
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

GENERATE EXPLORATIVE GOALS WITH LARGE
LANGUAGE MODEL GUIDANCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement learning (RL) struggles with sparse reward environments. Recent
developments in intrinsic motivation have revealed the potential of language models
to guide agents in exploring the environment. However, the mismatch between the
granularity of environment transitions and natural language descriptions hinders
effective exploration for current methods. To address this problem, we introduce a
model-based RL method named Language-Guided Explorative Goal Generation
(LanGoal), which combines large language model (LLM) guidance with intrinsic
exploration reward by learning to propose meaningful goals. LanGoal learns a
hierarchical policy together with a world model. The high-level policy learns to
propose goals based on LLM guidance to explore the environment, and the low-
level policy learns to achieve the goals. Extensive results on Crafter demonstrate
the effectiveness of LanGoal compared to recent methods.

1 INTRODUCTION

Reinforcement learning has been widely used in decision-making tasks, but it struggles with long-
horizon tasks and sparse reward settings. Especially in open-world tasks (Milani et al., 2020; Guss
et al., 2021; Kanervisto et al., 2022), the agent needs to explore and make decisions to reach the
goal in very large state space. Tasks like obtain a diamond in Minecraft, can involve long-horizon
decision-making process and exploration for sparse reward signals, which significantly increase the
difficulty of the task.

Given the intrinsic difficulty, reinforcement learning (RL) methods have been struggling to solve such
tasks. Existing methods propose curiosity-driven exploration(Pathak et al., 2017; Ecoffet & Lehman,
2021), maximize disagreement between ensemble of models(Burda et al., 2019), or use intrinsic
motivation(Schmidhuber, 1991; Pathak et al., 2017) to encourage the agent to explore the environment.
Most of these methods give the agent a reward bonus when reaching unseen states, which can help the
agent explore efficiently and avoid local optima. However, intrinsic reward methods can mislead the
agent to favor meaningless noisy states or states with high transition uncertainty rather than reaching
the goal, which leads to the inefficiency of the method in sparse reward settings.

Recently, with the rise of large language models (LLMs) and their ability as a few-shot learner
(Achiam et al., 2023; Brown et al., 2020), they have been gradually used in decision-making tasks.
Enriched with commonsense, LLMs can make reasoning and planning at abstract natural language
level, break down the task into sub-tasks for downstream RL methods. LLMs can also provide
promptable representation or exploration guidance with semantic meaning to the RL policy (Chen
et al., 2024; Zhang & Lu, 2024), enabling the agent to make decisions with respect to the prompt.
Thus, methods that combining LLMs with RL have been proposed to improve the performance of
decision-making tasks.

However, the primary challenge lies in the combination of LLMs and RL methods, which requires a
fast adaptation of the RL policy to the semantic meaning of environment state in an online manner.
Existing works learn model-free policy with guidance from LLM, but lack of understanding of the
semantic meaning. Thus, RL policy may not follow the guidance of LLMs or make a balance between
reaching the LLM goals and exploration during the online training, which leads to the inefficiency
of the method. Besides, RL policy may not be able to reach the goal proposed by LLMs when
interacting with the environment, further compromising their effectiveness in goal-reaching tasks.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

In this paper, we propose LanGoal, a model-based reinforcement learning method with hierarchical
policy that combines with the LLM guidance efficiently. We claim that a hierarchical behavior
is beneficial for the agent to solve this problem by setting a meaningful goal regarding the LLM
guidance. Our method consists of a hierarchical policy training together with a world model. LLM
gives semantic guidance to the high-level policy, which generates abstract actions as goals for the
low-level policy as controller to reach. Inspired by recent advancement in controllable generation(Ho
& Salimans, 2022; Dhariwal & Nichol, 2021) and its application in RL, we propose a novel method
to combine the LLM guidance with the high-level policy to propose meaningful goals. This, as a
result, improves the overall goal-reaching ability. We conduct extensive experiments to show the
effectiveness of our method, compared with various baselines using different RL methods and LLMs.
Our results reveal the potential of improving the performance on decision-making tasks combining
LLMs and RL.

Contributions. The main contributions of this paper are as follows:

• We propose a novel model-based reinforcement learning method with hierarchical policy
that combines with the LLM guidance efficiently.

• We introduce a new method to improve the effect of goal-reaching ability and inference
performance at test time.

• We conduct extensive experiments on tasks in open-ended environment Crafter to show the
effectiveness of our method, compared with various baselines using different RL methods
and large language models.

2 RELATED WORKS

Model-based RL. Model-based RL(MBRL) methods learn a world model through online interactions
or offline dataset (Ha & Schmidhuber, 2018; Hafner et al., 2020). Agent then learns a policy with
the generated trajectories from interaction with the world model and improves the data efficiency.
Existing works successfully apply MBRL methods in various domains including Atari games,
locomotion tasks and open-ended environments, demonstrating the scalability of MBRL methods in
decision-making tasks. (Hafner et al., 2023; 2021; 2019; Hansen et al., 2022; 2024). Lin et al. (2024)
trains a multimodal world model using natural language descriptions and visual observations in the
environment, enabling the agent to learn representations combining both modalities. We employ
similar idea to learn multimodal embeddings for world model, while also consider incorporating the
guidance from LLM using a hierarchical policy to improve exploration ability.

