pro- 457

vides the correct answer. We believe that this is 458

due to during the fine-tuning process for the ERC 459

(Level 2) and SD (Level 3) task, attention is also 460

given to the semantic information relevant to the 461

SA (Level 1) task, leading to a broader, more com- 462

prehensive understanding of semantic information, 463

effectively mitigating the problem of catastrophic 464

forgetting. 465

In the second case, we compare the result of 466

multi-task tuning and the GSA-7B model on an 467

instance of SD task. Due to the presence of both 468

’good’ and ’bad’ words in the target utterance, the 469

multi-task tuning model classified it as sarcastic. 470

For the GSA-7B model obtained by our progressive 471

fine-tuning, it not only focuses on the linguistic ex- 472

pression of the target utterance but also takes into 473

full consideration the emotional state correspond- 474

ing to the contextual and semantic information, 475

possessing a better cognitive pattern. 476

7 Conclusion 477

In this paper, we deeply explore the hierarchical re- 478

lationships between sentiment subtasks, proposing 479

progressive reasoning benchmark that includes SA 480

(Level 1), ERC (Level 2), and SD (Level 3) tasks 481

and progressive task instruction. Subsequently, 482

we propose parameter-efficient progressive tuning 483

paradigm to enhance the Llama2-7B model. The 484

resulting model is named GSA-7B, a specialized 485

open-source LLM for the sentiment domain. Exper- 486

imental results show that GSA-7B performs well 487

across all datasets in the progressive sentiment rea- 488

soning benchmark and exhibits good generalization 489

ability for sentiment subtasks and datasets that were 490

not encountered during its training phase, which 491

reveals the feasibility of building AI that can under- 492

stand sentiment. 493
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Limitations494

There are two major limitations in this study.495

Firstly, there are relatively few task types in the496

progressive sentiment reasoning benchmark, which497

can be further enriched by conducting more fine-498

grained and in-depth exploration of tasks in the499

sentiment domain. For example, incorporating gen-500

erative tasks such as empathetic responses into the501

benchmark. Secondly, in constructing the progres-502

sive sentiment reasoning benchmark, we only uti-503

lize the information from the textual modality in504

each dataset. Towards generic sentiment abilities505

for Multimodal LLM is also important, which we506

treat as future work.507
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