Hierarchical reinforcement learning for exploration. Hierarchical reinforcement learning offers
a promising way to improve the exploration ability of RL methods, particularly in sparse reward
settings. Hierarchical policy integrate effectively with intrinsic reward methods to facilitate temporal
abstraction (Kulkarni et al., 2016; Gumbsch et al., 2023), design dense reward for agents to explore
the environment (Steccanella et al., 2020; McClinton et al., 2021). Existing works also combines
hierarchical policy learning with world model to improve the exploration ability of model-based
RL methods. Hierarchical policy set random goals (Mendonca et al., 2021) or emply a divide-and-
conquer-like strategy (Hamed et al., 2024) to explore the environment. Hafner et al. (2022) introduce
a method to learn a hierarchical policy with intrinsic reward combines with world model, which helps
the agent to explore in sparse reward settings. These methods typically utilize model uncertainty to
encourage the agent to visit unseen states or transitions with high uncertainty.

However, such intrinsic rewards or heuristic methods can mislead the agent, such as favoring the
states with high transition uncertainty rather than reaching the goal, which leads to the inefficiency
of the method in sparse reward settings. Especially when meeting large state space and complex
tasks, intrinsic reward methods may fail to guide the agent to reach the goal efficiently. In this work,
we combine guidance from LLM with intrinsic reward, aiding the agent to explore the environment
towards meaningful goals. We train a hierarchical policy to generate goals with aligned with LLM
guidance, and try to explore and adhere to the guidance simultaneously.

RL with LLM guidance. Open-ended environments(Milani et al., 2020; Guss et al., 2021; Kanervisto
et al., 2022; Hafner, 2021; Matthews et al., 2024) aresignificant due to their connections with reality.
Tasks in open-ended environments, like obtain a diamond, can involve long-horizon decision making,
which significantly increase the difficulty of the task. However, RL methods struggle with low sample

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

efficiency, especially when meeting sparse reward settings. Recent advancements in natural language
processing with LLMs have garnered significant attention. LLMs such as GPT series(Brown et al.,
2020; Achiam et al., 2023) are regarded as promising on decision making. LLMs are also highly
expected to improve RL methods by offering semantic information and commonsense of the task
(Chen et al., 2024; Zhang & Lu, 2024). One way is to give better representation or goals to the
policy. P2RL(Chen et al., 2024) generates promptable representations for policy learning by visual
question answering with environment observations. Zhang et al. (2023); Zhou et al. (2024) generate
task image with the help of LLM as goal for the low level policy. Another way is reward shaping.
LiFT(Nam et al., 2023) adjust MineClip reward by refining the description of current observation
with MLLM. Zhang et al. (2024) compares different types including codes, preferences and goals on
downstream RL methods. Prakash et al. (2023) train hierarchical policy as skills with LLM decide
which skill to use next. While few of them have addressed the misalignment between the granularity
of environment transitions and natural language descriptions, which can be less helpful when suitable
language descriptions of transitions are unavailable in the environment.

3 PRELIMINARIES

We consider a partially observable Markov decision process (POMDP) defined by a tuple
(S,A,O, P,R, γ), where S is the state space, A is the action space, O is the observation space, P is
the transition function, R is the reward function, and γ is the discount factor. The goal of the agent is
to learn a policy π that maximizes the expected return Eπ[

∑∞
t=0 γ

trt].

We further define a set of goals G that the agent can reach in the environment. These goals can
be expressed in natural language or other forms of semantic information like embeddings, and we
assume that for any two states xt, xt+h ∈ O with fixed interval h, the expression of the state changes
can also be represented by natural language f(xt, xt+h) = ginv

t ∈ G. Given an observation xt ∈ O
and its language description lt at timestep t, LLM can decide a gt ∈ G as goal for the policy to reach,
then the RL policy π takes gt and ot as input to make action at in the environment until the next goal
is proposed by LLM.

zt

st+h

vt

lt

st

at

st+1

at+1

Semantic instruction
Hierarchical policy
World Model

ot ොot ොvt

ENC DEC

ot+1 ොot+1

ENC DEC

ot+h ොot+h ොvt+h

ENC DEC

zt+hvt+h

lt+h

Figure 1: World model learning structure of LanGoal. Components like reward prediction are omitted
for clarity. For every H timesteps, the agent query LLM to obtain an embedded natural language goal
vt. The higher-level policy takes st and vt as input to propose a goal zt. The lower-level policy then
generate a sequence of actions at and interact with the environment until the next goal is proposed.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

4 METHODS

In this section, we introduce the proposed method in detail. We first introduce how we prompt
the LLM to generate skills for high-level policy, then we describe the world model and design of
hierarchical policy. Finally, we introduce our method during test time to improve the goal-reaching
ability.

4.1 PROMPTING LLM FOR GUIDANCE GENERATION

We query the LLM for a fixed timestep interval H to ensure the responsed natural language goal is
reachable for RL policy in the environment. Given the observation ot at timestep t, we first transform
it into a natural language description lt, which contains the necessary semantic information of the
environment such as the inventory, location, and task description in the environment. Additionally,
we employ a captioner to label the state changes in previous H steps, showing which goal is actually
reached by RL policy, denoted as ginv

t as its analogy to inverse dynamics. Then we prompt the LLM
with lt to decide a goal gt to reach and use a pretrained encoder to transform gt into a vector vt
for high-level policy as input. We also use the same encoder to transform ginv

t into a vector vinv
t as

additional information to train the world model. The detailed design of the prompt, captioner and
encoder are provided in Appendices B and C.

4.2 WORLD MODEL LEARNING

We basically follow previous works to use the Recurrent State-Space Model (RSSM) (Hafner et al.,
2023) as the dynamics model and predict the next state, reward and terminal signal. However, we
additionally predict the goal representation vt proposed by LLM and the goal representation that
actually reached during the previous H steps, denoted as vinv

t . This can help leverage the information
of LLM guidance, measure the semantic similarity between the proposed goal and the current state
when training the policy using imaging with the world model. We refer to (Lin et al., 2024; Liu et al.,
2024) to give a concise expression of the world model, consists several networks that are optimized
jointly:

Sequence model: ŝt, ht = seqθ (ht−1, st−1, at−1)

Encoder: st ∼ encθ (st | ht, ot)
Multimodal decoder: x̂t, v̂t, r̂t, ĉt = decθ (st, ht)

v̂inv
t = decθ (st−H , st)

(1)

Where ht is recurrent state of the sequence model. The loss of the world model consists of the
reconstruction loss, the prediction loss, and the reward loss. All loss terms are written as:

Reconstruction Loss: Lx = ∥x̂t − xt∥22 ,
Lv = ∥v̂t − vt∥22 ,

Linv
v =

∥∥v̂inv
t − vinv

t

∥∥2
2
,

Reward Loss: Lr = catxent (r̂t, twohot (rt)) ,

Continue Loss: Lc = binxent (ĉt, ct) ,

Prediction Loss: Lpred = max (1,KL [sg (st) ||ŝt]) ,
Regularizer: Lreg = max (1,KL [st|| sg (ŝt)]) ,

(2)

where catxent is the categorical cross-entropy loss, binxent is the binary cross-entropy loss, sg is
the stop gradient operator, KL refers to the Kullback-Leibler (KL) divergence. We then have total
loss for the world model:

LRSSM = Lx + Lv + Linv
v + Lr + Lc + β1Lpred + β2Lreg, (3)

in which β1 = 1.0, β2 = 0.1.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

4.3 HIERARCHICAL POLICY

We design a hierarchical policy with two levels of policies to leverage LLM guidance for exploration.
The low-level policy is a goal-reaching policy, try to reach the goal set by high-level policy. The
high-level policy determines the goal state that meets both the LLM-proposed goal and the need to
explore the environment. For simplicity, we synchronize the decision frequency of the high-level
policy with that of the LLM, proposing a goal zt at every H timesteps with high-level policy whenever
the LLM proposes gt. A different design of decision frequency is also feasible, which is left for
future work.

Goal autoencoder. The goal state can be a high-dimensional continuous vector which is hard to
make decisions for high-level policy. Thus, we use an autoencoder to transform the goal state into a
discrete action space with lower dimension. The autoencoder compresses the state st into high-level
action space, and reconstruct the original state ŝt from the given high-level action or compressed
representation ut. The reconstruct error is used to measure the novelty of the goal. Then we set
decHθ (zt) as the goal for the low-level policy to reach. We refer to Hafner et al. (2022) to design the
action space of high-level policy. Specifically, the goal encoder takes st as input and predicts a matrix
of 8×8 logits, samples a one-hot vector from each row, and flattens the results into a sparse vector
with 8 out of 64 dimensions set to 1 and the others to 0. Gradients are backpropagated through the
sampling by straight-through estimation (Bengio et al., 2013). The goal autoencoder is optimized
end-to-end using the variational objective:

L(θ) =
∥∥ decHθ (zt)− st

∥∥2 + βDKL[enc
H
θ (zt | st) ∥p(z)] where zt ∼ encHθ (zt | st) (4)

The components in hierarchical policy represent as:
High-level Encoder: ut ∼ encHθ (ut | st)
High-level Decoder: ŝt+h ∼ decHθ (ŝt+h | ut)
High-level policy: zt ∼ πHϕ (zt | st, vt)

Low-level policy: at ∼ πLϕ (at | st,dec
H
θ (zt))

(5)

Reward design. The high-level policy is encouraged to explore the environment towards the goal
state generated by LLMs and try to reach a novel state in the meantime. When the high-level policy
proposed a goal zt, it receives an exploration reward with related to the reconstruction error between
the future state st+H and the decoded goal decHθ (zt), denoted as rexpl. The low-level policy is
encouraged to reach the goal by maximizing the cosine similarity between the goal and current state
as goal-reaching reward, denoted as rgoal. We also check if the goal proposed by LLM is reached
or not and give guidance-following reward according to the cosine similarity of semantic guidance
vt and vinvt , denoted as rLLM . If the cosine similarity falls below 0.6, rLLM is set to 0 to ensure
the policy’s behavior correlates with gt and to prevent over-exploitation of this reward signal. Both
rewards of high-level policy and low-level policy include the environment reward rt and the reward
of reaching the goal by LLM rLLM to avoid misalignment between different levels of the policy. The
reward items are written as:

rexpl = ∥decHθ (zt)− st+H∥22

rLLM =
vt · vinv

t

∥vt∥∥vinv
t ∥

if cos(vt, v
inv
t) > 0.6 else 0

rgoal =
decHθ (zt) · st
∥decHθ (zt)∥∥st∥

rhigh = rt + rLLM + rexpl

rlow = rt + rLLM + rgoal

(6)

Actor-Critic Learning. We use actor-critic learning to optimize the hierarchical policy and the critic
and learn separate critic model for each component of the reward. We train the high-level policy and
critic with abstract trajectories {ŝt, ẑt, ŝt+H , r̂high} extracted from imagined trajectories generated by
the world model. See details in Appendix D. Following the expression in (Lin et al., 2024; Liu et al.,
2024), the actor and the critic give:

Actor: πHϕ (zt | st, vt), πLϕ (at | st,dec
H
θ (zt)) Critic: V H

ψ (st), V L
ψ (zt). (7)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4.4 TEST-TIME TECHNIQUES

Algorithm 1 LanGoal

while acting do
Step environment ot, rt, ct ← env(ot−1, at−1).
// Update goal with LLM and high-level policy
if t mod H = 0 then

gt ∼ LLM(gt|ol)
vt = txt enc(vt | gt)
zt ∼ πH

ϕ (zt | st, vt).
at ∼ πL

ϕ (at | st, zt).
while training do

Sample batch {x, a, r} from replay buffer.
Update world model
Update high-level autoencoder
// Imaging
Imagine trajectory {ŝt, ât, r̂t, ôt} with world model.
Predict rewards {r̂t, r̂LLM , r̂goal, r̂expl} .
Update high-level policy and critic with abstract trajectories.
Update low-level policy and critic with imagined trajectories.

while testing do
Step environment ot, rt, ct, gt ← env(ot−1, at−1).
// Update goal if goal is reached or after H steps
if t mod H = 0 or cos(vt, vinv

t−H) > 0.9 then
vt = txt enc(vt |LLM(gt | ol))
zt ∼ πH

CFG(zt | st, vt).
at ∼ πL

ϕ (at|st, zt).

Classifier-free guidance. Classi-
fier guidance (Dhariwal & Nichol,
2021) and classifier-free guidance
(CFG) (Ho & Salimans, 2022) are
first proposed for controllable gen-
eration. By conditioning the model
on the classifier explicitly or implic-
itly, these methods approximate con-
ditional score function in diffusion
models and can generate samples that
are more likely to be classified as the
target class given a larger guidance
scale. Without theoretical guarantee,
CFG has also been used analogously
for goal-reaching policy (Zhou et al.,
2024) and generative models like con-
ditional variational autoencoders (Lif-
shitz et al., 2024) and achieve better
controllability. In this case, policy
with CFG can be interpreted as a bi-
ased sampler, which favors goals that
are more likely to be classified as the
target class.

During test time, we also use the
CFG policy πCFG on the higher-level
policy to propose goals to check if the

high-level policy learns to propose goals following the LLM’s guidance. CFG policy gives:

πCFG = (1 + λ)πHϕ (zt | st, vt)− λπHϕ (zt | st, vt = ∅) (8)

Where λ is a parameter to control guidance scale of condition, and ∅ represents the empty goal. Here
we use the caption “no operation” as the empty goal, which means the agent is captioned as not
reaching any goal between the interval of two LLM decisions. We set λ = 4.0 in our experiment.

Adaptive goal-reset interval. Lower-level policy may reach the goal set by LLM before the
predetermined time interval while still trying to reach the continuous goal. To better utilize the LLM
guidance when testing, we propose an adaptive goal-reset interval, allowing for the revision of goals
established by the LLM during test execution.

Since we have trained the goal embedding predictor vt and vinv
t−H with the same timestep interval H ,

we can adjust the goal reset interval based on the cosine similarity between vt and vinv
t−H . At each

timestep, we calculate the cosine similarity between vt and vinv
t−H before the policy has taken action.

If the similarity exceeds a preset threshold τ = 0.9, we regard the goal has been reached during the
past H timesteps and subsequently reset the goal indicated by the LLM. We query LLM with current
description of observation lt to obtain a new vt and set a new goal with πHϕ for the lower-level policy
to reach. Refer to Algorithm 1 for more details.

5 EXPERIMENTS

Our experiments mainly aims to evaluate the following aspects of our method: 1. our proposed
method can improve the performance of decision-making tasks and make meaningful explorations. 2.
our method can achieve better goal-reaching ability compared with the state-of-the-art methods.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

5.1 EXPERIMENTAL SETTINGS

Environment. The Crafter environment is a grid world that features pure pixel observation and
discrete action space. Crafter is designed similarly as a 2D Minecraft, featuring a procedurally
generated, partially observable world. The player’s goal is to unlock the entire achievement tree by
collecting items, crafting tools and defeating monsters. The player will obtain +1 reward for each
achievement unlocked and +/- 0.1 reward for obtaining or losing health points.

Besides the trajectory reward, Crafter also consider the Crafter score as evaluation metrics, computed
as S .

= exp(1
N

∑N
i=1 ln(1 + si))− 1, where si ∈ [0; 100] is the agent’s success rate of achievement

i and N = 22 is the number of achievements.

Baselines. We consider employing ELLM (Du et al. (2023)), Dynalang (Lin et al. (2024)) and
AdaRefiner (Zhang & Lu (2024)) as baselines that include natural language information in RL
methods. We refer to the results of Dynalang from (Liu et al., 2024). We also compare against:

• other baseline algorithms that do not utilize natural language in each environment from
(Hafner, 2021), including PPO (Schulman et al. (2017)), Rainbow (Hessel et al. (2018)).

• recent method that only use LLM to make decisions, including SPRING (Wu et al. (2023)),
Reflexion (Shinn et al. (2024)) and ReAct (Yao et al. (2023)) from (Zhang & Lu, 2024).

LLM. LanGoal use gpt-4-turbo-2024-04-09 as LLM in our experiments. We cached
outputs of LLM for each query regards to their necessary information and reuse them if meeting the
same query again to help reduce the running time.

5.2 RESULTS

We train our method on Crafter with 1M and 5M steps to match different settings of previous works.
Table 1 shows the results comparing with baselines. Our method outperforms all the compared
methods on score, indicating a greater success rate in accomplishing difficult tasks. Additionally,
our test-time techniques further enhance the performance, achieving even higher scores. Figure
2 illustrates the success rate for each task trained with 1M steps, in comparison with DreamerV3.
LanGoal excels on relatively hard tasks, e.g. “collect iron” and “make stone pickaxe”. We also
display the success rate of each task when trained after 5M steps in Figure 3, shown in appendix. Our
method continues to maintain a higher success rate on these challenging tasks.

5.3 ABLATION STUDY

We conduct ablation study to evaluate the effectiveness of each component of our method. The
results are shown in table 2. We also record the proportion of reached goals from LLM in the last
column for each setting.

LLM Guidance. To evaluate the effectiveness of LLM guidance, we compare the performance of our
method with different size of LLMs. We use GPT-4(gpt-4-turbo-2024-04-09) and GPT-4o-
mini(gpt-4o-mini-2024-07-18) to generate goals for the agent and evaluate the performance
of our method, denoted as LanGoal and LanGoal(w/ 4o-mini) respectively in table 2. We observe
slight performance drop after replacing LLM, but the results still surpass other RL methods. We
also note that smaller LLM like GPT-4o-mini tends to generate more unreached goals regardless of
current state, or simply choose goals to keep agent alive. While larger LLM like GPT-4 can make
decision regarding to the current state and propose meaningful goals for the agent, indicating the
importance of effective LLM guidance.

Hierarchical Policy. We compare the performance of our method with and without the hierarchical
policy. In this setting, we still apply rLLM into the reward to encourage the agent to reach the goal
proposed by LLM. The lower-level policy then takes the state st and embeddings of natural language
description vt as input, denoted as LanGoal(w/o Hier) in table 2. From the results, we observe that
simply adding rLLM into the reward cause explicit performance drop on all metrics, validating the
misalignment problem between the natural language description and the environment transition.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Method Score Reward Steps
LanGoal 34.0±0.3 14.1±2.2 5M

AdaRefiner (w/ GPT-4) 28.2±1.8 12.9±1.2 5M
AdaRefiner (w/ GPT-3.5) 23.4±2.2 11.8±1.7 5M

ELLM - 6.0±0.4 5M
DreamerV3 32.9±0.5 13.7±2.5 5M
LanGoal 23.8±3.6 11.4±2.4 1M

Achievement Distillation 21.8±1.4 12.6±0.3 1M
Dynalang 16.4±1.7 11.5±1.4 1M

AdaRefiner (w/ GPT-4) 15.8±1.4 12.3±1.3 1M
PPO (ResNet) 15.6±1.6 10.3±0.5 1M
DreamerV3 14.5±1.6 11.7±1.9 1M

PPO 4.6±0.3 4.2±1.2 1M
Rainbow 4.3±0.2 5.0±1.3 1M

SPRING (w/ GPT-4) 27.3±1.2 12.3±0.7 -
Reflexion (w/ GPT-4) 11.7±1.4 9.1±0.8 -

ReAct (w/ GPT-4) 8.3±1.2 7.4±0.9 -
Vanilla GPT-4 3.4±1.5 2.5±1.6 -

Human Experts 50.5±6.8 14.3±2.3 -
Random 1.6±0.0 2.1±1.3 -

Table 1: The results on Crafter. w/ test represents using test-time techniques in Section 4.4. We report
mean and standard deviation of algorithm performance across 5 random seeds for LanGoal.

col
lec

t c
oa

l

col
lec

t d
iam

on
d

col
lec

t d
rin

k

col
lec

t ir
on

col
lec

t s
ap

ling

col
lec

t s
ton

e

col
lec

t w
oo

d

de
fea

t s
kel

eto
n

de
fea

t z
om

bie

ea
t c

ow

ea
t p

lan
t

make
 iro

n p
ick

axe

make
 iro

n s
word

make
 st

on
e p

ick
axe

make
 st

on
e s

word

make
 woo

d p
ick

axe

make
 woo

d s
word

pla
ce

fur
na

ce

pla
ce

pla
nt

pla
ce

sto
ne

pla
ce

tab
le

wake
 up

0.01

0.10

1.00

10.00

100.00

Su
cc

es
s R

at
e

(%
)

LanGoal(w/test) DreamerV3

Figure 2: success rate on each task trained with 1M steps.

Test-time Techniques. We also compare the performance of our method with and without the
test-time techniques. The results are shown in table 2. Besides the marginal performance gain,
test-time techniques further improve the proportion of reached goals from LLM, shows that the
high-level policy proposes goals following the LLM’s guidance. As the high-level policy maximizes
the goal-reaching reward and the guidance-following reward simultaneously and LLM may give
unreachable guidance, some of the guidance may not be reached.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Method Score Reward Steps Reached Goal
LanGoal(w/ test) 34.3±1.0 14.1±2.3 5M 40.5%

LanGoal 34.0±0.3 14.1±2.2 5M 38.7%
LanGoal(w/ test) 24.5±3.8 11.6±2.3 1M 44.0%

LanGoal 23.8±3.6 11.4±2.4 1M 43.7%
LanGoal(w/o Hier) 19.6±2.9 10.7±1.3 1M 41.7%

LanGoal(w/ 4o-mini) 22.3±1.9 10.8±1.8 1M 42.5%
DreamerV3 14.5±1.6 11.7±1.9 1M -

Table 2: Results of ablation studies. We report mean and standard deviation of each setting across 5
random seeds.

6 CONCLUSION

In this paper, we propose a novel method for decision-making tasks with language models, which is
able to generate meaningful goals and reach them with high success rate. We also provide a novel
test-time technique to improve overall performance of the model. Ablation studies on Crafter and
demonstrate the effectiveness of each component of our method.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients through
stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. In International Conference on Learning Representations, 2019.

William Chen, Oier Mees, Aviral Kumar, and Sergey Levine. Vision-language models provide
promptable representations for reinforcement learning. In Automated Reinforcement Learning:
Exploring Meta-Learning, AutoML, and LLMs, 2024.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780–8794, 2021.

Yuqing Du, Olivia Watkins, Zihan Wang, Cédric Colas, Trevor Darrell, Pieter Abbeel, Abhishek
Gupta, and Jacob Andreas. Guiding pretraining in reinforcement learning with large language
models. In International Conference on Machine Learning, pp. 8657–8677. PMLR, 2023.

Adrien Ecoffet and Joel Lehman. Reinforcement learning under moral uncertainty. In International
conference on machine learning, pp. 2926–2936. PMLR, 2021.

Christian Gumbsch, Noor Sajid, Georg Martius, and Martin V Butz. Learning hierarchical world mod-
els with adaptive temporal abstractions from discrete latent dynamics. In The Twelfth International
Conference on Learning Representations, 2023.

William Hebgen Guss, Stephanie Milani, Nicholay Topin, Brandon Houghton, Sharada Mohanty,
Andrew Melnik, Augustin Harter, Benoit Buschmaas, Bjarne Jaster, Christoph Berganski, et al.
Towards robust and domain agnostic reinforcement learning competitions: Minerl 2020. In
NeurIPS 2020 Competition and Demonstration Track, pp. 233–252. PMLR, 2021.

David Ha and Jürgen Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2018.

Danijar Hafner. Benchmarking the spectrum of agent capabilities. arXiv preprint arXiv:2109.06780,
2021.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning latent dynamics for planning from pixels. In International conference on
machine learning, pp. 2555–2565. PMLR, 2019.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. In International Conference on Learning Representations, 2020.

Danijar Hafner, Timothy P Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with
discrete world models. In International Conference on Learning Representations, 2021.

Danijar Hafner, Kuang-Huei Lee, Ian Fischer, and Pieter Abbeel. Deep hierarchical planning from
pixels. Advances in Neural Information Processing Systems, 35:26091–26104, 2022.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
through world models. arXiv preprint arXiv:2301.04104, 2023.

Hany Hamed, Subin Kim, Dongyeong Kim, Jaesik Yoon, and Sungjin Ahn. Dr. strategy: Model-based
generalist agents with strategic dreaming. arXiv preprint arXiv:2402.18866, 2024.

Nicklas Hansen, Hao Su, and Xiaolong Wang. Td-mpc2: Scalable, robust world models for continuous
control. In The Twelfth International Conference on Learning Representations, 2024.

Nicklas A Hansen, Hao Su, and Xiaolong Wang. Temporal difference learning for model predictive
control. In International Conference on Machine Learning, pp. 8387–8406. PMLR, 2022.

Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan
Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improvements in
deep reinforcement learning. In Proceedings of the AAAI conference on artificial intelligence,
volume 32, 2018.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598,
2022.

Anssi Kanervisto, Stephanie Milani, Karolis Ramanauskas, Nicholay Topin, Zichuan Lin, Junyou Li,
Jianing Shi, Deheng Ye, Qiang Fu, Wei Yang, et al. Minerl diamond 2021 competition: Overview,
results, and lessons learned. NeurIPS 2021 Competitions and Demonstrations Track, pp. 13–28,
2022.

Tejas D Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and Josh Tenenbaum. Hierarchical deep
reinforcement learning: Integrating temporal abstraction and intrinsic motivation. Advances in
neural information processing systems, 29, 2016.

Shalev Lifshitz, Keiran Paster, Harris Chan, Jimmy Ba, and Sheila McIlraith. Steve-1: A generative
model for text-to-behavior in minecraft. Advances in Neural Information Processing Systems, 36,
2024.

Jessy Lin, Yuqing Du, Olivia Watkins, Danijar Hafner, Pieter Abbeel, Dan Klein, and Anca Dragan.
Learning to model the world with language. In Forty-first International Conference on Machine
Learning, 2024.

Zeyuan Liu, Ziyu Huan, Xiyao Wang, Jiafei Lyu, Jian Tao, Xiu Li, Furong Huang, and Huazhe
Xu. World models with hints of large language models for goal achieving. arXiv preprint
arXiv:2406.07381, 2024.

Michael Matthews, Michael Beukman, Benjamin Ellis, Mikayel Samvelyan, Matthew Jackson,
Samuel Coward, and Jakob Foerster. Craftax: A lightning-fast benchmark for open-ended rein-
forcement learning. arXiv preprint arXiv:2402.16801, 2024.

Willie McClinton, Andrew Levy, and George Konidaris. Hac explore: Accelerating exploration with
hierarchical reinforcement learning. arXiv preprint arXiv:2108.05872, 2021.

Russell Mendonca, Oleh Rybkin, Kostas Daniilidis, Danijar Hafner, and Deepak Pathak. Discovering
and achieving goals via world models. Advances in Neural Information Processing Systems, 34:
24379–24391, 2021.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Stephanie Milani, Nicholay Topin, Brandon Houghton, William H Guss, Sharada P Mohanty, Keisuke
Nakata, Oriol Vinyals, and Noboru Sean Kuno. Retrospective analysis of the 2019 minerl competi-
tion on sample efficient reinforcement learning. In NeurIPS 2019 competition and demonstration
track, pp. 203–214. PMLR, 2020.

Taewook Nam, Juyong Lee, Jesse Zhang, Sung Ju Hwang, Joseph J Lim, and Karl Pertsch. Lift:
Unsupervised reinforcement learning with foundation models as teachers. In Second Agent
Learning in Open-Endedness Workshop, 2023.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In International conference on machine learning, pp. 2778–2787.
PMLR, 2017.

Bharat Prakash, Tim Oates, and Tinoosh Mohsenin. Llm augmented hierarchical agents. arXiv
preprint arXiv:2311.05596, 2023.

Jürgen Schmidhuber. A possibility for implementing curiosity and boredom in model-building neural
controllers. In Proceedings of the first international conference on simulation of adaptive behavior
on From animals to animats, pp. 222–227, 1991.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36, 2024.

Lorenzo Steccanella, Simone Totaro, Damien Allonsius, and Anders Jonsson. Hierarchical reinforce-
ment learning for efficent exploration and transfer. In 4th Lifelong Machine Learning Workshop at
ICML 2020, 2020.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan Yang, and Ming Zhou. Minilm: Deep self-
attention distillation for task-agnostic compression of pre-trained transformers. Advances in Neural
Information Processing Systems, 33:5776–5788, 2020.

Yue Wu, So Yeon Min, Shrimai Prabhumoye, Yonatan Bisk, Ruslan Salakhutdinov, Amos Azaria,
Tom Mitchell, and Yuanzhi Li. Spring: Gpt-4 out-performs rl algorithms by studying papers and
reasoning. arXiv preprint arXiv:2305.15486, 12, 2023.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models. In The Eleventh International
Conference on Learning Representations, 2023.

Chi Zhang, Penglin Cai, Yuhui Fu, Haoqi Yuan, and Zongqing Lu. Creative agents: Empowering
agents with imagination for creative tasks. arXiv preprint arXiv:2312.02519, 2023.

Fuxiang Zhang, Junyou Li, Yi-Chen Li, Zongzhang Zhang, Yang Yu, and Deheng Ye. Improving
sample efficiency of reinforcement learning with background knowledge from large language
models. arXiv preprint arXiv:2407.03964, 2024.

Wanpeng Zhang and Zongqing Lu. Adarefiner: Refining decisions of language models with adaptive
feedback. In Findings of the Association for Computational Linguistics: NAACL 2024, pp. 782–799,
2024.

Enshen Zhou, Yiran Qin, Zhenfei Yin, Yuzhou Huang, Ruimao Zhang, Lu Sheng, Yu Qiao, and Jing
Shao. Minedreamer: Learning to follow instructions via chain-of-imagination for simulated-world
control. arXiv preprint arXiv:2403.12037, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

A IMPLEMENTATION DETAILS

Hyperparameters. We keep most hyperparameters for world model learning and low-level policy
learning the same as the (Hafner et al., 2023). For high-level policy, we test different sizes of action
interval from {2,4,8} and find that 8 is a good trade-off between exploration and high-level policy
training. When querying the LLM, we use its default hyperparameters.We test different CFG scale
from {1.0, 2.0, 3.0, 4.0} and find that 4.0 provides the best performance.

Hyperparameter Value
Env steps 5M

Imagination horizon T 15
Train ratio 512
Batch size 16

Batch length 64
GRU recurrent units 4096
Decoder hidden units 1024

Decoder layers 5
encH classes 8
encH latents 8

πH action space 8×8
πH action interval 8
πH entropy η 0.5
πL entropy η 3e-4

LLM query interval 8
Similarity threshold 0.6
Goal-rest Similarity 0.9

CFG scale 4.0

Table 3: Hyperparameters of LanGoal.

B PROMPT DETAILS

We give the system prompt start by presenting the framework of the Crafter environment, employing
Minecraft as an analogy. For each query, we extract necessary information from the observation and
internal function of Crafter, including objects and creatures within the player’s field of view, items
in player’s inventory, the player’s health status and all goals should be reached. LLM then takes
the system prompt and the information as input and output one goal for RL policy to reach. The
following is a query example:

This is a game like minecraft. Given the player’s state, your
task is to choose the nearest goal the player can reach based
on your knowledge in minecraft. The final purpose of player
is to keep player state healthy and finish all goals. Answer
briefly with only one goal. You can answer reached goal if
necessary. Give your answer start with "goal".
Here is the player’s state:

player state: [player state]
inventory: [inventory]
reached goal: [reached goals]
unreached goal: [unreached goals]
nearby objects: [objects]

C CAPTIONER AND TEXT ENCODER

We categorized the transitions into the following types :

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

• subgoals. (e.g. collect iron, make stone pickaxe, wake up)
• other movements. (e.g. move up/down, no operation)

We use the internal information of Crafter environment to determine the type of the transition. When
multiple subgoals is reached during the period, we caption the period as the less reached subgoal.
We use SentenceBert all-MiniLM-L6-v2 (Wang et al., 2020) as the text encoder.

D ACTOR-CRITIC LEARNING

The actor aims to maximize the cumulative returns, i.e.,

Rt
.
=

∞∑
τ=0

γτ (rt+τ). (9)

Here rt+τ represents the respective rewards of the low-level policy and the high-level policy at time
step t+ τ . Then the bootstrapped λ-returns Sutton & Barto (2018) could be written as:

Rλt
.
= rt + γct

(
(1− λ)Vψ (st+1) + λRλt+1

)
, RλT

.
= Vψ (sT) . (10)

The actor and the critic are updated via the following losses:

LV = catxent (Vψ(st), sg (twohot (Rt))) ,

Lπ = − sg (Rt − V (st))

max(1, S)
log πϕ (at | st)− ηH [πϕ (at | st)] .

(11)

where S is the exponential moving average between the 5th and 95th percentile of Rt, H is the
entropy of the policy.

E MORE RESULTS

col
lec

t c
oa

l

col
lec

t d
iam

on
d

col
lec

t d
rin

k

col
lec

t ir
on

col
lec

t s
ap

ling

col
lec

t s
ton

e

col
lec

t w
oo

d

de
fea

t s
kel

eto
n

de
fea

t z
om

bie

ea
t c

ow

ea
t p

lan
t

make
 iro

n p
ick

axe

make
 iro

n s
word

make
 st

on
e p

ick
axe

make
 st

on
e s

word

make
 woo

d p
ick

axe

make
 woo

d s
word

pla
ce

fur
na

ce

pla
ce

pla
nt

pla
ce

sto
ne

pla
ce

tab
le

wake
 up

0.01

0.10

1.00

10.00

100.00

Su
cc

es
s R

at
e

(%
)

LanGoal(w/test) DreamerV3

Figure 3: success rate for each task trained with 5M steps. LanGoal still performs well on hard tasks
like make iron pickaxe and make iron sword.

13

	Introduction
	Related Works
	Preliminaries
	Methods
	Prompting LLM for Guidance Generation
	World Model Learning
	Hierarchical Policy
	Test-time Techniques

	Experiments
	Experimental Settings
	Results
	Ablation Study

	Conclusion
	Implementation Details
	Prompt Details
	Captioner and Text Encoder
	Actor-Critic Learning
	More Results

